

International Smalltalk Conference 2006

Editor Dr. Wolfgang Demeuter

DRAFT of Proceedings

This document contains the versions submitted to the conference and that have been
selected for the conference to be held in Prague from the 2 Sept – 8 Sept 2006. This is
not the final version of the articles. PLEASE DO NOT DISTRIBUTE.

(DRAFT) International Smalltalk Conference - Prague 2006

(DRAFT) International Smalltalk Conference - Prague 2006

International Smalltalk conference 2006 program committee

Wolfgang De Meuter (PC Chair), Vrije Universiteit Brussel, Belgium
Dave Simmons, Smallscript Corporation, USA
Noury Bouraqadi, Ecole des Mines de Douai, France
Nathanael Schaerli, Google R&D, Zurich, Switzerland
Andrew Black, Portland State University, USA
Serge Stinckwich, Université de Caen, France
Joseph Pelrine, MetaProg GmbH, Switzerland
Alan Knight, Cincom, USA
Thomas Kuehne, Technische Universität Darmstadt, Germany,
Christophe Roche, Université de Savoie, France,
Maja D'Hondt, Université des Sciences et Technologies de Lille, France,
Maximo Prieto, Universidad Nacional de La Plata, Argentina
Brian Foote University of Illinois at Urbana-Champaign, USA
Dave Thomas, Bedarra Research Labs, USA
Gilad Bracha, SUN Java Software, USA
Serge Demeyer, Universiteit Antwerpen, Belgium
Pierre Cointe, Ecole de Mines de Nantes, France
Michel Tillman, Real Software, Belgium,
Tudor Girba, Universität Bern, Switzerland

(DRAFT) International Smalltalk Conference - Prague 2006

Table of Contents

Aspects, Contexts and Reflection

Application-Specific Models and Pointcuts using a Logic Meta Language
by Johan Brichau, Andy Kellens, Kris Gybels, Kim Mens, Robert
Hirschfeld, Theo D'Hondt

An Object-Oriented Approach for Context-Aware Applications by
Andrés Fortier, Nicol‡s Ca–ibano, Juli‡n Grigera, Gustavo Rossi, Silvia
Gordillo

Unanticipated Partial Behavioral Reflection by David Rothlisberger,
Marcus Denker, Eric Tanter

Languages

Stateful Traits by Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz,
Roel Wuyts

SCL: a Simple, Uniform and Operational Language for Component-
Oriented Programming in Smalltalk by Luc Fabresse, Cristophe Dony,
Marianne Huchard

Tools
Let's Modularize the Data Model Specifications of the ObjectLens in
VisualWorks Smalltalk by Michael Prasse

Meta-driven Browsers by Alexandre Bergel, Stephane Ducasse, Colin
Putney, Roel Wuyts

(DRAFT) International Smalltalk Conference - Prague 2006

(DRAFT) International Smalltalk Conference - Prague 2006

Session – Aspects, Contexts and Reflection

(DRAFT) International Smalltalk Conference - Prague 2006

(DRAFT) International Smalltalk Conference - Prague 2006

Application-Specific Models and Pointcuts

using a Logic Meta Language

Johan Brichau a,1 Andy Kellens b,2 Kris Gybels b Kim Mens d

Robert Hirschfeld c Theo D’Hondt b

aUniversité des Sciences et Technologies de Lille, France
bVrije Universiteit Brussel, Belgium

cHasso-Plattner-Institut, Potsdam, Germany
dUniversité Catholique de Louvain, Belgium

Abstract

In contemporary aspect-oriented languages, pointcuts are usually specified directly
in terms of the structure of the source code. The definition of such low-level point-
cuts requires aspect developers to have a profound understanding of the entire ap-
plication’s implementation and often leads to complex, fragile, and hard to maintain
pointcut definitions. To resolve these issues, we present an aspect-oriented program-
ming system that features a logic-based pointcut language that is open such that
it can be extended with application-specific pointcut predicates. These predicates
define an application-specific model that serves as a contract that base-program
developers provide and aspect developers can depend upon. As a result, pointcuts
can be specified in terms of a more high-level model of the application that con-
fines all intricate implementation details that are otherwise exposed in the pointcut
definitions themselves.

Key words: aspect-oriented programming, logic metaprogramming, pointcut
languages

Email addresses: johan.brichau@lifl.fr (Johan Brichau),
andy.kellens@vub.ac.be (Andy Kellens), kris.gybels@vub.ac.be (Kris
Gybels), kim.mens@uclouvain.be (Kim Mens),
hirschfeld@hpi.uni-potsdam.de (Robert Hirschfeld), tjdhondt@vub.ac.be
(Theo D’Hondt).
1 This work was partially supported by the European Network of Excellence AOSD-
Europe
2 Ph.D. scholarship funded by the “Institute for the Promotion of Innovation
through Science and Technology in Flanders” (IWT Vlaanderen).

Preprint submitted to Elsevier Science 8 June 2006

(DRAFT) International Smalltalk Conference - Prague 2006

1 Introduction

Aspect-oriented Software Development (AOSD) is a recent, yet established
development paradigm that enhances existing development paradigms with
advanced encapsulation and modularisation capabilities [1,2]. In particular,
aspect-oriented programming languages provide a new kind of abstraction,
called an aspect, that allows a developer to modularise the implementation
of crosscutting concerns such as synchronisation, transaction management,
exception handling, etc. Such concerns are traditionally spread across various
modules in the implementation, causing tangled and scattered code [3]. The
improved modularity and separation of concerns [4], that can be achieved
using aspects, intends not only to aid initial development, but also to allow
developers to better manage software complexity, evolution and reuse.

One of the most essential characteristics of an aspect-oriented programming
language is that aspects are not explicitly invoked but instead, are implicitly
invoked [5]. This has also been referred to as the ‘obliviousness’ property of
aspect orientation [6]. It means that the base program (i.e., the program with-
out the aspects) does not explicitly invoke the aspects because the aspects
themselves specify when and where they need to be invoked by means of a
pointcut definition. A pointcut essentially specifies a set of join points, which
are specific points in the base program where the aspect will be invoked implic-
itly. Such a pointcut definition typically relies on structural and behavioural
properties of the base program to express the intended join points. For ex-
ample, if an aspect must be triggered at the instantiation of each new object
of a particular class, its pointcut must capture those join points whose prop-
erties correspond with the execution of the constructor method. As a result,
each time the constructor method is executed (i.e. an instance is created), the
aspect is invoked.

Unfortunately, in many cases, defining and maintaining an appropriate point-
cut is a rather complex activity. First of all, an aspect developer must carefully
analyse and understand the structure of the entire application and the proper-
ties shared by all intended join points in particular. Some of these properties
can be directly tied to abstractions that are available in the programming
language but other properties are based on programming conventions such
as naming schemes. ‘Object instantiation’ join points, for example, can be
identified as the execution of constructor methods in languages such as Java.
Accessing methods, however, can be identified only if the developers adhere
to a particular naming scheme, such as through put- and get- prefixes in
the method names. In contrast, a language such as C# again facilitates the
identification of such accessor method join points because they are part of the
language structure through the C# ‘properties’ language feature. In essence,
we can say that the more structure is available in the implementation, the more

2

(DRAFT) International Smalltalk Conference - Prague 2006

properties are available for the definition of pointcuts, effectively facilitating
their definition. However, structure that originates from programming conven-
tions rather than language structure is usually not explicitly tied to a property
that is available for use in a pointcut definition. This is especially problem-
atic in languages with very few structural elements such as Smalltalk where
application development typically relies heavily on the use of programming
conventions for the implementation of particular concepts such as accessors,
constructors and many more application-specific concepts. As a result, aspect
developers are forced to explicitly encode these conventions in pointcut ex-
pressions, often resulting in complex, fragile, and hard to maintain pointcut
expressions.

The aspect-oriented programming language that is presented in this paper
features an open, logic-based pointcut mechanism that allows to tie structural
implementation conventions to explicit properties available for use in pointcut
definitions. Our approach builds upon previous work on logic-based pointcut
languages where we have described how the essential language features of a
logic language render it into an adequate pointcut definition language [7]. In
this paper, we further exploit the full power of the logic programming language
for the definition of application-specific properties. In particular, we present an
integration of the AspectS [8] and CARMA [9] aspect languages for Smalltalk.
The result is an aspect-oriented programming language in which pointcuts can
be defined in terms of an application-specific model that is asserted over the
program. The application-specific model captures the structural conventions
that are adhered to by the developers of the program and reifies them as
explicit properties available for use in pointcut expressions. The model as well
as the pointcuts are implemented using logic metaprograms in SOUL.

2 AspectSOUL

AspectSOUL is an integration of the CARMA pointcut language [9] and As-
pectS [8], a Smalltalk extension for aspect-oriented programming. Unlike most
other approaches to aspect-oriented programming, AspectS does not extend
the Smalltalk programming language with new language constructs for writ-
ing down aspects and advice expressions. Instead, AspectS is a framework
approach to AOP. Pointcuts are written as Smalltalk expressions that return
a collection of joinpoint descriptors. CARMA on the other hand, is a dedicated
pointcut language based on logic programming. Naturally, such a dedicated
query language offers advantages for writing pointcuts, as pointcuts are es-
sentially queries over a joinpoint database. The integration of this logic-based
pointcut language with AspectS further enforces the framework nature of As-
pectS by providing a fully-fledged query-based pointcut language that can
be extended with application-specific pointcut predicates. In essence, we com-

3

(DRAFT) International Smalltalk Conference - Prague 2006

bine the advantages of an extensible framework for defining advice expressions
with the advantages of a dedicated and extensible pointcut language. In the
remainder of this section, we introduce AspectS, CARMA, and their integra-
tion called AspectSOUL. In subsequent sections, we focus on how the open,
logic-based pointcut language provides developers with an adequate means to
take care of complex and hard-to-maintain pointcut expressions.

2.1 AspectS

In the AspectS framework, aspects are implemented as subclasses of the class
AsAspect. Its advices can be implemented as methods whose name begins with
advice and which return an instance of AsAdvice. Two of the subclasses of
AsAdvice can be used to implement an around advice or a before/after advice.
An instance can be created by calling a method which takes as its arguments
qualifiers, a block implementing the pointcut, and blocks to implement the
before, after or around effects of the advice.

An example advice method is shown in Figure 1. It specifies that any invoca-
tion of an eventDoubleClick: method implemented by WindowSensor or any
of its subclasses should be logged. The effect of the advice is implemented in
the block passed to the beforeBlock: parameter. When one of the methods
specified by the pointcut needs to be executed, this block is executed right be-
fore the execution of the method’s body. The block is passed a few arguments:
the receiver object in which the method is executed, the arguments passed to
the method, the aspect and the client. In this example, the block simply logs
some of its arguments to the transcript. Note that it calls a method on self,
aspect classes can implement regular methods besides advice methods as well.
The pointcut is implemented by the block passed to the pointcut: argument.
It returns a collection of AsJoinpointDescriptor instances. This collection
is computed using the Smalltalk meta-object protocol and collection enumer-
ation messages: the collection of WindowSensor and all of its subclasses is
filtered to only those that implement a method named eventDoubleClick:,
an AsJoinpointDescriptor is then collected for each of these.

Advice qualifiers specify dynamic conditions that should hold if the advice is
to be executed. These conditions are implemented as activation blocks: blocks
that take as arguments an aspect object and a stack frame. The framework
defines a number of activation blocks, that fall in two categories: checks done
on the top of the stack, or on lower levels of the stack. The former are used
for example to restrict advice execution to sender/receiver-specific activation:
an advice on a method is only executed if the method is executed in a specific
receiver object, or was invoked by a specific sender object, or is associated
with a specific thread of control. The latter are used for control-flow related

4

(DRAFT) International Smalltalk Conference - Prague 2006

adviceEventDoubleClick

^ AsBeforeAfterAdvice

qualifier: (AsAdviceQualifier attributes: #(receiverInstanceSpecific))

pointcut: [

WindowSensor withAllSubclasses

select: [:each |

each includesSelector: #eventDoubleClick:]

thenCollect: [:each |

AsJoinPointDescriptor targetClass: each targetSelector: #eventDoubleClick:]]

beforeBlock: [:receiver :arguments :aspect :client |

self showHeader: ’>>> EventDoubleClick >>>’

receiver: receiver

event: arguments first]

Fig. 1. Example advice definition in AspectS.

restrictions, such as only executing an advice on a method if the same method
is not currently on the stack. The activation blocks have names, which are
specified in the attributes of an AsAdviceQualifier. In the example advice,
one activator block is specified: receiverInstanceSpecific.

Aspects can be woven into the Smalltalk image by sending an explicit install
message to an aspect instance. The install method collects all advice objects
in the class and executes their pointcut blocks to get the collection of joinpoint
descriptors. The methods designated by these descriptors are then decorated
by wrappers [10], one for each advice affecting this particular method. The
wrappers checks the activation blocks specified in their advice, passing them
the aspect and the top stack frame (accessed using the thisContext reflec-
tive feature of Smalltalk [11]). If an activation condition does not hold, the
wrapper simply executes the next wrapper (if any), or the original method.
If all activation conditions hold, the wrapper executes the advice’s around,
before, and/or after block, and then proceeds to the next wrapper (if any) in
the proper order, or the original method.

2.2 CARMA

CARMA is a pointcut language based on logic meta programming for reason-
ing about dynamic joinpoints. Unlike pointcuts in AspectS, CARMA point-
cuts do not express conditions on methods, its joinpoints are representations
of dynamic events in the execution of a Smalltalk program. CARMA defines
a number of logic predicates for expressing conditions on these joinpoints,
and pointcuts are written as logic queries using these predicates. It is possi-
ble to express conditions on dynamic values associated with the joinpoints.
Furthermore, logic predicates are provided for querying the static structure of
the Smalltalk program. These predicates are taken from the LiCoR library of
logic predicates for logic meta programming [12], the underlying language of
this library and CARMA is the SOUL logic language [12].

5

(DRAFT) International Smalltalk Conference - Prague 2006

reification
class, methodInClass,
superclassOf,
parseTreeOfMethod

basic reasoning
classWithInstvarOfType,
abstractMethod

design
visitor, factory,
badSmell

joinpoint type-based
reception, send,
reference,
blockExecution

lexical extent
within,
shadowOf

SOUL

CARMA
LiCoR

Fig. 2. Organization of, and example predicates in LiCoR and CARMA.

The SOUL logic language is based on Prolog [13], but has a few differences.
Some of these are just syntactical, such as that variables are notated with ques-
tion marks rather than capital letters, the “:-” symbol is written as if, and
lists are written between angular (<>) instead of square brackets ([]). More
importantly, SOUL is in linguistic symbiosis with the underlying Smalltalk
language, allowing Smalltalk objects to be bound to logic variables and the
execution of Smalltalk expressions as part of the logic program [14]. The sym-
biosis mechanism is what allows CARMA to express conditions on dynamic
values associated with joinpoints which are actual Smalltalk objects, such as
the arguments of a message.

The advantage of building a pointcut language on the logic programming
paradigm lies in the declarative nature of this paradigm. No explicit control
structures for looping over a set of classes or methods are necessary in point-
cuts, as this is hidden in the logic language [15]. A pointcut simply states
the conditions that a joinpoint should meet in order to activate an advice,
without specifying how those joinpoints are computed. This makes declara-
tive pointcuts, given some basic knowledge of logic programming of course,
easier to read. A logic language also provides some advanced features such as
unification that make it easier to write advanced pointcuts. A full discussion is
outside the scope of this paper, but a more comprehensive analysis was given
in earlier work [9]. In the next sections, we will however show how some of
these features – particularly the ability to write multiple rules for the same
predicate – are useful for writing model-based pointcuts.

The predicates in CARMA and LiCoR are organized into categories, as shown
in Figure 2. The LiCoR predicates are organized hierarchically, with higher
predicates defined in terms of the lower ones. The predicates in the “reifica-
tion” category provide the fundamental access to the structure of the Smalltalk
program: these predicates can be used to query the classes and methods in
the program, and the fundamental relations between them such as which class

6

(DRAFT) International Smalltalk Conference - Prague 2006

is a superclass of which other class. The “basic reasoning” predicates define
predicates that can be used to query more complex relations: which classes
indirectly inherit from another class, which methods are abstract, which types
an instance variable can possibly have etc. The “design” category contains
predicates about design information in programs: there are for example pred-
icates encoding design patterns [16] and refactoring “bad smells”[17].

The CARMA predicates access the dynamic structure of a Smalltalk program.
There are two categories of predicates in CARMA, neither is defined in terms
of each other, nor in terms of the LiCoR predicates. But the purpose of the
“lexical extent” predicates is to link the dynamic and static structure, so that
reasoning about both can be mixed in a pointcut. The within predicate for
example can be used to express that a joinpoint is the result of executing
an expression in a certain method. The “type-based” joinpoint predicates are
the basic predicates of CARMA, they express conditions on certain types of
joinpoints and basic data associated with those. An example is the reception
predicate which is used to express that a joinpoint should be of the type “mes-
sage reception”, which means it represents the execution of a message to an
object. Besides the joinpoint, the predicate has parameters for the basic asso-
ciated data: the selector of the message and its arguments. There are also a few
other predicates in CARMA (not shown in the figure), such as the inObject

predicate which links a joinpoint to the object in which it is executed. In the
case of a reception joinpoint, this is the receiver of the message.

A pointcut in CARMA is written as a logic query that results in joinpoints.
By convention, the variable to which these are bound is called “?jp”. The
joinpoint representations should only be manipulated through the predicates
provided by CARMA. An example pointcut is given in the next section.

2.3 CARMA Pointcuts in AspectS

AspectSOUL, the integration of CARMA with AspectS, is realized by sub-
classing the advice classes of AspectS so that a CARMA pointcut can be
specified instead of a Smalltalk expression. The signature of the instance cre-
ation message for these subclasses is similar to the original. It takes as argu-
ments a string with a CARMA pointcut, qualifiers and an around or before
and/or after block. The message does a mapping to the instance creation
message of the superclass. This is not a direct 1-on-1 mapping however, be-
cause CARMA pointcuts are about dynamic joinpoints, in contrast with the
more static joinpoints of AspectS. Also, because AspectS does not support
aspects that intercept block execution nor variable accessing or assignation,
these features of CARMA are not adopted in AspectSOUL.

7

(DRAFT) International Smalltalk Conference - Prague 2006

adviceEventDoubleClick

^ AsCARMAAroundAdvice

qualifier: (AsAdviceQualifier attributes: #())

pointcutQuery: ’reception(?jp, #eventDoubleClick:, ?args),

within(?jp, ?class, ?selector),

classInHierarchyOf(?class, [WindowSensor])’

aroundBlock: [:receiver :arguments :aspect :client :clientMethod |

self showHeader: ’>>> EventDoubleClick >>>’

receiver: receiver

event: arguments first.

clientMethod valueWithReceiver: receiver arguments: arguments]

Fig. 3. Example AspectS advice definition with a CARMA pointcut.

reception(?jp, #eventDoubleClick:, <?event>),

objectTestHolds(?event, #isYellow)

Fig. 4. A CARMA pointcut with a condition on a dynamic value.

An example of an AspectS advice with a CARMA pointcut is shown in Fig-
ure 3. This is an around variant of the first example advice, with a pointcut
that has the same effect. The first condition in the pointcut specifies that ?jp
must be a message reception joinpoint, where the selector of the message is
eventDoubleClick:. The arguments of the message are bound to the vari-
able ?args. However, ?args in not used any further in the pointcut what
expresses that no conditions are put on the argument list. The second condi-
tion expresses that the joinpoint must occur lexically in a method with name
?selector in the class ?class. For a message reception joinpoint, this is
effectively the method that is executed to handle the message. The final con-
dition expresses that the class ?class should be in the hierarchy of the class
WindowSensor. The block has the same effect as in the first example, except
that here it explicitly calls the next wrapper (if any) or original method.

Figure 4 gives an example of a CARMA pointcut which does express conditions
on the arguments of a message reception. The first condition expresses that ?jp
must be a message reception joinpoint of the message eventDoubleClick:,
where the argument list unifies with the list <?event>. Thus the argument
list has to have one argument, which is bound to the variable ?event. The
value of ?event is the actual Smalltalk event object that is sent as the argu-
ment of eventDoubleClick. The second condition uses the objectTestHolds
predicate, which uses the symbiosis mechanism of SOUL to express that the
object in ?event must respond true to the message isYellow. Thus, this
pointcut captures joinpoints when a message about a double click event of the
yellow mouse button is sent to some object. Expressing the same in AspectS
can only be done by defining an appropriate qualifier, or by including the
dynamic condition in the around block of the advice. The CARMA approach
means that what conceptually should go into a pointcut can be better sepa-
rated from the effect of the advice: that we only want to intercept double click
events of the yellow mouse button is part of the “when” of the advice, not
of the “what effect” it has. All of the qualifiers of AspectS can be expressed
in CARMA, except for the control-flow qualifiers because CARMA does not

8

(DRAFT) International Smalltalk Conference - Prague 2006

currently support a construct similar to the cflow pointcut of AspectJ [18].

Two-phased weaving: The mapping done in the AspectSOUL advice sub-
classes to the original advice classes of AspectS involves the two-phase weaving
model of CARMA. Because CARMA allows dynamic conditions and it is a
Turing-complete language, it requires some advanced techniques to optimize
weaving [9]. The mapping uses abstract interpretation [19] of the pointcuts to
determine the methods which may lead to joinpoints matching the pointcut.
For the pointcut of Figure 4, it determines that only executions of meth-
ods named eventDoubleClick: may match the pointcut. For these methods,
AsJoinpointDescriptors are generated and passed to the advice superclass.
The effect block passed to the superclass is wrapped so that it at run-time
executes the pointcut to check if the joinpoint actually matches it, only then
does it execute the effect of the advice. As such, the mapping splits the static
and dynamic parts of the pointcut as one would normally do in AspectS by
specifying dynamic conditions as part of the advice’s effect block. Currently,
the pointcut is fully re-executed at run-time, including the static conditions,
except if it doesn’t include any dynamic conditions. The use of more advanced
partial evaluation [19] to further optimize weaving has been demonstrated [20],
but a full discussion of two-phase weaving and the use of partial evaluation is
beyond the scope of this paper.

In the following sections, we discuss how pointcut definitions easily become
rather complex to implement and maintain and how AspectSOUL provides
developers with the means to manage this complexity.

3 Pointcuts based on Structural Conventions

In the development of an application, developers often agree on particular
programming conventions, design rules and patterns to structure their imple-
mentation. The intention of these structural implementation conventions is to
render particular concepts more explicit in the implementation. For example,
if all developers adhere to the same naming convention for all ‘accessor’ meth-
ods, we can more easily distinguish such accessors from any other method.
More importantly, the implementation structure that is introduced by these
conventions is also often exploited in pointcut definitions. In this section, we
demonstrate this principle by studying the structural convention used to im-
plement accessor and mutator methods, a simple but often-used pattern in
Smalltalk. Next, we take a look at a couple of pointcuts which rely on these
conventions to capture the execution of accessor methods. We demonstrate
how, by implicitly capturing the notion of an accessor method using the cod-
ing conventions, the pointcut becomes more complex and easily suffers from
the fragile pointcut problem.

9

(DRAFT) International Smalltalk Conference - Prague 2006

3.1 Accessors and Mutators

In Smalltalk, clients are not allowed to directly access the instance variables
of an object, but must rather access them by means of dedicated methods.
For each instance variable, a developer specifies an accessor method to re-
trieve the value of the variable, and a mutator method to change its value.
Although these are regular Smalltalk methods, accessors and mutators are
easily recognized since they are almost always implemented in an idiomatic
way.

Most accessor and mutator methods are implemented according to the follow-
ing structural convention:

• Both methods are classified in the accessing protocol;
• The selector of the accessor method corresponds with the name of the in-

stance variable;
• The selector of the mutator method also corresponds with the name of the

variable, however, this method takes one input parameter, namely the value
to be assigned to the variable.

Moreover, the body of the accessor and mutator methods also follows a pro-
totypical implementation. For example, suppose we have a Person class with
an instance variable named name. The accessor and mutator methods for this
variable are:

Person>>name

^name

Person>>name: anObject

name := anObject

Since the join point models of current-day aspect languages do not explicitly
reify these accessor and mutator methods as a separate kind of join points,
aspect developers must exploit the structural conventions described above in
order to capture the concept in a pointcut. For example, to capture all calls to
accessor methods, the aspect developer can implement the following pointcut
in AspectSOUL:

1 class(?class),

2 methodWithNameInClass(?method,?accessor,?class),

3 instanceVariableInClassChain(?accessor,?class),

4 methodInProtocol(?method, accessing),

5 reception(?joinpoint,?accessor,?args),

6 withinClass(?joinpoint,?class)

The above pointcut makes the implicit assumption that accessor methods are
rigorously implemented using the naming scheme in which the name of the
method corresponds with the name of the instance variable. Lines 1 to 4 of the
pointcut reflect the naming convention on which the pointcut is based. These

10

(DRAFT) International Smalltalk Conference - Prague 2006

lines select all messages corresponding to the name of an instance variable,
and whose method is also classified in the accessing protocol. Lines 5 and 6
will intercept all messages which correspond to the naming convention.

As long as the developers of the base code adhere to the naming convention
on which the pointcut relies, it will correctly capture all accessors. However,
if a developer of the base program deviates from the naming convention, by
for instance renaming the instance variable without also renaming the selector
of the accessor, the pointcut no longer captures the correct set of join points.
Instead of relying on naming conventions, a pointcut developer can also exploit
the stereotypical implementation of accessor methods. This would result in the
following pointcut:

1 class(?class),

2 methodWithNameInClass(?method,?selector,?class),

3 instanceVariableInClassChain(?var,?class),

4 returnStatement(?method,variable(?var)),

5 reception(?joinpoint,?selector,?args),

6 withinClass(?joinpoint,?class)

Lines 1 – 4 of the pointcut above select all methods which consist of a single
statement that returns the value of an instance variable. As with the previ-
ous pointcut, lines 5 and 6 capture all occurrences of these methods. While
this pointcut is not fragile with respect to changes in the names of instance
variables, it still assumes that the base code developer rigorously followed
the implementation idiom. However, often there exist slight variations on the
programming idioms on which a pointcut is based. Consider for instance the
following accessor method:

Person>>friends

^ friends isNil ifTrue:[friends := OrderedCollection new] ifFalse:[friends].

This method presents a variation on the often-used programming idiom for
accessor methods. Instead of directly returning the value of the instance vari-
able, the method checks wether the variable has already been initialized, and
if not, will set its value to an empty OrderedCollection. It is clear that this
lazy-initialised version of accessor methods will not be captured by the point-
cut which assumes that the accessor is implemented by a single statement
returning the value of the variable.

3.2 Complexity and Fragility

Although the example pointcuts described above rely on a rather simple struc-
tural implementation convention, their definition and maintenance is already a
rather complex activity. First of all, an aspect developer needs to know and un-
derstand the intricate implementation details of the structural convention and
implement a pointcut expression for it. The lazy-initialized accessor methods

11

(DRAFT) International Smalltalk Conference - Prague 2006

in the example above illustrate that there often exist a number of variations
to the programming conventions used to implement a certain concept. There-
fore, any pointcut that needs to capture the execution of an accessor method
needs to capture all possible variations, which easily leads to complex and
lengthy pointcut expressions. This is especially the case because the part of
the pointcut which reasons about the join points and the part which expresses
the structural convention are not clearly separated. In our example above, the
first four lines of both pointcuts express the coding convention, while the last
two lines perform the actual selection of join points which are associated with
the accessor methods. It is not instantly clear which part of the pointcut re-
flects the coding convention, further complicating the reuse and maintenance
of the pointcut expression.

Finally, the aspect developer must also carefully analyse the changes and ad-
ditions to the base program in subsequent evolutions, which are possibly made
by other developers. In essence, the definition of a pointcut that explicitly re-
lies on structural conventions to capture an application-specific concept easily
suffers from the fragile pointcut problem [21]. Due to the tight coupling be-
tween the pointcut and the implementation, seemingly safe modifications to
the implementation may result in the pointcut no longer capturing the cor-
rect set of join points. For example, if the base program developers do not
adhere to the coding conventions, or change the convention by for instance
using the prefixes put- and get- to indicate a mutator or an accessor method
respectively, the pointcut no longer captures the correct set of join points.

4 Application-specific Pointcuts and Models

We alleviate the problems associated with low-level pointcut definitions through
the definition of application-specific pointcuts that are expressed in terms of
an application-specific model. Such an application-specific model is imple-
mented as an extension to the pointcut mechanism and it identifies high-level,
application-specific properties in the implementation and makes them avail-
able for use in pointcuts. Aspect developers can make use of these properties
to define application-specific pointcuts, i.e. pointcuts that are no longer de-
fined in terms of the low-level implementation details but, instead, are defined
in terms of application-specific properties defined by the model. As a result,
the intricate low-level details in the implementation remain confined to the
implementation of the application-specific model, which is also the responsibil-
ity of the base program developers. The application-specific model effectively
becomes an additional abstraction layer that is imposed over the implemen-
tation and it acts as a contract between the base program developers and the
aspect developers.

12

(DRAFT) International Smalltalk Conference - Prague 2006

Model-based pointcut
(defined in terms of
application-specific

model)

Source code based
pointcut

(defined directly in terms
of source code)

Operations
Operations

Attributes
Attributes

Class
Name

Operations
Operations

Attributes
Attributes

Class
Name

Operations
Operations

Attributes
Attributes

Class
Name

Operations
Operations

Attributes
Attributes

Class
Name

Operations
Operations

Attributes
Attributes

Class
Name

Operations
Operations

Attributes
Attributes

Class
Name

*

1

*

1
1

Source code

Application-specific model

Base program developer Aspect developer

Legend

specified in terms of

 application-specific property

Fig. 5. Application-specific pointcuts are defined in terms of an application-specific
model.

Figure 5 illustrates how application-specific pointcuts, implemented by the as-
pect developers, depend on the definition of the application-specific model that
is certified by the base program developers. The application-specific pointcuts
are defined in terms of the application-specific model which, in turn, is de-
fined in terms of the implementation. This decoupling of the pointcuts from
the intricate details of the implementation allows that base program devel-
opers define and maintain the application-specific model. In other words, the
tight coupling to the implementation that is present in the source-code based
pointcuts is effectively transferred to a more appropriate location, i.e. the
definition of the application-specific model.

Both the application-specific pointcuts and the application-specific model are
implemented using SOUL logic metaprograms. In essence, the application-
specific model defines a set of logic predicates that reify application-specific
properties of the implementation, based on the conventions that are adhered
to by the developers. Because the application-specific model is built as an
extension to the pointcut mechanism, aspect developers can straightforwardly
use these predicates in the definition of application-specific pointcuts to access
the application-specific properties. Furthermore, the essential features of a
logic language also facilitate the use and extension of the application-specific
model.

In the following subsection, we define application-specific models for the ac-
cessors convention that was described in the previous section. Subsequently,
we use these models to redefine the pointcuts of the previous section into
application-specific pointcuts.

13

(DRAFT) International Smalltalk Conference - Prague 2006

4.1 Application-specific Model

An application-specific model defines a set of logic predicates that are avail-
able for use in an (application-specific) pointcut. These logic predicates are
implemented using SOUL logic metaprograms. We illustrate the definition of
an application-specific model by means of the accessors and mutators example.

The model that defines the accessor and mutator method properties consists
of two predicates:

accessor(?class,?method,?var)

mutator(?class,?method,?var)

These predicates declare the accessor and mutator properties over methods
named ?method defined in ?class. Furthermore, they also extract the name
of the variable ?var that is accessed or modified. The implementation of these
predicates captures the coding convention that is followed by the developer of
the application. For example, the accessor predicate is implemented as follows:

accessor(?class,?varName,?varName) if

class(?class),

instanceVariableInClassChain(?varName,?class),

methodWithNameInClass(?method,?varName,?class),

methodInProtocol(?method, accessing),

accessorForm(?method,?varName).

accessorForm(?method,?var) if

returnStatement(?method,variable(?var))

The logic program above consists of two rules that each implement a predi-
cate: accessor and accessorForm. The first predicate is defined in terms of
the second one and a variety of predicates that are available in LiCoR. The
first rule captures the naming convention of accessor methods as well as their
classification in the ‘accessing’ protocol, as we described earlier. The verifi-
cation of the idiomatic implementation of the accessor method is located in
the second rule. This rule verifies if the method’s implementation consists of a
single return statement that consists of a single expression: the variable. As a
consequence, the above logic metaprogram classifies methods of the following
form as accessor methods:

Person>>name

^name

4.2 Application-specific Pointcuts

Once the application-specific model is defined by the base program develop-
ers, the aspect developers can use it to define application-specific pointcuts.

14

(DRAFT) International Smalltalk Conference - Prague 2006

For example, the application-specific pointcut that captures the execution of
accessor methods can now be written as follows:

reception(?joinpoint,?selector,?args),

accessor(?class,?selector,?var)

This application-specific pointcut no longer relies on a particular coding con-
vention for accessor methods, as opposed to source-code based pointcuts. In-
stead, it relies on the application-specific property of an accessor method that
is provided by the application-specific model. The base program developers
ensure that this model is maintained such that all accessor methods are cor-
rectly identified. Furthermore, because the pointcut definition now explicitly
states that it captures the execution of accessor methods, it is more readable
and understandable to other developers. Of course, the above pointcut is a
rather simple use of a single application-specific property. However, a single
application-specific property does not correspond to a single pointcut. For ex-
ample, consider the following pointcut that is defined in terms of the accessor
and mutator properties:

reception(?joinpoint,?selector,?args),

accessor(?class,?selector,?var),

mutator(?class,?otherSelector,?var)

This pointcut matches all accessor method execution join points for variables
for which there also exists a mutator method. It can, for example, be used in
a synchronisation aspect to execute a write lock advice.

4.3 Model Specialisation

A specific advantage of building the application-specific model using a logic
metalanguage is that we can easily extend the model through the definition
of alternative logic rules for existing predicates. For example, the application-
specific model that we defined above does not classify all accessor methods
correctly. There exist many more possible implementations of accessor meth-
ods, such as the lazy-initialisation presented in section 3.1. Because the coding
convention is now explicitly defined in the application-specific model and be-
cause the application-specific model is restricted to the coding conventions
only, the base program developers can easily extend it to accommodate ad-
ditional accessor forms. This is in contrast to when the coding convention is
implicitly used in a pointcut definition. More importantly, because the model
is defined as a logic metaprogram, additional accessor forms can be defined
using alternative definitions for the accessor predicate. For example, we can
extend the definition of this property to include lazy-initialised accessor meth-
ods by including the following logic rule:

15

(DRAFT) International Smalltalk Conference - Prague 2006

accessorForm(?method,?var) if

returnStatement(?method,send(?nilCheck,[#’ifTrue:ifFalse:’],<?trueBlock,?falseBlock>)),

nilCheckStatement(?nilCheck,?var),

statementsOfBlock(<assign(?var,?varinit)>,?trueBlock),

statementsOfBlock(<?var>,?falseBlock)

The above logic metaprogram provides an alternative definition for the accessorForm
predicate. These alternatives are placed in a logical disjunction and, as a re-
sult, our application-specific model also ties the accessor property to methods
of the following form:

Person>>friends

^ friends isNil ifTrue:[friends := OrderedCollection new] ifFalse:[friends].

However, the following accessor method does not correspond to the coding
convention:

Person>>phoneNumbers

^ phoneNumbers ifNil:[phoneNumbers := OrderedCollection new] ifNotNil:[friends].

Therefore, we can again define an alternative logic rule that detects accessor
methods of the above form:

accessorForm(?method,?var) if

returnStatement(?method,send(?var,[#’ifNil:ifNotNil:’],<?trueBlock,?falseBlock>)),

statementsOfBlock(<assign(?var,?varinit)>,?trueBlock),

statementsOfBlock(<?var>,?falseBlock)

Such a model specialisation is particularly useful if different developers imple-
ment different modules of the same base program. If all developers agree on a
single application-specific model (i.e. a set of properties implemented by pred-
icates), they can each follow their own programming convention to implement
each property. For example, one set of developers might even agree on the
use of put and get prefixes for all accessor methods while other developers
can follow the common Smalltalk convention that we just explained. The first
group of developers then merely needs to define an alternative logic rule that
correctly detects methods prefixed with put and get and implemented in their
part of the base program as accessor methods.

4.4 Property Parameters and Unification

The definition of an application-specific model using a logic metalanguage does
not only allow developers to associate structural conventions to properties
available for use in pointcuts. In addition, the properties can be parameter-
ized and expose values associated to the property. For example, the accessor
predicate does not only expose particular methods as accessor methods, it also

16

(DRAFT) International Smalltalk Conference - Prague 2006

exposes the actual variable that is accessed by the method 3 . More precisely,
because a logic language does not make a distinction between arguments and
return values, the variable that is accessed is also automatically a parameter of
the accessor predicate. This also holds for all other parameters of the accessor
predicate: they can act both as parameters as well as return values associated
to the property. In essence, the logic language feature of ‘unification’ allows
that we can automatically use the application-specific property that is defined
by the accessor predicate in multiple ways, i.e. any argument of the predicate
can be bound or unbound. A couple of examples are illustrated in the following
code excerpt. Each line represents a separate use of the accessor predicate.

1 accessor(?class,?selector,?var)

2 accessor([Array],#at:put:,?var)

3 accessor(?class,?selector,#name)

The first line will retrieve all accessor methods and expose their class, method-
name and accessed variable. The second line checks if the at:put: method
in the Array class is an accessor method and retrieves its accessed variable.
Finally, the use of the accessor predicate on the last line retrieves all accessor
methods that access a variable named name.

5 Application-specific Models in Practice

The accessors and mutators example is a valuable application-specific model
but relies on very simple coding conventions. In the development of a Smalltalk
application, there are many more conventions that can be used to expose
application-specific properties valuable for use in a pointcut definition. We il-
lustrate the use of two such conventions in the following subsections. In partic-
ular, we build a model that exposes properties based on structural conventions
used in the drag and drop framework of the user-interface and the implemen-
tation of refactorings in the refactoring browser in Visualworks Smalltalk.

5.1 Drag and Drop Application-specific Model

The drag and drop facilities in VisualWorks Smalltalk are implemented by
means of a lightweight framework. This framework identifies a number of hooks
that allow a developer to implement the drag and drop behaviour for his
particular application. These hooks are:

3 Mind that the method name can be different from the variable name, depending
on the actual coding convention.

17

(DRAFT) International Smalltalk Conference - Prague 2006

• Drag Ok: a predicate to check wether the current widget may initiate a
drag;

• Start Drag: actions which need to take place in order to start the drag
(e.g. creating a drag and drop context, . . .);

• Enter Drag/Exit Drag: these hooks are triggered whenever during a drag,
the mouse pointer enters/exists the boundaries of a certain widget;

• Over Drag: actions which are executed when the pointer is hovering over
a widget during a drag (e.g. change the cursor);

• Drop: actions which take place when an element is dropped on a widget.

A developer can add drag and drop functionality to an application by as-
sociating methods with the hooks specified above. This is done by means
of the windowSpec system of the VisualWorks user interface framework. A
windowSpec is a declarative specification of the different widgets which make
up the user interface of an application. This specification is then used by the
user interface framework to construct the actual interface. In the windowSpec,
the developer can, for each widget, associate methods with the different hooks
of the drag and drop framework. In order to access the data which is being
dragged, the origin of the drag operation, etc. these methods pass around a
DragDropManager object.

The structure of the framework described above can be used to define an
application-specific model that associates methods to an explicit drag and drop
property: i.e. for each of the hooks defined above, we define a separate pred-
icate. For example, we define the dragEnterMethod(?class,?sel,?comp)

predicate that classifies all methods that implement the ‘drag enter’ hook.
Furthermore, this predicate exposes the name of the visual component in the
interface that is dragged over. This predicate allows aspect developers to write
application-specific pointcuts that capture a drag event as the execution of
such a method:

reception(?jp,?selector,?args),

dragEnterMethod(?class,?selector,?component)

Furthermore, we also define the draggedObject(?dragdropmanager,?object)
and dragSource(?dragdropmanager,?source) predicates that reify the ob-
ject being dragged and the source component from where it is being dragged re-
spectively. Both predicates extract this information from the DragDropManager
instance that is being passed as an argument to the drag and drop meth-
ods. We can now further extend the pointcut such that it only captures drag
events that originate from a particular source or drags of a particular object.
For example, we complete the above pointcut with the following conditions to
capture drags originating from a FigureManager (lines 2–3) and dragging a
Line object (lines 4–5). The first line merely extracts the only argument being
passed to the ‘drag enter’ method, which is the DragDropManager object.

18

(DRAFT) International Smalltalk Conference - Prague 2006

1 equals(?args,<?dragdropmanager>),

2 dragSource(?dragdropmanager,?source),

3 instanceOf(?source,[FigureManager]),

4 draggedObject(?dragdropmanager,?object),

5 instanceOf(?object,Line)

This pointcut is particularly useful for the definition of an aspect that renders
an icon in our user-interface depending on the element that is being dragged.
Without aspects, we would need to implement the visualisation of such an icon
in the ‘drag enter’ method of every application model in our user-interface, re-
sulting in duplicated and scattered code. Furthermore, the application-specific
model now also allows us to decouple the pointcut definition from the actual
structural conventions used in the user-interface framework and implement
them in terms of the explicit application-specific properties associated to a
user-interface.

