An Analysis of Inline Method
Refactoring

Bal$a Sarenac, Stéphane Ducasse, Guillermo Polito and Gordana Rakié

V 4

h s Evref

Introduction

> Refactoring
> Composition
> Inline Method
> Source method

> |Inline method

Goals

> Enable users to define their own refactorings

> Redesign existing refactorings into modular definitions

Inline method example

breakingChangePreconditions

AN { (RBCondition withBlock: |

breakingChangePreconditions
| receiverNodes |

N I (RBCondition withBlock:
. | receiverNodes := statementNodes collect: [:each | each receiver].

self findReceiverNode.
| receiverNodes asSet size = 1 ifFalse: |

true J) j self refactoringError: 'All statements must have the same receiver' |.
(receiverNodes first isLiteralNode or: [receiverNodes first isVariable |) ifFalse: |

self refactoringWarning: 'The receiver is an expression. Proceed with caution'].

true J))

Contributions

> Analysis of the existing Inline Method refactoring monolithic implementation.

> Reuse and extension of the Inline Method refactoring modular logic to define
domain-specific refactoring;:

> Inline Method with Pragma refactoring for Slang (virtual machine generator).

Legacy implementation

Pros and cons of legacy implementation

> Pros: » Cons:
> Mostly correct implementation > Mixed calculations, precondition
checking and transformation setup
> Correct precondition logic logic

> Mixed transformation logic and user
Interaction

> Monolithic implementation

Analysis

Canonicalization

> Transforming the inline method’s source code into a state that is inlinable.
> Adding a return if it is not already explicitly defined,

» Transforming guard clauses into if/else blocks (for example, ifTrue:ifFalse: in
the case of Pharo),

> Transform ifTrue: and ifFalse: into ifTrue:ifFalse:,

> Removing non-local returns.

Gl W WO N =

Analysis

Canonicalization

ExampleClass >> baz
| ¢ |
c := self someMethod.
c ifEmpty: [A true].
A self validate: c

Before canonization

AN U1 W WO DN =

ExampleClass >> baz
| ¢ |
c := self someMethod.
A C
ifEmpty: [true]
ifNQtEmpty: [self validate: c]

After canonization

Analysis

Cascades

* Right now handled using ifs
* Only supports inlining the last message from the cascade

 Makes the code very hard to change

New architecture

> Prepare for execution
> Precondition checking

» Transformation

10

Transformation-based Refactorings: a First Analysis

N. Anquetil’, M. Campero’, Stéphane Ducasse’,].-P. Sandoval Alcocer? and
P. Tesone!

"Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 - CRIStAL, F-59000 Lille, France
2Pontiﬁcia Universidad Catolica de Chile, Santiago, Chile

Abstract

Refactorings are behavior preserving transformations. Little work exists on the analysis of their imple-
mentation and in particular how refactorings could be composed from smaller, reusable, parts (being
simple transformations or other refactorings) and how (non behavior preserving) transformations could
be used in isolation or to compose new refactoring operators. In this article we study the seminal imple-
mentation and evolution of Refactorings as proposed in the PhD of D. Roberts. Such an implementation
is available as the Refactoring Browser package in Pharo. In particular we focus on the possibilities to
reuse transformations independently from the behavior preserving aspect of a refactoring. The long
term question we want to answer is: Is it possible to have more atomic transformations and refactorings
composed out of such transformations? We study pre-conditions of existing refactorings and identify
several families. We identify missed opportunities of reuse in the case of implicit composite refactorings.
We analyze the refactorings that are explicitly composed out of other refactorings to understand whether
the composition could be expressed at another level of abstraction. This analysis should be the basis
for a more systematic expression of composable refactorings as well as the reuse of logic between
transformations and refactorings.

