
ChatPharo: an Open Architecture
for Understanding How to Talk

Live to LLMs
Omar Abedelkader 1

1Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

4th July 2025

1 / 26

Special Thanks !

• Benôıt Verhaeghe

• Kasper Østerbye

• Valentin Bourcier

• Kris Gybels

• Baľsa Sarenac

• Srajal Dwivedi

2 / 26

Who am I?

• A PhD Student working on the Complishon engine for Pharo

• An Artificial Intelligence engineer

• Interested in support for Low-resource languages: How to gain
more using LLMs in Pharo

3 / 26

What is LLM?

• LLMs are neural networks with billions of parameters, trained on
large-scale and diverse datasets.

• They excel at understanding and generating human-like text.

• Can perform complex tasks such as code generation, following
instructions, in-context learning, and reasoning.

4 / 26

How LLM generate code?

• Conceptually: Get trained and then use ’statistics’ to do gigantic
pattern matching to generate an answer

• Why LLMs are better for Java and JavaScript than for Pharo?

• Because they got trained on a huge code base.

5 / 26

How LLM generates code for low-resource
languages?

• Let us focus on Pharo for now.

• Fine-tuning works best for small models (around 1B parameters).

• In-context learning works best for larger models (7B parameters
and above), especially when using translation examples or
few-shot prompts.

• Very large models (like 33B) can degrade in performance.

6 / 26

Why LLM is not ready to use for Pharo?

• Data & model gap here is little publicly-available code, almost
no curated training sets or benchmarks, and current models show
a steep drop in accuracy whenever training data are scarce or
syntax is uncommon

• Tooling & runtime gap Pharo’s live, image-based,
highly-reflective IDE demands integration, package management,
and runtime context that text-only LLM pipelines do not
understand; today’s models already struggle with repository- or
project-level generation even in mainstream ecosystems.

7 / 26

How we can improve the LLM–Pharo integration?

• Give the model fresh, live context — wrap the prompt in a
Retrieval-Augmented-Generation (RAG)

• Cheap adaptation beats full retraining — few-shot
“translation-example” prompts

• Let the LLM call tools inside the image expose small helpers

8 / 26

What is Tool Calling?

• What is it called in LLM jargon? Tool calling refers to the
process where an LLM invokes external functions or APIs to
perform tasks it cannot handle directly.

• How are executable tools triggered? Tools are executed via
structured API calls generated by the LLM, which are then
handled by a backend system that runs the requested operation.

• How is information retrieved from the image? For
image-based tools, the system can use image processing, OCR, or
vision models to extract information from the image for further
analysis.

9 / 26

How it really works? (User - AI)

{

"model": "gpt-4o-mini",

"messages": [

{

"role": "system",

"content": "You are an AI coding assistant inside the user’s Pharo image."

},

{

"role": "user",

"content": "Which packages in my image mention HTTP networking?"

}

....

}

10 / 26

How it really works? (AI-Image)

{

.....

"role": "assistant",

"content": null,

"tool_calls": [

{

"id": "call_01",

"type": "function",

"function": {

"name": "get_packages",

"arguments": "{}"

}

}

]

......

}

11 / 26

How it really works? (Image - AI -User)

{

.....

{

"role": "tool",

"tool_call_id": "call_01",

"content": "{\"packages\":[\"Zinc-HTTP\",\"Neo-JSON\",\"AI-ChatPharo\"]}"

},

{

"role": "assistant",

"content": "I found three packages that deal with HTTP:\n\n• **Zinc-HTTP** { the core networking stack.\n• **Neo-JSON** { \\

serialisation helpers often used alongside HTTP.\n• **AI-ChatPharo** { your chat assistant, \\

which wraps Zinc for its REST calls.\n\n Let me know if you’d like details on any of them!"

}

],

"temperature": 0.7

}

12 / 26

What is ChatPharo?

• A conversational assistant integrated into the Pharo environment
that implements tool calling to have liveinformation.

• So the best way is to have live information from Pharo itself

• Provide default tools to have more information from Pharo.

13 / 26

ChatPharo UI - Temporary ChatPharo

14 / 26

ChatPharo UI - ChatPharo inside the System
Browser

15 / 26

Successful Use case

16 / 26

Key meta question

• Okay, we provide information to the LLM, and we receive
information from the LLM.

• What kind of information should we give to the LLM model to
have a valuable response?

17 / 26

exempli gratia

• Can we generate better class comments using the user classes, as
Kasper is experimenting?

• Can we give Spec examples and get generated Spec code from a
textual description?

18 / 26

Watch out!

• If you give too much information, you will get less good code
• For Spec

• a tool for layout
• a tool for the presenter

19 / 26

Key meta question cont...

• What type of tools should we create?

• What? Should I give you the model (the whole image, packages)?

• How? How should I give the model info (By executing tools)

20 / 26

Failed Use Case

21 / 26

Why

• A tool call means fresh external data were fetched.

• No tool call? The answer comes purely from the model’s
knowledge (hallucinations).

• The model can still generate code autonomously; it doesn’t have
to query external software.

22 / 26

Future works

• Reduce the hallucinations bug, providing an example (search
engine)?

• Through a feedback loop?

• Improve ask ChatPharo

23 / 26

If you have ideas of scenario

• Gherkin?

• Debugger?

• Refactoring Engine?

• Moose ? Cormas ?

• Do not hesitate to contact me.

24 / 26

Summary

• ChatPharo is a conversational assistant integrated within the
Pharo environment.

• Fetches live, real-time information from your Pharo image using
Tool Calling.

• Success depends on providing the right amount and type of
information to the LLM to ensure valuable, accurate responses.

25 / 26

Stay in touch

Try this tool on:

Github:
github/omarabedelkader/ChatPharo

Maintainer: omar.abedelkader@inria.fr

News: chatpharo@inria.fr

Special thanks: Benôıt Verhaeghe, Kasper
Østerbye,
Valentin Bourcier, Kris Gybels,
Baľsa Sarenac, Srajal Dwivedi

26 / 26