5.2 Refactorings

Refactorings are behaviour-preserving program transformations which can be
used to remove bad smells from code by improving the structure of the ap-
plication. A number of these refactorings can be automated up to a certain
degree, which has resulted in the development of tool support for perform-
ing refactorings directly from the IDE. In VisualWorks, such tool support is
integrated with the Refactoring Browser.

The Refactoring Browser makes use of a framework implementing these
refactorings. In this framework, all refactorings are represented by a sub-
class of the abstract Refactoring class. Each subclass must implement a
preconditions method, which specifies the preconditions that the source code
to be refactored needs to adhere to in order to perform the refactoring, and a
transform method, which performs the actual program transformation.

As an example of an aspect based on the refactoring framework, consider a
software engineering tool (for instance a versioning system) which, each time
a refactoring is initiated, needs to be notified of the program entities which
are possibly affected by the refactoring. Such information is hard to retrieve
from the source code of the framework. However, by creating an application-
specific model for the refactoring framework, we can explicitly document this
additional information. The following pointcut retrieves all affected entities
for the instantiation of a refactoring:

reception(?joinpoint,?message,?arguments),

inObject(?joinpoint,?receiver),

refactoringInstantiation(?receiver,?message,?arguments,?affectedentities)

The first two lines of the pointcut select all message receptions and their re-

19

(DRAFT) International Smalltalk Conference - Prague 2006

ceiver; the last line restricts these message receptions to the ones which instan-
tiate a refactoring. Also, the pointcut binds all affected entities, depending on
the input and the type of the refactoring to the variable ?affectedentities.

The refactoringInstantiation rule is defined as follows:

1 refactoringInstantiation(?refactoring,?message,?args,?affectedentity) if

2 refactoring(refactoring),

3 methodWithNameInClass(?method,?message,?refactoring),

4 instanceCreationMethod(?method),

5 refactoringAffectedEntity(?refactoring,?refactoringclass,?args,?affectedentity)

The first line of this rule checks wether the receiver of the message is a refac-
toring (i.e. wether it is a subclass of the class Refactoring). The second and
third line implement the selection of those messages (and their arguments)
which create an instance of the refactoring. Finally, the last line calculates,
based on the arguments of the message, the program entities which can be
affected by the refactoring.

For each refactoring, the affected entities are explicitly documented by logic
rules.

refactoringAffectedEntity(?refactoring,[PushUpMethodRefactoring],?input,?affectedentity) if

originalClassOfPushUpMethod(?input,?affectedentity)

refactoringAffectedEntity(?refactoring,[PushUpMethodRefactoring],?input,?affectedentity) if

originalClassOfPushUpMethod(?input,?class),

superclassOf(?affectedentity,?class).

The above rules reflect this knowledge for the Method Push Up-refactoring.
The first line of both rules extracts the class of the method which will be
pushed up from the arguments of the message reception. For this refactoring,
both the class from which the refactoring is initiated (the first rule), as well
as its superclass are affected (the second rule).

6 Related and Future Work

In previous work [22], we have introduced the technique of model-based point-
cuts that allows to define pointcuts in a similar way as the application-specific
pointcuts presented in this paper. In fact, the approach presented in this pa-
per is a first step towards an improved integration of model-based pointcuts
and logic-based pointcut languages [7]. In essence, we further extended the
technique of model-based pointcuts to exploit the full power of the logic pro-
gramming language for the definition of application-specific properties. In [22],
we merely extended the pointcut language with a single predicate that allows

20

(DRAFT) International Smalltalk Conference - Prague 2006

to query a conceptual model of the program, implemented using intensional
views [23]. In this paper, the model consists of full logic predicates, resulting in
an improved integration of the model and the pointcuts. In contrast, in [22], we
have shown how model-based pointcuts are less fragile with respect to changes
in the base program primarily due to tool support that enforces developers to
adhere to the correct conventions such that the model remains valid. In this
paper, we have focused on the adequate features of a logic language for the
creation and extension of the model and we presented an improved integration
of the model with the pointcut mechanism itself. We are currently working
on how to reconcile the support for the detection of the fragile pointcut prob-
lem with the full power of the application-specific models presented in this
paper. Furthermore, there are a number of related approaches or techniques
that work towards the same effect:

6.1 Expressive pointcut languages

Some recent experimental aspect-oriented languages also propose more ad-
vanced pointcut languages. The Alpha aspect language, for example, also uses
a logic programming language for the specification of pointcuts and enhances
the expressiveness by providing diverse automatically-derived models of the
program. These models and their associated predicates can, for example, rea-
son over the entire state and execution history [24]. In particular, Ostermann
and Mezini have also identified how to build user-defined pointcut predicates
using a logic language. EAOP [25] and JAsCo [26] offer event-based or stateful
pointcuts that allow to express the activation of an aspect based on a sequence
of events during the program’s execution.

6.2 Annotations

An alternative approach to model-based pointcuts over application-specific
models is to define pointcuts in terms of explicit annotations in the code [27,28].
Annotations classify source-code entities and thereby make explicit additional
semantics that would otherwise be expressed through implicit programming
conventions. This approach, however, does not benefit from the expressive
power that is provided by the logic metalanguage.

6.3 Design Rules and XPI

Yet another alternative approach is to explicitly include the pointcut descrip-
tions in the design and implementation of the software and to require devel-

21

(DRAFT) International Smalltalk Conference - Prague 2006

opers to adhere to this design. Sullivan et al. [29] propose such an approach
by interfacing base code and aspect code through design rules. These rules
are documented in interface specifications that base code designers are con-
strained to ‘implement’, and that aspect designers are licensed to depend upon.
Once the interfaces are defined (and respected), aspect and base code become
symmetrically oblivious to each others’ design decisions. More recently, the
interfaces that are defined by the design rules can be implemented as Ex-
plicit Pointcut Interfaces (XPI’s) using AspectJ [30]. Using XPIs, pointcuts
are declared globally and some constraints can be verified on these point-
cuts using other pointcuts. Our approach is different in the fact that we keep
the pointcut description in the aspect, leaving more flexibility to the aspect
developer. While XPIs fix all pointcut interfaces beforehand, our application-
specific model only fixes the specific properties available for use in pointcut
definitions.

7 Conclusion

AspectSOUL is an extension of the AspectS language framework with the
open-ended logic-based pointcut language of CARMA. The resulting inte-
grated aspect language allows developers to extend the pointcut language with
an application-specific model. Such an application-specific model defines new
pointcut predicates that reify implicit structural implementation conventions
as explicit properties available for use in pointcut definitions. These model-
based pointcuts are decoupled from the intricate structural implementation
details of the base program, effectively reducing their complexity. The defini-
tion of the application-specific model confines all these technical details and
serves as a contract between the base program developers and the aspect de-
velopers. Finally, the logic paradigm offers adequate language features for the
definition and extension of the application-specific model.

References

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
J. Irwin, Aspect-oriented programming, in: Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), no. 1241 in LNCS,
Springer-Verlag, 1997.

[2] R. E. Filman, T. Elrad, S. Clarke, M. Aksit, Aspect-Oriented Software
Development, Addison-Wesley, 2004.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtoir,
J. Irwin, Aspect-oriented programming, in: European Conference on Object-

22

(DRAFT) International Smalltalk Conference - Prague 2006

Oriented Programming (ECOOP), LNCS, Springer Verlag, 1997, pp. 220–242.
URL citeseer.ist.psu.edu/kiczales97aspectoriented.html

[4] D. L. Parnas, On the criteria to be used in decomposing systems into modules,
Communications of the ACM 15 (12) (1972) 1053–1058.

[5] J. Xu, H. Rajan, K. Sullivan, Understanding aspects via implicit invocation, in:
Automated Software Engineering (ASE), IEEE Computer Society Press, 2004.

[6] R. Filman, D. Friedman, Aspect-oriented programming is quantification and
obliviousness, workshop on Advanced Separation of Concerns (OOPSLA)
(2000).
URL citeseer.ist.psu.edu/filman00aspectoriented.html

[7] K. Gybels, J. Brichau, Arranging language features for more robust pattern-
based crosscuts, in: Aspect-Oriented Software Development (AOSD), 2003.

[8] R. Hirschfeld, Aspect-Oriented Programming with Aspects, in: Lecture Notes
in Computer Science: Objects, Components, Architectures, Services, and
Applications for a NetworkedWorld: International Conference NetObjectDays,
NODe 2002, Erfurt, Germany, October 7–10, 2002. Revised Papers, 2003.

[9] K. Gybels, J. Brichau, Arranging language features for more robust pattern-
based crosscuts, in: Proceedings of the Second International Conference of
Aspect-Oriented Software Development, 2003.

[10] J. Brant, B. Foote, R. E. Johnson, D. Roberts, Wrappers to the rescue, Lecture
Notes in Computer Science.

[11] F. Rivard, Smalltalk: a reflective language, in: Proceedings of the Reflection
Conference 1996, 1996.

[12] K. Mens, I. Michiels, R. Wuyts, Supporting software development through
declaratively codified programming patterns, Journal on Expert Systems with
Applications 23 (4) (2002) 405–413.

[13] U. Nilsson, J. M, Logic, Programming and Prolog, second edition Edition, John
Wiley & Sons, 1995.
URL http://www.ida.liu.se/ ulfni/lpp/copyright.html

[14] K. Gybels, R. Wuyts, S. Ducasse, M. D’Hondt, Inter-language reflection:
A conceptual model and its implementation, Elsevier Journal on Computer
Languages, Systems & Structures 32 (2006) 109 – 124.
URL
http://prog.vub.ac.be/Publications/2005/vub-prog-tr-05-13.pdf

[15] R. Kowalski, Algorithm = logic + control, Communications of the ACM 22 (7)
(1979) 424–436.

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

23

(DRAFT) International Smalltalk Conference - Prague 2006

[17] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999.

[18] C. Lopes, E. Hilsdale, J. Hugunin, M. Kersten, G. Kiczales, Illustrations
of crosscutting, in: P. Tarr, M. D’Hondt, C. Lopes, L. Bergmans (Eds.),
International Workshop on Aspects and Dimensional Computing at ECOOP,
2000.

[19] N. D. Jones, C. K. Gomard, P. Sestoft, Partial Evaluation and Automatic
Program Generation, Prentice Hall International, 1993.

[20] H. Masuhara, G. Kiczales, C. Dutchyn, Compilation semantics of aspect-
oriented programs, in: G. T. Leavens, R. Cytron (Eds.), Foundations of Aspect-
Oriented Languages Workshop at AOSD 2002, no. 02-06 in Tech Report,
Department of Computer Science, Iowa State University, 2002, pp. 17–26.
URL ftp://ftp.cs.iastate.edu/pub/techreports/TR02-06/TR.pdf

[21] C. Koppen, M. Stoerzer, Pcdiff: Attacking the fragile pointcut problem, in: First
European Interactive Workshop on Aspects in Software (EIWAS), 2004.

[22] A. Kellens, K. Mens, J. Brichau, K. Gybels, Managing the evolution of
aspect-oriented software with model-based pointcuts, in: To be published in
Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), Spring-Verlag, 2006.

[23] K. Mens, A. Kellens, F. Pluquet, R. Wuyts, Co-evolving code and design with
intensional views - a case study, Computer Languages, Systems and Structures
32 (2-3) (2006) 140–156.

[24] K. Ostermann, C. Mezini, M. Bockisch, Expressive pointcuts for increased
modularity, in: European Conference on Object-Oriented Programming
(ECOOP), 2005.

[25] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Ségura, M. Südholt, An
expressive aspect language for system applications with arachne, in: Aspect-
Oriented Software Development (AOSD), 2005.

[26] W. Vanderperren, D. Suvee, M. A. Cibran, B. De Fraine, Stateful aspects in
JAsCo, in: Software Composition (SC), LNCS, 2005.

[27] W. Havinga, I. Nagy, L. Bergmans, Introduction and derivation of annotations
in AOP: Applying expressive pointcut languages to introductions, in: First
European Interactive Workshop on Aspects in Software, 2005.

[28] G. Kiczales, M. Mezini, Separation of concerns with procedures, annotations,
advice and pointcuts, in: European Conference on Object-Oriented
Programming (ECOOP), LNCS, Springer Verlag, 2005.

[29] K. Sullivan, W. Griswold, Y. Song, Y. Chai, M. Shonle, N. Tewari, H. Rajan,
On the criteria to be used in decomposing systems into aspects, in: Symposium
on the Foundations of Software Engineering joint with the European Software
Engineering Conference (ESEC/FSE 2005), ACM Press, 2005.

24

(DRAFT) International Smalltalk Conference - Prague 2006

[30] W. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Teware, Y. Cai, Rajan.H.,
Modular software design with crosscutting interfaces, IEEE Software, Special
Issue on Aspect-Oriented Programming.

25

(DRAFT) International Smalltalk Conference - Prague 2006

An Object-Oriented Approach for

Context-Aware Applications

Andrés Fortier a,b, Nicolás Cañibano a, Julián Grigera a,
Gustavo Rossi a,c, Silvia Gordillo a,d

{andres,cani,juliang,gustavo,gordillo}@lifia.info.unlp.edu.ar

aLIFIA, Facultad de Informtica, UNLP, La Plata, Argentina
bDSIC, Universidad Politcnica de Valencia, Valencia, España

cCONICET
dCICPBA

Abstract

In this paper we present a novel, object-oriented approach for designing and build-
ing applications that provide context-aware services. Our approach emphasizes a
clear separation of the relevant concerns in the application (base behavior, context-
sensitive properties, services, sensing technologies, etc.) to improve modularity and
thus simplify evolution. We first motivate the problem with a simple scenario of a
virtual campus; we next present a new context model, which emphasizes on behav-
ior instead of data. We nenxt show the main components of our architecture and
a simple approach to achieve a clear separation of concerns. We analyze the most
important (sub) models in which we decompose a context-aware application and
explain the use of dependency mechanisms to achieve loosely coupled relationships
between objects. We also show how to take advantage of a reflective environment like
Smalltalk to adapt the application’s behavior dynamically and to provide transpar-
ent object distribution. We finally compare our work with others and discuss some
further work we are pursuing.

1 Introduction: The Challenges of Context-Awareness

Context-Aware (and in particular Location-Aware) applications are hard to
build and more difficult to maintain due to their “organic” nature [1]. For
this reason, improving modularity and reducing tightly-coupled relationships
between objects is extremely necessary when designing this kind of software.

(DRAFT) International Smalltalk Conference - Prague 2006

We next present some of the main difficulties involved in developing and main-
taining context-aware systems:

• Context-aware systems integrate knowledge from different disciplines such
as HCI, artificial intelligence, software engineering and sensing hardware
to produce the final application. Due to the extent of this discipline, we
consider that the next generation of context-aware systems will need an
integrating platform rather than a single application. This platform should
be flexible enough to coordinate software modules developed by different
providers [6].

• Dealing with context information implies that this information has to be
acquired from non-traditional devices and distributed sources, and must
then be abstracted and interpreted to be used by applications [4].

• Abstracting context means more than changing representation. Even though
it is clearly explained in [4], the process of context interpretation usually
ends far from application concerns. While interpreted context data is usually
dealt as string data, applications are composed of objects, and many times
those objects represent contextual information as well. There is a certain
impedance mismatch between context and application data, even when they
refer to the same concept.

• Adapting to context is hard; design issues related with context-aware adap-
tation are not completely understood and thus handled incorrectly. For ex-
ample, the rule-based paradigm has been over-used in the last few years to
express adaptation policies, such as: “When being in a room, provide ser-
vices A, B and C”. While rules can be often useful (especially when we want
to give the user the control of building his own rules), we claim that more
elaborated structures are necessary to improve maintenance and evolution.

• Context-related information is usually “tangled” with other application
data; for example, the location of an application object (which is necessary
to detect when the user is near the object) is coupled with others object’s
concerns, making evolution of both types of characteristics difficult.

Our research deals with the identification of recurrent problems and design
micro-architectures in context-aware software. In this paper we describe an
architectural approach for dealing with the problem of providing context-aware
services. Our approach is based on a clear separation of concerns that allows us
not only to decouple context sensing and acquisition (as in [14]), but mainly to
improve separation of application modules, to ease extension and maintenance.
For this purpose we make an extensive use of dependency mechanisms to
provide context-aware services and take advantage of the reflective nature
of the Smalltalk environment to dynamically change object’s behavior and
achieve transparent distribution.

2

(DRAFT) International Smalltalk Conference - Prague 2006

The main contributions of our paper are the following:

• We show how to separate application concerns related with context aware-
ness to improve modularity. This approach can be used to build new appli-
cations or to extend legacy ones to provide location and other context-aware
services. A concrete architecture that supports this approach is presented.

• We show how to objectify services and make them dependent of changes of
context; in particular we emphasize location-aware services.

• We introduce a behavioral point of view to deal with contextual information
(instead of the current data view of most existing approaches).

• We show how to use the reflective capabilities of Smalltalk to model our
conception of context.

• We show how can transparent distribution mechanisms be adapted to work
in mobile environments.

The rest of the paper is organized as follows: in Section 2 we introduce a simple
example, both to present the problems and to use it throughout the paper. In
Section 3 we present our model of context, followed by a complete description
of each of the different models comprising our architecture in Section 4; in
particular, in Section 4.4 we show how our context model can be used to
dynamically change the application behavior. In Section 5 we show how to
sense context information in a way that is not intrusive to the context model.
In Section 6 we discuss the distribution framework used in the project and
the enhancements we built on top of it. Finally, in Section 7 we discuss some
related work and in Section 8 we conclude and discuss some further work.

2 Motivating Example

Suppose we are adapting an existing software system in a University Cam-
pus to provide context-based services (in particular location-based ones), in
the style of the example in [15]. Our system already provides information
about careers, courses, professors, timetables, etc. We now want users carry-
ing their preferred devices to interact with the system while they move around
the campus. For example, when a student enters a classroom, he can get the
corresponding course’s material, information about its professor, etc. At the
same time, those services corresponding to the containing location context
(the Campus) should be also available. When he moves to the sport area,
the course’s related services disappear and he receives information about up-
coming sport events. Even though we use the user’s location as an example,
different contextual information such as the user’s role or activity might also
shape the software answer.

The first design problem we must face is how to seamlessly extend our ap-

3

(DRAFT) International Smalltalk Conference - Prague 2006

plication in order to make it location-aware, i.e. to provide services that cor-
respond to the actual location context. The next challenge involves adapting
the behavior to the user’s role (a professor, student, etc) and other contextual
parameters such as current time or activity. While applications of this kind
have always been built almost completely from scratch, we consider that this
will not be the case if context-aware computing becomes mainstream; we will
have to adapt dozens of legacy applications by adding context-aware behavior.

When working with CA applications we can find typical evolution patterns
such as adding new services related to a particular location, improving sensing
mechanisms (for example moving from GPS to infrared), changing the location
model (from symbolic to geometric [11]), and so on. While most technological
requirements in this scenario can be easily fulfilled using state-of-the art hard-
ware and communication devices, there are many design problems that need
some further study. The aim of this paper is to focus on a small set of those
problems, mainly those that characterize the difficulties for software evolution
and to show how combining proved design principles with reflective facilities
can yield a scalable architecture to build context-aware software.

3 Our Context Model

Even though context is recognized as having a dynamic nature, it is usually
treated as a fixed piece of data upon which some behavior is executed, which
we consider neglects its essence. From our point of view, context should be
modeled as close as possible to the phenomenological view presented by Dour-
ish [5]. Taking his definition as a starting point, we claim that the following
properties must hold when modeling context:

(1) Context is not passive. The context model must take an active role in the
application and shouldn’t be considered as a static collection of data. If
decisions must be taken according to the context, then the context itself
should be actively involved in that process.

(2) Context can not be defined in advance. Since context is inherently dy-
namic, we can not constraint the context information that will be model
when designing the application. The context model should be flexible
enough to accommodate new information and behavior, even while the
application is running.

(3) Context is not stable. Context-aware applications are supposed to adapt
to the user’s activities, which means that they must be active for long
periods of time. During this time, what is contextually relevant to the
user is constantly changing, so our model of context should be able to
represent these dynamically varying aspects of the user’s context that are
relevant in a given situation.

4

(DRAFT) International Smalltalk Conference - Prague 2006

(4) Context is independent of the sensing mechanisms. Even though context
information is usually gathered automatically, the representation of this
information should be independent of the sensing mechanism. As we will
see in the following sections, if our context model is tightly coupled to
the sensing hardware, the system evolution will be heavily compromised.

In order to fulfill these requirements, we decided to split context in a set of
context aspects, each one responsible for modeling the behavior of a specific
context feature. As a result, the context is not seen as data provided by ex-
ternal acquisition mechanisms, but as the emergent behavior provided by the
interaction of the different context aspects. This behavior, encapsulated in ev-
ery context aspect, varies as the application runs, allowing to provide different
adaptation to the user according to his context. By using this scheme, what
we are actually modeling is the behavior that is contextually relevant to the
user in a given moment of time.

4 The Object-Oriented Architecture

As previously mentioned, to achieve flexible context-aware applications a set of
main concepts must be identified and clearly separated. Other approaches for
building context-aware applications have also identified concerns that must be
separated to achieve modularity: sensing (implemented for example as Wid-
gets in [4]), interpretation (also mentioned as context management in [9])
and application model. Layered architectural approaches [9], or MVC-based
ones like [14] provide the basis for separating those concerns using simple and
standard communication rules. However, applications are considered as being
monolithic artifacts that deserve little or no attention. It is easy to see in the
motivating example that the gap between application objects (in particular
their behaviors) and the outer (context-related) components is not trivial.

As a case study, let’s analyze the location aspect of the example in greater
detail. Context-aware applications are supposed to aid the user during his daily
activities, which means that they must be able to cope with location models
of different granularity; for example, if we want to offer a set of services in the
user’s office, small distances are important and a fine-grained location model
should be used. On the other hand, if we want to offer services when the user is
moving in his car along the country, the granularity of the location model must
be larger, so that adaptation can be provided according to the user’s activity.
Unfortunately, there is no silver bullet for location models and we must use
different location representation according to the specific requirements.

Symbolic models [11] that represent inclusion, adjacencies or distances be-
tween locations characterized as symbols are generally well suited for indoor

5

(DRAFT) International Smalltalk Conference - Prague 2006

location. These models represent in a clear way those relationships between
the locations, can represent very fine-grained structural arrangements and are
easy to understand by humans. On the other hand, Geometric models [11] are
well suited for representing large areas where accuracy does matter or when it
is necessary to calculate distances between objects with an important level of
correctness. As a drawback, creating geometrical models for large maps (for
example, a city) is a hard task (when not impossible) without the aid of a
specialized organization. Also, geometrical models don’t add semantics to the
regions they represent, they just provide the boundaries for performing calcu-
lations; so, if we want to tag a specific polygon as being the Plaza Hotel, we
must do it manually.

As can be seen from the example above, a single context aspect (such as the
user’s location), can turn out to be a whole world in itself. On top of this,
the forces that may impose changes in a context aspect have nothing (or very
little) to do with the application model or with the services that are provided.
For example, when adapting the user services to his location, the services
subsystem should only care about knowing where the user is (for example, in
the library) and not about the details of how the location model determines the
user’s location. Also, we should remember that context is essentially dynamic
and that context aspects can’t be fixed at design time. For this reasons, in the
same way that MVC [10] architectures argue for a clear separation between
the model and the view, we argue that a similar separation must hold between
the application model, the context model, how the context is sensed and the
way services are offered to the user.

4.1 Main Components

In order to tackle the issues previously mentioned, we decided to decompose
a context-aware application in two orthogonal views: the application-centered
view and the sensing view. The application-centered view is concerned with
context and service management and is in turn separated in three layers.
The sensing view (which will be described in Section 5) is concerned with the
mechanisms used to get external data and how to feed this data, as transparent
as possible, into the context aspects. In Fig. 1 we show the layers that comprise
the application centered view.

In the Application Model layer we specify the application classes with their
“standard” behaviors (i.e. those application classes and methods are not aware
of the user’s context, neither they exhibit context-related information). In our
example this layer would have classes like Room, Schedule, Teacher, and so
on. The Context layer is in turn composed of a set of context aspects, each
one creating a high-level representation of a specific part of the user’s con-

6

(DRAFT) International Smalltalk Conference - Prague 2006

��������

	
 � � � � ��

� � ��� �� � �

� �� �� � �� � �

� � ���� � � � ��� ��
 � ��

� ��� � ��

� � � � �
 � �� �� �� ��

Fig. 1. A layered approach for the Application-Centered view.

text. As can be seen in Fig. 1, we take a different approach when comes to
establishing the relationship between the application and the context model:
in most approaches, context is presented as data that is somehow processed
by the application, thus creating a knowledge relationship from the core ap-
plication to the context representation. As explained in the previous section,
we consider that this approach is rather limited and that a behavioral point
of view should be taken to handle context. In our architecture the application
does not fetch data from context, but the context is the one who extends the
application functionality. By adding the behavior that is contextually relevant
in a given moment, the services engine has different opportunities to perform
adaptation.

The Services layer models the concepts related to a context-aware application
from a services point of view. This layer has the responsibility of deciding what
services are available to the user in a given situation. For that purpose, four
main abstractions are modeled: the user, the services, the services environment
and the service providers. As expected, the user object represents the physical
user who is carrying a mobile device and which is the focus of the system’s
attention. The user in this layer has attached a set of context aspects that
can vary dynamically, according to what is considered contextually relevant
in a given time. When there is a change in the user’s context (either because a
context aspect changed or because a context aspect is added or removed) the
user’s available services are updated according to the system configuration.
This configuration basically establishes a relationship between the services
and the different contexts in which the user may be, generally represented as
a constraint (i.e. a certain service is provided if a constraint is satisfied). As an
example, when working with location-dependent services, each service will be
associated with a set of geographic areas represented in the location aspect;
when the user changes his location, new services may become active or former
ones removed.

Each service is associated with a service provider, which is in charge of creat-
ing the service when required, acting as a Builder [7]. Besides, every service
provider defines a set of constraints to determine when that provider is al-

7

(DRAFT) International Smalltalk Conference - Prague 2006

lowed to give his services to the user. Upon a change in the user’s context,
each provider is asked to reevaluate his constraint in order to determine if
a new set of services should be added to the user or existing ones removed.
Finally, services, providers and users are immersed in a service environment,
which reifies the real-world environment from a services view. The service
environment acts a Mediator [7] between service providers, services and users.

4.2 Communication Mechanisms. Dependencies to the Rescue

As shown in Fig. 1, we use a layered approach to separate the application-
centered view concerns. In this view, context aspects are the basis on which
the services layer is mounted. In the services layer, the user object holds the
set of currently active context aspects, which are used to determinate which
services are available in a certain moment. As we mentioned earlier, in order
to improve evolution, context aspects should be decoupled from the services
layer, which is accomplished by making an extensive use of the dependency
mechanism. Fig. 1 shows how the Service layer is dependent of every context
aspect, so that it can get a notification when there is a context change. If we dig
a little inside the services layer we will see that the relationship is established
between the user and the services: a user has a collection of context aspects
to which he is in turn dependent of. When there is a change in a context
aspect the user gets the corresponding notification. This notification is in
turn propagated to the environment (again, using the dependency mechanism)
which is in charge of triggering the service providers re-evaluation. In order to
establish dependencies we originally used the standard notification mechanism,
but as the system grew in complexity we decided to implement our own event
subsystem. To do so, we modeled a set of events, handlers and adaptors to
easily trigger context changes and configure the system response to those
changes. In Fig. 2 we show a class diagram depicting these relationships, using
Location as a concrete example of a context aspect.

4.3 Creating, Deploying and Activating Context-Aware Services

4.3.1 Creating New Services

New services are defined as subclasses of the abstract class UserService and
thus a specific instantiation of a service is an object that plays the role of a
Command [7]. The specific service’s behavior is defined by overriding appro-
priate methods of UserService such as #addedTo: aUser (triggered when the
service is made available to the user), #start (triggered when the users selects
the service form the available services list), and so on. For example, a service
that presents the course’s material in the room where a lecture is taking place

8

(DRAFT) International Smalltalk Conference - Prague 2006

���������	�
�

� �� �
�� � � � ��� ���

� ��� � �� �
�

� �� �
�� � � � � ��

� ���

� �
� �� ����	�
�

� � �� 	�� �

� �
� �� ��

Fig. 2. Relationships between services and context aspects.

would be defined as a subclass of Service, and the message #setUp: aUser

would search in the schedule for the appropriate objects to display.

4.3.2 Subscribing to Services

In order to access the services supplied by a service provider, the user must
subscribe to those services he is interested in. Once he is subscribed, when
the constraints imposed by the provider are met (such as being in a particular
location), the services are made available to the user. In our model, the service
environment knows which services are registered, and therefore the users can
query the environment for existing services to subscribe. Besides, when new
services are added to the environment, a change notification is broadcasted to
the users so that they can take the proper action according to the configuration
they state. The default action is to show a visual notification (a small icon)
indicating that new services are available, but the user may decide to configure
the system to ignore notifications or to automatically get subscribed to any
new service that appears. It’s interesting to notice that this functionality is
provided by a standard service which has the environment as its model.

9

(DRAFT) International Smalltalk Conference - Prague 2006

4.3.3 Registering Services in Specific Providers

To provide context-awareness and to avoid the use of large rule sets, services
are associated with (registered to) specific providers. When the user’s context
satisfies the provider’s constraints, all services registered to that provider (to
which the user has subscribed) are made available. By using the concept of
service providers, the architecture also achieves the desired independence from
the sensing mechanism, i.e. the circumstances under which the services are
made available to the user don’t belong to the scope of a sensing device (e.g.
receiving a beacon signal) but to logical constraints. These logical constraints
can be specified programmatically or interactively: they can be obtained by
applying a set of operators to specific context concepts (for example, in the
case of working with the location aspect, the operation may involve rooms,
corridors, etc) or defined arbitrarily in terms of the user preferences (which
can involve any context aspect).

As an example, suppose that we want to offer a location service in which a
map appears showing where the user is standing. Clearly, we would expect this
service to be available in the university building or even in the entire campus.
If we are working with symbolic location we would probably have a “Building”
location as the parent of the location tree that encompasses the rooms inside
the building. So, in order to provide the location service for the building, we
would create a new service area that is associated with the “Building” location;
with this configuration, when the user enters the building (and as long as he
is inside of it) he will have that service available. Now suppose that we would
like to extend this service to the entire campus; using our approach we would
just need to change the area covered by the service area (i.e., changing the
restriction of the service provider), which in case of symbolic location means
changing the location “Building” to “University Campus”. Similarly, if we
want to add a new service to that area, we do so by adding it to the list of
services managed by that particular provider.

4.3.4 Service Activation

When the user’s context changes (for example, as he moves in a location-aware
environment), it triggers a notification event that reaches a User instance in the
Service layer. Then, this object interacts with its environment to determine if
a previously inactive service provider should be active, or if a currently active
provider should be removed. In case a new provider is added to the user’s
active ones, the corresponding services are made available to him according to
his subscriptions. As mentioned before, a service is presented to a user if it is
available in an active provider and if the user is subscribed to it. A subset of
these interactions is shown in Fig. 3 by means of a UML sequence diagram,
where the location aspect is used as an example.

10

(DRAFT) International Smalltalk Conference - Prague 2006

Fig. 3. Updating services as a response to a change in the location aspect.

4.4 Context as Behavior Added to the User

In Section 3 we presented a context model in which context was represented
in terms of behavior and not data. From the application point of view, context
aspects were seen as software modules that added new behavior to the core
application, using this core functionality when needed. From the services point
of view, the context aspects are the basis on which decisions about the moment
in which a given service can be provided to the user are made. Since the service
model is user-centered, the context aspects are applied to the user itself, which
is modeled in the service layer by the User class.

As we stated earlier, each context aspect represents a unit of behavior that is
contextually relevant to the user in a given moment. From that point of view,
when a new context aspect is added to the user, the user’s behavior is extended
with the behavior provided by the context aspect. So, apart from the behavior
defined in the User class, each particular instance of User will behave according
to his currently available context aspects. Achieving this kind of functionality
is easy in Smalltalk, since we can rely on the #doesNotUnderstand: message
to forward the message send to the available context aspects. Of course, as
with multiple inheritance, there is a problem if more than one context aspect
implements the same message. This conflict can be tested when a new context
aspect is added to the user and raise a notification in case of conflict. Although
this solution is not optimal it turned out to be quite handy in practice. As a
second choice, the sender of the message can ask for a given aspect and specify
explicitly who should receive the message, very much like the Role Object [3]
pattern.

11

(DRAFT) International Smalltalk Conference - Prague 2006

5 Handling Different Sensing Mechanisms

As explained in Section 4.1, our architecture is decomposed in two views: the
application-centered view, which has already been explained and the sensing
view, which is in charge of feeding sensor data to the context aspects. Since
the idea of a context-aware application is to give functionality to the user in
a transparent way, context information must be gathered automatically (i.e.
sensed). To make matters worse, hardware devices used for this purpose are
usually non-standard, and the data these devices deliver is often far from what
an applications needs: while sensed data is represented as strings, numbers or
pairs, our applications are built in terms of objects. For these reasons, we
consider context sensing as an important architectural problem. In order to
tackle it, we have developed a modular design in an attempt to make changes
and evolution of sensing features oblivious to the application. We based our
design on the fact that the context model and the way it is sensed are of
different nature. In a context-aware application several sensors may be used
for determining information about a single context aspect, and, at the same
time, a single sensor’s data may be used in many ways for inferring information
on different context aspects.

As an example consider a user moving with his PDA inside a building. To
detect where the user is standing, we can take advantage of the Bluetooth
receiver in his PDA and place a Bluetooth beacon in every room. Each beacon
can send different room IDs, which will be interpreted to know what the user’s
location is. Now suppose there are billboards hanging on the walls inside the
building, which we would like to enhance with digital services (for example,
showing the web-version of the billboard, or having the chance to leave digital
graffiti). In order to do this we can use an infrared beacon to capture the
user’s location, this time with a finer granularity than the one provided by
the Bluetooth beacon and with the added value that we know the user is
effectively pointing at the billboard, since infrared signals are directional. In
this example, the location of the user is being sensed by two different devices
at the same time, one giving more detailed information than the other. As a
second example consider the case when the user is not carrying the receiving
sensor; for instance, suppose that the user is wearing a Bat unit [8] that
constantly sends a unique identifier. This identifier is captured by the receiver
units placed on the ceiling of the rooms to calculate the user’s location. In
order to use this system we need a mechanism that allows us to monitor the
user’s location, even though the value is being sensed by an external receiver.
This means that the context model should be independent of the physical
location of the sensors; it shouldn’t matter whether the sensors are attached
to the PDA or placed on the room’s ceiling.

The examples presented above shows that the way context is represented and

12

(DRAFT) International Smalltalk Conference - Prague 2006

the way it is sensed belong to different concerns. This is why, as shown in Fig.
4, we consider sensing as a concern that cross-cuts the context aspects layer.

Fig. 4. Sensing as a cross-cutting concern.

In order to decouple context modeling from acquisition, our architecture adds
a layer between the hardware devices and the context model (see Fig. 5).
The basic abstraction in this layer is the sensing aspect (modeled in the
SensingAspect class), which is basically an object that watches over a hard-
ware sensor and reacts to every new data arrival. To implement this, it has a
policy that determines whether the values should be pulled or pushed from the
sensor. When creating a new sensing aspect, programmers must provide the
message to be sent to the context model when sensed data changes. To improve
this task, we have created pluggable sensing aspects that can be configured
with a block, and adaptable sensing aspects that take a message to be per-
formed, pretty much like the standard AspectAdaptor and PluggableAdaptor

from the Wrapper GUI framework. In case a more sofisticated behavior is
needed, the programmer can create his own SensingAspect subclass.

���������	
��� � ��	 �� ��	
���	
� � � � � � � ��

�� 	�� � �� ��	

Fig. 5. Layered approach for the Sensing view.

Another important issue when using sensors is to decide whether every sig-
nal must be sent to the application or not. In some cases we won’t need to
forward all the information that sensors deliver, avoiding cluttering the ap-
plication with constant notifications. As an attempt to solve this problem we
have introduced the notion of dispatchers (represented in the abstract class
Dispatcher) that has the responsibility of deciding which signals are let into
the system. For example, an ErrorFilterDispatcher would be in charge of
filtering those signals whose noise level is beyond a given threshold. To com-
plete the process of gathering information from sensors and feeding it to the
context model we need to solve the mismatch between sensors’ data and appli-
cations’ needs. To address this problem, we have created the Transformation

abstract class. Transformations are intended to convert atomic values deliv-
ered by sensors to full fledged objects which will feed the context aspect.

13

(DRAFT) International Smalltalk Conference - Prague 2006

This transformation can range from simple table lookups to complex machine
reasoning processes. Fig. 6 shows the complete class diagram of the Sensing
Aspects package.

��� � � � � �

� � � � � � � 	 �
 � � � � � �

��� �
 � �

��� � �

��� � �
 � � � �

� � � �
 � � � �
 � � � 	 �
 � � � � � � �
 � � �

��� � � �
 � � � 	 �
 �
 � � �

� � � � � � � 	 �
 � � � � � �

 � � � � �
� � � � � �

� �
 � � � � � �
 � � � �

� � � � � � �	 �� � � � � � � � � � � �

� � � �
 � � � �
 � � � 	 �
 � � � � � � �
 � � �

� � � � � � � � � �	 �� � � � � �

� � � �
 � � � �
 � � � 	 �
 � � � � � � �
 � � �

��� � � � � � �
 � � � 	 �
 �
 � � �

�� � � � � �

��� � � � � � � �

� � � � � � � � 	
 � � � � � � � � � � �
 � � �

� � �
 � � � � �

��� � �
 � � � 	 �
 �
 � � � ��� � �
 � � � 	 �
 �
 � � ���� � �
 � � � 	 �
 �
 � � �

� � � � � � � � � 	 � � �
 � � �

� �
 � � � �	 �� � � � � � �
 � �

��
 � � � 	 �
 �
 � � ���
 � � � 	 �
 �
 � � �

� � � � � � � � � � � �
 � � �

� � � � � � � �

Fig. 6. Class diagram of the sensing aspects package.

6 A Pure Object-Based Distribution Scheme

6.1 Opentalk Basics

Opentalk [16] is a distribution framework for VisualWorks that gives flexi-
ble support for the development of distributed applications. To achieve this,
Opentalk is organized in a series of layers, which includes communication
protocols, object services, brokers and remote objects. The Opentalk Commu-
nication Layer provides the basic abstractions for developing the connection
protocols. These protocols can operate on top of TCP/IP or UDP transport
layers. In particular, our work is based on TCP/IP, using the built-in support
for Smalltalk-to-Smalltalk interoperability.

In our framework we have exploited the cross-platform nature of the Visual-
Works implementation to manage the issue of heterogeneous networks imposed
by mobile systems. Thanks to the different VMs available we are able to sup-
port several operating systems running over separates hardware platforms (e.g.
Windows or Linux over x86 computers, MacOS on Apple and Windows CE
or Mobile on Pocket PC or other devices with an x86-compatible or an ARM
processor). A VisualWorks image can run almost identically on any supported

14

(DRAFT) International Smalltalk Conference - Prague 2006

platform 1 , thus allowing the arrangement of a heterogeneous network.

Request Broker and Remote Messaging. Opentalk provides a complete
request broker implementation, which is combined with the Smalltalk re-
flective capabilities to provide transparent remote communication between
Smalltalk images. The communication between objects residing in different
environments (images) depends on the functionality provided by those bro-
kers. In order to be remotely accessible, an object must be exported through
a local broker, which in turn assigns an object identifier (oid) and registers
the recent exported object on an internal table. Once the object has been
exported, any remote object containing a proper reference to this object, can
collaborate with him by directly sending normal messages. This transparency
is achieved thanks to the use of generic proxies (discussed in the following
section). However, before any two objects can remotely communicate, it is
necessary to resolve the initial reference between the two hosting images (i.e.
between both request brokers), which can be easily achieved by exporting a
root object with a predefined name. Once this is solved, subsequent commu-
nication is done transparently due to the inherent characteristic of navigation
by reachability and the use of proxies in conjunction with the underlying ma-
chinery provided by the brokers.

The internal structure of the brokers is a bit complex, since it collaborates
with many different kind of objects to effectively allow for remote message in-
terchange. Among the main collaborators we can mention the ObjectAdaptor,
Listener, Transport and Marshaller. The object adaptor is in charge of reg-
istering those objects that have been exported through the broker and to
coordinate listeners and transports. The listener is constantly waiting for new
connection requirements incoming from other hosts. When one of this require-
ments arrives, the listener accepts it and creates a new transport (i.e., a new
transport is created for every connection between brokers). Every transport
is in turn bound to a specific socket and works as the entry point for re-
ceiving and delivering remote messages. In order to accomplish this task an
encoding procedure must be done, so that remote message sends can be con-
verted to a binary representation (i.e. a byte array). This procedure (known
as marshalling) is performed by the marshaller, who is in charge of transform-
ing remote messages into transport packets. Each transport will collaborate
with his own marshaller and will use his services to encode and send mes-
sages and to receive and decode them. From this last statement we can infer

1 In the case of Win CE or Windows Mobile deployment, we have to take into
account also those issues concerning the graphical user interface and display screen
size (such as a proper Look-&-Feel and a minimal and convenient layout of visual
components). In addition, the processor speed of the target machine and the memory
footprint of the deployed image must be taken into an account if we want the final
application to run decently.

