
GIS in Pharo
PharoOWS & GeoView

ESUG
02/07/2025

/me

● Paul Blottiere
○ https://pblottiere.github.io/
○ Software engineer
○ Open-source contributor to GIS software for 10 years

PharoOWS

(disclaimer: not a Pharo developer)

GIS: Geographic Information System

● Collect
● Analyze
● Visualize

“Why did the GIS analyst break up with the map?”

Because it had too many issues with its coordinates.

What is PharoOWS?

● An open-source GitHub project for Pharo developers
● GIS related

Where do maps come from?

OpenStreetMap : Collaborative geographic database

https://tile.openstreetmap.org/10/565/327.png

Where do maps come from?

IGN : French National Geographic Institute

https://data.geopf.fr/wmts?layer=TRANSPORTNETWORKS.ROADS&style=normal&tilematrixset=PM&Se
rvice=WMTS&Request=GetTile&Version=1.0.0&Format=image/png&TileMatrix=9&TileCol=255&TileRow=
176

Where do maps come from?

IGN : French National Geographic Institute

https://data.geopf.fr/wms-v/ows?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&FORMAT=ima
ge%2Fpng&TRANSPARENT=TRUE&LAYERS=CADASTRALPARCELS.GRAPHE&CRS=EPSG%3A385
7&STYLES=&WIDTH=2880&HEIGHT=901&BBOX=-546760.6386312215%2C6154901.990418235%2C-
467814.24201781943%2C6179600.151303191

What is PharoOWS?

● An open-source GitHub project for Pharo developers
● GIS related
● Provides a simple API for querying map servers and parsing the data

How do a (map) server and client work together?
● (Map) Server

○ pre-calculated map: Static tile server
○ computed on the fly: Map Server

● Interoperability
○ formal protocols and de facto standards
○ needs an open standards organization for geospatial services

OGC

● Open Geospatial Consortium
○ Defines open geospatial standards
○ Enables data and service interoperability
○ OGC-compliant map servers

■ GeoServer (Java)
■ Map Server (C)
■ QGIS Server (C++)
■ …

“The nice thing about standards is that you have so many to choose from.”
— Andrew S. Tanenbaum

OGC

OGC

OWS
OGC Web Services

What is PharoOWS?

● An open-source GitHub project for Pharo developers
● GIS related
● Provides a simple API for querying map servers and parsing the data
● Supports several OGC protocols and de-facto standards

OGC Protocols and de-facto standards

● OGC protocols
○ Traditional Services

■ WMS : Web Map Service
■ WMS-T : Web Map Service with Time dimension
■ WMTS : Web Map Tile Service
■ WFS : Web Feature Service
■ WPS : Web Processing Service
■ …

○ Modern services (REST API)
■ OGC API Features
■ …

● De-facto standards
○ Widely adopted in web mapping
○ XYZ / TMS (Tile Map Service)
○ OpenStreetMap, Google (official API), …

Focus on the OGC WMS protocol

● OGC protocols :
○ Multiple requests per service
○ Numerous parameters per request
○ Vendor-specific parameters and protocols in map server implementations

● WMS
○ Requests:

■ GetCapabilities, GetMap, GetLegendGraphics, GetStyles, GetFeatureInfo, …
■ GetMap

● VERSION, LAYERS, STYLES, BBOX, WIDTH, HEIGHT, FORMAT, …

Strengths and Limitations

TMS / XYZ OGC Protocols

Simplicity Very easy to implement More complex setup

Performance Fast Slower for on-the-fly rendering protocols (e.g., WMS)

Introspection None Rich due to metadata availability

Flexibility Fixed tiles, limited styling Supports projections, filters, styling, …

Adoption Widely used in web mapping Common in GIS and public infrastructure

What is PharoOWS?

● An open-source GitHub project for Pharo developers
● GIS related
● Provides a simple API for querying map servers and parsing the data
● Supports several OGC protocols and de-facto standards
● Supports

○ TMS / XYZ
○ WMS: GetCapabilities & GetMap
○ WMTS: GetCapabilities & GetTile
○ Coming soon: more protocols, requests and parameters

● https://github.com/ThalesGroup/PharoOWS

Example : create a WMS client

● Create a WMS client targeting the IGN WMS server

Example : introspect server capabilities

● List available requests

Example : introspect server capabilities

● List available layers

Example : introspect server capabilities

● List available image formats for GetMap

Example : on-the fly rendering

● Download a raster map with two layers for a bounding box defined by
EPSG:3857 coordinates

What is PharoOWS?

