
Even LiĀhter Than LiĀhtweiĀht
Augmenting Type Inference 

with Primitive Heuristics and AI-support

Larisa Safina, Jan Blizničenko

IWST 25 – Gdańsk, 2025



Type Inÿerence? In Dynamic LanĀuaĀes? Why?

Improves correctness, maintainability, performance

Hard in dynamic languages like Smalltalk

- Polymorphism

- Trade-off: precision vs. speed

- Computational resources

2



And no one did it beÿore?

3



A bit oÿ history…

4

Impressive timeline (from 1981 by Suzuki)

From less to more formal 

Compiler-oriented vs IDE-oriented

Pluggable Types

Gradual Typing

Heuristics

…



What about the present

5

- IDE: RoelTyper

- IDE: JInferer

- TypeInfoTools

- VM-level type feedback

- …

However, IDE-integrated type inference is not widely used by Pharo 
developers on a daily basis



Why this insufficient adoption? 

- Problems of early solutions

- Human factor

- end of funding

- lost of interest

- phd/postdoc ends

- Not user-friendly 

6



So what do we want ?

And how ?

- Balance precision and speed

- Make inference interactive and IDE-friendly

Step 1: Lightweight heuristics to pre-calculate types and speed up stronger tools

Simple, fast, surprisingly effective

7



GoinĀ back to heuristics

Heuristics on method titles (127k methods)

- Implicit self returns (~57k methods)

- Type by name (~7,8k methods)

- Single return methods (~10k methods)

- Collection-specific methods

- Test methods (~22,5k methods)

8



GoinĀ back to heuristics

Heuristics on method titles

- Type by name (~7,8k methods)

- Boolean (isEmpty, hasElements, includes, ..)

- String (asString, …)

- Numerical (size, …)

9



GoinĀ back to heuristics

Heuristics on method titles

- Single return methods (~10k methods)

- AST LiteralNode as String, Number (8745 methods)

- class reference (982 methods)

- class new (394 methods)

- self

- self new (34 methods)

- nil (278 methods)

10



GoinĀ back to heuristics

Heuristics on method titles

- Collection-specific methods

- Numeric e.g indexOf 

- String e.g. concatenation

- Boolean e.g. anySatisfy: 

- Transformation e.g asCollection

- Collection-preserving e.g addAll:, copy

11



GoinĀ back to heuristics

Heuristics on method titles (127k methods)

- Implicit self returns (~57k methods)

- Type by name (~7,8k methods)

- Single return methods (~10k methods)

- Collection-specific methods

- Test methods (~22,5k methods)

12



Evaluation
Inference takes ~1 minute on Mac M2 with 24 GB of RAM

In Pharo 13 image heuristics cover 97,3k methods of 127k

Validation

- Sanity Check

- Comparison with TypeInfoTools 

13



AI-Assisted Inÿerence (Experimental)
- Queries to OpenAI/Mistral for type prediction

- Promising, but slow and sometimes wrong

- Can complement heuristics

- Need to learn lessons from Python 

14



IDE InteĀration
- Type results shown on demand

- CSV-based or loaded into Pharo (negligible overhead)

- AI-specific settings

15



Type results shown on demand

16



What's Next?

Combine everything! (Heuristics, other TI tools, AI, CI, ADHD, …)

- Interactive Type Refinement

- Create a Smalltalk “typeshed”

- Allow devs to refine suggestions

- Improve AI part

- …

17



Thanks / Q&A
Āithub.com/lsafina/typeMe

18