15

(DRAFT) International Smalltalk Conference - Prague 2006

that marshallers not only know how to convert an object to a byte array, but
also know how to create a remote message send from such an array (unmar-
shalling). Even though this can be accomplished separately (i.e., a transport
knows a marshaller and an unmarshaller) the class used (STSTStream) knows
how to perform both.

To mimic the message sends in the local images, brokers use a synchronic
communication policy. The broker that is in charge of dispatching outgoing
messages (an instance of STSTRequest) will send the remote message and wait
for the response (an instance of STSTReply). This message send will cause
that in the image where the actual object is residing a local message will be
send, faking the remote invocation as a local one. Once the message has been
dispatched, the sending image will be waiting until a response arrives or a
time period expires. If the response arrives, the returning object is decoded
and control is passed back to the object that originally sent the message.

Remote Objects and Proxies. A remote proxy [7] is a local representative
for an object (its subject) that resides in a different address space. When
a message is sent to the proxy, it automatically forwards it to its subject
and waits for its response. Thus, from the sender point of view, there is no
difference between working with local or remote objects 2 .

In Opentalk, the RemoteObject class performs the role of remote proxy and
maintains an indirect reference to its subject by using an instance of ObjRef,
which is basically composed of a socket address (i.e. an IP + a port number)
and an object identifier (also known as oid). When an instance of RemoteObject
receives a message, it forwards the request to its subject by means of the
#doesNotUnderstand: mechanism; for this purpose the proxy leans on the
broker’s services, which is responsible for deliver the message through the net-
work. Also, whenever an object is exported (i.e. passed by reference 3) from
one image to another, a new proxy is created to represent the remote object.
This instantiation task is responsibility of the local broker.

In Opentalk the concrete RemoteObject class is a subclass of Proxy, which is a
special abstract class that does not understand any messages. The RemoteObject
class automatically forwards those messages that does not understand, lead-
ing to a generic implementation of a remote proxy. This basic implementation
allows us to apply seamless distribution to any existing application with rel-
ative little effort. Therefore, we can postpone this decision until last moment
(or when considered necessary) without worring about distribution issues on
early stages of system development. However there are some trade-offs that we
must be taken into consideration when working with this kind of distribution

2 There is a subtle issue regarding object identity and pass modes that we will not
address due to space reasons.
3 As we will see in the next section, there are many ways of distributing objects.

16

(DRAFT) International Smalltalk Conference - Prague 2006

technique, in particular when dealing with mobile systems. In the first place,
the proxy generally implies an important network traffic, since messages are
constantly flowing through the network. Also, this approach needs a constant
connection between the images where the proxy and the subject are, not be-
ing well suited to distribute objects in networks with intermittent connections.
Also, even though we can assume having a continuous connection, in mobile
applications we expect the user to be moving around large spaces. As a con-
sequence, accessing the host where the subject resides can be fast in a given
time, but extremely slow if the user has moved to a place where the connection
to access that host is slow. In these cases, we would like to be able to move the
subject to a host that can be accessed with less network delay. Hence, we are
motivated to figure out how to take the maximum advantage of this approach
and combine it with new alternatives in order to cope with these issues.

Pass Modes and Distribution Strategies. Opentalk provides a fixed set
of general purpose object pass modes which indicates how an object will be
distributed across images: by reference, by value, by name and by oid. A pass
mode can be seen as a strategy for object distribution, because it decides the
way in which an object should be distributed when exported to another host;
therefore, we will use interchangeably the terms pass mode and distribution
strategy. For the sake of conciseness (and because pass by name and pass by
oid modes are not frequently used) we are going to describe the two most
relevant pass modes: by reference and by value. The first one is the basic
proxy approach: the subject resides in a single image and the other images
have proxies that refer to the subject. On the other hand, passing an object
by value means that a copy is sent to the requesting image. It is important to
notice that this distribution policy does not guarantee that both objects will
be consistent; as a matter of fact, passing an object by value is like creating a
local copy, and then moving it to another image, so future messages sends may
alter their structures without any restrictions or implicit synchronization.

The way an object will be passed can be decided at the class or instance
level. In order to indicate the pass mode of all the instances of a given
class, the #passMode message must be redefined in the desired class (by de-
fault all objects are passed by reference). If we want to specify how a spe-
cific instance should be passed across the net, the #asPassedByReference or
#asPassedByValue messages can be sent to the specific instance. Sending any
of these messages will end up creating an instance of PassModeWrapper on the
receiver, which will mask the original pass mode defined in the object’s class.

As we stated before, we found Opentalk proxy distribution mechanism to
be very well suited, especially because of the transparency it provides. On
the other hand, in order to accommodate to mobile environments, we found
it necessary to enhance the framework to provide new distribution policies,
which are explained in the next section.

17

(DRAFT) International Smalltalk Conference - Prague 2006

6.2 Opentalk Extensions

In order to accommodate our needs we devised a series of extensions to the
Opentalk framework. These extensions include traceability, migration and ob-
ject mirroring. In order to clarify the ideas that will be covered in this section
we briefly explain the main concepts:

• Traceability is the capability that has an object of knowing all the remote
references that have him as a subject. This can be seen as asking an object
for all his remote owners.

• We refer to replicas when we talk about a copy of some object that resides
in a different Smalltalk image. This doesn’t mean that there is any kind of
connection between the original object and the replica; a replica is just a
copy of the object with no synchronization mechanisms.

• Migration means moving an object from one image to another. This move-
ment must be consistent and rearrange any remote reference to update its
address to the new host (note that local references can be easily converted
by using the #become: message, while remote ones will require a more so-
phisticated mechanism).

• Mirroring refers to have an object replicated in a way that the replicas
are consistent. So, if an object is modified in an image, all the distributed
mirrors are modified to maintain the consistency.

As we will see, by adding these features, we can distribute objects in new ways
and have a flexible base to dynamically change distribution policies to adapt
to context changes.

Extensible Pass Mode Hierarchy. The first task we had to accomplish
was a redesign of the way pass modes where modeled. In the original frame-
work, pass modes where represented by a symbol (i.e. #reference, #value,
#name, #oid), making it impossible to delegate behavior to the pass modes
themselves. To solve this issue, pass modes are now represented as first-class
objects and modeled by a class hierarchy rooted at the PassMode class. Thanks
to this first modification we obtained a flexible way to add new pass modes.
The basic pass modes are represented by the classes PassByReferenceMode,
PassByValueMode, PassByNameMode and PassByOIDMode. Each of these classes
redefines the abstract method #marshal:on: which uses double dispatch to
delegate the specific encoding of the object to a marshaller.

In order to facilitate the creation of new pass modes, the CustomPassMode class
is defined to act as an abstract class. This class redefines the #marshal:on:

message to provide a Template Method [7], so that new pass modes only need
to redefine their specific features. This class is the root that we used to define
the new pass modes.

18

(DRAFT) International Smalltalk Conference - Prague 2006

Traceability. Traceability is defined as the capacity that has an object of
knowing those places to which it was exported. This capability allows the
object to follow the track of those remote proxies that are referencing him.
Traceability is implemented as a special type of passing an object by reference
and is modeled by the TraceablePassMode class.

When a traceable object is exported, a local wrapper (TraceableObjectWrapper)
is crated to hold a collection of the remote proxies that are referencing the
target object in other hosts; we will refer to this original object as a primary
copy. When a host requests for a proxy to the primary copy, instead of creating
a remote object, an instance of TraceableRemoteObject is instantiated in the
remote host. This object acts basically like a standard remote object, but adds
the necessary behavior to notify the primary copy that a new reference to it
has been created and to notify it when the proxy has been garbage collected
in order to remove the reference. These notifications are really captured by
the wrapper created on the primary copy, which is responsible for keeping the
remote references collection.

As we will see in the next sections, by adding traceability we can choose be-
tween the interested hosts (i.e., hosts that have a remote reference to the
primary copy) to mirror or migrate the primary copy. Also, things like dis-
tributed garbage collection by reference counting can be easily implemented
by adding the required logic on top of the traceability mechanism.

Migration. As was introduced earlier, an object can be replicated in many
other images. Once these replicas are created there is no synchronization be-
tween the original object and the remote replicas. To perform this remote
copy, a Replicator object is introduced. This object is in charge of coordinat-
ing the hosts involved in the copy process, which can be triggered explicitly
or by defining a set of events related to the environment. In order to fulfill
his task, a replicator uses a Strategy [7] that allows to configure how a replica
will be made. The most basic one is the PlainReplication strategy, which just
makes a copy of the object in another image. A more interesting one is the
MigrateAndRedirect strategy, which migrates the primary copy to another im-
age and rearranges all the remote references to update their information about
the host that now holds the object. Also, during this process, all message sends
to the primary copy are temporarily frozen so that no inconsistencies can arise.

The migration mechanism was originally needed in order to give the user flex-
ibility when working with portable devices (such as PDAs or smartphones)
and desktop computers. Imagine that the user is working in his desktop using
his favorite CA application. Suddenly, a reminder appears notifying that he
must go to the airport to catch his flight. Now the user asks his application to
shut down, but before doing so, the application tries to find the user’s PDA in
the network. In case it does, it launches the application by executing a shell

19

(DRAFT) International Smalltalk Conference - Prague 2006

command and migrates all his primary copies. As a result, the user automat-
ically has the same up-to-date information in his PDA, with the additional
benefit that any remote reference will be properly updated to reflect the host
migration of the primary copy (of course, assuming that the PDA has a global
connection to the net).

Mirroring (Synchronized Replicas). In contrast with the plain replica-
tion, the mirroring mechanism allows to keep a set of replicated objects in a
consistent state (i.e. if an instance variable of one of the objects is updated,
the remote replicas are updated to be consistent with the object). Associ-
ated to this mechanism, three new distribution policies are implemented 4 :
ForwarderPassMode, MirrorPassMode and StubPassMode. An object that is ex-
ported under any of these three new pass modes can be dynamically changed
to any of the other (e.g. an object passed in forwarder mode can be changed
dynamically to be exported in mirror mode). Next we present a brief descrip-
tion of each strategy:

Forwarder. An object exported under this pass mode will forward every
message to the primary copy, behaving like an object passed by reference.
The added value of this class is the ability of dynamically changing the distri-
bution policy to mirror or stub my receiving the messages #becomeMirror or
#becomeStub .

Mirror. An object exported as a mirror will create copies of himself in the
other images, making sure that all the replicas are consistent with the original
object. In order to keep this consistency, a mirror object delegates the synchro-
nization mechanism to a Strategy [7], which can be specified at the class or
the instance level. At the moment we have implemented two synchronization
mechanisms:

• A simple one, that just forwards the change to every replica. This strategy
doesn’t check if the update has been done in a consistent way, assuming
an optimistic update. Note that this can easily end up in desynchronized
objects in the case that mirrors of the same object are updated at the same
time in different images.

• A two-phase strategy, that ensures the objects consistency. In the first phase,
the object whose internal state has been updated triggers a notification that
will cause the blocking of every mirror by asking for his lock. If all the locks
can be successfully obtained, the change is propagated and the objects are
unlocked. In the case that the lock can’t be obtained a rollback is performed.

In order to support mirrors in a transparent way the immutability and modi-
fication management mechanism present in VisualWorks is used. This mecha-

4 These set of passing modes are inspired in the distribution strategies used by
GemStone.

20

(DRAFT) International Smalltalk Conference - Prague 2006

nism allows tagging an object as immutable so that a change in his state trig-
gers an exception. We use the ModificationManagement package to have a
simpler way of handling changes, by creating a subclass of ModificationPolicy
(MirroringPolicy) which triggers the mirror updates.

Stub. A stub can be seen as a special kind of proxy, that waits until someone
sends a message to it. When this happens, the stub gets replaced by a mirror,
creating in this way the notion of a lazy-mirror. In order to perform this, the
stub sends to himself the message #becomeMirror and then re-evaluates the
message that was originally sent to him. As expected, a stub can be sent the
messages #becomeMirror or #becomeForwarder .

Dynamic Change of Distribution Policies. Distribution policies can be
changed in two granularity levels: at the class level, by redefining the #passMode
message and at the instance level by using an instance of PassModeWrapper.
As an extension to this basic mechanism, a family of distribution policies
that can be changed dynamically has been introduced (Forwarder, Mirror

and Stub), allowing to change the way that mirrors are synchronized. With
these tools at our hand, not only can distribution be made transparent to the
programmer, but we can also decide what is the best way to distribute a given
object. As an example, consider an object in a context-aware system whose
instance variables are constantly being updated. If this object is distributed by
mirroring, we should expect to have an important network traffic and system
unresponsiveness, since every modification implies a locking and an update. On
the other hand, if we distribute this object by using a forwarder, the network
traffic will be proportional to the messages sends to the primary copy and
not to the instance variable update ratio. Of course, this can in turn become
a bottleneck, since many hosts would be sending messages to a single image
and asking for those messages to be resolved remotely. In order to overcome
this issue, we can even use a mixture of distribution policies to balance the
charge in a host: the primary copy can be mirrored in a small number of hosts,
and then be distributed to the rest of the hosts by using forwarders. In this
way, the load is distributed among the hosts that have the mirrors. It should
be noticed that, by being able to dynamically switch the distribution policy,
we could even use a meta-system that gathers statistics about the object’s
behavior and decide which policy is best suited for it.

7 Related Work

From the conceptual point of view, we found our model of context to fit quite
well the ideas presented by Dourish [5]. While in most approaches context
is treated as a collection of data that can be specified at design time and
whose structure is supposed to remain unaltered during the lifetime of the

21

(DRAFT) International Smalltalk Conference - Prague 2006

application, Dourish proposes a phenomenological view in which context is
considered as an emergent of the relationship and interaction of the entities
involved in a given situation. Similarly, in our approach, context is not treated
as data on which rules or functions act, but it is the result of the interaction
between objects, each one modeling a given context concern. This idea is
based on the concept of a context aspect, that represents the behavior that is
contextually relevant to model in a specific situation.

From an architectural point of view, our work can be rooted to the Context
Toolkit [4] which is one of the first approaches in which sensing, interpreta-
tion and use of context information is clearly decoupled. We obviously share
this philosophy though pretend to take it one step further, attacking also the
application concerns. Hydrogen [9] introduces some improvements to the cap-
ture, interpretation and delivery of context information with respect to the
seminal work of the Context Toolkit. However, both fail to provide cues about
how application objects should be structured to seamlessly interact with the
sensing layers. Our approach proposes a clear separation of concerns between
those object features that are context-free, those that involve context-sensitive
information (like location and time) and the context-aware services. By plac-
ing these aspects in separated layers, we obtain modular applications in which
modifications in one layer barely impact in others. To achieve this modular
architecture we based on the work of Beck and Johnson [2] in the sense that
the sum of our micro-architectural decisions (such as using dependencies or
decorators) also generate a strong, evolvable architecture.

Schmidt and Van Laerhoven [18] proposed a middleware architecture for the
acquisition of sensor-based context information, which is separated in four
different layers: sensors, cues, context and application. The sensors layer is
where both physical (such as cameras or active badges) and logical sensors (like
system time) are located. Data obtained from sensors is processed by cues on
the next layer, whose main function is to synthesize and abstract sensor data
by using different statistical functions. Values generated by cues are buffered
in a tuple space, which provides for inter-layer communication between the
cues layer and the context layer; then, the context layer can read this values
and take the appropriate actions. In this approach, the use of middleware
architectures helps decoupling the sensing hardware from context abstractions.
Our approach also places sensing mechanisms into a separate module, but it
does not depend directly on any other; it is treated as a crosscutting concern
of the context model, what makes it less sensitive to system changes.

Other approaches that have been presented pay closer attention to monitoring
resources and consider adaptation in terms of network bandwidth, memory or
battery power. Among these works we can mention Odyssey [12] which was
one of the first systems to address the problem of resource-aware adaptation
for mobility. In this approach there is a collaborative partnership between

22

(DRAFT) International Smalltalk Conference - Prague 2006

the operating system and individual mobile applications, in which the for-
mer monitors resource levels and notifies the applications of relevant changes.
Then, each application independently decides how to best adapt when notified.
This adaptation occurs when the application adjust the fidelity 5 levels of the
fetched data. Following a similar path, CARISMA is a middleware model that
enables context-aware interactions between mobile applications. The middle-
ware interacts with the underlying operating system and it is responsible for
maintaining a representation of the execution context. Context could be inter-
nal resources (e.g. memory and battery power), external resources (e.g. band-
width, network connection, location, etc.) or application-defined resources (e.g.
user activity or mood). CARISMA provides an abstraction of the middleware
as a customizable service provider, so that a service can be delivered in dif-
ferent ways (using different policies) when requested in different context. On
the other hand, MobiPADS presents an event notification model to allow the
middleware and applications to perform adaptation and reconfiguration of ser-
vices in response to an environment where the context varies. Services (known
as mobilets) are able to migrate between client and server hosts. MobiPADS
supports dynamic adaptation to provide flexible configuration of resources to
optimize the operations of mobile applications.

Regarding distribution policies, even though not in the OO paradigm, an in-
teresting work is presented in GSpace [13], which implements a shared data
space. This middleware monitors and dynamically adapts its distribution poli-
cies to the actual use of the data in the tuple space. The unit of distribution
in a shared data space is called tuple, which is an ordered collection of type
fields, each of them containing an actual value. Additionally, in GSpace tuples
are typed, allowing the association of separate distribution policies with dif-
ferent tuple types. Making an analogy, we use the object as the basic unit of
distribution, whose internal state can be seen as the data represented by a tu-
ple. In Smalltalk, an object belongs to a particular class which can be mapped
to the notion of type present in GSpace and assign the distribution policy at
the class (type) level and change it at run-time. In addition, we provide the
functionality to assign distribution policies in an object basis.

8 Concluding Remarks and Further Work

We have presented an architecture for developing context-aware applications
that emphasizes in a clear separation of concerns. Also, by using and extending
the dependency mechanism to connect different layers we have been able to
avoid cluttering the application with rules or customization code that would

5 Fidelity is the degree to which data presented at a client matches the reference
copy in the server.

23

(DRAFT) International Smalltalk Conference - Prague 2006

result in applications that are difficult to maintain.

From the context modeling point of view, we have shown a behavior-oriented
representation, where context is build from different context aspects. Those
aspects provide the behavior that is contextually relevant in a given moment.
This model, with the flexibility provided by a fully reflective environment as
Smalltalk, provides the kind of dynamic adaptation that we consider context-
aware applications need. We have also founded many things in common with
the MVC architecture when we look at the way that sensing is separated from
the context aspects and context aspects from services. This isn’t surprising
at all, since the reasons and the aims are basically the same: allow different
layers of a system to evolve independently, without propagating changes to
other layers. Finally, by extending the Opentalk framework we are able to
choose between different strategies to distribute objects, making it possible to
accommodate the system to the needs of mobile applications.

We are now working in the following issues:

• As mentioned in the introduction, we consider that next-generation con-
text-aware applications will have such an extent that no single company
or development group will be able to handle on its own. To cope with this
issue, an integration platform is needed to allow software modules created
by independent groups to interact seamlessly.

• Characterize object behavioral patterns, so that we can discover general
rules for distributing objects with a given distribution policy.

• Adapt distribution policies to context. For example, a context aspect can
be used to represent the network bandwidth, so that when it becomes lower
than a certain threshold the distribution policy of predefined objects is
changed (e.g. from forwarder to mirror to reduce the network traffic).

• Supporting intermittent network connections.
• We started a research track on Human-Computer Interaction, since we found

that designing usable context-aware applications is not an easy task. The
inherent limitations of mobile devices, such as small screens, tiny keyboards
and lack of resources makes the design of usable GUIs rather difficult, so
other non-graphical solutions must be explored, like audio or tactile UIs. Ad-
ditionally, users of context-aware applications tend to be constantly moving
and easily distracted, what makes usability a determin-ing factor.

References

[1] Gregory D. Abowd. Software engineering issues for ubiquitous computing.
In ICSE ’99: Proceedings of the 21st international conference on Software
engineering, pages 75–84, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press.

24

(DRAFT) International Smalltalk Conference - Prague 2006

[2] Kent Beck and Ralph E. Johnson. Patterns Generate Architectures. In ECOOP,
pages 139–149, 1994.

[3] D. Bumer, D. Riehle, W. Siberski, and M. Wulf. Role Object Patterns, 1997.

[4] Anind Kumar Dey. Providing Architectural Support for Building Context-Aware
Applications. PhD thesis, Georgia Institute of Technology, 2000.

[5] Paul Dourish. What we talk about when we talk about context. Personal and
Ubiquitous Computing, 8(1):19–30, 2004.

[6] Andrés Fortier, Javier Muñoz, Vicente Pelechano, Gustavo Rossi, and Silvia
Gordillo. Towards an Integration Platform for AmI: A Case Study, 2006. To
be prsented in the “Workshop on Object Technology for Ambient Intelligence
and Pervasive Computing”, ECOOP 2006, 4/7/2006.

[7] Erich Gamma, Richard Helm, and Ralph Johnson. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley, 1995. GAM e 95:1 1.Ex.

[8] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul Webster. The
anatomy of a context-aware application. Wirel. Netw., 8(2/3):187–197, 2002.

[9] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger,
Josef Altmann, and Werner Retschitzegger. Context-Awareness on Mobile
Devices - the Hydrogen Approach. In HICSS, page 292, 2003.

[10] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80. J. Object Oriented Program.,
1(3):26–49, 1988.

[11] U. Leonhardt. Supporting Location-Awareness in Open Distributed Systems.
PhD thesis, Dept. of Computing, Imperial College, 1998.

[12] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton,
Jason Flinn, and Kevin R. Walker. Agile application-aware adaptation for
mobility. In SOSP ’97: Proceedings of the sixteenth ACM symposium on
Operating systems principles, pages 276–287, New York, USA, 1997. ACM Press.

[13] Giovanni Russello, Michel R. V. Chaudron, and Maarten van Steen. Dynamic
Adaptation of Data Distribution Policies in a Shared Data Space System. In
CoopIS/DOA/ODBASE (2), pages 1225–1242, 2004.

[14] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit:
Aiding the Development of Context-Enabled Applications. In CHI, pages 434–
441, 1999.

[15] João Pedro Sousa and David Garlan. Aura: an Architectural Framework for
User Mobility in Ubiquitous Computing Environments. In WICSA, pages 29–
43, 2002.

[16] Visualworks Opentalk Developer’s Guide - Part Number: P46-0135-05.

25

(DRAFT) International Smalltalk Conference - Prague 2006

Unanticipated Partial Behavioral Reflection ?

David Röthlisberger a Marcus Denker a Éric Tanter b

aSoftware Composition Group
IAM — Universität Bern, Switzerland

bCenter for Web Research, DCC
University of Chile, Santiago, Chile

Abstract

Dynamic, unanticipated adaptation of running systems is of interest in a variety of
situations, ranging from functional upgrades to on-the-fly debugging or monitoring
of critical applications. In this paper we study a particular form of computational
reflection, called unanticipated partial behavioral reflection, which is particularly
well-suited for unanticipated adaptation of real-world systems. Our proposal com-
bines the dynamicity of unanticipated reflection, i.e., reflection that does not require
preparation of the code of any sort, and the selectivity, efficiency and flexibility of
partial behavioral reflection. We propose a system for unanticipated partial behav-
ioral reflection in Squeak/Smalltalk, called Geppetto, and illustrate its use with a
concrete example of a Seaside web application. Benchmarks validate the applicabil-
ity of our proposal as an extension to the standard reflective abilities of Smalltalk.

Key words: metaprogramming, reflection, metaobject protocols, partial
behavioral reflection, unanticipated adaptation

? We acknowledge the financial support of the Swiss National Science Founda-
tion for the project “A Unified Approach to Composition and Extensibility” (SNF
Project No. 200020-105091/1, Oct. 2004 - Sept. 2006) and “RECAST: Evolution
of Object-Oriented Applications” (SNF Project No. 620-066077, Sept. 2002 - Aug.
2006). É. Tanter is financed by the Millennium Nucleus Center for Web Research,
Grant P01-029-F, Mideplan, Chile.

Email addresses: roethlis@iam.unibe.ch (David Röthlisberger),
denker@iam.unibe.ch (Marcus Denker), etanter@dcc.uchile.cl (Éric Tanter).

(DRAFT) International Smalltalk Conference - Prague 2006

1 Introduction

Dynamic adaptation of a running application makes it possible to apply changes
to either the structure or execution of the application, without having to shut
it down. This ability is interesting for several kinds of systems, e.g., context-
aware applications, long-running systems that cannot afford to be halted, or for
monitoring and debugging systems on-the-fly. Adaptation can be considered a
priori by adopting adequate design patterns such as the strategy pattern [1],
but such anticipation is not always possible nor desirable: potentially many
parts of an application may have to be updated at some point. This is an area
in which metaobject protocols, by providing implicit reification of some parts
of an application [2], as well as more recently aspect-oriented programming
(AOP) [3], have shown great use [4–6].

Reflection in programming languages is a paradigm that supports computa-
tions about computations, so-called metacomputations. Metacomputations are
separated from base computations in two different levels: the metalevel and
the base level [7,8]. Because these levels are causally connected any modifica-
tion to the metalevel representation affects any further computations on the
base level [9]. In object-oriented reflective systems, the metalevel is formed in
terms of metaobjects: a metaobject acts on reifications of program elements
(execution or structure). If reifications of the structure of the program are
accessed, then we talk about structural reflection; if reifications deal with the
execution of the program, then we are referring to behavioral reflection.

This paper is concerned with a particular form of behavioral reflection, since
Smalltalk already supports powerful structural reflective mechanisms. Follow-
ing the work of McAffer on metalevel engineering [10], we adopt an operational
decomposition of the metalevel: reifications represent occurrences of operations
denoting the activity of the base program execution. Example of operations
are message sending, method execution, or variable accesses. An occurrence
of an operation is a particular event (e.g., a particular sending of a message).

We focus on two particular features of behavioral reflection that make it more
appropriate in real-world systems. First, unanticipated behavioral reflection
(UBR) allows the deployment of metaobjects affecting the behavior of a pro-
gram while it is already running. This makes it possible to fully support
unanticipated software adaptation [5]. Second, an admitted issue of behav-
ioral reflection is its overhead in terms of efficiency: jumping to the metalevel
at runtime –reifying current computation and letting a metaobject perform
some metalevel behavior– is powerful but costly. Partial behavioral reflection
(PBR) has been proposed to overcome this issue, by letting users precisely
select what needs to be reified, and when [11]. Furthermore, PBR allows for
flexible engineering of the metalevel, making it possible to design a concern-

2

(DRAFT) International Smalltalk Conference - Prague 2006

based metalevel decomposition (i.e., where one metaobject is in charge of one
concern in the base application) rather than the typical entity-based metalevel
decomposition (e.g., one metaobject per object, or one metaobject per class).
This greatly enhances the software engineering aspect of metaobjects [10,11].

The contributions of this paper are (a) a motivation for the need of unantici-
pated partial behavioral reflection (UPBR), (b) an implementation of UPBR
in Squeak Smalltalk, called Geppetto, (c) an illustration of the use of UPBR
in the detection and resolution of a performance bottleneck in an application,
without the need to actually stop the application. This is unique because the
existing proposals of UBR do not fully support PBR, and reciprocally, the
existing systems that truly support PBR are not able to provide full UBR.

The paper is organized as follows: in the next section we describe a running
example that serves as the baseline for our motivation and illustration of our
proposal. Section 3 then discusses existing reflective support in Smalltalk, as
well as the MetaclassTalk extension, followed by an overview of proposals for
UBR (Iguana/J) and PBR (Reflex). In Section 4 we describe how we establish
an efficient and expressive approach for UPBR in Smalltalk. Section 5 is then
dedicated to a description of how to use Geppetto, the framework provid-
ing UPBR in Smalltalk, by solving our running example. Section 6 discusses
some implementation issues and in Section 7 we report on some benchmarks
validating the applicability of Geppetto. Section 8 concludes and highlights
directions for future work.

2 Running Example

Let us consider a collaborative website (a Wiki), implemented using the web
framework Seaside [12, 13]. When under high load, the system suffers from
a performance problem. Suppose users are reporting unacceptable response
times. As providers of the system, our goal is to find the source of this perfor-
mance problem and then fix it. First, we want to get some knowledge about
possible bottlenecks by determining which methods consume the most execu-
tion time. A simple profiler shall be applied to our Wiki application, but it is
not possible to shutdown the server to install this profiler. During the profiling
our users should still be able to use the Wiki system as usual. Furthermore,
once all the necessary information is gathered, the profiler should be removed
entirely from the system, again without being forced to halt the Wiki. We
have also the strict requirement to profile the application in its natural envi-
ronment and context, because unfortunately the performance bottleneck does
not seem to occur in a test installation.

To profile method execution we use simple reflective functionalities. We just

3

(DRAFT) International Smalltalk Conference - Prague 2006

need to know the name and arguments of the method being executed, the time
when this execution started and the time when it finished to gather statistical
data showing which methods consume the most execution time. During the
analysis of the execution time of the different methods we see that some very
slow methods can be optimized by using a simple caching mechanism. We
then decide to dynamically introduce a cache for these expensive calculations
in order to solve our performance problem.

As we see in this simple, but realistic example, the ability to use reflection is of
wide interest for systems that cannot be halted but nonetheless require reflec-
tive behavior temporarily or permanently. Furthermore, this example proves
that an approach to reflection has to fulfill two important requirements to be
applicable in such a situation: first, the reflective architecture has to allow
unanticipated installation and removal of reflective behavior into an applica-
tion at runtime. A web application or any other server-based application can
often not be stopped and restarted to install new functionality. Moreover, the
use of reflection cannot be anticipated before the application is started, hence
a preparation of the application to support the reflective behavior that we may
want to use later is not a valid alternative here. So the reflective mechanisms
have to be inserted in an unanticipated manner. Second, in order to be able
to use reflection in a durable manner (e.g., for caching) in a real-world situa-
tion, the reflective architecture has to be efficient. This motivates the need for
partial reflection. So to sum up, this example requires unanticipated partial
behavioral reflection to be solved.

3 Related Work and Motivation

As discussed earlier, changing behavior reflectively at runtime is of great in-
terest for all applications and systems that need to run continuously without
interruption, such as servers which provide mission-critical applications. It
should be possible to analyze and change the behavior of such a system with-
out the need of stopping and restarting it.

We choose the Smalltalk [14] dialect Squeak [15] to implement a dynamic ap-
proach to reflection which supports unanticipated partial behavioral reflection
(UPBR), because Squeak/Smalltalk represent a powerful and extensible en-
vironment, well-suited to implement and explore the possibilities of UPBR.
Before presenting our proposal, we discuss the current situation of reflective
support in standard Smalltalk-80 as well as in the MetaclassTalk extension.
We also discuss very related proposals formulated in the Java context, both
for unanticipated behavioral reflection and for partial behavioral reflection.

4

(DRAFT) International Smalltalk Conference - Prague 2006

3.1 Reflection in Smalltalk-80

Smalltalk is one of the first object-oriented programming languages providing
advanced reflective support [16]. The Smalltalk approach to reflection is based
on the metaclass model and is thus inherently structural [8]. A metaclass is
a class whose instances are classes, hence a metaclass is the metaobject of a
class and describes its structure and behavior. In Smalltalk, message lookup
and execution are not defined as part of the metaclass however, they are hard
coded in the virtual machine. It is thus not possible to override in a sub-
metaclass the method which defines message execution semantics. While not
providing a direct model for behavioral reflection, we can nevertheless change
the behavior using the message passing control techniques presented in [17],
or method wrappers [18]. Also, the Smalltalk metamodel does not support the
reification of variable accesses, so the expressiveness of behavioral reflection
in current Smalltalk is limited.

Although reflection in Smalltalk can inherently be used in an unanticipated
manner, the existing ad hoc support for behavioral reflection in Smalltalk is
not efficient and does not support fine-grained selection of reification as ad-
vocated by partial behavioral reflection (PBR) [11]. For both reasons (limited
expressiveness and lack of partiality), we have to extend the current reflective
facilities of Smalltalk: this is precisely the aim of this paper.

3.2 Extended Behavioral Reflection in Smalltalk: MetaclassTalk

MetaclassTalk [19] extends the Smalltalk model of metaclasses by actually
having metaclasses effectively define the semantics of message lookup and
instance variable access. Instead of being hardcoded in the virtual machine,
occurrences of these operations are interpreted by the metaclass of the class
of the currently-executing instance. A major drawback of this model is that
reflection is only controlled at class boundaries, not at the level of individual
objects, methods or operation occurrences. This way MetaclassTalk confines
the granularity of selection of behavioral elements towards purely structural
elements. As Ferber says in [8]: ”metaclasses are not meta in the computational
sense, although they are meta in the structural sense”.

Besides the lack of fine-grained selection, MetaclassTalk does not allow for
any control of the protocol between the base and the metalevel: it is fixed
and standardized. It is not possible to control precisely which pieces of in-
formation are reified: MetaclassTalk always reifies everything (e.g., sender,
receiver and arguments in case of a message send). Recent implementations
of the MetaclassTalk model limit the number of effective reification by only

5

(DRAFT) International Smalltalk Conference - Prague 2006

calling the metaclass methods if the metaclass indeed provides changed be-
havior. But even then, once a metaclass defines a custom semantics for an
operation, all occurrences of that operation in all instances of the the class are
reified. Hence MetaclassTalk, although providing a less ad-hoc means of doing
behavioral reflection than in standard Smalltalk-80, does not provide partial
behavioral reflection.

3.3 Unanticipated Behavioral Reflection: Iguana/J

Iguana/J is a reflective architecture for Java [5] that supports unanticipated
behavioral reflection, and a limited form of partial behavioral reflection.

With respect to unanticipation, with Iguana/J it is possible to adapt Java
applications at runtime without being forced to shut them down and without
having to prepare them before their start up for the use of reflection. However
to bring unanticipated adaptation to Java, Iguana/J is implemented via a na-
tive dynamic library integrated very closely with the Java virtual machine via
the Just-In-Time (JIT) compiler interface [5]. This means that the Iguana ar-
chitecture is not portable between different virtual machine implementations:
e.g., the JIT interface is not supported anymore on the modern HotSpot Java
virtual machine. Conversely, we aim at providing UPBR for Smalltalk/Squeak
in a portable manner, in order to widen the applicability of our proposal.

With respect to partiality, Iguana/J supports fine-grained metaobject proto-
cols (MOPs), offering the possibility to specify which operations should be
reified. However, precise operation occurrences of interest cannot be discrimi-
nated, nor can the actual communication protocol between the base and met-
alevels be specified. This can have unfortunate impact on performance, since a
reified occurrence is typically around 24 times slower than a non-reified one [5].

3.4 Partial Behavioral Reflection: Reflex

A full-fledged model of partial behavioral reflection was presented in [11]. This
model is implemented in Reflex, for the Java environment.

Reflex fully supports partial behavioral reflection: it is possible to select ex-
actly which operation occurrences are of interest, as well as when they are of
interest. These spatial and temporal selection possibilities are of great advan-
tage to limit costly reification. Furthermore, the exact communication protocol
between the base and metalevel is completely configurable: method to call on
the metaobject, pieces of information to reify, etc. The model of explicit links
in Reflex also gives total control over the decomposition of the metalevel: a

6

(DRAFT) International Smalltalk Conference - Prague 2006

given metaobject can control a few occurrences of an operation in some objects
as well as some occurrences of other operations in possibly different objects.
Hence metalevel engineering is highly flexible, which makes it possible to di-
rectly support a concern-based metalevel decomposition, and this is precisely
what is required to support aspect-oriented programming [11,20].

The limitation of Reflex however lies in its implementation context: being
a portable Java extension, Reflex works by transforming bytecode. Hence,
although reflective behavior occurs at runtime, reflective needs have to be an-
ticipated at load time. This means that Reflex does not allow a programmer
to insert new reflective behavior affecting already-loaded classes into a run-
ning application. Instead, the programmer is forced to stop the application,
define the reflective functionality required and to reload the application to in-
sert this metabehavior. Links can be deactivated at runtime, but at a certain
residual cost, because the bottom line in Java is that class definitions cannot
be changed once loaded.

3.5 Motivation

As we have seen in this section, although unanticipated partial behavioral re-
flection is highly attractive, no current proposals provide it. Smalltalk-80 is
not well-suited for behavioral reflection, MetaclassTalk does not support PBR
nor fine-grained metalevel engineering, Iguana/J has limited partiality and
implementation limitations, and Reflex has limited dynamicity. Our proposal,
a reflective extension of Squeak supporting UPBR called Geppetto, imple-
ments the UBR features of Iguana/J and the PBR features of Reflex to form a
powerful, open framework for UPBR which extends, enhances and completes
the reflective model of Smalltalk in a useful and efficient way.

4 Unanticipated Partial Behavioral Reflection for Smalltalk

We first overview the model of partial behavioral reflection adopted by Gep-
petto, then discuss how we use bytecode manipulation to achieve unantici-
pation, and finish with an overview of the design of Geppetto.

4.1 Partial Behavioral Reflection in a Nutshell

Geppetto adopts the model of partial behavioral reflection (PBR) presented
in [11], which we hereby briefly summarize. This model consists of explicit
links binding hooksets to metaobjects (Fig. 1).

7

(DRAFT) International Smalltalk Conference - Prague 2006

activation
condition

hookset

metaobject

links

Fig. 1. Links are explicit entities bindings hooksets (at the base level) to metaobjects,
possibly subject to activation conditions.

A hookset identifies a set of related operation occurrences of interest, at the
base level. A metaobject is a standard object that is delegated control over a
partial reification of an operation occurrence at runtime. A link specifies the
causal connection between a hookset (base level) and a metaobject (metalevel).
Upon occurrences of operations matched by its hookset, the link invokes a
method on the associated metaobject, passing it pieces of reified information.
Exactly which method is called, and which pieces of information are passed,
is specified in the link itself. So, the link specifies the expected metaobject
protocol, and the metaobject can be any object fulfilling this protocol.

Several other attributes further characterize a link, such as the control that is
given to the metaobject (i.e., that of acting before, after, or around the inter-
cepted operation occurrence). A dynamically-evaluated activation condition
can also be attached to the link, in order to determine if a link applies or not
depending on any dynamically-computable criteria (e.g., the amount of free
memory or the precise class of the currently-executing object).

As mentioned earlier, PBR achieves two main goals: (1) highly-selective reifi-
cation, both spatial (which occurrences of which operation) and temporal
(thanks to activation conditions), and (2) flexible metalevel engineering thanks
to fine-grained protocol specification and the fact that a hookset can gather
heterogeneous execution points (i.e., occurrences of different operations in
different entities).

4.2 Bytecode Manipulation for Unanticipated Behavioral Reflection in Smalltalk

To enable unanticipated partial behavioral reflection in Squeak, the first step
is to realize the model for partial reflection as described above. As we have
seen in Section 3.1, Smalltalk (and thus Squeak) does not support behavioral
reflection properly. To introduce behavioral reflection in a system that does
not support it, we can either modify the interpreter (or virtual machine) or
transform the code of programs. Modifying the interpreter necessarily sac-
rifices portability, unless the standard interpreter is actually provided as a
sufficiently-open implementation.

8

(DRAFT) International Smalltalk Conference - Prague 2006

Hookset1

Control Scope Activation
Condition

Before

BeforeAfter

After

Around

1 1 1

1

Operation

MethodEval

MsgSend

InstVarAcces

TempAcces

CallDescriptor
selector
parameters
passingMode

1
*

Link
metaobject

Fig. 2. Class diagram of Geppetto design

As Squeak is not implemented using an open interpreter, we use the pro-
gram transformation approach. We can operate either on source code or on
bytecode, but the important thing is, transformation should possibly be done
while the program is running. The most appropriate way is arguably to work
on bytecode, because it does not require the source code to be present. Squeak
by itself does not however support runtime bytecode manipulation appropri-
ately. Fortunately, most of the authors have been involved in ByteSurgeon,
a system for runtime bytecode manipulation in Squeak [21].

Following the principles of the implementation of Reflex for Java, we can there-
fore introduce reflective abilities via insertion of hooks into bytecode. But as
opposed to Reflex, in Squeak this can be done at runtime. Since Smalltalk fully
supports structural reflection at runtime, and ByteSurgeon extends these
structural abilities with method bodies transformation, we can dynamically
introduce selective reflective abilities in running programs.

4.3 Geppetto Design

Geppetto instantiates the model of partial behavioral reflection previously
presented, as summarized on Figure 2. A link binds a hookset to a metaobject,
and is characterized by several attributes. A hookset specifies the operation
it matches occurrences of, which can be either MethodEval, MsgSend, Inst-
VarAccess or TempAccess. Hooksets can also be composed as will be explained
later.

