ESUG 2005 International Smalltalk Conference

Editors: Stéphane Ducasse, Serge Stinckwich
published as Technical Report
of the Institut fiir

Informatik und Angewandte Mathematik
University of Bern, Switzerland

iam-05-001

September 16, 2005






Abstract

Classification: 68-02 ResearclExposition, 68N30 Mathematicalaspectf software engineering
(specibcationyeribcation,metrics,requirementsetc.) [New MSC2000code] 68U35 Information
systemghypertet navigation,interfacesdecisionsupportetc.) [New MSC2000code]D.2 Software
EngineeringD.2.2 ToolsandTechniquespP.2.7 Distribution andMaintenanceD.3.1[Programming
Languages]D.3.2 LanguageClassibcationd).3.3 LanguageConstructsand FeaturegE.2), 68N15
Programmindanguages68N190therprogrammingechniquegobject-orientedsequentialconcur
rent,automaticetc.) [New MSC2000code]






Table of Contents

1 OpPENASPECES . . . . . . . e e e 7
2  TowardsUnibpedAspect-OrientedProgramming. . . . . . . . . . . . .. ... ... 27
3 Inter-LanguageRelRectiorDA ConceptuaModel andlts Implementation . . . . . . 49
4  RuntimeBytecodeTransformatiorfor Smalltalk. . . . . . ... ... ... ... .. 75
5 TowardsaTaxonomyof SUnitTests . . . . . ... .. ... .. .. ... ...... 87
6  Co-evolving CodeandDesignwith IntensionaViews DA CaseStudy . . . . . . .. 107
7 A New Object-OrienteModel of theGregorianCalendar. . . . . ... .. ... .. 131
8  Microprints: A Pixel-basedSemanticallyRich Visualizationof Methods . . . . . . . 157



Thesedays,it seemghat programminglanguagesre really catchingon bothin the academicand

industryworlds aspopulardynamicprogramminganguagesDynamicprogramminganguagesire

programminglanguagesn which programscan easily modify their structureandtheir behaior as

they run: new classesnay be creatednew modulesmay appeayrsoftwarecanbe adaptedsery easily
to new situationor needs,... Most of the time, theselanguagesare alsodynamicallytyped, which

somestatictyping adwocatesconsidera dravback. However, accordingto adwocatesof dynamicpro-

gramminglanguagesthe Rexibility of dynamiclanguage®ffsetsthes dravbacksandevenprovides
advantageso consterableasto make this an essentiafeature for examplefor interactive program-
ming or software evolution. Dynamiclanguagedeatureg(lik e re3ection,dynamicreconbgurability
hot codereplacementsoftware adaptation,..) arealmostessentiato develop certainapplications
relatedto web, mobility, ambientcomputing,multi-agentapproachandmore generallysoft comput-
ing. Eventhe latestmainstreanstatic languageshave adoptedo a certainextentdynamiclanguage
featuressuchasgarbagecollectionandlimited forms of rel3ection.

Smalltalkis one of the brstdynamicprogramminglangagesandstill hasuniquefeatures(fully
object-orientedminimal syntax,big open-sourcdibrary of classesrel3ectve ervironment,...) that
superceednostof the currentpopular dynamiclanguagesSmalltalkis an object-orienteddynami-
cally typed,rel3ectve, programmindganguagedesignedat Xerox Palo Alto ResearcltCenterby Alan
Kay, DanlIngalls, TedKaehler Adele Goldbeg, andmary othersduringthe 1970s.Thelanguagevas
generallyreleaseds Smalltalk-80andhasbeenwidely usedsincein mary Bavors.

Smalltalkis still the vehicleof choicefor mary softwareinnovationsandwith therevival of dy-
namiclanguagesit shouldstill regaininterestamongall thosewhichwishto testideasquickly within
the context of the designof new programminganguageshew IDEs or classframewvork, new way to
designsoftware (XP or test-driven for example). With Smalltalk,onegot an alive andevolutionary
environmentthatthe developerandtheresearchecanquickly adaptto their needs.

You will found herea selectionof paperspresentedat the Smalltalk Conferenceof the yearly
Smalltalkeventorganizedby ESUG- the EuropearSmalltalkUsersGroup. For thelastthreeyears,
the goal of the Smalltalk Conferencas to give wide academiaecognitionto high-qualityresearch
donein or with Smalltalk. The topicswe areinterestedn are (in a non-ehaustve list); new lan-
guagesteatures(mixins, AOR...), metaand ref3ectve programning, codeanalysis(refactoring,...),
procesglevelopment(Agile processedJnit testing,...), virtual machineqoptimization,new trends,
...), frameworks (web, graphical...) softwareevolution (metrics,...).

Eachpaperwasreviewedby 5 memberof thefollowing internationaprogramcommittee:

¥ PascalAndre (UniversiedeNantesFrance)
¥ Noury BouragadiBcoledesMinesde Douai, France)

¥ PierreCointe(EcoledesMinesdeNantesFrance)

"hitp:/iwww.esug.org/



¥ WolfgangDe Meuter(Vrije UniversiteitBrusselsBelgium)
¥ SegeDemeer (University of Antwerpen,Belgium)

¥ StephaneDucassd€University of Berne,Switzerland Universite de Savoie, France)
¥ RobertHirschfeld(DoCoMo Euro-LabsGermatry)

¥ Alan Knight (CincomSystems|JSA)

¥ ThomasKuahne(TechnischdJniversitt DarmstadtGermary)
¥ MicheleLanza(Universityof Lugano,Switzerland)

¥ Michele Marchesi(University of Cagliari,Sardinia,ltaly)

¥ Kim Mens(Universitede Louvain la Neuwe, Belgium)

¥ Jean-Frafis Perrot(Universitede Paris6, France)

¥ BernardPottier(Universie de BretagneOccidentaleFrance)
¥ NathanaeBcharli (University of Berne,Switzerland)

¥ David Shafer (University of WesminsterUSA)

¥ Sepge Stinckwich(Universite de Caen France)

¥ RoelWuyts (UniversitLibre de Bruxelle, Belgium)

Papersacceptedor the ESUG 2005 InternationalSmalltalk Conferenceagive a glimpseof high
quality work conductedusing Smalltalk. The spectrumof theseresearchprojectsrangesfrom newv
programmingconceptsbasedon AOP or rel3ectionto applicatbns in variousdomains. We have
selectedhe bestbve papersfor a specialissuein the journal: OComputekanguagesSystemsand
StructuresCThecurrentproceedingsontaingheeightpapersacceptedor the ESUGResearcfrack
heldat Brusselghe 16th August2005.

Session: Aspect-Oriented Programming
¥ OOpemspectsCRobertHirschfeldand StefanHanenbey,
¥ OBwardsUnibPedAspect-Oriente®Programming@oury BouragadiAbdelhakSeriaiandGabriel
Leblanc,
Session: Reflection and Code Transformation

¥ OlnterLangageReRectiorDA ConceptuaModel andlts ImplementationCKris Gybels,Roel
Wuyts, StephaneDucasseMaja DOHondt,

¥ ORuntimeBytecodeTransformationfor SmalltalkOMarcusDenker, StephaneDucasse Eric
Tanter



Session: Software Maintenance
¥ ODBwardsa Taxonomyof SUnit TestsOMarkusGaili, Michele LanzaandOscarNierstrasz,

¥ OCo-eolving Codeand Designwith IntensionalViews B A CaseStudyO Kim Mens, Andy
Kellens,Frederic PluguetandRoelWuyts,

Session: Applications

¥ Q\ New ObjectOrientedModel of the GregorianCalendarCHerranWilkinson, MaximoPrieto
andLucianoRomeo,

¥ OMicroprints:A Pixel-basedSemanticallyRich Visualizationof MethodsORomainRobbes,
StephanédDucassandMicheleLanza.

After readingthosepapersye hopeto seeyou atnext ESUGInternationalSmalltalkConference.

SeptembeR005
StephandDucasseandSege Stinckwich.






Open Agpects

RobertHirschfeld”’, StefanHanenberfy

“DoCoMo Euro-Labs, Future Networking Lab, Landsberger Strasse 312, 80687 Munich, Germany

2University of Duisburg-Essen, Department of Computer Science, SchYtzenbahn 70, 45117 Essen, Germany

Abstract

Open Aspects are our approach to face unplanned changes in systems that are based on aspect-oriented composition at
runtime. They support explicit adaptation models, allowing developers to describe system change events to be observed, and
corrective actions to be taken. These events and actions cover both the base system affected by aspects as well as the aspects
affecting the base system themselves. The proper combination of change events and corrective actions allows for conditional
just-in-time runtime re-composition. This paper offers a detailed discussion of difficulties related to change in aspect-oriented
systems and a description of consistency constraints inherent to them. An implementation illustrating Open Aspects and their
application is provided.

Keywords: Aspect-oriented programming; dynamic aspects; open aspects; runtime weaving

1. Introduction

Systems utilizing aspect-oriented programming (AOP) differ in how and when they carry out the processes of composing
aspects into the base system, a process dso known as weaving. There are systems that statically weave a compile or load-
time. Other systems permit the composition of aspects at an application@ runtime.

We usudly prefer to carry out changes to our systems while they are offline so that the detection and resolution of
problems that become apparent during aspects composition will not interfere with the running system. However, there are
situations where such practice is not desirable, is inadvisable, or even impossible due to domain specific requirements to the
system in question. In telecommunications, for instance, system downtime results in disruption of services, leading to less
customer satisfaction, and because of that has to be kept to a minimum or to be avoided entirely [13,14,16]. Ambient and
embedded computing infrastructures and environments are yet another example of systems that require online adaptations B
changes to the running system. The reason for weaving in aspects dynamically results from the requirement that the system
aspects to be woven are expected to change at runtime.

Recent work of the aspect-oriented software development community indicates that dynamic aspects are becoming of
increased interest. Dynamic aspects offer compositions that can be made effective or revoked at runtime. Prominent activities
in this research area are efforts to provide technologies for dynamic method call interception (MCI, [19]) or extensions to
virtual machines (VM) for enhanced method call dispatch. Systems like PROSE [23,24], Steamloom [3], JAC [22], AspectL
[8], or AspectS [12] are al concerned with hot-deployment of aspects. They employ runtime weaving to dynamically add new
code, modify or remove available code or change the way the base application is interpreted. Their weaver considers the
systems or code segments to be combined at one particular point in time. Pointcut expressions or predicates (both terms are
used interchangeably in this text) are evaluated to compute sets of join-point shadows [20] to be instrumented, and integration
steps are performed as necessary to provide the desired composed behavior. Join-point shadows are roughly correspondent

" Corresponding author. Tel.: +49-160-4785212; fax: +49-89-56824-300; e-mail: hirschfeld@acm.org.



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

locations of actual join-points in a program@ representation such as the program@ source or its meta structure. We consider
poincut predicates to be one essential contribution of AOP to generically designate subsets of a system@ computational
properties. Examples for that are all accesses to an instance variable, all sends are receptions of a message, or al messages
sent by a group of sendersor received by a specific receiver.

Opening up systems and alowing them to be changed after their initia deployment D possibly by code providers other
than the original one and probably while they are running Bincreases the likelihood of system changes not planned for at the
beginning of their design and development. Furthermore, in such open systems the point in time changes can happen as well
as their order and frequency are undetermined. Presence and characteristics of classes, instances, or methods can be revised at
any instant or not at al. Furthermore, we can assume changes that not only address elements that belong to the base system,
but to affect aspects themselves. Changing pointcuts and their associated sets of join-point shadows or changes to advice code
isan example.

Changes like that can and will have an effect on AOP-induced invariants as mentioned above. Hence, a mechanism is
needed to explicitly maintain these invariants.

Asasmpleillustration let us look at a system that uses classes not known at compile time but loads them dynamically on
demand. New classes not known during the development and initial deployment of the origina system thus appear. In such a
situation the problem from the aspect-oriented point of view is that it is not clear how the system should behave. Should
pointcut coverage be monitored, and, if necessary, should aspects be recomposed? Or should such changes be ignored at al?
Questions like that are not addressed by current approaches and technologies.

Open Aspects is our approach to handling unplanned system changes at runtime. Open A spects support explicit adaptation
models, adlowing developers to describe system change events to be observed and corrective actions to be taken in response to
these events. System change events and corrective actions cover both the base system affected by aspects and the aspects
themselves affecting the base system. The proper combination of change events and corrective actions allows for conditional
just-in-time runtime re-composition.

Contributions of our paper include:

A description of consistency constraints inherent to aspect-oriented systems

A detailed discussion of the associated change problem

A solution to this change problem by separating and providing an explicit adaptation model to aspect developers
An implementation illustrating our solution and its application

K K K K

In the next section we give a motivating example. In Section 3 we explain Open Aspects in genera. Section 4
demonstrates how Open Aspects work in the presence of change. Section 5 describes OpenAspectS, our implementation of
Open Aspects in AspectS. Section 6 shows an application example of OpenAspectS. After discussing related work in section
7, we summarize our paper in section 8 and come to a conclusion.

2. Motivation

2.1. Aspect Composition Models

In most aspect-oriented systems there is typicaly a weaving mechanism that composes aspects and the base system they
apply to according to descriptions offered by pointcut predicates or expressions. Usually, such a composition is initiated by
developers at a particular point in time. This point in time might vary from development-time, over compile- and load-time,
up to runtime. Here it is important to note that each and every composition is either carried out implicitly by development
tools or explicitly by instructions stated explicitly in the flow of control of the running system. This process can be
characterized as one-time model composition.



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

Model 1 Model 2 Model 1 Model 2
(Base Model) (Aspect Model (Base Model) (Aspect Model
Composer Composer
(Weaver) (Weaver)
Composed Composed
Model Model
Szl Composed RS
System

Fig. 1. Static (a) and dynamic (b) one-time composition

Fig. 1-aillustrates static one-time model composition. Weaving starts from both amodel of the base system and the aspect
mode (as indicated by the GtartOtags). A composer then combines both these models into a composed model. For that, all
join-point shadows involved are instrumented so that the composed model shows all desired properties (marked with a GtopO
tag). Next the composed model gets effective in the composed system at runtime. Note that in al figures showing composition
models (Fig. 2,1,11) the dog-eared rectangles represent passive models, whereas the ovals represent active ones, that is,
system parts being executed.

In Fig. 1-b we can see an extension of the previously described process for dynamic one-time model composition. Now we
start off from a running system and an aspect model. The weaver derives the base system@® model from the running base
system and then composes this derived and the aspect model into the composed model which in turn will be made effective in
anew version of the running composed system. Since developers can initiate weaving at any point in runtime, we can treat the
initial base system as a specia case of the composed system.

Even though this procedure can be performed repeatedly, we still characterize it as one-time since the injection or removal
of join-point shadows is set off by an explicit activity in the development process or program expression at load or runtime. In
both cases of one-time weaving, the weaver only considers join-point shadows described by all involved pointcut expressions
or predicates at that particular point in time. Future changes to the system that were not planned for, both to the base system
and to the set of incorporated aspects, cannot be considered properly or at all.

Even with continuous weaving, presented in our work on Morphing Aspects [11], there are changes not taken into account.

As shown in Fig. 2, morphing aspects constantly derive a minimal base model needed to inject or remove join-point shadows
necessary in the immediate future.

¢omputatlon Cc&nputatlon
Model 1 Model 2
(Base Model) (Aspect Model
Composer
(Weaver)
Composed
Model

continuously

Fig. 2. Dynamic continuous composition

While the weaver for every new step examines the current system, all previous system compositions are not revisited for
changes that might have had an influence on those earlier compositions.
In the following we provide an example illustrating these effects.



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

2.2. Running Example

Consider the following example as described in [12]. It is written in AspectS [12], a genera-purpose dynamic AOP
environment for Squesk/Smalltalk [15]®. Squeak is an open and highly portable implementation based on the original
Smalltalk-80 system [10]. Here we want to monitor all mouseEnter: and mouselLeave: messages received by instances of
Morph (a base class in Morphic, a user interface framework of Squeak) and its subclasses by logging them to the system
transcript, Smalltalk@ equival ent to a system console (Fig. 3).

MorphicMousingAspect>>adviceMouseEnter

t BeforeAfterAdvice
qualifier: (AdviceQualifier
attributes: { #receiverClassSpecific. })
pointcut: [
Morph withAllSubclasses
select: [:m | m includesSelector: #mouseEnter:]
thenCollect: [:m | AsJoinPointDescriptor
targetClass: m targetSelector: #mouseEnter:]]
beforeBlock: [:receiver :arguments :aspect :client |
Transcript show: "Enter*', arguments first printString]

“aspect lifecycle in a nutshell”

| anAspect |

anAspect + MorphicMousingAspect new.
anAspect install.

anAspect uninstall.

Fig. 3. Advice and lifecycle example

We employ an aspect called MorphicMousingAspect to trace the reception of these messages. Advice code to trace the
reception of mouseEnter: and mouselLeave: messages is stated in two advice methods adviceMouseEnter and
adviceMouselLeave. Each advice method creates a BeforeAfterAdvice object that allows us to state behavior before and
after the invocation of a method. Once the advice object is created, it is further qualified via the #receiverClassSpecific
advice qualifier attribute causing the advice code to be executed for al message receivers described by the pointcut
expression. In our example from Fig. 3, these are al instances of Morph and its subclasses responding to mouseEnter:. In
adviceMouseEnter join-point descriptors are collected by querying the system for all classes that are subclasses of Morph
and implement mouseEnter:. The block to be executed before the actual invocation of mouseEnter: echoes the event passed
with the mouseEnter: message to the transcript. An adviceMouseleave advice works likewise for the reception of
mouselLeave: messages. To activate the MorphicMousingAspect, one creates an aspect instance and sends it an install
message when desired. An installation activity can be considered atomic. In a plain Squeak image (version 3.6) there are 24
implementers of a method named mouseEnter: and 21 implementers of a method named mouselLeave:. 22 of the 24 of
mouseEnter: methods and 19 of the 21 of mouseLeave: methods are found in Morph and its subclasses. Our instance of
MorphicMousingAspect, when ingtalled, instruments al 22 + 19 = 41 |ocations.

Fig. 4 shows a subset of the Morph class hierarchy emphasizing some of the classes affected by the installation of
MorphicMousingAspect by rendering them with a squared texture. All classes with behavior not influenced by the
ingtallation of the aforementioned aspect are displayed as circles with a white filling area. Little circular symbols on top of
circles representing classes mark them as holding join-point shadows that belong to the pointcut of the aspect under
consideration. Here, Morph, MenultemMorph, and WonderlandCameraMorph are marked as being involved in
MorphicMousingAspect.

! Readers not familiar with Squeak/Smalltalk but articulate in Java might find the language syntax comparison in [7] of help when examining
code fragments throughout the paper.

10



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

MorphicMousingAspect (abjec:
.~ Morph
) 3
StringMorph WonderlandMorph
4 » 4

@ @

MenultemMorph WonderlandCameraMorph
A A

UpdatingMenultemMorph WonderlandStillCameraMorph
Fig. 4. Visualization of class hierarchy with installed aspect

2.3. Changing the Base System

What happens if, after the instalation of MorphicMousingAspect as described above, a new class
MouseEnterLeaveMorph is added to our system (Fig. 5)? MouseEnterLeaveMorph is a subclass of Morph and aso re-
implements mouseEnter: and mouselLeave:. By doing so, this class would have been part of the set of join-point descriptors
computed by the evaluation of our pointcut expressions and instrumented by our weaver. However, when our aspect was
installed this class was not yet present in our system and was thus not considered during weaving.

The result of adding this class after installing our aspect is shown in Fig. 6. Even though the evaluation of the pointcut
expression would include the newly added class and its mouseEnter: and mouselLeave: methods (as indicated by the little
circular symbol added to the circle representing MouseEnterLeaveMorph), the class as such remains unaffected by our
aspect (as suggested by the white fill color of the class symbol). Our installed aspect only covers the 41 locations computed
during weaving, leaving the new additional two locations unaffected.

Morph subclass: #MouseEnterLeaveMorph
instanceVariableNames: "
classVariableNames: '
poolDictionaries: "
category: 'AspectS-Examples’

MouseEnterLeaveM orph>>handlesM ouseOver: evt
! true

MouseEnterLeaveM orph>>mouseEnter: evt
self beepPrimitive.

MouseEnterLeaveM orph>>mouseLeav e: evt
self beep.

Fig. 5. Code of newly added Morph subclass

Depending on specific application scenarios, these two missing join-points shadows might or might not cause erratic
system behavior. Leaving them unaffected would honor the intent to only weave-in all join-point shadows covered by the
aspect@ join-point expression at installation time. On the other hand, adjusting them automaticaly would ensure the
consistent application of the aspect to all join-point shadows covered by its join-point expression.

11



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

% O

MorphicMousingAspect (abjecl

o -

¥ Morph w.__
T 3

StringMorph WonderlandMorph MouseEnterLeaveMorph
4 » 4

@ @

MenultemMorph WonderlandCameraMorph
A A

UpdatingMenultemMorph WonderlandStillCameraMorph
Fig. 6. Visualization of aspect composition after the addition of the new subclass of Morph

The described change scenario is an additive one. Subtractive changes to the base system have similar effects.
2.4. Changing an Advice@ Pointcut

What happens if, after the instalation of MorphicMousingAspect as described above, the pointcut expression of the
installed aspect is changed? What if the pointcut expression of MorphicMousingAspect is, for example, modified to collect
all join-point descriptors by querying the system for all implementers of mouseEnter: and mouselLeave: a StringMorph
which is a subclass of Morph instead at Morph itsdlf (Fig. 7)?

pointcut: [
StringMorph withAllSubclasses
select: [: m | m includesSelector: #mouseEnter:]
thenCollect: [: m | AsJoinPointDescriptor
targetClass: m targetSelector: #mouseEnter:]]

Fig. 7. Changed pointcut expression of installed aspect

Changing our pointcut expression in such a way reduces the number of join-point descriptors contained in the set it
evaluates to from 22 to one for mouseEnter:, and from 19 to one for mouseLeave: (Fig. 8). Thisleads to the same situation
as described above where our pointcut became out of sync with the system actualy instrumented in the process of installing
the new class MouseEnterLeaveMorph.

Depending on specific application scenarios, the 39 join-point shadows that are still in the system but no longer covered by
the aspect® pointcut expression might or might not cause erratic system behavior. Leaving them in the system would honor
the intent to only weave-in join-point shadows covered by the aspect® join-point expression at installation time. On the other
hand, removing them automatically would ensure the consistent application of the aspect to al join-point shadows covered by
its join-point expression.

12



Robert Hirschfeld and Stefan Hanenberg ©Open Aspects

% O

MorphicMousingAspect Object
P WA
o .
| AN
JCCLLLLYS |
R ., i N
@ e
0‘ ‘G
. . .
° -~ Morph »,  ButtonProperties
A » K
o e S % .
* \ *
o \ .
B \ .
o e / \ .
A2 / \ .
¢ e~ .
e © eee Q
. .
0 .

,*%° " StringMo!
o PREN'S

QK / \ . /

3
g
,
3
,
3
3
.l \‘ . \ .
,'. / \ . / \ .
N . N -
. .
. 2
4
.
g
g
2
:
:
:
:
:
:

rph '~. WonderlandMorph
. 4 »

;o

N @ cee
.
D

&7 MenultemMorph WonderlandCameraMorph
4 : A
> ! . |
E E g 0.
""-_UpdatingMenuItemMorph _WonderIandStiIICameraMorph‘,"'
*, %0 ce®® annt®
Yay ®csecccscec® --ll“...--

Fig. 8. Visualization of composition after changed pointcut coverage

2.5. Changing an Aspect® Advice

Also, consider what happens if, after the installation of MorphicMousingAspect, the advice code gets changed (Fig. 9)?
The weaver previously used the advice code present during weaving to instrument the system. In our example, the weaver
provisions advice code that logs the execution of mouseEnter: and mouselLeave: methods to the system transcript.

beforeBlock: [:receiver :arguments :aspect :client |

Logger count increment.
Transcript show: “Enter*, arguments first printString]

Fig. 9. Changed advice code of installed aspect

MorphicMousingAspect Object

P (Morplw ButtonProperties

MenultemMorph WonderlandCameraMorph
A A

O

UpdatingMenultemMorph WonderlandStillCameraMorph
Fig. 10. Visudization of composition after changesto advice code

13



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

Changing that particular code located within our advice block leaves al 41 locations in our image that are instrumented
with the previoudly available advice code out of sync with its current version. In Fig. 10 the different versions of the advice
code residing in the aspect and composed into our system are expressed by different line styles of the circles representing our
aspect and system classes.

Again, correct system behavior depends on particular application scenarios that might require the instrumented system
parts to be updated or left as is. Instead of leaving the actual adaptation behavior to a particular weaving mechanism, we
prefer to give the developer ameansto explicitly decide about adaptations if demanded.

3. Open Aspects

3.1. System Changes

In open systems that are allowed to change at runtime, aspect composition needs to explicitly address changes to both the
base system and the set of aspects that have been applied to it. These changes comprise added, transformed, or removed
classes and methods. The addition, modification/transformation, or removal of pieces of advice associated with an aspect or
pointcut expressions or predicates associated with a piece of advice aso need to be handled.

A weaver determines al join-point shadows of al involved aspects by evauating all associated join-point expressions or
predicates. After completion, the set of join-point shadows available in the composed system correspond to the ones computed
during weaving. Every change to the system has the potential to bring this correspondence out of sync. If not dealt with
correctly, such inconsistency may or may not lead to erratic system behavior.

3.2. Change Events and Corrective Actions for Open Aspects

The abovementioned changes leading to composition inconsistencies can be addressed in quite different ways. Whether or
not corrective actions taken to react on system change events will lead to expected system behavior can only be decided in a
particular application context. While some applications do not expect changes to be considered after the composition of
aspects, others might be required to adjust aspect composition accordingly. Here, we will describe corrective actions we
consider important and feasible for operating open systemsin use:

None/indifferent
Full reingtal
Partial reinstall
Partial withdrawal
Full withdrawal
Reject

K K K K K K

Glone/indifferentQ not reacting to any change happening after the installation of an aspect, is the simplest corrective action
that may be taken. @ull reinstall Owill cause the affected aspect with all its pieces of advice to be uninstalled and then and
reinstalled again afterwards, fully applied to the newly inserted set of join-point shadows. (Partial reinstall Owill reingtall only
pieces of advice affected by a change, leaving all unaffected advice installed and untouched. @artial withdrawa Owill
uninstall only pieces of advice affected by a change, leaving al unaffected advicesinstalled and untouched. @ull withdrawa O
will cause all affected aspects with all their pieces of advice to be withdrawn from the system for good. @RejectOwill prevent
attempts to change the base system affected by respective advice directives to get effective. While these corrective actions
seem the most obviousto us, there are certainly other that could be added to thislist.

3.3. Adaptation Models of Open Aspects
Adaptation models of Open Aspects are a means to explicitly provide corrective actions to be carried out in response to
system change events. With adaptation models, Open Aspects alow for the flexible association of change events and

corrective actions, according to specific needs of the application scenario to be supported and the system behavior to be
achieved.

14



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

With Open Aspects there is an explicit separation of base, aspect, and adaptation models. This alows an explicit
association of elements belonging to them. Such association expresses which elements of the base system need to be affected
by which aspects and their associated pieces of advice under the occurrence of which set of change events. This lets us
directly say how or if at dl to react to system events. While this approach can certainly be extended to deal with any type of
event, we will for now limit ourselvesto system change events as described above.

3.4. Conditional Weaving with Open Aspects

We characterize the weaving model of our approach to Open Aspects as dynamic conditional model composition. As
illustrated in Fig. 11 there is now, besides the base and the aspect model, also an adaptation mode to be considered by the
weaver when composing such models. As already described for dynamic one-time composition (in Fig. 1-b) and dynamic
continuous composition (Fig. 2), we start from a composed system at runtime. The weaver initially derives a model of the
running base system needed for making our aspect model effective (both marked with a GtartOtag). While doing so, the
weaver also examines an adaptation model (also marked with a GtartOtag) detailing all involved system change events to be
observed and all corrective actionsto be taken in correspondence to the system elements involved as described above.

 Start IR 4 ? v ?
I Base Model J Aspect ModeIJ /Adaptation Modﬂ
[

I

——

initially
conditiona

i
vy

Change
Observer
conditionally

Fig. 11. Dynamic conditional composition

The weaver affects the composed system as in the other dynamic models described before. In addition to that it provides
for change event handling. Such event handling can be supported in a variety of ways. One way to address system change
events is the inlining of event handling code into the composed system that itself initiates specified corrective actions
(amongst them system re-composition) in the event of change. Another way is the provisioning of a separate system entity we
call a change observer that reacts to system change events appropriately. Compared with the previous method, the composed
system does not include any code related to conditional model composition. Event propagation as such may be implemented
in quite a few ways. Implementations can vary from a very simple and nasve propagation from an event source to an event
consumer to quite sophisticated event filters preprocessing events according to complex rule sets.

4. Illustration

4.1. Sarting Situation

In the following we will illustrate how Open Aspects behave in open systems. For that we will use the notation as shown
in the right side of figure Fig. 12. In part (a), the left side of Fig. 12, we start out with two modules running on our platform
with no aspects yet applied. This set of modules can be extended by adding new modules or curtailed by removing existing
ones.

15



Robert Hirschfeld and Stefan Hanenberg ©Open Aspects

I—l——l Open platform
I:I Platform module

Platform module
D l:‘ E affected by aspects
/////// Open aspect module

with adaptation model

% Changed open aspect
Fig. 12. Computational platform (with legend)

The L-shaped open platform represents that part of the runtime environment that remains quite stable over time with
respect to change. Boxes represent modules that are expected to change. If affected by an open aspect, such abox is displayed
with squared pattern texture, or is gray otherwise. Open Aspects are rendered as ovals. If an open aspect was changed, its
boundary appears as azigzag line.

4.2. Additive Changesto the Base

In Fig. 13 we demonstrate composition adaptation with respect to additive changes to the base system. In part (b) an open
aspect gets applied to the system depicted in part (a) of Fig. 12.

0 ] D 0 D
I I
EE | [HES]

%ﬁ”ﬁ //%/ﬁ By
e D 0 D o] @
/JDI% pm 5 o

Z

Fig. 13. Additive changes to the base

This application affects one module (the second box from the left) as well as part of the platform. Note that the effect of an
open aspect to the platform itself is only shown to emphasize that Open Aspects can be applied to the platform itself as well
and are not limited the user-supplied modules. Part (c) presents an additive change to be dealt with by our Open Aspects
infrastructure. Here a third component is put on our platform, with an open aspect aready installed. Parts (d) to (g) illustrate
how the system might respond to such change according to the adaptation model associated with the open aspect applied.

In (d), we can see the most simple of al adaptation strategies in action: Mone/indifferentOwhich leaves the system as i,
without taking any corrective action. Note that in this case the same behavior can be observed if there is an adaptation strategy
applied other than Gonelindifferent® but that under the given circumstance the adaptation model does not require any
corrective action to be taken. In (e), the newly added component requires some aspect-related composition and is adjusted
accordingly. An adaptation mode requiring a @artial or full reinstallOcould have instigated this behavior. The effect of
executing a Gull withdrawal Ocan be seen in part (f). Part (g) shows that the Open Aspects infrastructure might as well refuse
the addition of further componentsif required by an adaptation model.

4.3. Subtractive Changes to the Base

In Fig. 14 we explain composition adaptation in response to subtractive changes to the base system.

16



Robert Hirschfeld and Stefan Hanenberg ©Open Aspects

0 i o
| |EREE D EEE

| |
(] D (1] (]
Dﬁ EE
%_‘%% oo E = ] 2_

Fig. 14. Subtractive changes to the base

In (h) we start from asituation in which an open aspect applied to our system affects two of its three modules. We are now
going to remove one module, as show in part (i). Parts (j) to (m) illustrate how the system might respond to such subtractive
change according to the adaptation model associated with the open aspect applied.

In (j), the system isleft asis, without taking any corrective action as a result of a @ong/indifferentOadaptation strategy. In
(k) the removed component will be freed from al compositions by the applied Open Aspects that were effective previoudy.
This, for example, can be the result of a Qartial withdrawalGor a Gull reinstallO Reverting a removed module to the form it
was in previoudly to its addition to the system can be of interest to modules that have to be moved to storage or into another
execution context such as another system to enable a defined launch thereafter. The effect of executing a Gull withdrawal Gas
response to the subtractive change can be seen in part (I). Part (m) shows that the Open Aspects infrastructure might as well
refuse the further removal of componentsif required by an adaptation model.

4.4. Aspect Changes (Pointcut and Advice)

In Fig. 15 we show how changes to an open aspect itself might affect all compositions originated by this aspect so far,
according to the adaptation model associated with the open aspect installed. The aspect installed in (n) affects two of the three
modules available on our platform. What happens to the system if this aspect (some or all of the advice code associated with
it, or some or al pointcuts associated with its pieces of advice) is changed as indicated in (0)? Parts (p) to (s) describe
corrective actions that could be taken to address such change to an open aspect.

Fig. 15. Changes to the aspect itself

17



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

In (p), no corrective action is taken at al, leaving our system in the composition state as observed before the change to the
open aspect. In (q), several possible combinations of changes are implied to the modules or the platform as a result of a
GQartial withdrawal® or @artial or full reinstallOif required by the adaptation model associated with the changed aspect.
Similar to additive or subtractive changes to the base system, changes to an open aspect might result to either a Gull
withdrawal Q(r) or the refusal of the changeitsdlf (s).

5. Implementation

5.1. AspectS

AspectS extends Squeak to alow for experimental aspect-oriented system development. Its god is to provide a platform
for the exploration of dynamic late-bound aspect-oriented software composition. It employs coordinated meta-level
programming to address the tangled code phenomenon. AspectS shows great flexibility by not relying on code
transformations, but by making use of metaobject composition instead. AspectS provides a framework for developers to
construct the proper runtime structure of aspect instances. Once instantiated, an aspect instance refers to its associated advice
objects that maintain al information about what additional code (Computation, an instance of BlockContext) has to be
performed where (Pointcut, an instance of BlockContext, to compute all shadow join-points to instrument) and when
(described via AdviceQualifier attributes).

Q ref [n] =© ref [n] =@ ref [n] > Q

Aspect Advice Pointcut JoinPointDescriptor

(BlockContext)
ref [n] ref [n]\ _ref[1] ref [1] ref [1]

@ O O O

Computation AdviceQualifier Receiver's Class Selector

(BlockContext) /Class) (Symbol)
\\l ref[1]

[ Weaver ]

ref[1]

- ref [n] o l . ref [n]
(w) ON O

Activator MethodWrapper MethodDictionary
(BlockContext)

Fig. 16. Weaving in AspectS

Weaving or unweaving happens every time an install or uninstall message is sent to a respective aspect instance.
Installation causes the pointcut computation to be executed returning a set of join-point descriptors indicating locations in the
system structure to be affected. Then for each join-point descriptor the weaver creates an appropriate method wrapper [4]
instance matching the advice type. Each such wrapper is then configured with the actual advice code as well as one or many
so-called activation blocks. Activation blocks are selected according to advice qualifier attributes provided by the developers.
They perform residual runtime tests deciding if the advice code a join-point shadow was instrumented with is going to be
executed or not. Fig. 16 shows both the metaobject structure created by programmers using the A spectS framework, as well as
the metaobject structure constructed or affected by the weaver when installing or uninstalling an aspect. Note that the latter
object structure is based on the former.

5.2. OpenAspectS Extensions
OpenAspectS is our prototypical implementation of Open Aspects. It isan extension to AspectS. OpenAspectS is based on
Squesk version 3.6 and AspectS version 0.5.4. OpenAspectS extends AspectSObasic runtime structure as shown in Fig. 17.

We added an active pointcut (ActivePointcut) system element associated with each advice. An active pointcut object records
the set of al join-point descriptors that were associated with that aspect when the installed aspect was woven into the system.

18



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

This set of join-point shadows is obtained by executing the pointcut expression (Pointcut) associated the respective advice, as
described above.

In OpenAspectS, we added adaptation strategies (AdaptationStrategy) to advice quaifiers (AdviceQualifier)
implementing corrective actions to be taken in the presence of change relevant to a particular advice or its associated aspect.
In our current implementation we provide the following adaptation strategy examples:

None/indifferent (viathe #indifferent advice qualifier adaptation attribute)

Full reinstal (viathe #reinstall A spect advice qualifier adaptation attribute)

Partial reinstall (viathe #reinstall Advice advice qualifier adaptation attribute)
Partial withdrawal (viathe#withdrawAdvice advice qualifier adaptation attribute)
Full withdrawal (viathe #withdrawA spect advice qualifier adaptation attribute)

K K K K K

The extended advice qualifier allows usto explicitly associate adaptation strategies with advice and aspects.

Q ref [n] ‘O ref [1] =@ ref [n] » O

Aspect Advice Pointcut JoinPointDescriptor
(BlockContext)

ref[1] ref [n] ref [n] ref[1]

@) —==—@) O

MethodWrapper Computation AdviceQualifier
(BlockContext)

Fig. 17. OpenAspectS runtime structure extensions

According to the specified adaptation attributes, the weaver selects the appropriate adaptation strategies and initiates the
registration of the aspect or advice instance with the change notification infrastructure.

5.3. Changes and Relevance Checks

In order to make Open Aspects aware of system change events of interest, we extended Squeak@ base to provide us with
change notifications for each change to a class or its methods. We modified Squesk to provide proper system change events,
as well as with a single point of registration for such notifications. System change notifications are now supplied for each
addition, transformation, or removal of individua classes or methods, similar to the dependent maintenance protocol of the
CLOS Metaobject Protocol (MOP, [17]). Furthermore we provide such notifications right before and right after one of the
aforementioned changes are carried out by the system. This gives us more flexibility and more accuracy in selecting suitable
corrective actions.

We implemented a mechanism to determine if a change to the system indicated by a system change event is relevant to an
individua advice or aspect (Fig. 18).

19



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

O—2 O—"@—"—~0
Aspect Advice Pointcut JoinPointDescriptor
\ (BlockContext)
ref[1] ref [n] ref [n] ref{1]
@) () O ?
— i
MethodWrapper Computation AdviceQuialifier

{BlockContext)

&

Relevance check & 0 e
Initiation of
corrective actions

Fig. 18. OpenAspectS change events and relevance checks

When an aspect and all of its advice is installed, each advice registers for system change events listed above. If thereisa
change event, an advice that expressed interest is informed (@). In response to that, the determination of relevance is started
(b). For this relevance check the pointcut expression is reevaluated (c). The newly computed result representing the set of
join-point shadows that would be provisioned if the aspects would be installed now is then compared with the actual set of
join-point shadows (stored as active pointcut) the aspect was associated during its actual instalation (d). If the comparison
indicates that the two sets are different and the adaptation model requires a corrective action to be taken, a corresponding
adaptation strategy is selected and executed (€). Note that this is a simplified implementation to illustrate the basic flow of
events. More complex systems might demand more complex and sophisticated event subscription and distribution
mechanisms.

5.4. More Implementation Options

In another implementation we allowed the developer to explicitly associate change event types and corrective actions by
accepting pairs of change and action descriptors as adaptation attributes in advice qualifiers. Examples of such pairs are
#(changedAdvice fullReinstall), #(changedPointcut partialReinstall), and #(changedMethod indifferent). In our

current implementation we decided, for pragmatic reasons, to treat all change events evenly and because of that we allow only
action descriptors to be given as adaptation attributesin advice qualifiers.

6. Application

6.1. Starting Situation

Our Open Aspects example starts out similarly to the one described in section 2. This time we are utilizing the Open
Aspects platform as shown in our code example. The main difference for the programmer is the additional adaptations
attribute section for advice qualifiers.

In Fig. 19 we can see that the developer decided to let the advice being reinstalled in the event of a change to the base
system that extends to the span of this piece of advice (adviceMouseEnter).

20



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

MorphicMousingOpenAspect>>adviceMouseEnter

t BeforeAfterAdvice
qualifier: (AdviceQualifier
attributes: { #receiverClassSpecific. }
adaptations: { #reinstallAdvice.})
pointcut: [
Morph withAllSubclasses
select: [:m | mincludesSelector: #mouseEnter:]
thenCollect: [:m | AsJoinPointDescriptor
targetClass: m targetSelector: #mouseEnter:]]
beforeBlock: [:receiver :arguments :aspect :client |
Transcript show: "Enter*', arguments first printString]

Fig. 19. Example advice in OpenAspectS

Since the pointcut expressions of adviceMouseEnter (as seen in Figs. 3 and 19) and adviceMouselLeave are the same
as of MorphicMousingAspect, the activation of an instance of MorphicMousingOpenAspect instruments the same 41
locations in the image aswell (Fig. 20).

MorphicMousingOpenAspect Object
4
.~ Morph
AT
StringMorph WonderlandMorph
4 4 »
MenultemMorph WonderlandCameraMorph
A A

UpdatingMenultemMorph WonderlandStillCameraMorph
Fig. 20. Morph sub-hierarchy with installed open aspect

6.2. Changing the Base System

With an open aspect instance of MorphicMousingOpenAspect ingtalled in our system, adding the new class
MouseEnterLeaveMorph implementing mouseEnter: and mouselLeave: will change our system as shown in Fig. 21. Here
the part of the class hierarchy framed with abox labeled *previously* denotes the observable effect prior to Open Aspects.

Our reinstall-advice adaptation strategy, selected in our advice qudifier by providing the #reinstallAdvice adaptation
attribute, caused the Open Aspects environment to notice the addition of a new class, its having an effect to the pointcuts of
adviceMouseEnter and adviceMouselLeave of MorphicMousingOpenAspect. As a response to this change, the two
pointcut expressions are reevaluated and the pieces of advice associated with them are reinstalled.

Besides reacting properly on additive changes, transformative and subtractive changes need to be addressed appropriately

as well. In the following we show how the removal of methods and classes covered by the pointcuts of our installed aspect
instance of MorphicMousingOpenAspect can affect the aspect composition.

21



Robert Hirschfeld and Stefan Hanenberg ©Open Aspects

MorphicMousingOpenAspect (abjeci

.~ Morph w.__
oA » h

\

\

StringMorph WonderlandMorph MouseEﬁferEé'é'VeMorph
4 » 4 »

T ee- @B e D
*previously*

MenultemMorph WonderlandCameraMorph
A A

UpdatingMenultemMorph WonderlandStillCameraMorph
Fig. 21. Visualization of composition after class addition

MouseEnterLeaveMorph removeSelector: #handlesMouseOver:.
MouseEnterLeaveMorph removeSelector: #mouseEnter:.
MouseEnterLeaveMorph removeSelector: #mouselLeave:.

WonderlandCameraMorph removeSelector: #handlesMouseOver:.

WonderlandCameraMorph removeSelector: #mouseEnter:.
WonderlandCameraMorph removeSelector: #mouseLeave:.

Fig. 22. Code removing mouse enter and leave methods

In Fig. 22 we see code that removes the code to handle mouse-enter and mouse-leave events from the two classes
MouseEnterLeaveMorph and WonderlandCameraMorph. The resulting composition that is based on our reinstall-advice

adaptation policy isillustrated in Fig. 23.

® O

Object
4 h

MorphicMousingOpenAspect

StringMorph
PR

/
]

/ \

*previously*

MenultemMorph evi
(coincidence!)

O Q *previously*

UpdatingMenultemMorph WonderlandStillCameraMorph
Fig. 23. Visualization of composition after method removal

Because of the removal the set of join-point shadows to be instrumented by the instalation of the
MorphicMousingOpenAspect has changed. This change caused our adaptation strategy to reinstall our aspect that now does

not affect the aforementioned join-point shadows anymore.

22



Robert Hirschfeld and Stefan Hanenberg ©Open Aspects
6.3. Changing an Advice@ Pointcut

Changing an advice@ pointcut expression while instances of such aspect are active might also need to be addressed on a
case-by-case basis. If deliberately ignored or accidentally overlooked, the example of a changed pointcut, as listed in Fig. 7
can leave our system in astate displayed in Fig. 8

MorphicMousingOpenAspect (zbjAec‘S
: N
04 ¥ Worph % ButtonProperties
O R [N A
o -~ S A CS
o - 4 \ 1 / -
o ‘\ .
- v
o @
. B N
O O . ces Q *prewously*
StringMorph =, WonderlandMorph )
R 4 » 0 K
LR 7 \ L / .
o ! \ 7 \ .
.’ I \ .
S / \ ’, / .

R B cee % O T
: MenultemMorph WonderlandCameraMorph .
] s : A i

5 | : | /‘.
s,

*prewougry
UpdatmgMenuItemMorph WonderIandStlIICameraMorph
R P T

Fig. 24. Vlsuallzatlon of composmon after change to pointcut coverage

The selection of an indifferent adaptation strategy for an advice of an open aspect would have lead to the same result. An
adaptation strategy to reinstall dl affected pieces of advice or the aspect they are associated with yields the change of aspect
composition asillustrated in Fig. 24: Since mouseEnter: and mouselLeave: of Morph and WonderlandCameraMorph are
not covered by the new version of our pointcut expression anymore (as indicated by the missing dots that have marked them
previously), our aspect composition is revoked from there also

6.4. Changing an Aspect® Advice

MorphicMousingOpenAspect

ButtonProéerties
O O *previously*
StringMorph WonderlandMorph
[ »

WonderlairadCamera orph
PoA

MenultemMorph
A

|l 2l
Q *previously* Q

*previously *
UpdatingMenultemMorph WonderlandStillCameraMorph

Fig. 25. Visudization of composition after change to advice

23



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

Changing the advice code of a composed aspect might cause defective system behavior as well. If deliberately ignored or
accidentally overlooked, the example of changed advice code, as listed in Fig. 9, can leave our system in a state displayed in
Fig. 10. The sdlection of an indifferent adaptation strategy for an advice of an open aspect would have lead to the same result.

An adaptation strategy to reinstall all affected pieces of advice or the aspect they are associated with yields the change of
aspect composition as illustrated in Fig. 25. Since the before blocks of adviceMouseEnter and adviceMouselLeave were
changed, the composition of the two pieces of advice were adjusted as well to the new behavior (as indicated by the different
style of the border of the class symbols the composition is made effective).

7. Related Work

7.1. Load time weaving

Class loading in Java represents a simple form of open systems. Hence, if a system isdesigned in away that it uses classes
that are not known at compile-time then the underlying system is open. IMangler [18], Javassist [6], and EuLisp [5] are
systems that permit the adaptation of classes at runtime. Hence, it permits one to adapt system changes (namely the addition
of new classes to a running system). From the technica perspective, these systems would allow to build up an adaptation
model based on the loading-a-new-class system event. However, the possible actions of the adaptation model are quite
restricted due to the underlying language design: while the adaptation of the newly loaded classes can be easily achieved, the
deletion of adapted join point shadows is not possible for classes which are already instantiated.

