
Balša Šarenac, Stéphane Ducasse, Guillermo Polito and Gordana Rakić

An Analysis of Inline Method
Refactoring

1

EvreffervE

Introduction

‣ Refactoring

‣ Composition

‣ Inline Method

‣ Source method

‣ Inline method

2

Goals

‣ Enable users to define their own refactorings

‣ Redesign existing refactorings into modular definitions

3

Inline method example

4

breakingChangePreconditions

^ { (RBCondition withBlock: [

self findReceiverNode.

true]) }

breakingChangePreconditions

^ { (RBCondition withBlock: [

| receiverNodes |

receiverNodes := statementNodes collect: [:each | each receiver].

 receiverNodes asSet size = 1 ifFalse: [

	 self refactoringError: 'All statements must have the same receiver'].

 (receiverNodes first isLiteralNode or: [receiverNodes first isVariable]) ifFalse: [

self refactoringWarning: 'The receiver is an expression. Proceed with caution'].

true]) }

Contributions

‣ Analysis of the existing Inline Method refactoring monolithic implementation.

‣ Reuse and extension of the Inline Method refactoring modular logic to define
domain-specific refactoring:

‣ Inline Method with Pragma refactoring for Slang (virtual machine generator).

5

Legacy implementation
Pros and cons of legacy implementation

‣ Pros:

‣ Mostly correct implementation

‣ Correct precondition logic

‣ Cons:

‣ Mixed calculations, precondition
checking and transformation setup
logic

‣ Mixed transformation logic and user
interaction

‣ Monolithic implementation

6

Analysis
Canonicalization

‣ Transforming the inline method’s source code into a state that is inlinable.

‣ Adding a return if it is not already explicitly defined,

‣ Transforming guard clauses into if/else blocks (for example, ifTrue:ifFalse: in
the case of Pharo),

‣ Transform ifTrue: and ifFalse: into ifTrue:ifFalse:,

‣ Removing non-local returns.

7

Analysis
Canonicalization

8

Before canonization After canonization

ifNotEmpty:

Analysis
Cascades

• Right now handled using ifs

• Only supports inlining the last message from the cascade

• Makes the code very hard to change

9

New architecture
‣ Prepare for execution

‣ Precondition checking

‣ Transformation

10

11

Current flow
‣ Inline Method refactoring:

1. Check preconditions

2. Canonize the inline method,

3. Handle cascades and returns (+ more canonization),

4. Replace argument variables with values,

5. Substitute the message send with the inline method,

6. Remove dead code: empty and immediate blocks.

12

Preprocessing

Preconditions

Transformations

Can we make this composite?
‣ Inline Method refactoring:

1. Canonize the inline method,

2. Check preconditions

3. Handle cascades and returns

4. Rename conflicting temporaries

5. Replace argument variables with values,

6. Substitute the message send with the inline method,

7. Remove dead code, empty and immediate blocks.

13

Preprocessing

Preconditions

Transformations

Specialization

Can we make this composite?
‣ Inline Method refactoring:

1. Canonize the method to be inlined,

2. Check preconditions

3. Rename conflicting temporaries

4. Replace argument variables with values,

5. Substitute the message send with the inline method,

6. Remove dead code, empty and immediate blocks.

14

Preprocessing

Preconditions

Transformations

Transformation - Preprocessing

Transforming

Cleanup

Can we make this composite?
‣ Inline Method refactoring:

1. Canonize the method to be inlined (from transformation),

2. Check preconditions,

1. Inlining overridden methods,

2. Inlining bigger methods that will add statements before the target
message.

3. Inlining methods that send overridden super messages

3. Inline method transformation.

15

Preprocessing

Preconditions

Transformations

16

Comparison to Extract Method?

17

What do we do with method with Pragma

18

ExampleClass >> m

<var: ‘a’ declareC: ‘int’>

| a |

a := 1 + 3.

^ a * self calculation

ExampleClass >> m

| a |

a := self exampleMethod.

^ a * self calculation

ExampleClass >> exampleMethod

<var: ‘c’ declareC: ‘int’>

| c |

c := 1 + 3.

^ c

Inline with pragma composite
‣ Inline Method with pragma refactoring:

1. Canonize the method to be inlined,

2. Check preconditions,

3. Handle pragmas,

4. Inline method transformation.

19

Preprocessing

Preconditions

Transformations

Conclusion

• Challenges when implementing the Inline Method in Pharo

• Leverage Decorator and Specialization to simplify Inline Method

• Inline Method with Pragma domain specific refactoring

20