Spatial selection of operation occurrences in Geppetto can be done in a num-
ber of ways, as illustrated on Fig. 3. Eventually, occurrences are selected within
method bodies (or boundaries), by applying an operation selector, i.e., a pred-
icate that can programmatically determine whether a particular occurrence is
of interest or not. Coarser levels of selection are provided to speedup the se-

9

(DRAFT) International Smalltalk Conference - Prague 2006

Selection Level Example

Package hookset inPackage: ’Wiki’

Class hookset classSelector: [:class |class superclass = MyClass]

hookset inClasses: { MyClass. YourClass. }

Method hookset methodSelector: [:meth |meth selector = #hello]

hookset inMethods: { #hello. #bye. }

Operation hookset operation: MsgSend

Operation Occurrence hookset operationSelector: [:send | send selector = #size]

Fig. 3. Spatial Selection in Geppetto

lection process. First of all, one can eagerly specify the operation of which
occurrences may be of interest. Furthermore, one can restrict a hookset to a
given package, to a set of classes (using a class selector), and/or to a set of
methods (using a method selector). Convenience methods are provided when
an enumerative style of specification is preferred.

Thus far, hooksets are operation-specific. Like in Reflex, Geppetto supports
hookset composition, so a hookset can match occurrences of different opera-
tions. Hooksets can be composed using union, intersection, and difference.

A Link object is created by giving an identifier, the hookset, and by specifying
how the metaobject instance(s) are to be obtained.

link := Link id: #foo hookset: hs metaobject: [MyMO new]

The block given for the metaobject is evaluated to bootstrap metaobject ref-
erences. As a shortcut, one can directly give a metaobject instance, instead of
a block; the given instance will then be shared among entities affected by the
link.

A link is further characterized by several attributes:

• Control defines when the metaobject associated to the link is given control
over an operation occurrence: it can be either Before, After, BeforeAfter or
Replace.

• Scope determines the association scheme of a metaobject with respect to
base entities. For instance, if the link has object scope, then each instance
affected by the link has a dedicated metaobject for the link. The scope can
also be class (one metaobject per class), or global (a unique metaobject for
the link).

• an ActivationCondition is a dynamically-evaluated predicate that determines

10

(DRAFT) International Smalltalk Conference - Prague 2006

Operation Reified Data Description

All Operations context execution context

self the object

control before, after or replace

Message Send/ arguments arguments as an array

Method Evaluation argX X thargument

sender sender object

senderSelector sender selector

receiver receiver object

selector selector of method

result returned result (after only)

Temp/InstVar Access name name of variable

offset offset of variable

value value of variable

newvalue new value (write only)

Fig. 4. Supported reified information

if a link is active (that is, whether reification and delegation to the metaob-
ject effectively occurs). A typical usage of an activation condition is to
obtain object-level reifications: the condition can be used as a discriminator
of instances that are affected or not by the considered link.

• a CallDescriptor defines the communication protocol with the metaobject. A
call descriptor embeds the selector of the message to be sent, the parameters
to pass as well as how they are passed (i.e., as plain method arguments,
packed into an array, or embedded in a wrapper object). Table 4 lists all
possible parameters depending on the reified operation.

Finally, for a link to be effective, it has to be dynamically installed by sending
the install message to it. At any time, a link can be uninstalled via uninstall.
Links have identifiers, which can be used to retrieve them from a global repos-
itory at any time (Link get: #linkID).

11

(DRAFT) International Smalltalk Conference - Prague 2006

5 Solving the Running Example with Geppetto

To illustrate the use of Geppetto, we now explain how to solve the problem
introduced in Sect. 2. In order to find out where the performance issue comes
from, we start by elaborating a metaobject protocol to profile the Wiki ap-
plication. Once we identified the expensive methods that can be cached, we
introduce a caching mechanism with Geppetto.

5.1 Profiling MOP

Defining and introducing dynamically reflective behavior into an application
consists of three steps: first, the specification of the places where metabehavior
is required (e.g., in which classes and methods, for which objects) by config-
uring a hookset. Second, the definition of the metaobject protocol (e.g., which
data is passed to which metaobject) by setting up one or more links. Third
and finally, the installation of the defined reflective functionality.

For profiling method execution times of our Wiki application, we need to
define a link, binding the appropriate hookset to a Profiler metaobject. The
hookset consists of all method evalution occurrences in all classes of the Wiki
application. Hence the hookset is defined as follows:

allExecs := Hookset new.
allExecs inPackage: ’Wiki’; operation: MethodEval.

All classes of the Wiki package are of interest, and any occurrences of a method
evaluation as well. This is why we do not need to use intra-operation selection.

Now we have to design what method of the metaobject has to be called, and
when. In order to be able to determine the execution time of a method, the
profiler acts around method evaluations, recording the time at which execution
starts and ends, and computing the execution time:

profile := Link id: #profiler hookset: allExecs metaobject: Profiler new.
profile control: Control around.

The profiler hence needs to receive as parameters the selector being called,
the currently-executing instance, and the arguments. Its method to call is
thus profileMethod:in:withArguments:. This protocol is specified using a call
descriptor:

profile callDescriptor:
(CallDescriptor

selector: #profileMethod:in:withArguments:

12

(DRAFT) International Smalltalk Conference - Prague 2006

parameters: {Parameter selector. Parameter self. Parameter arguments.}
passingMode: PassingMode plain).

Profiler is a conventional Smalltalk class, whose instances are in charge of
handling the task of profiling. For the sake of conciseness, we do not explain
the implementation of such a profiler. Finally, to effectively install the link,
we just need to execute:

profile install.

and Geppetto inserts all required hooks. From now on, all method executions
in the Wiki application get reified and the Profiler metaobject starts gathering
data.

Now suppose that based on the gathered data, we determine that a particular
method is indeed taking much time: #toughWork: of our Wiki Worker objects.
It fortunately happens that this method can seemingly benefit from a simple
caching mechanism. We can now completely remove the profiling functionality
from the Wiki, going back to normal execution, without reification at all. This
is achieve by simply executing:

profile uninstall.

Geppetto then dynamically removes all hooks from the application code,
hence further execution is not subject to any extra slowdown at all.

5.2 Caching MOP

We now explain how the caching functionality is dynamically added with
Geppetto. First, we define the hookset, and then the link:

toughWorks := Hookset new.
toughWorks inClass: Worker; inMethod: #toughWork:; operation: MethodEval.

cache := Link id: #cache hookset: toughWorks metaobject: Cache new.
cache control: Control around.
cache callDescriptor: (CallDescriptor

selector: #cacheFor:
parameters: {Parameter arg1}
passingMode: PassingMode plain).

The sole piece of information that is reified is the first argument passed to the
#toughWork: method, denoted with Parameter arg1.

13

(DRAFT) International Smalltalk Conference - Prague 2006

Cache is a conventional Smalltalk class whose instances manage caching (based
on single parameter values). In the #cacheFor: method, we first check if the
cache contains a value for the passed argument. If so, this value is returned by
the metaobject. Else, the metaobject proceeds with the replaced operation of
the base level, takes the result answered by this operation via #proceed and
returns this value after having stored it into the cache:

cacheFor: arg
| result |
(self cacheContains: arg) ifTrue: [ˆself cacheAt: arg].
result := self proceed.
self cacheAt: arg put: result.
ˆresult

Installing the cache is simply done by executing cache install. Geppetto in-
serts the necessary hooks in the code, and from then on, all evaluations of the
#toughWork: method is optimized by caching.

Although this example is pretty straightforward, it illustrates well the point of
UPBR: one can easily add reflective features at runtime, with the possibility to
completely remove them at any time. This fosters incremental and prototypical
resolution of problems such as the one we have illustrated. For instance, if
it turns out that the introduced caching is not effective enough, it can be
uninstalled, and a more elaborate caching can be devised.

6 Implementation Issues

In this section we explain a crucial part of the implementation of Geppetto:
the installation of hooks into the bytecode. As explained earlier, we have
to dynamically install hooks at runtime to be able to apply reflection in an
unanticipated manner into a running system. Therefore, we require a means
to manipulate bytecode at runtime. For that purpose we use ByteSurgeon,
a framework for runtime manipulation of bytecode in Squeak [21]. Using this
tool we do not have to work directly with bytecode. Instead we write our hooks
in normal Smalltalk code, which we then pass to ByteSurgeon. Internally,
ByteSurgeon will compile our code to bytecode and insert the resulting
bytecode into compiled methods.

6.1 Adapting Method Binaries

To adapt the binary code of method, we first select the method in which we
want to change the bytecode (recall that a method is defined as the combina-

14

(DRAFT) International Smalltalk Conference - Prague 2006

tion of a class and a selector, e.g., WikiPage>>#document). Second, we instru-
ment this method with one of the instrumentation methods added by Byte-
Surgeon to compiled methods, e.g., #instrumentSends: or #instrumentInst-
Vars:, to access all the specific operations in a method, i.e., message sends
or instance variables accesses, respectively. These instrumentation methods
expect a block as single argument. In this block we have access to a block ar-
gument which denotes the current operation occurrence object. For a message
send we get access to an instance of IRSend (this is part of the intermediate
representation on which ByteSurgeon is based [21]).

Below is a short example showing how ByteSurgeon can be used to insert a
simple piece of Smalltalk code into the method #document of class WikiPage:

(WikiPage>>#document) instrumentSends: [:send |
send selector = #size ifTrue: [send replace: ’7’]]

In this example we replace every send of the #size message occurring in the
method #document of class WikiPage to simply return the constant 7. This
example shows how to access different operations in a method (operation selec-
tion, i.e., message sending) and how to select different operation occurrences
(intra-operation selection; i.e., message sends invoking #size) in a method.

During the instrumentation of a method the defined block is evaluated for
every such operation in that method. To do intra-operation selection it is
enough to specify a condition in the block, such as asking if the selector of an
IRSend is of interest. Only if this condition is met the corresponding operation
occurrence is adapted, either by replacing it or by inserting code before or
after. The code to be inserted is written in normal Smalltalk code directly in
a string. In this string we gain access to dynamic information by using meta
variables, such as <meta: #receiver> or <meta: #arguments> to get the
receiver or the arguments of a method, respectively (more in [21]).

6.2 Structure of a Hook

In Geppetto, hooks are inserted in bytecode to provoke reification and del-
egation at runtime, where and when needed. The hooks execution has three
steps:

• Checking if the link is active for the currently-executing object;
• Reifying dynamic information and packing this information as specified by

the call descriptor of the link;
• Performing the actual delegation to the metaobject, by sending the message

specified in the call descriptor, with the corresponding reified information.

15

(DRAFT) International Smalltalk Conference - Prague 2006

When a link has to be installed, Geppetto evaluates the static selectors
(package, class, method, etc.) and then generates an appropriate string of
Smalltalk code based on the specification of the call descriptor of the link.
This string is then compiled and inserted by ByteSurgeon. For instance,
for the cache link of Sect. 5.2, the generated Smalltalk code is:

(<meta: #link> isActiveFor: self)
ifTrue: [<meta: #link> metaobject cacheFor: <meta: #arg1>].

First, the activation condition is checked. Note that the link itself is available
as a meta variable for ByteSurgeon. If the link is active for the currently-
executing object, then delegation occurs: the metaobject is retrieved from the
link, and the cacheFor: message is sent with first argument as parameter.

The exact string generated of course depends on the call descriptor defining
the message name, parameters, and passing mode. For instance if the passing
mode is by array, it is necessary to first build up the array explicitly in the
hook. The generated code also depends on the scope of the link (e.g., if the
link has object scope, then retrieving the metaobject requires passing the
currently-executing object).

7 Evaluation

We now report on preliminary micro-benchmarks that validate the perfor-
mance of Geppetto by comparing it with other reflective frameworks and
architectures. We measure the slowdown of a fully reified message send over
a non-reified message send. In Figure 5 we compare the reflective systems
Iguana/J [5], and MetaclassTalk [22] to Geppetto. The measurement for
Iguana/J was taken from [5]. For MetaclassTalk and Geppetto, we per-
formed the benchmarks on a Windows PC with an Intel Pentium 4 CPU 3.4
GHz and 3 GB RAM. The version of MetaclassTalk used was v0.3beta, Gep-
petto was running in Squeak 3.9. For a more detailed explanation and the
source code of the benchmark, see [23].

We are comparing systems to Geppetto that do not provide partial reflec-
tion. As mentioned earlier, the real performance gain of partial reflection comes
from the fact that we are able to exactly control what to reify and thus are
able to minimize the reification costs. This benchmark does not cover this
use but let Geppetto reify every information about a message send to be
comparable with the other systems. The benchmark will thus only give an
impression of the worst case, i.e., when Geppetto is doing full reification of
a message send.

16

(DRAFT) International Smalltalk Conference - Prague 2006

System slowdown factor

Geppetto 10.85

Iguana/J 24

MetaclassTalk 20

Fig. 5. Slowdowns of different reflective systems for the reification of message sends.

MetaclassTalk (ms) Geppetto (ms) Speedup

message send 108 46 2.3x

instance variable read 272 92 2.9x

Fig. 6. Speedup of Geppetto over MetaclassTalk for reified message send and
instance variable read access.

Because Iguana/J is using Java, we cannot do a direct time comparison with
Geppetto. So we did such a comparison with MetaclassTalk, since both
Geppetto and MetaclassTalk are running in similar environments (Meta-
classTalk is implemented in an adapted Squeak version). We implemented for
the operations message sending and instance variable access the same metaob-
ject protocol and the same behavior on the metalevel in both proposals to be
able to compare the resulting execution time. The measured execution time
includes the reification as well as the processing of the metalevel behavior. For
message send we reify the receiver, the selector and the arguments, for instance
variable access the name of the variable and its value. Figure 6 presents the
results of this benchmark. For both operations, message send and instance
variable access, we reified almost every possible information in Geppetto
to get a reliable comparison with MetaclassTalk which does not support to
control which information shall be reified, as described in Sect. 3.2. Hence
Geppetto, supporting partial reification of information, will perform even
better than the 2-to-3 times speedup against MetaclassTalk in cases where
not every information about an operation occurrence is required.

These preliminary benchmarks tend to validate that the applied model for
partial behavioral reflection is efficient compared to other models. Hence the
combination of PBR and UBR is indeed fruitful and successful, because UPBR
enables us to use unanticipated reflection in an efficient and effective manner.

8 Conclusion and Future Work

In this paper, we have motivated a particular form of computational reflec-
tion, called unanticipated partial behavioral reflection, which is particularly

17

(DRAFT) International Smalltalk Conference - Prague 2006

well-suited for unanticipated adaptation of real-world systems. Our proposal
combines the dynamicity of unanticipated reflection, i.e., reflection that does
not require preparation of the code of any sort, and the selectivity, efficiency
and flexibility of partial behavioral reflection. We have presented a system for
unanticipated partial behavioral reflection in Squeak/Smalltalk, called Gep-
petto, illustrated its use with a concrete example of a Seaside web applica-
tion. Preliminary benchmarks validate the applicability of our proposal as an
extension to the standard reflective abilities of Smalltalk.

In the future, we plan to work mainly in two directions: the first is to improve
Geppetto itself, the second consists of using it in a number of projects. As
far as improvements to Geppetto itself are concerned, we plan to explore
advanced scoping for reifications (control-flow based, and more generally, con-
textual) to give the metaprogrammer even more means to control where and
when reification should occur. Another track is to redesign the backend of
Geppetto: we decided to use bytecode transformation as we could lever-
age the fast and easy to use ByteSurgeon framework. But bytecode is a
very low-level representation means to trade performance with expressiveness.
We plan to extend the Smalltalk structural meta model to provide a high-level
model of sub-method structure and explore its use for Geppetto. We are cur-
rently working on a number of projects that could benefit from Geppetto.
We have experimented with back-in-time debugging [24], but the prototype
directly uses ByteSurgeon for now; we plan to explore how Geppetto can
be used instead. Another interesting possibility is to use Geppetto as the
basis for dynamic analysis [25].

Finally, we plan to explore dynamic aspects for Smalltalk with Geppetto.
Because as argued in the body of work on versatile kernels for AOP [20, 26],
the flexible model of partial behavioral reflection on which both Reflex and
Geppetto are based is particularly well-suited to serve as an underlying
infrastructure for AOP. This would then allow Geppetto to provide more
elaborate AOP features than what the other known dynamic AOP systems
for Smalltalk [27,28] do at present.

References

[1] E. Gamma, R. Helm, J. Vlissides, R. E. Johnson, Design patterns: Abstraction
and reuse of object-oriented design, in: O. Nierstrasz (Ed.), Proceedings
ECOOP ’93, Vol. 707 of LNCS, Springer-Verlag, Kaiserslautern, Germany, 1993,
pp. 406–431.

[2] R. Rao, Implementational reflection in silica, in: P. America (Ed.), Proceedings
ECOOP ’91, Vol. 512 of LNCS, Springer-Verlag, Geneva, Switzerland, 1991,
pp. 251–267.

18

(DRAFT) International Smalltalk Conference - Prague 2006

[3] T. Elrad, R. E. Filman, A. Bader, Aspect-oriented programming, cacm 44 (10).

[4] G. Kiczales, J. Ashley, L. Rodriguez, A. Vahdat, D. G. Bobrow, Metaobject
protocols: Why we want them and what else they can do, in: Object-Oriented
Programming: the CLOS Perspective, MIT Press, 1993, pp. 101–118.

[5] B. Redmond, V. Cahill, Supporting unanticipated dynamic adaptation of
application behaviour, in: Proceedings of European Conference on Object-
Oriented Programming, Vol. 2374, Springer-Verlag, 2002, pp. 205–230.

[6] P. L. Tarr, M. D’Hondt, L. Bergmans, C. V. Lopes, Workshop on aspects and
dimensions of concern: Requirements on, and challenge problems for, advanced
separation of concerns, in: J. Malenfant, S. Moisan, A. M. D. Moreira (Eds.),
ECOOP 2000 Workshops, Vol. 1964 of LNCS, Springer, 2000, pp. 203–240.

[7] B. C. Smith, Reflection and semantics in a procedural language, Tech. Rep.
TR-272, MIT, Cambridge, MA (1982).

[8] J. Ferber, Computational reflection in class-based object-oriented languages, in:
Proceedings OOPSLA ’89, ACM SIGPLAN Notices, Vol. 24, 1989, pp. 317–326.

[9] P. Maes, Computational Reflection, Ph.D. thesis, Laboratory for Artificial
Intelligence, Vrije Universiteit Brussel, Brussels Belgium (Jan. 1987).

[10] J. McAffer, Engineering the meta level, in: G. Kiczales (Ed.), Proceedings of
the 1st International Conference on Metalevel Architectures and Reflection
(Reflection 96), San Francisco, USA, 1996.

[11] É. Tanter, J. Noyé, D. Caromel, P. Cointe, Partial behavioral reflection: Spatial
and temporal selection of reification, in: Proceedings of OOPSLA ’03, ACM
SIGPLAN Notices, 2003, pp. 27–46.

[12] Seaside, developing sophisticated web applications in Smalltalk,
http://www.seaside.st.

[13] S. Ducasse, A. Lienhard, L. Renggli, Seaside — a multiple control flow web
application framework, in: Proceedings of ESUG Research Track 2004, 2004,
pp. 231–257.

[14] A. Goldberg, D. Robson, Smalltalk 80: the Language and its Implementation,
Addison Wesley, Reading, Mass., 1983.

[15] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay, Back to the future:
The story of Squeak, A practical Smalltalk written in itself, in: Proceedings
OOPSLA ’97, ACM SIGPLAN Notices, ACM Press, 1997, pp. 318–326.

[16] F. Rivard, Smalltalk : a Reflective Language, in: Proceedings of REFLECTION
’96, 1996, pp. 21–38.

[17] S. Ducasse, Evaluating message passing control techniques in Smalltalk, Journal
of Object-Oriented Programming (JOOP) 12 (6) (1999) 39–44.

19

(DRAFT) International Smalltalk Conference - Prague 2006

[18] J. Brant, B. Foote, R. Johnson, D. Roberts, Wrappers to the Rescue, in:
Proceedings ECOOP ’98, Vol. 1445 of LNCS, Springer-Verlag, 1998, pp. 396–
417, method wrappers.

[19] N. Bouraqadi, Un mop smalltalk pour l’étude de la composition et de la
compatibilité des métaclasses. application à la programmation par aspects
(a smalltalk mop for the study of metaclass composition and compatibility.
application to aspect-oriented programming - in french), Thèse de doctorat,
Université de Nantes, Nantes, France (jul 1999).

[20] É. Tanter, J. Noyé, A versatile kernel for multi-language AOP, in: Proceedings
of the 4th ACM SIGPLAN/SIGSOFT Conference on Generative Programming
and Component Engineering (GPCE 2005), Vol. 3676 of LNCS, Tallin, Estonia,
2005.

[21] M. Denker, S. Ducasse, É. Tanter, Runtime bytecode transformation for
Smalltalk, Journal of Computer Languages, Systems and Structures 32 (2-3)
(2006) 125–139.

[22] N. Bouraqadi, Concern oriented programming using reflection, in: Workshop on
Advanced Separation of Concerns – OOSPLA 2000, 2000.

[23] D. Röthlisberger, Geppetto: Enhancing Smalltalk’s reflective capabilities with
unanticipated reflection, Masters Thesis, University of Bern (Jan. 2006).

[24] B. Lewis, Debugging backwards in time, in: Proceedings of the Fifth
International Workshop on Automated Debugging (AADEBUG 2003), 2003.

[25] T. Ball, The Concept of Dynamic Analysis, in: Proceedings of ESEC/FSE
’99 (7th European Software Engineering Conference and 7th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering, no. 1687
in LNCS, 1999, pp. 216–234.

[26] É. Tanter, J. Noyé, Motivation and requirements for a versatile AOP kernel,
in: 1st European Interactive Workshop on Aspects in Software (EIWAS 2004),
Berlin, Germany, 2004.

[27] A. Bergel, Facets: First class entities for an open dynamic aop language, in:
Proceedings of the Open and Dynamic Aspect Languages Workshop, 2006.

[28] R. Hirschfeld, AspectS – Aspect-Oriented Programming with Squeak, in:
M. Aksit, M. Mezini, R. Unland (Eds.), Objects, Components, Architectures,
Services, and Applications for a Networked World, no. 2591 in LNCS, Springer,
2003, pp. 216–232.

20

(DRAFT) International Smalltalk Conference - Prague 2006

Session – New Languages

(DRAFT) International Smalltalk Conference - Prague 2006

(DRAFT) International Smalltalk Conference - Prague 2006

Scl :

a Simple, Uniform and Operational Language

for Component-Oriented Programming

in Smalltalk

Luc Fabresse, Christophe Dony, Marianne Huchard

Laboratoire LIRMM, Université Montpellier II, France
{fabresse,dony,huchard}@lirmm.fr

Abstract

Unanticipated connection of independently developed components is one of the key
issues of component-oriented programming. While a variety of component-oriented
languages have been proposed, none of them has achieved a breakthrough yet.

In this paper, we present Scl a simple language dedicated to component-oriented
programming. Scl integrates well-known features such as component classe, com-
ponent, interface, port or service. All these well-known features are presented, dis-
cussed and compared to existing approaches because they vary quite widely from
one language to another. But, it is not enough to build a component language. In-
deed, to connect component, most approaches use language primitives and shared
interfaces. But shared interfaces are in contradiction with the philosophy of inde-
pendently developed components. To this issue, Scl provides new features such as
a uniform component composition model based on connectors. Connectors repre-
sent interactions between independently developed components. Scl also integrates
component properties which enable connections based on component state changes
with no requirement of specific code in components.

Key words: component-oriented programming, unanticipated composition,
connector, component property

Preprint submitted to ESUG 2006 7 June 2006

(DRAFT) International Smalltalk Conference - Prague 2006

1 Introduction

Component-based software engineering is widely investigated by research and
industry. This interest is driven by the promise of improving current software
development practices in significant ways such as reusability and extensibil-
ity [23,45]. Although many models, languages and tools have been proposed,
it is still difficult to apply component-oriented programming (COP) in prac-
tice. This is because a lot of them are dedicated to the software specification
such as UML 2.0 [21] or architecture description languages (ADL) such as
Wright [5,4]. COP is currently carried out using object-oriented languages.
These languages do not offer specific abstractions to ease COP and have to
be used in a disciplined way to guarantee a COP style.

Component-based software engineering needs component-oriented languages
(COL) as well as transformation of models [37,12] into executables or writing
programs by hand [16]. Among the approaches on components, component-
oriented languages have been proposed in order to support COP such as
ComponentJ [42], ArchJava [2], Julia/Fractal [8], Lagoona [16], Piccola [1],
Picolo [30], Boxscript [29], Keris [48] or Koala [46]. The contributions of these
languages are new or adapted abstractions and mechanisms that vary quite
widely from one proposal to another such as connection, composition, port,
interface, connector, service, module, message, etc. This is quite normal with
such an emerging domain, but there is a need for a closer analysis: which
ones are essential (basic) and cannot be removed, which ones are (eventually)
redundant? which are the key-mechanisms to achieve component composi-
tion? To a larger extent, all these questions raise the issue of knowing which
constructs and mechanisms are the main identifying features of component
orientation (by analogy with object orientation).

In this paper, we propose Scl that stands for Simple Component Language
which is the result of our study and research of component-oriented program-
ming. Scl is built on a minimal set of concepts applied uniformly in order to
ease the understanding of key concepts of component-oriented programming.
Picolo [30] and BoxScript [29] are two languages that also target this goal
of minimality for simplicity. However, Scl integrates a more powerful and
extensible component composition mechanism which is one of the key mech-
anisms of COP. In Scl, component composition relies on first-class entities
representing connections, named connectors [43,33]. Connectors offer better
decoupling between the business code inside components and the connection
code inside connectors and thus increase components reusing. Some COL al-
ready propose connectors such as Archjava [2] or Sofa [6] but Scl connectors
offer more expressiveness by integrating ideas that come from aspect-oriented
programming [26]. Scl also proposes the concept of property to externalize
component state without breaking component encapsulation. Properties are

2

(DRAFT) International Smalltalk Conference - Prague 2006

the support of a new kind of component communication that is based on their
properties state changes. Properties ease the use of the “publish-subscribe”
communication pattern without requiring any special code in the publisher or
the subscriber. We choose Smalltalk and Squeak to implement Scl because it
is a dynamic language that offers a suitable meta-object protocol to be easily
extended. Although it is also possible to implement Scl in another language,
we would like to experiment COP in a dynamic context and we want to provide
an easily extensible language.

The paper is organized as follows. Section 2 presents basic ideas of component-
oriented programming. Section 3 details main characteristics of the Scl lan-
guage: component classes, components, ports, interfaces, connectors and prop-
erties. Section 4 presents the current implementation of Scl in Squeak. Sec-
tion 5 discusses related works. Finally, section 6 concludes and presents future
work.

2 Component-Oriented Programming: What, Why and How ?

Component-oriented programming (COP) does for decoupling software en-
tities what object-oriented programming has done for object encapsulation
and inheritance or aspect-oriented programming has done for crosscutting
concerns. It provides language mechanisms that explicitly capture software
architecture structure. COP is based on the idea stating that software can be
built by plugging pieces of software called components. The term “component”
means many different things to many different people depending upon the
perspective of the development is viewed. For example, design patterns [17],
functions or procedures [31], modules as components [16], application frame-
works [45], object-oriented classes [22], and whole applications [34] are consid-
ered as components. Similarly, there are many different definitions for the term
component given in the literature [7,20]. In this paper, we use the following
definition : “A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composition by third
parties” [45].

Component-based software development focuses on better reuse and easier
evolution. A component must be independent of one particular context in
order to be reusable. Furthermore, reusing a component is better than creating
its own because it is has already been developed and tested. The evolution
and maintenance of a component software architecture may be easier than a
class hierarchy. This is because of the independent extensibility [45] property
of component-based software. Indeed, component softwares are built out of
interconnected components and each component can evolve independently.

3

(DRAFT) International Smalltalk Conference - Prague 2006

3 The Scl language

In this section we describe Scl (Simple Component Language). We present
and motivate its main features and discuss the problems that arise when design
a COL.

3.1 Component Classes and Component Instances

In object-oriented languages, the terms “class” and “instance” allow program-
mers to refer without ambiguity respectively to object descriptions in program
texts and to objects themselves as runtime entities. Although component-
based languages are generally built on a class/object conceptual model, few
of them specify the terms to denote respectively component classes and com-
ponent objects. Moreover, there is no widely accepted terms in component-
oriented approaches because there is not a unique definition of the compo-
nent term. For example, the two keywords component class in ArchJava
and component in ComponentJ denote a component class which can be in-
stantiated. Component classes are at the same time component descriptors,
component instantiators and component method holders such as in ArchJava.
Few COL have been proposed with a prototype-based model i.e without de-
scriptors such as in [47] where a prototype-based language has been proposed
on the top of Java in order to provide primitives to dynamically build, extend
and compose software components from Java objects. We think that the ar-
guments for or against classes is similar in the components and objects worlds
and that both approaches are worthy considered. In Scl, we have chosen a
class/instance approach. A component is a runtime entity and it is an instance
of a component class. Component classes are written by the component pro-
grammer in order to create off-the-shelf reusable pieces of software while the
software architect creates an application by choosing some component classes
and then connecting instances i.e components. Figure 1 shows the code to
create a component class and the code to create a component using the new

operator.

SCLComponentClassBuilder c r e a t e : #MyComponent .
. . .
c := MyComponent new .
. . .

Fig. 1. A component descriptor and a component instance

4

(DRAFT) International Smalltalk Conference - Prague 2006

3.2 Component provisions and requirements

3.2.1 Component interfaces and services

As stated by the Szyperski definition [45], a component can only be accessed
through well-defined interfaces. Component interfaces enforce explicit context-
dependencies and a high-level of encapsulation. A component interface de-
scribes the services a component provides to allow other components to in-
teract with it. A third party component can only use the services provided
through the interface even if the component provides other services. Compo-
nent interfaces also specify the required services by a component to be able
to provide the own services. Basically, a service is a subprogram defined in a
component such as a method in the object-oriented model. The term service is
also used to refer to a high-level functionality. For example, a Network service
is at least composed of four methods: open: anAddress to initialize a net-
work connection, close to finish the connection, send: data and receive to
respectively send and receive data through an opened connection. Component-
based languages propose different concepts to describe component interfaces
such as ports, interfaces, protocols, etc. In Scl, we choose to represent com-
ponent interfaces by ports described by interfaces. We argue that these two
concepts are enough to describe component interfaces.

3.2.2 Ports

Ports represent interaction points of a component such as in Archjava [2] or
ComponentJ [42]. The port construct has not the same definition and char-
acteristics in all COLs. For example, in Picolo, ComponentJ or Fractal (ports
are called external interfaces in Fractal) ports are unidirectional because they
provide or require a set of services. In Archjava or UML 2.0 [11], ports are
bi-directional and the component invokes external services and receives service
invocations through the same port. Required services through a port have to
be provided by the same component. For example, a component that requires a
Network service through one of its ports, expects that open: , send:, receive
and close services will be executed by the same component. However, pro-
vided services are accessible to one or many other components. Providing and
requiring services through one port may result by limiting the use of the pro-
vided services to only one component at a time. Scl integrates two kinds of
unidirectional ports: those ones to access required services and those ones to
give access to provided services. A port has a name. A component can not have
two ports with the same name. A port name is used in the code to specify
through which port a service is invoked. A service is always invoked through
a port by message sending (the same term as in object world is used). Syntac-
tically, the port is the receiver but in fact, the effective receiver of a message

5

(DRAFT) International Smalltalk Conference - Prague 2006

is always a component that will be known at connection time. Note that it is
worthly to invoke a service that the component itself defines. All components
have a special internal provided port named self that can not be accessed
outside of the component. In this context, the invocation self.foo() is equiv-
alent to a service invocation that requires no connection to be achieved and
that executes the foo() service of current component. To sum up, through its
ports, an Scl component offers or requires services, receives or sends service
invocation, and can be connected as we will see later in section 3.3.

3.2.3 Interfaces

An interface describes the valid interactions through a port in order to docu-
ment the component or to enable the automatic validation (static or dynamic)
of the component uses and the connections. In COLs, these descriptions vary
from simple ones such as informal texts in natural language to complex ones
such as formal descriptions. These descriptions are classified in two categories:
syntactic and semantic.

Syntactic descriptions are generally represented using interfaces (such as in
Java). An interface defines a named type describing a set of method signatures.
Validation of the use of a port relies on typing rules. For example, a port
that requires an interface I1 can be connected with a port that provides an
interface I2 where the type defined by I1 is a super-type of this defined by I2.
Using interfaces implies that independently developed software components
have to refer to a common standard defined by interfaces in order to inter-
operate. Other solutions exist such as structural type systems [10] that offers
better decoupling between component classes. But structural type systems
are less expressive than named type systems (such as with interfaces) as said
in [9], “[...] types stand for semantical specification. While the conformance
of an implementation to a behavioral specification cannot be easily checked
by current compilers, type conformance is checkable. By simply comparing
names, compilers can check that several parties refer to the same standard
specification. For example, writing that “a component requires a stack” is
more expressive than writing that “a component requires two services pop

and push:” but in the first case there is a need for a global stack definition.

Semantic descriptions are harder to define and often based on formal theory
such as CSP in Wright [5] or protocols in Sofa [40]. For example, protocols
allow component programmers to define the valid sequences of service invoca-
tions through regular expressions. In our last example of the Network service,
it is important to describe that the open: service has to be invoked first, then
the send: and receive services can be used and finally the close service
must be invoked to finish the interaction.

6

(DRAFT) International Smalltalk Conference - Prague 2006

In Scl, we choose to decouple component classes and avöıd global defini-
tions such as named interfaces. This is the reason why interfaces are service
signatures sets in Scl. But, it is possible to extend Scl to support more
sophisticated interfaces as protocols.

3.2.4 Example

Figure 2 shows an example of component class with ports and Figure 3 shows
the Scl code needed to declare it.

Interface

Generating "..."
i := Randomizing generateNumber.

"..."

Randomizing

generateADigitsOnlyPwd: size

generatePwd: size

PasswordManager

"..."
isValidPwd: aPwd

Checking

isValidPwd:

generatePwd:
generateADigitsOnlyPwd:

generateNumber

Required PortsProvided Ports

Fig. 2. An Scl component. Ports are represented by squares on the component
boundary and triangles designate the direction of service invocations. Ports uses
are described by interfaces which are service signature sets.

SCLComponentClassBuilder c r e a t e : #PasswordManager .

PasswordManager>> i n i t
s e l f addPort : (Sc lPort newNamed : #Randomizing r e qu i r e s :

(S c l I n t e r f a c e new with : {#generateNumber })) .
s e l f addPort : (Sc lPort newNamed : #Generating prov ide s :

(S c l I n t e r f a c e new with : {
#generatePwd : .
#generateADigitsOnlyPwd :

})) .
s e l f addPort : (Sc lPort newNamed : #Checking prov ide s :

(S c l I n t e r f a c e new with : {#isVal idPassword : })) .

PasswordManager>>generatePwd : s i z e
” . . . ”
i := Randomizing generateNumber .
” . . . ”

Fig. 3. A component class declaration

PasswordManager is a component class created by the bootstrap method
SCLComponentBuilder>>create: that creates an empty component class. In its in-
ternal service named init, the PasswordManager is composed of three
ports: Randomizing is a required port since it is used to invoke external ser-
vices of the component; Generating and Checking are in ports because they

7

(DRAFT) International Smalltalk Conference - Prague 2006

offer some services of the component and receive service invocations from third
parties. Since we do not focus on static or dynamic validation of connections,
it is not mandatory to specify an interface of required ports. It is the same
in dynamically-typed languages when method parameters are not described
by a static type. However, interface of required ports are needed because they
specify which services of the component are provided through the port.

3.3 Component composition

There are two main mechanisms for unanticipated composition of components:
connection and composition 1 . Unanticipated is the key-adjective attached
to composition or connection that makes component-based software worth-
while. To be composable, a component definition should only state, what it
provides and what it needs and should make no assumption about which other
concrete components it will be composed with later on.

3.3.1 Connection

As said in [36], ”a component is a static abstraction with plugs”. In Scl, plugs
of components are their ports. The connection is the mechanism that con-
nect component ports. The connection mechanism is provided through various
forms in actual COLs, e.g. connect primitive and connectors in Archajava [3],
plug primitive in ComponentJ [42], connectors in Picolo [30] or bindings in
Fractal [8]. Connections are the support for the communication between com-
ponents and enforce the decoupling between components since they can not
communicate outside of connections.

Connection mismatches are identified [41] consequences of unanticipated con-
nections. These mismatches occurs when we want to connect components that
semantically fit well but their connection is not possible because they are not
plug-compatible. Mismatches can be solved in whole generality by defining
dedicated components as specified by the Adapter design pattern [17]. There
is a need for glue code in connections to adapt components. A connection
mechanism must be flexible to make the definition of adapters useless.

Connecting components could be achieved using language primitives such as
plug in ComponentJ. Other component models prone that connections must
be first-class entities named connectors such as Sofa [6] or Archjava [3] and
most of Architecture Description Languages [32] such as Wright [5,4]. Connec-
tors [43] are architectural building blocks used to model interactions among

1 The same term is used here for a mechanism that creates a new component out
of existing ones. Also called containment in COM

8

(DRAFT) International Smalltalk Conference - Prague 2006

components and rules that govern those interactions. Unlike components, con-
nectors may not correspond to compilation units or deployment units. In Scl,
SclConnector is the most general form of connectors which is composed
of two sets of ports named sources and targets and glue code that only use
these ports to establish the connection. SclCallConnector is the general
connector dedicated to service invocation connections as shown by Figure 4.

<<SclCallConnector>>

Required Provided
Ports

glue code

Sources Targets

Ports

Fig. 4. The general form a Scl connector

In a SclCallConnector, sources are required ports and targets are provided
ports. It is possible to define specialized connectors that provides a general
purpose glue code or restrict sources and targets. Non-exhaustively, SclBi-

naryConnector restricted for one source and one target. Figure 5 shows an
example of binary connection between a PasswordManager component and a
RandomNumberGenerator component. This connection satisfies the required
service of the PasswordManager through its Randomizing port, using the ser-
vice generateNumber provided by the RandomNumberGenerator through its
Generating port. Figure 6 shows the code to establish this connection.

<<SclBinaryConnector>>

Checking
Sources Targets

Generating

Generating

Randomizing

RandomNumberGeneratorSimplePasswordManager

glue code

Fig. 5. A Scl connection of two components

The glue code of a SclCallConnector is a Smalltalk block whose parame-
ters are the set of sources, the set of targets and the current service invocation
(which includes the source port, the selector and parameters) that has to be
performed. In the glue code of this example, the result of the rand service
is adapted since the generatedpassword is expected to return a number in

9

(DRAFT) International Smalltalk Conference - Prague 2006

spm := PasswordManager new .
srng := RandomNumberGenerator new .
SclBinaryConnector new

source : (spm port : #Randomizing)
t a r g e t : (srng port : #Generating)
g lue : [: source : t a r g e t :message |

ˆ(t a r g e t rand ∗ 26) a s In t e g e r
] ;

connect .

Fig. 6. Connecting two components

the interval [0, 26] while the rand service returns a number in the interval
[0, 1]. Despite of the fact that this is a simple example, it is important to note
that connecting independently developed software components must deal with
these kinds of problems. The glue code in connectors is a good place to tackle
these adaptation problems. If no glue code is specified in a SclBinaryCon-

nector, the default behavior is to forward all services that come from the
source port to the target port and to return the result. This is the same as
the Fractal bind primitive or the ComponentJ plug primitive.

Like the SclBinaryConnector, it is possible to build reusable connectors such
as BroadcasterConnector that broadcasts each service invocation to all tar-
gets or FirstResultConnector that returns the first non-nil result by sending
invocation successively to each target.

3.3.2 Composition

Composition is the mechanism that builds a composite component out of
components and connections. Encapsulated components are generally called
sub-components of the composite. Composite components are useful to ab-
stract over complex systems and provide a new reusable software entity that
hide implementation details. This mechanism is provided through various
forms in existing languages e.g compose primitive in ComponentJ [42], com-
posite components in Fractal or aggregation and containment in (D)COM [34].

Figure 7 and Figure 8 show respectively the architecture and the code of a
simple composite in Scl. The component class C is built by encapsulating two
components a and b and one connection. C also forwards the provided port
pb of b for external uses. This example is quite simple and more complex one
requires the use of SclForwardConnectors. These kind of connectors are used
to forward externalize services of sub-components in a composite component.
The sources and targets are all required or provided ports and the glue code
can be used to solve problems like name conflicts, etc. Figure 9 and Figure 10
shows this situation with a composite component that provides two services
on a same port but provided by two different sub-components.

10

(DRAFT) International Smalltalk Conference - Prague 2006

rb

A B

pb pb

C

pa

Fig. 7. A composite component that forward a port

SCLComponentClassBuilder createComposite : #C .

C>> i n i t
s e l f addSubComponent : #A named : a .
s e l f addSubComponent : #B named : b .
s e l f forwardPort : (b port : #pb) .