7.2. Dynamic Weaving via Interpretation

There are already a number of systems that permit one to weave aspects dynamically based on the interpretation of the
underlying code base. The most often mentioned system is PROSE [23,24], which is based on the programming language
Java. It extends the underlying runtime system to invoke aspect-specific code when a certain join-point is reached by utilizing
break points of the Java debugging interface. On an abstract level, this means that specific events (for example method or
congtructor calls) are redirected: for agiven call it is checked to see whether aspect-specific code needs to be executed. From
that point of view, they potentially permit weaving to react on changes of the underlying system: changes of the base system
could be noted by having a corresponding join-point on the method that is responsible for the change. Due to the limitations of
Java in respect to changes of the underlying system, however, the problems that typicaly arise in open systems rarely occur
here: classes or single methods are not (or rarely) considered to change at runtime. In contrast to static weaving classes that
were not present at compile time, but which are dynamically loaded, may also be considered by woven aspects. An explicit
adaptation model as proposed in this paper isnot considered.

7.3. Dynamic Weaving via Adaptation

A number of systems achieve dynamic weaving via code adaptation. Systems like Steamloom [3], AspectS, or the
Selective Just-in-time Weaver [25] also permit dynamic weaving, but in contrast to the previously mentioned approach they
adapt the underlying code base. Although they technically work quite differently, they have one point in common: a one
point in time (when an aspect is woven) there is a computation that determines all join-point shadows [20] of a certain aspect
and adapts these join-point shadows in some way. Loading a new class to the system differs from the previous approach.
Loading a new class that was not available when the pointcut computation was done would not be considered by the
corresponding aspects. Hence, such systems also suffer from the problem of open systems.

In AspectL [8], an aspect-oriented extension of CLOS [9], the concept of generic pointcuts is introduced that allow adding
methods on the one hand and aspect weavers on the other hand. Whenever a method is added to a generic pointcut, all aspect
weavers are triggered to generate new corresponding before/after/around methods. Likewise, whenever a new aspect weaver
is added, it is applied to each already existing method in that pointcut. In AspectL, aspect weavers are not declarative but
operational, making it necessary to use functions of the CLOS MOP [17]. AspectL does not provide a declarative pointcut
language. In other words, AspectL provides some basic machinery to keep aspects and base code in sync, which can be
understood as afirst step towards Open A spects, but does not provide a full-fledged solution as described in this paper.

24



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

In AspectS weaving is achieved by instrumentation of instances residing in the Smalltalk meta-object structure. Since this
structure changes permanently during development and runtime, the problem addressed by Open Aspects occurs frequently.
However, previous versions of AspectS did not take these problems into account.

7.4. Continuous Weaving

Morphing aspects as described in [11] permit one to weave aspects depending on the application® behavior. In particular,
an aspect does not adapt all join-point shadows [20] where aspect-specific behavior is potentially needed upfront, but adapts a
minimal set of join-point shadows. Additionally, it provides a computation strategy that describes how and when additional
join-point shadows need to be adapted. As a consequence, weaving is not performed in a single step, but continuously during
an application® runtime. However, the problem of changes in an open system is not addressed by morphing aspects: the
adapted join-points where additional weaving needs to be performed are join-points of the underlying application, and not
join-points of the underlying system. For example, the creation or deletion of a class is not considered as a join-point of
Morphing Aspectsin [11].

7.5. Incremental Weaving

As a generd-purpose AOP extension to IBM VisualAge for Smalltalk, Apostle [1,2] offers an incremental weaving
mechanism to make the development of aspects fit better into the interactive and exploratory development approach of
Smalltalk. It alows code to be added or modified over time. Changes affecting aspect compositions cause the weaver to
incrementally adjust these compositions. Its incremental weaver, however, does not alow one to modify its behavior but
reacts to changes always the same way .

7.6. Consistency Maintenance

SmartTalk [21] implements the ability to keep the evolution of classes consistent with specified contracts related to
subclassing semantics, base module properties, and the protection of implementation internals. In SmartTak class changes are
monitored and potential conflict situations such as accidental method capture or inconsistent methods are detected. Then,
classes responsible for a particular conflict situation are informed, and automatic transformations handling such conflict are
processed. Similar to Open Aspects, this approach is concerned with consistency in an open environment. Both SmartTalk and
Open Aspects address changes to the underlying system in order to deal with inconsistencies. While SmartTak is only
concerned with changes to the bases system but not the transformations, Open Aspects deals with changes to both the base
and the transformation system.

8. Summary and Conclusion

In this paper we identify the need to handle the weaving of aspects in open systems, that is to say systems that are
intentionally designed to change at runtime, in a specid way: it is necessary that the developer specifies how aspect
compositions are to be maintained if changes to the system might affect them.

Open Aspects allow a system to respond to system change events appropriately by providing adaptation models.
Adaptation models explicitly associate such change events with corrective actions to be taken in the event of change Bchange
to the base system or to aspect compositions themselves. Additive, transformative, and subtractive changes to regular objects
and aspects with their methods, fields, pieces of advice, and pointcuts are deat with based on dynamic conditional weaving.

Open Aspects can be applied by developers and maintainers to make changes and their effects to pointcuts, aspects, pieces
of advice, and the compositionsObase system visible. They help to indicate inconsistencies between intended and actual
compositions over time and provide meansto take corrective actionsif desired and necessary.

OpenAspectS is our implementation of Open Aspects in Squesk/Smalltalk. It extends AspectSOruntime structure to

become aware of system changes and to perform relevance checks upon which it is decided if a particular change needs to be
addressed by an adaptation strategy or not at all.

25



Robert Hirschfeld and Stefan Hanenberg B Open Aspects

9. Acknowledgements

We would like to thank Alexandre Bergel, Gilad Bracha, Pascal Costanza, Stephane Ducasse, Jeff Eastman, Erik Erngt,
and Dave Thomas for their valuable discussions and contributions.

References

[1] B.de Alwis. Aspects of Incremental Programming. Master's Thesis, University of British Columbia, VVancouver, Canada, 2002.

[2] B.deAlwisand G. Kiczales. Apostle: A Smple Incremental Weaver for a Dynamic Aspect Language. Technical Report TR-2003-16,
Department of Computer Science, University of British Columbia, Vancouver, Canada, 2003.

[3] C.Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual Machine Support for Dynamic Join Points. In Proceedings of the
Conference on Aspect-Oriented Software Development (AOSD), pp. 83-92, ACM Press, Lancaster, UK, March 22-26, 2004.

[4] J. Brant, B. Foote, R.E. Johnson, and D. Roberts. Wrappers to the Rescue, In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), pp. 396-417, LNCS 1445, Springer, 1998.

[5] H.Bretthauer and J. Kopp. Balancing the EuLisp Metaobject Protocol. In Proceedings of the International Workshop on New Models for
Software Architecture, Tokyo, Japan, 1992.

[6] S.Chiba Load-time Structural Reflection in Java. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), pp. 313-336, LNCS 1850, Springer, 2000.

[7] ChiMu Corporation. Java and Smalltalk syntax compared. (http://www.chimu.com/publications/JavaSmalltalk Syntax.html) 2000.

[8] P.Costanza. A Short Overview of AspectL. In Proceedings of the European Interactive Workshop on Aspectsin Software (EIWAS),
Berlin, Germany, September 23-24, 2004.

[9] R.Gabriel, J. White, and D. Bobrow. CLOS: Integrating Object-Oriented and Functional Programming. Communications of the ACM,
34(9), 1991, pp. 28-38.

[10] A. Goldberg and D. Robson. Smalltalk 80 B The Language and its Implementation. Addison-Wesley, 1983.

[11] S. Hanenberg, R. Hirschfeld, and R. Unland. Morphing Aspects: Incompletely Woven Aspects and Continuous Weaving. In Proceedings
of the Conference on Aspect-Oriented Software Development (AOSD), pp. 46-55, ACM Press, Lancaster, UK, March 22-26, 2004.

[12] R. Hirschfeld. AspectS B Aspect-Oriented Programming with Squeak. In M. Aksit, M. Mezini, R. Unland, editors, Objects, Components,
Architectures, Services, and Applications for a Networked World, pp. 216-232, LNCS 2591, Springer, 2003.

[13] R. Hirschfeld and K. Kawamura. Dynamic Service Adaptation. In Proceedings of the ICDCS2004 Workshop on Distributed Auto-
adaptive and Reconfigurable Systems (DARES), pp. 290-297, IEEE Press, Tokyo, Japan, March 23-24, 2004.

[14] R. Hirschfeld, K. Kawamura, and H. Berndt. Dynamic Service Adaptation for Runtime System Extensions. In R. Battiti, R. 1o Cigno, M.
Conti, editors, Wireless On-Demand Network Systems, Proceedings of WONS2004, LNCS 2928, pp. 225-238, Springer 2004.

[15] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to the Future: The Story of Squeak, A Practical Smalltalk Written in
Itself. In Proceedings of the Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA), pp. 318-
326, ACM Press, Atlanta, GA, USA, October 5-9, 1997.

[16] K. Kawamura, J. Hamard, R. Hirschfeld, and A. Minokuchi, and B. Souville. Sustainable Evolutionary Systems. In NTT DoCoMo
Technical Journal, vol. 6, no. 1, pp. 14-19, June 2004 (Japanese version appeared in NTT DoCoMo Technical Journal, vol. 12, no. 1, pp.
15-19, April 2004).

[17] G. Kiczales, J. des Rivieres, and D.G. Bobrow. The Art of the Metaobject Protocol. Addison-Wesley, 1991.

[18] G. Kniesel, P. Costanza, and M. Austermann. IMangler DA Powerful Back-End for Aspect-Oriented Programming, In R. Filman, T.
Elrad, D. Clarke, M. Aksit (eds.). Aspect-Oriented Software Development, Prentice Hall, 2004.

[19] R.LSmmel. A Semantical Approach to Method-Cal Interception. In Proceedings of the Conference on Aspect-Oriented Software
Development (AOSD), pp. 41-55, ACM Press, Enschede, The Netherlands, April 22-26, 2002.

[20] H. Masuhara, G. Kiczales, and C. Dutchyn. A Compilation and Optimization Model for Aspect-Oriented Programs, In Proceedings of
Compiler Construction (CC), pp. 46-60, LNCS 2622, Springer, 2003.

[21] M. Mezini. Maintaining the Consistency of Class Libraries During Their Evolution. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA), pp. 1-22, ACM Press, Atlanta, GA, USA, October 5-9, 1997.

[22] R. Pawlack, L. Seinturier, L. Duchien, and G. Florin. JAC: A Flexible Solution for Aspect-Oriented Programming in Java. In
Proceedings of Reflection 2001, pp 1-24, LNCS2192, Springer, 2001.

[23] A. Popovici, Th. Gross, and G. Alonso. Dynamic Weaving for Aspect-Oriented Programming. In Proceedings of the Conference on
Aspect-Oriented Software Development (AOSD), pp. 141-147, ACM Press, Enschede, The Netherlands, April 22-26, 2002.

[24] A. Popovici, Th. Gross, and G. Alonso. Just in Time Aspects. In Proceedings of the Conference on Aspect-Oriented Software
Development (AOSD), pp.100-109, ACM Press, Boston, MA, United States, March 17-21, 2003.

[25] Y. Sato, S. Chiba, and M. Tatsubori. A Selective, Just-In-Time Aspect Weaver, In Proceedings of the Conference on Generative
Programming and Component Engineering (GPCE), pp. 189-208, LNCS 2830, Springer, 2003.

26



Towards
UnibPedAspect-Oriented Programming

Noury Bouraqadi Abdelhak Seriai Gabriel Leblanc

{bouraqadi, seriai} @ensm-douai.fr
Ecole des Mines de Douai - Dépt. G.I.P.
941, rue Charles Bourseul - B.P. 10838

59508 Douai Cedex - France

Abstract

Aspect-Oriented Programming (AOP) is a paradigm that aims at improving software mod-
ularization. Indeed, aspects are yet another dimension for structuring applications. The no-
tion of aspect refers to any crosscutting property. Such crosscutting can be either dynamic
or static. Dynamic crosscutting refers to applications execution flow. While, static cross-
cutting refers to applications structure. Although many AOP approaches does enable these
two kinds of crosscutting, this support is not always satisfactory. Aspects code is complex
and often requires different constructs for expressing static and dynamic crosscutting. We
present in this paper the foundation for an AOP platform that unifies the description of both
kinds of crosscuttings. This solution relies on reflection and mixin-based inheritance.

Key words: aspect-oriented programming, static crosscutting, dynamic crosscutting,
reflection, mixin-based inheritance

1 Intr oduction

Aspect-Oriented Programming (AOP) [15,10,11] is among key post-object paradigms
that appeared during the last decade. This programming approach supports separa-
tion of concerns. Building an application using the AOP approach leads to defining
on the one hand one application core, and on the other hand an arbitrary number of
aspects. Application core is usually a set of classes. Aspects are concerns that cross-
cut application core. Aspects are not only separated from application core, they are
also isolated one from the other. Hence, AOP promotes modularization. Devel-
opment responsibilities of aspects and application core can be dispatched among
members of a project team. Once all modules (aspects and application core) are
ready, the full application can be “integrated” through the process of weaving.

ESUG 2005 International Smalltalk Conference August 2005, Brussels, Belgium



The notion of aspect refers to any property crosscutting a software. Such crosscut-
ting can be either dynamic or static [16].

Dynamic crosscutting: A crosscutting is said to be dynamic if it affects applica-
tions behavior, i.e. execution flow. The implementation of dynamic crosscuttings
relies on the concepts of pointcuts (set of points within the execution flow) and
advices (blocks of code to evaluate at some points of the execution flow).

Static crosscutting: A crosscutting is said to be static if it affects applications
structure. The implementation of static crosscuttings relies on introductions of
new building blocks (e.g. classes, methods, instance variables) and restructuring
their relationships (e.g. inheritance).

Diary Event

Organizaion

1
1
employee
1
*

Person *

subordinate
1 | head
Supervisor

Fig. 1. Distributed Diary System Core

We illustrate these two of aspects using an example of a distributed diary system.
Application core for this system is a set of classes describing employees, organiza-
tion, diaries and events (see figure 1). This system can have different aspects. We
present in the following two of them: log which illustrate dynamic crosscutting and
absence management which illustrate static crosscutting.

The log aspect displays on a console traces describing system’s activity. So, logs
can be produced on the addition a new employee to the organization or events
addition/removal to/from diaries. Log is a typical aspect with dynamic crosscutting.
Trace production is triggered by the application execution. If no execution happens,
the log aspect computations (i.e. logging) isn’t performed. This is often the case of
“infrastructure oriented” aspects.

The absence management aspect deals with employees vacations. Each person has
a certain amount of available vacation days and can request vacations. Vacation re-
quests has to be validated by the requester’s boss before a new event is added to
the requester’s diary. Storing available vacation days requires a new instance vari-
able to be inserted into the Person class. Handling requests and updating available
vacation days count requires new methods to be inserted in classes Person and
Supervisor. Absence management is a typical aspect with static crosscutting. It
extends existing classes with new instance variables and methods. This is often the
case of “business oriented” aspects.

Among existing AOP approaches, some does support only one kind of crosscut-

28



ting [7,2,8,9,19]. Others [16,13,21] do support both static and dynamic crosscut-
tings. But, these platforms lead quickly to complex code, even for simple aspects.
And, often aspects definitions are non uniform: different constructs are used for
expressing code introductions and advices. This is particularly true for AspectJ the
most popular AOP language, as we show in section 2.1.

In this paper, we setup the foundations for a platform that unifies the program-
ming of crosscuttings should they be static or dynamic. We use reflection [23,18]
and mixin-based inheritance [6] to extend an object-oriented platform in order to
supports AOP. No new language construct is needed, and only a minimal set of con-
cepts is introduced and applied uniformly to express both static and dynamic cross-
cutting. We believe that this platform provides simplicity and uniformity, without
scarifying expressiveness. Implementations of simple aspects remain simple, and
those of complex aspects are still possible.

Reflection is the ability of a system to reason on and to act upon itself. In the context
of programming languages, reflection provides developers with two programming
levels: a base-level and a meta-level. The base-level is where applications building
blocks (i.e. structure) are defined. The meta-level is where applications semantics
(i.e. behavior) is defined. Programming within both base- and meta-levels is uni-
form since it relies on the same constructs in a reflective language.

Having access to applications structure and behavior is not enough to define as-
pects. Applications need to be decomposed so that each aspect definition is iso-
lated and separated from the others. We use mixin-based inheritance to achieve
this separation. Mixin-based inheritance is an alternative to multiple-inheritance
which avoids automatic linearization issues. A mixin can be viewed as a subclass
parametrizable with its superclass. In the proposed solution, each aspect is defined
as a set of mixins. This description applies uniformly to express both static and
dynamic crosscuttings.

With our model, each class of the application core is linked to a meta-level class.
The process of weaving inserts mixins into class hierarchies. Mixins related to static
crosscuttings are inserted into the hierarchy of base-level classes. While, mixins re-
lated to dynamic crosscuttings are inserted into the hierarchy of meta-level classes.

The remainder of this paper is organized as follows. Section 2 motivates the need
for a platform supporting the definition of both functional and non-functional as-
pects. This motivation is illustrated using a distributed diary example that will be
used throughout the paper. Then, foundations of unified AOP based on reflection
and mixin-based inheritance is described in section 3. Last, after discussion related
work in section 5, section 6 ends the article ends with concluding remarks and some
perspectives.

29



2 Motivation

In this section, we motivate the need of a unified AOP based on Aspect], the AOP
mainstream platform. This motivation is illustrated using the distributed diary ex-
ample exposed in the introduction. We show some limitations of Aspect] when it
comes to building reusable aspects with static and dynamic crosscutings, namely
the log aspect and the absence management aspect.

2.1 Some AspectJ Limitations

2.1.1 A First Absence Management Aspect

01: public aspect SimpleAbsenceManagement {
02: private int Person.vacationDaysCount;

03: public int Person.getVacationDaysCount(){
04: return this.vacationDaysCount;}

05: public void Person.setVacationDaysCount(int newVacationDaysCount){
06: this.vacationDaysCount = newVacationDaysCount;}

07: public String Person.toString(){
08: return QnAvailable Vacation Days = O+ this.getVacationDaysCount();}

09: public int Person.defaultVacationDaysCount(){
10: return 30;}

11: pointcut constructorExec(Person aPerson):
12: execution(Person.new(String, String)) && target(aPerson);

13: after(Person aPerson): constructorExec(aPerson){
14: aPerson.setVacationDaysCount(aPerson.defaultVacationDaysCount()); }

Fig. 2. A simple implementation of the absence management aspect in Aspect]

Figure 2 gives a first version! of the absence management aspect in AspectJ. This
aspect is not reusable since it directly refers to application core class Person. In-
deed, a new field named vacationDaysCount is introduced in class Person for
counting available vacation days. This vacation days counter is used for vacation
requests (not shown on figure 2) and also for the string describing person returned
by the toString() method.

1 'We provide here only part of the actual code of the aspect.

30



In order to initialize the counter, the only possibility is to use an advice (lines 13
and 14) that acts after the execution of the constructor of class Person (lines 11 and
12). Figure 3 provides a simple program using the classes Person and Supervisor
after weaving the SimpleAbsenceManagement aspect.

Evaluated Code
Supervisor chief = new Supervisor("Bart", "Simpson");
Person joe = new Person("Joe", "Dalton");
joe.setBoss(chief);
System.out.println("---println(joe)---\n" + joe);
System.out.println("---println(chief)---\n" + chief);
ConsoleDisplay

—-—-println(joe)----

Available Vacation Days = 30
——-println(chief)---
Available Vacation Days = 30

Boss of 1 person(s)

Fig. 3. A code evaluated and its result after weaving the SimpleAbsenceManagement
aspect

In this example, we can see different limitations of Aspect]. First, a simple exten-
sion of an existing code can lead to somewhat complex code. This is the case with
the initialization of the vacationDaysCount field. Such initialization which sim-
ply requires extending an existing constructor is actually performed using a rather
“unnatural” code based on a pointcut and an advice.

Another problem can arise on evolution. Suppose we add a toString() method into
the Person class definition. In this case, Aspect] fails weaving the SimpleAb-
senceManagement aspect and reports a conflict. The only solution to this con-
flict is to replace the defintion of toString() method provided by the aspect with
pointcut and advice constructs (see figure 4). Note that the within(Person) con-
dition in the pointcut description ensures that the advice is performed only once:
for the toString() method defined within the Person class. Otherwise, the advice
would be performed twice for instances of the Supervisor class, since this latter
does redefine the toString() method and does and super send.

1: pointcut toStringExec(Person aPerson):
2: execution(String Person.toString()) && target(aPerson) && within(Person);

3: String around(Person aPerson): toStringExec(aPerson){

4: String initialString = proceed(aPerson);

5: return initialString +

6: QnAvailable Vacation Days = O+ aPerson.getVacationDaysCount();}

Fig. 4. Replacement of the toString() method definition with a pointcut and an advice in
the SimpleAbsenceManagement aspect

31



A similar problem arise when two aspects introduce methods with the same signa-
ture in the same class. In this case, weaving fails and one needs to rewrite at least
one of the two aspects and replace method introduction with statements based on
the pointcut and advice constructs.

Note that Aspect] weaver does handle the case of homonymous fields. Fields scopes
are restricted to aspects where they are defined. For example, let Al and A2 two
aspects that introduce within the same class fields of the same name. Methods in-
troduced in Al will access the field introduced in Al. And methods introduced in
A2 will access the field introduced in A2. The same solution applies if an aspect
introduces a field with a name already used in core application code. Although this
solution is convenient for most cases, sometimes one may want to merge such fields
in order to share data.

Last, we can note that using Aspect] one can easily end up “hardwiring” aspect
definitions to a particular application. This is the case of the SimpleAbsenceM-
anagement which explicitly refer to the Person class. In the following, we’ll see
that disciplined programming can avoid this pitfall and enable aspect reuse. How-
ever, we’ll face other limitations.

2.1.2 A Reusbale Absence Management Aspect

Figure 5 provides the definition of a reusable absence management aspect? in As-
pect]. Actually, there are two aspects. The first one AbsenceManagement (lines
1 to 15) is reusable cause not bound to any application code. The second aspect
AbsenceManagementlimpl (lines 16 and 17) extends the former with links to the
core application code.

The AbsenceManagement introduces an new “marker” interface named AbsenceRequestor
(line 2). All classes which implement this interface will be extended with members

introduced in lines 3 to 10. The actual class which is extended this way is Person

which is referenced in AbsenceManagementimpl (line 17). The Person class is

linked to the marker interface AbsenceRequestor using the “declare parents”

statement.

The use of a marker interface has a consequence on the pointcut declaration which
enables the initialization of the vacationDaysCount field (lines 11 to 13). Be-
cause interfaces does not hold constructors, the execution statement should refer
to constructors of classes implementing the interface. This is what the “+” refers
to in the expression execution(AbsenceRequestor+.new(..)). However, this def-
inition covers not only classes directly implementing the interface (Person in our
example), but also their subclasses (Supervisor in our example). In order to avoid
executing the advice twice, we need to complexify a bit more the pointcut decla-

2 We provide here only part of the actual code of the aspect.

32



01: public abstract aspect AbsenceManagement {
02: public interface AbsenceRequestor {}
03: private int AbsenceRequestor.vacationDaysCount;

04: public int AbsenceRequestor.getVacationDaysCount(){
05: return this.vacationDaysCount;}

06: public void AbsenceRequestor.setVacationDaysCount(int newCount){
07: this.vacationDaysCount = newCount;}

08: public int AbsenceRequestor.defaultVacationDaysCount(){return 30;}

09: public String AbsenceRequestor.toString(){
10: return OAailable Vacation Days = O+ this.getVacationDaysCount();}

11: pointcut constructorExec(AbsenceRequestor requestor):
12: execution(AbsenceRequestor+.new(..)) && target(requestor) &&
13. !cRowbelow(execution(AbsenceRequestor+.new(..)));

14: after(AbsenceRequestor requestor): constructorExec(requestor){
15: requestor.setVacationDaysCount(requestor.defaultVacationDaysCount()); }

16: public aspect AbsenceManagementimpl extends AbsenceManagement{
17: declare parents : Person implements AbsenceRequestor;

Fig. 5. A reusable implementation of the absence management aspect in Aspect]

ration. This is what is stated by line 13. Note however, that we don’t get exactly
the behavior provided in figure 2 (page 30). Indeed, with the reusable definition
of the absence management aspect (introduced in this section), the initialization
for instances of class Supervisor (subclass of Person) is done after all construc-
tors (defined in classes Supervisor and Person) are executed. While in the non-
reusable definition of the aspect (introduced in section 2.1.1 page 30), the advice is
done right after the execution of the constructor of class Person.

Another problem with the reusable definition of the AbsenceManagement as-
pect provided on figure 5 is caused by the introduction of new methods such as
toString() (lines 9 and 10). This extension performs well if the Person class does
not implement a method with the same signature. However, if Person does imple-
ment a such method, than the extension is simply ignored without warning. Sim-
ilarly two aspects introducing in a same class two methods with the same signa-
ture, the weaver does actually silently introduce only one methods without warn-
ing. Even if warnings were available, aspect integrators would have to change the

33



aspects definitions and hence loose part of the benefice of reuse.

1: pointcut toStringExec(AbsenceRequestor requestor):

2: execution(String AbsenceRequestor.toString()) &&

3: target(requestor) &&

4: IcRowbelow(execution(String AbsenceRequestor.toString()));

5: String around(AbsenceRequestor requestor): toStringExec(requestor){
6: String initialAnswer = proceed(requestor);

7. return initialAnswer + QnAvailable Vacation Days = O

8 + requestor.getVacationDaysCount(); }

/[Default method
9: public String AbsenceRequestor.toString(){return O®;

Fig. 6. Replacement of the toString() method definition with a pointcut and an advice in
the AbsenceManagement aspect

To avoid such problems, one should replace every method with pointcuts and ad-
vices. Figure 6 provides such rewriting for the toString() method. The pointcut
declaration captures the execution of method toString() by instances of classes im-
plementing the AbsenceRequestor interface. The !cl3owbelow(...) part of the
declaration avoids performing the advice twice when there are super.toString()
sends. However, the resulting semantics is a bit different from the one obtained
with the non-reusable version of the aspect (Figure 2 page 30). As shown by fig-
ure 7, the string corresponding to available vacation days is appended at the end
of supervisors descriptions. While in the non-reusable aspect definition (Figure 3
page 31) available vacation days string is inserted before the string providing the
number of subordinates.
Evaluated Code
Supervisor chief = new Supervisor("Bart", "Simpson");
Person joe = new Person("Joe", "Dalton");
joe.setBoss(chief);
System.out.println("---println(joe)---\n" + joe);
System.out.println("---println(chief)---\n" + chief);
ConsoleDisplay

—-—-println(joe)----
Available Vacation Days
——-println(chief)---
Boss of 1 person(s)
Available Vacation Days = 30

30

Fig. 7. A code evaluated and its result in the context of the reusable absence management
aspect

Yet another problem with Aspect] is that the code provided by figure 6 (page 34)
need to insert a default implementation of the toString() method (line 9). This def-
inition is useful for cases where the core application classes does not provide such

34



a method. When such method is available, the default implementation is simply
ignored. While the use of a default method implementation allows reusing the as-
pect in multiple applications providing or not the introduced method, it causes a
non resolvable conflict when two aspects provide two default implementations of
the same method. Indeed, the default method implementation is just a program-
ming style and the weaver is not aware of it. So, weaving fails, and application
integrators has to change one aspect and remove the corresponding default method
implementation.

2.1.3  Summary of AspectJ Limitations

To sum up, Aspect] has several limitations regarding a uniform description of
reusable aspects.

e Aspect] does not encourage reuse. Building reusable aspects mainly relies on
developers discipline.

e Aspect] introduces extra complexity for developers. They are offered two dif-
ferent sets of constructs for implementing cross-cutting code: inter-type dec-
larations for static cross-cutting, and pointcuts and advices for dynamic cross-
cutting.

e Reusable definitions of simple aspects is complex and unatural, since it requires
having for each introduced method an inter-type declaration with the default im-
plementation of the method, a pointcut declaration capturing a single execution
of the method and an advice performing the desired processing.

o It is difficult if not impossible to always get the desired semantics when building
reusable aspects.

e Itis not possible to build fully reusable aspect. Application integrator may always
face conflicts requiring modifying aspects code.

2.2  Problem Statement

Starting from Aspect] limitations, we list here issues that should be addressed by
an AOP platform allowing to build reusable aspects with both static and dynamic
crosscutting. Such platform should be easy to learn and use, especially when it
comes to maintain existing aspects. As proved by languages such as Self [24] and
Smalltalk [12], uniformity and simplicity can go along with the language expressive
power. We believe that this philosophy should be adopted in AOP platforms. Issues
to be addressed are the following:

ReusableAspects: An AOP platform should encourage building reusable aspects,
by encouraging decoupling aspect’s code from other applications parts.

Uniform Description of Crosscuttings: Having a small set of constructs uniformly
used to express both static and dynamic crosscuttings would ease the learning

35



and the understanding of aspects.

Uniform Conf3ict Management: Conflicts can occur between two static crosscut-
tings or two dynamic ones alike. Developers should be provided the same tools
to handle both of them.

Crosscuttingsinteractions: Dynamic crosscuttings should be able to alter the
whole application code including static crosscuttings.

3 Foundationsfor Unibed AOP

Our proposal to support unified AOP relies on reflection [23,18] and mixin-based
inheritance [6]. Starting from plain Smalltalk, we introduce a minimal set of con-
cepts and apply them uniformly to express both static and dynamic crosscutting. We
believe that with this platform provides simplicity and uniformity, without scarify-
ing expressiveness.

In this section, we first briefly remind reflection and mixin-based inheritance. We
then provide a description of aspects in a platform supporting unified AOP. Last we
describe the process of weaving aspects into application core.

3.1 Background: Reflection and Mixin-Based Inheritance

3.1.1 Reflection

Refection is the ability of a system to reason and to act upon itself. In the context of
object-oriented languages, reflection gives access to languages semantics. A reflec-
tive OO language provides programmers with two programming levels: base-level
and meta-level. The base-level includes all application objects (e.g. diary, person,
supervisor, ... ). The meta-level includes so-called meta-objects which are objects
describing the reflective language’s constructs (e.g. classes) and how programs are
evaluated (e.g. message dispatch).

We use in the reminder of this paper the Meta-Object Protocol (MOP) of Meta-
classTalk® [5,4], a reflective extension of Smalltalk. MetaclassTalk MOP allows

controlling objects creation and memory allocation, instance variable reads and
writes, message sends and receptions, and method lookup and evaluation.

3 http://csl.ensm-douai.fr/MetaclassTalk

36



3.1.2 Mixins

The concept of mixins has been introduced as an alternative to both single and
multiple inheritance. It provides more code sharing than allowed with single in-
heritance, while avoiding issues arising with multiple inheritance and its automatic
linearization. A mixin can be viewed as an abstract subclass parameterized with
its superclass. This parameterization allow using a same mixin in different class
hierarchies.

The mixin model we use in the reminder of this paper is inspired by the one intro-
duced in CLOS [14]. A class can have many superclasses (mixins or plain classes).
But, we go further than CLOS where mixin-based inheritance is just a programming
style. We constrain the model to allow only multiple inheritance of mixins [3,4]. A
subclass can inherit from an arbitrary number of mixins, but can have only one non-
mixin superclass. Linearization chain of a subclass starts with mixins in the order
provided in the subclass definition. The non-mixin superclass appears after mixins.
So, methods are looked up first in mixins and then in the non-mixin superclass.

3.2 Structure of Unified Aspects

Our proposal relies on using mixins to build unified aspects. A unified aspect is
a compound of: a Set of mixins, a pre-weaving script, and a post-weaving script.
Mixins provide descriptions of crosscutting code. While, pre-weaving and post-
weaving scripts are sequences of Smalltalk statements describing initialization op-
erations to be performed before and after weaving crosscutting code into applica-
tion core.

A crosscutting be it static or dynamic is implemented using a set of mixins. Mixins
describing static crosscuttings are aimed to be inserted (on weave-time) into base-
level class hierarchies. While, mixins describing dynamic corsscuttings are aimed
to be inserted (on weave-time) into meta-level class hierarchies.

Besides aspects, developers have also to provide application core. That is a set of
classes organized using composition and inheritance relationships. These classes
define basic structure and behavior of application objects. They do not hold any
instance variable or method related to any aspect.

3.3 Weaving Unified Aspects

As mentioned before, weaving relies on reflection, and mixin-based inheritance.
For every class A in application core, the weaver builds a meta-object class AMeta.
Each instance of A is controlled by an instance of AMeta. So, instances of AMeta

37



provide the semantics of behavior (message sends and receptions) and structure
(instance variables reads and writes) of instances of A. An application is obtained
once mixins provided by various aspects are linked through inheritance to appli-
cation core classes and corresponding meta-object classes. It worth noting that the
meta-object class hierarchy is parallel to the class one. So, given B a subclass of
A, BMeta the class of meta-objects of instances of B is built by the weaver as a
subclass of AMeta

Once the weaver creates meta-object classes, it repeats the four following steps for
every aspect.

(1) Provide a map stating which aspect’s mixins to link to which core application
classes. This step is necessary because the aspects’ definitions does not refer
to application core classes.

(2) Evaluate the current aspect’s pre-weaving script.

(3) Link the current aspect’s mixins to application core classes.

(4) Evaluate the current aspect’s post-weaving script.

Because of the use of mixin-based inheritance, the cross-cutting code remains iso-
lated from application core (though it is linked). Relying on Smalltalk dynamicity
our solution supports not only dynamic weaving, but also dynamic unweaving. To
complete this support, the structure of unified aspects includes also pre-weaving
and post-weaving scripts. The pre-weaving script is evaluated before unlinking
classes and mixins. The post-weaving script is evaluated after unlinking classes
and mixins.

Joint point are expressed using the map and the MOP. That is, joint point cover
class definitions, message sends and receptions, and instance variables reads and
writes.

3.4 Aspects Interactions and Conflicts

Aspects does not only alter the structure and behavior of the application core, they
also may affects each other execution. Consider an aspect Al that makes a core ap-
plication class C inherit from some mixin M1. Suppose also that we weave into this
application another aspect A2 that adds some other mixin M2 to the superclass list
of class CMetaObject, the class of meta-objects of instances of class C. Therefore,
the semantics of code introduced by the Al aspect using the M1 mixin is altered by
the A2 aspect which introduces the M2 mixin.

Conflicts may arise when two aspects link mixins with homonymous methods or
instance variables to a same class. Mixin-based inheritance provides us with a first
solution to this open issue. Indeed, developers can order mixins linked to each class.
Methods introduced in mixins appearing first in a class definition override homony-

38



mous methods defined in other mixins. This solution currently implemented in our
prototype is rather coarse grain and does not address the case of homonymous in-
stance variables. Van Limberghen and Mens [17] describe a solution that tackles
this problem.

Yet another cause of conflicts is having weaving scripts of different aspects perform
“contradictory” actions (e.g. setting some class variable to different values). We
address this issue by allowing developers choose aspects precedence as in Aspect].
That is, developers choose the order of weaving. However, the resolution of this
kind of conflicts deserves further investigations we defer to future work.

4 Examples

- ;p;m_n ______________ : Log Aspect Authentication Aspect

i . i

P =P Inherit from i <<mixin>> < <<mixin>>

: i : LoggerMeta AuthenticatedClientMeta
1 1

<<mixin>>
SecuredProviderMeta

DiaryMeta PersonMeta

Absence Management | | *
Aspect .
Application core ‘ I SupervisorMeta
| |
<<mixin>> - I i
AbsenceRequestor ~ Diary —\ |
o~~~ Person |
<<mixin>> —| |
AbsenceManager L_ Supervisor

Fig. 8. A Subset of the distributed diary system built with our solution

Figure 8 shows part of the distributed diary system built using our solution after
weaving 4. Application core includes various classes: Person, Supervisor, and
Diary. However, these classes does not define any instance variable or method re-
lated to aspects such as absence management, log or authentication.

4 The full code is available on-line at http://csl.ensm-douai.fr/MetaclassTalk

39



4.1 Example of static cross-cutting: the “absence management” aspect

The absence management aspect introduces two new roles: absenceRequester and
absenceManager. An absenceRequester is supposed to store an available vacation
days. It is also supposed to understand the requestVacation: message which ar-
gument is the vacation duration in days. As a response to this message an ab-
senceRequester checks if the duration is less than or equal to available vacation
days and then requests the confirmation of an absenceManager (message accept-
Vacation: duration for: anAbsenceRequester). When the absenceManager ac-
cepts the request, the absenceRequester decrements available vacation days counter
and inserts an event describing the absence into a diary.

Aspect subclass: #AbsenceManagementAspect
instanceVariableNames: '’

classVariableNames: '’

poolDictionaries: '’

category: 'Unified AOP-Diary Example-Aspects’.

AbsenceManagementAspect >> initialize
super initialize.
self addAllMixins: {AbsenceRequester. AbsenceManager}

Fig. 9. Definition of the “absence management” aspect

Each one of the above described roles is implemented using a mixin. So, mix-
ins AbsenceRequester and AbsenceManager define appropriate instance vari-
ables and methods for handling vacation requests. So, the description of the “ab-
sence management” aspect includes only these two mixins. Figure 9 shows that
this description consist in defining a class which instances have two mixins: Ab-
senceRequester and AbsenceManager. Pre-weaving and post-weaving scripts
are implemented as methods in the aspect’s class. Because here we don’t need any
special processing, we don’t override the existing empty implementations provided
by class Aspect. It worth noting that there is no direct reference to application core.
Therefore, this aspect can be reused in other applications.

| absenceAspect |

absenceAspect := AbsenceManagementAspect new.
absenceAspect map: AbsenceRequester to: Person.
absenceAspect map: AbsenceManager to: Supervisor.
absenceAspect weave.

Fig. 10. Weaving the “absence management” aspect

To weave the “absence management” into our application, we need first to map
each of its mixins to application core classes. In our implementation, an aspect is
but an object that can be parameterized with a map describing which mixins to link
to which application core classes (see figure 10). Then, by sending the weave mes-
sage to the aspect, the weaving is finished. First, pre-weaving script is performed.

40



Then, the AbsenceRequester mixin is added to the superclasses list of class Per-
son. Next, the AbsenceManager mixin is added to the superclasses list of class
Supervisor. Last, the post-weaving script is performed.

4.2  Example of dynamic cross-cutting: the authentication aspect

As mentionned above, an aspect definition can include mixins that can go either
to the base-level or to the meta-level. The “absence management” presented in
the previous subsection is an aspect which definition relies on mixins that are to
be linked to base-level classes. Here we present the “authentication” aspect which
implementation relies on changing the semantics of message dispatch. So, it defines
mixins that are to be linked to meta-object classes.

The authentication aspect introduces two roles: authenticatedClient and secured-
Provider. An authenticatedClient holds a login and a password that grant him ac-
cess to services of some securedProvider. So, when an authenticatedClient needs
to send some message to a securedProvider, authorizedClient first sends the pair
login and a password to the serviceProvider. A securedProvider accepts processing
only messages sent by client with valid login and password.

The authentication aspect implements these two roles using two meta-level mix-

ins AuthenticatedClientMeta and SecuredProviderMeta. Figure 11 provides the
actual code of these two mixins. We can see that mixin AuthenticatedClientMeta
extends the semantics of message sending. It overrides method send:from:to:arguments:
introduced in the MetaclassTalk MOP to perform first authentication before ac-
tually sending messages. Mixin SecuredProviderMeta extends the semantics of
message reception. It overrides method receive:from:to:arguments: introduced

in the MetaclassTalk MOP to actually perform received message from only authen-
ticated clients.

The obtained authentication aspect is reusable since it does not refer to any core
application class. Now, let see how to weave it. In our diary application accesses
to a given diary have to be restricted to only some persons (e.g. its owner). Hence,
instances of Person should be authenticated before message sends to instances of
Diary. And, instances of Diary should check authorizations on message receptions.
To get this behavior, we map mixin AuthenticatedClientMeta to class Person-
Meta and mixin SecuredProviderMeta to class DiaryMeta. After weaving we
get the mixins and meta-object classes linked.

Figure 12 provides an example showing how actually authentication is performed.
Every instance persl of class Person is linked to a meta-object pers1Meta in-
stance of PersonMeta. And, every instance diaryl of class Diary is linked to a
meta-object diarylMeta instance of DiaryMeta. When persl sends some mes-
sage, say addEvent:, to diary1, the message sending is intercepted by the perslMeta

41



Mixin named: #AuthenticatedClientMeta
instanceVariables: Ologipassword O
category: OUnipedOP-Diary Example-AspectsO.

AuthenticatedClientMetat ! login: loginString password: passwordString
login := loginString.
password := passwordString

AuthenticatedClient ! send: selector from: sender to: receiver arguments:
args

receiver metaObject authentify: sender login: login password: password.

"super send: selector from: sender to: receiver arguments: args

Mixin named: #SecuredProviderMeta
instanceVariables: OpaswordDict authenticatedClientsO
category: OUnipedOP-Diary Example-AspectsO.

SecuredProviderMeta ! initialize
super initialize.
passwordDict := Dictionary new.
authenticatedClients := Set new

SecuredProviderMeta ! authentify: client login: login password: tentativePass-
word

| actualPassword |

actualPassword := passwordDict at: login ifAbsent: [" self].

actualPassword = tentativePassword ifFalse: [* self].

authenticatedClients add: client

SecuredProviderMeta ! acceptMsg: selector from: sender to: receiver
"sender == receiver or: |
(authenticatedClients includes: sender)]

SecuredProviderMeta ! receive: selector from: sender to: receiver argu-
ments: args
(self acceptMsg: selector from: sender to: receiver) ifFalse: [
"self error: OAccessestrictedQ].
"super receive: selector from: sender to: receiver arguments: args

Fig. 11. Micxins for the “authentication” aspect

42



Authentication Aspect

<<mixin>> <<mixin>>
AuthenticatedClientMeta SecuredProviderMeta
login passwordDict
password authenticatedClients
send: selector from: sender to: receiver arguments: args authentify: client login: login password: password
receive: selector from: sender to: receiver arguments: args

MetaObject

send: selector from: sender to: receiver arguments: args

receive: selector from: sender to: receiver arguments: args
eritsfrom inher
PersonMeta DiaryMeta
diary1Meta

instance of
[] \

meta link | 1 send: #addEvent... \ meta link
4 perform: #addEvent... \

instance of

2 authentify: persl login:...

pers1Meta
instance of

3 receive: #addEvent...

instance of

addEvent: meeting

Fig. 12. Example of an authentication aspect in action

meta-object. This interception translates into a message send:. .. ® implicitly dis-
patched (i.e. by the reflective infrastructure) to pers1Meta (step 1). Arguments of
this message are informations about the addEvent: message (e.g. sender, receiver,
selector,. .. ). The meta-object perslMeta attempts to do authentication by sending
message authentify: persl login: loginOfPers1 password: passwordOfPersl
to diarylMeta, the meta-object of the receiver (step 2). Then, perslMeta deliv-
ers the addEvent: message to perform to diarylMeta (step 3). The diarylMeta
meta-object does check if the sender (i.e. persl) has been granted access. If persl
is not allowed to add an event to diaryl, an exception is thrown. Otherwiser, the
addEvent: message is performed by diaryl (step 4).

5 RelatedWork
5.1 Aspect]

Aspect] [16] mainly focuses on dynamic cross-cutting aspects. Nevertheless, using
inter-types declarations, it does support to some extent the definition of static cross-

® The actual selector of this method is send:from:to:arguments:superFlag:-
orginClass..

43



cutting. Indeed, AspectJ allows the introductions of methods and instance variables
into existing classes. However, no conflict support is provided when two aspects
requires the introduction of homonymous instance variables or methods in the same
classes.

Aspects reuse is also an issue with Aspect]. As demonstrated in section 2.1.2
(page 32) Aspect] does not encourage reuse. Building reusable aspects mainly re-
lies on developers discipline and results into complex code even for simple aspects.

Last, Aspect] is complex. Dynamic and static cross-cutings are defined using dif-
ferent language constructs.

5.2 Hyperl]

Hyper/J stemmed from work on Multi-Dimensional Separation of Concerns (MD-
SOC) [20]. It allows developers choose arbitrary dimensions to carve up and mod-
ularize applications. Every dimension is implemented as a set of classes. Com-
position rules allow developers express how to merge classes defined in different
dimensions.

Hyper/J shares with our work uniformly define aspects. However, our solution sup-
ports incremental dynamic weaving and unweaving. In Hyper/J weaving is a static
operation that relies on program transformation. No information about original di-
mensions are available in the resulting application.

5.3 AspectS

AspectS is a dynamic infrastructure supporting AOP in Smalltalk [13]. It allows
expressing uniformly both static and dynamic cross-cuttings. However, because
AspectS’ implementation relies on method wrappers, only cross-cuttings related to
message dispatch can be expressed. Accesses to existing instance variables can not
be captured.

Besides, new instance variables can not be introduced in application classes. Nev-
ertheless, aspects can hold dictionaries that associate state to application objects.
This solution has two limitations. Access to dictionaries is slow compared to direct
access to instance variables. And, the code of aspects holding such state is rather
complex.

44



5.4 ClassBoxes

ClassBoxes are modules allowing the definition of scopped class extensions [1].
They can be used to implement static cross-cutting [2].

This approach supports dynamic weaving/unweaving of aspects. Besides, visibility
control helps resolving some potential conflicts. However, the use of ClassBoxes to
implement dynamic cross-cutting is still to be studied.

5.5 Traits

Traits can be viewed as mixins without structure (no instance variables), but with
a powerful composition mechanism [22]. The trait model indeed provides differ-
ent operators to compose traits at methods granularity level. Developers can for
example hide or rename some trait’s method.

Traits can be used instead of mixins to implement unified aspects. Their compo-
sition operators can be helpful for solving conflicts among aspects. Moreover, the
absence of instance variables definitions in traits reduces conflicts. However, it also
restricts their expressive power.

6 Conclusionand Future Work

We described in this article foundations for a platform allowing a unified descrip-
tion of dynamic and static cross-cutting. To this end, we make use of mixins as
aspects building blocks. In this context, weaving relies on mixin-based inheritance
and reflection. Static cross-cutting is implemented using mixins that are inserted
into base-level class hierarchies by the weaver. While dynamic cross-cutting is im-
plemented using mixins are inserted into meta-level class hierarchies by the weaver.
This solution helps building reusable aspects since mixins can be easily imple-
mented without any connexion to application classes.

