
ESUG 2025

Pharo13
http://www.pharo.org

• Pharo 13 remarkable achievements

• Pharo 14 under dev

Outline

• After 5 years of effort

Spec book is out!

A
p

p
lica

tio
n

 B
u

ild
in

g
 w

ith
 S

p
e
c 2

.0
 K

. D
e H

o
n
d
t an

d
 S. D

u
casse w

ith
 E. Lo

ren
z
an

o
 an

d
 S. Jo

rd
an

-M
o
n
tañ

o

Spec is the default UI building framework for Pharo. With
Spec, developers focus on user interaction and widget
layout. Spec is built around the Model View Presenter
pattern. Presenters are responsible for defining the
interaction logic of the application. They enforce the
interaction of their subelements as well as domain
objects.

With Spec, existing presenters or even complete UIs are
reused and configured to form a new user interface.
Spec is widget framework (GTK, Morphic, Toplo)
agnostic. It makes desktop applications simple to build.

This book shows the basics of Spec in Pharo 12 and how
it enables reuse of user interface elements. It focuses on
Spec 2.0 features such as new widget layouts, dynamic
widget building and more advanced features such as
transmissions or commands.

The book contains:

- Deep explanations of various Spec 2.0 facets.

- A tutorial gets you started in less than 20 minutes.

- A minimal email client revisiting all Spec 2.0 features.

Keepers of the lighthouse

Application
Building

with

Spec 2.0

S. Ducasse
K. De Hondt

E. Lorenzano
with

S. Jordan-Montaño

We will update it for P13/14

•JUST in the main Pharo repository 698 Pull Requests

•Closed 865 issues

•Contributions from more than 70 different contributors

•Other Pharo projects

•http://github.com/pharo-spec/NewTools

•http://github.com/pharo-spec/Spec

•http://github.com/pharo-vcs/Iceberg

•https://github.com/pharo-graphics/Roassal

•http://github.com/pillar-markup/Microdown

•http://github.com/pharo-project/pharo-vm

Fast-paced dedication

• All Spec Tools remember their size

• This may lead to adaptation from your side

• Forced to change the API

• Check the documentation

UX infrastructure changes

• You can navigate using camelCase: andArrows:

• With a lot of nice tests

• Faster, more productive

• Tx Guille and Gabriel

• We should ask Guille to make a little video

Better source navigation

• New Process Browser

• New Transcript

• New Finder

• New File Browser

• Preview

• New Object Transcript

• New Settings Browser

New Tools in Spec

New Process Browser

New File List Browser

New Finder

New Transcript

[Preview] Object Transcript

[Preview] Settings Browser

• New list, tables, and trees

• allow any presenter as their content

Spec SpEasyComponent*

| list |

list := { SpLabelPresenter new label: 'Test 1'; yourself.

SpImagePresenter new image: (self iconNamed:
#smallOk); yourself.

SpButtonPresenter new label: 'A button'; yourself }.

SpEasyComponentList Presenter new

presenters: list;

open

Spec SpEasyComponent*

app	:=	SpApplication	new.	
app	addStyleSheetFromString:	'.application	[
				.label	[
								.italic	[Font	{	#italic	:	true	}],	
								.bold	[Font	{	#bold	:	true	}],	
								.red	[Draw	{	#color	:	#red	}],	
								.green	[Draw	{	#color	:	#green	}],	
								.yellow	[Draw	{	#color	:	
#orange	}]	
]					
]'.	
	SpEasyListViewPresenter	new	
				application:	app;	
				rowPresenterClass:	ComposedRowPresenter;	
				items:	Smalltalk	allClassesAndTraits;	
				open.

defaultLayout		
					^	SpBoxLayout	newLeftToRight		
								spacing:	5;	
								add:	iconPresenter	expand:	false;	
								add:	labelPresenter	expand:	false;	
								add:	countPresenter;	
								add:	actionsPresenter	expand:	false;	
								yourself	

initializePresenters	
				iconPresenter	:=	self	newImage.	
				labelPresenter	:=	self	newLink.	
				countPresenter	:=	self	newLabel	
								addStyle:	‘dim';		yourself.	
				actionsPresenter	:=	self	newPresenter		
								layout:	SpBoxLayout	newLeftToRight;	
								yourself.	