SclBinaryConnector new
source : (b port : #rb)
t a r g e t : (a port : #pa) ;
connect .

Fig. 8. Declaration of a composite component class
C

B

A
pa

bar

foo

foo
bar

pc

pb

Fig. 9. Port forwarding using a connector

3.4 Separation of concerns in component applications

The separation of concerns [38] principle states that a software system should
be modularized in such a way that different concerns can be specified as inde-
pendent as possible in order to maximize understandability and ease mainte-
nance. Some concerns are difficult to encapsulate in standard software units

11

(DRAFT) International Smalltalk Conference - Prague 2006

SCLComponentClassBuilder createComposite : #C .

C>> i n i t
s e l f addSubComponent : #A named : a .
s e l f addSubComponent : #B named : b .
s e l f addPort : (Sc lPort new : #pc

prov ide s : (S c l I n t e r f a c e new with : {#foo . #bar }) .

SclForwardConnector new
sourc e s :{ s e l f port : #pc}
t a r g e t s :(b port : #pb) .

(a port : #pa)}
g lue : [: s ou r c e s : t a r g e t s :message |

(message s e l e c t o r == #foo) i fTrue : [
ˆ t a r g e t s f i r s t perform : message

] i f F a l s e : [
(message s e l e c t o r == #bar) i fTrue : [

ˆ t a r g e t s second perform : message
] .

] .
] ;
connect .

Fig. 10. Using a connector to forward services in a composite component

(components or objets) such as management of transactions, logs, security,
etc. To tackle the scattered code of these concerns, aspect-oriented program-
ming [26] bring introduces aspects. An aspect is the modularization of a cross-
cutting concern. Two approaches are distinguished in AOP. Asymmetric ap-
proaches consider aspects as different entities from those that compose the
base system (objects or components) such as AspectJ [25], or JAsCo [44].
Symmetric approaches try to use the same entities to model the base system
and aspects. This second approach is better for reusability because if aspects
are modeled as components, they can be used as regular components as well as
aspects. A lot of approaches try to merge in a symmetric way aspect-oriented
and component-oriented approach to benefit the modular properties of both
approaches such as Fractal-AOP [14] or FAC [39].

In Scl, we adopt a symmetric approach where components are all regular
components and limited aspect-oriented features are provided through special
connectors and ports characteristics. The join points – well defined points in
the execution of a program where aspects can be woven – are generally method
calls, method call receptions, method executions or attribute accesses. The
supported joint points in Scl are: before/after/around a service invocation
or connection/disconnection on a port. Figure 11 shows an example that uses
an SclFlowConnector and a regular Logger component to add the logging
support to a component c through its port pc.

In an SclFlowConnector, all source ports are coupled with a keyword (be-
foreServiceInvocation, beforeConnection, ...) that specifies when the glue code
has to be executed. At execution time, when a service invocation arrives on
a port, glue code of attached connectors are executed in the same order as in

12

(DRAFT) International Smalltalk Conference - Prague 2006

l := Logger new .

SclFlowBinaryConnector new
sourc e s : ((c port : #pc) b e f o r eS e r v i c e I nvo ca t i on)
t a r g e t s :(<rcv>l </rcv> <s e l >port : #Logging)
g lue : [: source : t a r g e t :message |

t a r g e t l og : ’The ’ , message s e l e c t o r , ’ message w i l l be sent to a ’
] ;
connect .

Fig. 11. Modify the control flow using a connector

AOP (around, before, after, around). Conflicts are possible. For example, if
multiple glue code have to be executed before a service invocation a the same
port, this is the glue code of the last connected connector that will be executed
first. This rule lets the architect dealing with potential weaving problems.

3.5 Component properties and publish/subscribe connections

Triggering operations as a consequence of state changes in a component is
not a new idea. It is a related idea to procedural attachments [35] in frame
languages, where it was possible to attach procedures to an attribute access
which is then executed each time this attribute is accessed, or the Observer
design pattern [17]. These kinds of interactions are particularly used between
”views” (in the MVC sense [27]) and ”models”. More generally, the publish/-
subscribe [13] communication protocol is a very useful communication pattern
to decouple software entities as said in [18]: ”The main invariant in this style
is announcers of events do not know which components will be affected by
those events”. In component-based languages, this must be done in an unan-
ticipated way and with strict separation between the component code and the
connection code to enable components reuse. However, existing proposals fail
to solve these two main constraints. Connecting components based on event
notifications always require that component programmers add special code in
components. We identify the two following problems.

Publishers have to publish events. The component programmer has to
add special code like event signaling in components. For example, in the Java
Bean model, the programmer has to manage explicitly the subscribers list (add
and remove subscriber methods). In the CCM, the component programmer has
to manage the event sending by adding a special port to his component that
is called an event source and sends events in the component code through this
port. In Archjava, the component programmer declares broadcast methods
(required methods that return void) and invokes them in the component code
to signal events. This method is then connected by the architect to multiple
provided methods of subscriber components that receive the events. In all
cases, the architect can not reuse a component if its programmer has not

13

(DRAFT) International Smalltalk Conference - Prague 2006

added special code in the component to signal the event that he needs.

Emitters have to receive events. In the CCM, the component programmer
has to provide its components with event sinks that are special ports to receive
events. An event sink can be connected by the architect with one or more event
sources if they share a compatible event type. This mechanism is more limiting
than the Archjava or the Javabeans one where the subscribers components
have only regular methods that are invoked using connections.

In order to increase the component reuse, we have to decouple the connection
code from the business code written by the component programmer. The pro-
grammer has to focus on the business code and the design of the component i.e
what it requires and what it provides. In Scl, there are three ways to enable
publish/subscribe connections.

The component programmer integrates the event signaling in the component
code. Event signaling in Scl can be done similarly as in Archjava by invoking
a required service in the publisher component and using regular SclCallCon-

nector to link publishers and subscribers.

The component programmer has not planified the event signaling in the com-
ponent code but FlowConnectors can be used to detect signal of the events
that the architect needs. For example, if the architect wants to detect when a
stack becomes empty (an EmptyStackEvent), he can use an AfterConnec-

tor on the port that provides the pop service and test in the glue code if the
stack still contains elements to detect such situation.

The component programmer has declared properties. This property concept
enhances the idea of property of the Javabeans component model [22] with
strict separation between component code and connection code. A property
is an external state of a component. For example, a Counter component has a
property named count. This means that it is possible to get and set a value
to the count property of the Counter. Figure 12 shows the Scl code for this
declaration.

SCLComponentClassBuilder c r e a t e : #Counter .

Counter>> i n i t
s e l f addAttr ibute : #value .
s e l f addPort : (Sc lPort new : #Counting

prov ide s : (S c l I n t e r f a c e new with : {#dec . #inc }) .
s e l f addProperty : #Count read : [ˆ va lue] wr i t e : [: nv | value := nv] .

C>>i n c
s e l f count : (s e l f count + 1)

C>>dec
s e l f count : (s e l f count − 1)

Fig. 12. A Counter component class with a property

14

(DRAFT) International Smalltalk Conference - Prague 2006

When a programmer declares a property, the component is automatically com-
posed of two ports: an access port and a notifying port. The property access
port is a provided port that provides at least getter and setter services us-
ing the two blocks given during the property declaration. The notifying port
is a required port, which is used to invoke services during property accesses.
These services are defined in the Scl component model. For example, the
service nac:value:oldValue: (nac is an acronym for Notify After Change)
is invoked after a property is modified with the new and the old value of the
property as parameters. Another service, the nbc:value:newValue: (nbc is
an acronym for Notify Before Change) service, is invoked before the property
is modified with the current value and the next value of the property as pa-
rameters. In fact, all defined services have two main characteristics: when they
are invoked (before or after the property modification) and what a connected
component is able to do (nothing, prevent the modification or change the prop-
erty value). Special or regular connectors can be used to connect properties
since it is just two regular ports. An example of connection using properties is
depicted on Figure 13 and the corresponding Scl code is shown on Figure 14.

nbc:value:oldValue:

count:

nac:value:oldValue:

inc

dec

...

...

Counter

Counting Count

count

Fig. 13. A counter component a value property

gui := Label new .
counter := Counter new .

SclBinaryNACConnector new
source : (counter not i fyPortOf : #Count)
t a r g e t : (gu i port : #Disp lay ing)
g lue : [: source :gu i :message |

gui d i sp layText : (message arguments second) .
] ; connect .

Fig. 14. A state changes connection based on a component property

In this example, a SclBinaryNACConnector is used. This connector fil-
ters incoming service invocations on the source port and only focuses on the
nac:value:oldValue service. After each modification of the value property
of the counter, the glue code of the connection is executed and the GUI
component is refreshed with the new value (the second parameter of the
nac:value:oldValue service). Actually, Scl provides different kinds of con-
nectors like SclBinaryNACConnector, SclBinaryNBCConnector, PropertyBinder-

15

(DRAFT) International Smalltalk Conference - Prague 2006

Connector ensuring that the value of the target property is always synchronized
with the value of the source property. To sum up, component properties are
a useful for component programmers to directly express the external state of
components instead of using syntactical conventions and for architects that
can use them to connect components.

4 Implementation

The actual prototype of Scl [28] is implemented in Squeak/Smalltalk [24].
Squeak is an open and highly portable implementation based on the original
Smalltalk-80 system [19]. Figure 15 shows a part of the class diagram of the
core model.

*

Port

Service

ProvidedPort RequiredPort

Component PropertySignature

requires

* +sources

+targets

...

*groups

*
* *has

*
*

1 *1defines owns

1

Interface provides1

1

1

*
*

owns

*
Connector

CallConnector FlowConnector

Fig. 15. UML class diagram of the current implementation of Scl

This figure shows only main connector families. In [33], a taxonomy of software
connectors has been established and 8 kind of connectors have been identified.
Similarly to the work done for Archjava in [3], we have implemented connectors
of each kind. This shows that the connector model of Scl is suitable to perform
a large variety of connectors.

The current Scl syntax is the same as the Smalltalk one although some
changes in the semantic have been done. For example, the syntactic receiver
of a service invocation is a port but the real Smalltalk receiver is not this port
but the component whose this port belongs to. Because we do not implement
Scl with an evaluator or a compiler but directly with Smalltalk constructs,
it is easier to change and evolve the implementation. It is also difficult to
implement special things that are too far from the Smalltalk mechanisms.

5 Related Work

Understanding or teaching COP. Picolo [30] and BoxScript [29] are two
frameworks for introducing (teaching) components. Picolo is written in Python

16

(DRAFT) International Smalltalk Conference - Prague 2006

and Boxscript in Java. They are small and contrary to Scl, they integrate a
simple binary connection mechanism.

Architecture description languages (ADLs). These languages are an im-
portant basis of the actual researches in component-oriented languages. In [32],
a classification of the most known ADLs has been established. For example,
Wright [5] is one of these languages that integrates connector support. But
Wright as many of these languages is dedicated to software specification, sim-
ulation and formal verification. Since ADLs are not programming languages,
it is not possible build an aplication using it.

Archjava [2,3] is a Java extension introducing software architecture concepts
to express architectural structure of applications within an implementation in
order to ensure that the implementation conforms to architectural constraints.
Archjava classes support bidirectional ports in which methods are provided, re-
quired or broadcasts. The primitive connection mechanism (connect keyword)
is a coarse-grained one because it is based on bidirectional ports. Archjava
does not support properties and component programmers have to write code
in components to enable connections based on component state notifications.

Fractal [8] is a recursive and reflective component model. A component has
external interfaces (ports) which provides (server interface) or required (client
interface) a defined set of services. Components are connected through bind-
ings between external interfaces. A primitive binding is a fixed interface con-
nection mechanism that binds one client interface with one server interface.
Binding components also called connectors represent composite bindings to
create complex connections. In Scl, components and connectors are not the
same entity because these two concepts fulfill different purpose, components
are the business reusable software units while connectors have to fix connec-
tion semantics and deal with connection problems. Julia is the implementation
reference of the Fractal model in Java and Fractalk [15] is an implementation
of Fractal in Squeak.

ComponentJ [42] is another Java extension for component-oriented program-
ming. Components provide or require one interface per port. The component
programmer defines methods inside method blocks that can be plug into port.
Plug operations bind one component method block or port to a port accord-
ing to their interfaces. Components composition are done through dynamic
composition (compose keyword) and return a new component. ComponentJ
is a strongly typed language ensuring plug operations and composition. There
is no connector support in ComponentJ and it is only possible to connect
components inside a composite. A component can only be instantiated if it is
closed (without unbounded required services) even if all required services are
not necessary for the surrent application.

17

(DRAFT) International Smalltalk Conference - Prague 2006

Javabeans [22] has been one of the first component models allowing pro-
grammers to connect independently developed software entities. Javabeans
programmers have to write special connection code (essentially Observee code
from the Observer pattern) and respect syntactical rules to ensure that their
Javabean can be automatically connected with others Javabeans via Adap-
tors [17] generation. Our properties, inspired from the Javabeans model, do
not enforce component programmers to write specific connection code.

Component-oriented languages. These languages enable to code an ap-
plication using a component approach. We already present the languages that
are close to Scl but there is others such as Lagoona [16] or Keris [48]. These
languages do not integrate the ADLs features and provide object-oriented ex-
tensions to program with components. For example, Lagoona is based on the
idea that components are modules that contain class and message definitions.
Note that most of proposed component-oriented languages are Java extension
(Lagoona, Keris, ComponentJ, Archjava, Javabeans, Julia/Fractal, ...). There
is few proposition using a dynamic language and none in Smalltalk except
Fractalk that is an implementation of Fractal in Squeak.

Mixing component and aspect oriented programming. As said in the
section 3.4, we only consider symmetric approaches such as FAC [39] or
Fractal-AOP [14] where aspects are regular components. This is to increase the
reuse of component that can be used as regular components as well as aspects
components. The specificity of Scl is that nothing is written in a compo-
nent (no special interface has to be implemented). The architect decides to
use a component as a base component or as an aspect component and use
the special connector SclFlowConnector. This Scl feature is clearly not a
complete support of AOP but an attempt to bring the flexibility of AOP in
Scl respecting that components are independently developed and composed.

6 Conclusion

Component-based software development is founded on the unanticipated com-
position of independently developed software components. Such a mechanism
must be offered to programmers and many languages integrate some con-
cepts and mechanism to achieve this. In this paper, we present Scl a con-
crete component-oriented language. We believe that Scl provides a simple
and uniform synthesis about works on component-oriented programming. Scl
also bring new features like a general purpose connector model. Connectors
are useful to provide an extensible connection mechanism that solves compo-
nent connection problems. They offer a unified entity that enable standard
required/provided connections and also event component connections thanks
special connectors and component properties. A component programer only

18

(DRAFT) International Smalltalk Conference - Prague 2006

declares properties that represent external state of components and a soft-
ware architect can express connections on the basis of changes notifications of
properties with the same connection mechanism based on connectors.

Ongoing researches on Scl are focused on three areas. First, extending the
component model of Scl in order to better support dynamic changes. For
example, dynamically adding or removing ports to a component could be a
great solution to deal with components that have a potentially unbounded
number of connections such as a WebServer component. Second, we plan to
provide a stable release of the current implementation of Scl and integrate
tools dedicated to component-oriented programming. And finally, develop real
applications using Scl which are not a classical component examples such
as the coffee machine, the bank application or the travel agency. This will
show us interesting results on the expressiveness of Scl and more generally
component-oriented programming.

References

[1] Franz Achermann and Oscar Nierstrasz. Applications = Components + Scripts
– A Tour of Piccola. In Mehmet Akşit, editor, Software Architectures and
Component Technology, pages 261–292. Kluwer, 2001.

[2] Jonathan Aldrich, Craig Chambers, and David Notkin. Archjava: connecting
software architecture to implementation. In ICSE, pages 187–197. ACM, 2002.

[3] Jonathan Aldrich, Vibha Sazawal, Craig Chambers, and David Notkin.
Language support for connector abstractions. In Luca Cardelli, editor, ECOOP,
volume 2743 of Lecture Notes in Computer Science, pages 74–102. Springer,
2003.

[4] Robert Allen. A Formal Approach to Software Architecture. PhD thesis,
Carnegie Mellon, School of Computer Science, January 1997. Issued as CMU
Technical Report CMU-CS-97-144.

[5] Robert Allen and David Garlan. The wright architectural specification
language. Technical report, School of Computer Science, Carnegie Mellon
University, Pittsburgh, 1996.

[6] Dusan Balek and Frantisek Plasil. Software connectors and their role in
component deployment. In Proceedings of DAIS’01, Krakow, Poland, September
2001. Kluwer Academic Publishers.

[7] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G. Pomberger, W. Pree,
M. Stal, and C. Szyperski. What characterizes a software component: Software
concepts & tools 19:1. pages 49 – 56, 1998.

19

(DRAFT) International Smalltalk Conference - Prague 2006

[8] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. An open component model and its support in java. In Ivica
Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt C. Wallnau, editors,
CBSE, volume 3054 of Lecture Notes in Computer Science, pages 7–22. Springer,
2004.

[9] Martin Büchi and Wolfgang Weck. Compound types for java. In
OOPSLA’98: Proceedings of the 13th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 362–373,
New York, NY, USA, 1998. ACM Press.

[10] Luca Cardelli. Type Systems, chapter 103. CRC Press, Boca Raton, FL, 1997.

[11] John Cheesman and John Daniels. UML components: a simple process for
specifying component-based software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2000.

[12] Michael Eichberg. Mda and programming languages. In Workshop on
Generative Techniques in the context of Model Driven Architecture (OOPSLA
’02), 2002.

[13] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv.,
35(2):114–131, 2003.

[14] Houssam Fakih, Noury Bouraqadi, and Laurence Duchien. Aspects and software
components: A case study of the FRACTAL component model. In Minhuan
Huang, Hong Mei, and Jianjun Zhao, editors, International Workshop on
Aspect-Oriented Software Development (WAOSD 2004), September 2004.

[15] FracTalk. Fractal Components in Smalltalk http://csl.ensm-douai.fr/
FracTalk.

[16] Peter H. Fröhlich, Andreas Gal, and Michael Franz. Supporting software
composition at the programming-language level. Science of Computer
Programming, Special Issue on New Software Composition Concept, 56(1-2):41–
57, April 2005.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns : Elements of Reusable Object-Oriented Software. Addison Wesley,
March 1995.

[18] David Garlan and Mary Shaw. An introduction to software architecture.
In V. Ambriola and G. Tortora, editors, Advances in Software Engineering
and Knowledge Engineering, pages 1–39, Singapore, 1993. World Scientific
Publishing Company.

[19] Adele Goldberg and David Robson. Smalltalk-80: The Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[20] Bernhard Gröne, Andreas Knöpfel, and Peter Tabeling. Component vs.
component: Why we need more than one definition. In ECBS, pages 550–552.
IEEE Computer Society, 2005.

20

(DRAFT) International Smalltalk Conference - Prague 2006

[21] Object Management Group. Uml 2.0 superstructure specification. Technical
report, Object Management Group, 2004.

[22] Graham Hamilton. JavaBeans. Api specification, Sun Microsystems, July 1997.
Version 1.01.

[23] George T. Heineman and William T. Councill, editors. Component-based
software engineering: putting the pieces together. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[24] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back
to the future: the story of squeak, a practical smalltalk written in itself. In
OOPSLA ’97: Proceedings of the 12th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 318–326,
New York, NY, USA, 1997. ACM Press.

[25] G. Kiczales and al. An overview of aspectj. In proceedings of ECOOP’01, Juin
2001.

[26] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In Mehmet Akşit and Satoshi Matsuoka, editors, 11th Europeen Conf. Object-
Oriented Programming, volume 1241 of LNCS, pages 220–242. Springer Verlag,
1997.

[27] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-
controller user interface paradigm in smalltalk-80. In Journal of Object-Oriented
Programming, volume 1, pages 26–49, Aot-Septembre 1988.

[28] Simple Component Language. http://www.lirmm.fr/∼fabresse/scl/.

[29] Y. Liu and H. C. Cunningham. Boxscript: A component-oriented language for
teaching. In 43rd ACM-Southeast Conference, volume 1, pages 349–354, March
2005.

[30] Raphaël Marvie. Picolo: A simple python framework for introducing component
principles. In Euro Python Conference 2005, Göteborg, Sweden, june 2005.

[31] M. D. McIlroy. Mass produced software components. In P. Naur and B. Randell,
editors, Proceedings, NATO Conference on Software Engineering, Garmisch,
Germany, October 1968.

[32] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. Software
Engineering, 26(1):70–93, 2000.

[33] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a
taxonomy of software connectors. In ICSE ’00: Proceedings of the 22nd
international conference on Software engineering, pages 178–187, New York,
NY, USA, 2000. ACM Press.

[34] Microsoft. DCOM technical overview. Microsoft Windows NT Server white
paper, Microsoft Corporation, 1996.

21

(DRAFT) International Smalltalk Conference - Prague 2006

[35] M. Minsky. A Framework for Representing Knowledge. In P. Winston, editor,
The Psychology of Computer Vision, pages 211–281. mgh, ny, 1975.

[36] Oscar Nierstrasz and Laurent Dami. Component-oriented software technology.
In Oscar Nierstrasz and Dennis Tsichritzis, editors, Object-Oriented Software
Composition, pages 3–28. Prentice-Hall, 1995.

[37] Object Management Group. Model Driven Architecture, 2003.
http://www.omg.org/mda.

[38] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. ACM, 15(12):1053–1058, December 1972.

[39] N. Pessemier, L. Seinturier, L. Duchien, and T. Coupaye. A model for developing
component-based and aspect-oriented systems. In Proceedings of the 5th
International Symposium on Software Composition (SC’06), volume 4089 of
Lecture Notes in Computer Science. Springer, March 2006.

[40] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software
components. IEEE Trans. Softw. Eng., 28(11):1056–1076, 2002.

[41] Johannes Sametinger. Software engineering with reusable components. Springer-
Verlag New York, Inc., New York, NY, USA, 1997.

[42] João Costa Seco and Lúıs Caires. A basic model of typed components. Lecture
Notes in Computer Science, 1850:108–129, 2000.

[43] Mary Shaw. Procedure calls are the assembly language of software
interconnection: Connectors deserve first-class status. In ICSE ’93: Selected
papers from the Workshop on Studies of Software Design, pages 17–32, London,
UK, 1996. Springer-Verlag.

[44] Davy Suvée, Wim Vanderperren, and Viviane Jonckers. Jasco: an aspect-
oriented approach tailored for component based software development. In
AOSD ’03: Proceedings of the 2nd international conference on Aspect-oriented
software development, pages 21–29, New York, NY, USA, 2003. ACM Press.

[45] C. Szyperski. Component Software: Beyond Object-Oriented Programming (2nd
Edition). Addison-Wesley, 2002.

[46] Rob C. van Ommering. Koala, a component model for consumer electronics
product software. In Frank van der Linden, editor, ESPRIT ARES Workshop,
volume 1429 of Lecture Notes in Computer Science, pages 76–86. Springer, 1998.

[47] Matthias Zenger. Type-safe prototype-based component evolution. In
Proceedings of the European Conference on Object-Oriented Programming,
Malaga, Spain, June 2002.

[48] Matthias Zenger. Keris: evolving software with extensible modules: Research
articles. J. Softw. Maint. Evol., 17(5):333–362, 2005.

22

(DRAFT) International Smalltalk Conference - Prague 2006

Stateful Traits ?

Alexandre Bergel a Stéphane Ducasse b Oscar Nierstrasz c

Roel Wuyts d

aDSG, Trinity College Dublin, Ireland
bLISTIC – University of Savoie, France & University of Bern, Switzerland

cSCG, University of Bern, Switzerland
dUniversité Libre de Bruxelles, Belgium

Abstract

Traits offer a fine-grained mechanism to compose classes from reusable components
while avoiding problems of fragility brought by multiple inheritance and mixins. Traits
as originally proposed are stateless, that is, they contain only methods, but no instance
variables. State can only be accessed within traits by accessors, which become required
methods of the trait. Although this approach works reasonably well in practice, it means
that many traits, viewed as software components, are artificially incomplete, and classes
that use such traits may contain significant amounts of boilerplate glue code. Although
these limitations are largely mitigated by proper tool support, we seek a cleaner solution
that supports stateful traits. The key difficulty is how to handle conflicts that arise when
composed traits contribute instance variables whose names clash. We present a solution
that is faithful to the guiding principle of stateless traits: the client retains control of the
composition. Stateful traits consist of a minimal extension to stateless traits in which in-
stance variables are purely local to the scope of a trait, unless they are explicitly made
accessible by the composing client of a trait. Naming conflicts are avoided, and variables
of disjoint traits can be explicitly merged by clients. We discuss and compare two imple-
mentation strategies, and briefly present a case study in which stateful traits have been used
to refactor the trait-based version of the Smalltalk collection hierarchy.

? We gratefully acknowledge the financial support of the Swiss National Science Foun-
dation Recast (SNF 2000-061655.00/1), the Cook ANR french projects and the Science
Foundation Ireland and Lero - the Irish Software Engineering Research Centre.

Email addresses: Alexandre.Bergel@cs.tcd.ie (Alexandre Bergel),
stephane.ducasse@univ-savoie.fr (Stéphane Ducasse),
oscar.nierstrasz@acm.org (Oscar Nierstrasz), Roel.Wuyts@ulb.ac.be
(Roel Wuyts).

ESUG Conference 2006 Research Track (www.esug.org)

(DRAFT) International Smalltalk Conference - Prague 2006

1 Introduction

Traits are pure units of reuse consisting only of methods [SDNB03, DNS+06].
Traits can be composed to either form other traits or classes. They are recognized
for their potential in supporting better composition and reuse, hence their inte-
gration in newer versions of languages such as Perl 6, Squeak [IKM+97], Scala
[sca], Slate [Sla] and Fortress [for]. Although traits were originally designed for
dynamically-typed languages, there has been considerable interest in applying traits
to statically-typed languages as well [FR03, SD05, NDS06].

Traits make it possible for inheritance to be used to reflect conceptual hierarchy
rather than for code reuse. Duplicated code can be factored out as traits, rather
than being jimmied into a class hierarchy in awkward locations. At the same time,
traits largely avoid the fragility problems introduced by approaches based on mul-
tiple inheritance and mixins, since traits are entirely divorced from the inheritance
hierarchy.

In their original form, however, traits are stateless, i.e., traits are purely groups
of methods without any instance variables. Since traits not only provide methods,
but may also require methods, the idiom introduced to deal with state was to access
state only through accessors. The client of a trait is either a class or a composite trait
that uses the trait to build up its implementation. A key principle behind traits is that
the client retains control of the composition. The client, therefore, is responsible
for providing the required methods, and resolving any possible conflicts. Required
accessors would propagate to composite traits, and only the composing client class
would be required to implement the missing accessors and the instance variables
that they give access to. In practice, the accessors and instance variables could
easily be generated by a tool, so the fact that traits were stateless posed only a
minor nuisance.

Conceptually, however, the lack of state means that virtually all traits are incom-
plete, since just about any useful trait will require some accessors. Furthermore, the
mechanism of required methods is abused to cover for the lack of state. As a con-
sequence, the required interface of a trait is cluttered with noise that impedes the
understanding and consequently the reuse of a trait. Even if the missing state and
accessors can be generated, many clients will consist of “shell classes” — classes
that do nothing but compose traits with boilerplate glue code. Furthermore, if the
required accessors are made public (as is the case in the Smalltalk implementa-
tion), encapsulation is unnecessarily violated in the client classes. Finally, if a trait
is ever modified to include additional state, new required accessors will be propa-
gated to all client traits and classes, thus introducing a form of fragility that traits
were intended to avoid!

This paper describes stateful traits, an extension of stateless traits in which a sin-

2

(DRAFT) International Smalltalk Conference - Prague 2006

gle variable access operator is introduced to give clients of traits control over the
visibility of instance variables. The approach is faithful to the guiding principle of
stateless traits in which the client of a trait has full control over the composition. It
is this principle that is the key to avoiding fragility in the face of change, since no
implicit conflict resolution rules come into play when a trait is modified.

In a nutshell, instance variables are private to a trait. The client can decide, how-
ever, at composition time to access instance variables offered by a used trait, or to
merge variables offered by multiple traits. In this paper we present an analysis of
the limitations of stateless traits and we present our approach to achieving state-
ful traits. We describe and compare two implementation strategies, and we briefly
describe our experience with an illustrative case study.

The structure of this paper is as follows: First we review stateless traits [SDNB03,
DNS+06]. In Section 3 we discuss the limitations of stateless traits. In Section 4
we introduce stateful traits, which support the introduction of state in traits. Sec-
tion 5 outlines some details of the implementation of stateful traits. In Section 6
we present a small case study in which we compare the results of refactoring the
Smalltalk collections hierarchy with both stateless and stateful traits. In Section 7
we discuss some of the broader consequences of the design of stateful traits. Sec-
tion 8 discusses related work. Section 9 concludes the paper.

2 Stateless traits

2.1 Reusable groups of methods

Stateless traits are sets of methods that serve as the behavioural building block of
classes and primitive units of code reuse [DNS+06]. In addition to offering be-
haviour, traits also require methods, i.e., methods that are needed so that trait be-
haviour is fulfilled. Traits do not define state, instead they require accessor methods.

In Figure 1, the trait TSyncReadWrite provides the methods syncRead, syncWrite
and hash. It requires the methods read and write, and the two accessor methods
lock and lock:. We use an extension to UML to represent traits (the right column
lists required methods while the left one lists the provided methods).

2.2 Structuring classes

Classes are composed from a set of traits by specifying the state and the glue code
that connects the traits together and accesses the necessary state in the class.

3

(DRAFT) International Smalltalk Conference - Prague 2006

SyncStream
lock
lock
lock:
isBusy
hash

TSyncReadWrite
syncRead
syncWrite
hash

read
write
lock:
lock

@{hashFromSync -> hash}

TStream
read
write
hash

@{hashFromStream -> hash}

syncRead
 | value |
 self lock acquire.
 value := self read.
 self lock release.
 ^ value

syncWrite
 | value |
 self lock acquire.
 value := self write.
 self lock release.
 ^ value

hash
 ^ self hashFromSync
 bitAnd: self hashFromStream

Uses trait

Trait Name
provided
methods

required
methods

Fig. 1. The class SyncStream is composed of the two traits TSyncReadWrite and
TStream

In Figure 1, the class SyncStream defines the field lock and the methods lock and
lock:. The other required methods of TSyncReadWrite, read and write, are also
provided since the class SyncStream uses another trait TStream which provides
them.

With this approach, classes retain their primary role as generators of instances,
whereas traits are purely behavioural units of reuse. As with mixins, classes are
organized in a single inheritance hierarchy, thus avoiding the key problems of mul-
tiple inheritance, but the incremental extensions that classes introduce to their su-
perclasses are specified using one or more traits. In contrast to mixins, several traits
can be applied to a class in a single operation: trait composition is unordered. In-
stead of the trait composition resulting implicitly from the order in which traits are
composed (as is the case with mixins), it is fully under the control of the composing
class.

2.3 Explicit composition

A class is specified by composing a superclass with a set of traits, state definition
and some glue methods. Glue methods are defined in the class and they connect
the traits together; i.e., they implement required trait methods (often by accessing
state), they adapt provided trait methods, and they resolve method conflicts. The
following equation depicts how a class is built with traits:

class = superclass + state + trait composition + glue code

Trait composition respects the following three rules:

• Methods defined in the class take precedence over trait methods. This allows the

4

(DRAFT) International Smalltalk Conference - Prague 2006

glue methods defined in a class to override methods with the same name provided
by the used traits.

• Flattening property. A non-overridden method in a trait has the same semantics
as if it were implemented directly in the class using the trait.

• Composition order is irrelevant. All the traits have the same precedence, and
hence conflicting trait methods must be explicitly disambiguated.

2.4 Conflict resolution

While composing traits, method conflicts may arise. A conflict arises if we combine
two or more traits that provide identically named methods that do not originate from
the same trait. Conflicts are resolved by implementing a method at the level of the
class that overrides the conflicting methods, or by excluding a method from all but
one trait. In addition traits allow method aliasing; this makes it possible for the
programmer to introduce an additional name for a method provided by a trait. The
new name is used to obtain access to a method that would otherwise be unreachable
because it has been overridden [DNS+06].

In Figure 1, methods in TSyncReadWrite and in TStream are used by Sync-
Stream. The trait composition associated to SyncStream is:
TSyncReadWrite@{hashFromSync→hash}
+ TStream@{hashFromStream→hash}

This means that SyncStream is composed of (i) the trait TSyncReadWrite for
which the method hash is aliased to hashFromSync and (ii) the trait TStream for
which the method hash is aliased to hashFromStream.

2.5 Method composition operators

The semantics of traits composition is based on four operators: sum, overriding,
exclusion and aliasing [DNS+06].

The sum trait TSyncReadWrite + TStream contains all of the non-conflicting meth-
ods of TSyncReadWrite and TStream. If there is a method conflict, that is, if TSyn-
cReadWrite and TStream both define a method with the same name, then in TSyn-
cReadWrite + TStream that name is bound to a distinguished conflict method. The
+ operator is associative and commutative.

The overriding operator constructs a new composition trait by extending an existing
trait composition with some explicit local definitions. For instance, SyncStream
overrides the method hash obtained from its trait composition. This can also be
done with methods, as we will discuss in more detail later.

5

(DRAFT) International Smalltalk Conference - Prague 2006

A trait can be constructed by excluding methods from an existing trait using the
exclusion operator −. Thus, for instance, TStream − {read, write} has a single
method hash. Exclusion is used to avoid conflicts, or if one needs to reuse a trait
that is “too big” for one’s application.

The method aliasing operator @ creates a new trait by providing an additional name
for an existing method. For example, if TStream is a trait that defines read, write and
hash, then TStream @ {hashFromStream→hash} is a trait that defines read, write,
hash and hashFromStream. The additional method hashFromStream has the same
body as the method hash. Aliases are used to make conflicting methods available
under another name, perhaps to meet the requirements of some other trait, or to
avoid overriding. Note that because the body of the aliased method is not changed
in any way, so an alias to a recursive method is not recursive.

3 Limitations of stateless trait

Traits support the reuse of coherent groups of methods by otherwise independent
classes [DNS+06]. Traits can be composed out of other traits. As a consequence
they serve well as a medium for structuring code. Unfortunately stateless traits
necessarily encode dependency on state in terms of required methods (i.e., acces-
sors). In essence, traits are necessarily incomplete since virtually any useful trait
will be forced to define required accessors. This means that the composing class
must define the missing instance variables and accessors.

The incompleteness of traits results in a number of annoying limitations, namely:
(i) trait reusability is impacted because the required interface is typically cluttered
with uninteresting required accessors, (ii) client classes are forced to implement
boilerplate glue code, (iii) the introduction of new state in a trait propagates re-
quired accessors to all client classes, and (iv) public accessors break encapsulation
of the client class.

Although these annoyances can be largely addressed by proper tool support, they
disturb the appeal of traits as a clean, lightweight mechanism for composing classes
from reusable components. A proper understanding of these limitations is a prereq-
uisite to entertaining any proposal for a more general approach.

3.1 Limited reusability

The fact that a stateless trait is forced to encode state in terms of required accessors
means that it cannot be composed “off-the-shelf” without some additional action.
Virtually every useful trait is incomplete, even though the missing part can be triv-

6

(DRAFT) International Smalltalk Conference - Prague 2006

TSyncReadWrite
lockinitialize
syncRead
syncWrite

read
write
lock:
lock

SyncFile
lock
lock:
lock
read
write

SyncStream
lock
lock:
lock
read
write

SyncSocket
lock
lock:
lock
read
write

syncRead
 | value |
 self lock acquire.
 value := self read.
 self lock release.
 ^ value

syncWrite
 | value |
 self lock acquire.
 value := self write.
 self lock release.
 ^ value

Duplicated code

Use of trait

initialize
 super initialize.
 self lock: Lock new

Fig. 2. The lock variable, the lock and lock: methods are duplicated among trait TSyn-
cReadWrite users.

ially fulfilled.

What’s worse, however, is the fact that the required interface of a trait is cluttered
with dependencies on uninteresting required accessors, rather than focussing atten-
tion on the non-trivial hook methods that clients must implement.

Although this problem can be partially alleviated with proper tool support that dis-
tinguishes the uninteresting required accessors from the other required methods,
the fact remains that traits with required accessors can never be reused off-the-shelf
without additional action by the ultimate client class.

3.2 Boilerplate glue code

The necessary additional client action consists essentially in the generation of boil-
erplate glue code to inject the missing instance variables, accessors and initializa-
tion code. Clearly this boilerplate code must be generated for each and every client
class. In the most straightforward approach, this will lead to the kind of duplicated
code that traits were intended to avoid.

Figure 2 illustrates such a situation where the trait TSyncReadWrite needs to ac-
cess a lock. This lock variable, the lock accessor and the lock: mutator have to be
duplicated in SyncFile, SyncStream and SyncSocket.

Once again, to avoid this situation, tool support would be required (i) to automati-
cally generate the required instance variables and accessors, and (ii) to generate the
code in such a way as to avoid actual duplication.

7

(DRAFT) International Smalltalk Conference - Prague 2006

Another unpleasant side effect of the need for boilerplate glue code is the emer-
gence of “shell classes” consisting of nothing but glue code. In the Smalltalk hier-
archy refactored using stateless traits [BSD03], we note that 24% (7 out of 29) of
the classes in the hierarchy refactored with traits are pure shell classes.

3.3 Propagation of required accessors

If a trait implementation evolves and requires new variables, it may impact all the
classes that use it, even if the interface remains untouched. For instance, if the
implementation of the trait TSyncReadWrite evolves and requires a new variable
nbOfWaiting intended to give the number of clients waiting for the lock, then all
the classes using this trait are impacted, even though the public interface does not
change.

Required accessors are propagated and accumulated from trait to trait, therefore
when a class is composed of deeply composed traits, a large number of acces-
sors may need to be resolved. When a new state dependency is introduced in a
deeply nested trait, required accessors can be propagated to a large number of client
classes. Again, proper tool support can largely mitigate the consequences of such
changes, but a more satisfactory solution would be welcome.

3.4 Violation of encapsulation

Stateless traits violate encapsulation in two ways. First of all, stateless traits un-
necessarily expose information about their internal representation, thus muddying
their interface. A stateless trait exposes every part of its needed representation as
a required accessor, even if this information is of no interest to its clients. Encap-
sulation would be better served if traits resembled more closely abstract classes,
where only abstract methods are explicitly declared as being the responsibility of
the client subclass. By the same token, a client class using a trait should only see
those required methods that are truly its responsibility to implement, and no others.

The second violation is about visibility. In Smalltalk, instance variables are always
private. Access can be granted to other objects by providing public accessors. But if
traits require accessors, then classes using these traits must provide public accessors
to the missing state, even if this is not desired.

In principle, this problem could be somewhat mitigated in Java-like languages by
including visibility modifiers for stateless traits in Java-like languages. A trait could
then require a private or protected accessor for missing state. The client class could
then supply these accessors without violating encapsulation (and optionally relax-
ing the required modifier). This solution, however, would not solve the problem for

8

(DRAFT) International Smalltalk Conference - Prague 2006

Smalltalk-like languages in which all methods are public, and may only be marked
as “private” by convention (i.e., by placing such methods in a category named “pri-
vate”).

4 Stateful traits: reconciling traits and state

We now present stateful traits as our solution to the limitations of stateless traits.
Although it may seem that adding instance variables to traits would represent a triv-
ial extension, in fact there are a number of issues that need to be resolved. Briefly,
our solution addresses the following concerns:

• Stateless traits should be a special case of stateful traits. The original semantics
of stateless traits (and the advantages of that solution) should not be impacted.

• Any extension should be syntactically and semantically minimal. We seek a sim-
ple solution.

• We should address the limitations listed in Section 3. In particular, it should
be possible to express complete traits. Only methods that are conceptually the
responsibility of client classes should be listed as required methods.

• The solution should offer sensible default semantics for trait usage, thus enabling
black-box usage.

• Consistent with the guiding principle of stateless traits, the client class should
retain control over the composition, in particular over the policy for resolving
conflicts. A degree of white-box usage is therefore also supported, where needed.

• As with stateless traits, we seek to avoid fragility with respect to change. Changes
to the representation of a trait should normally not affect its clients.

• The solution should be largely language independent. We do not depend on ob-
scure or exotic language features, so the approach should easily apply to most
object-oriented languages.

The solution we present extends traits to possibly include instance variables. In a
nutshell, there are three aspects to our approach:

(1) Instance variables are, by default, private to the scope of the trait that defines
them.

(2) The client of a trait, i.e., a class or a composite trait, may access selected
variables of that trait, mapping those variables to possibly new names. The
new names are private to the scope of the client.

(3) The client of a composite trait may merge variables of the traits it uses by
mapping them to a common name. The new name is private to the scope of
the client.

In the following subsections we provide details of the stateful traits model.

9

(DRAFT) International Smalltalk Conference - Prague 2006

T1

getX
setX:

x

T2

getX
setX:

x

C

getX
setX:

x

@{ getXT1 -> getX,
 setXT1: -> setX: }

@{ getXT2 -> getX,
 setXT2: -> setX: }

c := C new.
c setXT1: 1.
c setXT2: 2.
c setX: 3.