One possible perspective of this work is to improve conflict resolution support. Our
current solution mainly relies on explicit mixins linearization. Application devel-
opers can only reorder mixins linked to a given class. Granularity of aspect conflict
resolution can still be finer to allow even more conflicts resolutions. Traits com-
positional operators introduced by Schirli et al. [22] is a possible solution to deal
with conflicts at the method level. Another alternative is to use the mixin model
introduced Van Limberghen et al. [17] which provides operators to deal with both
methods and instance variables conflicts.

45



Reuse is yet another intersting direction to follow. In this paper, we mentioned
mixin reuse to build different aspects. We also, presented aspect reuse to build
different applications. A third possibility yet to explore is aspect reuse to build new
aspects out of existing ones.

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Classboxes: Controlling
visibility of class extensions. In Research Track of the ESUG 2004 Smalltalk
Conference, Kothen (Anhalt), Germany, September 2004. Selected for publication
in the special issue on Smalltalk Language of the Elsevier international journal
”Computer Languages, Systems and Structures” 2005.

Alexandre Bergel and Stphane Ducasse. Dynamically applying static aspects with
classboxes. Journes Francophones de la Programmation Par Aspects, JEDLPA 04,
2004.

N. Bouraqadi. Efficient support for mixin-based inheritance using metaclasses. In
Workshop on Reflectively Extensible Programming Languages and Systems at The
International Conference on Generative Programming and Component Engineering
(GPCE’03), Erfurt, Germany, September 2003.

N. Bouragadi. Metaclass composition using mixin-based inheritance. In Research
Track of the ESUG 2003 Smalltalk Conference, Bled, Slovenia, August 2003.
European Smalltalk Users Group (ESUG).

N. Bouraqadi and T. Ledoux. Aspect-Oriented Software Development, chapter 12 —
Supporting AOP using Reflection. Addison-Wesley, 2005.

Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings
of the European conference on object-oriented programming on Object-oriented
programming systems, languages, and applications, pages 303-311. ACM Press,
1990.

Richard Cardone and Calvin Lin. Using mixin technology to improve modularity. In
Filman et al. [11], pages 219-241.

Olivier Caron, Bernard Carre, Alexis Muller, and Gilles Vanwormhoudt. Mise en
oeuvre d’aspects fonctionnels rutilisables par adaptation. Journe Francophone sur le
Dveloppement de Logiciels Par Aspects, JEDLPA’04, September 2004.

Brian de Alwis and Georg Kiczales. Apostle: A simple incremental weaver for
a dynamic aspect language. Technical Report TR-2003-16, University of British
Columbia, Vancouver, Canada, March 2003.

[10] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming. Communications

of the ACM, 44(10):29-32, October 2001.

46



[11] Robert E. Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit, editors. Aspect-
Oriented Software Development. Addison-Wesley, Boston, 2005.

[12] Adele Goldberg and David Robson. Smalitalk 80, volume 1 — The Language and its
implementation. Addison-Wesley, 1983.

[13] Robert Hirschfeld. Aspects - aspect-oriented programming with squeak. In NODe
'02: Revised Papers from the International Conference NetObjectDays on Objects,
Components, Architectures, Services, and Applications for a Networked World, pages
216-232, London, UK, 2003. Springer-Verlag.

[14] Sonya E. Keene. Object-oriented programming in common lisp: A programmer’s
guide to clos. Addison-Wesley,Reading, Massachsetts, USA, 1989.

[15] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,
Loingtier Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akgit
and Satoshi Matsuoka, editors, ECOOP 97 — Object-Oriented Programming 11th
European Conference, Jyvdskyld, Finland, volume 1241 of Lecture Notes in Computer
Science, pages 220-242. Springer-Verlag, New York, NY, June 1997.

[16] Ramanivas Laddad. AspectJ in Action. Manning Publications Co., Grennwich, Conn.,
2003.

[17] Marc Van Limberghen and Tom Mens. Encapsulation and composition as orthogonal
operators on mixins: a solution to multiple inheritance problems. Object Oriented
Systems, 3:1-30, 1996.

[18] Pattie Maes. Concepts and Experiments in Computational Reflection. In Proceedings
of OOPSLA’87, pages 147-155, Orlando, Florida, 1987. ACM.

[19] Sean McDirmid and Wilson C. Hsieh. Aspect-oriented programming with jiazzi.
In AOSD ’03: Proceedings of the 2nd international conference on Aspect-oriented
software development, pages 70-79, New York, NY, USA, 2003. ACM Press.

[20] Harold Ossher and Peri Tarr. Using multidimensional separation of concerns to
(re)shape evolving software. Communications of the ACM, 44(10):44-50, October
2001.

[21] R. Pawlak, L. Duchien, G. Florin, and L. Seinturier. Jac: a flexible solution for aspect
oriented programming in java. In A. Yonezawa and S. Matsuoka, editors, Proceedings
of Reflection 2001, number 2192 in LNCS, pages 1-24, Kyoto, Japan, September
2001. Springer Verlag.

[22] Nathanael Schirli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits:
Composable units of behavior. In Proceedings ECOOP 2003, LNCS. Springer Verlag,
July 2003.

[23] Brian C. Smith. Reflection and Semantics in Lisp. In Proceedings of the 14th Annual
ACM Symposium on Principles of Programming Languages, POPL’84, pages 23-35,
Salt Lake City, Utah, USA, January 1984.

[24] David Ungar and Randall B. Smith. Self: The power of simplicity. In OOPSLA
'87: Conference proceedings on Object-oriented programming systems, languages
and applications, pages 227-242, New York, NY, USA, 1987. ACM Press.

47



48



Inter-Language Reflection

A Conceptual Model and Its Implementation

Kris Gybels @ Roel Wuyts ® Stéphane Ducasse ¢ Maja D’Hondt ¢

&Vrije Universiteit Brussel, Brussels, Belgium
bUniversité Libre de Bruxelles, Brussels, Belgium
¢University of Savoie, Annecy, France

dVrije Universiteit Brussel, Brussels, Belgium

Abstract

Meta programming is the act of reasoning about a computational system. For example, a
program in Prolog can reason about a program written in Smalltalk. Reflection is a more
powerful form of meta-programming where the same language is used to reason about,
and act upon, itself in a causally connected way. Thus on the one hand we have meta-
programming that allows different languages or paradigms to be used, but without causal
connection, while on the other hand we have reflection that offers causal connection but
only for a single language. This paper combines both and presents inter-language reflec-
tion that allows one language to reason about and change in a causally connected way
another language and vice-versa. The fundamental aspects of inter-language reflection and
the language symbiosis used therein, are discussed. Moreover the implementation of two
symbiotic reflective languages is discussed: Agora/Java and SOUL/Smalltalk.

Key words: Meta Programming, Reflection, Linguistic Symbiosis, Inter-Language
Reflection

1 Introduction

Software engineering practices often require tools that incorporate a form of meta
programming for extracting information from programs, checking them against a

Email addresses: Kris.Gybels@vub.ac.be (Kris Gybels),
Roel.Wuyts@ulb.ac.be (Roel Wuyts),
Stephane.Ducasse@univ-savoie. fr (Stéphane Ducasse),
Maja.D’Hondt@vub.ac.be (Maja D’Hondt).

ESUG2005InternationalSmalltalkConference August2005,BrusselsBelgium



certain specification or generating them. Examples abound such as tools for detect-
ing bad smells in programs to be refactored [1], checking the program’s confor-
mance with architectural restrictions [2], generating skeleton code for the imple-
mentation of design patterns or user interface elements [3], detecting the possible
types a variable can hold in programs written in a dynamically typed language [4]
and so on. In a meta-programming context, the base language is the language of
the computational system under analysis, whereas the meta language is the lan-
guage in which a representation of the base program is made available and which
is used to perform the analysis. The meta language does not necessarily have to
be the same as the base language. In fact, it has often been found that different
programming paradigms are more suitable for certain meta-programming activi-
ties than others. Several approaches exist where the base language is for example
a procedural or object-oriented one, while the meta language is based on a diffe-
rent paradigm: logic programming languages such as Prolog have been found to
be especially suitable for extracting information from programs [1] and expressing
constraints over a program’s structure [5,1,6,7], the well-known tool Lint that in-
corporates a regular-expressions-based language for encoding patterns of typically
problematic C code [8].

In the particular form of meta programming known as reflection, the base and meta
languages are the same [9,10,11]. This contrasts with the aforementioned observa-
tion that using different programming languages as base and meta languages can be
beneficial. A second crucial difference between reflection and meta programming
is that in the former the base program and its representation as data in the meta
program are causally connected [12,13]. This allows the meta program to also ma-
nipulate the elements of the base program that are made available to it, which could
be the base program’s source text, runtime stack, data structures in memory and
so on. When the meta program only inspects the base level elements, the system is
called introspective; when it also modifies them, it is called intercessory [11]. Since
in either case the base and meta programs are represented in the same language, the
base and meta programs can also be the same, allowing a program to manipulate
itself while it is running. Reflection is heavily relied upon in the self-extensible
software development systems of Smalltalk [14,15], Self [16] and CLOS [11].

This paper introduces inter-language reflection, a form of reflection between two
different languages, possibly of a different programming paradigm. Inter-language
reflection extends the causal connection property of reflection to hold between these
different languages. In addition to reflection, another fundamental ingredient of
inter-language reflection is linguistic symbiosis between the two languages. Lin-
guistic symbiosis enables the representation of data of one language in the other,
as well as the activation of behavior described in one language from the other. In
order to achieve these two elements, a data mapping and a protocol mapping need
to be devised between the two languages. A clean linguistic symbiosis between two
languages that each have traditional reflection, results in inter-language reflection,
where a program can be implemented in one language and still use the reflection

50



interface of the other language.

Inter-language reflection as presented in this paper is implemented in Agora [17]
and SOUL [18]. Agora is a prototype-based object-oriented language that has inter-
language reflection with Java, a class-based object-oriented language. This allows a
very dynamic programming style in Agora, while providing access to the extensive
libraries of Java. SOUL is a variant of Prolog, a logic programming language, and
has inter-language reflection with Smalltalk, an object-oriented language. It has
been successfully used as a tool to support several software engineering activities,
such as detection of design patterns, software architectures or bad smells in source
code [19], as a basis for aspect-oriented programming [20], or to reason about run-
time execution traces [21]. While previous papers have demonstrated the usefulness
of Agora and SOUL, this paper’s purpose is to illustrate concrete instances of inter-
language reflection and the specific implementation strategy. The reason why we
introduce these two instances, is that Agora shows inter-language reflection of two
different languages of the object-oriented programming paradigm, whereas SOUL
demonstrates the more complex inter-language reflection between a language of the
logic programming paradigm and a language of the object-oriented programming
paradigm.

The contributions of this paper are:

o the identification of the limits of traditional reflection and meta-programming,

o the definition of inter-language reflection and its use of linguistic symbiosis,

e the presentation of a concrete implementation strategy of inter-language reflec-
tion.

The outline of the paper is as follows. Section 2 defines inter-language reflection
and shows that it can be achieved through traditional reflection and linguistic sym-
biosis. Section 3 introduces the concept of linguistic symbiosis, and its key ele-
ments of data mapping and protocol mapping. Sections 4 and 5 show the linguistic
symbiosis in Agora and SOUL, respectively. In both cases, the data mappings be-
tween the languages involved are explained. Section 6 explains how the data map-
ping at the base level is achieved by protocol mapping at the meta level. Section 7
introduces the concrete implementation strategy of linguistic symbiosis and inter-
language reflection that is employed in both Agora and SOUL. Section 8 presents
an example of inter-language reflection. Section 9 discusses related work, and Sec-
tion 10 concludes the paper.

2 Inter-Language Reflection = Linguistic Symbiosis + Reflection

This paper introduces inter-language reflection, a form of reflection between two
different languages, possibly of a different programming paradigm. Inter-language

51



Language A Language B Ol Reflection

O =—— 0 #—» Linguistic Symbiosis

Fig. 1. Conceptual overview of inter-language reflection between two languages A and B:
A and B are reflective languages that are in linguistic symbiosis.

reflection extends the causal connection property of traditional reflection to hold
between these different languages. As such, a program that uses the reflection in-
terface of the one language can be described in the other language. Therefore, inter-
language reflection provides all the aforementioned benefits of being able to repre-
sent a meta program in a different programming language (or even paradigm) than
the base language. Additionally a program implemented in one language, is able to
make changes to elements of a program implemented in another language.

The key idea exposed in this paper is that inter-language reflection between lan-
guages A and B can be achieved by combining the following two ingredients (this
is shown in Figure 1):

e traditional reflection of both language A and language B. Languages with tradi-
tional reflection allow programs to observe and manipulate the data of their own
execution process just as if that data were regular data in the language.

e linguistic symbiosis between language A and language B. Two languages are in
linguistic symbiosis when they can transparently exchange data and invoke each
other’s behavior. In order to achieve this, data of both languages needs to be
mapped to one another, as well as the protocols for invoking behavior.

It is important to note that by allowing linguistic symbiosis between the two reflec-
tive languages, they can not only access each other’s basic data and behavior at the
base level, but also data and behavior through the reflective interfaces. Linguistic
symbiosis is presented in the next section.

Note that we assume languages in which there’s an explicit meta representation of
the language’s operations in the evaluation process. This typically holds for inter-
preted and bytecode interpreted languages.

3 Linguistic Symbiosis Model Overview

As illustrated in Figure 2 this section focuses on linguistic symbiosis in itself.
Two languages are in linguistic symbiosis when they can transparently invoke each
other’s behaviour and exchange data. Linguistic symbiosis enables the represen-
tation of data of one language in the other, as well as the activation of behavior
described in one language from the other. Our model for achieving linguistic sym-
biosis consists of two elements, a data mapping and a protocol mapping that is

52



LanguageA Language B
R R
o . o
Meta Meta
of A ' of B

Fig. 2. Conceptual overview of linguistic symbiosis between two languages A and B, show-
ing both base and meta levels.

needed between the two languages:

Data mapping. To achieve a tight integration at the syntactic level when passing
data between the programs in the different languages, the data should “appear”
in each language as seemingly native data. This means that it should be possible
for programs in B to apply operations on data of A as though it was native data
of B, and vice versa. Therefore operations invoked in B on data of A somehow
need to be translated to operations of A, and vice-versa.

Protocol mapping. The key point in linguistic symbiosis is that the data mapping
at the syntactic level comes down to a protocol mapping at the language im-
plementation level: making the data of one language “appear” in the other is
achieved on the language implementation level by ensuring that the meta rep-
resentations of that data can be passed between the interpreters. To do so the
protocols of the representations of both languages must be explicitly considered:
to allow a meta representation to be passed to another interpreter requires mak-
ing the meta operations of that interpreter applicable to that meta representation
as well. Explicitly considering the protocol mapping gives a clear picture of the
differences between the languages that need to be resolved in order to integrate
them syntactically at the base level.

This linguistic symbiosis model does not constitute a general definition of how
to construct protocol mappings for concrete languages, but serves as a conceptual
framework that needs to be instantiated. The following sections therefore discuss
the data mapping and protocol mapping for two concrete cases: Agora and Java,
and SOUL and Smalltalk. Section 4 discusses the data mapping for Agora and
Java, Section 5 discusses this for SOUL and Smalltalk, and Section 6 discusses the
protocol mapping for both cases.

4 Linguistic Symbiosis between Agora and Java

Defining a linguistic symbiosis between Agora and Java requires transparent ways
for exchanging data and invoking behavior. Exchanging data means that it should
be possible to pass an Agora object to a Java program, and vice-versa to pass a Java

53



frame VARIABLE:
("java.awt.Frame" JAVA) new;

ok VARIABLE:
("java.awt.Button" JAVA) newString: "OK";

frame addComponent: ok;

okListener VARIABLE: [

implements METHOD:
(1 ARRAY: ("java.awt.event.ActionListener" JAVA));

replaces METHOD:
("java.lang.Object" JAVA);

actionPerformedActionEvent: e METHOD: {
("java.lang.System" JAVA) out printlnString: "Button Pressed!";
frame setVisibleboolean: false
}

17

ok addActionListenerActionListener: okListener
Fig. 3. Example of the language symbiosis between Agora and Java.

object to an Agora program. Invoking behavior means that from Agora it should be
possible to send messages to these Java objects, and vice-versa to send messages
to Java objects from within Agora programs. For these exchanges and invocations
to be transparent, the Java object should appear as an Agora object in the Agora
program: an Agora program should be able to send messages to a Java object in the
same way as it sends messages to native Agora objects. The same should hold for
Agora objects in Java programs.

4.1 An Example

Figure 3 shows a concrete example of an Agora program that uses linguistic sym-
biosis with Java:

e The first expression defines the variable frame to which we assign a newly
created instance of the Java class Frame. Note that here the message JAVA is
sent to a string that contains the name of a Java class, the message returns this
Java class as an Agora object to which then the message new is sent.

e The second expression similarly defines a variable ok to hold an instance of the
Java class Button.

e The third expression sends the message addComponent: to the frame with
the button as argument. Note that this message is sent using the regular Agora
syntax for message sending, behavior is effectively invoked on the Java object
contained in the f£rame variable as if it were an Agora object.

54



e The fourth expression defines a variable okListener to hold a new Agora
object to act as the button’s listener.

o The fifth expression sends the message addActionListenerActionListener:
to the button with the Agora object as argument to install this listener. Note that
since the ok variable contains a Java object, the message and its arguments are
passed to Java which in this case means an Agora object is passed to Java.

4.2 Data Mapping

Accessing Java objects from Agora. In Agora it is possible to access Java classes
as regular Agora objects. The constructors are invoked through Agora messages
to create new instances. Figure 3 shows a number of examples where a Java class
is accessed from Agora using the JAVA message. The JAVA message is sent to
a string, which interprets the string as the name of a class in Java and returns
that class. Thus the first objects that can be “grabbed” from Agora are classes
by using their name. Using Agora messages like new and newString: new
instances are created. Another way for Java objects to wind up in Agora is of
course by having them passed as arguments to messages to Agora objects.

Passing Agora objects to Java. Agora objects are only passed to Java when they
are used as arguments in messages to Java objects from within Agora. In the last
expression, the message addActionListenerActionListener: is sent
to the Java Button object, with the Agora object okListener as argument.
Because Java is a class-based language and Agora is not, the Agora object needs
to appear as the instance of a Java class when it is passed to Java. Which class
it is made an instance of is determined by the Agora object itself: Agora objects
that are passed to Java are expected to implement the message implements
and the message replaces which should respectively return an array of Java
interfaces and a single Java class. From Java, the Agora object then appears as an
instance of a class that implements the interfaces as given by the implements
message and that is a subclass of the class as given by the replaces message.
Note however that in order to preserve the dynamic nature of Agora, it is not
checked whether the object actually supports the messages as declared by the
Java interfaces.

5 Linguistic Symbiosis between SOUL and Smalltalk

SOUL and Smalltalk differ more fundamentally in their underlying paradigm than
Java and Agora: Smalltalk is an object-oriented language while SOUL is a logic
language. Achieving the linguistic symbiosis is therefore much more complicated,
since the basic building blocks of each language differ: Smalltalk uses objects and
messages, while SOUL uses logic terms and backtracking.

55



business rules

4 \
if customer is loyal then customer has 10% discount <4—® cross-language
method / rule
customer is loyal if custgmer has charge card triggering

<+—O cross-language

value exchange

7’4

>
« product

|
business objects

Fig. 4. Illustration of issues in defining a symbiosis between a logic and object-oriented
language.

SOUL <> Smalltalk
discount(?customer, ?product, 10) if Product>>priceFor: aCustomer
loyal(?customer). | discounts |
discount(?customer, ?product, 15) if
student(?customer), discounts :=
educationalProduct(?product). (SOULEvaluator
evaluate: 'discount(?customer, ?product, ?discount)'
loyal(?customer) if withArguments:
[ ?customer hasChargeCard ]. (Array with: #customer -> aCustomer
with: #product -> self))
educationalProduct(?product) if valuesForVariable: #discount.
equals(?sectionitems, [ Section education products ]), A price * (100 - discounts max) / 100

[ ?sectionitems includes: ?product ]

Fig. 5. Actual implementation of the business rule example in Smalltalk and SOUL

5.1 Issues and An Example

To achieve the linguistic symbiosis we again need to show how the data is mapped,
and how protocol differences are resolved. These issues are illustrated in Figure 4
with an example application of symbiosis where logic rules are used to implement
business rules about an object-oriented business application [22]: an object prod-
uct calculates its discounted price for another object customer. A first issue to be
solved is that the discount is inferred by the logic rules, which somehow have to
be triggered. This is depicted by the black arrow starting from product. Secondly,
when triggered, the logic rules need information from the objects in order to infer
information. For example, one of the rules needs to invoke a method of the cus-
tomer object that establishes whether customer has a charge card or not (denoted
by the black arrows). Therefore a third issue is that the logic rules need to access
the object to begin with (denoted by the white arrows). Lastly, the result of the in-
ference of the logic rule needs to be accessible in Smalltalk again. For example, the
object product needs to refer to the inferred discount of customer, as depicted by
the white arrow starting from product.

56



Figure 5 shows the code for the example in SOUL and Smalltalk. In SOUL (left part
of the figure), two rules are implemented for a predicate discount, and a third
rule implements the 1oyal predicate used in the first rule for discount. The dis-
count rules are triggered from the Smalltalk class Product’s method priceFor:
by sending a message evaluate:withArguments: to the class SOULEvaluator.
The rules get access to the customer and product objects by having them passed to
the message to the SOULEvaluator together with an array that specifies to which
logic variables the objects should be bound. The result is made accessible in Small-
talk as an object with all the possible results for the logic variable ?discount,
these solutions are accessed by sending the message valuesForVariable:
which returns a collection with all the solutions, this collection is assigned to
the variable discounts. The rule for the loyal predicate illustrates how rules
can access information from the objects. This is done using a Smalltalk term, an
expression that is syntactically like a Smalltalk message expression enclosed in
square brackets, but it is not just a regular Smalltalk expression as it can con-
tain logic variables to pass values from logic rules to Smalltalk methods. The
only condition in the loyal rule is a Smalltalk term, specifying that the mes-
sage hasChargeCard sent to the ?customer object should return the boolean
true. The educationalProduct rule illustrates more advanced accessing of
information from the objects: in the first condition of the rule, the logic variable
?sectionitems is bound to the result of a Smalltalk message which gets a col-
lection of all the products of the educational section, the second condition specifies
that this collection should include the product.

5.2 Data Mapping

Passing objects from Smalltalk to SOUL. Objects are generally passed to SOUL
by invoking logic queries from Smalltalk and passing the objects as arguments
to the query. While it is possible for logic rules to create new Smalltalk objects
by sending instance creation messages to classes, this is not generally used as a
logic query should normally not have any side effects.

Passing logic data from SOUL to Smalltalk. SOUL logic data can be passed to
Smalltalk as arguments in Smalltalk terms, and appears in Smalltalk as objects.
Message sends on these objects are simply mapped to data access operations on
the logic data, thus mostly only accessor messages can be sent to these objects.

6 Linguistic Symbiosis at the Meta Level

As explained in Section 3, linguistic symbiosis involves a data mapping at the base
level which is implemented as a protocol mapping at the meta level: to ensure that
the interpreter of one language can apply its meta operations to the meta representa-
tions coming from the other interpreter, the protocols of these representations need

57



Language A Language B <&---» Data Mapping
l? <> ? <¢---> Protocol Mapping
4 o B—10 Representation Relationship
<t--->
Meta , Meta
of A . of B

Fig. 6. Linguistic symbiosis between two languages A and B at the meta level: A and B
have meta-level representations that have different protocols that need to be bridged.

to be mapped to each other. This is illustrated in Figure 6: data of languages A and
B is represented at the meta level, and on this meta level the differences of protocol
between the representations need to be resolved.

As before we now show how this is accomplished in Agora and Java on the one
hand, and in SOUL and Smalltalk at the other hand. The choice of the meta lan-
guage in which these interpreters are written doesn’t really matter for demonstrat-
ing how the protocol mapping at the meta level works. We’ll however also show
in the next section how the conceptual model we explain here is used in actual
implementations. In that case one of the two languages is actually implemented in
the other and there is not a clear separation between the meta level and base level.
To clearly show the difference in how the mappings occur then, we already in this
section use one of the two base languages on the meta level as well: Java in the first
case, Smalltalk in the second. The important point is that there is a clear separation
of the base and meta levels, and that a common language is used on the meta level
for the two base level languages. This is explained in further detail at the start of
the next section.

6.1 Protocol Mapping for Agora and Java

On the meta level, there are two interpreters, one for Agora and one for Java. As
we’ve assumed Java to be the meta level language for the implementation of these
interpreters as well, these interpreters are written as a number of cooperating ob-
jects of different classes. Two important classes are the ones that implement the
base level objects themselves: a class JavaObject and a class AgoraObject.
Instances of these classes are thus meta level objects that represent base level ob-
jects.

Each of the two classes of meta objects understands a fairly similar protocol that im-
plements the message sending of the base level. Both JavaObject and AgoraObject
have methods that are the implementations of base level message sending. Of
course, this protocol is similar but not entirely the same: the class JavaObject
supports the meta operation send (JavaMessageName, Array[JavaTypel],

58



Language A > Language B

Agora - SOUL Java - Smalltalk O Base language data
right | (" )
T o
Base Level @ ) ,— Appearance of base data
>l left " ‘,‘
m .
@ Meta representation

@ meta right o—n Representation relationship
Meta Level

T ----% Data Mapping
@ R @

---= Protocol Mapping

Fig. 7. Linguistic Symbiosis in more detail, focussing on the left and right appearance
relationships and their equivalent relationships on the meta level.

Array[JavaObject]) while the class AgoraObject supports the meta op-
eration send (AgoraMessageName, Array[AgoraObject])!.

As shown in Figure 7, the data mapping of the base level can be split in left and
right appearance relationships which allow base language data of one language to
appear in the other language. On the meta level, there are meta representations for
this base data, and the left and right relationships of the base level require equiva-
lent protocol mapping relationships at the meta level. A clean equivalent relation-
ship and way of implementing the symbiosis is to introduce wrapper classes that
take care of mapping the protocol differences: in the case of Agora and Java, a class
JavaWrappedAgoraObject and a class AgoraWrappedJavaObject can
be introduced. Instances of these classes respectively wrap around an AgoraObject
instance and support the JavaObject protocol, or wrap around a JavaObject
instance and support the AgoraObject protocol. So for example in the figure,
the base level Java object labeled (/) is represented by the meta object labeled
(2) and appears in Agora as an Agora object (3), which is implemented as an
AgoraWrappedJdavaObject wrapper around the JavaObject instance (2).
One desirable property of the left and right relationships is that they cancel each
other out: applying the right relationship to wrapped meta object produced by the
left relationship should yield the original meta object, and vice-versa.

The protocol mappings used on the meta level between Agora and Java meta objects
should have the following effect on the base level for messages between Agora and
Java objects:

Sending messages from Agora to Java objects. In Agora variables, Java objects

1" Of course, other implementations are possible as well, the ones chosen here simply illus-
trate the point that there is an inherent difference that requires a mapping from one to the
other to enable symbiosis between the two languages.

59



appear as regular Agora objects, and can be sent messages in the same way as
other Agora objects. For this to work a mapping is needed that maps messages
sent to Java objects in Agora to Java messages, taking into account the diffe-
rent syntax and semantics used for messages in the two languages. The semantic
difference is that the name of a message in Agora uniquely identifies a method
for a specific receiver object, while in Java it does not due to the possibility for
overloading. The syntactic difference is that Agora messages consist of multiple
keywords after the fashion of Smalltalk, while Java messages consist of a sin-
gle name. The solution adopted is to construct an Agora message from a Java
message by using the type of each argument as the name for the corresponding
keyword, with the exception of the first keyword which consists of the name of
the Java message together with the type of the first argument. The solution for the
semantic differences thus at once also provides one for the syntactic difference.

Sending addComponent: to frame is an example of an Agora message
constructed from a Java message. The Java class Frame has at least two add
methods: one which takes a single argument with static type Component and
one which takes a single argument with static type PopupMenu. As we wish to
add a "Component” in the example, the resulting mapped message that is sent
from Agora to the Java object in the frame variable is addComponent:, a
message consisting of a single keyword which is the concatenation of the Java
message name add : with the name of the type of the first argument.

The same mapping is used for invoking constructors on classes, with the dif-
ference that the special name “new” is used for the constructors as they are name-
less in Java. Thus to create an instance of the Java Button class from within
Agora using the constructor that takes a String as an argument, the message
newString: can be sent to the Button class from within Agora.

Sending messages from Java to Agora objects. When contained in Java variables,
Agora objects can be sent messages to by Java objects in the same way as the lat-
ter would send messages to other Java objects. A Java message sent to an Agora
object is constructed from an Agora message in the inverse way as described
above.

A critical point in the mappings performed by the protocol wrappers is to ensure
that the appropriate left and right relationships are applied when mapping argu-
ments of one protocol to the other. When a JavaWrappedAgoraObject maps
a Java send operation to the Agora send operation, the arguments involved in
the message send are Java meta objects which also need to be converted to Agora
ones. Thus, the mapping done by this wrapper semi-formally comes down to what
is shown in Figure 8.

The rule simply describes the same protocol mapping solution for sending Java
messages to Agora objects as described above, but illustrates the point of needing to
convert the receiver and arguments to Agora objects. Applying the left relationship
on the receiver, which in this case is the JavaWrappedAgoraObject wrapper,
simply results in the unwrapped Agora meta object. Similarly, the left relationship

60



receiversend ("namé, {typel type2 E typer},
afgument]largument2 E argument# )

right[resul
¢

Ieft[receive].send("namei]pelName:typeZNant‘erpenNam'e
{lefirgument], leftfargument?, Eleft] argumenti})

Fig. 8. Semi-formal description of meta operation mapping for the send operation from
Java to Agora.

applied to the arguments either wraps them or unwraps them, depending on whether
they were wrapped Agora meta objects produced by the right relationship, or plain
Java meta objects in the first place. As also illustrated, the result of the mapped
message also needs to be mapped back using the right relationship to turn it from
an Agora object into a Java object.

The converse rule for mapping Agora messages to Java messages is very similar
and can be given without further explanation as illustrated in Figure 9, note that
this rule is easily derived from the rule above using the fact that the left and right
relationships cancel each other out (i.e. le ft[right[z]] = x).

receiversend ( "nameVpelName:type2Name:...typenNdme
drgumentlargument2 E arguments)

left[resul

¢

right[receivef.send ("namé, {typel, type2, E, typen},
{righifgument], rightfargument?, E right[ argumentf} )

result

Fig. 9. Semi-formal description of meta operation mapping for the send operation from
Agora to Java.

6.2 Protocol Mapping for SOUL and Smalltalk

Unifying objects. In an interpreter for a logic language like SOUL, unification is
a particularly important operation that is applied on the meta representations for
logic rules, logic functors and other logic terms. In the actual implementation of
SOUL, there is a class AbstractTerm from which all classes for represent-
ing the different kinds of logic terms - functors, variables and lists - inherit. The
AbstractTermclass defines an abstract method unifyWith:inEnvironment:

61



which the other classes implement accordingly. The method is passed another
object that is the meta representation of another logic functor or list etc. and
an environment of logic variable bindings. The method on meta objects repre-
senting logic functors for example checks if the other object also represents a
logic functor, and then recursively sends the same unification messages to the
different objects representing the arguments of each of the two functors. A meta
object representing a logic variable responds to the message by checking whether
the environment already holds a binding for it. If not it simply adds a new bind-
ing with the meta object it is being unified with as the binding’s value. If there
already is a binding, the logic variable object again recursively sends the unifi-
cation meta message to the existing binding’s value with the same arguments it
received for the message itself, which are the environment and the logic meta
object it should unify with. Thus unification is implemented by a protocol of
recursive message sending, and the meta objects passed as arguments to the uni-
fication message are expected to support this protocol.

An interpreter for Smalltalk on the other hand has meta representations for
objects and classes. The meta objects representing Smalltalk objects need to
support a protocol for sending messages, accessing instance variables etc. The
meta objects representing classes need to support a protocol for looking up meth-
ods, defining instance variables etc. Thus, in an interpreter for Smalltalk, there
would be a class AnObject whose instances would represent objects at the
base level. The AnObject meta objects would understand messages such as
sendSelector:withArguments:.

Thus, the base-level left appearance relationship which allows a base-level
Smalltalk object to appear in SOUL, needs an equivalent on the meta level which
maps the unification protocol to the message send protocol. The particular solu-
tion chosen in SOUL for this issue is to allow objects to unify when they are
equivalent according to the equivalency message =. One way to implement the
left relationship on the meta level then, is to put a wrapper around Smalltalk
meta objects with the wrapper mapping the unification operation to the message
send operation. In SOUL, this wrapper is SmalltalkObject, a subclass of
AbstractTerm.

As with similar mappings in Java and Agora, care must again be taken to per-
form the appropriate right relationship on any meta objects involved in the map-
ping. Thus, when a SmalltalkObject wrapper receives a unify: message,
it maps this operation to the message send operation send :withArguments:
where the message that is sent is =. Both the receiver of this operation and the
argument that it is passed need to support the message send protocol of Small-
talk meta objects, thus the right relation needs to be applied before applying the
message send operation. Semi-formally, the protocol difference mapping that
happens on the meta level is:

lolunify: lo2

¢

right[lo/] send: #= withArguments: {right[/lo2] }

62



Sending messages from SOUL to Smalltalk objects. Message sending is again
not an operation native to logic programming, but depending on the type of the
message it can be mapped to either of two operations of logic programming.
Boolean messages can be naturally mapped to proving of conditions in logic
rules, while accessing data from objects by means of accessor or other side-
effect-less methods can be mapped to a part of unification. Invoking mutator and
other methods with side-effects does not make sense from the logic paradigm.

The mapping of the first two message types is handled in SOUL with the
same linguistic construct: the Smalltalk term. A Smalltalk term is a novel lin-
guistic construct that was added to SOUL specifically for symbiosis: as shown
in the rule for the predicate 1oyal in the example, a Smalltalk term is denoted
by square brackets (“[” and “]”) and contains a message send in Smalltalk syn-
tax but involving logic variables. A smalltalk term can be used as a condition
in a rule, as also shown in the rule for the 1loyal predicate, in which case the
condition proving operation of logic programming maps it to the evaluation of
the message of the Smalltalk term; the message is expected to return a boolean
which is then mapped to the success or failure of proving the condition. A Small-
talk term can also be used as an argument in a condition, or as part of other
compound data structures of logic programming such as lists, in which case the
unification operation maps it to execution of the message: when a Smalltalk term
is unified with another logic data construct, this is first mapped to evaluating the
message in Smalltalk and the resulting object is then again unified with the other
logic data construct using the process described in the previous point.

Invoking SOUL logic queries from Smalltalk. The invocation of logic queries
is mapped to a message send to a SOULEvaluator class in Smalltalk. The
SOULEvaluator class supports a message evaluate:withArguments:
which can be passed a query as a string. The second argument of this message is
an array which is used to specify which objects are passed to the query for which
logic variable: the array should contain associations of names of logic variables
to objects. The message finds all solutions for the given query in SOUL.

The result of the evaluate:withArguments: message requires another
mapping because of a particular difference between SOUL and Smalltalk: logic
queries can have several “output” variables and furthermore can result in multiple
different results for these variables, while Smalltalk messages can only return a
single object. The results of the query are therefore mapped to a single object that
understands a message valuesForVariable: which expects as argument
the name of a logic variable used in the query. The result of this message is the
solutions of the query for that variable, mapped to a collection object.

Accessing SOUL data from Smalltalk. In logic programming, data is accessed
from compound structures such as functors and lists through unification, this
needs to be mapped to Smalltalk’s accessor messages for accessing data. When a
SOUL value is passed to Smalltalk, it appears in Smalltalk as an instance of the
equivalent Smalltalk class for that type of SOUL value: lists appear as instances
of OrderedCollection, numbers as Number instances etc. Functors are
mapped to instances of the SOUL-specific class CompoundTerm, which sup-

63



Language A

o . A Language B

Meta
of A

Fig. 10. Implementation of inter-language reflection and language symbiosis.

ports messages for accessing the functor’s name and its arguments.

7 Inter-Language Reflection in Actual Implementations

Our conceptual model for inter-language reflection and linguistic symbiosis is read-
ily applicable to actual implementation schemes where the two languages in sym-
biosis are implemented as interpeters in a third common implementation language.
There are however two differing schemes possible, and in this section we explain
how the conceptual model maps to these schemes. The first possible variation is
that the interpreters are not written in a common implementation language. The
second variation is that the interpreter of one language is written in the other lan-
guage, and that a linguistic symbiosis is defined between the first language and its
implementation language rather than with a language that is also implemented in
that implementation language.

As noted earlier, the first variation simply shifts the problem of achieving a linguis-
tic symbiosis one level down. A key point in our conceptual model is to explicitly
take into account the meta level for both of the two base level languages, and to
assume that at the meta level there is a common implementation language. This al-
lows us to clearly show how data mapping at the base level comes down to protocol
mapping at the meta level: while the meta representations of each language can al-
ready be exchanged between the two interpreters because of the common language,
they support a different protocol of meta representations which needs to be mapped.
In the actual implementation variation where the meta representations of one lan-
guage are written in language X and those of the other in language Y, there needs
to be a linguistic symbiosis between X and Y to allow the meta representations to
be interchanged in the first place.

The second variation essentially entails that the meta level of one language is made
to overlap the base level of the other language. As illustrated in Figure 10, the
interpreter for the one language is written in the other language, and there is no
interpreter for the other language at this level. One reason for this variation is that
in practice it is typically easier to implement a new language in the one with which
it should be in an inter-language reflection relationship, rather than in a common

64



SOUL <> Smalltalk

SOULTerm (base data)

1
o Q O Smalltalk Object (base dati

A

v

Q
T ()

2. @ Meta representation

.-, Appearance of base data

ST -----» Data mapping

—--+ Protocol mapping

0—0 Representatiorelationship

Fig. 11. Folding of inter-language reflection and language symbiosis in the actual imple-
mentation of SOUL in Smalltalk.

language, or that such an implementation already exists and there is a need to al-
low for inter-language reflection. Note that while we already used one of the base
languages as meta language as well in the explanation of the conceptual model in
Section 3, we still made a distinction between the meta level and the base level.
The variation we are referring to here is that, as illustrated in Figure 11, the meta
representations of one language — SOUL in the figure — exist on the same level
as the values of the other language. This deviation of the conceptual model has
an effect on how the linguistic symbiosis and inter-language reflection are actually
implemented, as we’ll discuss in more detail in the remainder of this section.

7.1 Linguistic Symbiosis Implementation

One effect of the base and meta level overlap is that the right relationship maps
a SOUL (or Agora) value directly to a wrapper. Contrast this with the pure con-
ceptual model of Figure 7, where the right relationship allows a SOUL value to
appear in Smalltalk, and this appearance is implemented as a wrapper around the
meta object representing the value. Here, the right relationship maps directly to the
wrapper. Furthermore, this wrapper is a base level Smalltalk object, rather than a
meta level object as in the pure conceptual model. Thus the wrapper translates base
level Smalltalk (or Java) messages to meta operations on the SOUL (or Agora) meta
object.

The important point to note about this difference in how the mappings work is
that the mappings in the conceptual model more clearly show the protocol differ-
ence that is being solved. This is the reason for clearly separating the base level
and meta level in the conceptual model. For example, the mappings in the concep-
tual model show that the Java message send operation takes the static type of the
arguments into account, while the one for Agora does not. Because in the actual

65



implementation, wrappers map between base level and meta level operations, this
difference is no longer as obvious. The mapping performed by the right wrappers
in the actual implementation for Agora and Java is for example the one given in
figure 12. Note again that the base level Java message with name name is mapped
to the Agora meta operation send, while previously it was the Java meta operation
send that was mapped to the Agora meta operation send.

receiver.name(argumentl, argument2, E argumentn)

right[resulf]
¢

left[receiver].send ("nameTypelName:type2Name :E typenName",
{leftfgumentl], left{argument2], Eleft argumentn]})

result

( where {typel ... typen} are the static types of the arguments )

Fig. 12. Semi-formal description of base and meta level operation mapping in actual im-
plementations with overlap of base and meta levels.

The left relationship is similarly affected. Making a Smalltalk object appear in
SOUL for example involves wrapping the Smalltalk object in a wrapper that maps
the SOUL meta protocol to the Smalltalk base level, instead of as in the conceptual
model where it maps it to the Smalltalk meta protocol.

7.2 Inter-Language Reflection Implementation

The effect of the overlap in the actual implementations is also of folding the inter-
language reflection of one direction. To reflect about one language from within the
language that implements it does not require getting a reflective representation in
the one language and passing it through symbiosis to the other. So in the case of
SOUL in Smalltalk, there is no need for the (base level) Smalltalk to access a re-
flective representation of SOUL by having SOUL reflect on itself and passing the
reflective representation by linguistic symbiosis to Smalltalk. Instead, for Smalltalk
objects to reflect on SOUL only requires them to directly access the Smalltalk ob-
jects representing SOUL without applying the right relationship. This can actually
be another reason for deviating from the conceptual model in the actual implemen-
tation. As it is thus for one language not necessary to be reflective. Note however,
that in the other direction where SOUL is used for inter-language reflection about
Smalltalk the combination of linguistic symbiosis and traditional reflection is still
used to achieve this inter-language reflection.

66



8 Examples

A very simple example of using inter-language reflection in SOUL about Small-
talk is one for generating accessor methods on a class. While simple, the example
nevertheless clearly shows the use of linguistic symbiosis for inter-language reflec-
tion. More extensive examples can be found in previous publications on the use
of SOUL [1,2,6,21,23]. The following rule defines what the source for an accessor
method for a variable of a class should be:

accessorMethod(?class, ?varname, ?source) if
hasInstanceVariable(?class, ?varname),
equals(?source, [ ?varname , ' ~ ' , ?varname ])

The first condition of the above rule specifies that 2varname should be the name
of an instance variable of the class 2class. The predicate hasInstanceVariable
is one from a library that comes with SOUL with several such predicates, the rules
for this predicate are not shown here, but we can note they make use of linguistic
symbiosis to retrieve the instance variables from the class. The second condition of
the above rule specifies that the ? source variable should contain a string which
is the concatenation of the variable name, with a return expression that returns the
variable’s value. Note that this concatenation is defined using an argument to the
equals predicate where linguistic symbiosis is used: the value in ?varname is
right mapped to Smalltalk, which in this case will result in a string, to which then
the concatenation message “,” is sent, the resulting string is left mapped back to
SOUL.

This rule can then be used in a query to actually generate all the accessor methods
for a class, for example by finding all solutions to the query below one can generate
all accessor methods on the BankAccount class:

if accessorMethod([BankAccount], ?variable, ?body),
[ ?class compile: ?body. true ]

The above query shows two things. First of all, it clearly shows the use of the com-
bination of traditional reflection and linguistic symbiosis for doing inter-language
reflection: the compile: message that is sent is a reflective message in Smalltalk
and it is sent from SOUL using linguistic symbiosis.

Secondly, the query shows that both introspection and intercession using inter-
language reflection about Smalltalk is possible from SOUL. While doing side-
effects breaks the declarative nature of logic programming and is therefore usually
not recommended, there is no inherent restriction in SOUL that prevents one from
accessing Smalltalk’s intercessory reflection interface. Thus it is possible to send
such messages as compile: and other messages that change the Smalltalk pro-
gram, as well as all the messages for simply querying the Smalltalk program for

67



lists of instance variables of a class, or its subclasses etc.

9 Related Work

The term “linguistic symbiosis” was previously defined in the work on RBCL [24].
RBCL is a language implemented in C++ which also has linguistic symbiosis with
C++. This is used to allow RBCL base level objects to interact with, and take the
place of the RBCL meta objects defined in C++, thus achieving what we have
dubbed traditional reflection. There are three important differences with our work.
Firstly, the use of linguistic symbiosis as a mechanism for achieving inter-language
reflection was not considered. Secondly, the languages between which symbiosis
was defined were not fundamentally paradigmatically different as in our case for
SOUL and Smalltalk. Lastly, in RBCL the symbiosis was directly defined in the
implementation with overlap of the RBCL meta level and C++ base level, there
was no consideration of the conceptual model we introduced where the linguistic
symbiosis is defined through a common meta level for the two languages which
allows a clearer modeling of which meta operations need to be mapped and how.

While Agora was one of the first languages to be implemented and integrated in
Java, the popularity of the platform has brought about numerous languages which
are hosted in Java. In most cases, linguistic symbiosis and our model for it was
not explicitly considered. In several cases, the integration is asymmetric: from the
hosted language, Java classes can be instantiated and the instances can be sent mes-
sages, but only Java objects can be passed as arguments, not objects implemented
in the hosted language (i.e., the integration is parasitic instead of symbiotic). In
other cases, the integration is not fully asymmetric, but the use of values from the
hosted language in Java is not transparent. For logic languages integrated in Java,
an extensive survey illustrating these problems is given by D’Hondt [25].

The integration of Piccola in Java (JPiccola) and also in Smalltalk (SPiccola) is very
interesting in this respect, as it is an exceptional case in which a concept similar to
linguistic symbiosis, “inter-language bridging”, was considered for achieving the
integration [26]. However, while in the definition of “inter-language bridging” the
meta-level of both languages is also considered, the meta and base levels are not
clearly separated which has resulted in an asymmetric integration. The meta oper-
ations applied by the interpreters are not explicitly considered: the definitions of
the up and down operations, which are respectively equivalent to our left and right
operations, is only given in terms of base level data mapping rather than as protocol
mapping at the meta level. The up operation maps a Smalltalk object to a Piccola
“form” with a “service” - the behavior of the form - for each method of the object.
The down operation is described as a simple mapping in which “the form itself is
passed down to the host language”. This actually has the semantics of mapping a
Piccola form to its meta representation in Smalltalk, the services of the form are

68



thus not mapped to Smalltalk methods and a Piccola form cannot be sent messages
from Smalltalk to invoke the services as if the form is a regular Smalltalk object.
The down operation thus confuses the base and meta levels and actually is a fold-
ing of the linguistic symbiosis and inter-language reflection operations as we’ve
described in Section 7. The integration is thus asymmetric as it is not possible to
implement a form in Piccola which when passed “down” behaves as an existing
Smalltalk object, while in the other direction it is possible to implement a Small-
talk object which when “upped” behaves the same as a native Piccola form. An
interesting aspect of Piccola is that it allows reflective control of the up operation:
instead of simply returning the “upped” object, the up operation can be modified to
return a Piccola form which has a field “peer” with the actual “upped” object. This
can be used to give the “upped” object a Piccola-specific interface by implementing
services that appropriately forward to the peer. However, the up and down opera-
tions behave differently on such forms and do not have the desirable property of
cancelling each other out (cfr. Section 6.1): applying down on such a form results
in the “downed” peer, when that is again “upped” it is not the original “downed”
form. This resulted in the need for a reflective control over the down operation as
well, so forms can be explicitly “protected” in certain cases when they are downed
[26].

