Package-Aware Approach for Repository-Level Code
Completion in Pharo

Omar Abedelkader! Stéphane Ducasse’ Oleksandr Zaitsev> Romain Robbes?
Guillermo Polito!

1Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
2CIRAD, UMR SENS, F-34000 Montpellier, France
3CNRS, University of Bordeaux, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France

1st July 2025

m oG BB wigss, LoBRl @ 9ci

1/22

What is Code Completion?

® Assists developers by suggesting possible code elements as they
type.

® |t helps speed up development, reduces syntax errors, and
improves code accuracy.

e Advanced code completion systems offer context-aware
suggestions.

® This feature is widely integrated into IDEs and text editors to
enhance coding efficiency and developer experience.

2/22

What is Complishon ?

e Complishon is an advanced semantic code completion engine
designed to enhance coding efficiency.

® Thanks to Guille!

3/22

How Complishon works?

/ |)

Chain of
Responsability

i

.) -,
Editor caret/ L
‘ AST Node H AST Analysis }——)[Heuristics }{ Generators

A

Fetcher combinators

—

Y

| Result Set
| (lazy, cached)

!

—

4/22

Why This Matters ?

e Without context-awareness, developers waste time scanning long,
irrelevant suggestion lists.

® |n large codebases, global suggestions are overwhelming.

® Package-aware completion provides more relevant and more
intuitive suggestions.

5/22

Example?

x =0 Method: SpTActionContainer>>actions: -
* E1spec2-C -l 2Core ~ » instanceside A,[~ - aboutText |
» [1Spec2-Core SpAbstractAdapter » I extensions ~ acceptvisitor:
» E1Spec2-Dialogs v [SpAbstractPresenter @ flags = actions (SpTActionContainer)

[Spec2-Dialogs-Tests ¥ [SpPresenter TOREMOVE ~ actions: (SpTActionContainer)
» E1Spec2-Examples v [SpAbstractWidgetPresenter accessing ® actionsWith: (SpTActionContainer)
» [speca-Interactions v [SpAbstractButtonPresenter accessing - deprecated & addsction: (SpTActionContainer)
» [spec2-Layout (5] SpButtonPresenter accessing - model ® addctionGroup: (SpTActionContainer)
> [speca-Listview (5] SpMenuButtonPresenter api ® addctionGroupWith: (SpTActionContainer)

[Spec2-Listview-Tests v [E) SpAbstractFormButtonPresenter api-actions ® addsctionwith: (SpTActionContainer)
» E speca-Microdown [E]SpCheckBoxPresenter api - events addAll:withspecLayout:
spec2 ol - apj—'(l)(u‘s) | ® an‘ds):?ncmwith: (SpTActionContainer) <l
@ All Packages O ScopedView O Projects | @ Flat O Hier. O Traits | @ Inst.side O Classside | @ Methods O Vars | Classrefs. @ implementors), Senders
<7 Dependencies x () SpPresenter x 7 Comment x J‘actions: % - Inst.sidemeth x M « =

actions: anActionGroup
"WARNING. Defining
is mostly useless
shorteut actions,
presenters when th

userActionGroup =

action in pre:
(because they w

11 never
ey are focused."

anActionGroup beRoot.

have the focus to answer to)
however, can be installed and they will be available in children

nters that are not able to grab the keyboard focus

SpInteractionError

g

SplobListPresenter
SpBindings
SpSingleSelectionModeTest
SpMorphicMorphAdapter
SpDemoMenuButtonPresenter
SpRadioButtonAdapterTest
SpStubMenuAdapter
SpMorphicGridAdapter

¥ Cmd+B browse entry

SpMorphicBoxLayoutCalculator

I model an abstract interaction error.

These errors are raised when an interaction with a user did not end well.

8/10[4]

actions [extension [] F +L W

6/22

The Problem

e Current Limitation: Complishon treats the global namespace as
a flat list.

® Result: Developers are flooded with irrelevant suggestions in

large repositories.
e Why It's a Problem:

® Developers typically work within their package.
® Suggestions from unrelated packages slow them down.

7/22

What is Package Awareness?

/ Flat
P1locald
AlmageB

~

AGlobal2 AGloball

P1locald
AlmageA
KALocaH

)

-

Package-Aware

\

[| [nsoe | [s | [s |

P1-Extension

Pilocald

P1-Test

P1ilocald

P1-Core

Alocall

Alocal2

-

/

8/22

Why Package Awareness?

® Developers typically work within a local scope.
® Nearby classes are more relevant than distant ones.

® Developers want to see their variables from their packages more
often than from other packages.

9/22

Core ldea

® Developers typically focus on their immediate working context:
their current package and nearby packages.
e QOur strategy: Prioritize completion suggestions based on
proximity.
® First: Suggestions from the same package.

® Second: Suggestions from related or nearby packages.
® Last: Suggestions from the global namespace.