{ Now:
 c getXT1 = 1
 c getXT2 = 2
 c getX = 3 }

Fig. 3. Keeping variables private: while composed, variables are kept separate. Traits T1,
T2 and T3 have their own variable x.

SyncStream

isBusy
hash

TSyncReadWrite
lock
initialize
syncRead
syncWrite
hash

read
write

@{hashFromSync -> hash}
@@{syncLock -> lock}

TStream

read
write
hash

@{hashFromStream -> hash}

syncRead
 | value |
 lock acquire.
 value := self read.
 lock release.
 ^ value

syncWrite
 | value |
 lock acquire.
 value := self write.
 lock release.
 ^ value

isBusy
 ^ syncLock isAcquired

hash
 ^ self hashFromSync
 bitAnd: self hashFromStream

initialize
 super initialize.
 lock := Lock new

Uses trait

Trait Name
provided
methods

required
methods

Fig. 4. The class SyncStream is composed of the stateful traits TStream and TSyn-
cReadWrite.

4.1 Stateful trait definition

A stateful trait extends a stateless trait by including private instance variables. A
stateful trait therefore consists of a group of public methods and private instance
variables, and possibly a specification of some additional required methods to be
implemented by clients.

Methods. Methods defined in a trait are visible to any other trait with which it
is composed. Because methods are public, conflicts may occur when traits are
composed. Method conflicts for stateful traits are resolved in the same way as
with stateless traits.

Variables. By default, variables are private to the trait that defines them. Because
variables are private, conflicts between variables cannot occur when traits are
composed. If, for example, traits T1 and T2 each define a variable x, then the
composition of T1 + T2 does not yield a variable conflict. Variables are only
visible to the trait that defines them, unless access is widened by the composing
client trait or class with the @@ variable access operator.

10

(DRAFT) International Smalltalk Conference - Prague 2006

Figure 4 shows how the situation presented in Figure 1 is reimplemented using
stateful traits. The class SyncStream is composed of the traits TStream and TSyn-
cReadWrite. The trait TSyncReadWrite defines the variable lock, three methods
syncRead, syncWrite and hash, and requires methods read and write.

Note that, in order to include state in traits, we must extend the mechanism for
defining traits. In the Smalltalk implementation, this is achieved by extending the
message sent to the Trait class with a new keyword argument to represent the used
instance variables. For instance, we can now define the TSyncReadWrite trait as
follows:

Trait named: #TSyncReadWrite
uses: {}
instVarNames: ’lock’

The trait TSyncReadWrite is not composed of any other traits and it defines a vari-
able lock. The uses: clause specifies the trait composition (empty in this case), and
instVarNames: lists the variables defined in the trait (i.e., the variable, lock). The
interface for defining a class as composition of traits is the same as with stateless
traits. The only difference is that the trait composition expression supports an ad-
ditional operator (@@) for granting access to variables of the used traits. Here we
see how SyncStream is composed from the traits TSyncReadWrite and TStream:

Object subclass: #SyncStream
uses: TSyncReadWrite @ {#hashFromSync →#hash}

@@ {syncLock →lock}
+ TStream @ {#hashFromStream →#hash}

instVarNames: ”
....

In this example, access is granted to the lock variable of the TSyncReadWrite trait
under the new name syncLock. As we shall now see, the @@ operator provides a
fine degree of control over the visibility of trait variables.

4.2 Variable access

By default, a variable is private to the trait that defines it. However, the variable
access operator (@@) allows variables to be accessed from clients under a possibly
new name, and possibly merged with other variables.

If T is a trait that defines a (private) instance variable x, then T@@{y →x} rep-
resents a new trait in which the variable x can be accessed from its client scope
under the name y. x and y represent the same variable, but the name x is restricted
to the scope of t whereas the name y is visible to the enclosing client scope (i.e., the

11

(DRAFT) International Smalltalk Conference - Prague 2006

@{ getXT1 -> getX,
 setXT1: -> setX: }
@@{ xFromT1 -> x }

T1

getX
setX:

x

T2

getX
setX:

x

C

sum

@{ getXT2 -> getX,
 setXT2: -> setX: }
 — { getX, setX: }
@@{ xFromT2 -> x }

c := C new.
c setXT1: 1.
c setXT2: 2.

{ Now:
 c getXT1 = 1
 c getXT2 = 2
 c sum = 3 }

sum
 ^ xFromT1 + xFromT2

Fig. 5. Granting access to variables: x of T1 and T2 are given access in C.

composing classscope). For instance, in the following composition:
TSyncReadWrite@{hashFromSync →hash} @@{syncLock →lock}

the variable lock defined in TSyncReadWrite is accessible to the class SyncStream
using that trait under the name syncLock. (Note that renaming is often needed to
distinguish similarly named variables coming from different used traits.)

In a trait variable composition, three situations can arise: (i) variables remain private
(i.e., the variable access operator is not used), (ii) access to a private variable is
granted, and (iii) variables are merged.

4.3 Keeping variables private

By default, instance variables are private to their trait. If the scope of variables is not
broadened at composition time using the variable access operator, conflicts do not
occur and the traits do not share state. Figure 3 shows a case where T1 and T2 are
composed without variable access being broadened. Each of these two traits defines
a variable x and an accessor getX and a mutator setX:. C also defines a variable x
and two methods getX and setX:. T1, T2 and C each have their own variable x as
shown in Figure 3.

The trait composition of C is:

T1 @ {getXT1 →getX, setXT1: →setX:}
+ T2 @ {getXT2 →getX, setXT2 →setX:}

Note that C overrides the setters and getters of traits T1 and T2, thereby resolving
the method conflict. Method aliasing is used to give access to the overridden setter
and getter methods.

12

(DRAFT) International Smalltalk Conference - Prague 2006

T1

getX
setX:

x

T2

getY
setY:

y

C

getW
setW:

@@{w -> x}

@@{w -> y}

c := C new.
c setW: 3.

{ Now:
 c getX = 3
 c getY = 3
 c getW = 3 }

Fig. 6. Merging variables: variables x and y are merged in C under the name w.

4.4 Granting variable access

Figure 5 shows how the client class C gains access to the private x variables of traits
T1 and T2 by using the variable access operator @@. Because two variables cannot
have the same name within a given scope, these variables have to be renamed. The
variable x from T1 is accessible as xFromT1 and x from T2 is accessible as xFromT2.
C also defines a method sum that returns the value xFromT1 + xFromT2. The trait
composition of C is:

T1 @ {getXT1 →getX, setXT1: →setX}
@@ {xFromT1 →x}

+ T2 @ {getXT2 →getX, setXT2 →setX:}
− {getX, setX:} @@ {xFromT2 →x}

To avoid method conflicts for getX and setX: we exclude these methods from T2. C
can therefore build functionality on top of the traits that it uses, without exposing
any details to the outside. Note that methods in the trait continue to use the ‘internal’
name of the variable as defined in the trait. The name given in the variable access
operator @@ is only to be used in the client. This is similar to the method aliasing
operator @.

4.5 Merging variables

Variables from several traits can be merged when they are composed by using the
variable access operator to map multiple variables to a common name within the
client scope. This is illustrated in Figure 6.

Both T1 and T2 give access to their instance variables x and y under the name w.
This means that w is shared between all three traits. This is the reason why sending
getX, getY, or getW to an instance of a class implementing C returns the same re-
sult, 3. The trait composition of C is:

T1 @@ {w →x} + T2 @@ {w →y}

13

(DRAFT) International Smalltalk Conference - Prague 2006

Note that merging is fully under the control of the client class or trait. There can be
no accidental name capture since visibility of instance variables is never propagated
to an enclosing scope. Variable name conflicts cannot arise, since variables are
private to traits unless they are explicitly accessed by clients, and variables are
merged when they are mapped to common names.

The reader might well ask, what happens if the client also defines an instance vari-
able whose name happens to match the name under which a used trait’s variable is
accessed? Suppose, for example, that C in Figure 6 attempts to additionally define
an instance variable called w. We consider this to be an error. This situation can-
not possibly arise as a side effect of changing the definition of a used trait since
the client has full control over the names of instance variables accessible within its
scope. As a consequence this cannot be a case of accidental name capture, and can
only be interpreted as an error.

4.6 Requirements revisited

Let us briefly reconsider our requirements. First, stateful traits do not change the se-
mantics of stateless traits. Stateless traits are purely a special case of stateful traits.
Syntactically and semantically, stateful traits represent only a minor extension of
stateless traits.

Stateful traits address the issues raised in Section 3. In particular, (i) there is no
longer a need to clutter trait interfaces with required accessors, (ii) clients no longer
need to provide boilerplate instance variables and accessors, (iii) the introduction
of state in traits remains private to that trait, and (iv) no public accessors need be
introduced in client classes. As a consequence, it is possible to define “complete”
traits that require no methods, even though they make use of state.

The default semantics of stateful traits enables black-box usage since no represen-
tation is exposed, and instance variables by default cannot clash with those of the
client or of other used traits. Nevertheless, the client retains control of the compo-
sition, and can gain access to the instance variables of used traits. In particular, the
client may merge variables of traits, if this is desired.

Since the client retains full control of the composition, changes to the definition
of a trait cannot propagate beyond its direct clients. There can be no implicit side
effects.

Finally, the approach is largely language-independent. In particular, there are no
assumptions that the host language provide either access modifiers for instance
variables or exotic scoping mechanisms.

14

(DRAFT) International Smalltalk Conference - Prague 2006

T2
v, x
getV

T1
x, y, z
getX

T3

T4

Memory layout
Model

T1

T1.x
T1.y
T1.z

T2

T2.v
T2.x

T3

T1.x
T1.y
T1.z

T4

T1.x
T1.y
T1.z
T2.v
T2.x

Variable
offsets

0
1
2
3
4

getX
 ^ x

getV
 ^ v

Fig. 7. Problem of combining multiple traits: variable’s offset is not preserved.

5 Implementation

We have implemented a prototype of stateful traits as an extension of our Smalltalk-
based implementation of stateless traits. 1

As with stateless traits, method composition and reuse for stateful traits do not in-
cur any overhead since method pointers are shared between method dictionaries of
different traits and classes. This takes advantage of the fact that methods are looked
up by name in the dictionary rather than accessed by index and offset, as is done to
access state in most object-oriented programming languages. However, by adding
state to traits, we have to find a solution to the fact that the access to instance vari-
ables cannot be linear (i.e., based on offsets) since the same trait methods can be
applied to different objects [BGG+02]. A linear structure for state representation
cannot be always obtained from a composition graph. This is a common problem
of languages that support multiple inheritance. We evaluated two implementations:
copy-down and changing object internal representation. The following section il-
lustrates the problem.

5.1 The classical problem of state linearization

Since a stateful trait may have a private state, and may be used in multiple contexts,
it is not possible to have a static and linear instance variable offset list shared by all
the methods of the trait and its users.

The top half of Figure 7 shows a trait T3 using T1 and a trait T4 using T1 and T2. T1
defines 3 variables x, y, z and T2 defines 2 variables v, x. The bottom part shows a
possible corresponding representation in memory that uses offsets. Assuming that
we start the indexing at zero, T2.v has zero for index, and T2.x has one. However,

1 See www.iam.unibe.ch/∼scg/Research/Traits

15

(DRAFT) International Smalltalk Conference - Prague 2006

http://www.iam.unibe.ch/~scg/Research/Traits

B
x: int
getX(): int

C
y: int
getY(): int

Memory layout
Model using virtual inheritance

D
z: int
getZ(): int

D
w

x

getW()

getX()

y
getY()

A

B

C

A
w: int
getW(): int

getZ()
z

D

VTables

Fig. 8. Multiple virtual inheritance in C++.

in T4 the same two variables might have indexes three and four. 2 So static indexes
used in methods from T1 or T2 are no longer valid. Note that this problem occurs
regardless of the composition of trait T4 out of traits T1 and T2 (whether it needs
access to variables, whether or not it merges variable x, . . .). The problem is due to
the linear representation of variables in the underlying object model.

5.2 Three approaches to state linearization

Three different approaches are available to represent non linear state. C++ uses
intra-object pointers [SG99]. Strongtalk [BGG+02] uses a copy-down technique
that duplicates methods that need to access variable with different offset. A third
approach, as done in Python [Pyt] for example, is to keep variables in a dictionary
and look them up, similar to what is done for methods.

We implemented the last two approaches for Smalltalk so that we could compare
them for our prototype implementation. We did not implement C++’s solution be-
cause it would require significant effort to change the object representation to be
compatible.

2 We assume that the slots of T2 are added after the ones of T1. In the opposite case the
argument holds for the variables of T1.

16

(DRAFT) International Smalltalk Conference - Prague 2006

T1
x, y, z
getX

T2
v, x
getV

T4

Memory layout
Model

T4

getX
 ^ x

getV
 ^ v

@@ { v -> y }

@@ { v -> v }

T1.x val1
T1.y, T2.v val2

T1.z val3
T2.x val4

Fig. 9. Structure of objects is similar to a hash table with multiple keys for a same entry.

5.3 Virtual base pointers in C++

C++ uses virtual base pointers [SG99] to represent state inherited from multiple
parents. For instance, let’s consider the situation in C++ illustrated in Figure 8. The
upper part of the figure shows a classical diamond diagram using virtual inheritance
(i.e., B and C inherit virtually A, therefore the w variable is shared between B and
C). The lower part shows the memory layout of an instance of D. This instance is
composed of 4 “sub-parts” corresponding to the superclasses A, B, C and D. Note
that C’s part, instead of assuming that the state it inherits from A lies immediately
“above” its own state, accesses the inherited state via the virtual base pointer. In
this way the B and C parts of the D instance can share the same common state from
A.

We did not attempt to implement this strategy in our Smalltalk prototype, as it
would have required a deep modification to the Smalltalk VM. Since Smalltalk
supports only single inheritance, object layout is fundamentally simpler. Accom-
modating virtual base pointers in the layout of an object would also entail changes
to the method lookup algorithm.

5.4 Object state as a dictionary

An alternative implementation approach is to introduce instance variable accesses
based on names and not on offsets. The variable layout has the semantics of a hash
table, rather than that of an array. For a given variable, its offset is not constant
anymore as shown by Figure 9. The state of an object is implemented by a hash
table in which multiple keys may map to the same value. For instance, variable y
of T1 and variable v of T2 are merged in T4. Therefore, an instance of T4 has two
variables (keys), T1.y and T2.v, that actually point to the same value.

In Python [Pyt] the state of an object is represented by a dictionary. An expres-

17

(DRAFT) International Smalltalk Conference - Prague 2006

sion such as self.name = value is translated into self. dict [name] = value, where
dict is a primitive to access the dictionary of an object. A variable is declared

and defined simply by being used in Python. For instance, affecting a value to an
non-existing variable has the effect to create a new variable. Representing the state
of an object with a dictionary is a way to deal with the linearization problem of
multiple inheritance.

5.5 Copy down methods

Strongtalk [BGG+02] is a high performance Smalltalk with a mixin-aware virtual
machine. A mixin contains description of its instance variables and class variables,
and a method dictionary where all the code is initially stored. One of the problems
when sharing code among mixin application is that the physical layout of instances
varies between applications. This problem is addressed by the copy down mecha-
nism: (i) Methods that do not access instance variables or super are shared in the
mixin. (ii) Methods that access instance variables may have to be copied if the
variable layout differs from that of other users of the mixin.

The copy down mechanism favors execution speed over memory consumption.
There is no extra overhead to access variable. Variables are linearly ordered, and
methods that access them are duplicated and adjusted with proper offset access.

The dictionary-based approach has the advantage that it more directly reflects the
semantics of stateful traits, and is therefore attractive for a prototype implemen-
tation. Practical performance could however become problematic, even with opti-
mized dictionary implementations like in Python [Pyt]. The copy-down approach,
however, is clearly the better approach for a fast implementation. Therefore we
decided to adopt it in our implementation of stateful traits in Squeak Smalltalk.

5.6 Benchmarks

As mentioned in the previous section, we adopted the copy-down technique for our
stateful traits implementation. In this section we compare the performance of our
stateful traits prototype implementation with that of both regular Squeak without
traits and that of the stateless traits implementation. We measured the performance
of the following two case studies:

• the SyncStream example introduced in the beginning of the paper. The experi-
ment consisted of writing and reading large objects in a stream 1000 times. This
example was chosen to evaluate whether state is accessed efficiently.

• a link checker application that parses HTML pages to check whether URLs on a
webpage are reachable or not. This entails parsing large HTML files into a tree

18

(DRAFT) International Smalltalk Conference - Prague 2006

Without
traits

Stateless
traits

Stateful
traits

SyncStream 13912 13913 13912

LinkChecker 2564 2563 2564
Table 1
Execution times of two cases for three implementations: without traits, with stateless traits
and with stateful traits (times in milliseconds).

representation and running visitors over these trees. This case study was chosen
in order to have a more balanced example that consists of accessing methods as
well as state.

For both case studies we compared the stateful implementation with the stateless
traits implementation and with reular Squeak. The results are shown in Table 1.

As can be seen from the table, no overhead is introduced by accessing instance
variables defined in traits and used in clients. This was to be expected: the access
is still offset-based and almost no differences can be noticed. Regarding overall
execution speed, we see that there is essentially no difference between the three
implementation. This result is consistent with previous experience using traits, and
was to be expected since we did not change the parts of the implementation dealing
with methods.

6 Refactoring the Smalltalk collection hierarchy

We have carried out a case study in which we used stateful traits to refactor the
Smalltalk collection hierarchy. We have previously used stateless traits to refactor
the same hierarchy [BSD03], and we now compare the results of the two refactor-
ings. The stateless trait-based Smalltalk collection hierarchy consists of 29 classes
which are built from a total of 52 traits. Among these 29 classes there are numerous
classes, which we call shell classes, that only declare variables and define their as-
sociated accessors. Seven classes of the 29 classes (24%) are shell classes (SkipList,
PluggableSet, LinkedList, OrderedCollection, Heap, Text and Dictionary).

The refactoring with stateful traits results in a redistribution of the variables defined
(in classes) to the traits that effectively need and use them. Another consequence is
the decrease of number of required methods and a better encapsulation of the traits
behaviour and internal representation.

Figure 10 shows a typical case arising with stateless traits where the class Heap
must define 3 variables (array, tally, and sortBlock). The behaviour of this class is
limited to the initialization of objects and providing accessors for each of these
variables. It uses the trait THeapImpl, which requires all these accessors. These

19

(DRAFT) International Smalltalk Conference - Prague 2006

TSortBlockBased
locksortBlock: privateSortBlock:

sortBlock

Heap
array
tally
sortBlock
array
array:
tally
tally:
privateSortBlock:
sortBlock

THeapImpl
lockadd:
copy
grow
removeAt:
...

array
array:
tally
tally:
privateSortBlock:
sortBlock

TExtensibleSeq
lock... ...

TArrayBased
locksize
capacity
...

array
array:
tally
tally:

TExtensibleInst
lock... ...

sortBlock: aBlock
 ...
 self privateSortBlock: aBlock
 ...

size
 ^ self tally

capacity
 ^ self array size

Fig. 10. Fragment of the stateless trait Smalltalk collection hierarchy. The class Heap de-
fines variables used by TArrayBased and TSortBlockBased.

Heap

THeapImpl

add:
copy
grow
removeAt:
...

TExtensibleSeq

... ...

TArrayBased
array
tally
size
capacity
...

TExtensibleInst

... ...

TSortBlockBased
sortBlock
sortBlock:
...

sortBlock: aBlock
 ...
 sortBlock := aBlock.
 ...

size
 ^ tally

capacity
 ^ array size

Fig. 11. Refactoring of the class Heap with stateful traits but keeping the trait THeapImpl.

requirements are necessary for THeapImpl since it is composed of TArrayBased
and TSortBlockBased which require such state. These two traits need access to the
state defined in Heap.

Figure 11 shows how Heap is refactored to use stateful traits. All variables have
been moved to the places where they were needed, leading to the result that Heap
becomes empty. The variables previously defined in Heap are rather defined in the
traits that effectively require them. TArrayBased defines two variables array and
tally, therefore it does not need to specify any accessors as required methods. It is
the same situation with TSortBlockBased and the variable sortBlock.

If we are sure that THeapImpl is not used by any other class or trait, then we can

20

(DRAFT) International Smalltalk Conference - Prague 2006

TExtensibleSeq

... ...

TArrayBased
array
tally
size
capacity
...

TExtensibleInst

... ...

TSortBlockBased
sortBlock
sortBlock:
...

sortBlock: aBlock
 ...
 sortBlock := aBlock.
 ...

size
 ^ tally

capacity
 ^ array size

Heap

add:
copy
grow
removeAt:
...

Fig. 12. Refactoring of the class Heap with stateful traits removing the trait THeapImpl.

further simplify this new composition by moving the implementation of the trait
THeapImpl to Heap and eliminating THeapImpl. Figure 12 shows the resulting hi-
erarchy. The class Heap defines methods like add: and copy.

Refactoring the Smalltalk class hierarchy using stateful traits yields multiple bene-
fits:

• Encapsulation is preserved: Internal representation is not unnecessarily revealed
to client classes.

• Fewer method definitions: Unnecessary variable accessors are avoided. Acces-
sors that were defined in Heap are removed.

• Fewer method requirements: Since variables are defined in the traits that used
them, we avoid specifying required accessors. Variable accessors for THeap-
Impl, TArrayBased, and TSortBlockBased are not required anymore. There is no
propagation of required methods due to state usage.

7 Discussion

7.1 Flattening property

In the original stateless trait model [DNS+06], trait composition respects the flat-
tening property, which states that a non-overridden method in a trait has the same
semantics as if it were implemented directly in the class. This implies that traits
can be inlined to give an equivalent class definition that does not use traits. It is
natural to ask whether such an important property is preserved with stateful traits.
In short, the answer is yes, though trait variables may have to be alpha-renamed to
avoid name clashes.

In order to preserve the flattening property with stateful traits, we must ensure that
instance variables introduced by traits remain private to the scope of that trait’s
methods, even when their scope is broadened to that of the composing class. This

21

(DRAFT) International Smalltalk Conference - Prague 2006

can be done in a variety of ways, depending on the scoping mechanisms provided
by the host language. Semantically, however, the simplest approach is to alpha-
rename the private instance variables of the trait to names that are unique in the
client’s scope. Technically, this could be achieved by the common technique of
name-mangling, i.e., by prepending the trait’s name to the variable’s name when
inserting it in the client’s scope. Renaming and merging are also consistent with
flattening, since variables can simply be renamed or merged in the client’s scope.

7.2 Limiting change impact

Any approach to composing software is bound to be fragile with respect to certain
kinds of change: if a feature that is used by several clients changes, the change will
affect the clients. Extending a trait so that it provides additional methods may well
affect clients by introducing new conflicts. However, the design of trait composition
based on explicit resolution ensures that such changes cannot lead to implicit and
unexpected changes in the behaviour of direct or indirect clients. A direct client can
generally resolve a conflict without changing or introducing any other traits, so no
ripple effect will occur [DNS+06].

In stateful traits adding a variable to a trait does not affect clients because variables
are private. Removing or renaming a variable may require its direct clients to be
adapted only if this variable is explicitly accessed by these clients. However, once
the direct clients have been adapted, no ripple effect can occur in indirect clients.
By avoiding required method propagation, stateful traits limit the effect of changes.

7.3 About variable access

By default a trait variable is private, thereby enforcing black-box reuse. At the same
time we offer an operator enabling the direct client to access the private variables
of the trait. This may appear to be a violation of encapsulation [Sny86]. However
this approach is consistent with our vision that traits serve as building blocks for
composing classes, whether in a black-box or a white-box fashion. Furthermore it is
consistent with the principle that the client of a trait is in control of the composition.
It is precisely this fact that ensures that the effects of changes do not propagate to
remote corners of the class hierarchy.

8 Related work

We briefly review some of the numerous research activities that are relevant to
stateful traits.

22

(DRAFT) International Smalltalk Conference - Prague 2006

Self. The prototype based language Self [US87] does not have a notion of class.
Conceptually, each object defines its own format, methods, and delegation rela-
tions. Objects are derived from other objects by cloning and modification. Objects
can have one or more parent objects; messages that are not found in the object are
looked for and delegated to a parent object. Self is based around the notion of slots,
which unifies methods and instance variables.

Self uses trait objects to factor out common features [UCCH91]. Nothing prevents
a trait object from also containing state. Similar to the notion of traits presented
here, these trait objects are essentially groups of methods. But unlike our traits,
Self’s trait objects do not support specific composition operators; instead, they are
used as ordinary parent objects.

Interfaces with default implementation. Mohnen [Moh02] proposed an extension
of Java in which interfaces can be equipped with a set of default implementations
of methods. As such, classes that implement such an interface can explicitly state
that they want to use the default implementation offered by that interface (if any).
If more than one interface mentions the same method, a method body must be pro-
vided. Conflicts are flagged automatically, but require the developer to resolve them
manually. State cannot be associated with the interfaces. Scala [sca] also supports
traits i.e., partially defined interfaces. While the composition of traits in Scala does
not follow exactly that of stateless traits, traits in Scala cannot define state.

Mixins. Mixins [BC90] use the ordinary single inheritance operator to extend var-
ious parent classes with a bundled set of features. Although this inheritance opera-
tor is well-suited for deriving new classes from existing ones, it is not necessarily
appropriate for composing reusable building blocks. Specifically, because mixin
composition is implemented using single inheritance, mixins are composed lin-
early. This gives rise to several problems. First, a suitable total ordering of features
may be difficult to find, or may not even exist. Second,“glue code” that exploits
or adapts the linear composition may be dispersed throughout the class hierarchy.
Third, the resulting class hierarchies are often fragile with respect to change, so that
conceptually simple changes may impact many parts of the hierarchy [DNS+06].

Eiffel. Eiffel [Mey92] is a pure object-oriented language that supports multiple in-
heritance. Features, i.e., method or instance variables, may be multiply inherited
along different paths. Eiffel provides the programmer mechanisms that offer a fine-
degree of control over whether such features are shared or replicated. In particular,
features may be renamed by the inheriting class. It is also possible to select a par-
ticular feature in case of naming conflicts. Selecting a feature means that from the

23

(DRAFT) International Smalltalk Conference - Prague 2006

context of the composing subclass, the selected feature takes precedence over the
possibly conflicting ones.

Despite the similarities between the inheritance scheme in Eiffel and the composi-
tion scheme of stateful traits, there are some significant differences:

• Renaming vs. aliasing – In Eiffel, when a subclass is created, inherited features
can be renamed. Renaming a feature has the same effect as (i) giving a new name
to this feature and (ii) changing all the references to this feature.

In stateful traits, aliasing a method or granting access to a variable gives a new
name to it. The method or the variable can therefore still be accessed through its
original name.

• Renaming is not polymorphic – A feature that is renamed in a subclass cannot
be invoked through its original name on instances of this subclass. The feature is
therefore no longer polymorphic.

In stateful traits, this problem does not occur because the method or variable
can be accessed through its original name.

• Merging variables – In contrast to to stateful traits, a variables cannot be merged
in Eiffel.

Jigsaw. Jigsaw [Bra92] has a module system in which a module is a self-referential
scope, binding names to values (i.e., constant and functions). A module acts as
a class (object generator) and as a coarse grain structural software unit. Modules
can be nested, therefore a module can define a set of classes. A set of operators is
provided to compose modules. These operators are instantiation, merge, override,
rename, restrict, and freeze.

Although there are some differences between the definition of a Jigsaw module and
a stateful traits, for instance with the rename operator, the more significant differ-
ences are in motivation and settings. The impact of the Jigsaw module system on
the host programming language is significant: a type system is required to specify
type declaration and requirement, Jigsaw supports full renaming (as in Eiffel), and
assigns a semantic interpretation to nesting. Traits are intended to supplement ex-
isting languages by promoting reuse in the small, do not declare types, infer their
requirements and do not allow renaming. Stateless traits do not assign any meaning
to nesting. Stateful traits are sensitive to nesting only to the extent that instance
variables are private to a given scope. The Jigsaw operation set also aims for com-
pleteness, whereas in the design of traits we explicitly gave up completeness for
simplicity.

A notable difference between Jigsaw and Stateful traits is with the merging of vari-
ables. In Jigsaw, a module can have state, however variables cannot be shared be-
tween modules. With stateful traits the same variable can be accessed by the traits
that use it. A Jigsaw module acts as a black-box. A module encapsulates its bind-
ings and cannot be opened. While we value black-box composition, stateful traits

24

(DRAFT) International Smalltalk Conference - Prague 2006

do not take such a restrictive approach, but rather let the client assume responsibil-
ity for the composition, while being protected from the impact of changes.

Cecil. Cecil [Cha92] is a purely object-oriented language that combines a classless
object model, a kind of dynamic inheritance and an optional static type checking.
Cecil’s static type system distinguishes between subtyping and code inheritance
even if the more common case is when the subtyping hierarchy parallels the in-
heritance hierarchy. Cecil supports multiple inheritance. Inheriting from the same
ancestor more than once, whether directly or indirectly, has no effect other than to
place the ancestor in relation to other ancestors: Cecil has no repeated inheritance.
Inheritance in Cecil requires a child to accept all of the fields and methods defined
in the parents. These fields and methods may be overridden in the child, but fa-
cilities such as excluding fields or methods from the parents or renaming them as
part of the inheritance are not present in Cecil. This is an important difference with
respect to stateful traits.

9 Conclusion

Stateless traits offer a simple compositional approach for structuring object-oriented
programs. A trait is essentially a group of pure methods that serves as a building
block for classes and as a primitive unit of code reuse. However this simple model
suffers from several limitations, in particular (i) trait reusability is impacted because
the required interface is typically cluttered with uninteresting required accessors,
(ii) client classes are forced to implement boilerplate glue code, (iii) the introduc-
tion of new state in a trait propagates required accessors to all client classes, and
(iv) public accessors break encapsulation of the client class.

We have proposed a way to make traits stateful as follows: First, traits can have pri-
vate variables. Second, classes or traits composed from traits may use the variable
access operator to (i) access variables of the used traits, (ii) attribute local names
to those variables, and (iii) merge variables of multiple used traits, when this is de-
sired. The flattening property can be preserved by alpha-renaming variable names
that clash.

Stateful traits offer numerous benefits: There is no unnecessary propagation of re-
quired methods, traits can encapsulate their internal representation, and the client
can identify the essential required methods more clearly. Duplicated boilerplate
glue code is no longer needed. A trait encapsulates its own state, therefore an evolv-
ing trait does not break its clients if its public interface remains unmodified.

Stateful traits represent a relatively modest extension to single-inheritance lan-
guages that enables the expression of classes as compositions of fine-grained, reusable

25

(DRAFT) International Smalltalk Conference - Prague 2006

software components. An open question for further study is whether trait compo-
sition can subsume class-based inheritance, leading to a programming language
based on composition rather than inheritance as the primary mechanism for struc-
turing code.

Acknowledgment

We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “A Unified Approach to Composition and Extensibility”
(SNF Project No. 200020-105091/1), the support of the European Science Foun-
dation (ESF) for the project RELEASE, and of the Science Foundation Ireland and
Lero — the Irish Software Engineering Research Centre.

We also thank Nathanel Schärli, Gilad Bracha, Dave Thomas and Orla Greevy for
their valuable discussions and comments. Thanks to Ian Joyner for his help with
the MacOSX Eiffel implementation.

References

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings
OOPSLA/ECOOP ’90, ACM SIGPLAN Notices, volume 25, pages 303–311,
October 1990.

[BGG+02] Lars Bak, Gilad Bracha Steffen Grarup, Robert Griesemer, David Griswold, and
Urs Hölzle. Mixins in Strongtalk. In ECOOP ’02 Workshop on Inheritance,
June 2002.

[Bra92] Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity and
Multiple Inheritance. PhD thesis, Dept. of Computer Science, University of
Utah, March 1992.

[BSD03] Andrew P. Black, Nathanael Schärli, and Stéphane Ducasse. Applying traits to
the Smalltalk collection hierarchy. In Proceedings OOPSLA’03 (International
Conference on Object-Oriented Programming Systems, Languages and
Applications), volume 38, pages 47–64, October 2003.

[Cha92] Craig Chambers. Object-oriented multi-methods in cecil. In O. Lehrmann
Madsen, editor, Proceedings ECOOP ’92, volume 615 of LNCS, pages 33–56,
Utrecht, the Netherlands, June 1992. Springer-Verlag.

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and
Andrew Black. Traits: A mechanism for fine-grained reuse. ACM Transactions
on Programming Languages and Systems, 28(2):331–388, March 2006.

[for] The fortress language specification.
http://research.sun.com/projects/plrg/fortress0866.pdf.

26

(DRAFT) International Smalltalk Conference - Prague 2006

[FR03] Kathleen Fisher and John Reppy. Statically typed traits. Technical Report TR-
2003-13, University of Chicago, Department of Computer Science, December
2003.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back
to the future: The story of Squeak, A practical Smalltalk written in itself. In
Proceedings OOPSLA ’97, ACM SIGPLAN Notices, pages 318–326. ACM
Press, November 1997.

[Mey92] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1992.

[Moh02] Markus Mohnen. Interfaces with default implementations in Java. In
Conference on the Principles and Practice of Programming in Java, pages 35–
40. ACM Press, Dublin, Ireland, jun 2002.

[NDS06] Oscar Nierstrasz, Stéphane Ducasse, and Nathanael Schärli. Flattening Traits.
Journal of Object Technology, 5(4):129–148, May 2006.

[Pyt] Python. http://www.python.org.

[sca] Scala home page. http://lamp.epfl.ch/scala/.

[SD05] Charles Smith and Sophia Drossopoulou. Chai: Typed traits in Java. In
Proceedings ECOOP 2005, 2005.

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black.
Traits: Composable units of behavior. In Proceedings ECOOP 2003 (European
Conference on Object-Oriented Programming), volume 2743 of LNCS, pages
248–274. Springer Verlag, July 2003.

[SG99] Peter F. Sweeney and Joseph (Yossi) Gil. Space and time-efficient memory
layout for multiple inheritance. In Proceedings OOPSLA ’99, pages 256–275.
ACM Press, 1999.

[Sla] Slate. http://slate.tunes.org.

[Sny86] Alan Snyder. Encapsulation and inheritance in object-oriented programming
languages. In Proceedings OOPSLA ’86, ACM SIGPLAN Notices, volume 21,
pages 38–45, November 1986.

[UCCH91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle. Organizing
programs without classes. LISP and SYMBOLIC COMPUTATION: An
international journal, 4(3), 1991.

[US87] David Ungar and Randall B. Smith. Self: The power of simplicity. In
Proceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 227–
242, December 1987.

27

(DRAFT) International Smalltalk Conference - Prague 2006

Session – Tools

(DRAFT) International Smalltalk Conference - Prague 2006

(DRAFT) International Smalltalk Conference - Prague 2006

1

Let’s Modularize the Data Model Specifications of the
ObjectLens in VisualWorks/Smalltalk

Michael Prasse

Abstract

The ObjectLens framework of VisualWorks maps objects to tables. This mapping is described in a

data mapping model, which itself is specified in one dataModelSpec method. This method is mono-

lithic and defines the whole data model of an application. This is a suitable approach to start with.

However, when the business area extends to a set of similar applications, like a software product

family, each of these applications needs its own data model specification. All specifications of the

product family would be quite similar but there is no appropriate reuse-mechanism, which could be

used. Consequently, the monolithic design specifications lead to a high degree of redundancy, which

complicates software development and maintenance.

Therefore, this paper describes an approach, which leads to a separation of the monolithic data

model specifications. The main idea is to define the mappings of each class in the class itself using

inheritance and generate the whole specification from a list of single class data models. In this way,

declarative and generative programming techniques are combined.

Keywords

ObjectLens, Smalltalk, VisualWorks, Design Pattern, Software Product Families, OR-Mapping,

Generative Programming

(DRAFT) International Smalltalk Conference - Prague 2006

2

Contents

Abstract ..1

Keywords ...1

Contents ...2

Introduction ...3

ObjectLens Framework ..3

Architecture ...4

Conceptual Mapping from Classes to Tables ..5

Programming Metaphor ...6

Summary ..7

Data Model Specification ...7

Conceptualization ..8

Maintenance Problems ..9

Class Hierarchy Problems ...9

Multiple datamodelSpec Problems ...10

The DataModelMerger as a first Solution Approach ..11

Summary ..11

Modularization of the ObjectLens ..12

General Ideas and Goals ..12

Data Model Mappings of Classes ..12

LensApplication datamodelSpec ...14

Integration into the Lens Modeling Tools ...15

DataModelDefinitionGenerator - Generation and Migration ..16

Summary ..18

Conclusion ...19

Literature ...19

(DRAFT) International Smalltalk Conference - Prague 2006

3

Introduction

Since 1997 our software engineering group develops applications in the domain of pension schemes

with VisualWorks/Smalltalk. At the beginning this software was specified for one customer. In the

course of time the number of customers and the application domains grew. Today we support more

than 20 customers and all kinds of pension schemes in Germany including long-term accounts of

employees. The system architecture is extended from a fat client architecture to an application service

provider architecture including a web application server, which is also build in VisualWorks.

To reduce software engineering costs we organized our applications as a product family. There is a

single source base for all applications improving reuse of existing modules. The core is organized as a

framework including common GUI-standards, common domain specific models, database access lay-

ers and standard management and administration modules. The applications extent this core by defin-

ing new specific modules using object-oriented techniques like inheritance, object composition and

meta programming.

But there is one area where we could not achieve a high degree of reuse directly. This is how object-

relational mappings are defined in the ObjectLens framework, which is the heart of the data base

access layer. In the ObjectLens, the object-relational mappings are described in one monolithic specifi-

cation. We need a specific object-relational mapping for each application. All this specifications have

common parts. Defining a new specification starts with copying a suitable specification and changing

it. This copy-paste approach leads to a high level of redundancy and makes data model changes of

common parts more difficult because many specifications have to be updated. In this paper we want to

describe a more sophistical solution solving these problems.

The presented solution is a pragmatic one. The first aim was to solve the redundancy and mainte-

nance problem concerning the data model specifications. It was not our goal to do an extensive aca-

demic research on object-relational mapping or to develop a new object-relational mapping frame-

work. For example, there is no opportunity to exchange the base object relational mapping of our appli-

cations. The costs and time are in no relation to the expected benefits. For these reasons our solution

has to be integrated in the existing ObjectLens. Of course to achieve our primary aim of improving the

data model specifications we used an engineering approach including analysis, design, risk manage-

ment, testing and stepwise deployment in production.

The article is structured as following. First the ObjectLens framework of VisualWorks is introduced.

Then the data model specifications of the ObjectLens and their disadvantages for our product line

approach are discussed in detail. Afterwards we present our solution and its integration in the

ObjectLens framework. In the next section we describe the generation of our new data model specifi-

cation parts form the old specifications and how we solve specification conflicts. The conclusion sum-

marizes our experiences.

ObjectLens Framework

The ObjectLens Framework is an integrated part of VisualWorks since Version 2.0 from 1994 ([Parc

1994], [Cinc 2003a]). The major concepts of the ObjectLens have not changed since then. It is an early

developed access framework for mapping objects to relational database tables. It is comparable to

other early OR-mapping tools from this time like TOPLink by The Object People Inc., now Oracle,

Polar by IBL Ingenieurbüro Letters GmbH, Arcus Relational Database Access Layers by sd&m,

MicroDoc Persistence Framework by MicoDoc GmbH or Crossing Chasms Pattern Language by Kyle

Brown ([BrWh 1996], [IBL 1998], [KeCo 1996], [Micr 1998], [TheO 1998])1.

1. We enumerate only approaches which were introduced at the same time like the ObjectLens. Therefore, GLORP

(Smalltalk), JDO (Java) or Hibernate (Java, .NET) are not considered ([BaKi 2004], [Knig 2004], [Roos 2003]).

(DRAFT) International Smalltalk Conference - Prague 2006

4

In the next subsections, we describe the architecture, the object mapping to tables and the program-

ming metaphor of the ObjectLens.

Architecture

The ObjectLens Framework consists of four modules, which are described abstractly in figure 1.

The declaration module defines the specifications to describe the data model in a logical way. This

module contains classes for describing the data model and the data model specification. The data

model is a set of objects and defines data structure types, variables, types, and foreign key relation-

ships. The data model specifications are a declarative way to define this data model. Furthermore, it

uses the database module, which describes database tables and columns, to specify the mapping to the

logical database design. Together, both modules describe the logical database design and mapping.

There are also tools like the data modeler and the mapping tool, which allow to specify the data model

specifications tool based. Furthermore, you can generate or adapt the logical database structure from a

data model specification automatically. This process is called "check with database".

The next module is the runtime engine. It defines the infrastructure, which is required for mapping

objects to table rows and vice versa at runtime. It contains classes for row containers, caching, proxies,

and SQL queries. Furthermore, it defines a lens session, which controls the access to the persistent

objects. This module supports a seamless integration of SQL queries into Smalltalk and reduces the

impedance mismatch ([CoMa 1984]).