A specific goal of the .NET platform is “language inter-operability”. For this, a
common intermediate language was defined, to which all languages supported on
the platform are compiled. The common intermediate language is actually a more
primitive form of the major language of the platform, C#. Compiling a language
to .NET is thus in part a base level data mapping to integrate with C#, which does
not clearly expose the meta level protocol differences of C# and the implemented
language.

One can hardly talk about reflection without discussing the work that has been done
in the LISP community, even though the goals of our approach are quite different.
One of the very nice features of LISP is that it has a built-in mechanism to represent
its language constructs: the quotation form. This provides a core meta-reasoning
structure, since parts of programs can be assembled, passed around and then eval-
uated at will. This basic LISP functionality was extended in the well-known work
on procedural reflection by Smith [27]. In this work, 2 languages were introduced.
The first, 2-LISP, deals with quotation issues by providing two explicit user primi-
tives to switch between representations of structures and the structures themselves.
These primitives were called up and down, the equivalents of the left and right rela-
tionships used in this paper. We want to stress two problems with 2-LISP, which is
that up and down needed to be called by the user whenever necessary and that down
is not the inverse of up. 2-LISP was actually meant as the basis for the better-known
3-LISP, a reflective language with an implementation based on reflective towers.

Muller has argued that the quotation form in the original definition of LISP is es-
sentially flawed [28], and hence that the apply in LISP and descendants like 2-

69



LISP and 3-LISP or even Scheme crosses levels. Moreover, it is this level-crossing
that allows much of the meta-circular capabilities of LISP. This was remarked by
Muller, and was addressed in his LISP flavor, called M-LISP. In M-LISP, the apply
function does not cross levels, which removes a lot of the awkward constructions
needed in 2-LISP. Moreover, up is represented by a relation R, and down by R~!,
where down is the inverse of up. Reification has to be introduced at the cost of
equational reasoning (which is done with extended M-LISP), and, even extended
M-Lisp corresponds to only a restricted 3-Lisp.

The approach taken by inter-language reflection is comparable with the approach
taken by M-Lisp, except that the goals are quite different. The goal of M-Lisp (as
with the other research in reflection in general) is to study ’self-extensibility’ of
programs, and provide formal language semantics to that end. The approach in our
paper is driven from a software engineering problem, to study a symbiosis between
two languages from different paradigms. In our case, left and right therefore not
only bridge levels, but also language paradigm boundaries. As in M-Lisp (and con-
trary to 2-Lisp and 3-Lisp), left and right in SOUL are symmetric and are called
automatically. Note however that in SOUL this relation is still kept fairly simple
(only objects are reified as logic terms), however this is not necessarily the case.
One of the important parts of future work is to have a tighter integration between
languages by reifying more object-oriented concepts, which leads to a more diffi-
cult relation.

10 Conclusion

In this paper we introduced inter-language reflection, an extension of traditional
single-language reflection to two languages. We introduced a scheme for achiev-
ing inter-language reflection where traditional reflection is combined with linguis-
tic symbiosis. Linguistic symbiosis allows programs in two languages to transpar-
ently interchange values and invoke behavior defined on these values in the other
program. As traditional reflection already allows programs to invoke behavior and
access values that are causally connected to its own execution process, the combi-
nation with linguistic symbiosis automatically allows programs in each language to
access the traditional reflective interface of the other language.

We introduced a conceptual model for linguistic symbiosis where, in contrast with
previous work on linguistic symbiosis, we made the meta level of both base le-
vel languages explicit. This model thus allows us to clearly show how achieving
linguistic symbiosis on the base level comes down to solving protocol differences
between the meta operations applied on the meta level. On the meta level, different
meta operations are applied to the meta representations for each language, and al-
lowing the values on the base level to be interchanged requires making the meta
operations for one language applicable to the meta representations of the other. We

70



illustrated this for two cases of linguistic symbiosis, that of SOUL with Smalltalk,
and of Agora with Java.

We showed how in actual implementations of inter-language reflection and linguis-
tic symbiosis, the clear separation made in the conceptual model between base level
and meta level is typically abandoned. This simplifies the actual implementation of
inter-language reflection as the base level of one of the two languages can directly
access the meta representations of the other. We showed how this affects actual im-
plementations of linguistic symbiosis to involve wrappers that map base and meta
operations rather than meta operations as in the conceptual model. But this folding
of one meta level makes the linguistic symbiosis mechanism harder to understand.
The simpler conceptual model helps to see the mechanisms in their pure form and
subsequently to understand the ’shortcut’ taken in typical implementations.

References

[1] Wuyts, R.: Declarative reasoning about the structure object-oriented systems. In:
Proceedings of the TOOLS USA °98 Conference, IEEE Computer Society Press
(1998) 112-124

[2] Mens, K., Wuyts, R., D’Hondt, T.: Declaratively codifying software architectures
using virtual software classifications. In: Proceedings of TOOLS-Europe 99. (1999)
33-45

[3] Florijn, G., Meijers, M., van Winsen, P.: Tool support for object-oriented patterns.
In Aksit, M., Matsuoka, S., eds.: Proceedings ECOOP *97. Volume 1241 of LNCS.,
Jyvaskyla, Finland, Springer-Verlag (1997) 472-495

[4] Spoon, S.A., Shivers, O.: Demand-driven type inference with subgoal pruning:
Trading precision for scalability. In: Proceedings of ECOOP’04. (2004) 51-74

[5] Minsky, N.H.: Law-governed regularities in software systems. (1994)

[6] Wuyts, R., Mens, K.: Declaratively codifying software architectures using virtual
software classifications. In: Proceedings of TOOLS-Europe 1999. (1999)

[7] Crew, R.E.: Astlog: A language for examining abstract syntax trees. In: Proceedings
of the USENIX Conference on Domain-Specific Languages. (1997)

[8] Johnson, S.C.: Lint, a C program checker. Computing Science TR 65 (1977)

[9] Ferber, J.: Conceptual reflection and actor languages. In North-Holland, P.M., Nardi,
D., eds.: Meta-level Architectures and Reflection. (1988) 177-193

[10] Bobrow, D., Gabriel, R., White, J.: Clos in context — the shape of the design. In
Paepcke, A., ed.: Object-Oriented Programming: the CLOS perspective. MIT Press
(1993) 29-61

71



[11] Kiczales, G., des Rivieres, J., Bobrow, D.G.: The Art of the Metaobject Protocol. MIT
Press (1991)

[12] Maes, P.: Concepts and experiments in computational reflection. In: Proceedings
OOPSLA ’87, ACM SIGPLAN Notices. Volume 22. (1987) 147-155

[13] Maes, P.: Computational Reflection. PhD thesis, Laboratory for Artificial Intelligence,
Vrije Universiteit Brussel, Brussels Belgium (1987)

[14] Rivard, F.: Reflective Facilities in Smalltalk. Revue Informatik/Informatique, revue
des organisations suisses d’informatique. Numéro 1 Février 1996 (1996)

[15] Ducasse, S.: Evaluating message passing control techniques in Smalltalk. Journal of
Object-Oriented Programming (JOOP) 12 (1999) 39-44

[16] Ungar, D., Smith, R.B.: Self: The power of simplicity. In: Proceedings OOPSLA ’87,
ACM SIGPLAN Notices. Volume 22. (1987) 227-242

[17] Meuter, W.D.: Agora: The story of the simplest mop in the world. In: Prototype-based
Programming, Springer-Verlag (1998)

[18] Wuyts, R.: A Logic Meta-Programming Approach to Support the Co-Evolution of
Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brussel
(2001)

[19] Wuyts, R., Ducasse, S.: Symbiotic reflection between an object-oriented and a logic
programming language. In: ECOOP 2001 International Workshop on MultiParadigm
Programming with Object-Oriented Languages. (2001)

[20] Gybels, K.:  Aspect-Oriented Programming using a Logic Meta Programming
language to express cross-cutting through a dynamic joinpoint structure. Licentiate’s
thesis, Vrije Universiteit Brussel (2001)

[21] Roover, C.D., Gybels, K., D’Hondt, T.: Towards abstract interpretation for recovering
design information. Electronic Notes in Theoretical Computer Science 131 (2005)
15-25

[22] D’Hondt, M., Gybels, K.: Seamless integration of rule-based knowledge and object-
oriented functionality with linguistic symbiosis. In: Proceedings of the 19th Annual
ACM Symposium on Applied Computing (SAC 2004), Special Track on Object-
Oriented Programming, Languages and Systems, ACM Press (2004)

[23] Fabry, J., Mens, T.: Language-independent detection of object-oriented design
patterns. In: Elsevier International Journal: Computer Languages, Systems and
Structures. (2003)

[24] Ichisugi, Y., Matsuoka, S., Yonezawa, A.: Rbcl: a reflective object-oriented concurrent
language without a runtime kernel. In: IMSA’92 International Workshop on Reflection
and Meta-Level Architectures. (1992)

[25] D’Hondt, M.: Hybrid Aspects for Integrating Rule-Based Knowledge and Object-
Oriented Functionality. PhD thesis, Vrije Universiteit Brussel (2004)

72



[26] Schirli, N.: Supporting pure composition by inter-language bridging on the meta-
level. Master’s thesis, Philosophisch-naturwissenschaftlichen Fakultédt der Universitit
Bern (2001)

[27] Smith, B.: Reflection and semantics in lisp. In: Proceedings of the 11th Symposium
on Principles of Programming Languages. (1984) 23-35

[28] Muller, R.: M-LISP: A representation-independent dialect of LISP with reduction
semantics. ACM Transactions on Programming Languages and Systems 14 (1992)
589-616

73



74



Runtime BytecodeTransformation
for Smalltalk *

Marcus Denker 2 Stéphane Ducasse ® Eric Tanter ©

aSoftwae CompositionGroup
IAM N Universitat Bern, Switzerland

bSoftwae CompositionGroup
IAM N Universitat Bern, Switzerlandand
Languaye and Softwae EvolutionGroup
LISTICN Universite de Savoie France

¢Centerfor WebReseach, DCC
University of Chile, Santiayo, Chile

Abstract

Transforming programs to alter their semantics is of wide interest, for purposes as diverse
as off-the-shelf component adaptation, optimization, trace generation, and experimentation
with new language features. The current wave of interest in advanced technologies for
better separation of concerns, such as aspect-oriented programming, is a solid testimony
of this fact. Strangely enough, almost all proposals are formulated in the context of Java,
in which tool providers encounter severe restrictions due to the rigidity of the environ-
ment. This paper present BYTESURGEON, a library to transform binary code in Smalltalk.
BYTESURGEON takes full advantage of the flexibility of the Squeak environment to enable
bytecode transformation at runtime, thereby allowing dynamic, on-the-fly modification of
applications. BYTESURGEON operates on bytecode in order to cope with situations where
the source code is not available, while providing appropriate high-level abstractions so that
users do not need to program at the bytecode level. We illustrate the use of BYTESURGEON
via the implementation of method wrappers and a simple MOP, and report on its efficiency.

Key words: Smalltalk, object-oriented programming, bytecode transformation,
metaprogramming

* We acknowledge the financial support of the Swiss National Science Foundation for the
project “A Unified Approach to Composition and Extensibility” (SNF Project No. 200020-
105091/1, Oct. 2004 - Sept. 2006) and “RECAST: Evolution of Object-Oriented Applica-
tions” (SNF Project No. 620-066077, Sept. 2002 - Aug. 2006). E. Tanter is financed by the
Millennium Nucleus Center for Web Research, Grant PO1-029-F, Mideplan, Chile.
Emailaddressesdenker@iam.unibe.ch (Marcus Denker),

ESUG2005InternationalSmalltalkConference August2005,BrusselsBelgium



1 Intr oduction

Many objectives of software engineering can be served by appropriate program
transformation techniques. Software adaptation can be used for Binary Compo-
nent Adaptation (BCA), a technique proposed by Keller and Hélzle which relies on
coarse-grained alterations of component binaries to make them interoperable [1].
Another objective of software adaptation is that of separation of concerns [2], as
first emphasized by work carried out in the reflection community [3-5], and more
recently, aspect-oriented programming (AOP) [6]. In this context, transformation
techniques are used to merge together different pieces of software encapsulating
different concerns of the global system. Program transformation is a valid imple-
mentation techniques for reflection and AOP when an open interpreter of the con-
sidered language is not available.

Fine-grained control of computation, such as message passing control in the con-
text of object-oriented programming, is the corner stone of many interesting appli-
cations [7]. It has been used for a wide range of application analysis approaches,
such as tracing [8—10], automatic construction of interaction diagrams, class affin-
ity graphs, test coverage, as well as new debugging approaches [11, 12]. Message
passing control has also been used to introduce new language features in several
languages, for instance multiple inheritance [13], distribution [14—16], instance-
based programming [17], active objects [18], concurrent objects [19], futures [20]
and atomic messages [21,22], as well as backtracking facilities [23].

CLOS is one the few languages that offers a dedicated metaobject protocol sup-
porting language semantics customization [24]. Other languages such as Smalltalk
and Java rely on techniques or libraries to either transform code or take control of
the program execution [7,25]. The most basic way to alter programs is of course
to modify the source code and recompile it. This approach is used by several Java
systems, such as OpenJava [26] and the Java Syntactic Extender [27]. However,
in many contexts, relying on the availability of source code is limiting since most
applications ship in binary form, and in open distributed systems, source code is
usually not known in advance. Furthermore, the source language from which the
actual binary was obtained is not necessarily the mainstream language of the run-
time system. Bytecode manipulation, as done in the Java world by tools such as
BCEL [28] and Javassist [29] is a particularly pertinent alternative. The challenge
is to provide appropriate high-level abstractions to bytecode transformation, in or-
der to shield users from the burden of working at the bytecode level [25].

To the best of our knowledge, there is no single bytecode transformation tool for
the Smalltalk/Squeak environment, in the line of what Javassist represents for the

ducasse@iam.unibe.ch (Stéphane Ducasse), etanter@dcc.uchile.cl (Eric
Tanter).

76



Java world. This is all the more surprising that the Squeak environment actually
represents an ideal environment for bytecode transformation. In contrast with Java
where full bytecode transformation is only possible at load time, and very severely
limited at runtime, Squeak enables the full power of bytecode transformation to be
used dynamically. The purpose of BYTESURGEON is precisely to leverage the flex-
ibility of the Smalltalk language and the Squeak environment to provide a backend
to designers of toolkits for component adaptation, reflective and metaprogramming,
and aspect-oriented programming.

The contributions of this paper are:

e a motivation for the need of a dynamic bytecode transformation framework for
Smalltalk, working at appropriate levels of abstraction,

e aframework, called BYTESURGEON, that enables runtimebytecode transforma-
tion via a two level API,

e asimple MOP that can be used to compare bytecode transformation frameworks.

The paper is organized as follows: Section 2 explains the need for bytecode ma-
nipulation at appropriate levels of abstraction, by discussing related work. Then
we present BYTESURGEON at work in Section 3. Section 4 details some aspects
of the architecture. In Section 5, we validate the interest of our framework via
the implementation of two language features: method wrappers [10], and a simple
runtime metaobject protocol (MOP) making use of runtime manipulation for dy-
namic (un)installation of hooks; a first set of benchmarks completes the validation
of BYTESURGEON. Section 6 discusses future work and concludes.

2 The Needfor BytecodeManipulation

There are many ways to change the semantics of programs, ranging from code pre-
processing to modification of the language runtime environment. If the language
runtime is not an open implementation offering an adequate metaobject proto-
col (MOP) [24], then modifying it directly sacrifices portability; since mainstream
Smalltalk virtual machines such as Squeak are not open in this sense, we discard
the alternative of intervening at the VM level.

Source code transformation can be done either directly on the text (concrete syntax)
or on the abstract syntax tree (abstract syntax). Furthermore, in language environ-
ments where source code is compiled to an intermediate bytecode language which
is abstract enough, bytecode transformation is an interesting approach; it is actually
widely used in the Java community.

In Section 2.1 we discuss the inconveniences of source code approaches. Still, once
bytecode transformation is agreed upon, the issue of the abstraction level offered to

77



the programmer appears, discussed in Section 2.2. We also discuss the limitations
of bytecode transformation in the context of Java.

2.1 Disadvantgesof Souce CodeTransformation

Transforming source code at the concrete syntax level is typically avoided because
of the lack of structure and abstraction at the text level. Transformation of abstract
syntax trees (ASTs) is much more adequate, but still suffers from a number of
limitations.

No accesdo the sourcecode.For the sake of saving space or ensuring a first level
of privacy, the source code of an application is usually not distributed. Using source
code strippers or removing symbolic information are current practices to reduce the
size of an application before deployment. Furthermore, in open contexts such as
mobile agent platforms and open distributed systems, code is typically not known
in advance. One can of course rebuild an AST from bytecode, but this technique
presents a number of challenges: bytecode-to-AST decompiling is a slow process,
and typically requires the decompiler to know about bytecode generation patterns
used by the compiler so as to rebuild meaningful AST nodes.

No original languagewarranty. Most mainstream languages today, such as Java,
Squeak and C#, are based on a virtual machine executing bytecodes, and these
virtual machines are actually used as the execution engines of various languages,
other than the “original” ones. For instance, for the Croquet environment [30], a
number of experimental scripting languages have been developed, among them lan-
guages similar to JavaScript and LOGO. Another example is the Python language,
which can be compiled to Java bytecodes [31]. To provide practical performance,
these languages come with their own custom compiler that produces bytecode for
a production-quality virtual machine. Therefore a code transformation tool work-
ing at the AST level rebuilding the AST from bytecode would require a custom
decompiler. On the other hand, working on bytecode, although lower-level than
AST, makes it possible to uniformly apply transformations even in the presence of
non-original languages.

Recompiling is slow. Finally, transforming source code means that a compiling
phase is necessary afterwards to regenerate bytecodes. Recompilation is a slow pro-
cess, much slower than manipulating bytecode; benchmarks of Section 5.3 validate
this statement.

78



2.2 BytecodelransformatiorApproaces

Due to the many reasons explained above, a wide variety of tools have been pro-
posed that rely on bytecode transformation. Surprisingly, most of these tools have
been made for Java, and we are aware of very few related proposals in the Smalltalk
world.

Java and BytecodeTransformation. The Java standard environment only allows
for bytecode transformation at load time. At runtime, it is only possible to dynam-
ically generate new classes from scratch, not to modify existing ones. These re-
strictions have been somehow relaxed in the context of the JVM debugger interface
(JDI) [32], but relying on the debugger interface is not reasonable in a production
environment. Furthermore, the possibilities of class reloading are strongly limited
as, for instance, new members cannot be added to classes. Using load-time trans-
formation in Java also raises a number of subtle issues related to class loaders and
the way they define namespaces in Java [33].

Level of Abstraction. The experience gained with Java bytecode transformation
tools brings a number of insights that ought to be considered when designing a new
framework. The most fundamental one is that of the level of abstraction provided
to programmers.

Tools like BCEL [28] and ASM [34] strictly reify bytecode instructions: as a conse-
quence, users have to know the Java bytecode language very well and have to deal
with low-level details such as jumps and alternate bytecode instructions (a Java
method invocation can be implemented by several bytecode instructions, depend-
ing on whether the invoked method is from an interface, is private, etc.).

On the contrary, Javassist [35] and Jinline [25] focus on providing souicecodelevel
abstractions although the actual transformation is performed on bytecode, the API
exposes concepts of the source language. This is highly profitable to end users. In
its latest version [29], Javassist even offers a lightweight online compiler so that
injected code can be specified as a string of source code. The Javassist compiler
supports a number of dedicated metavariables, which can be used to refer to the
context in which a piece of code is injected.

As a matter of fact, bytecode-level manipulation is more complex than source-
level manipulation because of the many low-level details one needs to deal with.
However, working at the bytecode level also makes it possible to express code
that is not directly expressable in the source language(s). This dilemma basically
motivates the need for both APISs, as is done in Javassist: a high-level API provides
source-level abstractions, and a low-level API provides bytecode-level abstractions.

Proposalsfor Smalltalk. To the best of our knowledge there is no general-purpose
bytecode manipulation tool for a Smalltalk dialect. AOStA [36] is a bytecode-to-

79



bytecode translator that aims at providing higher-level, transparent, type-feedback-
driven optimizations. It was not thought to be open to end users for bytecode ma-
nipulation * . Method wrappers [10] make it possible to wrap a method with be-
fore/after code. They are very fast to install and remove, as they do not need to
parse bytecode or generate methods, but are not a general-purpose transformation
tool. Several extensions actually need more power than just before/after control.
AspectS [37] has been recently proposed as an aspect-oriented interface to the re-
flective capabilities of Smalltalk combined with method wrappers (to implement
before/after advices). AspectS is actually a tool that would much profit from BYTE-
SURGEON, as it would significantly raise its expressive power.

2.3 Motivation

From the above, it should be clear that a general-purpose bytecode manipulation
tool for Smalltalk is missing. Such a tool ought to provide convenient abstractions
to users, both at the source level and bytecode level. BYTESURGEON is precisely
such a tool. Beyond its interest for the Smalltalk community, BYTESURGEON also
opens the door to a brand new range of experiments with runtime bytecode trans-
formations, since it has none of the limitations of existing Java proposals. For
instance, BYTESURGEON makes it possible to analyze concrete issues of fully-
dynamic AOP.

3 BYTESURGEON at Work

BYTESURGEON is our library for runtime program transformation in Smalltalk,
currently implemented in the Squeak environment. BYTESURGEON complements
the reflective abilities of Smalltalk [38] with the possibility to instrument methods,
down to method bodies. Smalltalk provides a great deal of structural reflection: the
structure of the system is described in itself. Structural reflection can be used to
obtain the object representing any language entity. For instance, the global variable
Example stands for the class (the object representing the class) Example, and the
object describing the compiled method aMethod in class Example is returned by
the expression Example>>#aMethod. Dynamically adding instance variables and
methods to an existing class is fully supported by any standard Smalltalk environ-
ment. However the structural description of a Smalltalk system stops at the level of
methods: compiled method cannot be reflected upon. Conversely, BYTESURGEON
can be used to do both introspection and intercession on compiled methods.

1 Actually, BYTESURGEON could profitably use AOStA for its backend, but this study is
left as future work.

80



3.1 IntrospectingViethodBodies

Let us first see how BYTESURGEON is used to introspect method bodies. The fol-
lowing code statically counts the number of instructions that occur in all methods
of the class Example:

InstrCounter reset.
Example instrument: [ :instr | InstrCounter increase ]

The instrument: method is implemented in class Behavior. As a parameter it is
given a block (of standard Smalltalk code) that takes one argument. This block is
an instrumentatiorblock: for each instruction within all methods of the class, the
instrumentation block is evaluated with a reification of the current instruction as
parameter. We will see later what an instruction reification is. For now, suffices to
say that for each instruction, a global counter is increased.

There are variants of the instrument: method for each particular language opera-
tion: constant, variable access, read and store and message sending. For instance,
instrumentSend: only evaluates the instrumentation block upon occurrences of
the message send operation. Besides calling the instrumentation method on a class,
thereby affecting all its methods, we can call it on a single method:

SendMCounter reset.
(Example>>#aMethod) instrumentSend: [ :send | SendMCounter increase ]

3.2 Reibcatiorof Languaye Operations

Instructions in a method body are static occurrences of the operations of a lan-
guage. BYTESURGEON supports message send, access to instance variable and
local variables, and constants. The structural model representing language opera-
tions is shown on Figure 12 . This structural model is bytecode-based. It does not
encode as much information as an AST does, €.g., it is not possible to extract, from
an IRSend, the instructions that correspond to the arguments of the send. This is a
limitation of bytecode-based transformation against AST-based transformation.

When calling an instrumentation method (i.e., instrument:, instrumentSend:)
reification of instructions are built, as instances of the appropriate class in the hier-
archy, and passed to the instrumentation block. The instrumentation can then intro-
spect and change them. For instance, the following piece of code prints the selector

2 The isXXX methods (e.g., isSend) are provided as a convenience to avoid the use of
visitors and double dispatch.

81



IRInstruction
isAccess
IsInstVarAccess
isInstVarRead
islnstVarWrite
isTempAccess <}

isTempRead
isTempWrite
isSend IRAccess Se,;ﬁtsofnd
isSuperSend offset isSend
isConstantAccess isAccess
method name
[F IRSuperSend
isSuperSend
IRInstVarAccess IRTempAccess IRConstantAccess
_ . constant
isInstVarAccess isTempAccess isConstantAccess
N\ JAN
IRInstVarRead IRTempRead
isInstVarRead isTempRead
IRInstVarWrite [ TRTempWrite |
isInstVarWrite isTempWrite

Fig. 1. Structural model of instructions in BYTESURGEON.

of each message send occurring within Example>>#aMethod:

(Example>>#aMethod) instrumentSend: [ :send |
Transcript show: send selector printString; cr]

Method Evaluation. A peculiar language operation is messge receive(the callee-
side equivalent of a message send). Actually, a message receive is realized by two
operations: method lookup and method evaluation. Since we are working at the
bytecode level, we do not have access to method lookup, only methodevaluation
Rather than corresponding to a bytecode instruction inside a method body, method
evaluation corresponds to a method body as a whole. Since BYTESURGEON treats
all language operations in a uniform manner, methods have the same introspection
and intercession interface than instructions (e.g., see Section 3.3.3).

3.3 ModifyingMethodBodies

BYTESURGEON supports two ways of modifying method bodies: a bytecode-level
manner, where the user directly specifies the required transformation in terms of
bytecode representations, and a source-level manner, where the transformation is
specified with a string of source code. We hereby only present the source-level API.
The bytecode-level API is briefly mentioned in Section 4.3.

Similarly to Javassist [29], BYTESURGEON provides an online compiler that makes
it possible to specify code to be inserted as a string. The methods to insert code be-

82



fore, after and instead of an occurrence of a language operation are named respec-
tively insertBefore:, insertAfter: and replace:. They take as argument the source
code as a string, which is subsequently compiled by the BYTESURGEON compiler,
and the resulting code is inserted at the appropriate position. For instance, the fol-
lowing code inserts a call to the system beeper before each message send occurring
within Example>>#aMethod:

(Example>>#aMethod) instrumentSend: [ :send | send insertBefore: ‘Beeper beep’ ]

The code string can contain any valid Smalltalk code ®, plus two kinds of special
variables: userdebnedvariablesto refer to statically-available information, and
metavariablegor runtime information.

3.3.1 Accessingstaticinformation: Userdebned/ariables

Statically-known information about an instruction can be used in the construction
of the string. For instance, the following example records the name of selector of
each message send occurring at runtime:

(Example>>#aMethod) instrumentSend: [ :send |
send insertAfter: 'Logger logSend:’, send selector printString]

Here we query the objects describing the message send operations for the name
of the message sent. To ease the construction of the string and avoid hard-to-
understand string concatenation, BYTESURGEON makes it possible to define cus-
tom variables with the syntax <: #variable>, and giving a list of association from
variable names to object references ? :

(Example>>#aMethod) instrumentSend: [ :send |
send insertAfter: 'Logger logSend: <: #sel> ’]
using: { #sel -> send selector }

3.3.2 AccessinqRuntimelnformation: Metavariables

The online compiler of BYTESURGEON also supports a number of predefined
metavariables that refer to information available at runtime, such as the receiver
of a message send (Figure 2). Metavariables are an essential part of the expres-

3 self, super and thisContext have their usual meaning, knowing that this code will be
evaluated in the place where it is inserted.

4 This is a limited sort of quasi-quoting a la Scheme; supporting true quasi-quoting (with
no needs to specify manually the associations) is left as future work.

83



Operation Metavariable Description
Message Send/ <meta: #arguments> | arguments as an array

Method Evaluation | <meta: #argX> X*hargument
<meta: #sender> sender object
<meta: #receiver> receiver object
<meta: #result> returned result (after only)

Temp/InstVar Access | <meta: #value> value of variable

<meta: #newvalue> | new value (write only)

Fig. 2. Metavariables supported by BYTESURGEON.

siveness of a good bytecode transformation framework. The exact set of avail-
able metavariables depends on both the operation selected —in the case of a mes-
sage send, metavariables are provided to refer to the sender, the receiver and the
arguments— and the transformation to perform —when inserting after, it is possible
to access the result—. Metavariables are denoted by the <meta: #variable> con-
struct. For instance, the following code replaces each message send with a call to a
dispatcher metaobject in charge of the actual method lookup [7,39]:

(Example>>#aMethod) instrumentSend: [ :send | send replace:
'‘CustomDispatcher send: <: #selSymbol> to: <meta: #receiver>
with: <meta: #arguments> ’ ]
using: { #selSymbol -> send selector printString }

The BYTESURGEON online compiler takes care of generating the code to access
the runtime information denoted by the metavariables, by adding a preamble before
the inlined code. The runtime overhead due to preambles motivated us to maintain
a special syntax for metavariables (meta), to raise the attention of users that these
variables should be used conscientiously.

3.3.3 Altering MethodEvaluation

To support transformation of method evaluation, method objects also support the
insertBefore:, insertAfter: and replace: messages. As an example, the following
code inserts a trace before each evaluation of a method in Example:

Example instrumentMethods:
[ :m | minsertBefore: 'Logger logExec: <: #sel> "’
using: { #sel -=> m selector } ]

84



The metavariables for method evaluation are the same as for message sending (see
Figure 2). The following example uses a metavariable to access the method evalu-
ation result:

Example instrumentMethods:
[ :m | minsertAfter: 'Logger logExec: <: #sel> result: <meta: #result>’
using: { #sel -> m selector } ]

4 |Inside BYTESURGEON

We now give an overview of the implementation of BYTESURGEON, in particular
the relation with the closure compiler and the transformation process. The low-level
transformation API is also discussed.

4.1 Squeak

BYTESURGEON is currently implemented in Squeak [40], an open source imple-
mentation of Smalltalk-80 [41]. Squeak is based on a virtual machine that interprets
bytecodes. During a normal compilation phase, method source code is scanned and
parsed, an abstract syntax tree (AST) is created and bytecodes are generated for the
corresponding methods (Figure 3).

source text bytecode
Scanner/ AST Code y

I Parser I Generator .

Fig. 3. The standard Smalltalk to bytecode compiler.

To implement BYTESURGEON in Squeak we could have directly work on byte-
code. However, rewriting bytecode is tedious and error-prone for several reasons:
the bytecode vocabulary is low-level, jumps have to be calculated by hand, the
expression of the context where bytecodes should be inserted is limited. Even sim-
ple modifications are surprisingly tedious to manage. Fortunately, a new compiler
for Squeak, the closule compiler; has been recently proposed which offers a better
intermediate bytecode representation.

4.2 TheClosue Compilerandits IntermediateRepesentation

The closure compiler [42] relies on a more complex bytecode generation step (Fig-
ure 4): first an IntermediateRepesentationIR) is created; then the IR is used to
generate the real bytecode (the raw numbers).

85



source text AST IR bytecode
P Scanner/ ASTranslator f—————————Jp| I|RTranslator
Parser
Code Generator

Fig. 4. The closure compiler.

The IR is a high-level representation of bytecode, abstracting away specific details:
jumps are encoded in a graph structure, sequences of bytecode-nodes form a basic
block, and jump-bytecodes concatenate these blocks to encode control flow. The
main goal of IR is to abstract from specific bytecode encodings: for instance, al-
though the bytecode for a program in Squeak is encoded differently than in Visual-
Works, their IR is identical. Using IR therefore makes the porting to other bytecode
sets simple.

The closure compiler has a counterpart, the decompiler, which converts bytecode
back to text. Here, the whole process works backwards: from bytecode to IR, from
IR to AST, and finally from AST to text.

As motivated in Section 2.2, BYTESURGEON ought to offer adequate abstractions
for both bytecode-level and source-level transformations. The IR of the closure
compiler actually represents an excellent alternative for working at the bytecode
level: it makes it possible to express code that is not directly obtainable from
Smalltalk source code, while abstracting away many details.

All classes reifying instructions (recall Figure 1) are from the closure compiler IR.
The low-level transformation API of BYTESURGEON is based on these classes. In
addition to the classes reifying instructions which correspond to language opera-
tions, the IR includes classes reifying bytecode-only instructions: IRPop, IRDup,
IRJump, IRReturn, etc.

4.3 Low-level TransformatiormAPI

In Section 3, we have used the high-level API of BYTESURGEON to specify trans-
formations giving a string of source code, which may contain metavariables to ac-
cess dynamic information. The description of the new code to be inlined can also be
done by directly editing the instruction objects for the IR hierarchy. In the following
example, the selector of all sends of the message oldMessage:with: are replaced
by sends of the message newMessage:with:, by using the selector: accessor of
an IRSend object:

(Example>>#aMeth) instrumentSend: [ :send | send selector = #oldMessage:with:
ifTrue: [ send selector: #newMessage:with: ] ].

86



The IRInstruction class can also be used as a factory to produce new objects de-
scribing bytecode. These objects can be used in replacement of the original instruc-
tion or be inlined before or after it. An alternative implementation of the code above
is:

(Example>>#aMeth) instrumentSend: [ :send | send selector = #oldMessage:with:
ifTrue: [ send replace: (IRInstruction send: #newMessage:with:)] ].

This implementation replaces the message send bytecode by a new one having a
different selector. IRInstruction send: #newMessage:with: returns an object that
describes a message send bytecode.

Specifying the transformation at the bytecode-level makes it possible to express
constructs that are impossible at the level of the Smalltalk language, and to easily
specify transformations that are more complex to express with the source-level API.
For instance, using the source-level API to change the selector of a message send,
as done above, is done as follows:

(Example>>#aMeth) instrumentSend: [ :send | send selector = #oldMessage:with:
ifTrue: [ send replace: '<meta: #receiver> perform: #newMessage:with:
with: <meta: #arguments> "] ].

Apart from being slightly more verbose and relying on the use of the reflective
message sending perform:with:, this approach requires the use of metavariables,
which are more costly due to the associated preambles that needs to be generated
(as shown in Section 4.4). Conversely, the low-level API makes it possible to do
this transformation directly, without requiring runtime reification.

4.4 Implementatiorof Metavariables

When BYTESURGEON instruments a method, the bytecode-to-IR part of the clo-
sure compiler generates the IR objects that are passed to the instrumentation block
specified by the user. If the source-level API is used, then the code to be inserted
is preprocessed to generate the IR nodes and to handle the metavariables, if any.
For metavariables, a preamble code is generated to ensure that the expected val-
ues will be on the stack. Then, the preamble and code are inserted into the IR of
the method. Finally, the IR-to-bytecode part of the closure compiler generates raw
bytecodes and replaces the old method with the new, transformed version.

In the following we explain the implementation of metavariables which reify run-
time information. Let us consider the reification of the receiver of a message send.

Preambles.Squeak uses a stack-based bytecode, so all parameters for a message

87



send are pushed on the stack before the send bytecode is executed: first the receiver,
and then the arguments. For instance, the bytecode for the expression 3 + 4 is as
follows:

77 pushConstant: 3
20 pushConstant: 4
BO send: +

7C returnTop

Consider that we now want to provide access to the receiver (3) via a metavariable:

(Example>>#method) instrumentSend: [:send |
send insertBefore: "Transcript show: <meta: #receiver> as-
String’].

To support metavariables, we need to add bytecode to store the necessary values,
by popping them from the stack and storing them in additional temporary variables.
In our example, we need the receiver. Since the receiver is deep in the stack, below
the arguments, we also need to store the arguments in temporary variables, to be
able to access them afterwards. In the case of before/after, it is also necessary to
rebuild the stack. The resulting bytecode for our example is as follows:

22 pushConstant: 3
23 pushConstant: 4

68 poplntoTemp: 0 "put argument in temp 0”
69 poplIntoTemp: 1 "put receiver in temp 1”
24 pushLit: ##Transcript ”start of inserted code”

11 pushTemp: 1 "push receiver for printing”

D5 send: asString
E6 send: show:

87 pop "end of inserted code”
11 pushTemp: 1 "rebuild the stack”
10 pushTemp: 0

BO send: + “original code”

7C returnTop

To access all arguments as an array, the compiler generates code to create the array
instance, to add arguments to it, and to store the array in a temporary variable.

For performance and space reasons, preamble generation needs to be optimized.
First, the compiler only generates code for the metavariables that are effectively
used in the inlined code. For instance, if access to the arguments is not needed,
then the array creation is avoided. The second important optimization is to reuse

88



temporary variables. Indeed, there are potentially many operations for which we
need to generate a preamble, in a single method. If we used new temporary variables
for each, we would soon run out of temporary variables (Squeak imposes a limit
of 256 temporary variables per method). Therefore, BYTESURGEON remembers
the original number of temporary variables and reuses the variables added for each
preamble. This information is saved inside the compiled method object, so that
reuse of variables works even if instrument: is executed several times on the same
method.

Inlining code.Once the preamble is added, the code to inline can be inserted. First,
the BYTESURGEON compiler generates the IR for the new code. For metavariables,
the compiler generates code that loads the corresponding temporary variables. The
generated IR instructions are then added to the original IR of the method. If neces-
sary, jump targets are adjusted and basic blocks renumbered. The new method IR
is then given to the closure compiler, which generates the final raw bytecodes and
installs the new method.

5 Validation

We now validate the interest of BYTESURGEON by showing how easy it is to imple-
ment two language extensions: method wrappers [10] and a simple runtime MOP
for controlling accesses to instance variables. Section 5.3 completes this validation
by reporting on performance measurements.

5.1 MethodWrappes

Method wrappers [10] wrap a method with before/after behavior. Wrapping a method
is implemented by swapping out the compiled method by another one, valueWith-
Receiver:arguments: that calls the before method, then the original method, and
finally the after method ® :

MethodWrapper>>valueWithReceiver: anObject arguments: args
self beforeMethod.
" [clientMethod valueWithReceiver: anObject arguments: args]
ensure: [self afterMethod]

5 At the time of this writing, BYTESURGEON does not yet support exception handlers, so
we actually implemented a simplified version where the after method is just inlined at the
end of the method.

&9



The BSMethodWrapper class contains the logic to install an instance of itself as
a method wrapper, with empty before/after methods.

To define a wrapper, a subclass should be created, specifying the before/after meth-
ods. For instance, class CountingMethodWrapper wraps a method to count invo-
cation of calls to a given method:

BSMethodWrapper subclass: #CountingMethodWrapper
instanceVariableNames: ‘count’...

CountingMethodWrapper >>beforeMethod
self count: self count + 1

To count the invocations on a method, we install the wrapper:

wrapper := CountingMethodWrapper on: #aMethod inClass: Example.
wrapper install.

The installation of a method wrapper consists in first decompiling the before/after
methods to IR (ir), stripping the return at the end (strip), then replacing all self ref-
erences to refer to the wrapper (replaceSelf:), and finally inlining the before/after
methods (insertBefore:after:):

BSMethodWrapper>>inlineBeforeAfter
| before after |
before := (self class lookupSelector: #beforeMethod) ir strip.
after := (self class lookupSelector: #afterMethod) ir strip.

self replaceSelf: before. self replaceSelf: after.
self method insertBefore: before startSequence after: after startSequence.

BSMethodWrapper>>replaceSelf: ir "replace self with pointer to me”
" ir allinstructions do: [:instr | instr isSelf ifTrue: [
instr replaceWith: (IRInstruction pushLiteral: self)]].

As we can see, method wrappers are straightforward to implement with BYTE-
SURGEON. The complete implementation included in the distribution consists of
41 lines of code, with comments. This implementation of method wrapper should
only serve as an example of use of BYTESURGEON, it is not meant to be a replace-
ment yet since not all features of method wrappers are supported. Furthermore, as
illustrated in Section 5.3, standard method wrappers and BYTESURGEON method
wrappers have different performance profiles.

90



5.2 A SmallRuntimeMOP

We now show how to implement a small runtime MOP for controlling accesses to
instance variables. A metaobject can be associated to a class, and upon accesses to
instance variables of objects from the class, it gets control via either its instVar-
Read:in: method (if it is a read access) or its instVarWrite:in:value: method (if
it is a write access). For instance, the following TraceMO simply outputs what is
happening to the transcript and then performs the standard action, i.€., returning the
instance variable value, or storing the new value:

TraceMO>>instVarRead: name in: object
| val |
val := object instVarNamed: name.
Transcript show: 'var read: ’, val printString; cr.
“val.

TraceMO>>instVarStore: name in: object value: newVal
Transcript show: 'var store: ’, newVal printString; cr.
“object instVarNamed: name put: newVal.

This metaobject can be installed on class Point as follows:
MOP install: TraceMO new on: Point

The MOP>>install method uses BYTESURGEON to replace the bytecodes that read
or store instance variables with calls to the metaobject (aka.hooks):

MOP class >>install: mop on: aClass
| dict |
dict := Dictionary newFrom: #mo -> mop.
aClass instrumentinstVarAccess: [:instr |
dict at: #name put: instr varname.
instr isRead
ifTrue: [instr replace: '<: #mo> instVarRead: <: #name> in: self’
using: dict]
ifFalse: [instr replace: '<: #mo> instVarStore: <: #name> in: self
value: <meta: #newvalue>’
using: dict] ].

The dict dictionary is used to hold the reference to the metaobject controlling ac-
cesses, and for each access instruction, the name of the variable is put in it. This
makes it possible to use user-defined variables when specifying the transformation.

91



Furthermore, since BYTESURGEON supports runtime bytecode manipulation, we
are able to completely uninstallhooks when needed:

MOP uninstall: MOExample.

Of course, this simple MOP is not complete: if methods are changed (recompiled),
the MOP is removed, there is no way to compose multiple metaobjects on the same
class, it is not possible to associate different metaobjects to different instances, etc.
But the basic features are there: a MOP for instance variable accesses that can be
installed and retracted at runtime —and completely implemented in lessthan 10
lines-.

5.3 Bendimarks

We now report on several preliminary benchmarks ® we have performed to evalu-
ate the efficiency of BYTESURGEON. First, we report on transformation vs. com-
pilation costs, and then study the performance of the standard implementation of
method wrappers with that based on BYTESURGEON.

Transformation performance. One of the reasons for editing bytecode instead
of source is performance. To verify this claim, we have carried out a simple set
of benchmarks, in which we compare the time to compile some code with both the
standard compiler of Squeak and the new compiler (closure compiler), and the time
taken by BYTESURGEON to transform all instructions in the code with an empty
block. Hence what we actually measure for BYTESURGEON is the time it takes
to decompile methods to IR, execute the block for each instruction (which does
nothing), generate a new identical method and install it.

The first benchmark is applied to the Object class:

"Test compilers”
[Object compileAll] timeToRun

"Test ByteSurgeon”
[Object instrument: [:inst | self ]] timeToRun

Class Object contains 429 methods, amounting to 2344 lines of code. We did the
same experiment on a larger code base: the whole hierarchy of collection classes.
This hierarchy consists of 76 classes, 2231 methods, summing up to 15783 lines of
code. The benchmark is run as:

6 Machine used: Apple PowerBook 1.5Ghz, Squeak 3.8

92



Object Collections

time (ms) | factor || time (ms) | factor

BYTESURGEON 661 1 4817 1
standard compiler 1232 1.86 9760 2.03
closure compiler 3673 5.55 33611 6.98

Fig. 5. Comparing compilation and transformation times.

"Test compilers”
[Collection allSubclasses do: [ :c | ¢ compileAll ]] timeToRun

"Test ByteSurgeon”
[Collection allSubclasses do: [ :c | ¢ instrument: [ :inst | self ]]] timeToRun

The results of both benchmarks are presented in Figure 5. As expected, BYTE-
SURGEON performs very well. The highly optimized standard compiler is approxi-
mately twice slower than BYTESURGEON, while the new compiler, which is much
easier to reuse and extend but less optimized, is around 6 times slower.

Method wrapper performance. We now compare the performance of the stan-
dard implementation of method wrappers with that based on BYTESURGEON. We
compare both installation (transformation) time and execution time.

The test consists of a simple before/after counter manipulation wrapping a straight-
forward method:

Bench>>run beforeMethod afterMethod
" 3+4. BCounter inc BCounter inc

The benchmark of the installation/uninstallation is run as follows:

[1000 timesRepeat:
w := TestMethodWrapper on: #run inClass: Bench.
w install. w uninstall]] timeToRun

The runtime performance of both implementations is compared to that of method
that directly implements the wrapper:

Bench>>run
[t
BCounter inc.
t = 3+4.

93



Method Wrapper Installation Runtime

implementation | time (ms) | factor || time (ms) | factor

Hand-coded - — 1253 1
Standard 603 1 6732 5.37

BYTESURGEON 3710 6.01 1222 0.98

Fig. 6. Comparing installation and runtime performance of method wrapper implementa-
tions.

BCounter inc.
"t.

To be fair in our evaluation, we changed the execution semantics of standard method
wrappers, so that they do not wrap the after in an exception handler, but rather inline
both before and after methods. The benchmark for both cases is run as follows:

[1000000 timesRepeat: [Bench new run]] timeToRun

The results of the benchmarks (Figure 6) show that BYTESURGEON is slower for
installing wrappers. This was expected because method wrappers actually simply
swap the wrapped compiled method with the wrapper one, while BYTESURGEON
actually modifies the original method. The other side of the coin is that BYTE-
SURGEON-based method wrappers are much more efficient at runtime. Standard
method wrappers are 3.5 times slower than the hand-coded version, while the
BYTESURGEON implementation is as fast as the hand-coded version. The slight
enhancement that can be observed comes from the fact that, in the considered case,
BYTESURGEON does not need to use a temporary variable to store the return value,
it just uses the stack.

6 Conclusionand Future Work

We have presented BYTESURGEON, an efficient library for runtime bytecode ma-
nipulation in Smalltalk, implemented in Squeak. We have shown:

e APIs for specifying transformations that allow users to control the tradeoff be-
tween expressiveness and performance for the code to be inlined: BYTESURGEON
users can either specify Smalltalk code with metavariables or specify the code at
the bytecode level.

e the expressiveness of BYTESURGEON by showing how well-known language
extensions are concisely expressed, and reported on preliminary benchmarks val-
idating our efficiency claim.

94



e the runtime capabilities of BYTESURGEON with a simple MOP that can be dy-
namically installed and retracted. Such runtime changes are not feasible in a
static system like Java without changing the virtual machine.

Future work can be dividing in two directions: the first is to continue improving
BYTESURGEON as such, and the second consists in using BYTESURGEON in a
number of projects that will directly benefit from its features. Of course, both tracks
mutually benefit from each other.