10/22

After implementing Package Awareness

Method: SpTActionContainer>>actions:

x -0
» EIspec2C ~ 2Core
» [Spec2-Core (@ spabstractadapter

» [£1Spec2-Dialogs

[Spec2-Dialogs-Tests
» [1Spec2-Examples
» E1Spec2-Interactions
» EJSpec2-Layout
» EJSpec2-Listview

[Speca-Listview-Tests
» [Spec2-Microdown
Spec2

v [SpAbstractPresenter
¥ [SpPresenter
v [E] SpAbstractWidgetPresenter

¥ [E] SpAbstractButtonPresenter
[S]SpButtonPresenter
[S]SpMenuButtonPresenter

¥ [E SpAbstractFormButtonPresenter
[SspCheckBoxPresenter

v

a

v

> instanceside A.[]
> I3 extensions
® flags
TOREMOVE
accessing
accessing - deprecated
accessing - model
api
api - actions
api - events
api-focus

v

aboutText
itor.

accept
actions (SpTActionContainer)

actions: (SpTActionContainer)

actionsWith: (SpTActionContainer)
addAction: (SpTActionContainer)
addactionGroup: (SpTActionContainer)
addactionGroupWith: (SpTActionContainer)
addActionWith: (SpTActionContainer)
addallwithspecLayout:

addshortcutWith: (SpTActionContainer)

@ All Packages O ScopedView O Projects | @ Flat O Hier. O Traits | @ Inst.side O Classside | @ Metheds O Vars | Classrefs. @ Implementors) Senders
DB«

7 Dependencies x

(@ SpPresenter x

? Comment x

] "actions: X

+ Inst. side meth x

v

"WARNING.

userActionGroup
=L

Shortcut actions, however, can
presenters when they are focused.”

actions: anActionGroup
Defining actien in pre:
is mostly useless (because the:

:= anActionGroup beRoot.

installed and they will be available in children

ters that are not able to grab the keyboard focus
will never have the focus to answer to)

e

SpIconProvider
SpPresenter

I'm base icon provider.

SpMouseUpEventDefinition
SpPresenterBuilder
SpTextInputFieldPresenter
SpApplication
SpAbstractPresenter
SpTextPresenter
SpKeyDownEventDefinition

¥ Cmd+B browse entry

SpMillerPaginatorPresenter

children of " spl

8/10[a]

* will

actions [] extension [F +L w

11/22

Benchmark Methodology

® Prefix truncation from 2 to 8 characters.
e Completion invoked for each prefix.
® Metrics: Accuracy, MRR, NDCG.

12/22

Mean Reciprocal Rank (MRR)

e Mean Reciprocal Rank (MRR) measures how quickly the
correct suggestion appears in the completion list.

® For each completion:

® Reciprocal Rank = L

position of the correct suggestion

® Higher MRR means developers find correct completions faster.

Formula
MRR = & Z

i=1 rank

13/22

Evaluation Protocols

® Measured Mean Reciprocal Rank (MRR) across multiple
frameworks: Iceberg, Moose, Roassal, Seaside, Spec.

® Best Improvements:

® Spec: +7.59% MRR
® |ceberg: +6.09% MRR
® Seaside: +4.72% MRR

14/22

More results

Framework | Package Type | Avg. A MRR
Iceberg Overall 6.09
Moose Overall 1.05
Moose Test 0.31
Moose Non-test 1.19
Roassal Overall 0.90
Roassal Test -2.62
Roassal Non-test 2.14
Seaside Overall 4.72
Seaside Test 3.55
Seaside Non-test 5.33
Spec Overall 7.59
Spec Test 2.64
Spec Non-test 10.31

Table: Summary of Average A MRR Across Frameworks and Package Types

15/22

Limitations

Framework Sensitivity: Package awareness may not always be beneficial (e.g., test
packages).

Granularity Dependency: Minimal improvements in cases like Moose (Test)
suggest that if packages are too broad or poorly defined.

Test vs. Non-Test Sometimes reference external classes more often than local ones.

Naming Patterns: Heuristics may occasionally misprioritize.

16/22

Future Directions

e Multi-dimensional fetcher dependency
® History Fetcher Approach

e GUI Fetcher Approach

e | LM Approach

17/22

Summary

® Package-aware completion improves relevance in Pharo.
® Measured significant MRR improvements in key frameworks.

® Dependency analysis, history tracking, LLM integration.

18/22

Support Slide

The Complishon Engine

® Heuristics: Analyze AST nodes using the Chain of Responsibility to route completion
logic.

® Lazy Fetchers: Use combinators and decorators to generate and filter suggestions
efficiently.

® Result Set: A lazy, cached collector for relevant completions, improving memory and
runtime performance.

20/22

Code Completion Levels (SoA)

® Single-line: JetBrains FLCC
® Multi-line: Meta's CodeCompose
¢ Class/Repo-level: ClassEval, GraphCoder, RepoCoder TOOLGEN

21/22

Code Completion Types (SoA)

® Heuristics and Rules: Context-aware filters, usage frequency, type hierarchies
Statistical Models: N-gram and probabilistic approaches: SLAMC, SLANG, DEEP3
Neural Models: PHOG, usability-focused, open-vocab, GPT-style generation.
AST-Aware Models: TreeGen , TreeBERT , ReGCC, AST-T5

Low-Ressource Languages: Transfer learning, IR translation, kNM-LM, SPEAC

22/22