The last module defines GUI widgets for viewing and editing persistent objects. These widgets are

integrated seamlessly into the GUI framework of VisualWorks. Transient and persistent objects can

therefore be represented in the same way. It defines also aspect paths, which allow connections

between the object aspects and the visual components via the ValueModel-pattern ([ABW 1998], [Cinc

2003b], [Howa 1995], [Wool 1994]).

The ObjectLens itself is based on the EXDI framework (external database interface), which pro-

vides a low level access to database programming. The EXDI provides a set of abstract protocols to

establish a connection to the database server, to prepare and execute SQL queries, to obtain the results,

and to disconnect from the server. It supports also flat or non-nested database transactions with begin,

commit, and rollback.

Figure 1: Technical Architecture

GUI

EXDI

Runtime

DatabaseDeklaration

LensSession

LensContainers

LensProxy

LensDatabaseTableLensDatamodel
LensStructureType

LensStructureVariable

LensGlobalDescriptor

LensApplicationModel

1

LensDatabaseTableColumn

LensSQLTransporter

ExternalDatabaseSessionExternalDatabaseConnection

LensObjectRegistry

connection

EmbeddedDetailSpe

LinkedDetailSpecLensAspectPath

(DRAFT) International Smalltalk Conference - Prague 2006

5

The EXDI is an abstract framework. It provides the general implementation, but it does not provide

direct support for any particular database. Database Connect extensions are available to provide con-

nectivity to specific databases. Our software engineering group uses database connections for Oracle,

DB2, and PostgreSQL. The original ObjectLens framework was build for Oracle and later Sybase.

Today we use extensions, which allow to support DB2 and PostgreSQL. Therefore, we can run our

applications with different RDBMS without changing any code. The data models of DB2 and Postgr-

eSQL are automatically generated from the data model specification of Oracle. The current database is

selected by a configuration file.

Conceptual Mapping from Classes to Tables

The conceptual mapping from classes to tables of the ObjectLens is described in table 1. The

ObjectLens uses a simple mapping, which directly maps object-oriented concepts to relational con-

cepts. Classes, instance variables, and monomorphic object references are mapped directly to tables

and columns. 1:N and N:M relationships can be modeled by auxiliary classes, which express the rela-

tionships or by explicit queries, which select all objects that are connected to the object.

Mapping
Support

Concept Mapping

calculus level

(static semantics)a

a. For an introduction to relational databases and the relational calculus see [Date 1995] or [ElNa

1989]. For an introduction to object calculi and object-oriented concepts see [AbCa 1996], [Meye

1997] or [Prass 2002].

Φ: object calculus → relational calculus

directly class level Φclasses: classes → tables

Each class is unambiguously mapped to one table. In one data
model, no table can be mapped to different classes. This restric-
tion holds because the classID of objects is not stored in the ta-
bles. Therefore, you cannot map inheritance or polymorphism
by storing objects of different classes (subclasses) in the same
table.

directly instance variable level Φinstance variables: variables → columns

instance variables with
simple data types

Instance variables with simple data types can be mapped direct-
ly to one column.

instance variables with
monomorphic object ref-
erences (1:1 relationship)

Instance variables that hold object references map to a set of
columns, which holds the primary key of this object. This set of
columns realizes a foreign key relationship.

indirectly 1:n and n:m relationships There is no direct representation. Additional tables in the data-
base and select-statements of the ObjectLens can implement

these relationships.b

b. ObjectLens select-statements are Smalltalk statements, which are automatically transformed in SQL

queries by the ObjectLens.

no support inheritance There is no direct representation. Each subclass is mapped to its
own table. Each table contains all instance variables of the class
including inherited variables.

no support polymorphism Polymorphism for object references is not supported by the Ob-
jectLens. We developed an extension, which allows to support
untyped object references. For such references, the foreign key
consists of the pair (classID, objectID).

Table 1: Object Relational Mapping of the ObjectLens

(DRAFT) International Smalltalk Conference - Prague 2006

6

Unfortunately, the ObjectLens has only restricted support for inheritance and polymorphism. Each

class is always unambiguously mapped to one table. You cannot map several classes to one table.

Therefore, you cannot map a class hierarchy to one table. That means that you need several queries if

you want to select objects of different subclasses. Alternatively, you can replace inheritance by object

composition but this can lead to a complicated class design.

For example, you could use a class A for the queries, which has no subclasses. If class A is used for

queries, then only one query is needed to access all objects. The class A has a reference to the root class

B of a class hierarchy. This reference is mapped by an untyped object reference so that objects of A can

point to objects of subclasses of B. The cost of this design is the separation of one domain entity in two

subparts.

Foreign key relationships can only be mapped for monomorphic instance variables. That means

such a variable can only hold objects from one class. If you want to use polymorphic variables, which

can reference to objects from different classes, you have to build untyped relationships. However, in

this case you have to manage the access itself.

Programming Metaphor

The ObjectLens uses explicit persistency. The metaphor of persistency of the ObjectLens is the per-

sistent container or collection. It uses no persistency by reachability, where all objects, which are

reachable from a persistent root object are persistent, or persistent classes, where all objects of the class

are automatically persistent.

The ObjectLens is interpreted as a collection. To make an object persistent, it is simply added to the

lens session. To remove an object from the database, it is simple removed from the lens session. The

syntax is comparable to theirs of collections:

• to make an object persistent: aLensSession add: anObject

• to remove an object from the database: aLensSession remove: anObject

For all objects, which are included in the lens session, changes are automatically detected. Each

state change of such an object leads to an isDirty-registration. This isDirty-mechanism is integrated in

the setter methods of all instance variables by using the private method update:to: of the ObjectLens.

Each state change using a setter method is therefore detected. To reduce coding errors, the getter and

setter methods for instance variables can be automatically generated.

The ObjectLens supports flat transactions. Therefore, all updates, which occur in a transaction, are

written either together in the database (commit) or are rejected (rollback). Furthermore, you can use the

ObjectLens without transactions. In this case changes are immediately written into the database.

Database queries can also be written in Smalltalk. The syntax is comparable to the method select of

collections. The base for queries is the class LensQuery. Where-clauses are expressed as block closures

like in the collection methods do:, select: or detect:. Figure 2 shows an example of a select-statement

from our domain.

The result list of a query is automatically transformed into corresponding objects. Object references

are expressed as lens proxies. If a proxy is accessed it is automatically resolved by the corresponding

object. An object cache ensures referential integrity. All this mechanisms help to abstract from the rela-

Figure 2: Select-statement in Smalltalk

readEmployees: anEmployer in: anApplication
^anApplication

selectOnContainer: self container
whereBlock: [:each | each employer = anEmployer & each isCurrent]

(DRAFT) International Smalltalk Conference - Prague 2006

7

tional persistent mechanism and the database access in the ObjectLens. In most cases, Smalltalk syntax

can be used for persistent objects, which reduces the impedance mismatch.

The ObjectLens supports multiple lens sessions. An application can use several lens sessions to

access different databases simultaneously. However, the ObjectLens has no multi-process ability. It is

impossible to access one lens session from different threads or processes. The implementation of the

ObjectLens uses singletons for building the SQL-requests and is therefore not thread safe.

One further disadvantage is the bad performance by mass queries, if object references are resolved

by single queries. This is a typical trade-off of object references and object navigation. Object naviga-

tion is fast, but a query over a set of such objects needs additional queries for each object in the set.

You can influence this by using explicit select statements for mass queries.

Summary

The ObjectLens together with the EXDI framework and the specific Database Connect extensions

provides support for the most relevant aspects of building database applications. This includes the dec-

laration of the mappings, the creation and adaptation of the database tables, the low level database

access, the creation of user interfaces for persistent objects and the runtime support with storing objects

into the database, retrieving objects from the database and querying the database, which Smalltalk que-

ries, which are translated into SQL.

The ObjectLens provides also a simple mapping from object-oriented concepts to relational con-

cepts. Inheritance and polymorphism are not directly supported. Nevertheless, there are ways to

achieve both.

In the most cases you can think about the ObjectLens as a persistent collection. To make an object

persistent, you add it. To remove an object from the database, you remove it from the Lens. To select

an object from the database, you send a select statement to the Lens. The technical aspects like transac-

tions, proxies, posting updates, and translating queries into SQL are done by the ObjectLens.

Summarizing, the ObjectLens is an object-oriented access layer to relational databases. Its advan-

tages are:

• a seamless integration in VisualWorks

• good support access by navigation and single queries

• the generation of the database scheme

• RDBMS-abstraction (Oracle, Sybase, DB2, ODBC, (PostgreSQL))

• GUI-support

• the support of multiple lens sessions

• graphical modeling tools for describing and generating data models

Its disadvantages are:

• only rudimentary support of inheritance and polymorphism

• bad performance by mass queries

• no multiprocessor ability

Data Model Specification

After introducing the ObjectLens let us look now at the data model specifications, which describe

the mapping for one application. In the next subsections, we describe the structure of the dataModel-

Spec, the problems of maintenance and first solutions.

(DRAFT) International Smalltalk Conference - Prague 2006

8

Conceptualization

The datamodelSpec is a declarative description of a lens data model. It is coded as a literal array

(LiteralArray). A literal array is an array of arrays of literals. It is recursively defined. Literal arrays are

widely used in VisualWorks. Its most prominent use in VisualWorks is the windowSpec of the GUI-

Framework. All windows, which use the VisualWorks framework, are declarative described by literal

arrays. Another example is the specification of diagrams by the Advance UML modeling tool of Visu-

alWorks, which uses ad2diagram methods ([Cinc 2003b], [Howa 1995]).

To encode a lens data model, you use the method literalArrayEncoding. To decode a lens data

model, you use the method fromLiteralArrayEncoding:.

• encoding: aLensDataModel literalArrayEncoding returns a literal array suitable for re-
constituting the receiver.

• decoding: LensDataModel fromLiteralArrayEncoding: anArray creates a lens data mod-
el from the array encoding.

• LensDataModel fromLiteralArrayEncoding: (aLensDataModel literalArrayEncoding)
returns a lens data model, which is equal to aLensDataModel.

If you apply the methods literalArrayEncoding and fromLiteralArrayEncoding: alternately then you

can switch between the data model level and the data model specification level. This means, that you

can choose the language level for the specification of the data model specifications.

Figure 3 shows the general structure of a literal array and of a dataModelSpec method. A literal

array consists of two central parts: a class and a set of (aspect, value) pairs. The class determines the

kind of object, which the literal array describes. The (aspect, value) pairs describe the state of the

object. Usually the aspect is a method selector and the value is the argument. The receiver of the object

is the recently constructed object. In general, the construction process uses therefore a set of method

sends of the form ’<object> <aspect> <value>’. The value itself can be encoded as a literal array lead-

ing to nested encodings.

The general structure of a lens literal array is also described by figure 31. The first aspect defines the

database context. The second aspect describes the containing structure types. This is the most impor-

Figure 3: Structure of Literal Array and Lens Literal Arrays

literal array
^#(<Class>

<aspect> <value> <aspect> <value> <aspect> <value> ...)

lens literal array
^#(#{Lens.LensDataModel}

#setDatabaseContext: #(...)
#structureTypes: #(

#(#{Lens.LensStructureType}
#memberClass: <memberClass>
#setVariables: #(

#(#{Lens.LensStructureVariable}
#name: 'angelegtAm'
#column: <Database Column>
#privateIsMapped: true)

...)
#table: <Database Table>)

...)
#lensPolicyName: #Mixed
#lensTransactionPolicyName: #PessimisticRR
#validity: #installed)

(DRAFT) International Smalltalk Conference - Prague 2006

9

tant aspect of the description because a lens data model is mostly a set of structure types. The next two

aspects describe policies. The validity aspect determines the definition state of the data model.

The literal array of a lens structure type determines the class of the structure type, the variables of

the structure type and the table. The literal array of a lens structure variable determines name, mapping,

and column of the variable. The <value> for the aspect #strutureTypes: is a collection of structure types

and the <value> of the aspect #setVariables: is a collection of structure variables.

Figure 4 shows the beginning of an existing dataModelSpec method, which is part of our system. As

shown in figure 3 the structure types are described as literal arrays. The definition database is an

Oracle7Context with user name ’lens’ and database ’lensDB’. The example shows the beginning of the

specification of the lens structure type COLAdresse. A lens structure type itself consists of a set of lens

structure variables. In the example, the definition for the variable ’dependents’ is shown. This is an

unmapped (transient) variable. The datamodelSpec can specify persistent variables, which are mapped,

and transient variables, which are unmapped. Each lens structure type, which is used as a type of a lens

structure variable, has to be defined in the dataModelSpec. This is a completeness constraint to the

specification.

Maintenance Problems

The maintenance problems, which we identified by using the ObjectLens, can be classified into two

groups. The first group contains problems, which result from the poor support of inheritance by the

ObjectLens. In the second group are problems, which result from the move to a product family with

different datamodelSpecs. The origin of both problem groups is redundancy.

Class Hierarchy Problems

The lens structure type of a class defines all instance variables of a class including inherited vari-

ables. This is necessary because the corresponding table has to store all variables of the objects. There-

fore, in each subclass of a class all instance variables of that class have to be defined once again. There

is no single source principle for the specification of the mapping of instance variables.

 These multiple definitions lead to some maintenance problems. If a new subclass is added to a

dataModelSpec using the lens data modeler, the mappings of the inherited instance variables are not

1. The literal array is not described in all details. Only the most important aspects are shown.

Figure 4: Example dataModelSpec

dataModelSpec
"LensEditor new openOnClass: self andSelector: #dataModelSpec"

<resource: #dataModel>
^#(#{Lens.LensDataModel}

#setDatabaseContext:
#(#{Oracle7Context}

#username: 'lens'
#environment: 'lensDB')

#structureTypes: #(
#(#{Lens.LensStructureType}

#memberClass: #{COLAdresse}
#setVariables: #(

#(#{Lens.LensStructureVariable}
#name: 'dependents'
#setValueType: #Object
#generatesAccessor: false
#generatesMutator: false
#privateIsMapped: false) ...

(DRAFT) International Smalltalk Conference - Prague 2006

10

taken over. They have to be specified again, what is cumbersome and error prone. If a new variable is

added to a superclass then all lens structure types of the subclasses have to be changed. The renaming

of an instance variable of a superclass requires analogous adaptations. The same instance variable can

be mapped variously to the database in different subclasses. In some situations, this flexibility could be

an advantage. More often, different mappings are unwanted and only the result of missed adaptations.

For example the property sex of a person is mapped to {’m’,’f’} in some subclasses and to a boolean in

other subclasses of the same data model.

The same situation occurs if the superclass of a class is changed. In this case all instances variables

of the old superclass have to be removed from the specification and all instance variables of the new

superclass have to be added with the correct mapping. Figure 5 shows an example. The superclass of

the class AtzBeleg is changed from ZEBeleg to BelegMitRechtskreis. The red-colored variables are

changed. They need therefore a new mapping. If you remember that these are information of the super-

class you understand that each change in the class hierarchy inflicts subclasses directly.

Multiple datamodelSpec Problems

One monolithic datamodelSpec is used to describe the data model of an application. The data model

has to contain all entity classes of the application. When we switched from one application to a product

family, we had suddenly to deal with multiple datamodelSpecs. Common shared core modules and

Figure 5: Changing the Superclass

(DRAFT) International Smalltalk Conference - Prague 2006

11

domain specific modules characterize the product family. If we start a new project for a customer in

the domain context, we often copy and paste an existing dataModelSpec of an old project. Then this

datamodelSpec is adapted to the new requirements.

Concerning the common core modules, all our dataModelSpec have overlapping parts. So changing

the mapping of a superclass in a core module results not only in modifications of the subclasses in one

datamodelSpec, but also in all the other datamodelSpecs. Extending a core module by a new persistent

class requires again modifications to all datamodelSpec. If these changes are not maintained to all

applications then inconsistencies and different mappings may arise.

The origin of all these problems is the redundant specification of instance variable mappings in sub-

classes and datamodelSpecs. There is no single source principle for specifications of the ObjectLens.

The DataModelMerger as a first Solution Approach

The main idea to resolve the maintenance problem is to reduce the redundancy. Our first approach

was to separate the datamodelSpec into different parts. We specified complete datamodelSpecs of sub

domains. These subdatamodelSpecs are comparable to subcanvasSpecs of the GUI framework and are

merged into one dataModelSpec by a data model merger (figure 6).

The composition of the subdataModelSpecs is simple. All structure types of the subdataModelSpecs

are added to the aspect ’structueTypes’ of the composed dataModelSpec (see figure 3 for the base

structure of a lens data model). If a structure type is already included in the composed data model then

another structure type of the same memberClass is not added once again. In this way, a coarse-grained

modularization of the ObjectLens is achieved.

Nevertheless, this approach remains unsatisfactorily. At first, it solves not the class hierarchy prob-

lems. At second, the domain subdataModelSpecs are still too extensively. Each subdataModelSpec has

to be complete with regard to all used lens structure types. Therefore, there are common classes like

Employee, Employer, or Person, which are included in all subdataModelSpecs. At third, the subdata-

ModelSpecs includes often classes, which are not needed. Some of these classes can be removed from

the data model by including these into the ignore set.

Summary

In conclusion, the dataModelSpec is a declarative description of a data model. It is coded as a literal

array. Unfortunately, the dataModelSpec is a monolithic definition, which has only limited support for

inheritance. Therefore, a number of problems occur during defining and maintaining such data model

specifications. The origin of all these problems is the redundant specification of instance variable map-

pings in subclasses and datamodelSpecs. This redundant definition leads to problems when adding or

changing variables of a superclass, when adding a new subclass or when changing the superclass.

Specification conflicts can occur if the same variable is mapped differently in different subclasses. The

main idea to resolve these maintenance problems is to reduce the redundancy.

Figure 6: Data Model Merger

DataModelMerger new
 mergeAll: (OrderedCollection new
 add: self dataModelVifaSpec;
 add: self dataModelAtzSpec;
 add: self dataModelSVLuftSpec;

 yourself)
ignore: #(#(

#COLAZ03)
 #(#COLAZRR)
 #(#COLRueckzahlungssatz))

(DRAFT) International Smalltalk Conference - Prague 2006

12

Modularization of the ObjectLens

Up to now, we introduced the ObjectLens and described their relational database mapping and asso-

ciated disadvantages. Now we explain our approach to overcome these problems in the following sec-

tions. At first, we describe the general ideas and aims of the solution. Then we point out the definitions

of the lens mapping for the single domain classes. After that, we demonstrate the integration of the

mappings of the single domain classes into one data model of the lens application. Then we explain the

migration of our old data models into the modular data models. At the end, we show the integration of

our approach into the common database developer tools of VisualWorks.

General Ideas and Goals

The general aspects of our solution are modularization and the use of inheritance. If you remember,

the lack of inheritance and the monolithic design of the data model specifications of the ObjectLens are

the origin of redundancy and the related problems. We decided to break up the monolithic specification

in several pieces with each piece describing the mapping of one class1. Furthermore, we use inherit-

ance if we want to describe the object relational mapping for one class. Therefore, only the parts of a

class without inherited variables have to be considered. The data model specification of a lens applica-

tion is defined by the data model specifications of the contained set of classes. That means that the sin-

gle class data specifications are the pieces from which the whole data model specification is con-

structed. The result is a normal, but generated monolithic data model specification of the ObjectLens.

Therefore, we changed only the definition and construction process of the data model specifications.

This approach gives us the desired advantages. We achieve a better adaptation, a unification of the

data representation of different applications in the product family and the use of inheritance. In some

way, we look at the datamodelSpec as one aspect of the class and organize this aspect by the class

itself. The modularization of the datamodelSpec simplifies the maintenance affords significantly.

Instead of changing a central monolithic definition, we change only the modular definitions of the con-

cerned classes.

 Therefore, our solution consists of four parts. We store the mappings in the domain classes. We

construct automatically the datamodelSpec from these mapping fragments. We support the common

development tools. We support the migration of our existing data model specifications.

Data Model Mappings of Classes

The data model specification of a class defines the corresponding lens structure type, whereby defi-

nitions of inherited variables are obtained from the superclasses. The definition of one class uses the

definition of the superclass. Variables are described as lens structure variables (remember figure 3).

The lens structure type of a single class can easily be integrated in the aggregated data model specifica-

tion.

Figure 7 shows the public protocol for defining the data models of a class. This definition uses the

template method pattern like the methods printString and printOn: ([ABW 1998], [GHJ+ 1998]). The

method dataModelDefinition provides an abstract implementation, which should be used by all classes.

The method dataModelDefinition should not be overridden. First, the method primDataModelDefini-

tion is called, which provides the standard implementation. After that, the method primLocalDataMod-

elDefinitionChanges: is called. This method gives each class the opportunity to override the inherited

definitions. Whereas the method primDataModelDefinition will usually be automatically generated,

the method primLocalDataModelDefinitionChanges is created by hand and describes changes, which

should not be overridden by further generation steps. The persistent classes of our product family are

1. This approach is comparable to instVarMaps of GemStone. You can control instance variable mapping between

GemStone and your client Smalltalk by using these methods ([Gems 1996]).

(DRAFT) International Smalltalk Conference - Prague 2006

13

subclasses of COLPersistentModel. Therefore, we define the template methods for defining the lens

structure types in this class in the method protocol ’lens data model specs’.

Figure 8 shows the basis hook method of the class COLPersistentModel and a further example. It

also displays the usual way in which a lens structure type is defined. We use the LensMetaData classes

directly. At first, we create an object of class LensStructureType. After that, the member class and the

table are set up. The other example demonstrates the definition of structure variables of the persistent

instance variables. Here we use the literal encodings. The decision to use literal encodings for variables

is a pragmatic one. We want to simplify the migration process of our existing dataModelSpecs and we

want to use the facilities of the ObjectLens for generating lens encodings. Variables with simple data

types are directly included in the method. Instance variables for object references (foreign key relation-

ships) are defined in separate methods, because our objects use two-dimensional primary keys and

therefore the corresponding literal encodings are more complex. At the end, primary key and table

name are defined1.

1. In general the primary key is taken from the superclass and the table name is set to the name of the class.

Figure 7: Public Protocol for Class Data Model Definitions

dataModelDefinitionSpec
" You should not override this message. "

 ^ self dataModelDefinition literalArrayEncoding

dataModelDefinition
" You should not override this message. You can adapt primDataModelDefinition"

| type |
type := self primDataModelDefinition.
self primLocalDataModelDefinitionChanges: type.
type variables: (List withAll: type variables).
type resolveStandalone.
^type

Figure 8: Hook Method primDataModelDefinition

COLPersistentModel>>primDataModelDefinition
 "hook method"

| type |
type := LensStructureType new.
type memberClass: self.
type table: ((Oracle7Table new) name: self name; owner: 'COLBAV').
type idGeneratorType: #userDefinedId.
^type

 primDataModelDefinition
| type |
type := super primDataModelDefinition.

type variables add: #(#{Lens.LensStructureVariable} #name: 'name' #setValueType: #String #fieldType:
#String #column: #(#{Oracle7TableColumn} #name: 'name' #dataType: 'varchar2' #maxColumnConstraint: 100)
#generatesAccessor: false #generatesMutator: false #privateIsMapped: true) decodeAsLiteralArray.

self addSummenspeicherVariableIn: type.

type idVariable: #('ungueltigAb' 'referenzID') .
type table name: 'kontoZuordnung' .

^type

(DRAFT) International Smalltalk Conference - Prague 2006

14

Figure 9 shows an example for the hook method primLocalDataModelDefinitionChanges:, which

can be used for adapting inherited properties. In the example, the variable speicherBeleg get a new

type. On the database the variable speicherbeleg is mapped as a foreign key relationship to the table of

AtzSummenspeicherBeleg. This allows the simulation of covariant instance variable redefinitions1.

The hook methods primDataModelDefinition and primLocalDataModelDefinitionChanges are used

to define a lens structure type of a class. The template methods dataModelDefinition and dataModel-

DefinitionSpec are the public interface. They are used for integrating the class fragments into the whole

data model specification.

LensApplication datamodelSpec

Now we consider the application side. Like we showed above, the old data model specification

describes the data models of the persistent classes of an application. Therefore, we need to define the

set of classes, which belong to the data model. This is done by the class method dataModelClasses.

The set has to include all classes, which are referred in the data model (transient closure), otherwise the

data model specification cannot be created. We choose this decision to make the declaration explicit.

There are methods, which can calculate the transient closure of a set of classes so that the resulting data

model is complete.

The second step is the generation of the whole data model specification from the data model classes.

We describe this construction top down. The top method is the method dataModelSpecGenerated (fig-

ure 10). In this method, an object of LensDataModel is created from the specifications of the data

model classes. This is done by the code fragment "self dataModelSpecForStructureTypeSpecs: self

dataModelStructureTypeSpecs". The method adaptDataModel is a further hook method, which permits

of adaptations, which are only valid for this special application. In the last step, the data model is com-

piled and the method returns the literal encoding of the data model. This method is quite short in con-

trast to our old dataModelSpecs with more than 15000 LOC of formatted code.

Now we consider the method dataModelSpecForStructureTypeSpecs and its implementation (figure

11). The method returns the data model specifications of the data model classes. The method data-

ModelStructureTypeSpecsFor: shows the connection to the data model specifications of the classes

(see Data Model Mappings of Classes, S. 12). For each class in the set of data model classes the corre-

sponding literal encoding is collected.

1. For an explanation of the co- and contravariance issue of object-orientation see [AbCa 1996], [CHC 1990],

[Prass 2002].

Figure 9: Hook Method primLocalDataModelDefinitionChanges

 primLocalDataModelDefinitionChanges:type
| var |
super primLocalDataModelDefinitionChanges:type.
(type variableNamed: 'speicherBeleg') setValueType: #AtzSummenspeicherBeleg.

Figure 10: LensMainApplication class >> dataModelSpecGenerated (Part 1)

dataModelSpecGenerated
| ldm |
(ldm := LensDataModel new)

application: self;
fromLiteralArrayEncoding: (self dataModelSpecForStructureTypeSpecs: self dataModelStructureTypeSpecs).

self adaptDataModel: ldm.
ldm compile.
^ldm literalArrayEncoding

(DRAFT) International Smalltalk Conference - Prague 2006

15

The last step concerns the implementation of the method dataModelSpecForStructureTypeSpecs

(figure 12). The array of data model specification literal encodings for the data model classes is

inserted in the data model template. The method dataModelTemplate provides the general template of

the lens data model encoding (see also figure 3). The array of structure types is put at position 5.

These few methods describe the generation of the data model specification of the application from

the specification fragments of the data model classes. The two central aspects are the determination of

the set of data classes and the knowledge that for the generation of the data model specification of the

application only the specifications of the lens structure types have to be inserted.

Integration into the Lens Modeling Tools

Now, the integration into the lens modeling tools is explained. One of our goals was to support the

lens modeling tools so that each developer can use these tools in the usual way. Otherwise, the accep-

tance of the new approach would only be low.1

The first tool, which we want to support, is the lens editor. The lens editor shows the classes of a

data model. Therefore, we provide an opportunity to generate a lens data model for a single class or a

set of classes. This is shown in figure 13. We extend the lens editor by a further selection dialog, which

allows the selection of data classes. The method openLensEditorFor:with: is called for the set of

selected classes. In the example, only class AtzBeleg is chosen. The method openLensEditorFor:with:

calculates all classes, which are needed to construct a complete data model. Therefore, the data model

contains not only class AtzBeleg but also further classes, which are referred by AtzBeleg. The so gener-

ated data model can be manipulated in the same way like the old data models.

Secondly, we support the mapping tool. The mapping tool allows the definition of the mapping

between variable and column. In the mapping tool only a single class is considered (figure 14). There-

fore, the mapping tool is the suitable place for creating the class data model. We integrated a new menu

item 'Generate Lens Mapping for Class...', which opens a multi-selection dialog for the class and its

1. The development of new lens tools was beyond the scope of our solution.

Figure 11: Methods dataModelStructureTypeSpecs and dataModelStructureTypeSpecsFor: (Part 2)

dataModelStructureTypeSpecs
^ self dataModelStructureTypeSpecsFor: self dataModelClasses

 dataModelStructureTypeSpecsFor: classColl
^ (classColl collect:[:cl | cl dataModelDefinitionSpec]) asArray

Figure 12: Method dataModelSpecForStructureTypeSpecs: and dataModelTemplate (Part 3)

dataModelSpecForStructureTypeSpecs: aColl
| res |
res := self dataModelTemplate copy.
res at: 5 put: aColl.
^res

dataModelTemplate
^#(#{Lens.LensDataModel}

#setDatabaseContext:
#(#{Oracle7Context} ...)
#structureTypes: #()
#lensPolicyName: #Mixed
#lensTransactionPolicyName: #PessimisticRR
#validity: #installed)

(DRAFT) International Smalltalk Conference - Prague 2006

16

superclasses. The DataModelDefinitionGenerator generates the method primDataModelDefinition for

the selected classes. Remember, the method primLocalDataModelDefinitionChanges is not generated.

DataModelDefinitionGenerator - Generation and Migration

The class DataModelDefinitionGenerator is responsible for the generation of data model fragments.

We use the DataModelDefinitionGenerator for migration of old monolithic dataModelSpecs as well as

for generating class data models in the mapping tool.

Figure 13: LensEditor for Class Data Models

LensMainApplication
openLensEditorFor: CollphirMainApplication
with: (Set new add: AtzBeleg; yourself)

Figure 14: Lens Mapping Tool for Class Data Models

DataModelDefinitionGenerator new
 generateLensSpecsFrom: self ldm

for: selectedClasses

(DRAFT) International Smalltalk Conference - Prague 2006

17

The major steps of the migration process are described in figure 15. The DataModelDefinitionGene-

rator can transform a set of data models into a nested dictionary structure. This structure is described

by the transformation function T. The semantic domains are named after their corresponding classes:

Τ: IP(LensDataModel) → Dictionary[Class, Dictionary[Symbol, Collection]] with:

- IP(X) is the power set of X with: IP(X) =df {S: S ⊆ X}

- aDictionary =df {key i → value i : i = 1..n}

- T({aLensDataModel i : i = 1.. n}) =df {cl → aDictionary cl :

∃ k ∃ s (s <i cl ∧

LensStructureTypes ∈ aLensDataModel k ∧ k ∈{1, ..,n})1}

- aDictionarycl =df {#type → Set[LensStructureType] ,

#variables → aDictionary cl, variables}

- aDictionary cl, variables =df {symbol → Set[LensStructureVariable] :

symbol is a name of a instance variable, which is defined in the class cl}

For each class the structure of dictionaries collects a set of corresponding lens structure types and

for each instance variable a set of corresponding lens structure variables. Furthermore, the dictionary

structure includes all superclasses and their instance variables. The cardinality of the set of lens struc-

ture types and of the set of lens structure variables counts the number of definitions and is a measure of

the degree of redundancy. The transformation T collects all definitions for a single mapping and

merges all considered data models into one single structure.

Figure 16 illustrates the transformation and shows a simplified object view of transformation T2.

The dictionaries cluster and order the information hierarchical. The hierarchy-levels are determined by

the structure of a lens data model. The essential information is in the leaves of this tree. The class is

associated with its lens structure types. Each instance variable is associated with its lens structure vari-

1. There exists a number k and a subclass s with the following property: The class s is a subclass of cl and a Lens-

StructureType for class s is a member of the LensDatamodel with number k.

2. We use a simplified notation that is inspired by the object diagrams of UML ([RJB 1999]).

Figure 15: Migration Process

I). transformation T
generator := DataModelDefinitionGenerator new

add: AtzMainApplication dataSpec: #dataModelSpec;
add: ZwkMainApplication dataSpec: #dataModelSpec;
yourself.

II). conflict reports
generator report

III).data model classes
 generator

generateDataModelClassesFor: AtzMainApplication dataSpec: #dataModelSpec .

IV).generating of all classes
generator generate

generating of a subset of classes
generator generateLensSpecsFrom: ldm

for: (Set new add: COLRente;add: COLAZ03 ;add: COLAZRR ;yourself)

(DRAFT) International Smalltalk Conference - Prague 2006

18

ables. These lens structure variables are collected from all subclasses of the class, which occur in the

data models.

In the following step, we calculated the conflicts between the different definitions of an entity. Here,

conflicts during the migration process were handled by a two-step strategy. At first, we eliminated triv-

ial conflict cases and tried to resolve as much conflicts as possible. For example, if different max col-

umn constraints occur, then we chose often the weakest one. Then we used pair reviews and decided,

which mapping should be become the standard. In a second step, we supported different mappings by

using the methods primLocalDataModelDefinitionChanges and adaptDataModel, which allows over-

riding already generated properties.

After that, we generate the code in two steps. First, we generate the method dataModelClasses for

the application. Then we generate the primDataModelDefinition method from the corresponding dic-

tionary cl. The method primDataModelDefinition is an aggregation of all lens structure variables of the

instance variables, which are defined in this class. Therefore, the method includes literal encodings for

each self-defined instance variable. Simple data mappings are inlined. Complicated mappings for for-

eign key relationships are extracted in separate methods.

For the code generation itself we use common Smalltalk techniques. We defined methods for invari-

ant code fragments and methods, which provides a string representation for related parts of the map-

ping like table name, primary key, or variables. Then we used a stream to merge this fragments. The

result is the source string of a Smalltalk method that we compiled in the metaclass of the considered

class in the protocol ’lens data model specs’.

Summary

The general aspects of our solution are modularization and the use of inheritance. The modulariza-

tion of the ObjectLens was a four-step process. Firstly, we defined the structure of the specifications of

the single data classes. Each data class got a description for its lens structure type. Secondly, we

defined the generation of the data model specification of the application. The data model specification

of an application is the sum of the data model specifications of a set of classes. Thirdly, we defined a

migration process, which translates the old data model specifications into the new structure. The gener-

ation process was mostly automatic. Conflict handling was semi-automatic and uses pair reviews. At

the end, we integrated the new procedure for defining data models into the modeling tools of the

ObjectLens.

Figure 16: Simplified Object View of Transformation T

aLensDataModel

aDictionary of class transformations

aDictionary for one class

transformation

transformed

includes

aDictionary of instance variable

transformations

aSet of LensStructureTypes

#type #variables

variable -> aSet of LensStructureVariables

includes

(DRAFT) International Smalltalk Conference - Prague 2006

19

Conclusion

In this paper, we described an approach to replace the huge monolithic data model specification of

the ObjectLens by modular data model specifications and generated data models. In connection with a

product line strategy, the old monolithic OR-mapping design leads to a high degree of redundancy,

which complicates development and maintenance.

The main idea of our solution is to describe the mappings of each class in the class itself using

inheritance and generate the whole specification from a list of single class data models. In this way,

declarative and generative programming techniques are combined.

After some months of productive use, we can claim that we achieved our goals. The proposed solu-

tion works well. We migrated all old data model specifications of all our applications to the new proce-

dure. The integration of different domain modules is simplified. Often, only the method data-

ModelClasses needs to be adapted. The class data model specifications lead to uniform specifications

with lower definition conflicts. The creation and maintenance of the small class data definitions is

much easier then the old copy&paste approach. Furthermore, the support of inheritance leads to a ’sin-

gle point of definition’ approach and reduces redundancy extremely. Refactoring or extending class

hierarchies is much easier now.

On the implementation stage, we decided to reuse as much as possible from the ObjectLens. There-

fore, the data model mappings of the classes use the same lens literal encoding like the original specifi-

cations. The class DataModelDefinitionGenerator, which we used at first for the migration process,

was also suitable for the generation of the primDataModelDefinition methods by the mapping tool.

The initial primDataModelDefinition methods were generated from the old existing dataModelSpecs.

On the tools stage, the lens modeling tools were extended to support class data models. The

extended lens editor provides support for editing lens data models, which are constructed from a set of

classes. The extended mapping tool supports the generation of the method primDataModelDefinition,

which is the central part of the definition of the lens structure type of a class.

Literature

[AbCa 1996] Abadi, M.; Cardelli, L.: "A Theory of Objects" Springer. New York. 1996.

[ABW 1998] Alpert, S. R.; Brown, K.; Woolf, B.: "The Design Patterns Smalltalk Companion" Addi-

son-Wesley. Reading (Massachusetts). 1998.

[BaKi 2004] Bauer, C.; King, G.: "Hibernate in Action" Manning. Greenwich. 2004.

[BrWh 1996] Brown, K.; Whitenack, B.: "Crossing Chasms for Object-Relational Integration" in:

"Proceedings of the 3rd Conference on the Pattern Languages of Programs" 1996.

[Cinc 2003a] Cincom Systems: "VisualWorks: Version 7.2.1, Database Application Developer's

Guide". Cincom Systems. 2003. www.cincom.com/smalltalk

[Cinc 2003b] Cincom Systems: "VisualWorks: Version 7.2.1, Application Developer's Guide". Cin-

com Systems. 2003. www.cincom.com/smalltalk

[CHC 1990] Cook, W.; Hill, W.; Canning, P.: "Inheritance Is Not Subtyping" in: "POPL 1990" pp.

125-135.

[CoMa 1984] Copeland, G.; Maier, D.: "Making Smalltalk a Database System" in: "SIGMOD Record"

Volume 14. Issue 2. 1984. pp. 316-325.

[Date 1995] Date, C. J.: "An Introduction to Database Systems" Volume 1. Addison-Wesley. Rea-

ding (Massachusetts). 6. Edition. 1995.

(DRAFT) International Smalltalk Conference - Prague 2006

20

[ElNa 1989] Elmasari, R.; Navathe, S.: "Fundamentals of Database Systems" Cummings Publishing.

Redwood City. 1989.

[Gems 1996] GemsStone Systems: "GemStone Documentation: Version 5.0" GemStone Systems, Inc.

Juli 1996.

[GHJ+ 1998] Gamma, E.; Helm, R.; Johnson, R. E.; Vlissides, J.: "Design Patterns CD: Elements of

Reusable Object-Oriented Software" Addison-Wesley. 1998.

[Howa 1995] Howard, T.: "The Smalltalk Developer’s Guide to VisualWorks" SIGS. New York. 1995.

[IBL 1998] IBL Ingenieurbüro Letters GmbH: "Polar(R) : Ein Werkzeug zur Abbildung objektori-

entierter Strukturen auf relationale Datenbanken (Produktpräsentation)" in: "Tagungs-

band STJA '98: Smalltalk und Java in Industrie und Ausbildung" 1998.

[KeCo 1996] Keller, W.; Coldewey, J.: "A Design Cookbook for Business Information Systems" sd&m

report. 1996.

[Knig 2004] Knight, A.: "Tutorial Using Glorp" in: "Proccedings of Smalltalk Solutions' 2004"

2004. www.glorp.org

[Meye 1997] Meyer, B.: "Object-oriented Software Construction" 2. Edition. Prentice Hall. 1997.

[Micr 1998] MicroDoc GmbH: "MicroDoc Persistence Frameworks für Smalltalk und Java: (Pro-

duktpräsentation)" in: "Tagungsband STJA '98: Smalltalk und Java in Industrie und

Ausbildung" 1998.

[Parc 1994] ParcPlace Systems: "VisualWorks: Version 2.0". Cincom Systems. 2003.

[Prass 2002] Prasse, M.: "Entwicklung und Formalisierung eines objektorientierten Sprachmodells

als Grundlage für MEMO-OML" Fölbach. Koblenz. 2002.

[RJB 1999] Rumbaugh, J.; Jacobson, I.; Booch, G.: "The Unified Modeling Language Reference

Manual" Addison-Wesley. 1999.

[Roos 2003] Roos, R. M.: "Java Data Objects" Addison-Wesley. Boston. 2003.

[TheO 1998] The Object People GmbH: "TOPLink: Persistenzframework für Smalltalk und Java

(Produktpräsentation)" in: "Tagungsband STJA '98: Smalltalk und Java in Industrie und

Ausbildung" 1998.

[Wool 1994] Woolf, B.: "Understanding and Using ValueModels" Whitepaper. Knowledge Systems

Corporation. 1994.

(DRAFT) International Smalltalk Conference - Prague 2006

Meta-Driven Browsers ?

Alexandre Bergel a Stéphane Ducasse b Colin Putney c

Roel Wuyts d

aDSG, Trinity College Dublin, Ireland
bLISTIC University of Savoie, France & University of Bern, Switzerland

cWiresong, Canada
dUniversité Libre de Bruxelles, Belgium

Keywords: Tools, MetaModeling, UI, Browsers, Squeak

Abstract

Smalltalk is not only an object-oriented programming language; it is also known
for its extensive integrated development environment supporting interactive and
dynamic programming. While the default tools are adequate for browsing the code
and developing applications, it is often cumbersome to extend the environment to
support new language constructs or to build additional tools supporting new ways of
navigating and presenting source code. In this paper, we present the OmniBrowser,
a browser framework that supports the definition of browsers based on an explicit
metamodel. With OmniBrowser a domain model is described in a graph and the
navigation in this graph is specified in its associated metagraph. We present how new
browsers are built from predefined parts and how new tools are easily described. The
browser framework is implemented in the Squeak Smalltalk environment. This paper
shows several concrete instantiations of the framework: a remake of the ubiquitous
Smalltalk System Browser, and a coverage browser.

? We gratefully acknowledge the financial support of the Swiss National Science
Foundation Recast (SNF 2000-061655.00/1), the Cook ANR french projects and
the Science Foundation Ireland and Lero - the Irish Software Engineering Research
Centre.

