Evaluating Benchmark
Quality: a Mutation-Testing-
Based Methodology

IRISAL - QNI

IWST 2025 by Federico Lochbaum

Test Cases

Let's suppose we have a broken house....

IWST 2025

.....

-~

\

Hil I'm a housel

2 /33

by Federico Lochbaum

Test Cases

And we want to repair it...

IWST 2025

-

Hi! | am the

repair program!

~

/

.....

..............
Poipap

3/33

-

~

| am a Test

by Federico Lochbaum

4 [33

How well we did it?

IWST 2025 by Federico Lochbaum

5/33

How well we did it?

IWST 2025 by Federico Lochbaum

Benchmarks

IWST 2025

o Measure execution time (wall-clock time)

6/ 33

o Often made by averaging benchmarking results, looking to reduce contextual variance

e Some work proposes using other kinds of metrics, like energy consumption or memory usage

Cross-Language Compiler Benchmarking
Are We Fast Yet?

Stefan Marr Benoit Daloze = Hanspeter Mossenbock

Johannes Kepler University Linz, Austria
{stefan.marr, benoit.daloze, hanspeter.moessenboeck}@jku.at

The DaCapo Benchmarks:

Java Benchmarking Development and Analysis *

Stephen M Blackburn® P, Robin Garner®, Chris Hoffmann, Asjad M Khan", Kathryn S McKinley?®,
Rotem Bentzur®, Amer Diwan®, Daniel Feinberg?, Daniel Frampton®, Samuel Z Guyer", Martin Hirzel®,
Antony Hosking', Maria Jump®, Han Lee®, J Eliot B Moss', Aashish Phansalkar®, Darko Stefanovic®,

Thomas VanDrunen¥, Daniel von Dincklage®, Ben Wiedermann®

“Intel, B Australian National University, YUniversity of Massachusetts at Amherst, E\’University of Texas at Austin,

®University of New Mexico, CUniversity of Colorado, "Tufts, °IBM TJ Watson Research Center, ‘Purdue University,
“Wheaton College

by Federico Lochbaum

Benchmarks

IWST 2025

/]33

-

\
| am the

benchmark

\v /

by Federico Lochbaum

8/ 33

How fast we did it?

IWST 2025 by Federico Lochbaum

9/33

How fast we did it?

IWST 2025 by Federico Lochbaum

Test Cases vs Benchmarks

/ Test Cases

=->2()

O
S

1

!

Check correctness (Pass / Fail)
Self-validating
One execution is enough

IWST 2025

Executes a series of steps to validate the program'’s behavior

Results are architecture-independent

(¥ Benchmarks

Stress the program to assess performance

10/ 33

Measure Performance metrics (Elapsed time / CPU)

Not self-validating

Require multiple runs to cope with noise
Results are architecture-dependent
Expensive to run

by Federico Lochbaum

11/33

How fast we did it?

/ Is this \

measuring

\\gfﬁl enough?/

IWST 2025 by Federico Lochbaum

12/ 33

How do we know that a benchmark is “good” ?

IWST 2025 by Federico Lochbaum

13 /33

Problem: Assessing Benchmark Quality

A lack of systematic methodologies to assess benchmark effectiveness

o What does it mean benchmark quality ?
 How to measure benchmark effectiveness detecting performance bugs ?

e How are introduced performance issues in a target program to detect them ?

IWST 2025 by Federico Lochbaum

14 [33

Mutation Testing Benchmark Methodology - Proposal

Assumption: A benchmark is good if it detects performance bugs

Benchmark 1

Baseline
App rasult Oracle detected/undetected

Benchmark 2

e.g., 5ms

Performance bug
introduction

Benchmark i

: Mutated Perturbed
App result

Benchmark n
e.g., 13 ms

IWST 2025 by Federico Lochbaum

15 /33

Mutation Testing ?

