|ldentification of unnecessary
object allocations using static escape
analysis

Faouzi Mokhefi
Stéphane Ducasse
Pablo Tesone
Luc Fabresse

) 4
7 'N’
h% RBhI§tAL IMT Nord Europe ESUG,ZS

Ecole Mines-Télécom
Signal et Automatique de Lille IMT-Université de Lille

International Worshop for Smalltalk Technologies 2025 1

Motivating Example

carFactory
* OOP encourages frequent object creation | cars res|
—> Abundance of short-lived objects.
| cars := OrderedCollection
* The impact on memory management and new.
garbage collector. 1 to: 100000 do: [:i |
cars add: (Car
name: ° ‘
model: "’ .. '
o . 1.
What is the impact of this ~ cars sum: [:aCar | aCar
code ? price]

Can we optimise it?

Possible Optimisations

Stack Heap
e Stack

allocation

* Object inlining

object 2

Possible Optimisations

© Rectangl
o origin : Point
o corner : Point '
‘ ©Rect gl
[) ' o origin_x
StaCk allOcatlon lcontains o origin_y
o corner_x
rrrrrr "y

« Object inlining v

Rectangle origin: corner:

How to identify objects that can
be inlined/stack allocated?

Challenges of dynamically-typed
language analysis

 Dynamically-typed languages

gi?g;ain highly polymorphic call ‘ '& A
 Prevalent use of reflection and \ X \’k \X \
block closure o .o :

* Large call graphs Large call graphs

67% selectors

have multiple
Implementors

Characterizing
escaping objects

Non-escaping object: lifetime is bound to its
allocation context

methodWithNonEscaping

Mybuilder new
Build.

Escape analysis identifies, at compile-time, objects that
are not reachable outside of a given execution context.

8

An escaping object

methodWithEscaping

o := Object new,
aGlobal := Array new: 7.
No

Our escape causes

* Assignments to instance variables of heap-
allocated objects

* Assignments to global/shared variables
e Return to the top level of the call stack

* Arguments of blocks

10

Known selectors that cause escape

* Reflective, primitive, ffis e.g. #perform:with:
» (Collection constructors, e.g. #with:,...

e Block evaluation e.g. #value:

11

Selectors to skip

Object creation

Exception handling and control
flow

Testing methods
Error messages and halts

asString asSymbol printString

12

Our approach

Context-sensitive, flow-insensitive escape analysis for
Pharo

Builds a points-to graph to track references to heap-
allocated objects

Applies escape constraints on the points-to graph

Interprocedurality to handle method calls

13

Need for interprocedural analysis

A >>fo0: arg
| tmp st stl |
tmp := Object new.
st := Stream new.

self bar: tmp.
st := st returnSelf.

Object>>printOn:

tmp printOn: st
A >> bar: anObject

A anObject
copy

14

Need for interprocedural analysis

A >>foo: arg
| tmp st stl |
tmp := Object new.
st := Stream new.

self bar: tmp. --. _
stl := st returnSelf.’s,

tmp printOn: st .
.+ Call Edge
A >> bar: anObject ¥

A anObject

Object>>printOn:

COpYy

15

Need for interprocedural analysis

A >> foo: arg
| tmp st stl |
tmp := Object new.
st := Stream new.

=p . self bar:tmp...__
" stl := st returnSelf >«

tmp printOn: st '

|

Object>>printOn:

Returh Edge ,+ Call Edge
“A >> bar: anObject ¥
A anObject

COpYy

16

Points-to Analysis

A >>foo: arg tmp @
| tmp st stl | |
Capture object reference
@

tmp := Object new.

relationships
st := Stream new.

self bar: tmp.
st] := st returnSelf.

tmp printOn: st

A >> bar: anObject
A anObject
copy

17

Addressing our challenges

Call site memoization
Call graph node skipping
Type propagation

Graph depth and breadth heuristic limitations

18

Call site Memoization

A >>foo0: arg

 Save and reuse analysis | tmp st Stl. |
summaries for call sites based tmp := Object new.
on: st := Stream new.

self bar: tmp.
 Arguments monitoring st] := st returnSelf.

status (tracked or not) and

. . = stl bar: st.
type information .
tmp printOn: st
e Selector identity A >> bar: anObject
A anObject

COpYy

19

Call graph node skipping

When a representation of a method includes only
escaping variables to track, there is no further information
to extract —> Safe to skip.

20

Type propagation

 The analyzer models all possible implementor methods
for a message

* We propagation variables types starting from allocation
site and leverage to reduce scope of implementors

21

Call graph complexity limitation

* Open world assumption
* Limit the depth of graph exploration

 Limit Working list size (#visited methods)

22

Results

Anecdotal evidence

AIAstar >> heuristicFrom: startModel to: endModel
| dijkstra addEdges pathD parameters |

parameters := OrderedCollection new.

parameters add: startModel model.
parameters add: endModel model.
dijkstra start: parameters first.

dijkstra end: parameters second.

24

Depth impact on analysis

Depth Analysis time Candidates
1 9 min 14 s (39 ms) 54
2 47 min 41 s (204 ms) 189
3 3 h 29 min (895 ms) 199
4 27 h 11 min (270712995 ms) 203
>5 >27h —

Table 2: Average SubMethods Depth of call graph. Runtime
and resulting positive candidates — fixed number of input

methods.

o candidates

 Depth = 3 was found to be a stable point for a
reasonable execution time.

25

Time to perform analysis

Total methods Analysis time Candidates
4 800 6 min 32 s 103
7 200 12 min 32 s 138
9600 16 min 35 s 147
12 000 19 min 46 s 158
14 400 1h32min43s 166
16 800 35 min 57 s 173
19 200 41 min 10 s 177
21 600 46 min 48 s 182
24 000 2 h 35 min 38 seconds 189

Table 3: Runtime and resulting positive candidates - variable
number of input methods for maximum depth of 2 for the

call graph

20

How many special methods encountered

Depth FFI Primitives Reflection

1 0 226 32

2 1458 15196 14582

27

Type Propagation Evaluation

Depth Analysis time Candidates
n w/ TP w/o TP w/ TP w/o TP
1 5s 7s 12 12
2 20 s 56 s 43 38
3 1minls 2min9s 48 38
4 1min 53 s 3 min 30s 49 39
5 3min 33 s 1h 1 min 48 37
6 7min50s 18 min 09 s 48 39
7 14min39s 45minls 48 37
8 48 min 40 s — 48 —
9 10 h 1 min - 47 -

Table 4: Analysis time and candidate counts across depths,
with and without type propagation (tp: Type propagation).

28

False negatives:

Objects marked as escaping by static analyzer
But non-escaping during execution

* Objects returned from a constructor or factory

* Objects assigned to instance variables of non-
escaping objects

29

Perspective

Analyze individual fields of objects rather than treating
the entire object as an indivisible unit.

Analyse beyond Assignments to Instance Variables.

Adding the abstract interpretation (partially evaluate
some messages if we have all their argument values)

Towards analysing external projects.

30

Summary

Many short-lived objects in OOP

Context-sensitive, flow-insensitive, interprocedural
escape analysis for Pharo

Builds an points-to graph to track references to heap-
allocated objects

Conservative escape conditions to make faster analysis

Limited results (203 out of 24000~ allocation)

31

