
Package-Aware Approach for Repository-Level Code
Completion in Pharo

Omar Abedelkader1 Stéphane Ducasse1 Oleksandr Zaitsev2 Romain Robbes3

Guillermo Polito1

1Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
2CIRAD, UMR SENS, F-34000 Montpellier, France

3CNRS, University of Bordeaux, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France

1st July 2025

1 / 22



What is Code Completion?

• Assists developers by suggesting possible code elements as they
type.

• It helps speed up development, reduces syntax errors, and
improves code accuracy.

• Advanced code completion systems offer context-aware
suggestions.

• This feature is widely integrated into IDEs and text editors to
enhance coding efficiency and developer experience.

2 / 22



What is Complishon ?

• Complishon is an advanced semantic code completion engine
designed to enhance coding efficiency.

• Thanks to Guille!

3 / 22



How Complishon works?

4 / 22



Why This Matters ?

• Without context-awareness, developers waste time scanning long,
irrelevant suggestion lists.

• In large codebases, global suggestions are overwhelming.

• Package-aware completion provides more relevant and more
intuitive suggestions.

5 / 22



Example?

6 / 22



The Problem

• Current Limitation: Complishon treats the global namespace as
a flat list.

• Result: Developers are flooded with irrelevant suggestions in
large repositories.

• Why It’s a Problem:
• Developers typically work within their package.
• Suggestions from unrelated packages slow them down.

7 / 22



What is Package Awareness?

8 / 22



Why Package Awareness?

• Developers typically work within a local scope.

• Nearby classes are more relevant than distant ones.

• Developers want to see their variables from their packages more
often than from other packages.

9 / 22



Core Idea

• Developers typically focus on their immediate working context:
their current package and nearby packages.

• Our strategy: Prioritize completion suggestions based on
proximity.

• First: Suggestions from the same package.
• Second: Suggestions from related or nearby packages.
• Last: Suggestions from the global namespace.

10 / 22



After implementing Package Awareness

11 / 22



Benchmark Methodology

• Prefix truncation from 2 to 8 characters.

• Completion invoked for each prefix.

• Metrics: Accuracy, MRR, NDCG.

12 / 22



Mean Reciprocal Rank (MRR)

• Mean Reciprocal Rank (MRR) measures how quickly the
correct suggestion appears in the completion list.

• For each completion:
• Reciprocal Rank = 1

position of the correct suggestion

• Higher MRR means developers find correct completions faster.

Formula:
MRR = 1

N

∑N
i=1

1
ranki

13 / 22



Evaluation Protocols

• Measured Mean Reciprocal Rank (MRR) across multiple
frameworks: Iceberg, Moose, Roassal, Seaside, Spec.

• Best Improvements:
• Spec: +7.59% MRR
• Iceberg: +6.09% MRR
• Seaside: +4.72% MRR

14 / 22



More results

Framework Package Type Avg. ∆ MRR
Iceberg Overall 6.09

Moose Overall 1.05
Moose Test 0.31
Moose Non-test 1.19

Roassal Overall 0.90
Roassal Test -2.62
Roassal Non-test 2.14

Seaside Overall 4.72
Seaside Test 3.55
Seaside Non-test 5.33

Spec Overall 7.59
Spec Test 2.64
Spec Non-test 10.31

Table: Summary of Average ∆ MRR Across Frameworks and Package Types 15 / 22



Limitations

• Framework Sensitivity: Package awareness may not always be beneficial (e.g., test
packages).

• Granularity Dependency: Minimal improvements in cases like Moose (Test)
suggest that if packages are too broad or poorly defined.

• Test vs. Non-Test Sometimes reference external classes more often than local ones.

• Naming Patterns: Heuristics may occasionally misprioritize.

16 / 22



Future Directions

• Multi-dimensional fetcher dependency

• History Fetcher Approach

• GUI Fetcher Approach

• LLM Approach

17 / 22



Summary

• Package-aware completion improves relevance in Pharo.

• Measured significant MRR improvements in key frameworks.

• Dependency analysis, history tracking, LLM integration.

18 / 22



Support Slide



The Complishon Engine

• Heuristics: Analyze AST nodes using the Chain of Responsibility to route completion
logic.

• Lazy Fetchers: Use combinators and decorators to generate and filter suggestions
efficiently.

• Result Set: A lazy, cached collector for relevant completions, improving memory and
runtime performance.

20 / 22



Code Completion Levels (SoA)

• Single-line: JetBrains FLCC

• Multi-line: Meta’s CodeCompose

• Class/Repo-level: ClassEval, GraphCoder, RepoCoder TOOLGEN

21 / 22



Code Completion Types (SoA)

• Heuristics and Rules: Context-aware filters, usage frequency, type hierarchies

• Statistical Models: N-gram and probabilistic approaches: SLAMC, SLANG, DEEP3

• Neural Models: PHOG, usability-focused, open-vocab, GPT-style generation.

• AST-Aware Models: TreeGen , TreeBERT , ReGCC, AST-T5

• Low-Ressource Languages: Transfer learning, IR translation, kNM-LM, SPEAC

22 / 22


