
Control flow-sensitive
optimizations

In the Druid Meta-Compiler

Matías Demare - Guillermo Polito
Javier Pimás - Nahuel Palumbo

matias-nicolas.demare@inria.fr
github.com/m-demare

Conditional branches are slow

2

Conditional branches are slow…
But why?

● Complexification of control flow
● Increase in code size
● CPU pipeline stalling

3

Complexification1
of control flow

1 https://english.stackexchange.com/a/607869

● Prevents optimizations
● Makes some compilers’

tasks harder
○ Block placement
○ Register allocation

4

Increase in code size

Has a considerable impact, especially with suboptimal code placement

5

(10s of bytes)

~1ns
latency

~50ns
latency

Pipeline stalling ● Caused by the way
modern processors work

● Can have a huge impact

6

What’s a CPU pipeline?

r1 := Add(r5, r8)

r2 := Mul(r5, r3)

r3 := Sub(r2, 5)

Assuming 3 cycles
per instruction

7

What’s a CPU pipeline?

r1 := Add(r5, r8)

r2 := Mul(r5, r3)

r3 := Sub(r2, 5)

Assuming 3 cycles
per instruction

8

9 cycles
in total

…or does it?

r1 := Add(r5, r8)

r2 := Mul(r5, r3)

r3 := Sub(r2, 5)

9

…or does it?

r1 := Add(r5, r8)

r2 := Mul(r5, r3)

r3 := Sub(r2, 5)

10

…or does it?

r1 := Add(r5, r8)

r2 := Mul(r5, r3)

r3 := Sub(r2, 5)

11

…or does it?

r1 := Add(r5, r8)

r2 := Mul(r5, r3)

r3 := Sub(r2, 5)

12

…or does it?

r1 := Add(r5, r8)

r2 := Mul(r5, r3)

r3 := Sub(r2, 5)

13

…or does it?

r1 := Add(r5, r8)

r2 := Mul(r5, r3)

r3 := Sub(r2, 5)

14

The issue with branches

15

r2 := Add(r5, r8)

jumpIf (r1 > 5)

 to X

[other instructions…]

X: …

And it gets worse…

● The deeper the pipeline is, the longer the stall
○ AMD Zen uses 19 stages
○ Intel Lion Cove uses 10 stages

● Other CPU features can make this even more costly (see
indirect branches, superscalar microarchitectures, etc)

16

17

CPUs try to solve this

● Branch prediction:
○ Guess which branch will run, and start executing it
○ Discard results if the guess was wrong

● Eager speculative execution
○ Execute both branches simultaneously
○ Discard the results from the one that ends up being “wrong”

Still, the best branch is no branch at all

“But… I don’t write redundant conditionals!!”

Sadly, compilers write them for you

● Function inlining
● Lowering of high-level features. E.g.,

○ Array bounds checks
○ Runtime type checks
○ Polymorphism + message sends

18

“But… I don’t write redundant conditionals!!”

Sadly, compilers write them for you

● Function inlining
● Lowering of high-level features. E.g.,

○ Array bounds checks
○ Runtime type checks
○ Polymorphism + message sends

[i < array size] whileTrue: [

var := array at: i.

i := i + 1.

]

Start:

 jumpIf (i >= array size)

 to End

 jumpIf (i >= array size)

 to Error

 var := MemLoad(array + i)

 i := Add(i, 1)

jumpTo Start

End: …

19

Goal: Detect and eliminate dead branches

20

Dead branches: cannot be reached in any execution of the program.

Detecting them implies determining if a given condition is satisfiable in its context

x < 5 ifTrue: [

x > 10 ifTrue: [

“Unreachable code”

]]

PiNodes: Representing Constraints
on Variables

21

x < 5 ifTrue: [

x > 10 ifTrue: [

“Unreachable code”

]

]

22

x1 < 5 ifTrue: [

x2 := 𝜋(x1, <5)

x2 > 10 ifTrue: [

x3 := 𝜋(x2, >10)

“Unreachable code”

]

]

PiNodes: Representing Constraints on Variables

Optimizing with PiNodes

23

● Graph based representation
of a program

● Nodes = Basic blocks
● Edges = Jumps

Control Flow Graph (CFG)

24

SSA
● Variables are assigned exactly once

x := 5.

x := 27.

x < 10 ifTrue: [

y := x.