Regarding BYTESURGEON itself, there is a number of features that are being dis-
cussed at this time. In particular, BYTESURGEON should be extended with support
for exception handling. It is also appealing to offer a kind of proceed instruction
to trigger the execution of a replaced operation occurrence from inside the meta-
computation. Another direction to explore is that of the abstraction layer used to
describe a method. As of now we use a bytecode representation, but it would be
interesting to explore the direct use of abstract syntax trees at this level. The choice
between AST and bytecode presents a tradeoff between performance and expres-
siveness: decompiling to AST and code-generation will be slower than using the
the bytecode-level abstractions of the IR, but in turn we gain a lot in expressiveness
and ease of use, since AST is more structured than IR. We plan to explore these
tradeoffs in the future.

As regards applications of BYTESURGEON in other projects, the perspectives are
manifold. We plan to use BYTESURGEON for code annotation to collect runtime
traces of program execution to support omniscientelugging [11]. ReR3& is a sys-
tem based on bytecode transformation providing partial behavioral reflection in
Java [43]. It has recently evolved to a versatile kernel for multi-language AOP [44],
easing the implementation of (domain-specific) aspect languages and providing
support for the detection and resolution of aspect interactions. The on-going Gep-
petto project aims at exploring the possibilities offered by an implementation of
Reflex in Squeak, using BYTESURGEON, enjoying the flexibility of true runtime
code transformation.

Acknowledgements We thank David Réthlisberger and the anonymous reviewers
for their comments.

References

[1] R.Keller, U. Holzle, Binary component adaptation, in: ECOOP’98, LNCS 1445, 1998,
pp- 307-340.

[2] D. L. Parnas, On the criteria to be used in decomposing systems into modules, CACM
15 (12) (1972) 1053-1058.

95



[3] R. Stroud, Z. Wue, Using metaobject protocols to satisfy non-functional requirements,
in: Advances in Object-Oriented Metalevel Architectures and Reflection, CRC Press,
1996, pp. 31-52.

[4] E. Tanter, J. Piquer, Managing references upon object migration: Applying separation
of concerns, in: Proceedings of the XXI International Conference of the Chilean
Computer Science Society (SCCC 2001) (jan 2001).

[5] J. McAffer, Meta-level architecture support for distributed objects, in: Proceesings of
the Fourth International Workshop on Object-Orientation in Operating Systems, 1995.,
1995, pp. 232-241.

[6] G.Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin,
Aspect-Oriented Programming, in: M. Aksit, S. Matsuoka (Eds.), Proceedings
ECOOQP ’97, Vol. 1241 of LNCS, Springer-Verlag, Jyvaskyla, Finland, 1997, pp. 220-
242.

[7] S. Ducasse, Evaluating message passing control techniques in Smalltalk, Journal of
Object-Oriented Programming (JOOP) 12 (6) (1999) 39-44.

[8] J. H. Heinz-Dieter Bocker, What tracers are made of, in: Proceedings of
OOPSLA/ECOOQP °90, 1990, pp. 89-99.

[9] F. Pachet, F. Wolinski, S. Giroux, Spying as an Object-Oriented Programming
Paradigm, in: Proceedings of TOOLS EUROPE *93, 1993, pp. 109-118.

[10] J. Brant, B. Foote, R. Johnson, D. Roberts, Wrappers to the Rescue, in: Proceedings
ECOOQP ’98, Vol. 1445 of LNCS, Springer-Verlag, 1998, pp. 396-417.

[11] B. Lewis, Debugging backwards in time, in: Proceedings of the Fifth International
Workshop on Automated Debugging (AADEBUG 2003) (oct 2003).

[12] A. J. Ko, B. A. Myers, Designing the whyline: a debugging interface for asking
questions about program behavior, in: Proceedings of ACM CHI 2004 Conference
on Human Factors in Computing Systems, Vol. 1, 2004, pp. 151-158.

[13] A. H. Borning, D. H. Ingalls, Multiple inheritance in Smalltalk-80, in: Proceedings at
the National Conference on Al, Pittsburgh, PA, 1982, pp. 234-237.

[14] B. Garbinato, R. Guerraoui, K. R. Mazouni, Distributed programming in GARF,
in: R. Guerraoui, O. Nierstrasz, M. Riveill (Eds.), Proceedings of the ECOOP °93
Workshop on Object-Based Distributed Programming, Vol. 791 of LNCS, Springer-
Verlag, 1994, pp. 225-239.

[15] J. K. Bennett, The design and implementation of distributed Smalltalk, in: Proceedings
OOPSLA °87, ACM SIGPLAN Notices, Vol. 22, 1987, pp. 318-330.

[16] P. L. McCullough, Transparent forwarding: First steps, in: Proceedings OOPSLA ’87,
ACM SIGPLAN Notices, Vol. 22, 1987, pp. 331-341.

[17] K. Beck, Instance specific behavior: Digitalk implementation and the deep meaning
of it all, Smalltalk Report 2(7).

96



[18] J.-P. Briot, Actalk: A testbed for classifying and designing actor languages in the
Smalltalk-80 environment, in: S. Cook (Ed.), Proceedings ECOOP ’89, Cambridge
University Press, Nottingham, 1989, pp. 109-129.

[19] Y. Yokote, M. Tokoro, Experience and evolution of ConcurrentSmalltalk, in:
Proceedings OOPSLA ’87, ACM SIGPLAN Notices, Vol. 22, 1987, pp. 406-415.

[20] G. A. Pascoe, Encapsulators: A new software paradigm in Smalltalk-80, in:
Proceedings OOPSLA ’86, ACM SIGPLAN Notices, Vol. 21, 1986, pp. 341-346.

[21] B. Foote, R. E. Johnson, Reflective facilities in Smalltalk-80, in: Proceedings
OOPSLA ’89, ACM SIGPLAN Notices, Vol. 24, 1989, pp. 327-336.

[22] J. McAffer, Meta-level programming with coda, in: W. Olthoff (Ed.), Proceedings
ECOQP 95, Vol. 952 of LNCS, Springer-Verlag, Aarhus, Denmark, 1995, pp. 190-
214.

[23] W. R. LalLonde, M. V. Gulik, Building a backtracking facility in Smalltalk without
kernel support, in: Proceedings OOPSLA 88, ACM SIGPLAN Notices, Vol. 23, 1988,
pp. 105-122.

[24] G. Kiczales, J. des Rivieres, D. G. Bobrow, The Art of the Metaobject Protocol, MIT
Press, 1991.

[25] E. Tanter, M. Ségura-Devillechaise, J. Noyé, J. Piquer, Altering Java semantics via
bytecode manipulation, in: Proceedings of GPCE’02, Vol. 2487 of LNCS, Springer-
Verlag, 2002, pp. 283-89.

[26] M. Tatsubori, S. Chiba, M.-O. Killijian, K. Itano, OpenJava: A class-based macro
system for java, in: 1st OOPSLA Workshop on Reflection and Software Engineering,
Vol. 1826 of LNCS, Springer Verlag, 2000, pp. 117-133.

[27] J. Bachrach, K. Playford, The Java Syntactic Extender (JSE), Proceedings of OOPSLA
’01, ACM SIGPLAN Notices 36 (11) (2001) 31-42.

[28] M. Dahm, Byte code engineering, in: Proceedings of JIT ’99, Diisseldorf,
Deutschland, 1999, pp. 267-277.

[29] S. Chiba, M. Nishizawa, An easy-to-use toolkit for efficient Java bytecode translators,
in: Proceedings of GPCE’03, Vol. 2830 of LNCS, 2003, pp. 364-376.

[30] D. A. Smith, A. Kay, A. Raab, D. P. Reed, Croquet, A Collaboration System
Architecture, in: Proceedings of the First Conference on Creating, Connecting and
Collaborating through Computing (2003).

[31] Jython, http://www.jython.org/.

[32] Java debug interface (jdi),
http://java.sun.com/j2se/1.4.2/docs/jguide/jpda/jarchitecture.html.

[33] S. Liang, G. Bracha, Dynamic class loading in the Java virtual machine, in:
Proceedings of OOPSLA 98, ACM SIGPLAN Notices, 1998, pp. 36—44.

97



[34] E. Bruneton, R. Lenglet, T. Coupaye, ASM: A code manipulation tool to implement
adaptable systems, in: Proceedings of Adaptable and extensible component systems
(nov 2002).

[35] S. Chiba, Load-time structural reflection in Java, in: Proceedings of ECOOP 2000,
Vol. 1850 of LNCS, 2000, pp. 313-336.

[36] E. Miranda, A Sketch for an Adaptive Optimizer for Smalltalk written in Smalltalk,
unpublished (2002).

[37] R. Hirschfeld, AspectS — Aspect-Oriented Programming with Squeak, in: M. Aksit,
M. Mezini, R. Unland (Eds.), Objects, Components, Architectures, Services, and
Applications for a Networked World, no. 2591 in LNCS, Springer, 2003, pp. 216—
232.

[38] F. Rivard, Smalltalk : a Reflective Language, in: Proceedings of REFLECTION ’96,
1996, pp. 21-38.

[39] J. Ferber, Computational reflection in class-based object-oriented languages, in:
Proceedings OOPSLA ’89, ACM SIGPLAN Notices, Vol. 24, 1989, pp. 317-326.

[40] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay, Back to the future: The story
of Squeak, A practical Smalltalk written in itself, in: Proceedings OOPSLA 97, ACM
SIGPLAN Notices, ACM Press, 1997, pp. 318-326.

[41] A. Goldberg, D. Robson, Smalltalk 80: the Language and its Implementation, Addison
Wesley, Reading, Mass., 1983.

[42] A. Hannan, Squeak Closure Compiler,
http://minnow.cc.gatech.edu/squeak/ClosureCompiler.

[43] E. Tanter, J. Noyé, D. Caromel, P. Cointe, Partial behavioral reflection: Spatial and
temporal selection of reification, in: Proceedings of OOPSLA 03, ACM SIGPLAN
Notices, 2003, pp. 27-46.

[44] E. Tanter, J. Noyé, A versatile kernel for multi-language AOP, in: Proceedings of
the 4th ACM SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering (GPCE 2005), Vol. 3676 of LNCS, Tallin, Estonia, 2005.

98



Towards a Taxonomy of SUnit Tests *

MarkusGalli * Michele Lanza® OscarNierstras?

aSoftwae CompositionGroup
Institut far Informatikund angawandteMathematik
Universitat Bern, Switzerland

bFaculty of Informatics
University of Lugano,Switzerland

Abstract

Although unit testinghasgainedpopularity in recentyears,the style and granularity of
individualunittestsmayvarywildly. Thiscanmakeit difbcultfor adeveloperto understand
which methodsaretestedby which tests,to whatdegreethey aretestedwhatto take into
accountwhile refactoringcodeandtests,andto assesshe value of an existing test. We
have manuallycateyorizedthe testbaseof an existing object-orientedsystemin orderto
derive a brsttaxonomyof unit tests.We have thendevelopedsomesimpletoolsto semi-
automaticallycateyorize testsaccordingto this taxonomy andappliedthesetools to two
casestudies As it turnsout, the vastmajority of unit testsfocuson a singlemethod which
shouldmake it easierto associatéestsmoretightly to themethodsundertest.In this paper
we motivateandpresenbur taxonomy we describethe resultsof our casestudiesandwe
presenbur approacto semi-automaticinit testcateyorization.

Key words: unit testing,taxonomy reverseengineering

1 Introduction

XUnit [1] in its variousforms (JUnitfor Java, SUnit for Smalltalk,etc.)is awidely-
usedopen-sourcenit testingframavork. It hasbeenportedto mostobject-oriented
programmindanguagesndis integratedin mary commonIDEs suchasEclipse.

* We thank StephaneDucasseor his helpful commentsand gratefully acknaviedgethe
Pnanciabupportof the SwissNationalScienceFoundatiorfor theprojectObolsandTech-
niquesfor Decomposingind ComposingSoftware QSNF ProjectNo. 2000-067855.02).

Emailaddressesgaelli@iam.unibe.ch (MarkusGaili),
michele.lanza@unisi.ch (MicheleLanza),oscar@unibe.ch (Oscar
Nierstrasz).

ESUG2005InternationalSmalltalkConference August2005,BrusselsBelgium



T System Browser with Tests: Account =Nl

Bank-Model = Account =--all -- ®| balance =l Account class>>with®
Bank-Model-Tests “|Bank ~| accessing ~|deposit: y y
Refactory-SqueakRB- initializing-removing |number

Refactory-Lint number:

Refactory-Test data withdraw:

Refactory-Testing

Refactory-SqueakRB-'

Refactory-Environme

JHl::‘fﬂl‘.t'.l:'J’\.-'-J\-"[ odel il [N 2 class

trowee variables zenders implementors inheritance wersions

withdrawOKFrom123
lanAccount |
anAccount:= Account deposit1000n123.
self test: [anAccount withdraw: 60].
self assert: [anAccount balance = 40].
“anAccount

[ 'J

Fig. 1. An enhancealassbrowsershovs methodsandtheir one-methodestssite by site.
Notethatthetestreturnsits result,thusenablingotherunit teststo reuseit. We thusstore
testslik e otherfactorymethodson the classsite.

Althoughthesedevelopmenternvironmentshelpdevelopergo navigatebetweerre-
latedmethodsn acomple softwaresystemthey offer only limited helpin relating
methodsandthe unit teststhattestthem.

Our hypothesisis that a majority of unit testsfocus on single methods.We call

thesededicatedunit testsone-methoccommand. If our hypothesisis valid, then
we could helpthe developerin severalwaysto write andevolve methodgsogether
with their tests:

¥ Tighter integration of testsand methodsin classbrowses. Eachone-method
commanctouldbedisplayedcloseto its method anddocumenta quality-appreed
usageof themethod.(SeeFigurel) It thenwould bealsoclearif amethodhasa
dedicatedestcaseor not. The developerwould not have to switchwindows for
developingtestsor methodsasthey could be naturallydisplayedsite by site.

¥ TestcaseselectionAll one-methodommandsouldbeexecutedassoonastheir
focusedmethodhasbeenchanged.

¥ Concete Typing The set of testedconcretetypesof the recever, parameters
andresultof the methodundertestarededucibleby executinganinstrumented
versionof its one-methocdcommandsThusone-methodcommandsemove the
burdenof a test-brst-dien developmentof providing the typesin a statically
typedlanguageor deducinghemin a dynamicallytypedlanguage.

¥ Testcaserefactoring If amethodis deleted,its correspondingestmethodcould
bedeletedmmediatelytoo. Renamingamethodwould notbreakthe brittle nam-
ing corventionanymore,which s currentlythe only link betweera methodand
its unit tests.Adding a parameteto a methodcould be automaticallymirrored

100



by addinga factoryto its accordingest! .
In orderto validateour hypothesisve have:

¥ Developedaninitial taxonomyof unit testsby carryingoutanempiricalstudyof
asubstantiatollectionof testsproducedoy acommunityof developers.

¥ Implementedsomelightweight tools to automaticallyclassify certaintestsinto
catgyoriesofferedby thetaxonomy

¥ Conductectasestudieso validatethe generalityof thetaxonomy

Our manualexperimentsupportsthe hypothesisthat a signibPcantportion of test
casedave animplicit one-to-oneelationshipto amethodundertestor aredecom-
posableinto one-methoccommandsAlthoughit is difpcult to identify a general
algorithmto distinguishthis kind of test,our initial heuristicsto automatethis en-
deavor succeedhn identifying 50%of one-to-ondestswithoutresultingin ary false
positives.

Structure of the article. In Section2 we debPnesomebasicterms.In Section3
we presentthe taxonamy derived from our marual casestudy In Section4 we
describesomesimple heuristicsfor mappingunit teststo the taxonomy and we
describethe resultsof applyingtheseheuristicsto two casestudies.In Section5
we discusssomeof the problemsand difpcultiesencounteredSection6 briel3y
outlinesrelatedwork. In Section7 we concludeandoutlinefuture work.

2 Basic Definitions

We Prstintroducesomebasicterminology on which our taxonomytbuilds on.

Assertion:An assertionis a methodthatevaluatesa (side-efect free) Booleanex-
pressionandthrows anexceptionif theassertiorfails. Unit testassertionsisually
focuson specibdnstanceswhereasassertion®f DesignBy Contract are usedin
post-conditionandaremoregeneral.

Padckage: We assumehe existenceof a mechanisnior groupingandnaminga set
of classeandmethodsin the caseof Java this would be packagesin the caseof
Smalltalkwe useclasscateyoriesasthe smallestcommondenominatoiof several
Smalltalkdialects.We call thesegroupspadkages

CommandEvery XUnit Testis acommand3], whichis a parametefree method
whoserecever canbe automaticaly createdThe XUnit Testcanthusbe automat-
ically executed.

1 Furtherrefactoringg2], which have to be carriedoutin parallelfor thetestcodeandthe
codeundertestwould be easiertoo, but this is subjectto furtherresearch.

101



Command
(focuses on one method?)

yes no
One-Method Command Multiple-Method Command
(tests each call of focused method?) (decomposable into One-Method Tests?)
yes no yes no
/ -~ \
One-Method One-Method Multiple-Method Test Suite Other
Test Command Example Command (same scenario for
(calls focused (calls focused each tested method?)
method once?) method once?)
correlates methods
without focusing
on one?
yes no yes no yes
AN /
One-Method One-Method One-Method Multi-Facet Constraint
Test Test Suite Example Suite Test Suite Test
talks about the
. . . , hot it
One-Method Example Multiple-Scenario Test Suite program, not its
i effects?
(expects exception?) (all later tested methods use
result of former?)
yes no yes nlo
Pessimistic Method Optimistic Method Cascaded Independent Uncategorized Meta Test
Example Example Test Suite Test Suite

Fig. 2. Taxonomyof unit tests.Nodesare gray and denoteconcreteoccurrence®f unit
tests.

The commandrecever in the caseof a XUnit testcasecan be constructedcauto-
matically e.g., new MyTestCase(myTestSelector). Thewholecommandhenlooks
like:

(new MyTestCase(myTestSelector)).run()

Testpadage: A testpadkage is a packagevhichincludesa setof commands.

Padkage underTest:If atestpackagedestsanothempackageye call this otherpack-
agethe padkage undertest which may beidentibedeitherimplicitly by meansof
namingcornventions,or explicitly by meansof adependengcdeclaration.

Candidatemethod:A candidatemethodis a methodof the packagaundertest.

Focuseson onemethod:We saythata commandocuseon onemethod if it tests
theresultor sideeffectsof onespecibPanethodandnottheresultor sideeffectsof
severalmethods.

102



3 A Taxonomy of Unit Tests

Initial casestudy We dervedthetaxonomyby manuallycateyorizing982unit tests
of theSqueaK4] basesystent . Squeaks afeature-richppensourceémplementa-
tion of the Smalltalkprogrammindanguagewrittenin itself andby mary develop-
ers.It includesnetwork- and 2D/3D-graphicssupport,an integrateddevelopment
ernvironment,anda construcwist learningervironmentfor children.

The testswere written by at least26 differentdevelopers.One of the testdevel-
opersdeveloped36% of the testcasestwo more developeda further 34%, and
yet anothersix developersproducedanotherl9% of tests.Eachof the otherde-
velopersproducedessthan3% of the tests.We debnedhe taxonomydepictedin
Figure2 by iteratively groupingtestsinto cateyjoriesandrebningthe classibcation
criteria. Our manualcateyorizationyieldeda distribution of the categoriesshavn
in Figure3.

Constraint tests Meta tests
10% 50,

Independent test suites
2%

Cascaded test suites
4%

Multi-facet test suites
5%

One-method tests

53%
One-method

example commands
6%

One-method test suites
15%

Fig. 3. Manualclassibcatiomf unit testsfor the baseSqueaksystem

We now describeandmotivateeachof the unit testcateyoriesin thetaxonomy For
eachnodeof our taxonomywe presenta realworld examplefoundin the Squeak
unit tests® .

We divide our taxonomytreeinto two subtreegFigure 2): (1) One-methoctom-
mandswhicharecommandshatfocuson singlemethodsand(2) multiple-method

2 Version3.7 betaupdate5878,availableathttp: / /www.squeak.org
3 For ashortintroductionto the Smalltalksyntaxseethe appendix.

103



(Setup 1) |

Method under Test 1 |

Assertion |

(Setup 2) |

Method under Test 1 |

Assertion |

| (Setup)

(Setup n) |

| Method under Test

Method under Test 1 |

| Assertion

Assertion |

One-Method Test

One-Method Test Suite

| (Setup)

| Method under Test 1 |
| Assertion |

| Method under Test 2

| Assertion

(Setup 1) |

Method under Test 1 |

Assertion | T

(Further Setup) |

Method under Test 2 |

Assertion | T

(Further Setup) |

| Method under Test n

Method under Test n |

| Assertion

Assertion |

Multi-Facet Test Suite

Cascaded Test Suite

Fig. 4. One-mehod testsuites,multi-facettestsuitesand cascadedest-suitesare decom-

posablento one-methodests.

commandswhich do notfocuson a singlemethod.We divided eachof thesesub-
treesinto two furthersubtreeswhich we will presenin thefollowing subsections.

3.1 One-methodestcommands

A one-methodestcomandis a one-methodommandvhich hasassertionsesting
the outcomeof ead call of themethodundertest.



3.1.1 One-methodests

If it teststhe outcomeof exactly onecall of a methodundertest,we call it a one-
methodest In theexamplebelon the methodwWeek class! indexOfDay: would be
themethodundertest,andonly calledonce:

YearMonthWeekTest! testindexOfDay
self assert: (Week indexOfDay: 'Friday’) = 6.

3.1.2 One-methodestsuites

On the otherhanda one-methodestsuiteteststhe outcomeof the methodunder
testin severalsituations:

YearMonthWeekTest! testDaysIinMonth
self assert: (Month daysinMonth: 2 forYear: 2000
self assert: (Month daysIinMonth: 2 forYear: 2001
self assert: (Month daysinMonth: 2 forYear: 2004
self assert: (Month daysinMonth: 2 forYear: 2100

=29.
=28.
=29.
=28.

= o=

3.2 One-methodxamplecommands

A one-methoaxamplecommands a one-methodommandwvhich doesnot have
assertiondor the methodundertest. So this commanddoesnot testthe focused
methodagainstsomedesiredresult,but merelycallsit. We detectedhreeconcrete
instance®f thesecommands:

3.2.1 Pessimistione-methoa@xamples

A pessimistianethodexampleis a one-methodgxamplewhich checksthatan ex-
ceptionis thrown if amethodis calledin awaywhichviolatesa preconditionBeck
[5] callspessimistione-metho@xamplegOeceptiontestsOHereis anexampleof
a pessimistione-methoaxampleensuringthat an attemptto createthe directory
C: onaWindows platformshouldfail:

DosFileDirectoryTests! testFileDirectoryNonExistence
"Hoping that you have 'C:’ of course..”
FileDirectory activeDirectoryClass == DosFileDirectory ifFalse:["self].
self
should: [(FileDirectory basicNew fileOrDirectoryExists: 'C:’)]
raise: InvalidDirectoryError.

Note thatwe considemeithershouldnt: raise: nor should: raise: asassertionshe-
causethey do testwhethersomethings true or falsein a given state,but merely
checkwhetheror notanexceptionis thrown.

105



3.2.2 Optimisticmethodexamples

An optimisticmethodexampleis a one-methoexamplewhich expectsthatno ex-

ceptionis thrown if the methodundertestis calledwithout violating someprecon-
ditions. Again, optimisticmethodexamplesdo not containassertionsThe unit test
below teststhattheinvocationof copyBits on aBitBlt in a certainsituationdoesnot
throw anexception:

BitBLTClipBugs! testDrawingWayOutside2
| f1bbf2 |
f1 := Form extent: 100@100 depth: 1.
f2 := Form extent: 100@100 depth: 1.
bb := BitBlt toForm: f1.
bb combinationRule: 3.
bb sourceForm: f2.
bb destOrigin: 0@0.
bb width: Smallinteger maxVal squared; height: Smalllnteger maxVal squared.
self shouldnt:[bb copyBits] raise: Error.

3.2.3 One-metho@xamplesuites

A one-methodexamplesuiteis a one-methodexamplecommandwhich calls the
methodundertestmorethanonce.It canbe decomposeihto severalone-method
commandwhich call the samefocusedmethodonce:

FractionTest! testDegreeSin
self shouldnt: [ (4/3) degreeSin] raise: Error.
self assert: (1/3) degreeSin printString = '0.005817731354993834’

3.3 Multiple-methodestsuite

A multiple-methodestsuiteis amultiple-methoddommandvhichis decomposable
into one-methodests.(SeeFigure4).

3.3.1 Multi-facettestsuites

Multi-facet test suitesare multiple-methodest suitesthat reusea scenarioto test
several candidatemethodsin the following examplea previously initialized vari-
abletime is usedto checkdifferentmethodson Time.

TimeTest! testPrinting
self
assert: time printString = '4:02:47 am’;
assert: time intervalString = ’4 hours 2 minutes 47 seconds’;
assert: time print24 =’'04:02:47;
assert: time printMinutes = ’4:02 am’;
assert: time hhmm24 =’0402’.

106



3.3.2 Cascadedestsuites

Cascadedest suitesare multiple-scenariaest suitesin which the resultsof one
testareusedto performthe next test:

Base64MimeConverterTest! testMimeEncodeDecode
| encoded |
encoded " Base64MimeConverter mimeEncode: message.
self should: [encoded contents = 'SGkgVGhlcmUh’].
self should:
[(Base64MimeConverter mimeDecodeToChars: encoded) contents
= message contents].

ThiscascadedestsuitebrsttriggersamethodBase64MimeConverter! mimeEncode:,
testdts resultencoded, andthenusessncoded to testBase64MimeConverter! mimeDecodeToChars:.

3.3.3 Independentestsuite

An independentest suite is a multiple-scenariotest suite which testsdifferent
methodson differentreceversnot dependingon eachothet

In thefollowing examplesereralindependenmethodsaretested:

IslandVMTweaksTestCase! replaceln:from:to:with:startingAt: needsa totally dif-
ferentsetof parameterghansay

IslandVMTweaksTestCase! nextlnstanceAfter: 4

IslandVMTweaksTestCase! testForgivingPrims

| aPoint anotherPoint array1 array2 |

aPoint := Point x: 5 y: 6.

anotherPoint := Point x: 7 y: 8. "make sure there are multiple points floating around”
anotherPoint. “stop the compiler complaining about no uses”

self should: [ (self classOf: aPoint) = Point ].
self should: [ (self instVarOf: aPoint at: 1) =51].
self instVarOf: aPoint at: 2 put: 10.

self should: [ (self instVarOf: aPoint at: 2) = 10 ].

self someObiject.
self nextObjectAfter: aPoint.

self should: [ (self somelnstanceOf: Point) class = Point ].
self should: [ (self nextlnstanceAfter: aPoint) class = Point ].
array1 := Array with: 1 with: 2 with: 3.

array2 := Array with: 4 with: 5 with: 6.

self replaceln: array1 from: 2 to: 3 with: array2 startingAt: 1.
self should: [ array1 = #(1 4 5) ].

4 Actually thesetestsarecalling primitives,which areimplementedn thevirtual machine
andnotin thesmalltalkimage.

107



3.4 Others

We call all testcasesvhich neitherfocuson onemethodnoraredecomposablto
one-methodestsothers.

3.4.1 Constainttest

A constaint testcheckstheinterplayof several methodswithout focusingon one
of them.In the following examplea graphiccorversionfunctionality is testedby
comparingthe original bitmapwith the resultobtainedafter encodingthe bitmap
to the png-formatandthendecodingt backagain.

PNGReadWriterTest! test16Bit
self encodeAndDecodeForm: (self drawStuffOn: (Form extent: 33@33 depth: 16))

3.4.2 Metatest

A metatestis atestaboutthe applicationitself, e.g., its structure jts currentstate
or its implementedor unimplementednethods.For example, the following test
checksf theclassof Metaclass only hasoneinstancenamelyMetaclass:

BCCMTest! test07bmetaclassPointOfCircularity
self assert: Metaclass class instanceCount = 1.
self assert: Metaclass class somelnstance == Metaclass.

3.4.3 Uncategyorized

We call all unit testswhich do not fall into oneof the above cateyoriesuncateo-
rized

3.5 Firstvalidation: Maven

Using our taxonomywe manuallycategorized50 randomlyselectedUnit testsof
Maven[6], a Java projectmanagemerandprojectcomprehensiof.

25 of thesetestsmerely checled somegetter/settecode and were classibPedas
constraintests.The othersampledestsfell naturallyinto oneof our proposectat-

egories,andif lesstrivial getter/settetestcodehadbeenselectedyve could expect
again one-methoddommandsisthe majority of classibedests(SeeFigure5).

5 Seehttp://wwwiam.unibe.cH/ gaelli/mavenUnitTests.html

108



Meta tests

4% One-method tests
16%

One-method test suites
8%

One-method
example commands
4%
Multi-facet test suites
4%

Constraint tests
52%

Cascaded test suites
12%

Fig. 5. Manualclassibcatiomf 50 randomunit testsof Maven

4 Automatic Classification of Unit Tests

After having manuallydervedthetaxonomywe developedsomelightweightheuris-
tics to automaticallydetectthe featurepropertiesdepictedin Figure2. Our goalis
to classifymostof theunit testsautomaticallyUsingtheseheuristicsve have been
able to automaticallyclassify 52% of the manually classibPedone-methodcom-
mandstests,while our averageprecisionrate was 89% (seeTable 1). Finally we
appliedour automaticapproachto a nenv casestudy and found that morethana
third of theunit testsfocuson singlemethods.

4.1 Instrumentation

To detectthefeaturepropertieswve rely on dynamicanalysisof thecode,aswe are
dealingwith runnabletestcasesn a dynamicallytypedervironment.

Many of the unit testsof the Squeakbasesystemtestlow level classedike Arrays
etc.lt isthereforenotfeasibleto usemethodwrapperd7], becauseecursionvould
almostcertainlyarisewhenthe wrappingalgorithmusesa methodwhich is about
to bewrapped\ therebybringingour systemto ahalt. We thereforeusedthe byte-
codeinterpreterfoundin the classContextPart, whichis alsousedin the delugger
of Squeako stepandsendthroughmethods.

Using andenhancinghe bytecodeinterpreterof Squeakhasthe advantageof be-
ing more generalthanmethodwrappes andbaselevel classesanbe testedtoo.
However, it comeswith thefollowing disadwantages:

109



¥ It is slowerthancurrentVM optimizedmethodwrappercode.

¥ Simulationof exceptionhandlingcodeis buggyin the currentimplementationn
the SqueakVM:As a corsequenceit did not work for exceptionhandlingcode
usedby mainly by optimisticor pessimistianethodexamples.

¥ Methodswhich only returnavariableareinlined by the Smalltalk-compilerand
thuscannotbedetected .

4.2

LightweightHeuristics

In the following we presenta list of heuristicsusedto detectthe featureproper
ties displayedin the left subtreeof the Figure 2. We have not yet developedary
heuristicsto classifyleavesof theright subtree.

The prstquestionin the decisiontree is whethera unit testfocuseson a single
method.Threepossiblewaysto detectthis propertyare:

(1)

(2)

Deductionof the focusedmethodfrom the commanchame Oneapproacho
deducdf acommandocuseson onemethodis to examinethe methodname
of thecommand Oftenthe developerincludesthe nameof the methodunder
testaspartof thetestmetod. A typical unit testlookslike FooTest! testBar
which denoteghata methodnamedbar of the classnamedFoo is testedand
thusfocusedon. The executionof the testmethodcanbe simulatedwith our
bytecodanterpreterandthuschecled,if it callsdirectly amethodof theform
Foo! bar or Foo! bar:.

If the namingcorventionof the testmethodnamecanbe decodedandex-
actly onecandidatanethodmatchesthenthe developerhasclearlyindicated
that this would be the methodunderfocus.More specibcallywe deletedthe
prstfour character€test©@f the commandname,and searchedor a selec-
tor in the tracein the brstlevel, that matcheghe remainingstring, possibly
convertingtheleadingcharacteto lower case andignoring parameters.

Example: If the testmethodnameis BarTest! testFoo thenwe look for
aneventin which a candidatenethodfoo is called.If therearetwo selectors
called,like foo: andfoo, the resultis ambiguousandwe cannotsayon which
of themour testwould focus.

Deductionof the focusedmethodby the commandstructure. We saythatthe
commandfocuseson this method,if exactly one candidatemethodis called
directly: A simple way to detectif a unit testfocuseson one methodis to
Pndoutif thetestmethodonly calls one candidatemethod,thatis only one
methodof the packagaundertest.Thisapproactcannotoecomplete asmary
unit testsdo the setupof the testscenarionot in the extra TestCase! setUp
method but in thetestmethoditself, andtherethey oftenhave to call methods

& On the otherhandthis might be awelcomesideeffect asonewould normally not focus
atestonamethodthatmerelyreturnsavariable.

110



of the packageundertestfor the setup.We do not make a distinctionwhether
a candidatemethodis calledonly onceor morethanonce,aslong asit is the
only calledcandidatanethod.

(3) Deductionof thefocusednethodoy usinghistoricalinformation.In incremen-
tal test-drven approacheshe lesscomplex methodswill be built beforethe
morecomplex ones.To testa morecomplex methodthe developerwill likely
referto simplercandidatemethodsgitherto build the scenaricon which the
complex methodcanberunor to usealreadyexisting methodsastestoracles.
However, in Squeakwe do not know if atestcasewasdevelopedbeforean-
othertestcase,as Squeakstill relieson a codeexchangemechanisnwhich
destrgs this versioninginformation.

To determindf a one-methodcommands a one-methodestcommandor a one-
methodexamplecommandwve checkif it only callsself should: [] raise: Exception,
self shouldnt: [] raise: Exception or friends,andif all the expressiongnside the
Oshoulds€xll the samemethod.

We candistinguishone-methodestsfrom one-methodestsuitesby simply count-
ing how oftenthe methodundertestis called.Accordingly we do the further split
up in theright subtreethe one-methodxamplecommandandthenusethe differ-
encebetweerthecallsshould:raise: andshouldnt:raise: to make thelastdistinction.
With this heuristicwe classifyarny one-methodestasone-methodestcommand
which doesnot call any kind of should:raise: andshouldnt:raise:.

Category Manual result | Computed Hits | Recall | Precision
Result
One-method tests 387 207 202 52% 98%
One-method test suites 114 86 57 50% 66%
Pessimistic method examples | 11 15 10 91% 66%
Optimistic method examples | 15 16 10 67% 63%
One-method example suites | 10 1 1 10% 100%
Total 537 334 280 | 52% 89%
Tablel

Preliminarymanualandautomaticclassipcationsf one-methodcommand®f the Squeak
Unit Tests.

4.3 AFirstCaseStudy:SqueakJnit Tests

Having categorizedthe SqueakJnit Testsbefore,we could comparethe resultsof
our lightweightheuristicwith our manualresults.(SeeTablel). Squeak3.7 hasno
notionof packagesndrelieson anamingcorventionof class-catgories.We only

111




Category Manual result | Computed Hits | Recall | Precision
Result

One-method tests 59 19 5 8% 26%

One-method test suites 80 48 37 46% 7%

One method example suites | 3 3 3 100% | 100%

Total 142 70 45 32% 64%

Table2
Preliminarymanualandautomaticclassibcationsf one-methoccommand®f the Small-
Wiki Unit Tests.

automaticallycateyorized671 of 982 testswhoseclass-catgory nameallowed us
to identify their packageunder test. Our heuristicswere able to cateyorize 52%
of theleavesof theleft subtregrom our taxonomywith a meanprecisionof 89%,
meaninghatonly 11%of thecateyorizedtestcasesvereputin adifferentcateyory
thanby thehumanreengineer

4.4 A SecondCaseStudy:SmallWki

After having donea manualcateyorization(seeFigure6) we automaticallycateyo-
rizedthe 200 unit testsof SmallWki [8], a collaboratve contentmanagementool
writtenin VisualWorks Smalltalkandportedto SqueakWe chosethis systemasa
casestudy asit is a mediumsizedapplicationdevelopedby a singleexperienced
developerin atest-drivenway.

A surprisingresultherewasthat moretestscould be detectedasfocusingon one
methodby consideringhe calls of only onecandidatemethod ratherthanby ex-
ploiting their namingconvention.

We only programmedhe detectionfor threecateyories,namelyone-methodests
one-methodestsuites andone-methodxamplesuites All of themtogethermrep-
resentedalreadymorethanathird of all tests.Figure6 shaws thatcontraryto the
Squealcasestudy thedevelopersherewrotemoreone-methodestsuitesthanone-
methodtests Therecallandprecisionfor one-methodestsdisplayedin Table2 is
only 5% respectiely 26%astherehave beenmary testsfor getter/settepairs: The
gettermethodf variablesareinlined andcouldthusnot be detectedby our byte-
codeinterpreterOnly settermethodshave beendetectedeadingto falsepositves.

112




Met:zTest One-method
1% example commands
3%

Independent Test Suite
1%

Cascaded test suites
10%

Multi-facet test suites
6%

Constraint tests
10%

One-method test suites
39%

One-method tests
30%

Fig. 6. Manualclassibcatiomf unit testsfor the SmallWki system

5 Discussion

Although the taxonomywe have derved appeargpromising,it is a preliminary
resultfor severalreasons:

¥ Ourtaxonomyis basedon only threecasestudies.Thoughit seldomarisesthat
we discover new cateyories,morecasestudiesneedto be conducted.

¥ We focusedon XUnit Tests,asdescribedby Becketal.[1] sowe do notknow if
developerswrite otherkinds of unit testswhile usingothertestingframenorks.

¥ We have not addressethe questionif unit testsshouldbe consideredvhitebox
or blackbox-testandif they couldlikewise be usedasacceptancentegration,
or end-to-endests.

¥ Only threeof the SquealJnit Testdeveloperswrote 70% of thetestcasesnak-
ing our sampledataof this casestudylessrepresentate.

Developershave completefreedomto write ary kind of unit testsN makingauto-
matic classibcatiora difPcult businessThe automaticclassibcatiorneuristicsare
similarly preliminaryandmayfail in thefollowing cases:

*.,Ambiguity of the namingcornventionUsingthe namingcorventionfor automatic
detectionof the methodunder testis unreliableandambiguousFor example,does
the following testfocuson Foo! bar:, on Foo! bar, or both of them?A similar
problemarisesin Java, as the namingcornventionwill not differentiatebetween

113



overloadedmethodghattake differenttypesof parameters.

FooTest! testBar
|aFoo |
aFoo:= Foo new.
aFoo bar: 1.
self assert: (aFoo bar = 1)

We would manuallycateyorizethis oneasa constaint test

* Testframeawork testsTestsof thetestframavork maybeincorrectlycategorized.
Thefollowing testcouldbeclassibedsa pessimistianethodexampleof error: but
its intentis to be anoptimisticmethodexampleof should:raise:

SUnitTest! testException
self
should: [self error: 'foo’]
raise: TestResult error

* Assertionscomeonly after cleanup In sometestscleanupsare necessaryAs
the cleanupdoesnot have to infBuencethe testresult, developersalso write the
assertiongfterthecleanup.

In the following exampleboth assertiorstatementgould be moved two linesup
preservinghetestcase Thusit is activate andnotwait or suspend whichis tested.

StopwatchTest! testMultipleTimings
aStopwatch activate.
aDelay wait.
aStopwatch suspend.
aStopwatch activate.
aDelay wait.
aStopwatch suspend.
self assert: aStopwatch timespans size = 2.
self assert:
aStopwatch timespans first asDateAndTime <
aStopwatch timespans last asDateAndTime

* Testedmethodis notthelastcalledof the packagaundertestSometestsaretest-
ing methodswhich arenot the last methodof the packagecalledbeforethe asser

tion occurred Example:ls the methodundertestremoveActionsWithReceiver: or

actionForEvent:? The nameof the commandndicatestheformer, but the structure
of thetestsuggestshelatter:

EventManagerTest! testRemoveActionsWithReceiver
| action |
eventSource
when: #anEvent
send: #size to: eventListener;
when: #anEvent
send: #getTrue to: self;
when: #anEvent:
send: #fizzbin to: self.
eventSource removeActionsWithReceiver: self.
action := eventSource actionForEvent: #anEvent.
self assert: (action respondsTo: #receiver).
self assert: ((action receiver == self) not)

114



*.Mock objectsThefollowing testis interestingasit is programmedy anexperi-
enceddeveloper(it usesmock principles[9] to dealwith programbehaior). Here
themethodsundertestin a cascadedcenaricareoverwrittensothatadditionalin-
formationaboutthe numberof calls could be transcribecandtested We currently
subsumehis kind of testundermetatests

MorphTest! testintoWorldCollapseOutOfWorld
| m1 m2 collapsed |
"Create the guys”
m1 := TestinWorldMorph new.
m2 := TestiInWorldMorph new.
self assert: (m1 intoWorldCount = 0).
self assert: (m1 outOfWorldCount = 0).
self assert: (m2 intoWorldCount = 0).
self assert: (m2 outOfWorldCount = 0).

"add them to basic morph”

morph addMorphFront: m1.

m1 addMorphFront: m2.

self assert: (m1 intoWorldCount = 0).
self assert: (m1 outOfWorldCount = 0).
self assert: (m2 intoWorldCount = 0).
self assert: (m2 outOfWorldCount = 0).

()

* Namingcornventionindicatesone-methodest,but it is not Which is the method
undertesthere,weeks: or days? Daysarecomputedoo soit is alsoaninteresting
methodto test.Our heuristicwould detectDuration! weeks asthe methodunder
test.We would manuallycateyorizethis oneasa constaint test

DurationTest! testWeeks
self assert: (Duration weeks: 1) days= 7.

*.Developersdo not agreeon methodundertestConsiderthe two following tests
written by two differentdevelopers:They both checkif two differentkinds of in-

stantiationsyield the sameresult. The nameof the Prstindicatesthatit is testing
=, thenameof the secondndicateshatit teststhe creationof instancesBoth tests
have atleasttwo candidatanethodspnamelytheinstancecreationmethodsandthe
= method.

IntervalTest! testEquals4
self assert: (3 to: 5 by: 2) = #(3 5).
self deny: (3 to: 5 by: 2) = #(3 4 5).
self deny: (3 to: 5 by: 2) = #().
self assert: #(3 5) = (3 to: 5 by: 2).
self deny: #(3 4 5) = (3 to: 5 by: 2).
self deny: #() = (3 to: 5 by: 2).

MonthTest! testinstanceCreation
| m1m2 |
m1 := Month fromDate: 4 July 1998’ asDate.
m2 := Month month: #July year: 1998.
self assert: month = m1.
self assert: month = m2.

Any meaningfuldepPnitionof focuseson onemethod whereat leasttwo different
candidatemethodsareinvolved,is likely to be dismissedy at leastone of those

115



developersAs acompromiseghey couldcateyorizebothof themasconstaint tests

6 Related Work

Binder [10] discriminatesbetweenmethodsundertest(MUT) and classesunder
test(CUT) but he doesnot discriminatebetweenrunit testswhich focuson oneor
onseveralMUTS

Beck[5] amguesthatisolatedtestswould leadto easierdeluggingandto systems
with high cohesionandloosecoupling.One-methodommandsreisolatedtests,
whereasmultiple method-commandsxecuteseveral testsandin the caseof cas-
cadedmethodtest suitesor multi-facettest suitesdependon eachotheror on a
commonscenario.

Eclipse[11] providesa Search! Referring Tests menuitem which allows oneto
navigate from a methodto a JUnit Test that executesthis method.However no
distinctionis madebetweemmethodausedfor settingup thetestscenaricandthose
actuallyundertest.

Jezequel[12] discussesow testingcanrely on the Designby Contract principle
[13] andclassesreseenasself-testablentitiesasmuchaspossibleby embedding
unit testcaseswith the class.We foundthatdeveloperswrite mary testswe could
catgyorizeasone-methoddommandsThe conceptof one-methodommandsven
makesmethodsself-testableSqueakversion3.7 hadalmost900unit testsbut only
24 assertiongn thenontestcode.Associatingone-methodxampleswith assertion
containingmethodsyields highly abstractand executablegests.

VanDeusenetal.[14] talk explicitly aboutunit teststhatfocuson onemethodand
startto categorizethemusingbadsmellslik e indirecttesting which describeests
thatwe would categyorizeasindependentests.In anothempaper[15] Van Deursen
andMoonenexploretherelationshipbetweertestingandrefactoring they suggest
thatrefactoringof the codeshouldbe followed by refactoringof thetests.Many of
thesedependentestrefactoringscould be automatear atleastmadeeasieyif the
exact relationshipsbetweenthe unit testsand their methodsundertestwould be
known.

Bruntink et al.[16] shav that classesvhich dependon otherclassesequiremore
test code and thus are more difPcult to testthan classeswhich are independent.
Using cascadedestsuites wherea testof a comple classcanusethe testsof its
requiredclassego setup the complec testscenarioshouldimprove the testability
of comple classes.

Thomasg[17] aguesthatthe message-centriciew deseresmoreattention.One-

116



methodtests optimistic and pessimisticmethodexamplesare all reibcationsof
messageandarethe atomsof all one-methodommandsandmultiple-methodest
suites

Edwards[18] is makinga claim for examplecentricprogramming

In general,examplesare standalonesnippetsof codethat call the codeunder
obsenation. Unit tests(...) area good sourceof examples,andshouldbe auto-
maticallyrecognizedassuch.

Our taxonomyshouldhelp usto link the differentkinds of unit teststo the code
they areexemplifying.

Testcasesareimplementedn XUnit usingthe Opluggbleselector@atternwhich
avoids the needto createa new classfor eachnew testcaseat the costof using
the reRectioncapabilitiesof the system,thus making the Ocodehard to analyze
statically(5].

7 Conclusions and Future Work

We have developeda taxonomywhich cateyorizestherelations

¥ betweerunit testsandmethodaundertestand
¥ betweerunit testsandotherunit tests.

Knowing theserelationscan help the developerto refactor composeandrun the
programtogethemwith thetests,andthusto speedup their co-evolution. It canalso
helpthereengineeto asses# agivenmethodis adequatelyested.

We have giveninitial evidencethatthe OunitQndertestin object-orienteghrograms
is mostoftena methodandthat mostotherkinds of unit testscanbe decomposed
into one-methodests

We have startedo developsomelightweightheuristicgo automatehis categoriza-
tion. Our simpleheuristicscanidentify arelevantportion of categgorieswith a high
precisionrate. We have given evidencewhy completeautomaticclassibcatiorof
unit testsusingour taxonomyis impossiblefor all our suggeste@lgorithms.

We have alsodiscoveredthatdevelopersarite testswhichdo nothave any assertion
at all, but only establishwhethera given methodshouldor shouldnot throwv an

exception:5% of the testsin our manualcasestudyand2% in the automaticone

fell into this category.

