
Composing and Performing
Electronic Music on-the-Fly

with Pharo and Coypu

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

Live coding

In Live coding, sometimes referred to as on-the-fly programming, just-in-time
programming, or conversational programming, music and video artists expose and
rewire the innards of software while it generates improvised music and/or
visuals.

All code manipulation is projected for the audience’s pleasure

Live coding has become increasingly
popular in computer music, often as
improvisation or combined with
algorithmic composition.

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

TOPLAP manifesto

• Give us access to the performer's mind, to the whole human instrument.

• Obscurantism is dangerous. Show us your screens.

• Programs are instruments that can change themselves

• The program is to be transcended - Artificial language is the way.

• Code should be seen as well as heard, underlying algorithms viewed as well as

their visual outcome.

• Live coding is not about tools. Algorithms are thoughts. Chainsaws are tools.

That's why algorithms are sometimes harder to notice than chainsaws

Transnational Organisation for the Proliferation of Live Artistic Programming

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

ICLC

ICLC24 - Shanghai, China - Algorave @ System

ICLC25, Barcelona ,Catalunya

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

Why Coypu?

Smalltalk syntax is great for people with little computer literacy.

Musicians and sound artists might be intimidated by functional or opaque
languages

Pharo comes with its own IDE

Pharo is easy to learn

Many resources (2 MOOCs)!

It’’s reflective!

Lively (relatively :)) young community.

No extensions to install=

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

Habitat

Coypu has been developed to program music on-the-fly with Pharo.

Coypu acts like a score* for an orchestra*.

Coypu has been developed to program music on-the-fly with Pharo.

The orchestra is the audio server used to render the sounds

* in traditional Csound terms

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

Anatomy

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

Hello Coypu

p := Performance uniqueInstance .
p performer: PerformerPhausto new.
p freq: 98 bpm.

#rumba to: #conga.

p playFor: 256 bars.

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

One performance

The Performance is a subclass of Dictionary

The Performance is a Singleton.

Each key of the Performance is assigned to a Sequencer.

D O U B L E
DISPATCH

The Performer is responsible of
sending events to the audio client!

Performance >> playFor: aNumberOfSteps

self class performer playFor: aNumberOfSteps.

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

5 Performers

PerformerLocal

The Performer subclasses implement the play method

PerformerKyma

PerformerSuperDirt

PerformerMIDI

PerformerPhausto

Local OSC audio server (ChucK PureData, SuperCollider, MaxMSP)

Symbolic Sound Kyma (external OSC connection)

SuperDirt (local OSC connection)

External MIDI hardware or local application

Phausto (embedded in Pharo, communication via FFI)

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

Inside a Performer

Performer >>playFor: aNumberOfSteps

performance bpm: 60 / (performance freq * 4).
performance transportStep: 0.
performance activeProcess: ([aNumberOfSteps timesRepeat:

[(Delay forSeconds: performance freq) wait.

"sequencers scan"
 [

performance valuesDo: [:seq |

 (seq gates wrap: performance transportStep) = 1 ifTrue:
[self playEventAt: seq noteIndex in: seq.

 "increment note Index"

 seq noteIndex: seq noteIndex + 1]]] forkAt: Processor
timingPriority - 2.

"step is incremented anyway"
performance incrementTransportStep]] forkAt:
Processor timingPriority - 1)

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

Play events(phausto)

PerformerPhausto >> playEventAt: anIndex dsp: aDsp freq: aFrequency in: aSequencer

| dur aParameterList |
dur := aSequencer durations asDirtArray wrap: anIndex.
aParameterList := self performance activeDSP allParameters.

aSequencer extraParams keysAndValuesDo: [:k :v |
aParameterList

setValue: (v wrap: anIndex)
parameter: aSequencer seqKey , k asString
forDsp: aDsp].

aParameterList
setValue: (aSequencer notes wrap: anIndex) midiNoteToFreq
parameter: aSequencer phaustoNoteDestination
forDsp: aDsp.

aParameterList
trig: aSequencer phaustoGateDestination
for: dur * aFrequency * (aSequencer gateTimes wrap: anIndex)
forDsp: aDsp

PerformerKyma >> playEventAt: anIndex in: aSequencer

self subclassResponsibility

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

Play events(MIDI)

PerformerMIDI >> playEventAt: anIndex in: aSequencer

| gateTime dur midiNote mch stepDuration midiSender |
freq := Performance uniqueInstance freq.
gateTime := 0.9. "must be changeable"
midiSender := PerformerMIDI midiOut.
mch := aSequencer midiChannel.
stepDuration := Performance uniqueInstance freq.
midiNote := aSequencer notes asDirtArray wrap: anIndex.
dur := aSequencer durations asDirtArray wrap: anIndex.
midiSender

playNote: midiNote
onChannel: mch
duration: dur * freq * gateTime.

PerformerKyma >> playEventAt: anIndex in: aSequencer

self subclassResponsibility

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

Many sequencers
Virtually has many as you need

A Sequencer resemble a track in a Digital Audio WorkStation

But in Coypu its values can have different size !

16 semiquavers index: ‘1 , 7’ ; notes: ’62 , 65 , 67’ to: #speakspell

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

A new music dialect

3 principles

Iconicity

Economy

Semantic Equivalence

Code should mirror music

Type less

Multiple expressions can be equivalent

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

A new music dialect

Create
Sequencers

With random generators

From euclidean rhythms

With a string notation

From Arrays

From a rhythm name

#(1 0 0 1 0 1 0 0 1 1) asSeq.

16 randomTrigsWithProbability: 67.

#(3 16) euclidean.

'40*2 , 57 , ~ , 65/3 , ~*5' asDirtNotes.

16 cumbiaClave.

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

Road to fame

We consider Coypu to still be in its beta phase. In order to proceed toward a stable
release, several current limitations need to be addressed:

1. No current support for cyclical structures (e.g., TidalCycles-style patterns).
2. Timing resolution and rhythmic subdivision control currently unavailable.
3. The average jitter in the performance playhead advancement is approximately 1 ms.

We're working toward a solution for testing performance in
dynamic, on-the-fly music systems like Coypu.

Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo, Stéphane Ducasse

Conclusions

Still in beta,
but already in the wild

ICLC2025 (Algo:noises at Laut, Barcelona)

ICLC2024 (Algorave at System, Shanghai)

IFC2024 (Torino)
ESUG2024 (Lille)

ESUG2023 (Lyon)

Algorave at OHM (Berlin , 2024)

Festival della Robotica 2025 (Workshop, Pisa)

ICLC2023 (Algorave + Workshop, Düsseldorf)
ESUG2023 (Novi Sad)

Cyberspeak (Milano, 2022)

Empirical investigation into teaching methods and
their real-world application is essential for effective
evaluation.

We need more workshops and more users,
 to spread everywhere.