Mutation testing measures test quality in relation to it capability to detects bugs

It introduces simulated bugs (mutants) and assess if the test catches them

e |f the test fails > the mutant was killed (detected)

e If not > the mutant survived (undetected)

Test 1
App Basehir;e Test detected/undetected
Test 2 . ——— broke?
e.g., 5ms
Bug introduction
Test |
Mutated Perturbed
App result
Test n

e.g., 13 ms

IWST 2025 by Federico Lochbaum

16/ 33

Adapting Mutation Testing for Performance

It introduces performance bugs (mutants) and assess if the benchmark catches them

e Is the oracle who determines if the benchmark kills or not the mutant

Benchmark 1

Baseline
App rasult Oracle detected/undetected

Benchmark 2

e.g., 5ms

Performance bug
introduction

Benchmark i

Mutated Perturbed

App result
Benchmark n |

e.g., 13 ms

IWST 2025 by Federico Lochbaum

Mutation Strategy

IWST 2025

Introduce a controlled performance bug mutant in the original program

Mutant operator

Program

N

Mutated
Program

/ Benchmark’s target
\

/

\
I
/

17 [33

by Federico Lochbaum

Adapting Mutation Testing for Performance

IWST 2025

1. Introduce performance perturbations

2. A performance oracle determines if the bug had a performance impact

Benchmark 1

Benchmark 2

Benchmark i

Benchmark n

RQ2
A Raseline
pp . rewlt OraC|e
RQ1 e.g., § ms

Performance bug
introduction

Mutated Perturbed
App result

e.g., 13 ms

detected/undetected

18 / 33

by Federico Lochbaum

RQ1 - What is a Performance Bug ?

IWST 2025

Benchmark 1

Benchmark 2

Benchmark i

Benchmark n

Baseline

App . asult | Oracle

Performance bug
introduction

RQ1

Mutated Perturbed
App result
e.g., 13 ms

19/ 33

5 detected/undetected

by Federico Lochbaum

20/ 33

RQ1 - Performance Bug

e Perturbation on program execution

(E.g.Latency, Locality issues)

o Excessive consumption of time or space by design

(E.g. Long iterations, Bad implementation decisions)

e No optimal data structure used for a problem

(E.g. Use an array instead of a dictionary to index a dataset)

Learning from Source Code History to Identify
Performance Failures

Juan Pablo Sandoval Alcocer Alexandre Bergel Marco Tulio Valente
PLEIAD Lab PLEIAD Lab Federal University of Minas
DCC, University of Chile DCC, University of Chile Gerais, Brazil
jsandova@dcc.uchile.cl abergel@dcc.uchile.cl mtov@dcc.ufmg.br

IWST 2025 by Federico Lochbaum

RQ2 - How do we assess a Benchmark ?

IWST 2025

Benchmark 1

Benchmark 2

Benchmark i

Benchmark n

Baseline

App . result

e.g., 5ms

Performance bug
introduction

Mutated Perturbed
App result
e.g., 13 ms

21/ 33

5 detected/undetected

by Federico Lochbaum

RQ2 - The Benchmark Oracle

Let’s define a benchmark quality as “How sensible is the benchmark to detect a mutant”

5

What it is a benchmark sensibility ? é)

Where is the threshold, and what do we compare it against?

Benchmark 1

Baseline
App result OraC|e

e.g., 5ms

Benchmark 2

Performance bug
introduction

Benchmark i

Mutated Perturbed

App result
Benchmark n |

e.g., 13 ms

IWST 2025

¢

detected/undetected

22 [33

by Federico Lochbaum

23 /33

Experimental Mutants: Sleep statements

e Why? - Represents latency
e How? - Three mutant operators, 10, 100, 500 milliseconds

o Where? - At the beginning of every statement block

(next matchAgainst: aMatcher) 1fFalse: [
A alternative 1sNotNil and: [

(Delay forMilliseconds: 508) wait.
alternative matchAgainst: aMatcher]].