In the future we wantto explorethefollowing axesof research:

117



¥ We want to make the relationshipsbetweenunit testsand methodsundertest
explicit: Firstexperimentshaow thatif one-methodestsalsodeliveredtheresult
of their focusedmethodasa returnvalue,one could parsethe one-methodest
andclearlyidentify the focusedmethod This link alsoallowedthe composition
of tests,andwould be stableto refactoringdik e renaming Methodsin statically
typed languagescan be void, thus we want to return a complec result object
consistingof therecever, parameterandpossiblythereturnvalueof the focused
method We wantto researchthe prosandconsof alternatve denotationf the
focusedmethodusing methodcomments specibcmethodsendsor in caseof
Smalltalkbracletingblocksasmarlers.

¥ We wantto evaluateif anoptional5-paneSmalltalkbrowvserfor navigating be-
tweentestsandmethodswill beacceptedy the Squeakcommunity[19].

¥ Wewantto comeup with heuristicso automaticallycategorizemultiple method
commands.

¥ We have previously proposeda partial orderof unit testsby meansof coverage
setsN aunit testA covers aunit testB, if the setof methodsignaturesnvoked
by A is a supersebf the setof methodsignaturesnvoked by B [20]. In thefour
casestudieswe conducted,75% of the unit testswere comparableto at least
oneotherunit testin termsof that partial order Theseresultsindicatethatunit
testscouldberefactorednto composeane-methodestdeadingto lowertesting
time andeasierscenariobuilding. We planto enhancehe IDEs of Squeakand
Eclipse,sothatdeveloperscancomposenew testsfrom existing tests.

¥ We alsoplanto exploit this overlappingof mary teststo identify focusedmeth-
odsundertests:If two testsTestA! testOne andTestA! testTwo directly call a
methodFoo! foo but TestA! testOne in additioncallsonly amethodBar! bar,
chanceshouldbehigh, thatTestA! testOne is focusingonBar! bar.

We seethis work asthe beginning of the work on classifyingunit testsand hope
to spavn a discussionaboutthis subject.For this reasonwe decidedto put our
taxonomytogetherwith a nomenclatureon our web site’ , so that we caneasily
integratenew kindsof unit testswe Pndor you reportto us.

References

[1] K. Beck,E. Gamma,Testinfected:Programmersove writing tests,Java Report3 (7)
(1998)51D56.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts,Refactoring: Improving the
Designof Existing Code,AddisonWeslegy, 1999.

[3] E.GammaR.Helm,R. Johnson]. Vlissides,DesignPatterns Elementsof Reusable
Object-Orientedsoftware, AddisonWeslegy, ReadingMass.,1995.

’ http://kilana.unibe.ch/nomenclatureofunittests/

118



[4] D. Ingalls, T. Kaehler J. Maloney, S. Wallace,A. Kay, Backto the future: The story
of SqueakA practicalSmalltalkwrittenin itself, in: Proceeding@OPSLAf)Q?ACM
Press,1997,pp.318D326.

[5] K. Beck,TestDrivenDevelopmentBy Example Addison-Wesley, 2003.
[6] Maven,http://maren.apache.gr

[7]1 J.Brant,B. Foote,R. Johnsonp. Roberts Wrappersto the Rescuejn: Proceedings
ECOOPO98Yol. 14450f LNCS, SpringefVerlag,1998,pp.396D417.

[8] L. Renggli, Smallwiki: Collaboratve content management,informatikprojekt,
Universityof Bern(2003).

[9] T. Mackinnon,S. Freeman,P. Craig, Endotesting:Unit tesing with mock objects
(2000).

[10] R. V. Binder, TestingObject-OrientedsystemsModels, Patterns,and Tools, Object
TechnologySeries AddisonWesley, 1999.

[11] Eclipse Platform: Technical Overview, http://www.eclipse.og/whitepapers/eclipse-
overview.pdf (2003).

[12] J.-M. Jezequel,Object-OrientedSoftware Engineeringwith Eiffel, Addison Wesley,
1996.

[13] B. Meyer, Object-Orientedoftware Construction2ndEdition, Prentice-Hall 1997.

[14] A. DeursenL. Moonen,A. Bergh, G. Kok, Refactoringtestcode,in: M. Marchesi
(Ed.), Proceedingsf the 2ndInternationalConferenceon ExtremeProgrammingand
Flexible ProcessefXP2001),University of Cagliari,2001,pp. 92D95.

[15] A. DeursenL. Moonen,Thevideostorerevisited- thoughtsonrefactoringandtesting,
in: M. Marchesi,G. Succi(Eds.), Proceeding®f the 3nd InternationalConference
on ExtremeProgrammingandFlexible Processem Software Engineering XP2002),
2002.

[16] M. Bruntink, A. van Deursen,Predicting clas testability using object-oriented
metrics,in: Proceeding®f the Fourth IEEE InternationaMorkshopon SourceCode
AnalysisandManipulation(SCAM), IEEE ComputerSocietyPress2004.

[17] D. Thomas,Messageoriented programming,Journalof Object Technology3 (5)
(2004)7D12.

[18] J. Edwards, Example centric programming,in: OOPSLA 04: Companionto the
19th annualACM SIGPLAN conferenceon Object-orientedorogrammingsystems,
languagesandapplicationsACM Press2004,pp. 124D124.

[19] M. Galli, O. Nierstrasz,S. DucasseOne-methodcommandsiinking methodsand
their tests,0OPSLAWorkshopon Revival of DynamicLanguagegOct. 2004).

[20] M. Galli, M. Lanza,O. NierstraszR. Wuyts, Orderingbroken unit testsfor focused
dehugging,in: 20thinternationalConferencen SoftwareMaintenancglCSM 2004),
2004,pp.114D123.

119



120



Co-evolving Code and Design
with Intensional Views — A Case Study

Kim Mens *

DepartementOIngnierielnformatique(INGI)
Universite catholiquede Louvain(UCL)
PlaceSainteBarbe2, B-1348Louvain-la-NeuveBelgium

Andy Kellens

Departementnformatica(DINF)
Vrije Universiteit Brussel(VUB)
Pleinlaan2, B-1050Brussel,Belgium

Frédéric Pluquet Roel Wuyts

DepartmendOlnformatique
Universite Libre de Bruxelles(ULB)
Boulevard du Triomphe- CP212,B-1050Bruxelles Belgium

Abstract

Intensional views and relations have been proposed as a way of actively documenting high-
level structural regularities in the source code of a software system. By checking confor-
mance of these intensional views and relations against the source code, they supposedly fa-
cilitate a variety of software maintenance and evolution tasks. In this paper, by performing
a case study on three different versions of the SmallWki application, we critically analyze
in how far the model of intensional views and its current generation of tools provide support
for co-evolving high-level design and source code of a software system.

Key words: Case study, co-evolution, intensional views and relations, Small\Wki.

* Corresponding author.

EmailaddressesKim.Mens@info.ucl.ac.be (Kim Mens),
akellens@vub.ac.be (Andy Kellens), fpluquet@yahoo. fr (Frédéric Pluquet),
roel.wuyts@ulb.ac.be (Roel Wuyts).

URLs:http://www.info.ucl.ac.be/~km (Kim Mens),
http://prog.vub.ac.be/~akellens/ (Andy Kellens),
http://homepages.ulb.ac.be/~rowuyts/ (Roel Wuyts).

ESUG2005InternationalSmalltalkConference August2005,BrusselsBelgium



1 Introduction

Maintaining the source code of long-lived software systems requires an adequate
documentation of their intended design. However, due to their constant evolution,
it is often hard to keep their source code and design synchronized. This is partly
due to the fact that current-day integrative development environments still focus
too much on writing code and too little on supporting maintenance and evolution
tasks [1].

Intensionalsouice-codeviews and relations[2,3,4,5] have been proposed as an
active documentation technique that addresses some of these problems. They in-
crease our ability to understand and document the code and its design by grouping
together structurally related source-code entities. They facilitate software mainte-
nance and evolution, because alternative descriptions of the same intensional view
can be checked for consistency and because relations between intensional views
can be defined and verified against the source code.

In [2] we explained how to codify software architectures by means of intensional
source-code views ! and how to check conformance of those architectures with the
source code. In [3] we proposed intensional views as an intuitive and lightweight
but verifiable means of documenting crosscutting concerns in a software system.
In [4] we discussed how intensional views facilitate a variety of software under-
standing, maintenance and evolution tasks. Finally, [S] emphasized on documenting
and verifying high-level relationsbetween intensional views. We also discussed the
analogy of testing structural source-code regularities in a software system by means
of intensional views and relations with testing the behavior of a software system by
means of unit tests.

To define and verify intensional views and their relations we built a tool suite which
we called IntensiVE This ‘Intensional View Environment” was implemented en-
tirely in and seamlessly integrated with the VisualWorks Smalltalk development
environment and comprises, amongst others, the following tools:

The Intensional View Editor (Fig. 1) allows us to document relevant concerns in
the source code in terms of intensional views and to inspect the source-code
entities corresponding to such concerns.

The View Consistency Checker (Fig. 2) allows us to verify consistency between
different alternative descriptions of an intensional view, with respect to the cur-
rent source-code base, and to provide fine-grained feedback on the differences
between these alternative definitions.

The Relation Editor (Fig. 3) allows us to document high-level relationships be-
tween intensional views, as well as known deviations of these relationships in
the source code.

1 called ‘virtual software classifications’ in that paper

122



The Relation Checker (Fig. 4) allows us to verify these relations against the cur-
rent source code, and provides fine-grained feedback on their validity.

Whereas older versions of these tools have been reported on briefly in [5], we have
recently re-implemented them entirely to improve their efficiency, persistence and
integration with version 2 of the StarBravser[6], an advanced source code browser
for VisualWorks Smalltalk In addition to having the logic query language Soul [7]
as underlying language in which to describe the intensional views and relations, the
tools now offer support for using Smalltalk too as query language to reason about
source code. Another novel feature is the ability to define nested views, which
allows us to create context-specific views. Finally and most importantly, we added
support for visualizing intensional views and relations (see Fig. 5), by relying on
CodeCravler [8], a reverse engineering tool which combines software metrics and
visualization.

The aim of this paper is to perform a critical evaluation of the current generation of
tools, including the new opportunities offered by the visualization tool, to support
co-evolution of high-level design and source-code of a medium-sized Smalltalk ap-
plication. The case we selected for this study is Small\Wki [9], an object-oriented
Wiki implementation in Smalltalk We documented the intended design of an early
version of SmallWki and observed how this documentation helped us in better un-
derstanding the software and its implementation structure, as well as in discovering
certain structural irregularities in its source code. Then we verified this design doc-
umentation against two more recent versions of SmallWki and discovered some
interesting ways in which the source code and its design evolved.

From the experiences gained with this case study, we distilled a list of lessons
learned about the model of intensional views and relations and its associated tools,
in particular on how they support co-evolution of source code and higher-level de-
sign. Amongst others we learned that documenting the design of a software system
with intensional views and relations allowed us not only to detect interesting struc-
tural inconsistencies introduced in the code upon evolution, but also that the pro-
cess of documenting itself helped us to better understand the source code and how it
evolved. A dedicated visualization which highlights what views and relations have
become inconsistent with the code, proved very useful since it allowed us to read-
ily assess the impact of an evolution step and locate potential structural problems.
Finally, the ability of using and combining both logic and Smalltalk queries had
the advantage that we could always choose the query language most appropriate to
our needs, that is, the one that yields the most compact and declarative queries.

123



2 Experimental Setup: SmallWiki

A Wiki is a collaborative web application that allows users to add content, but also
allows anyone to edit the content. SmallWki [9] is a fully object-oriented and ex-
tensible Wiki framework that was developed entirely in Visual\Works Smalltalk As
opposed to most other Wiki implementations, which are hard to adapt, SmallWiki
has been designed from the start with extensibility in mind. It has a clean object-
oriented design where all entities that can be stored in web pages (text, links, ta-
bles, lists) are explicitly modelled as objects. Everything in SmallWki is designed
to be extended: page types, storage mechanism, actions, security mechanism, web-
server, etc. Plug-ins can be shared within the community and loaded independently
of each other into the system.

We decided to use SmallWiki for our case study for several reasons. Because it is
open source, its source code is freely available. Secondly, many versions exist, from
very early versions up until the stable versions that are currently in use at several
places. Thirdly, it is a non-trivial piece of software, yet still manageable in size and
complexity. We studied the following versions of Small\Wiki :

Version 1.54 (14-12-2002) was the first internal release of SmallWki, offering an
operational Wiki server with rather limited functionality: only the rendering and
editing of fairly simple Wiki pages was supported. This version contained 63
classes and 424 methods.

Version 1.90 (15-01-2003) covered only one extra month of development (thus
limiting the risk of having a version that was too drastically different from the
first version studied). Nevertheless, this month represented quite an active pe-
riod of development with several releases a day (thus making it a non-trivial
version to study). This version contained 8 more classes (71 in total) but many
more methods (633). An important change with respect to version 1.54 was that
in this newer version the methods responsible for rendering HTML code were
refactored.

Version 1.304 (16-11-2003) was chosen because it covered a larger development
period (almost 1 year) with lots of intermediate versions. This allowed us to
study the problem of synchronizing design documentation and source code over
a longer time interval. With 108 classes and 1219 methods, this version was
significantly larger than the previous two.

In order to study the usefulness of intensional views and relations to document
the design structure of an evolving software system, we conducted the following
experiments on the different versions:

(1) We started by codifying the design of version 1.54 and investigated how this

documentation helped us in better understanding the code structure as well as
some of the adopted naming and coding conventions.

124



(2) We then verified this structural documentation against the more recent ver-
sion 1.90 and drew conclusions about how SmallWiki evolved, and about the
consequences of this evolution on the documented structure.

(3) Finally, we verified the documentation against the most recent version studied
(1.304) and observed that the design remained relatively stable, even after this
longer development period.

3 IntensiVE

Before describing our experiments in more detail, in this section we give an overview
of the model of Intensional Views and Relations, together with its associated tool
suite: IntensiVE or Intensional View Environment. The following five subsections
each focus on one of the major sub-tools of the environment namely the intensional
view editor, the view consistency checker, the relation editor, the relation checker,
and the intensional view displayer. Along the way we explain the underlying model
of intensional views and relations.

3.1 ThelntensionaMew Editor

An IntensionalMiew is a set of source-code entities (classes or methods) which are
structurally similar. Instead of enumerating all elements that make up a view, it is
defined by means of an intension an executable description which yields, upon
execution, the set of entities belonging to the view, also called the extensionof the
view.

The IntensionalView Editor (Fig. 1) is our main tool for creating and manipu-
lating views. On the screenshot, the left pane shows all defined views in a tree
representation. The right hand side shows the Intensional View Editor opened on
a view named ‘Execute Methods’. This view groups all methods responsible for
executing actions on Wiki pages. Since all these methods are classified in an ‘ac-
tion” method protocol, we provide the following intension for the Execute Methods
view: methodInProtocol (?entity,action). This query, written in the logic
language Soul [7], binds occurrences of methods in the ‘action’ protocol to the free
logic variable ?entity. By convention, the Intensional View Editor assumes that
a logic query has a free variable named ?entity and calculates the view exten-
sion as the accumulation of all bindings to that variable. When using Smalltalk as
query language, it suffices to write a Smalltalk block that returns a collection. E.g.,
we can define a view of all SmallWki classes by means of a Smalltalk expression
SmallWiki allClasses.

125



o Root ) [ ExecuteMethods |

'r Intensional =1

¢ SmallWikiViews @ f 1

i Views (17) —_—

¥ allSmallWikiClasses

@ ActionClasses Name  [ExecuteMeth| (Rename) ( Delete | (Addaft.

.4 StructuredActionsClasses

¥ StructureClasses Langua, i

i.g ActionedStructureClasses guage m 1

¥ ClassesVisited

¥ OutputtableClasses

.4 StorableClasses

¥ ComponentClasses

W VisitorClasses

-4 OutputVisitorClasses

.4 StoreVisitorClasses Intension Comment
W ServerClasses .

@ allSmallWikiMethods Intension:

¥ AcceptMethods
L4 VisitorMethods
i..4p ExecuteMethods

All methods in the action protocol

L= I

methodInProtocol(?entity,action)

Relations (16)
B A 10ds

B AcceptMethods allCall VisitorMeth:
-® ActionedStructureClasses allName
-® allSmallWikiMethods arelmplemer:

B ClassesVisited subset Outputtable
-® ExecuteMethods arelmplementedE

B® OutputtableClasses allAreAccepte: Includes Excludes
-® OutputVisitorClasses allAcceptCla . . . .
.® StorableClasses allAreAcceptedBy SmallWiki Action>>listActio Save
B StoreVisitorClasses allAcceptClasy + 5 Eoe—
.® StructureClasses subset Actioneds — — Extension
-® StructureClasses allUnderstandMe 2% =

B StructureClasses calls ServerClas: — —
-® StructureClasses subset StorableC
-® VisitorMethods arelmplementedBy
-® VisitorMethods someMethodsCall
£ Views (3)
#» Relations (1) € Check D

Fig. 1. The Intensional View Editor at work

Notice in the screenshot (left pane) that this view is defined as a subview of the view
containing ‘all SmallWiki methods’. The semantics of defining a view as subview
of another one is that the intension of the subview is calculated in the context of the
parent view. In other words, evaluating the intension of the Execute Methods view
results in all methods which belong to the extension of the view ‘all SmallWiki
methods’ but also to an action method protocol.

The tool also supports the explicit exclusion (resp. inclusion) of an entity from a
view. For example, the method 1istActions, implemented on the Action class,
is part of the computed extension of the Execute Methods view, but is not really an
execute method. Hence we explicitly excluded it from the view, by putting it in the
‘excludes set’ of the view. Analogously, we have an ‘includes set’ of entities that
should be included in a view, even though they do not satisfy the intension.

Intensional Views allow the definition of multiple alternative descriptions for the
same view. This ability, together with the requirement of extensionally consistency
(explained in the next subsection), provides an elegant way of declaring interesting
naming and coding conventions to be respected by the entities of a view, as we will
see in Section 4.

3.2 TheView ConsistencyChedker

Fig. 2 shows the View ConsistencyCheder. This tool is used to verify that the dif-
ferent alternative descriptions of a same view are extensionallyconsistentmeaning
that they all produce the same extension. When this constraint is violated, the tool

126



e 06 View Consistency

ExecuteMethods ExecuteMethodsProtocol
[smaliwiki.PageEdit>executeCancel | -
SmallWiki.PageView>>execute
SmallWiki.ChapterView>>execute
SmallWiki.PageHistory>>execute
SmallWiki.ErrorNotFound>>execute
SmallWiki.PageEdit>>execute
SmallWiki.Action>>execute
SmallWiki.PageEdit>>executeEdit
SmallWiki.ErrorUnauthorized>>execute
SmallWiki.PageEdit>>executeSave v

INCONSISTENT!

Fig. 2. The View Consistency Checker at work

provides appropriate feedback on what entities are in cause.

To illustrate this consider the Execute Methods view again. In addition to the in-
tension already described above, we defined an alternative description based on the
observation that the names of all execute methods start with the string ‘execute’.
Fig. 2 shows the result of checking extensional consistency between these two alter-
natives of the Execute Methods view. Note that we checked extensional consistency
before having explicitly excluded 1istActions from the second alternative of the
view. In fact, it was precisely the feedback from the View Consistency Checker that
motivated us to take a look at the implementation of that method and decide that it
was a deviating case.

The tool shows the user a column per alternative description of the view. The first
column contains the extension of the main alternative (by default this is the first
alternative of the view, but double-clicking a column changes the main alternative);
the other columns contain the delta between the extension of the main alternative
and the alternative represented by the column. If an element does not exist in the
main alternative, it is coloured green. Elements present in the main alternative, but
not in the other are displayed in red.

3.3 TheRelationEditor
The RelationEditor allows a user to document relations between intensional views.
Our model currently supports only relations of the canonical form:

Qi1 X e Source: Q,y e Target: xRy

where Q; and Q, are either logic quantifiers V, 3, 3!, ! or more fuzzy quantifiers >

2 The fuzzy quantifiers are defined in terms of a minimum or maximum number of ele-
ments for which the condition should hold.

127



(E Methods arelmpk dBy ActionClasses |

ExecuteMethods v ActionClasses =
Last Checked: Succeeded on May 20, 2005 at 6:28:23 am
Relation
Template Relation arelmplementedBy W6
forall il | methodinClass D existsOne v
>
All execute methods should be implemented by an Action class
Includes Excludes
f";"\  aassan B
/_ﬁ P ansan Y
Save Remove > Check

Fig. 3. The Relation Editor at work

like some f ew, many or most. Source and T arget represent intensional views
and R is a binary predicate over the source-code entities (denoted by X and y) con-
tained in those views. A simple example of an intensional relation is that all Execute
Methods are implemented by an Action Class (we define this view in Section 4.1).
Fig. 3 shows the Relation Editor opened on this relation. Expressed in the canonical
form above, the relation was defined as:

vV x € ExecuteMethods3! y € ActionClasses x methodInClassy

To define a binary predicate R over source-code entities, in terms of which in-
tensional relations can be defined, our tool offers two possibilities. In addition to
defining the predicate directly in Smalltalk (using a Smalltalk block that takes two
arguments and returns a boolean), the user can opt to use a Soul predicate (typically
using LiCoR, an extensive library of Soul predicates to reason about source code).
For concrete examples we refer to Subsection 4.2.

Like the Intensional View Editor, the Relation Editor supports the explicit declara-
tion of deviating cases. It allows a user to specify explicitly tuples of source-code
entities to be included in or excluded from the relation.

3.4 TheRelationCheder

When pressing the ‘Check’ button in the Relation Editor (Fig. 3), the validity of
a relation with respect to the source code is checked and the user is presented an
instance of the RelationChedker (Fig. 4). Besides reporting whether the relation

128



e 06 Check Relation
Domain: 10 out of 10 (100.0%)

Range: 7 out of 10 (70.0%)
ExecuteMethods arelmplementedBy ActionClasses

(SmallWiki.PageEdit>>executeSave <-> SmallWiki.PageEdit) A
(SmallWiki.PageEdit>>executeCancel <-> SmallWiki.PageEdit)

(SmallWiki.PageView>>execute <-> SmallWiki.PageView) m
(SmallWiki.ErrorNotFound>>execute <-> SmallWiki.ErrorNotFound)

(SmallWiki.ChapterView>>execute <-> SmallWiki.ChapterView)

(SmallWiki.PageHistory>>execute <-> SmallWiki.PageHistory) v

Not in domain Not in range

PageAction

ErrorAction

Fig. 4. The Relation Checker at work

holds, the tool presents the user a list of all tuples for which the relation is valid
as well as some statistics on how many elements from source and target participate
in the relation. It also lists all entities from the source view which are notin the
domainof the relation as well as all entities in the target which are not reached by
the relation. When a relation does not succeed, a user can use this information to
determine for which source code entities the documented relation and the source
code are no longer synchronized.

3.5 ThelntensionaMew Displayer

All tools above support a user in manipulating (declaring, modifying, renaming, re-
moving, verifying and saving) intensional views and relations. What is still missing
is a visualization tool that provides a user with a global and compact drawing of
all defined views and relations (or a relevant subset thereof). This is the purpose of
the IntensionalView Displayerdepicted in Fig. 5. For a given selection of views,
the displayer shows all these views, all their alternative descriptions, all subview
links and all intensional relations in which those views take part. The views are laid
out automatically in a hierarchy that reflects the view nesting, but the layout can be
modified and stored manually.

Since the visualization tool is defined on top of CodeCraler [8], a reverse engi-
neering tool which combines software metrics and visualization, by making intelli-
gent use of metrics we can highlight important characteristics of intensional views
or relations. For example, a simple metric for a view is the number of entities con-
tained in its extension. In Fig. 5 this metric was used as height of the rectangular
boxes representing the views. For example, we can see that the view All SmallWiki
Classes has many more entities than the Action Classes view, which is normal be-
cause the latter is defined as a subview of the former.

The visualization tool also uses colors to distinguish the different kinds of objects
in a drawing. By default, the name and rectangle of intensional views are drawn
in black, as well as the subview edges (starting with a triangle) and edges relay-

129



allSmallWikiClasses

Classs-éyisited |ServerClasses _(:omponerm?tzm"ses——/-‘r4ati-Q«g.‘{‘.jlasse@T visitorGlasses-|-StctureClasses

eguals

o = —— »
:E-tw:nak;wlpc1.35.35;4&&:1@&3&1@‘: [a3ses- _Sj[ucturedActionECTa‘sses%Oy_tggjj“‘l i msh@je@raasses || ActionedStriggtureClasses
— acceptsClass6Type -

=

ﬁcw:eptedEﬂyC\a‘;s

namePrefixOf
classUnderstandsMethodWhichCalls

isAcceptedByClass
ethodInClass

Executelflethods
AccefthMethods v
- L s torivethods

l

Fig. 5. The Intensional View Displayer at work on Small\Wki 1.304

ing a view with its alternative descriptions (ending with a diamond). The text and
rectangle of the alternative descriptions are rendered in grey and an option can be
toggled to not render them at all. Finally, edges representing intensional relations,
together with the relation name, are drawn in blue. What is more interesting is that
colors can be used as a metric too, for example to highlight inconsistencies in the
documentation. The ‘View Consistency’ metric, for example, calculates the exten-
sional consistency of a view and draws the view in red when inconsistent. A similar
metric can be applied to the links connecting a view to its alternatives, to indicate
what particular alternatives are inconsistent. In a similar way a color metric can be
applied to the intensional relations, so that invalid intensional relations are high-
lighted in red. E.g., Fig. 5 immediately tells us that the view OutputtableClasses
is inconsistent with some of its alternatives, and that the relation between Classes
\isitedand OutputtableClassess invalid too: they are all colored red.

4 Experiment 1 (Documenting the structure of SmallWiki 1.54)

Having explained the IntensiVE toolsuite in detail, we now elaborate on the ac-
tual experiments we conducted on SmallWki. In our first experiment we tried to
document the intended design of SmallWiki version 1.54 and investigated how this
documentation helped us in better understanding the implementation structure as
well as some of the naming and coding conventions that were used. Due to a lack

130



Legend :

<]_i§ subset of  nested views (implicit SmallWiki
subset relationship) classes

M explicitly represented ,,/:V 4 b V‘\\
as intensional relation -~ y '

<relation name> e / \ AT
<—— intensional relatign” /) AN a 9 S~ol
- Pre / \ 2 B T
Visitor Component Classes Structure |© O  Server 1 Action
classes classes visited classes [callS| classes classes
\Z X 8
[} N subset [} subset [} AN [}
N JSep
| ~ | | N |
1 > 1 1 A |
Store Output Outputable Storable ‘Actioned' ‘Structured'
Visitors Visitors classes classes structure Action
all are all are " classes classes
all accept all accept forall .« AexistsOne
accepted accepted class of type class of type name is
by class by class prefix of

Fig. 6. Intensional Views and Relations on SmallWiki

of adequate documentation for this particular version, the approach we adopted was
largely manual. We manually inspected the code, looking for interesting groups of
classes or methods, codified those groups as intensional views, checked the views
against the source code and further refined them when necessary, inspected the ele-
ments of the defined views to uncover relations with other views (potentially to be
defined), etc.

In total, we came up with 17 intensional views, related by 14 nesting relation-
ships and 16 intensional relations. Figures 6 and 7 summarize all defined views and
relations. Whereas Fig. 6 shows the views containing classes and their interrela-
tionships, Fig. 7 focusses on views containing methods. Next two subsections first
discuss the views and then the relations between the views.

4.1 \Views

All SmallWiki Classes. First of all we defined a view consisting of all classes in
the application under study. This view was codified straightforwardly by means of
a Smalltalk query smallwiki allClasses.?

To restrict their domain to the SmallWiki classes only, the rest of the views were
defined as subviews of this view. For example, we defined a series of views corre-
sponding to the important class hierarchies in the code. They were all defined by
means of a Soul query of the form

classInHierarchyOf (?entity, [rootclassof hierarcly]).

Structure Classes (classes in hierarchy of Structure) represent Small\WKki entities
that can be referred to by a single URL, like a web page.

3 Or alternatively using a Soulquery classInNamespace(?entity, [SmallWiki]).

131



! Smallwiki
oy, dasses g

4 -~
A N
"""""""" R T - L R I T S
Visitor . Classes impleﬁnented . Action + Structure
classes . visited :  py | . classes i classes
are are /# L
implemented implemented Smallwiki
by | by | methods
calls _ 1= 54 R
exists __--| s N
some: i ; -7 P nested views
Visitor all call ™ Accept Execute
l—— < ——— - i
methods methods methods are implemented by

<relation name> | . .
intensional relation

Fig. 7. Relations on SmallWiki method views

Component Classes (PageComponent hierarchy) represent the components out of which
a web page can be constructed: text, links, tables, lists, ...

Visitor Classes (Visitor hierarchy) visit the structure and component classes and play
a crucial role in SmallWki, e.g. for rendering and storing web pages.

Action Classes (Action hierarchy) model the actions that can be performed on Wiki
pages.

Server Classes (WikiServer hierarchy) represent the different kind of Wiki servers
supported by SmallWki (version 1.54 only supported Swazoo).

Other views that we defined, mainly by manual code inspection, were:

Visitor methods are all methods implemented in the Visitor class hierarchy that be-
long to a visiting method protocol. In Soul this was expressed as:

classInHierarchyOf(?class,[SmallWiki.Visitor]),
methodOfClassInProtocol(?entity, ?class, ?protocol),
["visiting*’ match:?protocol]

In fact this is an example of a hybrid query where we use logic to reason about the code
structure and evaluate a Smalltalk expression, parameterized by a logic variable (this is
a particular feature of Soul), to reason about strings.

Accept methods are the methods named accept : and play an important role in the Visi-
tor design pattern. We defined this view by means of a Soulquery methodwWithName (?entity, [#accept:

Actioned structure classes We defined the group of all structure classes on which actions
can be performed as a subview of the Structure Classes. They can be recognized easily
because they have a corresponding Action class:

classInViewNamed(?c, ActionClasses),

["*Action’ match: ?c name],
[(?entity name, 'Action’) = ?c name asString]

132



Structured action classes Dually we defined the view of action classes for a particular
structure class as a subview of the Action Classes.

Execute methods are responsible for executing different actions on Wiki pages, such as
rendering, saving, canceling and editing. They have in common that their names start
with ‘execute’. We defined this view by means of the intension: [ ' execute*’ match:
?entity selector asString]. Because we observed that the Small\Wiki devel-
oper(s) consistently adopted the convention to put these methods in an ‘action’ method
protocol, we also defined an alternative intension: methodInProtocol (?entity,action).

Defining the views above triggered the definition of some more views:

Store Visitors and Output Visitors After having defined the Classes Visited view we won-
dered what classes were being visited and for what reason. By inspecting the Visitor
Classes in more detail we learned that in SmallWki 1.54 there were two main vis-
itors: a ‘store’ visitor and an ‘output’ visitor. We codified these straightforwardly as
subviews of the Visitor Classes view: all Visitor classes named VisitorStore* or
VisitorOutput*, respectively.

Storable Classes and Outputtable Classes We also defined a view representing the ‘storable’
classes, i.e. classes visited by a Store Visitor, and one representing the ‘outputtable’
classes, as subviews of Classes Visited. We only show the definition of the Storable
Classes, the one for Outputtable Classes being analogous. We defined the view in terms
of the newly defined Store Visitors: the store visitor classes need to implement a spe-
cific method accept<nane of cl ass>: forevery class they want to visit. Without
divulging all details, the following hybrid query extracts these visited classes from the
names of the Store Visitors:

classInViewNamed(?class,StoreVisitors),
methodWithNameInClass(?method, ?selector, ?class),
[?selector = (#accept, ?entity name, ’':’) asSymbol]

As a second example of how existing views were reused to gradually refine and understand
the code structure, the definition of the Visitor Classes view triggered the definition of a
view consisting of all classes beingvisited:

Classes Visited are those classes that can be visited by Visitor Classes. Since the Visitor
design pattern [10] uses a double dispatch protocol where the visited classes implement
an accept method taking a visitor as argument, we defined this view using the Soul query
methodWithNameInClass (?M, [#accept:],?entity). In addition, since all
these accept: methods belonged to a ‘visiting’ method protocol, as alternative de-
scription we used protocolInClass(visiting, ?entity).

When checking consistency of this view, we learned that the use of the ‘visiting’ protocol
was indeed adhered to in a very disciplined way: all classes implementing accept : also

133



had a ‘visiting’ method protocol and vice versa. To document this, we defined the following
alternative for the previously discussed AcceptMethodsview: methodInProtocol (?entity,visiting).

However, since all alternative descriptions should produce the same extension, this implied
not only that every accept: method belongs to a visiting method protocol but also
that every method in a visiting method protocol is an accept: method. That con-
straint was clearly too strong, as we learned when verifying it using the View Consistency
Checker: the Visitor class did not implement an accept: method, but did contain a
few ‘visit’ methods in the visiting protocol. By excluding the Visitor class from the new
alternative, the constraint became valid.

We noticed that there are quite some views (and relations, as we will see in Subsection 4.2)
in our design documentation that document the Visitor design pattern [10], even though
that specific pattern is quite well known and well understood. Nevertheless, we decided
to document it explicitly because of the crucial role the pattern plays in the SmallWiki
implementation, but more importantly because we wanted to be able to verify whether
the implementation constraints implied by this pattern remained consistently adhered to in
future versions of SmallWki.

4.2 Relationsdhetweerintensionalviews

All relations we identified between intensional views containing classes are summarized
in Fig. 6. Dashed lines ending with a triangle represent view nesting. In addition to those
subset relationships we codified some extra subset relationships between non-nested views:

Classes Visited is subset of Outputtable Classes Not only are all outputable classes a
particular kind of visited classes (which was codified by means of nesting), in fact all
visited classes are outputtable.

Structure Classes is subset of Storable Classes Whereas all visited classes are output-
table, only a few are storable. On the other hand, all structure classes, with the notable
exception of the abstract superclass Structure itself, were storable. Since this seemed
like a potentially important design contstraint, we documented it as an intensional rela-
tion with an explicit deviation for the exceptional case of the Structure class.

Structure Classes is subset of Actioned Structure Classes Although the ‘actioned’ struc-
ture classes were defined as subview of the structure classes, we observed that all struc-
ture classes (again with the exception of the class Structure) were ‘actioned’, i.e. had
a corresponding *Action class.

‘Actioned’ Structure Classes versus ‘Structured’ Action Classes This same observation
led us to define the following intensional relation between the ‘Actioned’ Structure
Classes and ‘Structured’ Action Classes :

Vv x € ActionedStructieClasses 3! y € StructuedActionClasses
X has name whichis prefix of nameof y

where the relation predicate was defined using the following Smalltalk block:

134



[:classl :class2 | (classl name asString),’*’
match: (class2 name asString)]

Next we defined the relationship between the visitors and the visited classes.

Output Visitors all accept class of type Outputtable Classes and

Store Visitors all accept class of type Storable Classes

Because of the double dispatch mechanism used in the visitor design pattern we know
that all visitor classes that can handle a certain type of class need to implement a specific
accept method taking objects of that type as argument. In particular this holds for the out-
put visitors and outputtable classes, as well as for the store visitors and storable classes.
The (hybrid) Soul predicate in terms of which we defined these intensional relations is
given below. Due to the lack of static typing in Smalltalk the predicate relies on the fact
that the formal parameters of the method are named after the expected type.

acceptsClassOfType(?VisitorClass,?VisitedClass) if
methodWithNameInClass(?Method, ?Selector,?VisitorClass),
[ "accept*’ match:?Selector asString],
argumentOfMethod (?Argument, ?Method),
["*",(?VisitedClass name asString),’'*’ match:?Argument asString]

Outputtable Classes all are accepted by Output Visitors and
Storable Classes all are accepted by Store Visitors
Conversely, all visited classes are supposed to be accepted by at least one visitor class.
In particular this holds for the outputtable classes and output visitors, as well as for the
storable classes and store visitors. The logic predicate in terms of which this relation is
defined, is the inverse of the above:

isAcceptedByClass(?VisitedClass,?VisitorClass) if
acceptsClassOfType(?VisitorClass, ?VisitedClass)

We also documented that server classes are invoked by structure classes.

Structure Classes calls Server Classes Since not all server classes need to be invoked (it
suffices to have one server running) and not all structure classes call the server classes,
this intensional relation was defined as
3 x € StructueClasses 3y € ServerClassesx classCallsClassy
where X classCallsClass y checks if class X has a method that potentially calls a
method on class Y. This predicate was taken from the logic library.

Whereas Fig. 6 focused on views containing classes, Fig. 7 summarizes the relations be-
tween intensional views containing methods. First of all there are the obvious implementa-
tion relationships:

Accept Methods are Implemented By Classes Visited
Execute Methods are Implemented By Action Classes
Visitor Methods are Implemented By Visitor Classes

135



Other intensional relations which we documented were:

Accept Methods all call Visitor Methods Indeed, the accept : methods all have the fol-
lowing pattern to call an appropriate method on the visitor:

accept: aVisitor
avVisitor accept<name of class>: self

To express this relation we used a universal quantifier and a predicate methodCalls-
Method which we declared in Smalltalk using the following block:

[ :methodl :method2 | methodl sendsSelector:
(method2 compiledMethod selector) ]

Visitor Methods some call Visitor Methods This relation codifies the fact that a visitor
method is often implemented in terms of other visitor methods. For example, quite some
of the accept * visitor methods make a self call to the visit : method. For expressing
this intensional relation we used the same predicate as above and a fuzzy quantifier some
which requires that the relation is valid for at least 25% of the elements in its domain.

Structure Classes all understand method calling Execute Methods
Since actions are to be executed on things like web pages, which are represented by struc-
ture classes, we require that all these structure classes understand (at least one) method
that calls an appropriate execute method for actually handling the actions. For example,
the abstract class Structure implements a method named evaluateActionWithRequest:response:
which calls execute on the appropriate action class. We defined this in terms of a logic
predicate which we added to the logic library.

5 Experiment 2 (Comparing the documentation with SmallWiki 1.90)

In the second experiment we compared the documented design of version 1.54 to the more
recent version 1.90 and tried to understand how SmallWki evolved, and what the conse-
quences of this evolution were on the design documentation. To do so, we loaded the new
version and recomputed and visualized all known intensional views and relations with the
Intensional View Displayer. As explained in Subsection 3.5 and illustrated in Fig. 8, all
conflicting views and relations were highlighted in red. We inspected the conflicts and tried
to understand the discovered problems.

Inconsistentiews

Storable Classes became inconsistent because of an explicit deviation in the third alter-
native that was no longer needed. More precisely, we originally documented that all
Storable Classes except the Document class were Structure Classes. In version 1.90,
the system had been refactored such that the Document class was moved to another
hierarchy. We updated the design documentation by removing the deviation.

136



allsSmallWikiClasses

| VisitorClasses || Amion-(flgsses || ServerClas;as—][—CTaﬁ i entClasses SlructhCIasses
| J

I ther EL

7

5 ‘."

epteliassOlype / \
Actpfted S //equals eq%[:

OutputVisitﬁF@Eﬁﬁ SpreVisg'- (gass'e'?n StructurédAzﬁﬁﬁxﬂaageﬂfbﬁﬁﬂmablefm%i@eb&T'[asus.e‘s. ‘I ActionedStggtureClasses

classUnderstands

ethodWhichCalls

methodInClass namePrefixOf

thodInClass

Accepthe] Hods Exéc\uteMethods

(ot T i

Fig. 8. Intensional views and relations on version 1.90

Invalid relations

Structure Classes all understand method calling Execute Methods
failed because in SmallWki 1.54 the execute methods were being abused to render web
pages in HTML format. In the newer and cleaner version, page rendering was performed
by separate rendering methods. The only remaining purpose of the execute methods
was to dispatch action requests to more appropriate methods depending on the action
to be taken. Hence the invalid relation highlighted an interesting restructuring of the
application. To update the documentation we did two things:

(1) we documented the dispatching mechanism by defining an intensional relation which
required the execute methods to make a self call to a more specific execute*
method (where * is a non-empty string). E.g., the method execute onclass ChapterEdit
calls either executeCancel or executeSave if the corresponding button was
selected and performs an executeEdit otherwise;

(2) we documented that the execute methods were not allowed to send messages to
the instance variable named html (which was typically the way how rendering was
being done).

After having done so we still found a few violations against these new constraints but
did not codify them as explicit deviations, since we wanted to emphasize that they were
real design conflicts that should be fixed in a new version of the code.

Structure Classes is subset of Storable Classes failed because of the addition of two new
intermediate superclasses. We defined these two classes as deviating cases of the relation.

Comparingview sizes

Using the Intensional View Displayer, we compared the size of all views on version 1.54
with those on version 1.90. We wanted to find out if and where there were important dif-

137



ferences in size, as these may indicate potential problems. We did this by using the Inten-
sional View Displayer and choosing the number of entities in the extension as height of
the view. There didn’t appear to be any real problems except for the Actioned Structure
Classes view and its dual view the Structured Action Classes which both became empty.
When trying to understand the reason we found out that the view definition needed refine-
ment. The introduction of some intermediate classes in version 1.90 forced us to use the
classInHierarchyOf predicate instead of subclassOf.

Newly introducedviewsandrelations

Because of the restructuring of the code in version 1.90, we needed to add one new view
and one new relation:

Rendering Methods. The restructuring of the Execute Methods made us decide to define
a new intensional view grouping all Rendering Methods.

Execute Methods call Rendering Methods The restructuring caused the responsibility
of rendering web pages to be shifted from the execute methods to the rendering methods,
but rendering was still triggered by the execute methods.

6 Experiment 3 (Verifying the design structure of SmallWiki 1.304)

In the third and last experiment we reverified our design documentation on yet a more re-
cent version of SmallWiki (the one visually represented in Fig. 5) and drew conclusions
about the usefulness of intensional views and relations to document the design structure
of an evolving software system over a longer development period. Again, the design doc-
umentation appeared to be quite stable, but nevertheless we discovered some interesting
inconsistent views and invalid relations, which are discussed next. We also compared the
view sizes with those on the previous version.

Inconsistendiews

Outputtable Classes became inconsistent because of the addition of four new classes. In-
stead of having a specialized accept* method like the other Outputtable Classes
(and as expected by the view definition), these classes delegated their accept method to
a more general one. We solved this by refining the view such that it is declared as the
conjunction of the classes with a specialized accept method together with the classes that
delegate their accept method.

Storable Classes became inconsistent, as can be seen from Fig. 5, for the same reasons as

the Outputtable classes view. By redefining this view in an analogous way, the
consistency of this view was restored.

138



Execute Methods is no longer consistent because some coding conventions were not ad-
hered to consistently in this version: there were two ‘execute’ methods that were not
implemented in the correct protocol, and there were two other methods that were in the
right protocol but did not start with the string ‘execute’. To fix the problem the former
just needed to be moved to the correct protocol whereas the latter either needed to be
renamed or put in a more appropriate protocol.

Invalid Relations

Structure Classes is subset of Storable Classes and
Classes Visited is subset of Outputtable Classes failed because of the failure of the
Storable Classes and Outputtable classes views, as discussed above. After fixing these
views, these relations became valid again.

Storable Classes are all accepted by Store Visitors failed since the argument of the ac-
cept method on LinkInternalVisitor was called ‘anInternalLink’ instead
of on the expected ‘al.inkInternal’. (Remember that the predicate definition relied
on the fact that the argument names respected a particular naming convention.) We fixed
this problem by renaming the argument.

Store Visitors all accept class of type Storable Classes failed due to the addition of new
storable classes which were not taken into account by the Storable Classes view.
We solved this conflict by extending the Storable Classes view.

Output Visitors all accept class of type Outputtable Classes failed because in the origi-
nal version of this intensional relation we documented the classes AnObsoleteVisitorOutput
and AnObsoleteVisitorHtml as explicit deviations of the relation. These classes
however were removed from the code between experiment 2 and 3 and thus caused this
relation to fail. This was fixed by removing the deviating cases from the documentation
again.

Comparingview sizes

We compared the sizes of the (extension of the) intensional views on version 1.90 with those
on version 1.304 and observed two important differences: the number of Action Classes
almost doubled (from 13 to 25), because more functionality had been added to Small\Wiki,
whereas the number of Execute Methods further diminished from 23 to 14, illustrating the
continued migration from the old style of execute methods to those using the visitor pattern.

7 Ceritical analysis and lessons learned

In this section, based on our experiences gained with the SmallWki case, we perform
a critical analysis of the current generation of tools — including the new opportunities
offered by the visualization tool — and of the underlying model of intensional views and

139



relations, to support co-evolution of high-level design and source code of a medium-sized
Smalltalk application.

Deviations The experiments illustrated the importance of being able to define explicit de-
viations (inclusions and exclusions) to intensional views and relations. This happened
when the implementation should have adhered to an intension or relation, but for various
reasons did not. Typically, this either indicated an opportunity to refactor the code, or to
refine an intension that was expressed too broadly. In either case it was useful to doc-
ument the deviating cases explicitly. When eventually fixing the code or intension and
reverifying consistency, the tool would issue warnings about deviations that had become
obsolete, confirming us that the exceptional case had indeed been solved, at which point
we could safely remove the corresponding deviation.

Completeness Although intensional views and relations allowed us to express and verify
interesting structural constraints about the source code, the obtained design documenta-
tion was by no means complete. For example, it could prove useful to complement this
design documentation with more dynamic information produced by other tools.

Static versus dynamic information Indeed, both query languages supported by our tool
(Soul and Smalltalk) allowed us to define views and relations which reason about the
static structuie of a systemonly. Although we did not experience the lack of dynamic
information as a severe hindrance while documenting the design of SmallWki, we do
agree that this restriction may prohibit us in documenting some interesting design con-
straints. For instance, the concept of a layered architecture is very hard to express without
the use of dynamic information.

Incremental approach In our experiment, we adopted an incremental approach to docu-
ment SmallWki. Starting from a minimal working knowledge about the case, we grad-
ually refined and documented our knowledge about the system by alternating manual
code inspection with the definition of views and relations and verifying them against
the source code. The tools helped us in codifying and testing our assumptions about the
code structure and in finding out where the assumptions were (or became) invalid and
why. This incremental approach not only allowed us to obtain a fine-grained documen-
tation of the structure of Small\WKki, but at the same time helped us in obtaining a better
comprehension of the system’s implementation. In addition, we observed that verifying
the documentation against newer versions of the code often provided us with valuable
insights in how the application’s design evolved.

Co-evolution The goal of the IntensiVE toolsuite is to support co-evolution of code and
design documentation. To this end, our tools support the detection of structural conflicts
between documentation and code, when either of them have evolved. We can discrimi-
nate between two kinds of conflicts. A first kind of conflict is when the documentation
is conceptually correct, but some parts in the code violate it. This can happen when an
actual bug was introduced in the code (e.g., removing a method that is being relied on)
or when a certain naming or coding convention (e.g., putting a method in the wrong pro-
tocol) or architectural constraint was violated (e.g., adding a class that can be visited but
does not implement the appropriate methods). In order to fix these conflicts, the code
needs to be adapted. The other kind of conflicts that may occur are caused by code re-
structurings that affect the original design documentation. Such conflicts typically need

140



to be solved by modifying the design documentation, i.e. adapting the views and rela-
tions.

