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What is  
Mining Software Repository  ?
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(MSR)
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Mining Software Repository

Definitions - 2

• Today's collaborative development relies on Git Social Platforms (GSP) [Dabbish et al. 2012]


• they are server implementations of Git with builtin social features 

• They contain valuable historical information over a software development     

Fig - Discussing Pull Request in GitHub Fig - Commits distribution over time (GitHub)
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Mining Software Repository

Definitions - 2

• Mining Software Repository (MSR) provides methods and tools to extract data 
from these platforms [Hassan 2008].


• Among other, it allows us to: 


• Studying the impact of code smells [Steffen et al. 2010, Palomba et al. 2014] 


• Exploring developers code review [Bacchelli  et al. 2013]


• Predicting classes prone to change and defect [Bacchelli et al. 2010]


• Retro-analysing a entire development process [Mockus et al. 2000] 
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Mining Software Repository

Existing tools 
• General Mining data 

• PyDriller — python tool for mining commit 

• Git-Miner — Pharo tool, based on CLI-GitMiner


• Specific Mining Data 

• Javapers — java lib mostly for Java file analysis in git repository (leveraging SPOON)


• ModelMine — retrieve UML model from project's artefacts 

• Data Storage 

• Pandora —focus on long terme storage of Git social platform data


• Software Heritage — Archive of Git repository from GSP


• Computing Metrics 


• LinearB — Productions and deployment metrics, data positioning with other 
companies 



What are the specificities of  
Berger-Levrault regarding MSR 

7Section ②
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Industrial context

A quick word on Berger-levrault

• Berger-Levrault is 


• a group of international software editors


• with divers sectors of activity (eduction, health, public administration, etc)


• The group acquired divers software editors over the past 30 years.


• From different countries (France, Spain, Canada, Maroco, etc); 


• working with different technology (Java, C#, Typescript, Dart, etc);


• and different Git Social Platform (Gitlab, Bitbucket, Azure Devops, etc). 



9What are the specificities of Berger-Levrault regarding MSR ? 

Industrial context

A quick word on Berger-levrault - 2

• We use the project management system Altelissan's Jira to manage:


• tickets (Bug, features, Hotfix, etc)


• SPRINT (Agile development)


• releases (delivering dates, testing software, etc).  

Fig - Kanban view of a SPRINT in Jira
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Industrial context

A quick word on Berger-levrault - 3

• Our Jira and Git Social Platform environment are connected 

Fig - Linking Jira Tickets to Commit and Merge activity in GitLab 
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Industrial context

The specificities of Berger-Levrault 
Git Social Platform project management systems

How to mine from different Git Social Platforms (GSP) ?
How to implement MSR metrics efficiently ? 
How to connect GSP data to Jira efficiently ?

We use Model Driven Engineering with Pharo-Moose



How we develop our solution  
with MDE
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The conception of Git Project Health
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Our MSR solution

GitProjectHealth

GitProjectHealth (GPH) is framework to extract and analyse data from Git Social 
platforms using Model-Driven Engineering (MDE).  
 
tool for General Mining data & Metrics computing 

• GitProjectHealth contributions are : 

• A unify model for all Git Social Platform  

• A framework to build custom metric from the model 

• A use of metamodel connector to extend any analysis to other platforms (e.g., Jira)  

github.com/moosetechnology/GitProjectHealth
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Main feature

GitProjectHealth

Key Features:  
• Data Extraction & importation:  

Extracts data from major social pla1orms.  
Imports a model of specific Git en88es. 
• Visualization and Metrics:  

Visualizes data and computes metrics. 
• Model Connection:  

Connects models (e.g., Gitlab and Jira).
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GitProjectHealth

Git Model

Fig - Simplify Metamodel of a Git Social Platform in GitProjectHealth 
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GitProjectHealth

Git Model

Fig - Simplify Metamodel of a Git Social Platform in GitProjectHealth 

1. Naming decisions
Merge Request vs Pull Request
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GitProjectHealth

Git Model

Fig - Simplify Metamodel of a Git Social Platform in GitProjectHealth 

2. New relations 
Commits link to a User, not author
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GitProjectHealth

Git Model

Fig - Simplify Metamodel of a Git Social Platform in GitProjectHealth 

3. Concepts at fine granularity 
Modeling down to the changed line of code
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GitProjectHealth

API and Importer

Fig — APIs and GSP importers related to our Git model

Our API are independent 
open source projects in 
Pharo. 


Anyone can access them 
via github/Evref-BL
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GitProjectHealth

Metamodel connection: Jira - Git Model

Git model Jira model

Moose Model

GPH-Jira  
model connector

sub-model sub-model

The connector accesses all the 
entities and relations of its two 
submodes (Git and Jira model) 
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GitProjectHealth

Metamodel connection: Jira - Git Model

Git model Jira model

Moose Model

GPH-Jira  
model connector

sub-model sub-model

The connector accesses all the 
entities and relations of its two 
submodes (Git and Jira model) 



GPH-Jira  
model connector
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GitProjectHealth

Metamodel connection: Jira - Git Model

Git model Jira model
commits

issue

message: "[AV1-5886] fix"
id: "1234567"

aGPHCommit aJiraIssue

timespent: "12 days"
key: "AV1-5886"

Connection by attribute value



Quick demo 
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Our usage of 
 GitProjectHealth 
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Deploying GPH at Berger-Levrault
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Using GPH at Berger-Levrault

Computing MSR Metrics 

• We build a metric framework within GPH

• They are either Projet or User centric  


• For each Metric, 

• it loads entities from a time period  

( i.e., two dates) 
• it calculates the metric over a time windows  

(i.e. a Day, a Week, a Month, or a Year).

• 47 metrics are implemented so far.

Fig - UML representation of the Metrics in GitProjectHealth
Fig - Running all metrics in GitProjectHealth from a playground (simplified)
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Using GPH at Berger-Levrault

Metrics computed every weeks (from 2024)



Conclusion & Perspectives
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and end.
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Conclusion

Recap
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Perspectives

Future Works
• Addressing limitations


• The difficulty of maintaining a global metamodel by investigating the generation of 
GSP submetamodels from their OpenAPI


• Discuss the purpose of the measures and consider which measures correlate with 
a healthy project.


• Evaluating GPH against existing tools (PyDriller, Git-Miner, etc)


• Evolution


• From GPH model to source code model navigating from repository to Famix model


• Build usable knowledge maps by detecting parts of the repository that have 
become unknown to developers.
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Ressources

Links

GitProjectHealth https://github.com/moosetechnology/GitProjectHealth


Pharo Gitlab API https://github.com/Evref-BL/Gitlab-Pharo-API


Pharo BitBucket API https://github.com/Evref-BL/Bitbucket-Pharo-API


Pharo Jira API https://github.com/Evref-BL/Jira-Pharo-API


Example using GitProjectHealth: 


Heatmaps https://github.com/Marpioux/Gitlab-HeatMap
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Titre de section

Texte du titre

Open-Source Analysis (github) 
• Analyzed 30 days of activities from Eclipse, 

Microsoft, and MooseTechnology. 
• Analyzed ~4457 entities over 30 days 
• Visualizations: daily commit distributions, user 

activity 

Industrial Case at Berger-Levrault (gitlab) 
Connected Jira model with Git model to analyze 
merge request distributions across different issue 
types. 
•   27% of Merge Requests linked to bug-related 
Jira issues. 

A user’s commit activity by day, during the 
month of September 2024, on moosetechnology

Issues occurrences in September 2024 for 
WeHR
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Annexe

Sunburst: last activity on the code base

Fig — Sunburst representation of a developer activity in a project