● An open-source GitHub project for Pharo developers
● GIS related
● Provides a simple API for querying map servers and parsing the data
● Supports several OGC protocols and de-facto standards
● Features

○ TMS / XYZ
○ WMS: GetCapabilities & GetMap
○ WMTS: GetCapabilities & GetTile
○ Coming soon: more protocols, requests and parameters

● https://github.com/ThalesGroup/PharoOWS
● Used by GeoView

www.thalesgroup.com

GeoView
E S U G 2 0 2 5 – G d a ń s k

P i e r r e L A B O R D E
E r i c L E P O R S

2

OPEN

C O N T E X T

We are making user’s interfaces software application in Pharo, daily.

When we need to display geolocalized datas,
we are using the GeoView project.

GeoView: Display and interact with geographical objects

We make GeoView as an open-source software (MIT),
to share it with the Smalltalk community.

3

OPEN

Project composition

Pharo and Bloc+Alexandrie implementation

 « Moleculization » available (Not mandatory)

4

OPEN

Architecture
Overview

5

OPEN

Composing view: the layer stack
In each layer, objects can
be ordered (z-order)

Can be more specialized:
it depends of needs

6

OPEN

O U R C O N S T R A I N T S :

EARTH IS NOT FLAT !

We need to manage cartographic projections to transform a geographical model
(latitude, longitude) into a graphic model (pixels).

SPOILER
ALERT !

7

OPEN

Working with 3 types of referentials

• Appearence and styling
• Map Projections (Geodesic formulas)
• States mecanism (user interactions)

• Graphical Projection

8

OPEN

W H A T A B O U T U S E R E X P E R I E N C E ?

Use cases depends on the context

• datas and domains,
• work allocation time,
• level of representation,
• etc.

There are several user profiles, with or without geodesic notions, etc.

9

OPEN

3 levels of user’s API

Easy : Quick and ready to use
 « GeoObjects » classes hierarchy: Circles, Rectangles, Polylines, Positions, etc. and ready-to-use dedicated layers

 Standard map layers: Open-Street-Map, Google Maps, etc.

 Picking: ask what is it at a pixel point (i.e. a mouse click)? Geo-position, domain objects, etc.

 User events and interactions

 Change view position, scale (=zoom), bounds, map projection, etc.

 Conversions between Geo referential Graphic referential

Standard: Personalize and build your needs
 [Our team works here daily]

 Build your own process-datas to define the apparence of domain objects (Geo -> DShape)

 « DShape » classes hierarchy

Advance: Customize and extend capacities
 Manage « GShape » behavior

 All process-datas level access

 Customized layers and rendering, etc.

10

OPEN

Focus on DShapes (no exhaustive properties list)

Draw mode
 User: Geographic referential (1 pt = 1 meter)

 Device: Graphic referential (1 pt = 1 pixel)

Style
 Fill, stroke, etc.: dedicated classes (i.e. Gradient, Font, etc.) and system classes when it makes sense (i.e. Color, etc.)

 Of course it depends of shape’s type

And more…
 Image (Form)

 Tree hierarchy model (with children)

 Transformations (i.e. rotation)

 Etc.

11

OPEN

Software
Integration

12

OPEN

Y O U M A N A G E Y O U R O W N D A T A S

GeoView don’t store the business model.

Need to have an update mecanism to inform when
data are changed:

created, updated and deleted.
Don’t forget the update frequency!

GeoView send events
and provide services to read states.

13

OPEN

Futur
projections

14

OPEN

Roadmap

Actually in beta version, we stabilize our API at each iteration

Rewrite Map layers, in particularly tiles management (« POC »
state)

 Enrich with Pharo OWS to enable other map projections for tiles

Add others cartographic background support
 Coast line, Vmap, KML, Shapefile

 Good experimentations using https://github.com/zweidenker/GeoJSON and
https://github.com/pharo-GIS/Shapes

Support more complex projected shapes
 Surfaces and polygons geometric operations: intersection, union, centroid,

simplification, etc. (OGC-Pharo?)

Enrich the « Easy level » user API

15

OPEN

Reflexions

High density layers (> 1000 objects)
 Clustering, heatmap, etc.

 Server/Local processing, cache, etc.

 Multi-threading

Smooth map transitions

Graphical tool to select map server layer

Animated objects
 GIF

 Object selection rendering

3D (Woden?)

You’re welcome to participate!

Thanks
github.com/ThalesGroup/GeoView

	ESUG 2025.pdf
	ESUG25_GeoView.pdf
	GeoView
	ContexT
	Project composition
	Architecture�Overview
	Composing view: the layer stack
	Our constraints:
	Working with 3 types of referentials
	What about user experience?
	3 levels of user’s API
	Focus on DShapes (no exhaustive properties list)
	Software�Integration
	You manage your own datas
	Futur projections
	Roadmap
	Reflexions
	Diapositive numéro 16