Perhaps surprisingly, the majority of conflicts we detected were of the second kind, i.e.
they were caused by code restructurings of Small\WKki. Indeed, over the different versions
of SmallWiki, the source code was often restructured in order to improve the design
of the application. A possible explanation for the fact that we did not discover many
conflicts of the first kind is that we did not apply the documentation to a system under
development, but rather applied it ‘a posteriori’ to versions of Small\Wki which had
already been released and tested.

Visualization One of the most recent additions to IntensiVE is the visualization tool. By
making good use of the underlying CodeCravler tool, we could use it not only to display
the declared views and relations, but also to highlight inconsistent views and relations
and to help us assess the impact of an evolution of the system. Using the CodeCravler
integration, with an appropriate metric we could for instance visualize the size of the
views and the cardinality of the differences between the various alternatives of a view.
This was a significant improvement over earlier versions of our tools where we had to
manually inspect all views and relations in order to get an idea of the impact of evolution
on the documentation. A downside of using the visualization was that, when the number
of views and relations increased, the visual representation became cluttered. A pragmat-
ical solution to this problem was to visualize only a selection of views and relations.

Choice of query language An interesting question when using IntensiVE is what query
language to select. When defining an intensional view or relation, should we prefer logic
queries over Smalltalk queries, or perhaps prefer hybrid queries? The rule of thumb
we adopted was to always choose the language that best suited our needs, that is, the
language in which we could express the query or predicate in the most compact, yet still
declarative way. In practice, it often turned out that a hybrid query was most appropriate.
For example, we could have defined the Structured Action Classes view by means of a

logic query:

classWithName(?entity, ?ename),
endsWith(?ename, [ 'Action’]),
classInViewNamed(?c,StructureClasses),
classWithName(?c, ?cname),

equals([?cname, ‘Action’], [?ename asString])

By using a mixture of logic and Smalltalk code, however, we could write the query much
more compactly, by doing the string pattern matching in Smalltalk and the reasoning
about the code structure in logic:

["*Action’ match: ?entity name],
subclassOf (?c, [SmallWiki.Structure]),
[(?c name, ’'Action’) = ?entity name asString]

In an extreme case this even resulted in a hybrid query which took 4 lines of code, while
the same query, written down in Smalltalk took 17 lines.

Nevertheless, without going in the technical details, when using IntensiVE we did oc-
casionally notice some limitations when trying to mix queries and predicates defined in

141



the different languages. To solve these limitations, a better integration and symbiosis of
the logic and Smalltalk query languages and libraries is required (like the one proposed
in [11]).

Is logic programming needed? On the other hand, none of the declared views or relations
in this case study required the full power offered by our logic programming language
Soul. Hence we could probably use a less expressive but faster query mechanism like
SmallLint [12], and still be able to codify the same views. But then we would also loose
the abstraction facilities offered by our logic programming language, as well as its logic
library containing an extensive set of predicates to reason about Smalltalk source code.

8 Conclusion

This paper investigated how the model of intensional views and relations and the IntensiVE
toolsuite can be used to support co-evolution of source code and design of a software sys-
tem. The evaluation was done by documenting the design of an early version of Small\MKki
and checking this documentation against two more recent versions of SmallWki. Doing
these experiments we observed that:

¥ Although building a first version of the design documentation of an unknown system
remains a largely manual process, the incremental nature of the approach, combined
with tool support to verify and visualize conformance of the design against the code,
helps us in understanding the code and its structure.

¥ Once the design of a system has been documented with intensional views and relations,
conformance of this design against other versions can be checked and visualized. Even
by simply reverifying the defined views and relations on another version of the software,
we gain useful insights on how the software evolved.

¥ Visualization of high-level design documentation is useful and important, especially
when combined with advanced metrics and coloring to highlight potential inconsisten-
cies. In a glimpse of the eye it is possible to get an overview of the design, and assess
whether it conforms to the code, and where not.

¥ Being able to use different query languages to express views and relations is important.
It means that the language most appropriate to express certain kinds of information can
be chosen. At the same time it reduces the learning cost of the approach: someone not
proficient with logic programming can start with simple Smalltalk queries and gradually
learn to use the logic language and library. A good integration and symbiosis of the query
languages and libraries is essential, however.

Overall, despite some minor limitations of the environment, the IntensiVE toolsuite sup-
ported us quite well in documenting the high-level structure of Small\Wki and keeping it
synchronized with the code as it evolved, while at the same time providing us with useful
insights on how the code structure evolved over time.

142



References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A. J. Ko, H. H. Aung, B. A. Myers, Eliciting design requirements for maintenance-
oriented ides: A detailed study of corrective and perfective maintenance, in:
Proceedings of the International Conference on Software Engineering ICSE’2005,
IEEE Computer Society, 2005, pp. 126-135.

K. Mens, R. Wuyts, T. D’Hondt, Declaratively codifying software architectures
using virtual software classifications, in: Proceedings of TOOLS Europe 1999, IEEE
Computer Society Press, 1999, pp. 33—45, TOOLS 29 — Technology of Object-
Oriented Languages and Systems, Nancy, France, June 7-10.

K. Mens, T. Mens, M. Wermelinger, Maintaining software through intentional source-
code views, in: Proceedings of the International Conference on Software Engineering
and Knowledge Engineering (SEKE’02), ACM Press, 2002, pp. 289-296.

K. Mens, B. Poll, S. Gonzilez, Using intentional source-code views to aid
software maintenance, in: Proceedings of the International Conference on Software
Maintenance (ICSM’03), IEEE Computer Society Press, 2003, pp. 169—178.

K. Mens, A. Kellens, Towards a framework for testing structural source code
regularities, submitted to ISCM 2005.

R. Wuyts, S. Ducasse, Unanticipated integration of development tools using the
classification model, Computer Languages, Systems and Structures 30 (1-2).

K. Mens, I. Michiels, R. Wuyts, Supporting software development through
declaratively codified programming patterns, Elsevier Journal on Expert Systems with
Applications 23 (4) (2002) 405-431.

M. Lanza, Codecrawler: Lessons learned in building a software visualization tool,
in: Proceedings of the 7th European Conference on Software Maintenance and
Reengineering (CSMR 2003), IEEE Computer Society, 2003, pp. 409-418.

L. Renggli, Collaborative web : Under the cover, Master’s thesis, University of Berne
(2005).

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Languages and Systems, Addisson-Wesley, 1994.

[11] K. Gybels, Soul and smalltalk - just married: Evolution of the interaction between

a logic and an object-oriented language towards symbiosis, in: Proceedings of the
Workshop on Declarative Programming in the Context of Object-Oriented Languages,
2003.

[12] D. Roberts, J. Brant, R. Johnson, B. Opdyke, An Automated Refactoring Tool, in:

Proceedings of ICAST 1996, Chicago, IL, 1996.

143



144



A New Object-Oriented Model of the Gregorian Calendar

Hernan Wilkinson Maximo Prieto Luciano Romeo
Mercap Development Manager Lifia — Facultad de Informatica Mercap Software Architect
Tacuari 202, 7mo Piso Universidad Nacional de La Plata Tacuari 202, 7mo Piso
C1071AAF, Buenos Aires, Argentina cc11, 1900, La Plata, Argentina C1071AAF, Buenos Aires, Argentina
54-11-4878-1118 (ext. 120) +54 221 422-8252 (ext. 215) 54-11-4878-1118
h.wilkinson@mercapsoftware.com  maximo.prieto @lifia.info.unlp.edu.ar l.romeo@mercapsoftware.com
ABSTRACT

Time is an important aspect of all real world entities; therefore, tempora information is crucia in many computer-based applications.
Different types of time entities exist such as those representing points in time and those representing measurements of time. Extensive
research activity on tempora models has been done but the Smalltalk community has not benefited enough from them. Smalltalk-80
provides the classes Date and Time to model time domain entities. These abstractions cover the basic needs of most programs, but they are
not enough when complex observations about time have to be programmed. ANS|I Smalltalk added the Duration and DateAndTime
classes. Squeak augmented the model with the abstractions Timespan, Year, Month and Week. While the Squeak model provides
abstractions to cover almost all the observations within the time domain when using the Gregorian calendar, it lacks some abstractions and
it does not properly model the problem domain. In this paper, we present a new set of classes that model entities of the time domain using
the Gregorian calendar based on a simple metaphor. This model proved to be very powerful and easy to use. It allows programmers to
design and program time related issues better than current time domain implementations, and in amore natura way.

Key words. smaltak, Date, Time, Gregorian caendar, Time span, Time intervals, Time line view, Relative Dates, Test Driven
Development

1. INTRODUCTION

Time entities are an important aspect of many computer applications. For example, the financia domain has a strong coupling with the
time domain because the vaue of any financia instrument is related to a certain point in time (i.e. the value of one Euro today is not the
same as it was two years ago), financial operations among traders could be settled some time after a given date (i.e. 48 hours after today),
instrument cash flows depend on dates relative to a certain calendar, and so on. Office information systems depend on time information to
pay sdaries, allow employees to leave on vacation, etc. Real time systems base their behaviour on timed events, verify the temporal
evolution of the environment they control, etc.

Different types of temporal entities exist, such as:

e Specific pointsin thetimeline, such as 01/01/2005 (defined as anchored data by [13])
*  Measurementsof time, such as 1 day (defined as unanchored temporal information by [13]) ]
*  Tempora information about occurred events, such us Qlohn played his guitar while Paul was outsideO([2])

Many time models have been proposed in the past ([4], [13], [24], [19], [11]) but none of those models are provided within the Smalltalk
environments. Also, most of them are related to other technologies such as relational databases or artificia intelligence systems. Works
such as [8] and [15] propose changes to the ODMG [10] object model adding temporal tracking to objects, but they do not augment the
ODMG time model which lacks important time abstractions. Other programming languages such as Java [16] and .NET [20] provide basic
time models that suffer from important design flaws.

Barbic et al. in [26] and [27] classifies temporal systems in two categories, those that model Time Representation and those that model
Time Reasoning. The former deals with the GepresentationOof time entities (time points vs. time intervals), time ordering (linear, circular
or branching), time boundedness (i.e. modelling of finite or infinite times) and time measurements (distance between time entities,
arithmetics on those measurements). The later focus on the specifications of a time cal culus to manage temporal information and a query
language to extract temporal information about time events.

We present in this paper an object model that focus on the Gregorian calendar Time Representation, implemented with Smalltalk, which
provides abstractions for many of the time domain entitiesthat are not model in current implementations.

1.1 Motivation

Our daily work focuses on financia applications, where temporal information is highly tied to the financia one. When we started to build
financial applications with Smalltalk we realised that time objects provided by the environment were not enough to underteke the
modelling of the financial domain.

145



Smalltalk-80 [12] provides a basic time model implementation of the Gregorian calendar. That model has not covered our expectations
mainly because:

* It lacks proper abstractions of someimportant time domain entities (i.e. month, day)
*  Timeobjects are not immutable (i.e. Time) therefore, they do not properly model time entities as we show further on.

The Chronology package [21] released with Squeak 3.7 [23] addresses many of the issues we found with the Smalltalk-80 model, but:

* Itlacksagood separation between anchored and unanchored time entities
* |tdoesnot model important time entities such as month (i.e. January) and day (i.e. Monday).

The model we present in this paper is based on a smple metaphor and some modelling rules we outline further on. The metaphor proposes
to see time entities as points of the timeline with different resolution. Based on this metaphor, the model provides behaviour to:

Determine which point comes before or after another (ordering of time points along atime-line).
Go from one point in the time line to another.

Obtain the distance between two time points.

Switch from one scaleto another.

Represent segments of the timeline of any scale.

Represent intervals between points.

Obtain views of thetime line with certain filtering rules

The model also implements abstractions such as day, month, day of a given month and relative day among others. Another important
characteristic of thismodel is that it uses Measurements [25] to represent the distance between two pointsin the time line, not just numbers
asis commonly donein other models.

1.2 Scope

The model was developed out of a Gommercial Onecessity. Before creating this model, we looked for similar solutions in the Smalltalk
community but none of them satisfied our needs. We decided to create a new model based on the exploration of the time domain using Test
Driven Development [6] as the guidance technique.

The scope of the model is limited to the Gregorian calendar decreed by Pope Gregory X111 [22]. No support is given neither for the Hindu
calendar nor for the Iranian one or any other calendar, see [22] for a complete description of these calendars. The model does not cover
time entities that represent relations between events (i.e., QvhileQ (heforeQ Git the endQ etc.).

1.3 Paper organization

The remaining of this paper is organized as follows: Section 2 expands the problem we present in this paper. Section 3 presents the
metaphor we based the model on. Section 4 discusses the model® design and behaviour. Section 5 sketches the implementation. Section
6 compares the presented model with other time related models. Finally, Section 7 concludes the paper and gives directions for future
research.

2. THE PROBLEM

Smalltalk-80 provides two classes to model time entities: Date and Time. These classes are subclasses of Magnitude, so their instances
can be compared using the message #< (among others).

Class Date provides protocol to get the number of days between two dates (#subtractDate:) and to obtain a new Date by adding or
subtracting a number of days (#addDays: and #subtractDays:). It also provides accessing protocol to get the year, month and day of an
instance of Date. Although this abstraction is useful for many applications we encountered problems when dealing with complex situations
like getting the number of months between two dates.

Some issues can be observed with the Time class as well. Instances of Time can only be created using a number of seconds from hour
zero. No standard protocol isprovided to create a Time instance with anumber of hours, minutes, and seconds. If the programmer wants to
do that, an instance of Time has to be created and the message #hours: minutes: seconds: has to be sent to the newly created instance. This
message permits the modification of an object representing a time of the day, while our observations of reality made us conclude that time
entities are immutable aswe shall see in the following sections.

The Smalltalk-80 model also lacks abstractions to represent other entities found in the time domain such as years, months, days of agiven
month and some of them are confusing (i.e. Time behaves like a clock, not as a measurement of time). For instance, the message #year
implemented in Date returns aNumber not an object that reifies an entity yearQ The same is also true with the message #day, it returns a
Number representing the day number not a Qlay© To obtain the month of a Date it is even harder because the model does not have a
month class. Date provides two messages to accomplish that requirement, #monthName and #monthindex. The former returns a Symbol
(i.e. #February) and the later aNumber representing the position of that month in a Gregorian year (i.e. 2 for February).

It could be argued that these are subtle issues, that a day can be modelled as a Number and a month can be modelled as a Symbol or as a
Number. An example of such model is the one provided by Smalltalk-80. We argue that a better model can be created because this
implementation lacks abstractions which make it difficult to use when complex time-related calculations and situations need to be
programmed.

146



For instance, the Smalltalk-80 model does not easily solve the problem of getting the number of days of a month because the object that
represents amonth is a Symbol or aNumber and neither of them answers the message #number OfDays. Class protocol is provided in Date
to answer that question with the message #daysinMonth: aMonthName for Year: aninteger but we argue that the class Date should not be
responsible for this behaviour. A better solution would reify the Gnonth of yearO concept providing to this abstraction the necessary
behaviour to treat it as amonth of year, not aSymbol or aNumber, with messages such as #numberOfDays. (See Figure 1)

Oc<<< Smatalk-80 Solution >>>>

Note that the message #daysl nMonth: for Year: is sent to the class DateO
today := Date today.

Date daysinMonth: today monthName forY ear: today year.

Figure 1: Getting the number of days of a year @month

Squeak version 3.7 provides aricher model with abstractions proposed by the ANSI Standard [3] like the class DateAndTime and the class
Duration, used Qo represent a length of timeO[3]. It also reifies concepts like Timespan, Year, Month and Week, implemented as
subclasses of Timespan.

The Squeak model, athough richer than the Smalltalk-80 and the ANSI models, also lacks abstractions to represent a day, aday in amonth
or just asimple month. It can at first produce misinterpretations on the meaning of its abstractions such as the class M onth, which does not
represent a month (i.e. January) but a month in ayear (i.e. January 2005). But the main problem we found with this model is that time
entities are modelled as segments in the time ling; all the time classes are subclasses of Timespan. This modelling decision merges two
different concepts, time points and time segments in one, which alows comparing entities of different granularity such as years and dates
(i.e. year 2005 and January 2" of 2005).

The problem with representing time entities as time segments is that atotal order can not be defined among them (See [13]). Therefore, the
result of comparing those entities could be QuinknownO(i.e. year 2005 is not less, equal or greater than January 2" of 2005) and the
QunknownQentity is not modelled in Squeak.

Due to the limitations of the existing models shown in this section we decided to create a new model of the Gregorian calendar reifying as
much time entities as we observed from redlity.

3. THEMETAPHOR

We use a metaphor to understand the time domain. In this metaphor, time entities are points in aline, aline that represents the time line.
The observers of that line can zoom in and out the points it contains. When the observer zooms in she sees smaller points (i.e. dates), when
the observer zooms out she sees bigger points (i.e. years). We say that the time line has different scales or that time lines of different scale
can represent the passing time.

Let® see an example. A year represents a point in time but with less resolution than a date. If the year is zoomed in, new points will be
observed; those points are the months of that year. If one of those pointsis picked and zoomed in, the points representing the dates of that
month will be obtained. If one of this datesiis selected and zoomed in, points representing the hour of that date will be obtained. Let® do it
with concrete entities. If the year 2005 is selected and zoomed in, months from January of 2005 to December of 2005 will appear. If
January of 2005 is zoomed in, dates from January 1% of 2005 to January 31% of 2005 will be seen. If January 1% of 2005 is zoomed in, the
entities January 1% of 2005 at 00:00:00 to January 1% of 2005 at 23:59:59 will be seen. See Figure 2 for a graphical representation.

The inverse happens when zooming out. If an hour of a day is zoomed out, a point representing its date will be obtained. If that date is
zoomed out, a point representing the month where that date belongs to will be obtained. If that point is zoomed out, the year that the month
belongsto will be obtained.

The points that can be obtained at the different scales of the time line are abstractions representing years (i.e. year 2005), months of a year
(i.e. January of 2005), dates (i.e. 01/01/2004) and the time of a given date (i.e. 01/01/2005 at 00:00:00).

Even though these are the only kinds of points we can obtain from the time line (at least in our model), there are other entities that we also
modelled, such as the days of the week (i.e. Monday), days in a month (i.e. January 1%), hours in a day (i.e. 00:00:00), months (i.e.
January), segments of the time line and relative dates among others.

4. PROPOSED MODEL

As we said before, the main drawback of the Smalltalk-80 and Squeak models is that they do not provide abstractions for all the entities
that we can observe in the time domain related to the Gregorian calendar. Because software is knowledge represented in a computable
model, object models should provide an abstraction for each observed entity of the problem domain. Lacking abstractions means
incomplete knowledge. Incomplete knowledge leads programmers to fill the gaps between the problem domain and its model with
solutions that end up producing code duplication, ad-hoc implementations and finally, error prone situations. Object models with the right
abstractions are more reusable and easier to use.

147




|n/

01/07/05 ‘

Zoom /

e

|n/ AN

15/07/05
23:59:59

15/07/05
00:00:00

15/07/05
12:00:00

Figure 2: Zooming in and out in thetimeline

Based on this principle, we observed and modelled the following entities of the Gregorian calendar:

Years: Modelled with the class GregorianYear. Thisclassis used to represent years such as the year 2005, the year 2000, etc.
Months of a Year: Modelled with the class GregorianMonthOfYear. This class represents entities like January of the year 2005,
December of the year 2000, etc.

Dates: Modelled with the class GregorianDate. It is used to represent entities such as 31/12/2005, which is December 31st of 2005.
Note that we use the DD/MM/YY Y'Y notation.

Relative Dates: Modelled with the class RelativeGregorianDate. Used to represent dates that can change depending on different
time events (i.e. working or none working days).

Time of a given Date: Modelled with the class GregorianDateTime. This class represents entities such as 01/01/2005 at 10:00:00,
that is, ten in the morning of January 1% of the year 2005.

Daysof a Month: Modelled with the class GregorianDayOfM onth. This class represents entities such as January 1%, December 25",
etc. Notethat these are days of given months but of no particular year.

Months: Modelled with the class GregorianMonth. Months are January, February, March, etc.

Days: Modelled with the class GregorianDay. Days are Sunday, Monday, Tuesday, etc.

Time of a Day: Modéelled with the class TimeOfDay. It represents the timein aday such as 10 AM, 12 PM, 9:15:35 (this is quarter
past nine and thirty five seconds).

Segments of the time line: Modelled with the class Timespan (i.e. 10 days from now)

Time point intervals of different granularity and resolution: Modelled with the class M easur ementinterval (i.e. from 01/01/2005
to 20/01/2005 every 3 days).

Time lineviews: Modelled with the class TimelineView. Used to mark time points according to some criteria (i.e. working day, non
working day).

4.1 Timeentitiesimmutability and validity

Something we have noticed about time entities is that they are immutable; they do not change, they are immutable like the numbers. A
given date such as January 1% of 2005 should not alow its year, month or day to be changed. Therefore, the abstractions we use to model
the time domain entities are immutable, they behave like Gralue objectsO(see [5]). Immutable objects allow us to have a simpler model and
not to worry about inconsistent objects, invalid modifications or invariance invalidity during a certain time.

The modd aso verifies, when creating an object, if the new instance will be valid. If that is true, the object is created, otherwise an
exception is signalled. Therefore, the code that verifies if an object isvalid is located in one place and ensures that no invalid time objects
exist.

For example, the year zero is an invalid year on the Gregorian calendar, and trying to create an object for the year zero is a semantic error,
so we check that rule when trying to create an instance of GregorianY ear. See Figure 3.

148



GregorianY ear class>>number: aNumber
"(self isvalidY earNumber: aNumber)
ifTrue: [ ... create theinstance ...]
ifFalse:[InvalidGregorianY earNumberException sgnalNumber: aNumber ].

GregorianY ear class>>isValidY ear Number: aNumber
~aNumber~=0 and: [ aNumber isInteger ]

Figure 3: Verifying the creation of an instance of a year

Because GregorianYear is immutable, no instance message is provided to set the number of the year. If GregorianYear were not
immutable, the setter method #number: would have to perform the same verification as the #number: class method. This verification isnot
difficult to do with years, but what about dates? If we provide a message to change the day number, its implementation should verify that
the day number is valid for the month and year the date aready represents. But, what happensif it is temporarily invalid because the next
collaboration modifies the month making the new day number vaid? There is no way to maintain the validity of the date invariants if we
provide messages to modify its day number, month or year.

A message could be provided to completely change a date such as #yearNumber: aYearNumber monthNumber: aMonthNumber
dayNumber: aDayNumber, but that message would be the same as that one sent to the class to create a new instance as Figure 4 shows.

(Creates the date 28/2/20050

aDate := GregorianDate yearNumber: 2005 monthNumber: 2 dayNumber: 28.

CBetting the day number to 31 should signal an exceptionO

aDate dayNumber: 31.

(But if the month is changed to be January the previous day number would be valid...O

aDate monthNumber: 1.

A message to change the year, month and day number could be provided, but it is the same as the one the class responds toO
aDate yearNumber: 2005 monthNumber: 1 dayNumber: 31

Figure 4: Verifying the creation of an instance of a year

4.2 Different scaletimelinetraversal

Aswe said before, ayear can be seen as a point in the time line at a year resolution. Because the resolution is a year, that point contains
other points of higher resolution such as months of ayear, dates and time in a certain date. The model provides protocol to easily move
between points of different resolutions (i.e. going from ayear to the datesit contains or from adate to its year). Moving to points of smaller
resolution looks natural (i.e. going from a date to its year) but moving to points of higher resolution is not so commonly provided on this
type of models (i.e. going from ayear to its dates).

Messages to go from points of one scale to another are provided on each abstraction. See Figure 5 for an example.

aY ear := GregorianY ear number: 2005.

QGoing from years to months of yearO

aY ear firstMonth. CReturns January of 20050

aY ear lastMonth. CReturns December of 20050

aYear months. CReturnsall the months of year 20050
GGoing from years to datesO

aYear firstDate CReturns 01/01/20050

aYear lastDate  CReturns 31/12/20050

aYear dates  CReturnsthe 365 dates of the year 20050
aYear firstDay CReturns SaturdayO

aYear lastDay Ot isalso a SaturdayO

QGoing from yearsto date timesO

aYear firstDate atMidnight  CRetur ns 01/01/2005 00:00:000
aY ear lastDate lastTimeOfDay CReturns 31/12/2005 23:59:590

Figure5: Moving from a year to other entities

4.3 Magnitude protocol

All the time point abstractions respond to the magnitude protocol with messages such as #<, #<=, #>, #>=, #min:, #max:, #between: and:
among others. Because they are points in the time line of a certain resolution, they can be compared to see which one is closer or farther
from the beginning of the time line. A total order can be defined for them. See Figure 6.

149




(GregorianY ear number: 2005) < (GregorianY ear number: 2010) QComparing yearsO
GregorianMonthOfY ear decemberOf: 2005 < GregorianMonthOfY ear julyOf: 2005 GComparing month of yearO
GregorianDate today < GregorianDate tomorrow QComparing datesO

GregorianDateTime now < GregorianDateTime now next QComparing datetimesO

Figure 6: Comparing pointson thetimeline

Not only points on the time line can be compared. Instances of GregorianDay, GregorianDayOfMonth and GregorianMonth can aso
be compared. When comparing days of the week, the model assumes Sunday is the first day of the week but this can be changed to any
other day such as Monday. January 1% is always the first GregorianDayOfMonth and January is always the first GregorianMonth.
Figure 7 shows how to compare these objects.

GregorianDay monday < GregorianDay tuesday QComparing daysO
GregorianMonth january < GregorianMonth december QComparing monthsO
00/010esGregorianDayOfMonth < ©8/120asGregorianDayOfMonth ~ GComparing days of monthO

Figure 7: Comparing other time entities

Comparing points of different resolution can end up being QunknownQ For example, the year 2005 isnot less, equal or greater than January
2" of 2005. Different approaches were proposed to solve this problem. [13] and [4] propose to return QunknownOfor this type of
comparison. Squeak does not return unknown but it can be inferred because all the comparison messages (#<,#= and #< ) return false when
they are sent to objects under this situation. We propose a different solution where the comparison between points of different resolutionsis
not allowed and, if such an attempt is made an exception is signalled.

This decision is based on the metaphor used to create the model and an analogy we made with points and sets. Because pointsin the time
line are composed of other points, they can be considered analogous to sets. For example, ayear is a point that contains the months of that
year. We think that comparing a year (seen as a set of its months) with a month of that year (an element of that set) is a semantic mistake
becauseit is analogous to compare a set with el ements of that set.

Propositions such as Qs the year 2004 before January 1% of 2005?Oare seen as valid because only a comparison at the year resolution is
necessary to answer that question, only the year 2004 and the year 2005 are compared. The problem with this type of comparison arises
when comparing ayear with a month of that same year such as Qs the year 2005 before March of 200520Because March of 2005 is part of
theyear 2005, it is neither before, after nor equal to the year 2005, but included in it.

4.4 Obtaining the distance between two points
Time models should provide ways to know the number of years between two years, the number of months between two months of a year,
and so on. Thisis analogous to obtain the number of points between two points of the same time line resolution.

M essages #distanceTo: aPoint and #distanceFrom: aPoint are used to obtain the distance between two points. The same messages are used
polymorphically for years, months of ayear, dates, etc. The model does not provide the message #- (minus) to get the distance between two
points because it does not behave like the subtraction operation. When the message #- is sent to a Number, it returns another Number, but
the distance between two points in the time line is not of the same type of the points; it is a measurement. Due to this observation we
decided to use a different protocol for thiskind of inquires. See Figure 8.

The model also provides behaviour to obtain the distance between time entities like days, months and days of months.

(GregorianY ear number: 2005) distanceTo: (GregorianY ear: 2010) CReturns 5 yearsO
(GregorianY ear number: 2005) distanceTo: (Gregorian ear: 2000) CReturns -5 yearsO

00/01/20050esGregorianDate distanceTo: O0/01/2005CasGregorianDate  CReturns 10 daysO
00/01/20050esGregorianDate distanceFrom: O0/01/20050esGregorianDate CReturns -10 daysO

Figure 8: Getting the distance between two points

45 Time measurementsand their relevance on the time domain

Note that objects returned by the distance messages are not numbers but time measurements. Some models provide abstractions for such
entities like [4] and [13], others just do not reify them like Smalltalk-80 and Squeak, where raw numbers are used to represent them. This
model reifies them reusing another model we created, one used to represent any kind of measurement. In such model, a measurement is
modelled as a number together with a unit.

The advantages of using measurements over raw numbers are explained in [25], [1] and [17]. We would like to briefly mention some of
them. The first and most important one is that the object Q10 daysOrepresents in a better way the distance between days than just the
number Q10O People could argue that in reality, when they are asked how many days there are between two dates, i.e. how many days are
between January 1% and January 10", they just respond with anumber, i.e. 9. That is true, we GsayOa number but that number has implicit
knowledge attached to it due to the context of the question that has been asked. Its meaning isnot just 9, but 9 days.

150




This model provides different units to create all the possible measurements of the Gregorian calendar. These units are organised in two
different categories due to the irregularity of the Gregorian calendar. The base unit for each category is month and millisecond. Figure 9
shows the units provided by default with the model, new units can be created.

Unit Type M easur ement example Conversion example

month Base Unit 10 months (12 months convertTo: year)=1 year

year Derived from month 2 years (2 years convertTo: month)=24 months

decade Derived from month 1 decade (1 decade convertTo: year)=10 years

century Derived from month 2 centuries (2 centuries convertTo: decade)=20 decades
millennium Derived from month 1 millennium (2 millennium convertTo: century)=10 centuries
millisecond Base Unit 1000 milliseconds (1000 milliseconds convertTo: second)=1 second
second Derived from millisecond 60 seconds (60 seconds convertTo: minute)=1 minute
minute Derived from millisecond 60 minutes (60 minutes convertTo: hour)=1 hour

hour Derived from millisecond 24 hours (24 hours convertTo: day)=1 day

day Derived from millisecond 7 days (7 days convertTo: week)=1 week

week Derived from millisecond 2 weeks (2 weeks convertTo: day)=14 days

Figure 9: Time unitsprovided by default

Note that converting measurements of different scales is not always feasible due to the irregularity of the Gregorian calendar. [13] also
explains this limitation. In this model, measurements can be automatically converted if they share the same base unit. A measurement of
years can be converted to months, decades, centuries and millenniums because they share the same base unit, month. Automatic conversion
between milliseconds, seconds, minutes, hours, days and weeks is also possible because they share the same base unit, millisecond.

A measurement of years cannot be converted to days because the conversion could be 366 days or 365 days per year due to the existence of
leap years in the Gregorian calendar. The same applies to months. A month cannot be converted to days because it could represent 28, 29,
30 or 31 days. This does not mean that a specific year or month of year can not be asked for the number of days it contains. Instances of
GregorianYear and GregorianMonthOfY ear respond to the message #numberOfDays, which returns a time measurement (i.e. 29 days if
the month of year is February 2004 and 28 days if the month of year is February of 2005).

Because the time model uses the measurement model, new time units can be created as needed. For example, the quarter of ayear unit can
be created as derived from month as shown in Figure 10.

month := BaseUnit nameForOne: OronthChameForMany: OronthsO OThis unit is provide with the model O
quarter := DerivedUnit from: month

nameForOne: OgarterOnameForMany: Ogarters®

convertionFactor: 3

Figure 10: Creating a new time unit

It is also possible to mathematically operate with time units because the measurement model provided with this model supports the basic
arithmetic operations +, -, * and / among others. Because time units are reified, measurements composed with time measurements can be
created, such as 100 Knmvhour (a measurement of speed) or 10%/month (an interest rate of 10% by month). Figure 11 shows some
examples. Refer to [25] for a complete explanation of this behaviour.

14 days + 1 week = 1814400000 milliseconds. QAdding measurements of the same base unitO

((14 days + 1 week) convertTo: days) = 21 days. (QConverting the result of an operationO

(1year + 10 days) = (1 year + 10 days) QAdding measurements of different base unitO

10 years* 10 = 100 years (Multiplying a measurement by a numberO

10 years* 12 months = 10 year*year (Multiplying measurementsO

10 years* 12 months/ 24 months = 5 years Orhe model automatically simplifi es unitsO

100 kilometers/ 1 hour CRepresents a speed of 100 km per hourO

0.01/ 1 month CRepresent an interest rate of 10 % by monthO

Figure 11: Arithmetic with time measurements

4.6 Moving through points of the same time lineresolution
The model provides the #next, #next: aMeasurement, #previous and #previous: aMeasurement messages to move certain distance from a
given point. #next and #previous messages assume that the distance to moveis equal to the quantum of the time line the point receiving the

151




message belongs to. If the point is ayear, the quantum is 1 year, if the point is a month of ayear the quantum is 1 month, if the point is a
date the quantum is 1 day and if the point is adate time the quantum is 1 millisecond.

Moving certain distance from a point expects a measurement of time as parameter because the distance between two pointsis expressed as
ameasurement of time. See Figure 12 for examples.

(GregorianY ear number: 2005) next CReturns GregorianYear number: 20060
(GregorianY ear number: 2005) next: 1year ~ CReturns GregorianYear number: 20060
(GregorianY ear number: 2005) next: 12 months  CReturns GregorianYear number: 20060
(GregorianY ear number: 2005) next: 10 years  CReturns GregorianYear number: 20150
(GregorianY ear number: 2005) previous: 5 years CReturns GregorianYear number: 20000

Figure 12: Moving on the sametimeline resolution

At the moment this paper was written moving a certain distance expressed in a unit not convertible to the unit of the quantum of the point
signals an exception. We found this behaviour to be too restricted when dealing with some financial observations. In the section future
work we show some ideas to solve this problem. Figure 13 shows examples of how the model behaves at the time this paper was written.

(GregorianY ear number: 2005) next: 120days ~ CSignals an exception because 120 days can not be
converted to yearsO

00/20050esGregorianMonthOf Y ear next: 120 days CBignals an exception because 120 days can not be
converted to monthsO

Figure 13: Moving on the sametimeline resolution

The model also provides protocol to move through time entities that do not belong to any time line but have an order such as days, months
and days of month. See Figure 14.

GregorianDay monday next: 4 days CReturns FridayO
GregorianMonth january next: 2 months CReturns MarchO
(GregorianMonth january dayNumber: 1) next: 2 days CReturns January 3" O

Figure 14: Moving from days, months and day of months

4.7 Segmentsof thetimeline

The class Timespan represents segments of the time line. A segment begins on a specific point of the time line and has certain duration and
direction expressed as a measurement. The starting point of atime span can be apoint at any of the time line resolutions. The duration and
direction is given by atime measurement that should be convertible to the unit of the scale the staring point belongs to. If the measurement
is positive, the direction is towards the end of time, if the measurement is negative, the direction is towards the beginning of time. See
Figure 15.

(Creates a time span from January 1% of 2005 with 72 hours of duration®

aTimespan := Timespan from: ©0/01/20050asGregorianDate duration: 72 hours.

aTimespan to. CRetur ns 4/01/20050

(Creates a time span from year 2005 with a duration of 4 yearsO

aTimespan := Timespan from: (GregorianY ear number: 2005) duration: 4 years

aTimespan to. CReturns year 20090

(Creates a time span from now with a length of 3 weeks toward the beginning of timeO
aTimespan := Timespan from: GregorianDateTime now duration: -3 weeks

aTimespan to. A f now is 01/01/2005 10:00:00, returns December 11" of year 2004 at 10 AMO

Figure 15: Time spansof point in lines

Time spans can also be used with time objects that are not part of the time line but have an order such as days, months and day of months.
Figure 16 shows some examples.

(Timespan from: GregorianDay today duration: 3 days) to. ~ CReturns Thursday if today is MondayO
(Timespan from: GregorianMonth current duration: 6 months) to. CReturns July if the current month is
JanuaryO

Figure 16: Time spans of days, monthsand day of months

Time spans are useful to represent relative time entities where the beginning of such an entity isknown, but the end is not exactly known or
can change. Examples of such entities are Ol see you in 10 working days from todayOor Ot happened 7 months before JanuaryO Time
spans are important to represent relative time entities such as relative dates which are explain further on.

152




4.8 Intervals
The model reifies the concept of intervals for time entities with an order. Those intervals behave like collections between the specified
starting and ending point. M easurements are used to specify the step of those intervals.

The same protocol used to create intervas of numbers is used to create intervals of time entities. For example, an interval between two
years can be created sending the message #to: another Year by: aDistance to an instance of GregorianY ear. See Figure 17.

CReurns an I nterval with eleven elements, the years between 2005 and 2015 inclusiveQ
(GregorianY ear number: 2005) to: (GregorianY ear number: 2015)

CReturns an I nterval with six elements, the years 2005,2007,2009,2011,2013 and 2015 inclusiveQ
(GregorianY ear number: 2005) to: (GregorianY ear number: 2015) by: 2 years

CReturns an I nterval with six elements, the years 2005,2004,2003,2002,2001 and 2000 inclusiveQ (GregorianY ear number: 2005) to: (GregorianY ear
number: 2000) by: -1 year

Figure 17: Interval creation
Time intervals are polymorphic with number intervals, which a the same time behave as collections. Figure 18 shows some examples.

CReurns all the leap years between 2005 and 21000
((GregorianY ear number: 2005) to: (GregorianY ear number: 2100)) select: [ :aYear | aYear isLeap ]
CReturns all Sundays between January 1% of 2005 and the last date of February 20050
(®1/01/2005CesGregorianDate to: 00/20050asGregorianMonthOf Y ear lastDate) select:

[ ;:aDate | aDate isSunday ]

Figure 18: Using intervals
The model also provides protocol to create collection of objects that are commonly used. See examples of Figure 19.

CReturns all the Tuesdays between January 1% of 2005 and June 30th of 20050
00/01/20050esGregorianDate to: O8/06/2005CasGregorianDate everyDay: GregorianDay tuesday
CReturns all dates whose day number is 10 between January 1% of 2005 and June 30th of 20050
00/01/20050esGregorianDate to: O8/06/2005CasGregorianDate everyDayNumber: 10

CReturns all dates whose day numbers are 10 or 20 between January 1% of 2005 and June 30th of 20050
00/01/20050esGregorianDate to: 08/06/2005CasGregorianDate everyDayNumbers: #(10 20)

Figure 19: Commonly used protocol

The difference between time intervals and time segments is subtle. Time intervals are collections while time segments are not. Time
segments can not be iterated and they are not composed by a collection of time entities, they just have a beginning and a directed duration.
Protocol to convert from atimeinterval to atime segment and vice versais provided by the model.

49 Timelineviews
The model reifies the concept of time line view. A view behaves as a filter of a certain time line universe restricting the elements that
belong to that universe. Views are defined by a collection of rules.

A common use of such view is to filter working and non working days. For example, a view can be created to mark all Saturdays and
Sundays as non working days, another view can be created to filter the months where the season changes, etc..

The model provides different types of rules, such asarule for days (i.e. to include all Saturdays), arule for agiven day in amonth (i.e. all
the 25" of May), arule for specific time entities and different rule decorators.

Views behave like collections, so they can beiterated, they can be query for the inclusion of elements, etc. Figure 20 shows how to create a
view for non working days.

153




Q etOsreate a view for all dates...O
nonWorkingDaysView := TimelineView universe:
(GregorianDate theBeginningOf Time to: GregorianDate theEndOfTime).
CONow, wewant Saturdays to be on that viewO
nonWorkingDaysView addDayRule: GregorianDay saturday .
Now wewant Sundays from January 1% of year 1000 to the end of time...O
nonWorkingDaysView addDayRule: GregorianDay sunday
from: 00/01/10000esGregorianDate to: GregorianDate theEndOf Time.
Nowwewant all July 9" since 1816 because isthe I ndependence Day in ArgentinaQ
nonWorkingDaysView addDay OfMonthRue: O%7GasGregorianDayOfM onth
from: O#7/1816CesGregorianDate to: GregorianDate theEndOf Time.

nonWorkingDaysView includes: O%7/20050esGregorianDate  CReturnstrueO
nonWorkingDaysView includes: O87/2005CesGregorianDate  CReturns falseO
nonWorkingDaysView includes: O8/7/2005CasGregorianDate  CReturnstrue, it is SaturdayO
nonWorkingDaysView includes: ©07/7/2005CesGregorianDate  CReturnstrue, it is SundayO
nonWorkingDaysView includes: O8/7/2005CesGregorianDate  CReturnsfalse, it is MondayO

Figure 20: Timelineviews

Views can be really vast and impossible or too dow to iterate on them. The model provides streams whose responsibility is to move
through an interval of the elements of the view. Figure 21 shows an example

CBtreams over the next 10 non working days, starting from todayO
stream := TimelineStream from: GregorianDate today using: nonWorkingDaysView.
10 timesRepeat: [ stream next ]

Figure 21: Calendar streams

Because time line views are defined by rules, the inverse or negation of a view is easy to obtain. A negated view includes all the time
entities that its origina view excludes and vice versa. When the message #negated is sent to aview, itsinverse is returned. As we shall see
in the next section, negated views are important in the financial domain.

410 Redative Dates

In the financia domain, settlement dates are usually expressed as a distance from the trade date in a given calendar. For example, a trader
can buy bonds on a Thursday, but the settlement date is set to happen within 48 hours using the clearing house@® calendar. That usually
means that the trader® institution will receive the bonds on the next Monday, but this is true only if that Monday is a working day and it
could have been true at the time the operation was done. But sometimes non-working days are created due to non-expected events (i.e. the
death of some important person) and aworking day is declared to be non-working.

In our example, if Monday is declared as non-working day, the new settlement date for the trade will be Tuesday. To model this new type
of entity we created an abstraction called RelativeGregoriaDate that is a date relative to atime line view given a certain time span. See
Figure 22 for an example. Note that the settle date is declared using the negated non-working days view because settlements can occur only
on working days.

Q06/01/2005 is a ThursdayO

aTimespan := Timespan from: ©6/01/20050asGregorianDate duration: 48 hours.

aSettleDate := RelativeGregorianDate timespan: aTimespan calendar: nonWorkingDaysView negated.

nonWorkingDaysView includes: ©0/01/2005CeasGregorianDate CReturn false because 10/01/2005, a Monday,
isaworking dayO

aSettleDate absoluteDate. CReturns 10/01/20050

CONow a new non working day is added to the viewO

nonWorkingDaysView addDateRuleFor: O0/01/20050esGregorianDate

nonWorkingDaysView includes: ©0/01/2005CesGregorianDate CReturn true. Now 10/01/2005, is a not
working dayO

aSettleDate absoluteDate. Now it returns 11/01/2005 because the
view has changed®

Figure 22: Relative dates

Relative dates change according to the changes on the view they are related to. Its instances are polymorphic with GregorianDate.
Relative dates show the importance of reifying the time line segment. Because the absolute date represented by arelative date dependson a
view, it has to be declared as a segment of atimelinethat is filtered with the view associated to the relative date.

154




411 Special timeentities

The time line does not have a known end or beginning, but the mere fact that we, as human, can think on them means that they have to be
reified. Two objects are provided to represent these entities. They are QheEndOfTimeO and QGheBeginningOfTimeQ The object
QheEndOfTimeQis always greater than any point in time and QheBeginningOfTimeOis always less than any point in time.

These objects are useful to create open intervals towards infinite and minus infinite. They allow programmersto create intervals and views
on the whole time line and to create streams with no end. When using these objects, the programmer has to have specia care because
iterating over an interval with no end and/or beginning will never stop.

5. MODEL& IMPLEMENTATION

5.1 Pointsin Time

PointInTime is the class that represents the abstract concept of a point in the time line. It is the superclass of al the concrete points of the
time line such as year, date, etc., and it provides common implementation to the shared messages. Two methods have to be implemented by
its subclasses, #next: and #distanceTo:. Messages such as #previous: and #distanceFrom: are implemented using them. PointInTime is a
subclass of Interval AwareM agnitude, which is an abstract class that provides common protocol and implementation to create intervals.

In Smalltalk 80, messages such as #to:, #to:by: and #to:by:do: are only implemented by Number. We extended the responsibility of
creating intervals to al magnitudes. These intervals are instances of M easurementinterval, they can be used with any Magnitude and
they are polymorphic with Interval. Before a new instance of Measurementinterval is created, the validity of the future interva is
verified, and if it isnot valid an exception is signaled. See Figure 23.

Magnitude
+< aMagnitude(A)

Interval AwareMagnitude

+to:aMagnitude
+to:aMagnitude by: aMeasurement
+...

PointinTime Aself next: aMeasurement negated

% previous: aMeasurement ﬁ

+previous: aMeasurement

+next: aMeasurement (A)
+distanceTo: aPointInTime (A) ﬁ

| . - distanceFrom: aPointInTime
+distanceFrom: aPointinTimem — AaPointInTime distanceTo: self

Figure 23: PointinTime abstract class

52 Years

The lack of uniformity of the Gregorian caendar has been modelled using classes to represent the specid cases. For example, Gregorian
years can be leap or non-leap, so there is a class representing leap years (GregorianLeapY ear) and a class representing non-leap years
(GregorianNonL eapY ear). When the GregorianY ear class receives the message #number: aNumber to create an instance of a Gregorian
year, it verifies wether the number corresponds to a leap year or a non-leap year. If the number corresponds to a leap year it returns an
instance of GregorianL eapY ear, otherwise it returns an instance of GregorianNonL eapY ear. The programmer should not care about a
year® class, he just needs years to behave as expected.

Because leap and non-leap years are reified, no conditiona statement has to be used to implement messages such as #numberOfDays. If the
year is leap, the message #numberOfDays returns 366 days, if the year is not leap, the message #numberOfDays returns 365 days. See
Figure 24.

155



PointinTime

+previous: aMeasurement
+next: aMeasurement (A)
+distanceTo: aPointInTime (A)
+distanceFrom: aPointInTime

-

GregorianYear

+numberOfDays
+numberOfDaysInFebruary (A
+isLeap (A)

+number

+...

The programmer should not care
about this implementation desicion

—-—--_-—~__

numberOfDaysInFebruary GregorianNonLeapYea GregorianLeapYear numberOfDays
"28 days "~ S+numberOfDays +numberOfDays T T T | "366days
+numberOfDaysInFebruar +numberOfDaysInFebruar
=" |tisLeap +isLeap
isLeap - . +...
“alse

Figure 24: GregorianYear classhierarchy diagram

5.3 Monthsand Months of Year

February is another example of the lack of uniformity of the Gregorian calendar. Its number of days depends on the year. To solved this
problem we modeled months with an abstract class named GregorianMonth and specific implementations such as
FebruaryGregorianMonth, JanuaryGregorianMonth and NonSpecificGregorianMonth. Months are obtain sending messages to
GregorianMonth such as #january, #february, #march, etc. Only one instance of each month exists. The programmer should not care
about thisimplementation decision.

