
Migrating Katalon
Studio Tests to

Playwright with Model
Driven Engineering

2nd of July 2025

Nicolas Hlad

Benoit Verhaeghe

IWST 2025 — Gdańsk

2About this talk

Introduction

What this presentation is about

• An industrial use case of Pharo Moose

• Migration of test scripts using Model Driven Engineering (MDE).

• Our shared experience of

• what worked

• what didn't (kind of)

②

③

④

⑤

3Migrating Katalon Studio Tests to Playwright with Model Driven Engineering — IWST 2025

Introduction
① Industrial context and problems

Defining a migration strategy

Designing our migration tool

Early results

Conclusion

4Industrial context and Problems

Problem definition — 1

Migrating in time

1. Four years ago, some Business Units (BUs)
adopted Katalon Studio to implement their
functional behavior tests

2. In December 2024, BUs were instructed to
change for Playwright as a global solution for
functional tests.

3. They had to migrate all tests by June 2025

within 6 months

5Industrial context and Problems

Problem definition — 2

Katalon vs playwright

Katalon Studio is an EDI for
testing web, mobile, API and
desktop applications.

Playwright is a scripting framework for
testing web, mobile, API and desktop
applications.

6Industrial context and Problems

Problem defintion — 3

From Katalon to Groovy

Fig —Katalon Test script can be exported into source code (Groovy)

7Industrial context and Problems

Problem defintion — 4

From Groovy… to Playwright ?

Fig —A Katalon that was re-written manually into a Playwitght test script (Typescript)

Initialy, we were told that it would take "hours" to rewrite a test by hand
And we counted 1412 test cases

(a) Katalon (b) Playwitght

8Industrial context and Problems

Industrial Context

Defining concepts of Katalon's Tests

9Industrial context and Problems

Katalon studio

Defining concepts of Catalan's Tests
The script of a specific test

An instruction in a Test case

The action executed during a specific step (can have parameters)

The receiver of an action set by a keyword

10Industrial context and Problems

Katalon specificities

Additional challenges

• Testers used Groovy to declare their own custom keyword

• They wrote some tests using only Groovy, with full Groovy syntax (classes, loops,
conditions, switch, etc).

• Some repositories were full of emojis, accents, and errors such as misaligned test
cases between the Katalon Studio and the Groovy representation (save problems).

11Defining a migration strategy

Our research/engineering questions

Planning the migration

• How to organise this migration between stakeholders ?

• How to migrate:

• The language ? from Groovy to Typescript

• The framework actions ? Katalon's Keywords to Playwright's
instructions

• How to automate the migration ?

12How to organise the migration ?

Migration

Collaborating on the migration

Manual
Migration

Supervisor

BU
(testers)

Tooled
Migration

Supervisor

Share
repository

Validate possible
migration

Run KLT2PLW Request review of the
playwright export

Integrate playwright
tests in pipelines

Finalize export 
and share with BU

Contains  
problems Yes No

Migration fails

No
Yes

Identify why and
ask for corrections

Update their
repository

13How to migrate Language and Framework ?

Migration

Migrating Language and Framework

(a) Katalon

Groovy and Typescript are different languages but share some
similarities in their syntax. 
 
However, framework's actions are mostly different.

(b) typical Playwright

14How to migrate Language and Framework ?

Migration

Migrating Language and Framework

(a) Katalon

Simple Keyword

Complexe Keyword

Groovy and Typescript are different languages but share some
similarities in their syntax. 
 
However, framework's actions are completely different.

(b) typical Playwright

15How to migrate Language and Framework ?

Migration

Simple keywords strategy

(a) Katalon

(b) normal Playwright

(c) our Playwright

We implemented 97 Keywords in the WebUI.ts

16How to migrate Language and Framework ?

Migration

Complexe keywords strategy

(a) Katalon

1. Locating the objet definition file (in Katalon Repository)

17How to migrate Language and Framework ?

Migration

Complexe keywords strategy

(a) Katalon

2. Create a Login TS object

2.1. Matching folder name

2.2. Exporting each Katalon

Objects

18How to migrate Language and Framework ?

Migration

Complexe keywords strategy

(a) Katalon

(b) our Playwright

Other cases like findTestCase our custom keyword are handle similarly

19How to automate the migration ?

Migration tools in Pharo/Moose

Katalon2Playwright (KTL2PLW)

Fig — C4 Model of KTL2PLW usage

• Goal: to fix issues that cause Error when parsing the files

• Remove accents from code and file names

• Transform Katalon “descriptions” into Groovy comments

20How to automate the migration ? — Cleaning

Migration tools in Pharo/Moose

Cleaning repository

Fig — A Katalon comment inside the groovy file representing a test case

21How to automate the migration ? — Parsing

Migration tools in Pharo/Moose

Parsing with Tree-Sitter

Tree-Sitter Groovy Parser (in C) Pharo Image (smalltalk)

Tree-Sitter is a C framework to build parser. It has a incremental
construction of the AST. 
It benefits from a large library of grammar from the community.

Providing an EBF grammar, it generates a parser as a lib of all
major OS platforms.  

Tree-Sitter-Pharo (GitHub)

22How to automate the migration ? — Modeling

Migration tools in Pharo/Moose

Modeling Katalon in Moose

Fig — simplify Metamodel Katalon

23How to automate the migration ? — Modeling

Migration tools in Pharo/Moose

Modeling Katalon in Moose

Fig — initial Metamodel Katalon

However, it lacks source declaration of custom keyword or the use of Groovy
statement in Test Steps

24How to automate the migration ? — Modeling

Migration tools in Pharo/Moose

KTLModel

Fig — Full Metamodel Katalon

In insight, integrating Groovy into
Katalon model was a mistake

25Results

Results

Running on a medium size project

Note:

• 829 object files vs. 828 object declarations (i.e. one empty file)

• 10 Custom Keywords files for 118 Custom Keyword (i.e. multiple
keywords per file)

• 513 MB project migrated in ~10sec (i.e. not all files interested)

Fig — Firmadoc project description

Fig — KTL model's instance for Firmadoc

26Results

Results

Early results

We computed an estimated 8512 hours of manual migration for all test cases only. 
With Ktl2Plw, we migrated all projects in 218920 msecs.

27Conclusion

Conclusion

28Petit titre

Lessons learned

Take away messages

• Migrating code involves communication

• Involve a lot of feedback loops

• For MDE, divide the concepts into sub-models

• separate Model Framework from Model language (Katalon / Groovy)

• Model can be connected together later on (moose connector)

• Migrate step by step

• Deliver and iterate to add more features

Annexe

29Petit titre

30

31Petit titre

Titre de section

Texte du titre

Fig — Retaining file structure while migrating scripts

32

33Petit titre

Industrial context

Migrating complexe keyword

(a) Katalon

34Petit titre

Tooled migration

KTLModel

