
by Federico LochbaumEVREF Team

Evaluating Benchmark
Quality: a Mutation-Testing-
Based Methodology
IWST 2025

Federico Lochbaum, Guillermo Polito

by Federico LochbaumIWST 2025

1 / 33

Test Cases

by Federico LochbaumIWST 2025

Let’s suppose we have a broken house....

Hi! I’m a house!

2 / 33

Test Cases

by Federico LochbaumIWST 2025

And we want to repair it...

Hi! I am the
repair program!

I am a Test
case

3 / 33

by Federico LochbaumIWST 2025

How well we did it?
4 / 33

How well we did it?

by Federico LochbaumIWST 2025

Passed!

5 / 33

Benchmarks

by Federico LochbaumIWST 2025

 Measure execution time (wall-clock time

 Often made by averaging benchmarking results, looking to reduce contextual varianc

 Some work proposes using other kinds of metrics, like energy consumption or memory usage

6 / 33

Benchmarks

by Federico LochbaumIWST 2025

I am the
benchmark

7 / 33

by Federico LochbaumIWST 2025

How fast we did it?
8 / 33

How fast we did it?

by Federico LochbaumIWST 2025

450 ms!

9 / 33

Test Cases vs Benchmarks

by Federico LochbaumIWST 2025

Test Cases

 Executes a series of steps to validate the program’s behavio
 Check correctness (Pass / Fail
 Self-validatin
 One execution is enoug
 Results are architecture-independent

 Stress the program to assess performanc
 Measure Performance metrics (Elapsed time / CPU
 Not self-validatin
 Require multiple runs to cope with nois
 Results are architecture-dependen
 Expensive to run

Benchmarks

1

2

3

10 / 33

How fast we did it?

by Federico LochbaumIWST 2025

450 ms!

Is this
measuring

good enough?

11 / 33

by Federico LochbaumIWST 2025

How do we know that a benchmark is “good” ?

450
ms!

312
ms!

12 / 33

Problem: Assessing Benchmark Quality

by Federico LochbaumIWST 2025

A lack of systematic methodologies to assess benchmark effectiveness

 What does it mean benchmark quality

 How to measure benchmark effectiveness detecting performance bugs

 How are introduced performance issues in a target program to detect them ?

13 / 33

Mutation Testing Benchmark Methodology - Proposal

by Federico LochbaumIWST 2025

Assumption: A benchmark is good if it detects performance bugs

14 / 33

Mutation Testing ?

by Federico LochbaumIWST 2025

Mutation testing measures test quality in relation to it capability to detects bugs

It introduces simulated bugs (mutants) and assess if the test catches the

 If the test fails → the mutant was killed (detected

 If not → the mutant survived (undetected)

Test

Test

Test

Bug introduction

Test

broke?

Test

15 / 33

Adapting Mutation Testing for Performance

by Federico LochbaumIWST 2025

It introduces performance bugs (mutants) and assess if the benchmark catches the

 Is the oracle who determines if the benchmark kills or not the mutant

16 / 33

Mutation Strategy

by Federico LochbaumIWST 2025

Introduce a controlled performance bug mutant in the original program

Program
Mutated
Program

Mutant operator

Benchmark’s target

17 / 33

Adapting Mutation Testing for Performance

by Federico LochbaumIWST 2025

 Introduce performance perturbation

 A performance oracle determines if the bug had a performance impact

RQ2

RQ1

18 / 33

RQ1 - What is a Performance Bug ?

by Federico LochbaumIWST 2025

RQ1

19 / 33

RQ1 - Performance Bug

by Federico LochbaumIWST 2025

 Perturbation on program execution

 (E.g. Latency, Locality issues

 Excessive consumption of time or space by design

 (E.g. Long iterations, Bad implementation decisions

 No optimal data structure used for a problem

 (E.g. Use an array instead of a dictionary to index a dataset)

20 / 33

RQ2 - How do we assess a Benchmark ?

by Federico LochbaumIWST 2025

RQ2

21 / 33

RQ2 - The Benchmark Oracle

by Federico LochbaumIWST 2025

Let’s define a benchmark quality as “How sensible is the benchmark to detect a mutant”

What it is a benchmark sensibility ?

Where is the threshold, and what do we compare it against?

22 / 33

Experimental Mutants: Sleep statements

by Federico LochbaumIWST 2025

 Why? - Represents latenc

 How? - Three mutant operators, 10, 100, 500 millisecond

 Where? - At the beginning of every statement block

23 / 33

Experimental Oracle

by Federico LochbaumIWST 2025

 Baseline: Average + stdev of 30 iterations to reduce
external nois

 Metric: Execution tim

 Mutant detection: A mutant is killed if the execution time
> baseline average + stdev

medianst
de

v
2

st
de

v

killed
killed

survivor

24 / 33

Case Study: Regular Expressions in Pharo

by Federico LochbaumIWST 2025

 Why Regexes? → They are well know

 100 Regexes are generated via grammar-based fuzzing (MCTS

 We benchmark the regex matches: method with the generated regexe
 ‘b+a(b)*c+(b+c*b|b?(b+b)c?(b)*ab+a?aa)?a*’ matches: ‘bac’
 ‘(bb(((b)b+)))+b+|b+’ matches: ‘bbbbb’

 We assess the quality of benchmarks to find performance bugs on matches: method

25 / 33

Results

by Federico LochbaumIWST 2025

 We introduce 62 mutants per mutant operator (3

 We execute every benchmark once per mutant (186 times)

26 / 33

Average Benchmark Behavior

by Federico LochbaumIWST 2025

On average, the mutation score
per benchmark is 51.48%

%
 M

ut
at

io
n

sc
or

e

Benchmarks

27 / 33

High Score Benchmarks

by Federico LochbaumIWST 2025

11% of benchmarks have an
score > 60%

Benchmarks

%
 M

ut
at

io
n

sc
or

e

28 / 33

Performance Perturbation Sensibility

by Federico LochbaumIWST 2025

There are some benchmarks
more sensible than others

Benchmarks

%
 M

ut
at

io
n

sc
or

e

29 / 33

Baseline Characterization

Average stdev is 42.48% (relative)

by Federico LochbaumIWST 2025

30 / 33

Baseline Characterization

13% have high variance: Can
not detect small perturbations

by Federico LochbaumIWST 2025

31 / 33

Future work

by Federico LochbaumIWST 2025

 Improve the benchmark selection, filtering those with high varianc

 Study techniques to minimize external nois

 Experiment with different Oracle’s threshold

 Experiment with different performance mutant operator

 Study alternative metrics to reduce the number of needed executions to have a stable measure

32 / 33

IWST 2025

Federico Lochbaum, Guillermo Polito

Conclusion

by Federico LochbaumIWST 2025

 Systematic methodology to evaluate benchmarks’s effectiveness

 Introduce artificial performance bugs by extending mutation testing

 Instance of the framework in a real setting showing results

33 / 33

