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Motivating Example

• OOP encourages frequent object creation 
—> Abundance of short-lived objects.


• The impact on memory management and 
garbage collector.

What is the impact of this 
code ?


 Can we optimise it?

carFactory 
    | cars res| 
     
    cars := OrderedCollection 
new. 
    1 to: 100000 do: [ :i | 
        cars add: (Car  
            name: ‘ … ‘ 
            model:’ … ’ 
              ]. 
 ^ cars sum: [:aCar | aCar 
price]
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Possible Optimisations

• Stack 
allocation


• Object inlining


• ….

Stack Heap
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Possible Optimisations

• Stack allocation


•Object inlining

• ….

⚡
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How to identify objects that can 
be inlined/stack allocated?
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Challenges of dynamically-typed 
language analysis

• Dynamically-typed languages 
contain highly polymorphic call 
sites


• Prevalent use of reflection and 
block closure


• Large call graphs Large call graphs
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67% selectors 
have multiple 
Implementors



Characterizing  
escaping objects
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Escape analysis identifies, at compile-time, objects that 
are not reachable outside of a given execution context.

methodWithNonEscaping 

     Mybuilder new 
      Build.

Non-escaping object: lifetime is bound to its 
allocation context
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An escaping object

methodWithEscaping 

    o := Object new. 
aGlobal := Array new: 7. 
^ o
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Our escape causes

• Assignments to instance variables of heap-
allocated objects


• Assignments to global/shared variables


• Return to the top level of the call stack


• Arguments of blocks
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Known selectors that cause escape

• Reflective, primitive, ffis e.g. #perform:with:


• Collection constructors, e.g. #with:,…


• Block evaluation e.g. #value:
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Selectors to skip
• Object creation


• Exception handling and control 
flow


• Testing methods


• Error messages and halts


• asString asSymbol printString

12



Our approach
• Context-sensitive, flow-insensitive escape analysis for 

Pharo


• Builds a points-to graph to track references to heap-
allocated objects


• Applies escape constraints on the points-to graph


• Interprocedurality to handle method calls
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Need for interprocedural analysis
A >> foo: arg

| tmp st st1 |
tmp := Object new. 
st := Stream new. 
self bar: tmp. 
st1 := st returnSelf.
tmp printOn: st

A >> bar: anObject
            ^ anObject 
copy
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Call Edge
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Need for interprocedural analysis
A >> foo: arg

| tmp st st1 |
tmp := Object new. 
st := Stream new. 
self bar: tmp. 
st1 := st returnSelf.
tmp printOn: st

A >> bar: anObject
            ^ anObject 
copy

Return Edge Call Edge
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A >> foo: arg
| tmp st st1 |
tmp := Object new. 
st := Stream new. 
self bar: tmp. 
st1 := st returnSelf.
tmp printOn: st

A >> bar: anObject
            ^ anObject 
copy

Capture object reference 
relationships

Points-to Analysis
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Addressing our challenges

• Call site memoization


• Call graph node skipping


• Type propagation


• Graph depth and breadth heuristic limitations
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Call site Memoization
• Save and reuse analysis 

summaries for call sites based 
on:


• Arguments monitoring 
status (tracked or not) and 
type information


• Selector identity

A >> foo: arg
| tmp st st1 |
tmp := Object new. 
st := Stream new. 
self bar: tmp. 
st1 := st returnSelf.
st1 bar: st.
tmp printOn: st

A >> bar: anObject
            ^ anObject 
copy
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Call graph node skipping

When a representation of a method includes only 
escaping variables to track, there is no further information 
to extract —> Safe to skip.
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Type propagation

• The analyzer models all possible implementor methods 
for a message


• We propagation variables types starting from allocation 
site and leverage to reduce scope of implementors
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Call graph complexity limitation

• Open world assumption 


• Limit the depth of graph exploration


• Limit Working list size (#visited methods) 
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Results
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Anecdotal evidence

AIAstar >> heuristicFrom: startModel to: endModel
| dijkstra addEdges pathD parameters | 
…
parameters := OrderedCollection new. 
parameters add: startModel model. 
parameters add: endModel model. 
dijkstra start: parameters first.
dijkstra end: parameters second.
…
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Depth impact on analysis

• 203 candidates 


• Depth = 3 was found to be a stable point for a 
reasonable execution time.
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Time to perform analysis

26



How many special methods encountered

Depth FFI Primitives Reflection

1 0 226 32

2 1458 15196 14582
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Type Propagation Evaluation
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False negatives: 
Objects marked as escaping by static analyzer 

 But non-escaping during execution

• Objects returned from a constructor or factory


• Objects assigned to instance variables of non-
escaping objects
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Perspective
• Analyze individual fields of objects rather than treating 

the entire object as an indivisible unit. 


• Analyse beyond Assignments to Instance Variables.


• Adding the abstract interpretation ( partially evaluate 
some messages if we have all their argument values)


• Towards analysing external projects.
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Summary
• Many short-lived objects in OOP


• Context-sensitive, flow-insensitive, interprocedural 
escape analysis for Pharo


• Builds an points-to graph to track references to heap-
allocated objects


• Conservative escape conditions to make faster analysis


• Limited results (203 out of 24000~ allocation)
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