
Mining software 
repository with Pharo

03 July 2025

Nicolas Hlad

 
with Benoit Verhaeghe & Kilian Bauvent 

ESUG2025 - Gdansk



②
③
④
⑤

2Outlines

Introduction
① What is Mining Software Repository ?

What are the specificities of Berger-Levrault 
regarding MSR ? 

How we develop GitProjectHealth?

What can you do with it ? (demo)

What is next ?



What is  
Mining Software Repository  ?

3Section ①

(MSR)



4What is Mining Software Repository  ?

Mining Software Repository

Definitions - 2

• Today's collaborative development relies on Git Social Platforms (GSP) [Dabbish et al. 2012]


• they are server implementations of Git with builtin social features 

• They contain valuable historical information over a software development     

Fig - Discussing Pull Request in GitHub Fig - Commits distribution over time (GitHub)



5What is Mining Software Repository  ?

Mining Software Repository

Definitions - 2

• Mining Software Repository (MSR) provides methods and tools to extract data 
from these platforms [Hassan 2008].


• Among other, it allows us to: 


• Studying the impact of code smells [Steffen et al. 2010, Palomba et al. 2014] 


• Exploring developers code review [Bacchelli  et al. 2013]


• Predicting classes prone to change and defect [Bacchelli et al. 2010]


• Retro-analysing a entire development process [Mockus et al. 2000] 



6What is Mining Software Repository  ?

Mining Software Repository

Existing tools 
• General Mining data 

• PyDriller — python tool for mining commit 

• Git-Miner — Pharo tool, based on CLI-GitMiner


• Specific Mining Data 

• Javapers — java lib mostly for Java file analysis in git repository (leveraging SPOON)


• ModelMine — retrieve UML model from project's artefacts 

• Data Storage 

• Pandora —focus on long terme storage of Git social platform data


• Software Heritage — Archive of Git repository from GSP


• Computing Metrics 


• LinearB — Productions and deployment metrics, data positioning with other 
companies 



What are the specificities of  
Berger-Levrault regarding MSR 

7Section ②



8What are the specificities of Berger-Levrault regarding MSR ? 

Industrial context

A quick word on Berger-levrault

• Berger-Levrault is 


• a group of international software editors


• with divers sectors of activity (eduction, health, public administration, etc)


• The group acquired divers software editors over the past 30 years.


• From different countries (France, Spain, Canada, Maroco, etc); 


• working with different technology (Java, C#, Typescript, Dart, etc);


• and different Git Social Platform (Gitlab, Bitbucket, Azure Devops, etc). 



9What are the specificities of Berger-Levrault regarding MSR ? 

Industrial context

A quick word on Berger-levrault - 2

• We use the project management system Altelissan's Jira to manage:


• tickets (Bug, features, Hotfix, etc)


• SPRINT (Agile development)


• releases (delivering dates, testing software, etc).  

Fig - Kanban view of a SPRINT in Jira



10What are the specificities of Berger-Levrault regarding MSR ? 

Industrial context

A quick word on Berger-levrault - 3

• Our Jira and Git Social Platform environment are connected 

Fig - Linking Jira Tickets to Commit and Merge activity in GitLab 



14What are the specificities of Berger-Levrault regarding MSR ? 

Industrial context

The specificities of Berger-Levrault 
Git Social Platform project management systems

How to mine from different Git Social Platforms (GSP) ?
How to implement MSR metrics efficiently ? 
How to connect GSP data to Jira efficiently ?

We use Model Driven Engineering with Pharo-Moose



How we develop our solution  
with MDE

15Section ③

The conception of Git Project Health



16GitProjectHealth - MSR with MDE in Pharo

Our MSR solution

GitProjectHealth

GitProjectHealth (GPH) is framework to extract and analyse data from Git Social 
platforms using Model-Driven Engineering (MDE).  
 
tool for General Mining data & Metrics computing 

• GitProjectHealth contributions are : 

• A unify model for all Git Social Platform  

• A framework to build custom metric from the model 

• A use of metamodel connector to extend any analysis to other platforms (e.g., Jira)  

github.com/moosetechnology/GitProjectHealth



17GitProjectHealth - MSR with MDE in Pharo

Main feature

GitProjectHealth

Key Features:  
• Data Extraction & importation:  

Extracts data from major social pla1orms.  
Imports a model of specific Git en88es. 
• Visualization and Metrics:  

Visualizes data and computes metrics. 
• Model Connection:  

Connects models (e.g., Gitlab and Jira).