] ifFalse: [

y := 13.

].

z = y + x

x1 := 5.

x2 := 27.

x2 < 10 ifTrue: [

y1 := x2.

] ifFalse: [

y2 := 13.

].

z1 = ?? + x2
25

SSA
● Variables are assigned exactly once
● Φ-functions represent variables at merge points

x := 5.

x := 27.

x < 10 ifTrue: [

y := x.

] ifFalse: [

y := 13.

].

z = y + x

x1 := 5.

x2 := 27.

x2 < 10 ifTrue: [(B1)

y1 := x2.

] ifFalse: [(B2)

y2 := 13.

].

y3 := Φ(B1 → y1, B2 → y2)

z1 = y3 + x2
26

SSA - use-def chains

x1 := 5.

x2 := 27.

x2 < 10 ifTrue: [(B1)

y1 := x2.

] ifFalse: [(B2)

y2 := 13.

].

y3 := Φ(B1 → y1, B2 → y2)

z1 = y3 + x2

27

x < 5 ifTrue: [

x > 10 ifTrue: [

x doSomething.

“Unreachable code”

]

]

28

x1 < 5 ifTrue: [

x2 := 𝜋(x1, <5)

x2 > 10 ifTrue: [

x3 := 𝜋(x2, >10)

x3 doSomething.

“Unreachable code”

]

]

PiNodes: representing constraints on variables

Optimizations - Dead branch elimination

29

x3:=𝜋(x2, <10) and x2:=𝜋(x1, <5)

Is (-∞; 5) ∩ (-∞; 10) empty?

NO ⇒ Reachable

Constant dead branch elimination

x1 < 5 ifTrue: [

x2 := 𝜋(x1, <5).

x2 < 10 ifTrue: [

x3 := 𝜋(x2, <10).

] ifFalse: [

x4 := 𝜋(x2, >=10).

" unreachable "

].

]

30

x3:=𝜋(x2, <10) and x2:=𝜋(x1, <5)

Is (-∞; 5) ∩ (-∞; 10) empty?

NO ⇒ Reachable

Constant dead branch elimination

x1 < 5 ifTrue: [

x2 := 𝜋(x1, <5).

x2 < 10 ifTrue: [

x3 := 𝜋(x2, <10).

] ifFalse: [

x4 := 𝜋(x2, >=10).

" unreachable "

].

]

x4:=𝜋(x2, >=10) and x2:=𝜋(x1, <5)

Is (-∞; 5) ∩ [10; ∞) empty?

YES ⇒ Unreachable

31

x3:=𝜋(x2, <10) and x2:=𝜋(x1, <5)

Is (-∞; 5) ∩ (-∞; 10) empty?

NO ⇒ Reachable

Constant dead branch elimination

x1 < 5 ifTrue: [

x2 := 𝜋(x1, <5).

x2 < 10 ifTrue: [

x3 := 𝜋(x2, <10).

] ifFalse: [

x4 := 𝜋(x2, >=10).

" unreachable "

].

]

x4:=𝜋(x2, >=10) and x2:=𝜋(x1, <5)

Is (-∞; 5) ∩ [10; ∞) empty?

YES ⇒ Unreachable

32

Constant dead branch elimination

x1 < 5 ifTrue: [

x2 := 𝜋(x1, <5).

y1 := x2.

] ifFalse: [

x3 := 𝜋(x1, >=5).

y2 := 8.

].
y3 := Φ(y1, y2)

What are the possible values of y3?