IWST 2025 by Federico Lochbaum

24 [33

Experimental Oracle

-
. . . >
1. Baseline: Average + stdev of 30 iterations to reduce 3 ®* Killed
external noise & - o killed
— T .
M
2. Metric: Execution time D
O
_® median

® survivor

3. Mutant detection: A mutant is killed if the execution time
> baseline average + stdev

IWST 2025 by Federico Lochbaum

25/ 33

Case Study: Regular Expressions in Pharo

« Why Regexes? - They are well known

e 100 Regexes are generated via grammar-based fuzzing (MCTS)

e We benchmark the regex matches: method with the generated regexes
e ‘b+a(b)*c+(b+c*b|b?(b+b)c?(b)*ab+a?aa)?a* matches: ‘bac’
o ‘(bb(((b)b+)))+b+|b+ matches: ‘bbbbb’

» We assess the quality of benchmarks to find performance bugs on matches: method FedeLoch/PBT
¥

GitHub - FedeLoch/PBT:
Property Based Testing
Framework for Pharo

Property Based Testing Framework
for Pharo. Contribute to
FedeLoch/PBT development by
creating an account on GitHub.

IWST 2025 by Federico Lochbaum

Results

e We introduce 62 mutants per mutant operator (3)

e We execute every benchmark once per mutant (186 times)

Stdev and Averages

Mutation Score per Benchmark
® 10ms @ 100ms 500 ms
1250000

1,00 -
- " 1000000
o v .6 ‘OO © 0% ; é 750000
® o0 of 8.0) g
0,50 (906 & s ‘ o @ O
:fb “ & Ll ®O0 Qvg oo dﬁ %o.ﬁ ® ﬁ%ﬁ. y 6‘ 500000

250000

0,25

0,00

IWST 2025

B stdev [Averages

26 /33

by Federico Lochbaum

27 [33

Average Benchmark Behavior

Mutation Score per Benchmark

® 10ms @ 100ms 500 ms

0 o On average, the mutation score
per benchmark is 51.48%

0,75

% Mutation score

v
@ o0 ol

= 30580 ""’va.u.» °o‘d‘ﬂ°°§%o e e i‘% o 4"
L

0,25

0,00
Benchmarks

IWST 2025 by Federico Lochbaum

28 /33

High Score Benchmarks

Mutation Score per Benchmark

® 10ms @ 100ms 500 ms

11% of benchmarks have an
score > 60%

% Mutation score

0,25

0,00
Benchmarks

IWST 2025 by Federico Lochbaum

29 /33

Performance Perturbation Sensibility

Mutation Score per Benchmark

® 10ms @ 100ms 500 ms

100 o There are some benchmarks
more sensible than others
0,75 I

6)
" Q%& °“’ 1 Oa,,.'a% Jil,‘b@ L XL iﬁ’q. o 4"

% Mutation score

0,00
Benchmarks

IWST 2025 by Federico Lochbaum

30/33

Baseline Characterization

Stdev and Averages

B stdev B Averages

1250000 Average stdev is 42.48% (relative)

i

1000000

750000

biiiiis

stdey

250000

Averages

0

IWST 2025 by Federico Lochbaum

31/ 33

Baseline Characterization

Stdev and Averages

B stdev B Averages

12908 13% have high variance: Can
hot detect small perturbations

1000000

750000

500000
250000

Averages

stdey

=

IWST 2025 by Federico Lochbaum

32 /33

Future work

1. Improve the benchmark selection, filtering those with high variance

2. Study techniques to minimize external noise

3. Experiment with different Oracle’s thresholds

4. Experiment with different performance mutant operators

5. Study alternative metrics to reduce the number of needed executions to have a stable measure

IWST 2025 by Federico Lochbaum

33 /33

Conclusion

Benchmark 1

Baseline
App result Oracle detected/undetected

Benchmark 2

e.g., 5ms

Performance bug
introduction

Benchmark i
vLEter Perturbed FedeLoch/PBE
App result
BenChmark n ! ' Pharo Benchmark Evaluator
e.g., 13 ms
A1 ®o wo %0 O

1. Systematic methodology to evaluate benchmarks’s effectiveness

pe - : : : GitHub - FedeLoch/PBE:
2. Introduce artificial performance bugs by extending mutation testing Pharo Benchmark

Evaluator
Pharo Benchmark Evaluator.

3. Instance of the framework in a real setting showing results Contribute to FedeLoch/PBE

development by creating an account
on GitHub.

4 IWST 2025

@ ’ hqw 7 R I S tA L anr ’ Federico Lochbaum, Guillermo Polito

IWST 2025 by Federico Lochbaum

AV,