18GitProjectHealth - MSR with MDE in Pharo

GitProjectHealth

Git Model

Fig - Simplify Metamodel of a Git Social Platform in GitProjectHealth 



19GitProjectHealth - MSR with MDE in Pharo

GitProjectHealth

Git Model

Fig - Simplify Metamodel of a Git Social Platform in GitProjectHealth 

1. Naming decisions
Merge Request vs Pull Request



20GitProjectHealth - MSR with MDE in Pharo

GitProjectHealth

Git Model

Fig - Simplify Metamodel of a Git Social Platform in GitProjectHealth 

2. New relations 
Commits link to a User, not author



21GitProjectHealth - MSR with MDE in Pharo

GitProjectHealth

Git Model

Fig - Simplify Metamodel of a Git Social Platform in GitProjectHealth 

3. Concepts at fine granularity 
Modeling down to the changed line of code



22GitProjectHealth - MSR with MDE in Pharo

GitProjectHealth

API and Importer

Fig — APIs and GSP importers related to our Git model

Our API are independent 
open source projects in 
Pharo. 


Anyone can access them 
via github/Evref-BL



23Petit titre

GitProjectHealth

Metamodel connection: Jira - Git Model

Git model Jira model

Moose Model

GPH-Jira  
model connector

sub-model sub-model

The connector accesses all the 
entities and relations of its two 
submodes (Git and Jira model) 



24Petit titre

GitProjectHealth

Metamodel connection: Jira - Git Model

Git model Jira model

Moose Model

GPH-Jira  
model connector

sub-model sub-model

The connector accesses all the 
entities and relations of its two 
submodes (Git and Jira model) 



GPH-Jira  
model connector

25Petit titre

GitProjectHealth

Metamodel connection: Jira - Git Model

Git model Jira model
commits

issue

message: "[AV1-5886] fix"
id: "1234567"

aGPHCommit aJiraIssue

timespent: "12 days"
key: "AV1-5886"

Connection by attribute value



Quick demo 

26Petit titre



Our usage of 
 GitProjectHealth 

27Section ③

Deploying GPH at Berger-Levrault



28Petit titre

Using GPH at Berger-Levrault

Computing MSR Metrics 

• We build a metric framework within GPH

• They are either Projet or User centric  


• For each Metric, 

• it loads entities from a time period  

( i.e., two dates) 
• it calculates the metric over a time windows  

(i.e. a Day, a Week, a Month, or a Year).

• 47 metrics are implemented so far.

Fig - UML representation of the Metrics in GitProjectHealth
Fig - Running all metrics in GitProjectHealth from a playground (simplified)



29Petit titre

Using GPH at Berger-Levrault

Metrics computed every weeks (from 2024)



Conclusion & Perspectives

30Section ⑤

and end.



31Petit titre

Conclusion

Recap



32Petit titre

Perspectives

Future Works
• Addressing limitations


• The difficulty of maintaining a global metamodel by investigating the generation of 
GSP submetamodels from their OpenAPI


• Discuss the purpose of the measures and consider which measures correlate with 
a healthy project.


• Evaluating GPH against existing tools (PyDriller, Git-Miner, etc)


• Evolution


• From GPH model to source code model navigating from repository to Famix model


• Build usable knowledge maps by detecting parts of the repository that have 
become unknown to developers.



33Petit titre

Ressources

Links

GitProjectHealth https://github.com/moosetechnology/GitProjectHealth


Pharo Gitlab API https://github.com/Evref-BL/Gitlab-Pharo-API


Pharo BitBucket API https://github.com/Evref-BL/Bitbucket-Pharo-API


Pharo Jira API https://github.com/Evref-BL/Jira-Pharo-API


Example using GitProjectHealth: 


Heatmaps https://github.com/Marpioux/Gitlab-HeatMap


 



34Citations

Ressources

Bibliography

[Steffen et al. 2010] Steffen M. Olbrich, Daniela Cruzes, and Dag I. K. Sjùberg. 2010. Are all code smells harmful? A study of God Classes and Brain 
Classes in the evolution of three open source systems. In 26th IEEE International Conference on Software Maintenance (ICSM 2010), September 
12-18, 2010, Timisoara, Romania. 1-10.