1. Introduction

Refactorings are behavior preserving code transformations. The seminal work of Opdyke
[Opd92] and the Refactorings Browser (first implementation of Refactorings of Roberts and
Brant [RBJO96, RBJ97, BR98]) paved the way to the spread of refactorings [FBB*99]. They are
now a must-have standard in modern IDEs [MHPB11, NCV 13, VCN" 12, VCM 13, GDMH12].
A lot of research has been performed on refactorings such as for their detection [TME 18],
missed application opportunities [TC09, TC10], practitioner use [MHPB11, VCN ' 12, NCV *13,
VCM™13], or atomic refactorings for live environments [TPF ' 18]. Several publications focus
on scripting refactorings [VEdMO06, LT12, SvP12, HKV12, KBD15]. Finally, some work tried to
speed up refactoring engines, proposing alternatives to the slow and bogus Java refactoring
engine [KBDA16]. Related to this, it should be noted that the Pharo Refactoring Browser
architecture supports fast pre-condition validation and refactoring execution and does not suffer
from the architecture problems reported by Kim et al. [KBDA16].

IWST’22: International Conference of Smalltalk Technologies, August 24-26, 2022, Novy Sad, Serbia

Q nicolas.anquetil@inria.fr (N. Anquetil); stephane.ducasse@inria.fr (S. Ducasse);
juanpablo.sandoval@ing.puc.cl (J.-P.S. Alcocer); pablo.tesone@inria.fr (P. Tesone)

® 0000-0002-5615-6691 (N. Anquetil); 0000-0001-6070-6599 (S. Ducasse); 0000-0002-8335-4351 (J.-P. S. Alcocer);
0000-0002-5615-6691 (P. Tesone)

@ 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

11

Journal of Computer Languages 80 (2024) 101273

SRR
r" R

¥

EI SEVIER

Contents lists available at ScienceDirect =

nmax COMPUTER
LANGUARGES

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola -
A new architecture reconciling refactorings and transformations s

Bal$a Sarenac **, Nicolas Anquetil *, Stéphane Ducasse ®, Pablo Tesone "

& University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradoviéa 6, 21102 Novi Sad, Serbia
® University Lille, Inria, CNRS, Centrale Lille, UMR 9189 - CRIStAL, F-59000 Lille, France

ARTICLE INFO

Keywords:
Refactorings
Transformations
Preconditions

Source code transformation

Behavior preservation

ABSTRACT

Refactorings are behavior-preserving code transformations. They are a recommended software development
practice and are now a standard feature in modern IDEs. There are however many situations where developers
need to perform mere transformations (non-behavior-preserving) or to mix refactorings and transformations.
Little work exists on the analysis of transformations implementation, how refactorings could be composed of
smaller, reusable, parts (simple transformations or other refactorings), and, conversely, how transformations
could be reused in isolation or to compose new refactorings. In a previous article, we started to analyze the
seminal implementation of refactorings as proposed in the Ph.D. of D. Roberts, and whose evolution is available
in the Pharo IDE. We identified a dichotomy between the class hierarchy of refactorings (56 classes) and that of
transformations (70 classes). We also noted that there are different kinds of preconditions for different purposes
(applicability preconditions or behavior-preserving preconditions). In this article, we go further by proposing
a new architecture that: (i) supports two important scenarios (interactive use or scripting, ie., batch use); (ii)
defines a clear API unifying refactorings and transformations; (iii) expresses refactorings as decorators over
transformations, and; (iv) formalizes the uses of the different kinds of preconditions, thus supporting better
user feedback. We are in the process of migrating the existing Pharo refactorings to this new architecture.
Current results show that elementary transformations such as the Aop Merxop transformation is reused in 24
refactorings and 11 other transformations; and the Remove MerHop transformation is reused in 11 refactorings
and 7 other transformations.

1. Introduction

Refactorings are behavior-preserving code transformations. The sem-
inal work of Opdyke [1] and the Refactorings Browser (the first
implementation of refactorings by Roberts and Brant [2-5]) paved
the way to the spread of refactorings [6]. They are now a standard
feature in modern IDEs [7-11]. A lot of research has been done
on refactorings such as for their detection [12], missed application
opportunities [13,14], practitioner use [7-10], their definition [15-19],
or atomic refactorings for live environments [20]. Several publica-
tions focus on scripting refactorings [21-25]. Finally, some work has
attempted to speed up existing refactoring engines, as for Java [26].

