
Challenges of
Transpiling Smalltalk to JavaScript

Noury Bouraqadi & Dave Mason

International Workshop on Smalltalk Technologies Gdansk, Poland; July 1st to 4th, 2025

Why Transpile Smalltalk to JavaScript?

2

Why Transpile Smalltalk to JavaScript?
ST

Simple & clean semantics

Rich IDE & core libraries

3

JS

Ubiquitous deployment

Performance

Large ecosystem

Why Transpile Smalltalk to JavaScript?
ST

Simple & clean semantics

Rich IDE & core libraries

4

Wednesday
July 2nd 2025

JS

Ubiquitous deployment

Performance

Large ecosystem

● ST + JS = Best of both worlds
● Smalltalk community interest in the Web/JavaScript

○ ESUG Main Track Talk Smalltalk for the Web

5Transpilation = TRANSlation & comPILATION

Transpiler

100%
Smalltalk
Program

100%
JavaScript
Program

6Transpilation = TRANSlation & comPILATION

Transpiler

100%
Smalltalk
Program

100%
JavaScript
Program

Valid Valid

7Transpilation = TRANSlation & comPILATION

Transpiler

100%
Smalltalk
Program

100%
JavaScript
Program

Semantically
Equivalent

Valid Valid

OutputOutput

Input Input

8Semantic Equivalence

Transpiler

100%
Smalltalk
Program

100%
JavaScript
Program

9

How to Transpile Smalltalk to JavaScript?

○ Map Smalltalk’s syntax to JavaScript?

○ Map Smalltalk’s reflective kernel to JavaScript?

○ Handle Smalltalk dependencies with the runtime?

10How to Transpile Smalltalk to JavaScript?

○ Map Smalltalk’s syntax to JavaScript?

○ Map Smalltalk’s reflective kernel to JavaScript?

○ Handle Smalltalk dependencies with the runtime?

11How to Transpile Smalltalk to JavaScript?

Empirical Study
based on
10 Year

experience with

○ Map Smalltalk’s syntax to JavaScript?

○ Map Smalltalk’s reflective kernel to JavaScript?

○ Handle Smalltalk dependencies with the runtime?

12How to Transpile Smalltalk to JavaScript?

Challenges Catalog

1. Primitive Types &
Literals

2. Messages
3. Block Closures
4. Classes
5. Reflection

Empirical Study
based on
10 Year

experience with

13

Challenges Catalog

● JS 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 and 𝑛𝑢𝑙𝑙 are Not Objects.

● JS has an Impoverished Numeric Stack.

● ST Automatically Converts
○ Between Small Integers & Large Ones.

● ST Supports Fixed-Point Arithmetic.

● ST has Literal Symbols.

14Challenges: Primitive Types and Literals

● JS has a 𝑆𝑦𝑚𝑏𝑜𝑙 class, but:
○ No literal symbols

■ Simple to fix
● Map ST symbols to instances of JS Symbol

○ JS Symbol class is not related to String!
■ Complex to fix

● Make Symbol subclass of String
○ Side-effects?

● Override some String methods

15Example: ST Literal Symbols

● Non-Alphanumeric Characters in ST Message Selectors

● JS Math-Like Message Priorities

● ST Message Cascading

16Challenges: Messages

● Simple to fix:

○ Replace non-alphanumeric characters with their Ascii code

○ ST keyword selectors: 1 string concatenating keywords

● Complex to fix: None

17Example: Non-Alphanumeric Characters in Selectors

Smalltalk Blocks:

● Always Bind the Outer Context

● Always Answer Some Value

● Support Non-Local Returns

18Challenges: Block Closures

● Simple to fix: ST blocks always answer some value

○ ST result := [123]

○ JS result = () =>{return 123}

● Complex to fix: ST blocks support non-local returns

○ ST condition ifTrue: [^123]

○ JS rely on exceptions

19Example: Block Returns

● Class Variables

● Pool Variables

● Class Extensions

● Stateful Traits

20Challenges: ST Classes - 1

● Class Initialization & Startup/Shutdown Lists

● Methods Always Have a Return Value

● Methods can Have Pragmas

○ Primitive Pragmas Refer to the Virtual Machine

21Challenges: ST Classes - 2

● Simple to fix: Class Variables

○ JS Classes are objects with attributes
○ JS encapsulation is optional

class A{

anInstanceMethod(){

x = A.someClassVariable + 42; }

}

A.someClassVariable = 37;

22Examples - 1

● Complex to fix: Pragmas such as #primitive:
○ Implement the primitive behavior

23Examples - 2

● ST Reifies Messages Upon Handling Type Errors

● ST Reifies Execution Contexts

● ST and JS have different solutions for Intercepting

Method Evaluation

● Pharo ST Reifies Slots

● Pharo ST classes define Object Format/Layout

24Challenges: Reflection

● Simple to fix: ST DNU Reifies Messages
○ Extend JS Object with

■ doesNotUnderstand() method
■ default methods for every sent message in ST Code

Object.prototype.zork = function(arg1, arg2){

return this.doesNotUnderstand(“zork”, arguments)}

25Examples - 1

● Complex to fix: ST Reifies Execution Contexts
○ ST thisContext

26Examples

Smalltalk & JavaScript

100% semantic equivalence

via transpilation is

difficult if not impossible!

27Conclusion

● Some challenges are “easy” to address
○ Primitive Types & Literals,

○ Messages,

○ Block Closures

● Several ST capabilities are complex to implement in JS
○ Primitives,

○ thisContext,

○ Reified Slots…

28Conclusion: Not all challenges are equal

● Beyond Transpilation

○ ST and JS Run-time interoperability (Production)

○ Live-coding with JS objects from the ST (Development)

○ Reuse JS libraries (code + globals) in code transcribed from ST

○ Transpile ST to produce JS libraries for 3rd parties.

● Methodology?
○ Generalizable to other language pairs? Smalltalk & Python?

29Future Work

Develop in Pharo, Run on JavaScript
PharoJS.org

Kindly Supported by

Thanks to all the contributors!

MIT License

Challenges of
Transpiling Smalltalk to JavaScript

Noury Bouraqadi & Dave Mason

International Workshop on Smalltalk Technologies Gdansk, Poland; July 1st to 4th, 2025

