
Identification of unnecessary
object allocations using static escape

analysis

Faouzi Mokhefi
Stéphane Ducasse

Pablo Tesone

Luc Fabresse

ESUG’25

International Worshop for Smalltalk Technologies 2025

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

1

Motivating Example

• OOP encourages frequent object creation
—> Abundance of short-lived objects.

• The impact on memory management and
garbage collector.

What is the impact of this
code ?

 Can we optimise it?

carFactory
 | cars res|

 cars := OrderedCollection
new.
 1 to: 100000 do: [:i |
 cars add: (Car
 name: ‘ … ‘
 model:’ … ’
].
 ^ cars sum: [:aCar | aCar
price]

2

Possible Optimisations

• Stack
allocation

• Object inlining

• ….

Stack Heap

3

Possible Optimisations

• Stack allocation

•Object inlining

• ….

⚡

Rectangle origin: 1@1 corner: 2@2

4

How to identify objects that can
be inlined/stack allocated?

5

Challenges of dynamically-typed
language analysis

• Dynamically-typed languages
contain highly polymorphic call
sites

• Prevalent use of reflection and
block closure

• Large call graphs Large call graphs

6

67% selectors
have multiple
Implementors

Characterizing
escaping objects

7

Escape analysis identifies, at compile-time, objects that
are not reachable outside of a given execution context.

methodWithNonEscaping

 Mybuilder new
 Build.

Non-escaping object: lifetime is bound to its
allocation context

8

An escaping object

methodWithEscaping

 o := Object new.
aGlobal := Array new: 7.
^ o

9

Our escape causes

• Assignments to instance variables of heap-
allocated objects

• Assignments to global/shared variables

• Return to the top level of the call stack

• Arguments of blocks

10

Known selectors that cause escape

• Reflective, primitive, ffis e.g. #perform:with:

• Collection constructors, e.g. #with:,…

• Block evaluation e.g. #value:

11

Selectors to skip
• Object creation

• Exception handling and control
flow

• Testing methods

• Error messages and halts

• asString asSymbol printString

12

Our approach
• Context-sensitive, flow-insensitive escape analysis for

Pharo

• Builds a points-to graph to track references to heap-
allocated objects

• Applies escape constraints on the points-to graph

• Interprocedurality to handle method calls

13

Need for interprocedural analysis
A >> foo: arg

| tmp st st1 |
tmp := Object new.
st := Stream new.
self bar: tmp.
st1 := st returnSelf.
tmp printOn: st

A >> bar: anObject
 ^ anObject
copy

14

Need for interprocedural analysis
A >> foo: arg

| tmp st st1 |
tmp := Object new.
st := Stream new.
self bar: tmp.
st1 := st returnSelf.
tmp printOn: st

A >> bar: anObject
 ^ anObject
copy

Call Edge

15

Need for interprocedural analysis
A >> foo: arg

| tmp st st1 |
tmp := Object new.
st := Stream new.
self bar: tmp.
st1 := st returnSelf.
tmp printOn: st

A >> bar: anObject
 ^ anObject
copy

Return Edge Call Edge

16

A >> foo: arg
| tmp st st1 |
tmp := Object new.
st := Stream new.
self bar: tmp.
st1 := st returnSelf.
tmp printOn: st

A >> bar: anObject
 ^ anObject
copy

Capture object reference
relationships

Points-to Analysis

17

Addressing our challenges

• Call site memoization

• Call graph node skipping

• Type propagation

• Graph depth and breadth heuristic limitations

18

Call site Memoization
• Save and reuse analysis

summaries for call sites based
on:

• Arguments monitoring
status (tracked or not) and
type information

• Selector identity

A >> foo: arg
| tmp st st1 |
tmp := Object new.
st := Stream new.
self bar: tmp.
st1 := st returnSelf.
st1 bar: st.
tmp printOn: st

A >> bar: anObject
 ^ anObject
copy

19

Call graph node skipping

When a representation of a method includes only
escaping variables to track, there is no further information
to extract —> Safe to skip.

20

Type propagation

• The analyzer models all possible implementor methods
for a message

• We propagation variables types starting from allocation
site and leverage to reduce scope of implementors

21

Call graph complexity limitation

• Open world assumption

• Limit the depth of graph exploration

• Limit Working list size (#visited methods)

22

Results

23

Anecdotal evidence

AIAstar >> heuristicFrom: startModel to: endModel
| dijkstra addEdges pathD parameters |
…
parameters := OrderedCollection new.
parameters add: startModel model.
parameters add: endModel model.
dijkstra start: parameters first.
dijkstra end: parameters second.
…

24

Depth impact on analysis

• 203 candidates

• Depth = 3 was found to be a stable point for a
reasonable execution time.

25

Time to perform analysis

26

How many special methods encountered

Depth FFI Primitives Reflection

1 0 226 32

2 1458 15196 14582

27

Type Propagation Evaluation

28

False negatives:
Objects marked as escaping by static analyzer

 But non-escaping during execution

• Objects returned from a constructor or factory

• Objects assigned to instance variables of non-
escaping objects

29

Perspective
• Analyze individual fields of objects rather than treating

the entire object as an indivisible unit.

• Analyse beyond Assignments to Instance Variables.

• Adding the abstract interpretation (partially evaluate
some messages if we have all their argument values)

• Towards analysing external projects.

30

Summary
• Many short-lived objects in OOP

• Context-sensitive, flow-insensitive, interprocedural
escape analysis for Pharo

• Builds an points-to graph to track references to heap-
allocated objects

• Conservative escape conditions to make faster analysis

• Limited results (203 out of 24000~ allocation)

31