The union between the possible
values of y1 and y2

 (-∞; 5) ∪ {8}

33

ABCD method

More powerful:

● Models the relationship between variables
● Models the effect of basic arithmetic operations

(addition and subtraction)

34

ABCD method

x1 <= y1 ifTrue: [

x2 := 𝜋(x1, <=y1).
y2 := 𝜋(y1, >=x1).
x3 := x2 - 10.

x3 < y2 ifTrue: ["tautology"

x4 := 𝜋(x3, <y2).
y3 := 𝜋(y2, >x3).

] ifFalse: ["unreachable"

x5 := 𝜋(x3, >=y2).
y4 := 𝜋(y2, <=x3).

]].
35

Nodes represent SSA values

An edge from a to b with
weight w means that b - a ≤ w.

Experiments and results

36

Experimental Context

Druid
37

● source-to-source meta-compiler
● uses many optimization passes

○ Analysis and code
transformation

Old DBE vs PiNodes

● Druid already had a DBE pass
● Worked by computing all paths a variable was alive in
● Questions:

○ Is our new constant DBE method faster?
○ Is ABCD, the more powerful method, slower?

38

Measuring Compile Time Improvement

● Used two benchmarks to compare time spent optimizing:
○ Compiled all methods of a test class
○ Compiled one hand-crafted method with an intentionally complex

control flow

39

Results

40

Results

41

Results

42

Future work

43

Future Work

● Stronger constraint solving - Z3

● Measuring run time improvements

● Looking for more optimization opportunities
○ Using the Druid optimizer for high-level Pharo code
○ Message splitting

44

More Opportunities for Complex
Control Flows

x < 3 ifTrue: [

y doSomething.

].

x < 5 ifTrue: [

z doSomethingElse.

].

45

Future: Message splitting

x < 3 ifTrue: [

y doSomething.

].

x < 5 ifTrue: [

z doSomethingElse.

].

46

47

Future: Message splitting

48

Future: Message splitting

49

Future: Message splitting

50

Matías Demare - Guillermo Polito
Javier Pimás - Nahuel Palumbo

matias-nicolas.demare@inria.fr github.com/m-demare

● Branches make code slow
● It’s common to have some dead

branches in your code
● PiNodes represent constraints on SSA

variables, and can be used for DBE

Conclusions

Addendum

Critical Edges

● Edges whose successor has
multiple predecessors, and
whose predecessor has multiple
successors

● They are annoying for PiNode
insertion, because the successor
is not dominated by the block
containing the condition

52

Breaking Critical Edges

● Remove that edge, and insert
● Insert a new basic block with just

an unconditional jump to the
critical edge’s target in its place

53

Domination

● B1 dominates B2 if every path
from the entry node to B2 must
go through B1

B1 dominates B1, B2, B3, B4, B5

B2 dominates B2, B3

B3, B4, B5 only dominate themselves

54

The PiNode Framework - insertion

● Break critical edges
● Insert PiNodes in each successor of a condition (one for each

variable involved)
● Replace usages in dominated blocks

55

The PiNode Framework - deletion

Simple copy propagation algorithm: replace each usage of
the PiNode for a usage of the copied variable

56

Dead branch
elimination

57

cfg piNodesDo: [:piNode |

piNode ifNotSatisfiable: [

unreachableBlocks add:

piNode basicBlock.

].

].

cfg removeJmpsTo: unreachableBlocks.

cfg removeBlocks: unreachableBlocks.

Basic pseudocode of the algorithm

Message splitting (with code)

x < 3 ifTrue: [

y doSomething.

] ifFalse: [].

x < 5 ifTrue: [

z doSomethingElse.

].

x < 3 ifTrue: [

y doSomething.

x < 5 ifTrue: [

z doSomethingElse.

].

] ifFalse: [

x < 5 ifTrue: [

z doSomethingElse.

].

].
58

Message splitting (with code)

x < 3 ifTrue: [

y doSomething.

] ifFalse: [].

x < 5 ifTrue: [

z doSomethingElse.

].

x < 3 ifTrue: [

y doSomething.

x < 5 ifTrue: [

z doSomethingElse.

].

] ifFalse: [

x < 5 ifTrue: [

z doSomethingElse.

].

].
59