updatePresenter	
				|	actions	|	
					self	model	ifNil:	[^	self].	
				iconPresenter	image:	(self	iconNamed:	self	model	
systemIconName).	
				labelPresenter	label:	self	model	name.	
				countPresenter	label:	'(',	self	model	numberOfMethods	
asString,	')'.	
				self	model	numberOfMethods	>	5	ifTrue:	
[countPresenter	addStyle:	'green'].	
				self	model	numberOfMethods	>	8	ifTrue:	
[countPresenter	addStyle:	'yellow'].	
				self	model	numberOfMethods	>	15		ifTrue:	
[countPresenter	addStyle:	'red'].	
				actionsPresenter	layout	removeAll.	
				actions	:=	self	fakeActions.	
				3	atRandom	timesRepeat:	[
								|	action	|	
								action	:=		actions	atRandom.	
								actionsPresenter	layout	add:	(self	perform:	
action).	
								actions	:=	actions	copyWithout:	action]

• On retina

• Tx a lot Kris

Nice looking fonts

Polished Zoomable UI

• Place your tools

• Snapshot

• Edit tool behavior

• When you open new tools they get placed automatically

Organic window manager

• Place your tools

• Snapshot

• Edit tool behavior

• When you open new tools they get placed automatically

Organic window manager

• Place your tools

• Snapshot

• Edit tool behavior

• When you open new tools they get placed automatically

Organic window manager

• Place your tools

• Snapshot

• Edit tool behavior

• When you open new tools they get placed automatically

• Faster

• More robust implementation

• Do not rely on AST cache anymore

• Introduces other helpers… check the Halt API

Halt if: / Halt once

• To understand the point

• You remove a class

• But it has references

• But it has instance variables

• But it has methods

• During the interaction the driver proposes various choices to you

More UX for refactorings

• Can drive

• different refactorings

• different transformations

• This requires a fine grained precondition protocol

One refactoring driver

• When coding in the debugger

• Everybody wants something else for protocol

• So now

• by default the same protocol than in superclass

• or not classified (no pop up plague)

• Or you define where you want

Debugger UX

• Can drive

• different refactorings

• different transformations

• This requires a fine grained prediction protocol

Debugger UX

An iteration on debugPoints

No need to manually remove the halts when you want to run all
your tests

• you set up your halts

• when you want to run all the tests

• you just disable your halts in one click

• run the tests/commit

• then you reenable your lovely halts

DebugPoints during TDD

Many of the little annoyances that once they are fixed you
believe that they were there day one.

• We cleaned again a lot of little issues

• We improved UX

• like remember the last searched value in the find/replace

Many many cleanings

• Async IO using epoll on unixes

• Faster byte array / string comparisons

• Improve Windows support for non ASCII filenames

• FreeBSD support

• Update SDL2 version in OSX (Intel & Apple)

• Minimal MacOS version required raised to MacOS 11 and above

VM side of things

Toplo is coming
Yes it takes time to make it good
But we are getting there and it is great!

• New widget library on TOP of bLOck

• Sponsored by Thales (with deployed products in 2023)

• Default skins are based on https://ant.design/

• Spec back-end is making progress

• Currently

• All widgets except Table

• Skin *second iteration*

Toplo

Combo box with groups

Select with icons

Floating buttons

Accordeons / Trees

Trees

Goals for P14

• Bloc/Toplo integration

• Spec Toplo-backend

• This implies to cut off our dependencies to Morphic

• Better file support for Windows

• Working on new compiler (named Armor) to support first-class
modules

• new static description for debugging API

• Better refactoring effort continued

Works under way

• Calypso on Steroids

• New Message Browser

• New version of Cavrois with cells

• Revisiting completion

• Package level completion

• Package Dependency

• History (soon)

Works under way

• Better Slang

• Fundamental work in the code zone design

• More work on Dropal (Pharo compiler with design of a real
compiler - ssa, basic blocks, …)

• Evaluation of static method call

• Support for writing primitives from within Pharo (like in Bee)

Works under way - the VM side

Looking for an engineer
Talk to our Guishe guillermo.polito@inria.fr

This is more than 10 years I dreamed about
another UI stack and we are there with a
gorgeous one

The future is promising

