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What is Code Completion?

® Assists developers by suggesting possible code elements as they
type.

® |t helps speed up development, reduces syntax errors, and
improves code accuracy.

e Advanced code completion systems offer context-aware
suggestions.

® This feature is widely integrated into IDEs and text editors to
enhance coding efficiency and developer experience.
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What is Complishon ?

e Complishon is an advanced semantic code completion engine
designed to enhance coding efficiency.

® Thanks to Guille!
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How Complishon works?
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Why This Matters ?

e Without context-awareness, developers waste time scanning long,
irrelevant suggestion lists.

® |n large codebases, global suggestions are overwhelming.

® Package-aware completion provides more relevant and more
intuitive suggestions.
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Example?
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The Problem

e Current Limitation: Complishon treats the global namespace as
a flat list.

® Result: Developers are flooded with irrelevant suggestions in

large repositories.
e Why It's a Problem:

® Developers typically work within their package.
® Suggestions from unrelated packages slow them down.
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What is Package Awareness?
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Why Package Awareness?

® Developers typically work within a local scope.
® Nearby classes are more relevant than distant ones.

® Developers want to see their variables from their packages more
often than from other packages.
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Core ldea

® Developers typically focus on their immediate working context:
their current package and nearby packages.
e QOur strategy: Prioritize completion suggestions based on
proximity.
® First: Suggestions from the same package.

® Second: Suggestions from related or nearby packages.
® Last: Suggestions from the global namespace.
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After implementing Package Awareness
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Benchmark Methodology

® Prefix truncation from 2 to 8 characters.
e Completion invoked for each prefix.
® Metrics: Accuracy, MRR, NDCG.
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Mean Reciprocal Rank (MRR)

e Mean Reciprocal Rank (MRR) measures how quickly the
correct suggestion appears in the completion list.

® For each completion:

® Reciprocal Rank = L

position of the correct suggestion

® Higher MRR means developers find correct completions faster.

Formula
MRR = & Z

i=1 rank
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Evaluation Protocols

® Measured Mean Reciprocal Rank (MRR) across multiple
frameworks: Iceberg, Moose, Roassal, Seaside, Spec.

® Best Improvements:

® Spec: +7.59% MRR
® |ceberg: +6.09% MRR
® Seaside: +4.72% MRR
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More results

Framework | Package Type | Avg. A MRR
Iceberg Overall 6.09
Moose Overall 1.05
Moose Test 0.31
Moose Non-test 1.19
Roassal Overall 0.90
Roassal Test -2.62
Roassal Non-test 2.14
Seaside Overall 4.72
Seaside Test 3.55
Seaside Non-test 5.33
Spec Overall 7.59
Spec Test 2.64
Spec Non-test 10.31

Table: Summary of Average A MRR Across Frameworks and Package Types
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Limitations

Framework Sensitivity: Package awareness may not always be beneficial (e.g., test
packages).

Granularity Dependency: Minimal improvements in cases like Moose (Test)
suggest that if packages are too broad or poorly defined.

Test vs. Non-Test Sometimes reference external classes more often than local ones.

Naming Patterns: Heuristics may occasionally misprioritize.
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Future Directions

e Multi-dimensional fetcher dependency
® History Fetcher Approach

e GUI Fetcher Approach

e | LM Approach
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Summary

® Package-aware completion improves relevance in Pharo.
® Measured significant MRR improvements in key frameworks.

® Dependency analysis, history tracking, LLM integration.
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The Complishon Engine

® Heuristics: Analyze AST nodes using the Chain of Responsibility to route completion
logic.

® Lazy Fetchers: Use combinators and decorators to generate and filter suggestions
efficiently.

® Result Set: A lazy, cached collector for relevant completions, improving memory and
runtime performance.
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Code Completion Levels (SoA)

® Single-line: JetBrains FLCC
® Multi-line: Meta's CodeCompose
¢ Class/Repo-level: ClassEval, GraphCoder, RepoCoder TOOLGEN
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Code Completion Types (SoA)

® Heuristics and Rules: Context-aware filters, usage frequency, type hierarchies
Statistical Models: N-gram and probabilistic approaches: SLAMC, SLANG, DEEP3
Neural Models: PHOG, usability-focused, open-vocab, GPT-style generation.
AST-Aware Models: TreeGen , TreeBERT , ReGCC, AST-T5

Low-Ressource Languages: Transfer learning, IR translation, kNM-LM, SPEAC
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