[Palomba et al. 2014] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Andrea De Lucia. 2014. Do They Really Smell 
Bad? A Study on Developers’ Perception of Bad Code Smells. In Proc. of the 30th International Conference on Software Maintenance and Evolution. 
101-110


[Bacchelli  et al. 2013] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and challenges of modern code review. In Proc. of the 
35th International Conference on Software Engineering. 712-721


[Bacchelli et al. 2010] Alberto Bacchelli, Marco D’Ambros, and Michele Lanza. 2010. Are popular classes more defect prone?. In International 
Conference on Fundamental Approaches to Software Engineering. Springer, 59-73.


[Mockus et al. 2000] Audris Mockus, Roy T Fielding, and James Herbsleb. 2000. A case study of open source software development: the Apache 
server. In Proc. of the 22nd international conference on Software engineering. Acm, 263ś272. 
[Hassan 2008] A. E. Hassan, "The road ahead for Mining Software Repositories," 2008 Frontiers of Software Maintenance, Beijing, China, 2008, pp. 
48-57, doi: 10.1109/FOSM.2008.4659248.


[Dabbish et al. 2012] Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012, February). Social coding in GitHub: transparency and collaboration in an 
open software repository. In Proceedings of the ACM 2012 conference on computer supported cooperative work (pp. 1277-1286).




Annexe

35Additional content



36Petit titre

Titre de section

Texte du titre

Open-Source Analysis (github) 
• Analyzed 30 days of activities from Eclipse, 

Microsoft, and MooseTechnology. 
• Analyzed ~4457 entities over 30 days 
• Visualizations: daily commit distributions, user 

activity 

Industrial Case at Berger-Levrault (gitlab) 
Connected Jira model with Git model to analyze 
merge request distributions across different issue 
types. 
•   27% of Merge Requests linked to bug-related 
Jira issues. 

A user’s commit activity by day, during the 
month of September 2024, on moosetechnology

Issues occurrences in September 2024 for 
WeHR



08/
26/

202
4

08/
27/

202
4

08/
31/

202
4

08/
30/

202
4

08/
29/

202
4

08/
28/

202
4

09/
01/

202
4

09/
02/

202
4

09/
03/

202
4

09/
04/

202
4

09/
05/

202
4

09/
06/

202
4

09/
07/

202
4

09/
08/

202
4

09/
09/

202
4

09/
10/

202
4

09/
11/

202
4

09/
12/

202
4

09/
13/

202
4

09/
14/

202
4

09/
15/

202
4

09/
16/

202
4

09/
17/

202
4

09/
18/

202
4

09/
19/

202
4

09/
20/

202
4

09/
21/

202
4

09/
22/

202
4

08/
25/

202
4

08/
24/

202
4

#n
um

 o
f c

om
m

its

0

5

10

15

20

Commit activity on vscode - around September 2024

dates

a user



#n
um

 o
f c

om
m

its

08/
26/

202
4

08/
27/

202
4

08/
31/

202
4

08/
30/

202
4

08/
29/

202
4

08/
28/

202
4

09/
01/

202
4

09/
02/

202
4

09/
03/

202
4

09/
04/

202
4

09/
05/

202
4

09/
06/

202
4

09/
07/

202
4

09/
08/

202
4

09/
09/

202
4

09/
10/

202
4

09/
11/

202
4

09/
12/

202
4

09/
13/

202
4

09/
14/

202
4

09/
15/

202
4

09/
16/

202
4

09/
17/

202
4

09/
18/

202
4

09/
19/

202
4

09/
20/

202
4

09/
21/

202
4

09/
22/

202
4

dates

0

4

8

12

16

Projects



39Example

Annexe

Sunburst: last activity on the code base

Fig — Sunburst representation of a developer activity in a project