Email addresses: Alexandre.Bergel@cs.tcd.ie (Alexandre Bergel),
stephane.ducasse@univ-savoie.fr (Stéphane Ducasse), cputney@wiresong.ca
(Colin Putney), Roel.Wuyts@ulb.ac.be (Roel Wuyts).

ESUG Conference 2006 Research Track (www.esug.org)

(DRAFT) International Smalltalk Conference - Prague 2006

1 Introduction

Smalltalk is an object-oriented language featuring a complete development
environment supporting interactive and dynamic programming [GR83,Gol84].
While the default environment already supports advanced ways of navigating
source code and fluid development since the eighties, new browsers have been
developed over the years: the Refactoring Browser [FBB+99,RBJO96,RBJ97]
which was the first system browser supporting refactoring, the StarBrowser
[WD04] which supports smart groups, a browser for incremental development
supporting visual feedback of undefined methods [SB04] and the Whiskers
browser that shows multiple methods at the same time maximizing the screen
space. StrongTalk, a more exotic Smalltalk version featuring optional typing,
offered a glyph based browsing environment.

The problem when building all of these browsers is that they are always re-
built from scratch because there hardly exists any domain models or frame-
works for building such development tools. In fact, the current browsers in
most Smalltalk environments are hard to extend for two reasons: (a) they are
monolythic applications that are not really meant to be included elsewhere,
and (b) the navigation and interaction of the end-user with the browsers is typ-
ically hardcoded in the browser UI elements, and is therefore hard to change
or extend.

Note that some Smalltalk environments allow one to embed applications within
each-other. VisualWorks for example has a notion of subcanvases which can
be used to that end. This helps to reduce the problem (a) in the previous
paragraph, but not problem (b) of the hardcoding of the the navigation and
interaction in the browser UI elements. Other browsers are designed with a
certain amount of customizability in mind, and are therefore easier to extend,
but even those lack explicit descriptions of the navigation.

As was already reported by Steyaert et al. [SLMD96], we conclude that current
visual application builders and application frameworks do not live up to their
expectations of rapid application development or non-programming-expert ap-
plication development. They fall short when compared to component-oriented
development environments in which applications are built with components
that have a strong affinity with the problem domain (i.e., being domain-
specific).

In this paper we present OmniBrowser, a framework to define and com-
pose new browsers. In OmniBrowser framework, a browser is a graphical list-
oriented tool to navigate and edit an arbitrary domain. The most common
representative of this category of tools is the Smalltalk system browser, which
is used to navigate and edit Smalltalk source code. In OmniBrowser frame-

2

(DRAFT) International Smalltalk Conference - Prague 2006

work, a browser is described by a domain model and a metagraph which spec-
ifies how the domain space is navigated through. Widgets such as list menus
and text panels are used to display information gathered from a particular
path in the metagraph. Although widgets are programmatically composed,
the OmniBrowser framework framework supports their interaction.

The contributions of this article are: the description of a metadriven frame-
work to build system browsers and the application of the framework to build
some tools. In Section 2 we describe difficulties and challenges to define states
and flow between those states for a graphical user interface. In Section 3 we
present the key entities of OmniBrowser framework. In Section 4 we present the
OmniBrowser-based system browser and in Section 5 we describe the coverage
code browser. In Section 6 we discuss about properties of the OmniBrowser
framework. In Section 7 we provide an overview of related work. In Section 8
we conclude by summarizing the presented work.

2 Defining and Maintaining the State of a Graphical User Interface

In this section we stress some of the problems encountered when building
complex tools such as an advanced code editor.

The state of a graphical user interface (GUI) is defined as a collection of the
states of the widgets making up the interface. The state of a widget refers to
the state the widget is in. It is modified whenever an end-user performs an
action on this widget such as clicking a button or selecting an entry in a menu.
Therefore, a GUI has a high number of different states. Asserting the validity
for each of these states is crucial to avoid broken or inconsistent interfaces.

Given the potential high number of different states of a GUI, asserting the
validity of a GUI is a challenging task. Let’s illustrate this situation with the
Smalltalk system browser, a graphical tool to edit and navigate into Smalltalk
source code.

A B C D

E

F

Fig. 1. The traditional Smalltalk System Browser roughly depicted.

Figure 1 depicts the different widgets of a traditional Smalltalk class system
browser (see Figure 7 for a real picture). Without entering into details, A, B, C
and D are lists that show class categories (groups of classes), classes, method

3

(DRAFT) International Smalltalk Conference - Prague 2006

protocols (groups of methods) and methods. E is a radio button composed of
three choices and F is a text pane.

Pane A lists the categories in the system. Selecting a category in this list,
makes the classes in that category appear in pane B. Selecting a class results
in the protocols for that class being shown in pane C, and selecting a protocol
lists the method names in pane D. Switch E controls whether the class or the
metaclass is being edited, and therefore whether the protocols and methods
shown are instance level or class level methods. Pane F is a text pane that gives
feedback on whatever is selected in the top panes, always displaying the most
specific information possible. For example, when a user has selected a method
in a protocol in a class in a certain category, pane F shows the definition of
that method (and not the definition of the class of that method).

The description of how the browser works shows a number of navigation in-
variants that need to be kept when implementing the browser. For example,
the selections goes from left to right: it is not possible to have methods listed
in pane E with pane D being empty.

Invariants such as the one given above need to be implemented and checked
when building a browser. So we are dealing with writing an application that
deals with a potentially very big number of states in which only certain tran-
sitions between states need to be allowed (the ones that correspond to navi-
gations the user of the browser is allowed to do). Whenever a user clicks on
widgets that make up the GUI of the browser, the state of one or more widgets
is changed, and possibly new navigation possibilities are open up (being able
to select a method name, for example) while other ones will no longer be pos-
sible (not being able to select a method name when no protocol is selected).
To deal with the fact that a widget can be in an inconsistent state, developers
often rely on guards: the method performing an action in reaction of an user
action always checks whether the state is actually correct or not nil.

In addition the state management is often spread over the UI elements. This
leads to code with complex logic (and often bogus). In addition it makes tool
elements difficult to extend and reuse in different context.

The problem when building a browser is in representing the mapping from the
intended navigation model to the domain model and widgets. Even though
graphical framework like MVC [Ree79,Ree] and Coral [SM88] offer ways to
modularize the model and the graphical user interface, they do not provide
means (i) to preserve consistency of the interface by restricting unexpected
state transition to happen and (ii) to keep the widgets synchronized with each
other [KP88].

In the next section, we describe a new framework to design browsers where
the domain model is distinct from the navigation space. This latter being

4

(DRAFT) International Smalltalk Conference - Prague 2006

described by a metagraph. The state of a browser is defined by a path in this
metagraph.

3 Defining a Browser: a Graph and a Metagraph

The domain of the OmniBrowser framework is browsers, applications with a
graphical user interface that are used to navigate a graph of domain elements.
When instantiating the OmniBrowser framework to create a browser for a
particular domain, the domain elements need to be specified, as well as the
desired navigation paths between them.

The OmniBrowser framework is structured around (i) an explicit domain
model and (ii) a metagraph, a state machine, that specifies the navigation
in and interaction with the domain model. The user interface is constructed
by the framework, and uses a layout similar to the Smalltalk System Browser,
with two horizontal parts. The top part is a column-based section where the
navigation is done. The bottom half is a text pane.

Section 3.1 explains the major classes that make up the OmniBrowser frame-
work. Section 3.2 shows a concrete instantiation to build a file browser. Sec-
tion 3.3 goes in some more detail and describes the core behavior of the frame-
work. Section 3.4 explains how the widgets are glued together.

3.1 Overview of the OmniBrowser framework

The major classes that make up the OmniBrowser framework are presented
in Figure 2, and explained briefly in the rest of this section.

Browser. A browser is a graphical tool to navigate and edit a domain space.
This domain has to be described in terms of a directed cyclic graph (DCG).
It is cyclic because for example file systems or structural meta models of
programming language (i.e., packages, classes, methods...) contain cycles, and
we need to be able to model those. The domain graph has to have an entry
point, its root. The path from this root to a particular node corresponds to
a state of the browser is defined by a particular combination of user actions
(such as menu selections or button presses). The navigation of this domain
graph is specified in a metagraph, a state machine describing the states and
their possible transitions.

Node. A node is a wrapper for a domain object, and has two responsibilities:
rendering the domain object, and returning domain nodes. Note that how the
domain graph can be navigated is implemented in the metagraph.

5

(DRAFT) International Smalltalk Conference - Prague 2006

Actor

actionsForNode:
actionsForParent:

Node

name
text
definition

Browser
dispatcher
panels

MetaNode
displaySelector
edges
childAt:put:
addActor:
displaySelector:

Filter

nodesForParent:
selectAncestorOf:withParent:
wantsButton

Browser class

defaultMetaNode
defaultRootNode
open
title

defaultMetaNode

defaultRootNodemetaNodeactors

filterClass

Omnibrowser core framework

ModalFilter

Definition

accept:notifying:
text
text:

Fig. 2. Core of the OmniBrowser framework.

Metagraph. A browser’s metagraph defines the way in which the user may
traverse the graph of domain objects. A metagraph is composed of metanodes
and metaedges. A metanode references a filter (described below) and a set
of actors. The metanode does not have the knowledge of the domain nodes,
however each node is associated to a metanode. Transitions between meta-
nodes are defined by metaedges. When a metaedge is traversed (i.e., result of
pressing a button or selecting an entry list), siblings nodes are created from a
given node by invoking a method that has the name of the metaedge.

Actor. An actor is a basic unit of domain-related functionality. Actors are
attached to metanodes, and supply the actions used to interact with objects
wrapped by nodes. For instance, actors are used to build context menus and
buttons in the browser.

Action. An Action represents a Command [ABW98] for manipulating, inter-
acting and navigating with the graph domain. Actions can be made available
through menus or buttons in the browser. They carry information on how they
should be presented to the user and are responsible for handling exceptions
that can occur when they are triggered. Actions are created by actors.

Filter. The metagraph describes a state machine. When the browser is in a
state where there are two transitions available. The user is the one that decides
which transition to follow. To allow that to happen OmniBrowser framework
displays the possibilities to the user. From all the possible transitions, Om-
niBrowser framework fetches all the nodes that represent the states the user
could arrive at by following those transitions and list them in the next column.
Note that the transition is not actually make yet, and the definition pane is
still displaying the class definition. Once a click is made, the transition actu-
ally happens, the pane definition is updated (and perhaps other panes such as
button bars) and it gathers the next round of possible transitions.

6

(DRAFT) International Smalltalk Conference - Prague 2006

A filter provides a strategy for filtering out some of the nodes from the display.
If a node is the starting point of several edges, a filter is needed to filter out
all but one edges to determine which path has to be taken in the metagraph.

Definition. While navigating in the domain space, information about the
selected node is displayed in a dedicated textual panel. If edition is expected
by the browser user, then a definition is necessary to handle commitment (i.e.,
an accept in the Smalltalk terminology). A definition is produced by a node.

3.2 A Simple Example: A File Browser

To illustrate how the OmniBrowser framework is instantiated, we describe the
implementation of a simple file browser supporting the navigation in directo-
ries and files [Hal05].

Fig. 3. A minimal file browser based on OmniBrowser.

Figure 3 shows the file browser in action. A browser is opened by evaluating
FileBrowser open in a workspace. The navigation columns in the case of a file
browser are used to navigate through directories, where every column lists the
contents of the directory selected in its left column, similar to the Column
View of the Finder in the Mac OS-X operating system. Note that we can have
an infinite numbers of pane navigating through the file system. The horizontal
scrollbar lets the user browse the directory structure. A text panel below the
columns displays additional properties of the currently selected directory or

7

(DRAFT) International Smalltalk Conference - Prague 2006

file and provides means to manipulate these properties.

Node definitions. Nodes wrap objects of the browsed domain. First the class
FileNode a subclass of Node is created which represents a file. A file node is
identified by a full path name, stored in a variable. The name of the node is
simply the name of the file selected:

FileNode�name
ˆ (FileDirectory directoryEntryFor: path) name.

A text containing information about the selected file is returned by the method
text:

FileNode�text
ˆ ’First 1000 characters: ’, String cr,
((FileStream readOnlyFileNamed: path) converter: Latin1TextConverter new;

next: 1000) asString

A directory node is a kind of file that contains directories and files. The meth-
ods files and directories are defined on the class DirectoryNode.

DirectoryNode�directories
| dir |
dir := FileDirectory on: path.
ˆ dir directoryNames collect: [:each |

DirectoryNode new path: (dir fullNameFor: each)]

DirectoryNode�files
| dir |
dir := FileDirectory on: path.
ˆ dir fileNames collect: [:each |

FileNode new path: (dir fullNameFor: each)]

The implementation shows the two responsibilities of a node: rendering itself
(implemented in the text method), and calculating the nodes reachable from
a node (in the directories and files methods).

Action Definitions. The user can perform some actions on selected files.
Those are implemented in the class FileActor which inherits from Actor. Action
are commands with user-interface information such as icon.

FileActor�actionsForNode: aNode
ˆ {OBAction

label: ’remove’
receiver: self
selector: #removeFile:

8

(DRAFT) International Smalltalk Conference - Prague 2006

arguments: {aNode}
keystroke: $x
icon: MenuIcons smallCancelIcon.

OBAction
label: ’rename’
receiver: self
selector: #renameFile:
arguments: {aNode}}

FileActor�removeFile: aNode
”Remove the file designed by aNode”
...

FileActor�renameFile: aNode
”Rename the file designed by aNode”
...

File

Directory

#files

N metanode

is an ancestor of

#directories

N object node
/

/temp pic1.jpg

pic2.jpg pic3.jpg

transition

(a) Instantiated domain (b) Metagraph

N root metanode

Fig. 4. A filesystem (as a graph) (a) and its corresponding metagraph (b).

Metagraph Definition. Figure 4 shows a metagraph describing a filesystem.
Two metanodes, Directory and File, compose this metagraph. The navigation
between these nodes is defined by two transitions, files and directories. The
starting point in a metagraph is designated by a root metanode.

The metagraph is implemented in the class FileBrowser. The methods default-
MetaNode and defaultRootNode are defined on the class side of FileBrowser.
These methods define the metagraph and gives the root node, respectively:

FileBrowser class�defaultMetaNode
”returns the directory metanode that acts as the root metanode”

| directory file |
directory := OBMetaNode named: ’Directory’.

9

(DRAFT) International Smalltalk Conference - Prague 2006

file := OBMetaNode named: ’File’.
file addActor: FileActor new.

directory
childAt: #directories put: directory;
childAt: #files put: file;
addActor: FileActor new.

ˆ directory

FileBrowser class�defaultRootNode
ˆ DirectoryNode new path: ’/’

When one of the two #directories and #files metaedges is traversed, the name
of this metaedge is used as a message name sent to the metanode’s node.

3.3 Core Behavior of the Framework

The core of the OmniBrowser framework is composed of 8 classes (Figure 2).
We denote the Smalltalk metaclass hierarchy by a dashed arrow.

The metaclass of the class Browser is Browser class. It defines two abstract
methods defaultMetaNode and defaultRootNode. These methods are abstract,
they therefore need to be overridden in subclasses. These methods are called
when a browser is instantiated. The methods defaultMetaNode and default-
RootNode returns the root metanode and the root domain node, respectively.
A browser is opened by sending the message open to an instance of the class
Browser.

The navigation graph is built with instances of the class MetaNode. Transitions
are built by sending messages childAt: selector put: metanode to a MetaNode
instance. These has the effect to create a metaedge named selector leading
away the metanode receiver of the message and metanode.

At runtime, the graph traversal is triggered by user actions (e.g., pressing a
button or selecting a list entry) which sends the metaedge’s name to the node
that is currently selected. Actors are attached to a metanode using the method
addActor:. The rendering of a node is performed by invoking on the domain
node the selector stored in the variable displaySelector in the metanode.

The class Actor is normally instantiated by metanodes and is used to de-
fine node related actions. The method actionsForNode: may be overridden in
subclasses to answer an ordered collection of actions. The method actionsFor-

10

(DRAFT) International Smalltalk Conference - Prague 2006

Actor

actionsForNode:
actionsForParent:

Node

name
text
definition

Browser
dispatcher
panels

MetaNode
displaySelector
edges
childAt:put:
addActor:
displaySelector:

FileNode
path
name
text

Filter

nodesForParent:
selectAncestorOf:withParent:
wantsButton

Browser class

defaultMetaNode
defaultRootNode
open
title

DirectoryNode

directories
files
fullName
text

FileActor

actionsForNode:
removeFile:
renameFile:

FileBrowser
FileBrowser

class

defaultMetaNode
defaultRootNode
title

defaultMetaNode

defaultRootNodemetaNodeactors

filterClass

Omnibrowser core framework

File browser

instance of

ModalFilter

Definition

accept:notifying:
text
text:

Fig. 5. Core of the OmniBrowser framework and its extension for the file browser.

Parent: is used to specify actions that are independent from any nodes. These
actions are typically shown on a menu when no node is selected.

The class Node represents an element of the domain graph. Each node has a
name. This name is used when lists of nodes are displayed in the navigation
columns of the browser. When a node is selected in a list, information related
to this node needs to be displayed in the bottom text pane. When the node
is not supposed to be edited, the message text is sent to it, returning a string
displayed in the bottom pane. When it is editable, it is sent the message
definition which needs to return an instance of a subclass of Definition. Note
that the nodes do not need to be configured to be editable or not. When they
implement a method definition, this will be used and the node will be editable.
If that method is not present, then the method text is used.

When the browser is in a state where several transitions are available, it dis-
plays the possibilities to the user. From all the possible transitions, Omni-
Browser framework fetches all the nodes that represent the states the user
could arrive at by following those transitions and list them in the next col-
umn. Once a selection is made, the transition actually happens, the pane
definition is updated and the process repeats.

11

(DRAFT) International Smalltalk Conference - Prague 2006

As explained before, a filter or modal filter can be used to select only a number
of outgoing edges when not all of them need to be shown to the user. This is
useful for instance to display the instance side, comments, or class side of a
particular class in the classic standard system browser (cf. Section 4). Class
Filter is responsible for filtering nodes in the graph. The method nodesForPar-
ent: computes a transition in the domain metagraph. This method returns a
list of nodes obtained from a given node passed as argument. The class Filter
is subclassed into ModalFilter, a handy filter that represents transitions in the
metagraph that can be traversed by using a radio button in the GUI.

3.4 Glueing Widgets with the Metagraph

From the programmer point of view, creating a new browser implies defining
a domain model (set of nodes like FileNode and DirectoryNode), a metagraph
intended to steer the navigation and a set of actors to define interaction and
actions with domain elements. The graphical user interface of a browser is
automatically generated by the OmniBrowser framework. The GUI generated
by OmniBrowser framework is contained in one window, and it is composed
of 4 kinds of widgets (lists, radio buttons, menus and text panes).

The layout of a browser can be redefined and use other widgets then the ones
described above, but those are then not used by the metagraph. For instance,
the OmniBrowser framework-based system browser uses a toolbar widget that
allows a user to launch other kind of browsers like the variable and hierarchy
browsers. We will not describe how to use other widgets, as this is outside the
scope of this paper.

Lists. Navigation in OmniBrowser framework is rendered with a set of lists
and triggered by selecting one entry in a list. Lists displayed in a browser are
ordered and are displayed from left to right. Traversing a new metanode, by
selecting a node in a list A, triggers the construction of a set of nodes intended
to fill a list B. List B follows list A.

The root of a metagraph corresponds to the left-most list. The number of lists
displayed is equal to the depth of the metagraph. The depth of the system
browser metagraph (Figure 9) is 4, therefore the system browser has 4 panes
(Figure 7). Because the metagraph of a filesystem may contain cycles (i.e.,
a directory may contain directories, as shown in Figure 4), the number of
lists in the browser increases for each directory selected in the right-most
list. Therefore a horizontal scrollbar is used to keep the width of the browser
constant, yet displaying a potentially infinite number of lists in the top half.

Radio buttons. A modal filter in the metagraph is represented in the GUI
by a radio button. Each edge leading away from the filter is represented as

12

(DRAFT) International Smalltalk Conference - Prague 2006

a button in the radio button. Only one button can be selected at a time in
the radio button, and the associated choice is used to determine the outgoing
edges. For example, the second list in the system browser contains the three
buttons instance, ? and class as shown the transition from the environment to
the three metanodes class, class comment and metaclass in Figure 7.

Menus. A menu can be displayed for each list widget of a browser. Typically
such a menu displays a list of actions that can be executed by a browser user.
These actions enable interaction with the domain model, however they do not
allow further navigation in the metagraph.

Fig. 6. Example of menu in the OmniBrowser framework system browser.

Figure 6 shows an example of a menu offering actions related to a class. These
correspond to the list of actions returned by the method actionsForNode: in
the class ClassActor.

Text pane. When a node is selected in a list, some information related to this
node is displayed in a text pane. Committing a change in the text pane sends
the message accept: newText notifying: aController to the definition shown in
this pane. A browser contains only one text pane.

4 The OmniBrowser-based System Browser

In this section we show how the framework is used to implement the traditional
class system browser.

13

(DRAFT) International Smalltalk Conference - Prague 2006

4.1 The Smalltalk System Browser

The system browser is probably the most important tool offered by the Smalltalk
programming environment. It enables code navigation and code editing. Fig-
ure 7 shows the graphical user interface of this browser, and how it appears
to the Smalltalk programmer.

Fig. 7. OmniBrowser framework based Smalltalk system browser.

This browser just replicates the traditional four panes system browser dis-
cussed in Section 2. The system browser is mainly composed of four lists
(upper part) and a panel (lower part). From left to right, the lists represent
(i) class categories, (ii) classes contained in the selected class category, (iii)
method categories defined in the selected class to which the – all – category
is added, and (iv) the list of methods defined in the selected method cate-
gory. On Figure 7, the class named Class, which belongs to the class category
Kernel-Classes is selected. Class has three methods categories, plus the – all
– one. The method templateForSubclassOf:category contained in the instance
creation method category is selected.

The lower part of the system browser contains a large textual panel display
information about the current selection in the lists. Selecting a class category
makes the render display a class template intended to be filled out to create
a new class in the system. If a class is selected, then this panel shows the
definition of this class. If a method is selected, then the definition of this
method is displayed. The text contained in the panel can be edited. The effect

14

(DRAFT) International Smalltalk Conference - Prague 2006

of this is to create a new class, a new methods, or changing the definition of
a class (e.g., adding a new variable, changing the superclass) or redefining a
method.

In the upper part, the class list contains three buttons (titled instance, ? and
class) to let one switch between different “views” on a class: the class definition,
its comment and the definition of its metaclass. Just above the panel, there
is a toolbar intended to open more specific browsers like a hierarchy browser
and a variable access browser.

4.2 System Browser Internals

The Omnibrowser-based implementation of the Squeak system browser is com-
posed of 19 classes (2 actors, 2 classes for the browser, 3 classes for the def-
initions of classes, methods and organization, 10 classes defining nodes and
2 utility classes with abstractions to help link the browser and the system).
220 methods are spread over these 19 classes. Figure 8 shows the classes in
OmniBrowser framework that need to be subclassed to produce the system
browser. Note that the two utility classes are not represented on the picture.

Omnibrowser core framework

System browser

Category
Actor

Class
Actor

Code
Browser

System
Browser

Class
Definition

Method
Definition

Organization
Definition

Code
Node

ClassAware
Node

ClassComment
Node

ClassNode

MetaClassN
ode

Method
CategoryNode

AllMethod
CategoryNode

Method
Node

ClassCategory
Node

Environment
Node

BrowserNode ActorDefinition

Fig. 8. Extension of OmniBrowser framework to define the system browser.

Compared to the default implementation of the Squeak System Browser this
is less code and better factored. In addition other code-browsers can freely
reuse these parts.

15

(DRAFT) International Smalltalk Conference - Prague 2006

Class

Class
Comment

Metaclass

AllMethod
Category

Method
Category

Method

Meta-node Filter Transition

Legend

Meta-node
root

Environment

Fig. 9. Metagraph of the system browser.

Figure 9 depicts the metagraph of the system browser. The metanode environ-
ment contains information about class categories. The filter is used to select
what has to be displayed from the selected class (i.e., the class definition, its
comment or the metaclass definition). A class and a metaclass have a list of
method categories, including the – all – method category that shows a list of
methods.

Widgets notification. Widgets like menu lists and text panels interact with
each other by triggering events and receiving notifications. Each browser has
a dispatcher (referenced by the variable dispatcher in the class Browser) to
conduct events passing between widgets of a browser. The vocabulary of events
is the following one:

• refresh is emitted when a complete refresh of the browser is necessary. For
instance, if a change happens in the system, this event is triggered to order
a complete redraw.

• nodeSelected: is emitted when a list entry is selected with a mouse click.
• nodeChanged is emitted when the node that is currently displayed changes.

This typically occurs when one of buttons related to the class is selected.
For example, if a class is displayed, pressing the button instance, class or
comment triggers this event.

• okToChangeNode is emitted to prevent loose some text edition why changing
the content of a text panel if this was modified without being validated.
This happens when first a user writes the definition of a method, without
accepting (i.e., compiling) it, and then another method is selected.

Each graphical widget composing a browser are listeners and can emit events.
Creation and registration of widgets as listeners and event emitters is com-
pletely transparent to the end user.

State of the browser. Contrary to the original Squeak system browser where
each widget state is contained in a dedicated variable, the state of a Om-

16

(DRAFT) International Smalltalk Conference - Prague 2006

niBrowser framework-based browser is defined as a path in the metagraph
starting from the root metanode. Each metanode taking part of this path
is associated to a domain node. This preserves the synchronization between
different graphical widgets of a browser.

5 The Coverage Browser

The coverage browser is an extension to the system browser to show the cov-
erage of code by unit tests. It extends the system browser in two ways. First
of all it appends the percentage of elements covered by tests to the elements
in the lists making up the browser. Secondly it adds a fifth pane that lists the
unit tests that test a selected method. A screenshot is shown in Figure 10. It
shows us that 39% of the class UUID is covered by tests, and that the method
initialize is covered at 100% by the tests shows in the right-most pane. One of
these test is testCreation.

Fig. 10. Screenshot of the coverage browser.

The coverage browser is composed of 11 classes (1 class for the browser, 5
actors and 5 nodes). Figure 11 illustrates how classes in OmniBrowser and in
the system browser are extended to define this new browser. The metagraph is
depicted in Figure 12 and is identical to the system browser except with a new
Method Coverage metanode. The depth of the graph, which is 5, is reflected
in the number of list panes the browser is composed of.

6 Evaluation and Discussions

Several other browsers such as a browser specifically supporting traits [DNS+06]
have been developed using OmniBrowser framework demonstrating that the
framework is mature and extensible [RJ97]. Figure 13 shows some browsers
that are based on OmniBrowser framework. We now discuss the strengths and
limitations of the OmniBrowser framework.

17

(DRAFT) International Smalltalk Conference - Prague 2006

Coverage browser

Omnibrowser core framework

System browser

Coverage
Browser

Code
Node

ClassAware
Node

Method
Node

BrowserNode ActorDefinition

Coverage
MethodNode

Coverage
MethodNode

Coverage
ElementNode

Coverage
EnvironmentNode

CoverageSet
Node Coverage

Actor

ElementActorEnvironmentActor

System
Browser

Code
Browser

MethodNode
Actor

CoverageSet
Actor

Fig. 11. Extension of Omnibrowser and system browser to define the coverage
browser.

Class

Class
Comment

Metaclass

AllMethod
Category

Method
Category

Method

Meta-node Filter Transition

Legend

Meta-node
root

Environment Method
Coverage

Fig. 12. Metagraph for the coverage browser.

6.1 Strengths

Ease of use. As any good framework, extending it following the framework
intention make it easy to specify advanced browsers. The fact that the browser
navigation is explicitly defined in one place lets the programmer understanding
and controlling the tool navigation and user interaction. The programmer does
not have the burden to explicitly create and glue together the UI widgets and
their specific layout. Extra decorating widgets such as extra-menu is possible
and defined independently. Still the programmer focuses on the key domain
of the browser: its navigation and the interaction with the user.

18

(DRAFT) International Smalltalk Conference - Prague 2006

Code
Browser

Hierarchy
Browser

Inheritance
Browser

List
Browser

Implementor
Browser

Reference
Browser

Sender
Browser

Variables
Browser

System
Browser

Version
Browser

Browser

Fig. 13. Some code browsers developed using OmniBrowser framework.

Explicit state transitions. Maintaining coherence among different widgets
and keeping them synchronized is a non-trival issue that, while well supported
by GUI frameworks, is often not well used. For instance, in the original Squeak
browser, methods are scattered with checks for nil or 0 values. For instance, the
method classComment: aText notifying: aPluggableTextMorph, which is called
by the text pane (F widget) to assign a new comment to the selected class (B
widget), is:

Browser�classComment: aText notifying: aPluggableTextMorph
theClass := self selectedClassOrMetaClass.
theClass

ifNotNil: [...]

The code above copes with the fact that when pressing on the class comment
button, there is no warranty that a class is selected. In a good UI design, the
comment class button should have been disabled however there is still checks
done whether a class is selected or not. Among the 438 accessible methods in
the non Omnibrowser-based Squeak class Browser, 63 of them invoke ifNil: to
test if a list is selected or not and 62 of them invoke ifNotNil:. Those are not
isolated Smalltalk examples. The code that describes some GUI present in the
JHotDraw [JHo] contains the pattern checking for a nil value of variables that
may reference graphical widgets.

Such as situation does not happen in OmniBrowser framework, as metagraphs
are declaratively defined and each metaedge describes an action the user can
perform on a browser, states a browser can be in are explicit and fully de-
scribed.

Separation of domain and navigation. The domain model and its navi-
gation are fully separated: a metanode does not and cannot have a reference
to the domain node currently selected and displayed. Therefore both can be
reused independently.

19

(DRAFT) International Smalltalk Conference - Prague 2006

6.2 Limitations

Hardcoded flow. As any framework, OmniBrowser framework constraints
the space of its own extension. OmniBrowser framework does not support well
the definition of navigation not following the left to right list construction (the
result of the selection creates a new pane to the right of the current one and the
text pane is displayed). For example, building a browser such as Whiskers that
displays multiple methods at the same time would require to deeply change
the text pane state to keep the status of the currently edited methods.

Currently selected item. The OmniBrowser framework does not easily sup-
port the building of advanced browsing facilities such as the one of the Visu-
alWorks standard browser. In VisualWorks, it is possible to select a package,
then select one class of this package and as third step see the inheritance
hierarchy of this class within the context of the previously selected package.
The problem is that conceptually the selected item is not part of the state
representation. It is possible using UI events passing among the widgets to
implement

7 Related Work

MVC. The Model-View-Controller [KP88,Ree,Ree79] promotes a distinction
between three important roles (namely data, output and interaction) that
should be reflected in the design of a user interface framework. Those roles
were reflected in three abstract superclasses: Model, View, Controller. Still for
system browsers, developers consider the model as the entities of the domain
and do not have explicit or meta entities describing the navigation within the
domain model. Note also that a controller in MVC captures the interaction
of users with a widget,and passes this information to the model. The level
of abstraction, however, is lower than what is offered by the Actor in the
OmniBrowser framework, which is not programmed in terms of a widget but
in terms of the domain entities.

HotDraw. The state transitions between the possible tools in HotDraw [Joh92]
are driven by an explicit state machine and follow an explicit transition struc-
ture. There is a graphical editor (constructed with HotDraw itself) to construct
the view and edit the state machine. The goal of the state machine is similar
to the goal of the metagraph in the OmniBrowser framework: to make naviga-
tion explicit. In HotDraw, however, the events to go from one state to another
are taken from a limited set of possible actions such as mouse over.

HyperCard. Conceptually, a HyperCard [Goo98] application is a stack of

20

(DRAFT) International Smalltalk Conference - Prague 2006

cards. Each card contains some information and links to other cards in the
same or other stacks. The information on the cards is shown using text and
graphics. The links to other cards are presented as buttons, typically com-
pleted with an icon representing the destination card. A user of HyperCard
browses the cards of a stack using the link button. Only one card of a stack is
displayed at a time. Clicking a link button results in the display of the desti-
nation card. When a stack has not only information to be displayed, but also
has to exhibit an active behavior, the stack designer has to develop cards by
means of a scripting level, on which programming in the dedicated language
HyperTalk is supported. Still there is not as such a metagraph describing the
navigation of a domain graph.

ApplFLab. Steyaert et al. defined the notion of reflective application buil-
der [SHDB96] with as explicit goal to be able to construct and reuse (parame-
trizable) user interface components. ApplFLab was used to construct several
domain specific user interfaces, including browsers in development environ-
ments [Wuy96].

ApplFLab structures a software program using four distinct kinds of compo-
nents:

• a user interface component controls the display and the user interaction of
a particular piece of information, supplied by the domain model. Note that
this component is parametrized by the domain model, and therefore can be
reused across different domains.

• an application model manages the global behavior of group of interface com-
ponents. It is responsible for the user interface logic and controls user inter-
face. A same application model can be reused on different domain models
and a domain model can have several application models in parallel.

• a domain model models the overall functionality of the problem domain and
maintains user interface independent constraints.

• a set of aspects is needed to separate the domain model from the user
interface component.

Interaction between these four components is based on emitting events and
being notified. There are three kinds of event: display, notify and control.

The advantage of ApplFLab lies in its notion of parametrized user interface
component. A user interface component consists of a GUI description, and pa-
rameters to link the component to the domain or to specify other information
when it is used in an application. The components are plugged together to form
applications. One could for example build a list component, and parametrize
it with categories, classes, protocols and selectors to get the four top elements
that make a System Browser (as shown in Section 4.1). Combine it with a
Text component and the System Browser is complete.

21

(DRAFT) International Smalltalk Conference - Prague 2006

While both ApplFLab and the OmniBrowser make it easy to build browsers,
there are some differences. The OmniBrowser is a domain specific approach
for building browsers, while ApplFLab is general. So when using ApplFLab to
build browser, browser specific components need to be built first, for example
to get the left-to-right selection behavior that is built-in with OmniBrowser.
ApplFLab also had a steeper learning curve, since building a good reusable
component (be it a visual one or a regular one) remains fairly difficult. On the
other hand, OmniBrowser offers more built-in behavior which makes it easier
to use but also forces certain behavior that might not always be wanted.

ThingLab. Freeman-Benson and Maloney [FB89] wrote ThingLab II, an
object-oriented constraint system for direct manipulation user interface im-
plemented in Smalltalk-80. In ThingLab II, user-manipulable entities are col-
lections of objects know as Things. ThingLab II provides a large number of
primitive Things equivalent to the operations and data structures provided in
any high-level language: numerical operations, points, strings, bitmaps, con-
version, etc.

A thing is constructed from things objects and constraint objects. Higher-level
things can be built out of the lower-level ones. Constraints are either satisfied
or they are not satisfied, and they are simple declarative declarations that do
not hold state. Browser navigation can be expressed by constraints between the
different elements that composed a browser. But there is no explicit distinction
between the domain and its navigation.

8 Conclusion

Smalltalk is known for its advanced development environment, featuring ad-
vanced browsers that let developers navigate and change code relatively easily.

Building browsers, however, is a daunting task. The main problem is that ev-
ery navigation action performed by a user in a widget changes the state of
that (and possibly other) widgets. Given the high number of possible navi-
gation actions, the complexity of managing the navigation by managing the
states of the browser is a very complex task. This can be seen in most current
browser implementations, which are complex and hard to extend because the
navigation is implicitly encoded in the management of the state of the widgets.

To make it easier to build and extend browsers, this paper introduces a frame-
work for building browsers that is based on modeling user navigation through
an explicit graph. In this framework, browsers are built by modeling the do-
main with nodes, expressing the navigation with a metagraph and describ-
ing the interaction between the browser and the domain through actors. The

22

(DRAFT) International Smalltalk Conference - Prague 2006

framework uses these descriptions to construct a graphical application. The
top half of the application uses lists that allow the user to navigate the de-
scribed domain. The bottom half of the pane allows to visualize and edit nodes
selected in the top half.

The framework is implemented in Squeak Smalltalk through the OmniBrowser
framework. The paper showed three concrete instantiations of the framework:
a file browser to navigate a file system,a reimplementation of the ubiquitous
Smalltalk System Browser, and a code coverage browser. There are more in-
stantiations of the browser that we have not discussed in this paper but that
are available. The validation shows that the goals of the frameworks are met.
Building the System Browser with the OmniBrowser framework shows that
the code is lots simpler. The Code Coverage browser shows that it is easy to
extend an existing browser.

For future work we plan to enhance the OmniBrowser framework with the
ability to have multiple text panes to be part of a browser. We also plan to
extend the framework to support more and richer widgets (such as toolbars
and flaps). Last but not least we want to investigate how we can extend the
metagraph to look at other ways of navigating it.

Acknowledgment. We would like to thank Niklaus Haldimann and Stefan
Reichnart for their use of the OmniBrowser framework.

We gratefully acknowledge the financial support of the french ANR project
“Cook: Réarchitecturisation des applications industrielles objets” (JC05 42872)
and of the Science Foundation Ireland and Lero — the Irish Software Engi-
neering Research Centre.

References

[ABW98] Sherman R. Alpert, Kyle Brown, and Bobby Woolf. The Design Patterns
Smalltalk Companion. Addison Wesley, 1998.

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts,
and Andrew Black. Traits: A mechanism for fine-grained reuse. ACM
Transactions on Programming Languages and Systems, 28(2):331–388,
March 2006.

[FB89] Bjorn N. Freeman-Benson. A module mechanism for constraints in
Smalltalk. In Proceedings OOPSLA ’89, ACM SIGPLAN Notices,
volume 24, pages 389–396, October 1989.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Addison
Wesley, 1999.

23

(DRAFT) International Smalltalk Conference - Prague 2006

[Gol84] Adele Goldberg. Smalltalk 80: the Interactive Programming
Environment. Addison Wesley, Reading, Mass., 1984.

[Goo98] Danny Goodman. The Complete HyperCard 2.2 Handbook. iUniverse,
1998.

[GR83] Adele Goldberg and David Robson. Smalltalk 80: the Language and its
Implementation. Addison Wesley, Reading, Mass., May 1983.

[Hal05] Niklaus Haldimann. A sophisticated programming environment to cope
with scoped changes. Informatikprojekt, University of Bern, December
2005.

[JHo] Jhotdraw: a java gui framework for technical and structured graphics.
http://www.jhotdraw.org.

[Joh92] Ralph E. Johnson. Documenting frameworks using patterns. In
Proceedings OOPSLA ’92, volume 27, pages 63–76, October 1992.

[KP88] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-
controller user interface paradigm in Smalltalk-80. Journal of Object-
Oriented Programming, 1(3):26–49, August 1988.

[RBJ97] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for
Smalltalk. Theory and Practice of Object Systems (TAPOS), 3(4):253–
263, 1997.

[RBJO96] Don Roberts, John Brant, Ralph E. Johnson, and Bill Opdyke. An
automated refactoring tool. In Proceedings of ICAST ’96, Chicago, IL,
April 1996.

[Ree] Trygve M. H. Reenskaug. The model-view-controller (mvc) – its past and
present. JavaZONE, Oslo, 2003.

[Ree79] Trygve M. H. Reenskaug. Models - views - controllers, December 1979.
http://heim.ifi.uio.no/∼trygver/1979/mvc-2/1979-12-MVC.pdf.

[RJ97] Don Roberts and Ralph E. Johnson. Evolving frameworks: A
pattern language for developing object-oriented frameworks. In Pattern
Languages of Program Design 3. Addison Wesley, 1997.

[SB04] Nathanael Schärli and Andrew P. Black. A browser for incremental
programming. Computer Languages, Systems and Structures, 30:79–95,
2004.

[SHDB96] Patrick Steyaert, Koen De Hondt, Serge Demeyer, and Niels Boyen.
Reflective user interface builders. In Chris Zimmerman, editor, Advances
in Object-Oriented Metalevel Architectures and Reflection, pages 291–
309. CRC Press — Boca Raton — Florida, 1996.

[SLMD96] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D’Hondt.
Reuse Contracts: Managing the Evolution of Reusable Assets. In

24

(DRAFT) International Smalltalk Conference - Prague 2006

http://www.jhotdraw.org
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf

Proceedings of OOPSLA ’96 (International Conference on Object-
Oriented Programming, Systems, Languages, and Applications), pages
268–285. ACM Press, 1996.

[SM88] Pedro Szekely and Brad Myers. A user interface toolkit based on
graphical objects and constraints. In Proceedings OOPSLA ’88, ACM
SIGPLAN Notices, volume 23, pages 36–45, November 1988.

[WD04] Roel Wuyts and Stéphane Ducasse. Unanticipated integration of
development tools using the classification model. Journal of Computer
Languages, Systems and Structures, 30(1-2):63–77, 2004.

[Wuy96] Roel Wuyts. Class-management using logical queries, application of
a reflective user interface builder. In I. Polak, editor, Proceedings of
GRONICS ’96, pages 61–67, 1996.

25

(DRAFT) International Smalltalk Conference - Prague 2006