Still, from a daily development perspective, refactorings and their
behavior-preserving forms are not enough [15,27,28]. Non-behavior-
preserving code transformations are also needed [18,19,29]. For ex-
ample, consider replacing all the invocations of a given message with
another one (which we call RerLacEMEssaceSEnp(msg1,msg2)). Re-
PLACEMESSAGESEND is not equivalent to RenameMETHOD: the former requires

* Corresponding author.

msg2 to exist, whereas the latter does not require it to exist. Also,
the former (RepLacEMEssaceSEnp) does not need to deal with possible
overriding implementations of msg1 whereas the refactoring must
rename them too.

RerLaceMEssaceSEND should just update all the msg1 invocations to
msg2 invocations. Such a transformation will typically not preserve
behavior, yet it is a need that arises in real development situations. It
is clear that RepLacEMEssaGESEND has similarities with the RenaMEMETHOD
refactoring, but it would be awkward’ to perform it by applying Re-
NaMEMETHOD only. When in need of such a source code transformation,
a developer is left to perform the changes manually or with a code
rewriting engine that can be cumbersome to use [28].

Defining some specific code transformations such as RepLAcEMESSAGE-
Senp and letting the Pharo developers define their own transformations
are our long-term engineering goals. In this paper, we explore a new
refactoring engine architecture to do so. Note that our goal is not

E-mail addresses: balsasarenac@uns.ac.rs (B. Sarenac), nicolas.anquetil@inria.fr (N. Anquetil), stephane.ducasse@inria.fr (S. Ducasse), pablo.tesone@inria.fr

(P. Tesone).

! The developer would need to copy msg2 in a paste buffer; then remove it before executing the rename refactoring; then rename manually (without refactoring)
msg2 back into msg1; and finally, paste back the copied method to its original definition!

https://doi.org/10.1016/j.cola.2024.101273

Received 14 November 2023; Received in revised form 23 April 2024; Accepted 13 May 2024

Available online 31 May 2024

2590-1184/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

Current flow

> Inline Method refactoring:

Preprocessing

. Check preconditions

Preconditions

o O &~ Db

Canonize the inline method,

Handle cascades and returns (+ more canonization),
Replace argument variables with values,

Substitute the message send with the inline method,

Remove dead code: empty and immediate blocks.

Transformations

12

Can we make this composite?

> Inline Method refactoring:

1. Canonize the inline method, Preprocessing
2. Check preconditions Preconditions
3. Handle cascades and returns Specialization
4. Rename conflicting temporaries

5. Replace argument variables with values,

6. Substitute the message send with the inline method,

/. Remove dead code, empty and immediate blocks. Transtormations

13

Can we make this composite?

> Inline Method refactoring:

1. Canonize the method to be inlined, Preprocessing
2. Check preconditions Preconditions
3. Rename conflicting temporaries

4. Replace argument variables with values, Transformation - Preprocessing
5. Substitute the message send with the inline method, Transforming
6. Remove dead code, empty and immediate blocks. Cleanup

Transformations

14

Can we make this composite?

> Inline Method refactoring:

1. Canonize the method to be inlined (from transformation), Preprocessing

2. Check preconditions,
1. Inlining overridden methods,

2. Inlining bigger methods that will add statements before the target
message.

3. Inlining methods that send overridden super messages Preconditions

3. Inline method transformation. Transformations

15

Modular and Extensible Extract Method

Balsa Sarenac’!, Stéphane Ducasse?, Guillermo Polito? and Gordana Rakic?

"University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovié¢a 6, 21102 Novi Sad, Serbia
?University Lille, Inria, CNRS, Centrale Lille, UMR 9189 - CRIStAL, F-59000 Lille, France
*University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradoviéa 3, 21000 Novi Sad, Serbia

Abstract

Extract method refactoring is one of the most important refactorings in any refactoring engine because it supports
developers to create new methods out of existing ones. Its importance comes with the cost of complexity since
it needs to take care of many issues to produce code that is syntactically and semantically correct. Finally,
their complexity often leads existing extract method refactoring to be defined in a monolithic way. Such an
implementation hampers any reuse of analyses and forbids simple variations in the case of domain-specific
refactorings based on extract method general idea.

