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Memory is Slow

at least relatively slow

Storage Type Slowed Time Scale Real Time Scale
Single CPU Instruction (at 3 GHz) 1 second 0.3 nSec
Registers (storage for active instructions) 1 to 3 seconds 0.3 to 1 nSec
Memory Caches 2 to 12 seconds 0.7 to 4 nSec
Main System Memory (RAM) 30 to 60 seconds 10 to 20 nSec
NVMe SSD 3 to 11 days 100 to 200 uSec

modern machines get a lot of their preformance from deep pipelines
memory references to executable addresses stall pipelines
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Types

untyped
assembler, BCPL, B
only machine instruction controls interpretation of bits

static typing
C, Rust, Zig, C++ Java
variables, functions, expressions have type
compile-time overload/operator polymorphism
allows operators like +, -, *, and others to behave differently based on the data types of their operands

dynamic typing
Smalltalk, Python, JavaScript
values, expressioins have type
run-time overload/operator polymorphism
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Encoding Considerations for Objects

many implementation, from byte interpreters to threaded execution to JIT’ed native code

encoding choices will affect all of the implementations, to varying degrees
Determining types

operations must be parameterized at run time by the types of the values

the first step is to access the types of the values - may slow pipeline
types in memory can cause a pipeline stall until they can be loaded
may be shifting/masking operations required to access types

Accessing values

In order to perform operations, the values must be made available to the CPU.
accessing values in memory is an order of magnitude slower than accessing them in registers
even if the values happen to be in cache they will be several times slower than in registers
may be shifting/masking operations required to access values

Supporting Memory Management

dynamic languages invariably have automatic memory management, (reference counting or garbage
collection)
objects need to be allocated, and removed when no longer needed
both actions have a significant cost, and the more objects allocated in memory, the greater the cost
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Catalog of Encodings

all mutable object need to be in memory
many possible ways to encode the range of immutable values that arise in normal calculations
we discuss 5 possible encodings that encompass the range from all values being in memory, to treating
as many things as immadiate as possible
we examine each from the perspective of the three considerations



Every Object in Memory

This is the simplest model.
Determining the value type requires a memory access, as does accessing the actual value.
Interoperation with foreign functions is complicated.
The result of every operation must be allocated to memory.
This will create a huge amount of churn, although most of the values wil be very short-lived.
Immutable values nil, true, false, and ASCII Characters are allocated at fixed addresses (Special
Objects array)



Every Object in Memory with SmallInteger Cache

This is a simple optimization by statically defining a set of small integers (say -5..100).
This means that if a result is in this pre-allocated set, then no allocation or collection is required.



Tag SmallInteger

Early Lisp and Smalltalk implementers noticed that the vast majority of values that were created were for
SmallInteger objects.
Most such systems tag small integers with a 1 bit tag (either in the low bit leaving all other addresses
natural by aligning all objects on at least a word boundary, or (less commonly) using the sign bit).
This encoding was so important that the SPARC architecture had basic arithmetic instructions that
checked that the low bit of the parameters to verify they were flagged as integers.
A small drawback of this encoding is that 1 bit of precision is lost, but most such systems move
automatically to big integers with unbounded precision on overflow and on modern, 64-bit systems that
one bit of precision is fairly irrelevant.



Tag SmallInteger , Character , Float

Miranda/Bera created the SPUR encoding
cleverly extends the 1-bit tag to 3 bits and in addition to SmallInteger and general (memory) objects,

supports encoding for Unicode characters and a subset of Float .
Examining the low 3 bits of an object, a coding of 0 is a pointer to a memory object, 1 is a 61-bit
SmallInteger , 2 is a Unicode Character , and 4 is a Float .
Only the pointer tag is a natural value - all the others require some decoding before use.
As with tagging reducing precision on integers, the Spur encoding limits the range of floating point
values.



NaN Encoding

NaN encoding utilizes the large number of code points in the IEEE-7544 floating point encoding that do
not represent valid floating-point numbers, by using those bit patterns to represent values of other types,
including pointers and SmallInteger .
This encoding has been used by Spidermonkey and was the originally planned encoding for Zag
Smalltalk
This encoding supports, within 64 bits, all Float values naturally, as well as 51-bit SmallInteger

values, pointers to memory objects, nil , booleans, symbols, characters, as well as several common
BlockClosure values.



Tag Most Possible Values

Zag Smalltalk now uses a modified-Spur encoding.
It uses the bottom 3 bits of an object: 0 to naturally encode pointers to memory objects (and nil ); 1 to
encode 31 immediate immutable classes; 2-7 to encode a broader range of Float values than encoded
by Spur.
The immediate classes include 56-bit SmallInteger values, booleans, symbols, Unicode Character .
The immediate classes also include 13 kinds of special block closures, including some non-local
returns, that are common in existing code.



Experiment

we are currently implementing all 6 of these encodings
initial experiment with integer and float fibonacci
will have inlined and non-inlined versions
will exercise the integer and floating-point paths, and the version with no inlining will exercise the
BlockClosure creation and non-local return
unfortunately, don’t yet have results



Limitations

Zag design features other than the choice of encoding will influence some of the runtimes
In particular, Zag has a three-tier memory system: stack, nursery, and global heap, and references are
only allowed to go to the right, but none of the test runs should hit the global heap, and the nursery is a
copying collector, so should be quite efficient.
Zag does no inlining of special selectors, so the “no inlining” versions will create actual BlockClosure s.
The non-local return block is particularly tricky, because it references the context from which it must
return, non-immediate closures can still be stack allocated, but create some extra work and stack
pressure
This may lead to significant churn in the first 4 cases.
The last 2 encodings create immediate values for this block, so do not force any context spilling, and
may, in fact, create no nursery allocations at all.



Hypothesis
Every Object in Memory

The result of every addition will allocate in the nursery, which will create a great deal of churn for the numbers

Every Object in Memory with SmallInteger Cache

The first 11 fibonacci numbers are in the cache we pre-allocated, and those are the most frequently
generated values, so the integer versions of the benchmark should run significantly faster.
The floating-point version will have no speedup.

Tag SmallInteger

Now all integers (for the test) have immediate values, so the integer tests should speed up significantly.
The floating-point version will have no speedup.

Tag SmallInteger , Character , Float

Because SPUR encodes immediate values for all of the generated floating-point values, the Float version of
this should run significantly faster.
The integer version should experience no speedup.

NaN Encoding

NaN encoding has the floating-point already in the correct format, therefore this should have the fastest
floating point version
integer versions will be somewhat slower (more manipulation is required to retrieve the integral value)
Because the blocks are immediate values, the “no-inlining” version should speed up noticeably

Tag Most Possible Values

Zag native format may be very slightly slower than Spur for inlined integer
should also be a bit faster than Spur for floating point, because the decoding is a couple of instructions faster
Again, the blocks are immediate values, the “no-inlining” version should be comparable to the NaN-encoding
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Conclusions

there is a large design space for object encoding
can be a memory-first or an immediate-first design philosophy
lots of potential implications
Future work is required to qualify these implications



Questions?

dmason@torontomu.ca

https://github.com/Zag-Research/Zag-Smalltalk