In this article, after describing the challenges of the analysis of ExTracT METHOD refactoring in the context
of Pharo, we describe a new modular implementation. This implementation is based on the composition of
elementary transformations. We validate this approach showing how it supports the natural definition of two
domain-specific refactorings: ExTracT SETUP refactoring (for SUnit) and ExTrAcT WITH PRAGMA refactoring (for
the Slang framework).

Keywords
Refactoring, extract method, preconditions, composition, language semantics

1. Introduction

The work presented in this paper is part of a larger effort to revisit how refactorings are designed. It fits
into a new architecture of a modern refactoring engine that supports refactorings (behavior-preserving
code modifications) or transformations (non-behavior-preserving code modifications) [SADT24]. In this
context, refactoring verifies preconditions (split into two kinds of applicability and breaking changes)
and then performs code modifications by executing code transformations [ACD " 22]. The objectives of
this large effort are (1) to support developers in defining their own code modifications (either refactorings
or transformations) by composing other refactorings and/or transformations), (2) to redesign existing
refactorings into modular definitions that can be easily extended to define new and/or domain-specific
refactorings without relying on logic duplication.

The ExTRACT METHOD refactoring is one of the most important refactorings in any refactoring engine
because it supports developers in creating new methods out of existing ones [Fow99].

However, its importance comes at the price of complexity. Indeed, this refactoring needs to take
care of many issues to produce syntactically and semantically correct code. Its complexity lies not
only in the execution logic that performs all the required transformations but also in the preconditions
that have to validate that the extracted piece of text is a valid method [SVEdM09, Sch10]. Finally, its
complexity often leads EXTRACT METHOD refactoring to be implemented in a monolithic way.

Such an implementation hampers any reuse and prevents simple variations in the case of domain-
specific refactorings based on the general idea behind the Extract Method.

The goal of this paper is to present a new modular definition of the ExTRACT METHOD refactoring.
By modular we mean that the implementation is based on the explicit composition of elementary
operations [Sch10, SAE" 15, SADT24] and supports reuse and extensions of the basic logic.

The contributions of the paper are:

IWST’24: International workshop on Smalltalk technologies, July 08—-11, 2024, Lille, France

@ balsasarenac@uns.ac.rs (B. Sarenac); stephane.ducasse@inria.fr (S. Ducasse); guillermo.polito@inria.fr
(G. Polito); gordana.rakic@dmi.uns.ac.rs (G. Rakic)

@ 0000-0003-2953-2118 (B. Sarenac); 0000-0001-6070-6599 (S. Ducasse); 0000-0003-0813-8584 (G. Polito);
0000-0003-1404-4015 (G. Rakic)

@ 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

16

Comparison to Extract Method?

1 ReCompositeExtractMethodRefactoring >> buildTransformationFor: newMethodName
2

3 A OrderedCollection new

4 add: (RBAddMethodTransformation

5 model: self model

6 sourceCode: newMethod newSource

7 in: class

8 withProtocol: Protocol unclassified);

9 add: (RBReplaceSubtreeTransformation

10 model: self model

11 replace: sourceCode

12 to: (self messageSendwith: newMethodName)
13 inMethod: selector

14 inClass: class);

15 add: (ReRemoveUnusedTemporaryVariableRefactoring
16 model: self model

17 inMethod: selector

18 inClass: class name) ;

19 yourself

17

What do we do with method with Pragma

ExampleClass >> m
|a]

a := self exampleMethod. ExampleClass >> m

A g * ' "
a * self calculation <var: ‘a’ declareC: ‘int’>

ExampleClass >> exampleMethod | a

<var: ‘c’ declareC: ‘int’> a:=1+3.

| C | N a * self calculation

c:=1+3.

18

Inline with pragma composite

> |Inline Method with pragma refactoring:

1. Canonize the method to be inlined,

Preprocessing

Check preconditions,

Preconditions

. Handle pragmas,

BN

Inline method transformation.

Transformations

19

Conclusion

* Challenges when implementing the Inline Method in Pharo
» |everage Decorator and Specialization to simplify Inline Method

* |nline Method with Pragma domain specific refactoring

20