When a FebruaryGregorianMonth receives the message #numberOfDaysln: aGregorianYear, it sends the message
#numberOfDaysinFebruary to aGregorianYear. If that year is leap, it returns 29 days, if it is nonBleap, it returns 28 days. Note that no
conditional message has to be sent. When a JanuaryGregorianMonth receives the message #numberOfDaysIn: aGregorianYear it
returns 31 days. When a NonSpecificGregorianMonth receives that message it returns the object referenced by the instance variable
numberOfDays. See Figure 25.

Pointin Time

rrprevious: aM easurem ent

fnext: aM easurem ent (A)
rrdistanceT o: aPointinTime (A)

rdistanceF rom : aPointinTime

P rogram m er should not care about
this im plem entation decision
-a GregorianMonth
=
~ - =~ +nam e(A)
= . : num berOfDayIn: aGregorianY ear
: -~ +num berOfDayslIn: aGregorianY ear (A)
num berOfDayF rom JanuaryF irst s = AaGregorianY ear num berOfDaysInF ebruary
Aself zeroDays ~
-
= \
-~
\ ™\ Q
7X A)
\‘ \
\ JanuaryGregorianMonth NonSpecificGregorianMonth FebruaryGregorianMonth R
Y| +num berofaysIn: aGregorianY ear +num berOfDaysIn:aGregorianY ear +num berOfDayslIn:aGregorianY ear

+num berOfDaysF rom JanuaryF irst
+..

+num berOfDayF rom JanuaryF irst
+...

+num berOfDaysF rom JanuaryF irst
+...

156




Figure 25: GregorianMonth class hierarchy diagram

When a GregorianMonthOfY ear receives the message #number OfDays, it only needs to send the message #numberOfDaysin: to its
month with the year referenced by its instance variable named year as parameter of the message. Implementing the irregularity of the
Gregorian calendar with specific abstractions for the special cases alowed us to minimize the use of the conditional message #ifTrue: to
just one place, the creation of ayear. Figure 26,27 and 28 show how the objects interact to respond the message #number OfDays when it is

send to July 2005, February 2004 (aleap year) and February 2005 (anon-leap year).

julyOf2005

numberOfDays|

july

| numberOfDaysln: year200§:

231 days

-

July always
| has 31 days

Figure 26: Getting the number of daysof a non specific Gregorian month

februaryOf2004

february

year2004

-1

I
daysInFebruary

229 days

IN
- e e

num berOfDaysI i
I numberOfDaysln: year2004|
ll N oo v
I
l I
I
I 29 days |
"29 days | B
===

-

Depends on the year

-

Because it is leap,
it returns 29 days

Figure 27: Getting the February®@number of days of a leap year

157



februaryOf2005 february

num berOfDaysl

A28 days

| numberOfDaysIn: year2005 |
I Ny

i

|

|

| [

F—---------|
1 I

: [

| [

1

year2005
l [
{
| Because it is not leap,
daysInFebruary i it returns 28 days
| €L~

A28 days

— e ey em em am

A28 days |

-—— e —— — o

Figure 28: Getting the February®@ number of days of a non leap year

54 Dates

Dates are modelled with the GregorianDateBehavior abstract class, that implements common messages for al dates, no matter if they are
absolute or relative. GregorianDate represents absolute dates and RelativeGregorianDate represents relative dates in a time line view
with certain time span. The implementation of #next:aMeasurement differs on each class. The GregorianDate class implements this
message moving through the dates of the continuous time line, but the RelativeGregorianDate class uses its calendar (an instance of
TimelineView) to obtain the dates it has to jump through when moving. The message #distanceTo:aGregorianDate is implemented in
GregorianDateBehavior because it can be shared by its subclasses. See Figure 29.

PointinTime

+previous: aMeasurement
+next: aMeasurement (A)
+distanceTo: aPointInTime (A
+distanceFrom: aPointInTime

=2

T

GregorianDateBehavior

+year
+monthOfYear
+day
+distanceTo: aGregorianDate
+< aGregorianDate
+..

absoluteDate
“calendar next: timespan

+...

+next:aMeasurement

GregorianDate ReIativeGregorianDatE 7
+next:aMeasuremen +calendar //
+... -timespan P

+absoluteDate /

Figure 29: GregorianDate class hierar chy diagram

Figure 30 shows an object diagram of aRelativeGregorianDate that represents 10 working days from today, with today equalsto July 18"

of 2005.

158



calendar

€ workingDaysView : TimelineView
timespan

amount

) 10 : Integer
mQa;LsELleQday_:_'LLmaspa‘n duration 10Days : Measuremen
}7 T unit baseUnit
day : DerivedUni millisecond : BaseUnit
from
month

monthOfYear yimjy_._NQDSmuiLcﬁtegguanMgnm

today : GregorianDate

}T year
T dayNumber MZOQL_QL&QQLLanNgmLQapie#
18 : Number ‘

Figure 30: A RelativeGregorianDate object diagram

5.5 Other time entities
A GregorianDateTime is composed by a date (instance of GregorianDate or RelativeGreogrianDate) and a time (instance of
TimeOfDay). Because the date can be relative, the model also supports relative date times.

The class TimeOfDay is implemented with an instance variable that represents the time passed since hour 0, that is a time measurement.
That time measurement can be of any resolution (hour, minute, second, millisecond, nanosecond, etc.). If a better resolution that
nanosecond is needed, a new time unit can be created with the new resolution to specify more accurate time of days.

The GregorianDay, GregorianDayOfMonth and GregorianMonthOfY ear classes are also subclasses of PointInTime, but their time
line is more a circle than a line. Therefore, the message #next returns January 1% when it is sent to December 31%, and the message
#previous returns December 31% when it is sent to January 1%. Figure 31 shows the class diagram for these time entities.

PointInTime

+previous: aMeasurement
+next: aMeasurement (A)
+distanceTo: aPointInTime (A)
+distanceFrom: aPointInTime

GregorianDateTim TimeOfDay GregorianDay GregorianDayOfMonth GregorianMonthOfYear
+date +hours +name +day +month
+time +minutes +next:aMeasurement +month +year
*... +seconds +distanceTo:aGregorianDay  |+next:aMeasurement +next:aMeasurement
+... +< aGregorianDay +distanceTo:aGregorianDayOfMonth | +distanceTo:aGregorianMonthOfYear
+... +< aGregorianDayOfMonth +< aGregorianMonthOfYear
+ +...

Figure 31: Other pointsin time class hierarchy diagram

5.6 Timeline segments, Intervalsand Timeline Views

The model provides new abstractions which behave like Collection. They are SetDefinedByRules and M easur ementinterval. The former
alows the creation of sets where its elements are not added one by one. Elements belong to this set if there is a SetRule that returns true
when the message #includes: is sent to it.

Measurementinterval is provided by the measurement model. It was necessary to create such an abstraction because the Smalltalk class
Interval can not be used with objects that are not Number. It works with any class that defines a total order on its instances, like
M easurement, GregorianY ear, GregorianDate, etc. Figure 32 shows the class diagram for these classes.

159



Different subclasses of SetRule are provided such as SpecificObjectSetRule (used to define a specific object as part of the set),
TransformationSetRule (used to decorate other SetRule with a transformation block) and IntervalConstrainedSetRule (used to filter

Object

Collection

SetRule

+includes: anObject (A

SetDefinedByRules

+rules

+do: aBlock
+...

+addRule: aSetRule
+includes:anObject

|
SequenceableCollection

Measurementinterval Interval

+from
+to
+size
+...

Figure 32: Extension to the Collection class hierarchy

other SetRule to the elements that are part of the interval) anong others.

Time line views are reified by three classes: TimelineViewBehavior, an abstract class and superclass of TimelineView and
NegatedTimelineView. A TimeineView is defined with a SetDefinedByRules and the message #negated returns an instance of
NegatedTimelineView. A NegatedTimelineView has a TimelineView as source. When instances of this class receive the message

#includes, it forwards the message to its source and sends the message #not to the returned object (a Boolean).

Timespan is the class used to represent segments of the time line. It can be used with any PointInTime as the starting point (from). The

duration can be any measurement of time. Figure 33 shows the class diagram of these abstractions.

to

Object
~from next: duration
\\

\\- ‘
TimelineViewBehavior Timespan SetRule
+setDefinedByRules +from +includes: anObject (A
+includes: aTimepoint (A \|+duration
+between:and: +to
+negated (A) +...

AN

TimelineView

NegatedTinelineView

+negated

+includes:anObject

+negated

+includes:anObject

SpecificObjectSetRule

TransformationSetRul

+object
-includes:anObject

-transformationBlock
-decoratedRule
-includes: anObject

IntervalConstrainedSetRule

+interval
+decoratedRule
+includes: anObject

160



Figure 33: Timefiltering and time span class hierarchy diagram

6. RELATED WORK

6.1 Comparison with Smalltalk-80and Squeak

Figure 34 provides a brief comparison among time abstractions in Smalltalk-80, Squeak and our model. Note that the presented model
reifies eleven time entities more than Smalltalk-80 and eight time entities more than Squeak. We present now some concrete exampl es that
show the advantage of having those additional objects, thus proving, oncemore, the importance of reifying as many problem domain
concepts (ie.: Gnodel the real worldQ

6.1.1 Selecing all Mondays of the curren year

Figure 35 shows how to obtain all Mondays using the Smalltalk-80 model. First, a collection with the correct number of days of the year
2005 is created. Note that the number 2005 is used to refer to the year 2005 since no specid object exists for it (ie.: lack of reification). This
collection includes the numbers 1, 2, 3,..., 365 because year 2005 is not leap. A collection containing dates of year 2005 is created using the
former collection. Note that the message #newDay: year: expects the number of days since January 1% plus one to create the right date,
information that most of the people does not know (Does anybody know how many days are between January 1% and July 2™?). Finaly, all
Mondays of year 2005 are selected comparing the date@® day name with the symbol #Monday.

yearDayCount := 1 to: (Date daysInY ear: 2005).
currentY earDates := yearDayCount collect: [:aDayCount|Date newDay: aDayCount year: 2005 ].
currentY earDates select: [ :aDate | aDate dayName = #Monday ].

Figure 35: Smalltalk-808 mode example

Figure 36 shows the same problem solved with Squeak@® model. With Squesk it is easier to obtain all year® dates but its model till lacks
an object to represent a day, therefore, a Symbol is needed to compare the day name which is error prone. If Monday is not correctly typed
(i.e. #monday instead of #Monday) the programmer will not get any indication of error and the program will not behave as expected.

Y ear current dates select: [ :aDate | aDate dayOfWeekName = #Monday ].

Figure 36: Squeak@ model example

With our model, getting the dates of ayear is similar to Squeak® model, but because days are reified the message #isMonday is sent to the
date. An error will be signalled if the message is not correctly typed or if the date protocol changes. See Figure 37.

| GregorianY ear current dates select: [ :aDate | aDate isMonday ].

Figure 37: New model& example of use

161



Smalltalk-80 and ANSI
Smalltalk

Squeak@ Chronology package

Presented Model

Y ear (i.e. 2005)

Modelled as a Number

Reified with class Y ear

Reified with class
GregorianY ear

Month of aY ear (i.e. January
2005)

Not modelled

Reified with class M onth

Reified with class
GregorianMonthOfY ear

Date (i.e. 01/01/2005)

Reified with class Date

Reified with class Date

Reified with class
GregorianDate

Date and Time (i.e. 01/01/2005
10:00:00 AM)

Reified with class
DateAndTime

Reified with class
DateAndTime

Reified with class
GregorianDateTime

Month (i.e. January)

Modelled as Symbol

Modelled as a Symbol

Reified with class
GregorianMonth

Day of Month (i.e. January First) | Not modelled Not modelled Reified with class
GregorianDayOfMonth
Week (i.e. First week of 2005 or | Not modelled Not modelled Not modelled

Second week of January 2005)

Day (i.e. Monday)

Modelled as Number and
Symbol

Modelled as Number and
Symbol

Reified with class
GregorianDay

Time (i.e. a Noon, 10:00:00
AM)

Reified with class Time

Reified with class Time

Reified with class TimeOfDay

Timedistance (i.e., 1 year, 3
months, 10 days, etc.)

Reified with class Duration.
Expressed only in terms of
seconds

Reified with class Duration. A
duration of 1 month is converted
to 31 days

Reified as M easurement with
Units such as: year, month,
week, day, hour, minute, second,
millisecond, decade, century,
millennium or any other time
unit.

Time line segment (i.e. From Not modelled Reified with class Timespan, Reified with class Timespan,

01/01/2005 with alength of 10 with a start and aduration with a start and adistance

days) expressed as measurement

Time lineinterval with different | Not modelled Not modelled Reified with class

granularity (i.e. From 01/01/2005 M easur ementlnterval with a

to 01/02/2005, or from January measurement as step.

2005;10 July 2005 every 2 Also know as time point

months) occurrences

Relative Dates (i.e. 10 working | Not modelled Not modelled Reified with class

days from 01/01/2005) ReativeGregorianDate

Timelineviews Not modelled Not modelled Reified with class TimelineView

Theend of time Not modelled Not modelled Reified with the object
theEndOfTime

The beginning of time Not modelled Not modelled Reified with the object

theBeginningOfTime

Figure 34: Comparing Smalltalk-80, Squeak and the presented time model

6.1.2 Getting the last datesof evely month of a yea

Figure 38 shows how to solve this problem with the Smalltalk-80 model. We can observe the same issues as in the previous example
because all the dates of the year have to be created and because a month of ayear is not reified the message #daysL eftinMonth is sent to a

date.

yearDayCount := 1 to: (Date daysInY ear: 2005).
currentY earDates := yearDayCount collect: [:aDayCount|Date newDay: aDayCount year: 2005 ].
currentY earDates select: [ :aDate | aDate daysL eftinMonth =01].

Figure 38: Smalltalk-808 mode example

Figure 39 shows ours model solution. Because months of a year are reified, a collect on each month of a year is performed sending the
#lastDate message to each of them. This solution has a better performance than the Smalltalk-80 one because the collect is done over

162




twelve elements (the twelve months of a year) while the Smalltalk-80 does a select over 365 dates. The Squeak solution is similar to the
presented model.

GregorianY ear current months collect: [ :aMonthOfY ear | aMonthOfY ear lastDate ].

Figure 39: Squeak@ model example

6.1.3 Obtaining the number of months betweentwo months

Figure 40 shows the problem solved with the Smalltalk-80& model. Since the Smalltalk-80& model does not deal with Gnonths of ayearQ
a mathematical expression has to be programmed to solve the problem every time we need to do so. In the code, we show there is no
verification about the month number or year number, thus they could be invalid. This is a very common mistake that leads to invalid
behaviour. This piece of code should be encapsul ated to avoid mistakes and code duplication. Note also that the result of that expression is
anumber.

fromMonthNumber := 6.

fromY earNumber := 2005.

toMonthNumber := 12.

toY earNumber := 2010.

numberOfMonths := 12 BfromMonthNumber + (toY earNumber B1 BfromY earNumber * 12) + toMonthNumber
At returnsthe number 660

Figure 40: Getting the number of months between two months with Smalltalk-80& model

Figure 41 shows the same problem solved with Squeak. The Squeak model allows the programmer to deal with months (an abstraction we
call GregorianMonthOfYear) but a Timespan has to be created to obtain all the months, and then the size of that segment is used to get
the final result. Note that it also returns a number.

((Month month: 6 year: 2005) to: (Month month: 12 year: 2010)) months size
CReturnsthe number 660

Figure 41: Getting the number of months between two months with Squeak @ model

Figure 42 shows our model@ solution. Because Gnonth of a yearOis reified, the #distanceTo: message is sent to the first one with the
second one as a parameter. Note that the returned object is not the number 66 but a measurement of time; in this case, measured in months:
the obj ect 66 months.

'06/2005' asGregorianMonthOfY ear distanceTo: '12/2010" asGregorianMonthOf Y ear
CReturns 66 months, not just 660

Figure 42: Getting the number of months between two months

6.2 Comparison with Chronology Squeak@ package

The main difference between our model and Squeak® one is how time entities are understood. In our model, time entities are points in the
time line and measurements are used to represent time distances. In Squesk, time entities are segments in the time line modelled with the
class Timespan. For example, Month is a subclass of Timespan, so it behaves like atime segment. Therefore, the object created with the
expression QVlonth month: 13 year: 20100(note that a month number thirteen is invalid in the Gregorian calendar) is the same as (Month
month: 1 year: 2011Q because they are the same segment.

Because Timespan is the superclass of all time entities in Squesk, it has confusing protocol such as #lastDate or #firstDate and strange
behaviour when comparing time entities. M essages such as #lastDate and #fir tDate make sense when they are sent to ayear or amonth of
ayear, but they loose meaning when the receiver is adate or adate time.

Squeak allows comparing points of different resolution because time entities are modelled as segments, asiit is shown in Figure 43.

CReturnstrueif today is not the first day of the current yearO
Y ear current < Date today

CReturnstrueif today is not the first day of the current mothO
Month current < Date today

Figure 43: Comparison in Squeak

We bdlieve this is confusing and inconsistent with the analogy of time entities with segments. It is confusing because it does not make
sense to ask Qs the current year before today?OHow can a year be compared with a date? Only if a year is seen as a ssgment from the
beginning of time to the first day of that year this question can be answered. But that is not the GcommonOmeaning of year. A year is not
thefirst day of that year.

Likewise, Squeak does not model ayear as a segment starting at year 1 with a duration of the passed years; it models a year as a segment
that starts at hour 00:00:00 of January 1% of that year, with a duration of 365 or 366 days. Therefore, we thought the #< message meant
Qiloes the segment receiving the #< message include the one given as parameter?Q but that is not the behaviour of #<. It does not mean

163




Qiloes the segment receiving the #< message inter sects the one passed as parameter?Qeither. We could not find a consistent meaning for
the #< message when sent to these objects.

Figure 44 shows the peculiar behaviour of the #< message. The behaviour when comparing ayear with the first month or date of that year
is the most puzzling one. They are not less, nor greater or equal between them. Strange behaviour is observed also when comparing
instances of Timespan with its subclasses. To avoid this type of confusion our model does not alow points of different resolution to be
compared as we showed and demonstrated before.

Al these comparisons return falseO

(Year year: 2005) < (Month month: 1 year: 2005).

(Year year: 2005) > (Month month: 1 year: 2005).

(Year year: 2005) = (Month month: 1 year: 2005).

Orhis collaboration shows GiclusionCbehaviourO

(Year year: 2005) < ((Month month: 2 year: 2005) to: (Month month: 3 year: 2005)).
Orhese collaboration shows Oiter sectionCbehaviourO

(Year year: 2005) < ((Month month: 2 year: 2005) to: (Month month: 3 year: 2006)).
((Month month: 12 year: 2004) to: (Month month: 2 year: 2005)) < (Y ear year: 2005).

Figure 44: Puzzling behaviour of #< message in Squeak

6.3 Comparison with other research work

Barbic and Pernici [4], in their work related to office information systems, propose a similar model to ours. The concept of time they
present is based on a discrete temporal axis (our notion of time line) where time points can be mapped to integers, but it differs from our
work because they provide a quantum of minute to every point, while in our work time entities are part of different time lines, each one
with its own quantum. They also mention that Qime is infinite in the past and in the futureQ but it is not clear how they represent that
characteristic in the final design, while our model provides two objects to reify those entities, theEndOfTime and theBeginningOfTime.
Their model supports absolute and relative time entities, but they do not provide abstractions to filter the time line, so relative time entities
fall in what we model as time spans. They propose to return QJNKNOWNOwhen comparing time points of different granularity which
differ from our solution where such comparisons are not alowed, but they do not allow having specifications that cannot be converted to a
same level of granularity. Week days, days of month and months are not modelled as first class entities.

Goralwalla et d [13], in their work related to database management systems, propose a model that introduces the idea of temporal
granularity, which is Ga special kind of unanchored temporal primitive that can be used as a unit of timeQ Such entities are related to the
time units we propose in our model. The anchored time entities are what we represent as point in the time line, and unanchored entities are
what we model as time measurements. Due to the Gregorian calendar irregularity, they propose to use indeterminate spans to represent
conversions between measurements of not related units. For example, 1 month would be converted to [28 days B 31 days| therefore,
comparing 1 month with 30 days would return UNKNOWN, the same solution adopted by [4].

To represent anchored times they use the concept of time granule defined by Bettini [9], where an anchored entity is Gan interval on the
global timelineOwhich differs from our work where anchored entities are modelled as points in time. Because they use intervals they have
to differentiate three types of interval, Beginning Instant, Determinate Interval and Indeterminate Instant. Examples of Beginning Instant
are 1995y, January 1995, and January 1% of the year 1995, , that return true when compared for equality. Our approach is simpler
because there is no need to implement different types of interval and we treat years, months of years and dates as completely different time
entities, therefore, no confusion about the year 1995 and the month of year January of 1995 is allowed.

When moving from apoint a measurement of time with higher resolution that the quantum of the point, for example 3 days from January of
1995, they assume they are moving from the first point of the same granularity contained in the former point, which means 3 days from
January 1% of 1995 for the presented example. We see this as an arbitrary solution, therefore, we do not allow this type of expressions.

The ODMG time model [10] is similar to the Smalltalk-80 one; therefore, it lacks important abstractions and has the same problems
mentioned in this paper as Smalltalk-80, such as representing years and months with numbers, modelling time distances with numbers and
so on. Bertino et a, [8] proposes an extension to the ODMG model providing temporal information to objects and a new abstraction, time
interval. Although this model helps to keep historic information about objects, abstractions to represent time spans, relative time entities,
time granularity among others are left as future work. Huang et a [15] also extends the ODMG model but adding a new dimension to the
temporal one: the spatial dimension. Although this new dimension is being taken into account to keep historica information about objects,
the time model has the same limitations as [8].

Goralwalla et a [14] presents in a newer paper an object-oriented framework that provides a unified infrastructure to support temporal
entities. The framework divides the time domain in four dimensions: Temporal Structure, Temporal Representation, Tempora Order and
Temporal History. The Tempora Structure classifies tempora entities as anchored and unanchored. Anchored time entities are classified as
instants and intervals. Both, anchored and unanchored, can be discrete or continuous and determinate or indeterminate. Our model supports
this classification but some of the entities we provide do not behave as they proposed in [13] like it is previously explained. The Tempora
Representation dimension is automatically provided by the classes composing our model. The Temporal Order is also provided in our
model by means of protocol that each time objects respond to which, at the same time, are polymorphic no matter the type of the object.
The Temporal History can be achieved using the collection objects and the time objects provided in our model.

164




The Java time model is completely different from our@®. The Java Language [16] provides a single abstraction named Calendar to handle
al types of time entities. Calendar is an abstract class that has concrete subclasses such as GregorianCalendar. This class is a
combination of fields that are set with the message set (int field, int value) and get with the message get( int field ), being field a number
that represents the time entity to be changed. For example: set ( Calendar. MONTH, Calendar.JANUARY) changes the month of that
calendar instance to be January.

An instance of Calendar with just the field Calendar.YEAR represents ayear, an instance of Calendar with the fields Calendar.YEAR and
Calendar.MONTH  represents a month of ayear and so on. Because Calendar represents all types of time entities, no specific protocol is
provided to objects that represent specific time entities such as years, months, days, etc. For example, there is no message such as #dates to
obtain all dates of a specific year. On the contrary, it provides generic protocol like #isLeap that can be answered by any instance of
GregorianCalendar, such as dates. This ambiguity makes the model confusing, difficult to learn and use. For instance, the distance
between two GzalendarsOis represented by the number of milliseconds that separate those GzalendarsO Therefore, if a year is compared
with adate, the number of milliseconds since January 1% of that year to the hour 00:00:00 of the compared date is returned.

We believe this modd suffers from the same design issues that any generic model. Real-world concepts should have a one-to-one mapping
with the classes provided by object models. The Java model does not follow this rule, it joins the concept of year, month of year, date and
date time in one concept they cal Calendar; therefore, it provides a one-to-many mapping between real world concepts and model
concepts, creating a different language that the one used in the problem domain. Note that when comparing time entities we use the word
QealendarsOwhich is completely unreal, we do not compare calendars, we compare years, months, dates, etc.

This model adso lacks abstraction to represent time measurements, time intervals, time spans, days of months, relative dates and time line
filters which are important entities of the time domain. This lack of abstractions produces the programmer to create their own
implementation of such as entities.

The .NET mode [20] is similar to the Java one It provides an abstract class named Calendar, which is subclassed by
GregorianCalendar. In contrast to the Java model, the messages such as AddDays, AddHours sent to a Calendar to move through the
time line do not return instances of Calendar but instances of DateTime. A DateTime is a (tructureOthat measures the number of 100-
nanoseconds since a particular origin defined by the calendar they belong to, for example January 1% of year 1 for the Gregorian calendar.
An abstraction called TimeSpan is provided to represent time measurements expressed in 100 of nanoseconds. No different time units are
provided. The .NET mode has the same modelling problems as the Java one. It lacks important abstractions and it has the same design
flaws.

7. CONCLUSION

This paper presents an object model that focus on the representation of the Gregorian calendar time entities. It is based on a smple
metaphor where time entities are represented by points in the time line. Those points have different resolutions and they include points of
higher resolution.

The mode provides atotal order between time points which allows programmers to determine which point comes before or after another,
go from one point to another and obtain the distance between two points.

Because time entities are analogous to points within aline, the model permits the representation of segments of the timeline and it provides
abstractions to create interval s between points.

A distinguishing feature of this modd is that it uses a generic Measurement Model to reify Time Measurements. This modelling decision
allows programmers to share the concept of measurements of time with any other type of measurement and it permits to operate
arithmeticaly with them.

Timeline views created to filter time line pointsis another important feature. Relative pointsin time can be created based on these views.
The model also provides abstractions for time entities such as aday, aday of a month and months.

7.1 Concrete Benefits

The main benefit obtained with this model is that complex observations of the time domain can be easily programmed. Although this
characteristic is difficult to be formally proved, it can be inferred because of the provided abstractions and protocol. This mode! is being
used as QheOtime model at Mercap Inc. in al its new applications. It proved us to be very powerful and easy to use.

7.2 LessonsLearned

7.2.1 Creaeonly valid objects
Objects should only exist if they are valid. For example, a Gregorian year can only exist if its number is not zero. This rule, combined with
the rule of immutable objects, gives programmers the security that the objects they work with are dwaysvadid.

This rule aso implies that invalid or incomplete objects should be represented with specific abstractions. Builders [28] are an example of
this type of objects. When abuilder is created it is GncompleteObecause it can not build the desired object until all the information of that
object is provided. The builder will be modified until it reaches a state whereit is able to create the specified object.

7.2.2 Immutable Objects
The implementation of time entities as immutable objects simplified the model@ design and implementation. Not only they provide the
benefits mentioned in [5], but they aso avoid non-contemplated consistency problems that could appear during an object@ life cycle.

165



Immutable objects that are valid from the time they are created ensure the programmer that she@ not dealing with invalid ones, because an
object isnot instantiated if its preconditions are not met.

7.2.3 Development Techique

We cannot conclude this paper without mentioning the advantages we obtained due to the use of the (Test Driven DevelopmentOtechnique.
(See [7] and [6]). Each observation we made of the time domain was programmed as a test that we took as the starting point to implement
and improve the model.

It is aso necessary to highlight the advantages that a dynamically typed and late binding programming language offers when using this
technique. It is because of the dynamically typed characteristic of Smalltalk that we could make our model evolve smoothly. The late
binding characteristic allowed us to (program on demandO completely within the debugger, defining classes, methods and instance
variables as required by the tests, a characteristic till very restricted in languages such as Javaor C#.

7.3 Futurework
We need to research the addition of time zone entitiesin our model. The time zone adds some complexity because we would like date times
such as January 1% of 2005 at 10:00:00 in Buenos Aires, Argentinato be equal to January 1% of 2005 at 11:00:00 in Montevideo, Uruguay

The Timespan protocol islimited at thistime. We need to expand it with protocol related to line segments.

New abstractions need to be created like Hour, Minute, etc. We have not created them yet because measurements are used to represent
these entities. One advantage of having a classto represent hoursis that an hour lessthan 0 or greater than 23 could not be created.

We have not reified time lines. We think that modelling time lines would simplify the implementation of moving along them or along lines
of different resolution.

At this moment the model implements relative dates as the only relative points, but there is no reason to have such a limitation. We will
expand the model to support any point in time to be relative.

Mercap Inc, is studing the open source licences to open this model to the Smalltalk community.

8. ACKNOWLEDGMENTS

We would like to thank Mercap Inc.& Software Development Team, for their comments and use of the Time model. Also, we would like to
thank Michael Maximilien of the IBM Almaden Research Center for hisreview and friendship.

9. REFERENCES

[1] Allen, E., Chase, D., Luchangco, V., Maessen, J. and Steele, G. Object-Oriented Units of Measurement. Technical
Report, OOPSLA 2004

[2] Allen, F. Maintaining Knowledge about Temporal Intervals, Communications of the ACM, November 1983, VVolume
26, Number 11

[3] ANSI Smalltalk - http://www.smalltalk.org/versions/ANSI StandardSmalltalk.html

[4] Barbic, F., Pernici, B. Time modeling in Office Information Systems, ACM SIGMOD Internationa Conferenceon
Management of data, Proceedings,1985

[5] BaYmer, D., Riehle, D., Siberski, W., Lilienthal, C., Mergert, D.,Sylla, K. and ZYllighoven, H. Values In Objects
Systems. UBILAB Technica Report, 1998-10-10, Zurich, Switzerland

[6] Beck, K. Test Driven Development: By Example. Addison-Wesley, Reading, MA, 2002

[7] Beck, K. Extreme Programming Explained: Embrace Change. Addison-Wed ey, Reading, MA, 1999

[8] Bertino,E., Ferrari, E., Guerrini, F., Merlo, |. Extending the ODMG Object Model with Time,ECOOP®8, SPringer-
Verlag Berlin Heidelberg 1998

[9] Bettini, C, Dyreson, C.E., Evans, W.S,, Snodgrass, R.R., Wang, X.S. A Glosary of Time Granularity Concepts, in
Temporal Databases P Research and Practice, 1998

[10] Cattel, R. The Object Database Standard: ODMG93, Morgan-K aufmann,1996

[11] Corsetti, E., Montanari A., Ratto, E. Dealing with Different Time Granularitiesin Formal Specications of Real-Time
Systems. The Journa of Real-Time Systems, 1991.

[12] Goldberg, A. and Robson, D. Smalltalk-80: The Language and its Implementation. Addison-Wed ey, Reading, MA,
1983.

[13] Goralwalla, I., Leontief, Y., ..zsu, M., Szafron, D. Temporal Granularity: Completing the Puzzle, Kluwer Academic
Publishers, Boston

[14] Gorawalla,l., Tamer ..zsu, M, Szafron, D. A Framework for Temporal Data Models: Exploiting Object-Oriented
Techology, Proceedings of TOOL S®7, |IEEE.

[15] Huang, B., Claramunt, C. STOQL: An ODMG-Based Spatio-Temporal Object Model and Query Language,
Symposium on Geospatial Theory, Preocessing and Applications, Ottawa 2002

[16] http://www.javasoft.com

[17] Kennedy, Andrew J. Programming Languages and Dimensions. PhD Thesis, University of Cambridge. Published as

166



(18]
[19]
[20]
[21]
[22]

[23]
[24]

[25]
[26]
[27]

(28]

Technical Report No. 391, University of Cambridge Computer Laboratory, April 1996

Maiocchi, R., Pernici, B., Barbic, F. Automatic Deduction of Temporal Information, ACM Transactions on Database
Systems, Vol. 17, No. 4, December 1992

Montanari, A., Maim, E., Ciapessoni, E., Ratto, E. Dealing with Time Granularity in Event Calculus. International
Conference on Fifth Generation Computer Systems, Proceedings, Tokyo, 1992.

http: //www.microsoft.com

Pinkeny B., Squeak Chronology Package, http://minnow.cc.gatech.edu/squeak/1871

Reingold, E., Dershowitz, N. Calendrical Calculations: The Millennium Edition. Cambridge University Press,
Reading, 2001

http://www.squeak.org

Wang, X.S., Jgodia, S., Subrahmanian, V.. Temporal Modules: An Approach Toward Temporal Databases. ACM
SIGMOD International. Conference on M anagement of Data, Proceedings, 1993.

Wilkinson, H., Prieto, M., Romeo, L. Arithmetic with Measurements on Dynamically-Typed

Object-Oriented Languages, OOPSLA 2005.

Maiocchi, R. Pernici,B., Temporal data management Systems: A compartive view. IEEE Trans. Knowl. Data Eng.
December 1991.

Maiocchi, R. Pernici,B., Barbic, F. Automatic Deduction of Temporal Infromation. ACM Transactions on Database
Systems, December 1992.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of ReusableObject-Oriented Software.
Addison-Wesley, 1995

167



168



Micr oprints: A Pixel-basedSemanticallyRich
Visualization of Methods

RomainRobbes

Universitd della Svizzerra Italiana, Faculty of Informatics, Lugano, Switzerland

StephaneéDucasse

University of Bern, Software Composition Group, Switzerland
Université de Savoie, Language and Software Evolution Group-LISTIC, France

MicheleLanza

Universitd della Svizzerra Italiana, Faculty of Informatics, Lugano, Switzerland

Abstract

Understandingclassesand methodsis a key actiity in object-orientedprogramming,
sinceclassegepresenthe primary abstractiongrom which applicationsare built, while
methodscontaintheactualprogramlogic. Themainproblemof thistaskis to quickly grasp
thepurposeandinnerstructureof aclass.To achiere thisgoal,onemustbeableto overvien
multiple methodsatonce.In this paperwe presentnicroprints, pixel-basedepresentations
of methodsenrichedwith semanticainformation.We presenthreespecializednicroprints
eachdealingwith a specibcaspectwe wantto understandf methods:(1) stateaccess,
(2) controlBow, and(3) invocationrelationship We presenthe microprintsin conjunction
with the classblueprintsof the CODECRAWLER Visualizationtool [12] andalsointegrated
into the default codebrowserof the SmalltalkVisualWbrks developmenternvironment.

Key words: Object-OrientedProgrammingProgramComprehensioryisualization

Email addresses: romain.robbes@unisi.ch (RomainRobbes),
stephane.ducasse@univ-savoie.fr (StephaneDucasse),
michele.lanza@unisi.ch (MicheleLanza).

ESUG 2005 International Smalltalk Conference August 2005, Brussels, Belgium



1 Intr oduction

In object-orientedpplicationsclasseslescribehe stateof objectsanddebneheir
behaior. However, objectsbeingbehaioral entities,understandingnethodss cru-
cial for the comprehensionf object-orientedhpplicationd22]. In additionto tra-
ditional control Bow analysis,thereis a large variety of informationthat canbe
usedto understanda method:how the stateof an objectis accessedf and how
ancestostateis used,how anobjectusesits own methodsor the methodsdebned
in its superclassg®], andhow anobjectcommunicatesvith otherobjects.

Thistopic hasalreadybeenpartly addressetly prior work. Crossetal.dePnednd
validatedthe effectivenessof Control StructureDiagrams(CSD) [3] [7] which de-
pict thecontrol-structurendmodule-level organizationof a program Eventhough
CSDsareappliedto AdaandJava code,they do notsupportOOPconceptsuchas
inheritance pverriddenmethods.. ., but only control Row constructsSeeSof{6]
canvisualizelarge amountof codebut it associatea color to a completeline of
codeanddoesnot introducea specibovisualizationfor methodsemanticsSucha
visualizationis commonlyusedin aspect-bravsertools. However, it doesnot pro-
vide object-orientedspecibcnformation either Jerdingand Stask [9] proposed
to usea mural visualizationto represenprogramexecutionbut doesnot propose
specibcobject-orientednethodlevel visualizations.sv3D, developedby Marcus
etal., presentdines of codeasdotsandeachdot canbe associateavith different
informationsuchasthe nestinglevel or the control 3ow [13]. For quantitatve in-
formation,suchasthe occurrenceof a phenomena3D is used.However, sv3Dis
moreageneralisualizationapproachhanabne-grainednespecializedo corvey
importantaspect®f object-orientecode.

Our approachis basedon microprints, pixel-basedcharactetto-pixel representa
tionsof methodsenrichedwith semanticainformationmappedn nominalcolors.

Thepaperlis structuredasfollows: Prst,we highlightthekey constraintof thework

presentedThenwe presentmicroprintsand the threeinstancesve debPned.The

next sectionshavs how microprintsareintegratedwith the VisualWorks Smalltalk
developmentervironmentandhow they enhancehe classblueprintvisualizations
in CODECRAWLER [12]. We concludewith a discussioranda comparisorof our

approactwith relatedworks.

2 Constraints

Whenworking on methodunderstandingndvisualizationwe have to considerthe
following constraints:

170



colorAt: index
~ (mapper isinsideComment: index) <« 3method
ifTrue: [self commentColor]
ifFalse: [self colorForNode: (mapper nodeForindex: index)]

[ I [ its microprint

| T T [T

—— - 4
—— — —— «

Fig. 1. Theprinciple of amicroprint.

Context switches. We wantto avoid theseasmuchaspossibleasthey inducela-
teng/: Thehumanbrainis muchfasteratglancingatinformationthanatrestoring
contets.

Limited space. Screengrestill too smallandasextrainformationshouldnotclut-
terthe code,it is crucialthatvisualizationscanbe effective in alimited amount
of space.

Limited number of colors. As the humanbrainis not capableof simultaneously
processingnore thanten distinct colors, a diversebut small numberof colors
shouldbeused[20] [21].

Pixel aliasing. Pixel juxtapositionproducesaliasing.Thereforeto geta clearpic-
ture (without unintendedextra colors)the colorsshouldbewell chosen.

Information interpretation. Theinformationshouldbe clearandinterpretableata
glance.In particularcolor cornventionshave to be consistent.

3 Micr oprints

A microprintis acharacteto pixel mappingof amethodannotateavith semantical
elementsCompressingvholewordsto asinglepixel wasnotdone,asonepixel per
word would involve sometranslationduty for the userasthe microprintwould no
longerlook similar to the methodit visualizes Figurel shovs how eachcharacter
of themethodbodyis representedsa pixel in amicroprint. Although Smalltalkis
usedin examplesthroughoutthis paper Microprints canbe appliedto any object-
orientedlanguage.

We decidedto usedistinctnominalcolorsto easethe interpretationof the micro-
prints.In Table1 we seethe color mappingschemawe apply throughoutthis pa-
per! . Thecolor mappingis consistentlyusedover thedifferentmicroprintsthatwe
presenin thefollowing section.For example,thebluecoloris usedconsistentlyto
representhe objectitself. In addition,programelementsvhich arenot markedin
ary way by amicroprintarecoloredin gray, whereaxommerts usealighter shade
of gray.

1A black-and-whitecopy of this papemwill bevery hardto understand.

171



Tablel

Description

Color

Microprint - State Changes and

Accesses

Instancevariables

Cyan

Accessor method to an instance
variable(read)

Cyan

Localvariablesandamguments Purple
Self pseudo-ariable(this) Blue
Supermseudo-ariable Orange
Referenceo a classor globalvari- | Yellow
able

Assignmenbperator Red

Accessor method to an instance
variable(write)

Red

Microprint - Control Flow

Return Red
Useof exceptions Red
Conditionalcontrolstructures Blue
Iteratingcontrolstructures Green
Blocks of code(varieswith nesting| Purple

level)

Microprint - Object Interaction

Messagdo self Blue
Messagdo super Orange
Messagéo other Purple
Messagdo classes Yellow

The color mappingausedfor the microprints.

Microprints keepcodefamiliarity by preservingthe shapeandindentationof the
code,asthis is an importantinformation for programmersin addition, this cre-
atesa one-to-onemappingbetweerthe codeandits representatioformsto avoid

programmergettingOlosin translationO.

However, problemsmayoccurif this approachs appliednawely:

¢ Importantinformationsuchasreturnsor conditionalsaresometimesot visible

172




addMetric: metric displayUsing: colorOrSymbol
self metrics add: metric.
colorOrSymbol isSymbol ifTrue: [
((colorOrSymbol = self xAxis) | (colorOrSymbol = self yAxis)) ifFalse: [ » ColorValue yellow].
(currentMarkerColors anySatisfy: [:c | ¢ = colorOrSymbol]) ifTrue: [ A ColorValue black]].
~ self colorinfo at: metric put: colorOrSymbol.

a return construct b o —

the returned expression - *

Fig. 2. Propagtionof colorsfrom programelements

enough For example,in Smalltalk,methodreturnsareexpressedisingthe caret
characted andnotwith akeyword suchasreturn

e Whenthecodeis composeaf nestedstructuresuchasnestedconditionalsand
loops, identifying the scopeof a given structureis crucial. Representinghar
actersdirectly doesnot provide enoughvisual feedbackand producesaliasing
effects.

To solve theseproblemghe mappng of thecoloris notdirectbut propagtedto the
nestecelementsln Figure2, theentireexpressiorreturnedlastline of themethod)
is alsocoloredin red.Eachnew nestingelemenhowevertakesprecedenceverthe
color of its parent:areturnexpressiorcontainedn a conditionalonewill nothave
theblue color of the conditionalexpressiorbut the red of thereturnexpressionas
shavn by theendof thelines4 and5 in Figure2. This solutiondoesnotadresghe
problemof theidentibcatiorof the scopeof a constructbut providesa bettervisual
feedback.

4 DedicatedMicr oPrints

When readingobject-orientedcode, the key information that the programmetis

looking for canbe classibednto the following cateyories: (1) statechangesand
accesseg2) methodcontrol3ow and(3) methodinvocationsor objectinteractions.
Puttingall thisinformationinto asinglemicroprintwouldleadto anunreadabl@ic-

ture,sincefar too muchinformationwould bedisplayedthe sameappliesfor code
highlighting). Sincefor humanst is easierto combineinformationratherthanto

extractit, we proposehreemicroprintsspecializen eachof theseaspectsThese
microprintscanbedisplayedalongsidea methodbody Sincethey aresignibcantly
smallerthanthe methoditself, we candisplayat least3 of themin the samespace
without having scrolling problems asshonvn ontheright of Figure10.

173



colorForNode: aNode metric: m value: value
| color |
color := configuration colorinfo at: m.
oldNode := aNode.
oldColor := color.
A ColorValue
red: color red * value
green: color green * value
blue: color blue * value

Fig. 3. A visualizationof the methodcolorForNode:metric:value: usinga dedicatedmi-
croprintfor statechangesandaccesses.

4.1 Microprint - State Changes and Accesses

The intention of this microprint is to corvey how variablesof different scopes
are manipulated.This microprint focuseson stateaccessesnd changeslt dis-
tinguishesvariablescopeandassignments.

Color Mapping. Assignmentsare displayedin red. Differentkinds of variables
are distinguishedmethodarguments(purple), the self variable? (blue), instance
variables(cyan),temporaryvariables(purple)andglobalvariablessuchasclasses
(yellow). Thesuper pseudo-ariableis shavn in orangeasit refersto anotherclass
higherin the hierarcly. Someextra analysiss performedo usethe samecolor for
accessomethodsanddirectaccessed-igure 3 presentsan exampleof microprint
with statechangesndaccesses.

Spotting patterns. Glancingat the microprints, one canimmediatelyseesome

interestingsequence®f colors. Cyan-redmeansthat instancevariablesare set.

Purple-redmeanghatlocal variablesareassignedYellow spotsreveal references
to otherclassesndin generakreationof objectsof theseotherclasses.

Figure4 shavs two microprintsof alazily initialized accessomethodnamedcom-
boAspect. This methodtestsif the valueof the variableis nil; if thisis the casethe
valueis setbeforebeingreturned Theorderof thecolorsin the microprintsallows
usto spotthis patterneasily The cyan-red-yellov sequencén the statemicroprint
(a variableis setto an external reference probablya new instanceof the class)
andthered-bluesequencén the control RBow (returningthe resultof a conditional

2 Correspondso this in Java.

174



comboAspect
Acombo isNil

ifTrue: [combo := String new asValue]
ifFalse: [combo]

State access Control flow

—
= ]
— - — — e e i
—

Fig. 4. Microprintsof anaccessomethodfollowing the lazy initialization pattern

expression)s astrongcharacteristic.

4.2 Microprint - Control Flow

This microprintfocuseson methodcontrol 3ow. It highlightsthe following types
of information:loops,conditionalstatements;onditionalloops,returnstatements,
andexceptions.

Color Mapping. Conditionalstatementsre marked as blue, loopsasgreenand
exceptionsor return staemerns asred, sincethey both end the executionof the
method.Blocksof codeareshavn in purple.

colorForNode: aNode
| color |
aNode = oldNode ifTrue: [*oldColor].
color := self uncachedColorForNode: aNode topLevel: true.
oldNode := aNode.
oldColor := color.
A color

Fig. 5. The control o~ microprint of the methodcolorForNode: revealsit containsa
guardclause.

Spotting patterns. Figure 5 shawvs the microprint of the methodcolorForNode:.
We seetherethe simple control Row of a methodwith a guardclause,i.e., one
conditionalandareturn, followedby severalstatementandaPnalreturnstatement.

Figure6 shavs atypical control3on microprintof amethodwith acomple logic.

Onit we canspota conditional(blue),conditionalloops(green),andexplicit con-
trol Row returns(red).

175



addMetric: metric displayUsing: colorOrSymbol
self metrics add: metric.
colorOrSymbol isSymbol ifTrue: |
((colorOrSymbol = self xAxis) | (colorOrSymbol = self yAxis)) ifFalse: [ A ColorValue yellow].
(currentMarkerColors anySatisfy: [:c | ¢ = colorOrSymbol]) ifTrue: [ A ColorValue black]].
~ self colorinfo at: metric put: colorOrSymbol.

Fig. 6. A comple control3ow microprint.

The absencef patternan a methodis anothersourceof information. Suchmeth-
odsdo not exhibit any non-linearcontrol 3ow. This allows oneto easilytell apart
methodsperformingsomeinitialization, forwardingmessage#o otherobjects,or
performingaseriesof subtasksMethodswith alinearcontrolf3ow areeithertotally
grayor they only have asingleredreturnspotastheir laststatement.

4.3  Microprint - Object Interactions

Thethird dedicatednicroprintfocusenthedifferenttypesof methodcalls,i.e., if
amessageés sentto anotherobjector is invokedvia super or self/this. In suchacase,
the microprintalsoindicateswhetherthe methodis locally debPnedbr inheritedby
asuperclass.

Color Mapping. Messagesentto self areshavn in blue, and messagesentto

super, or sentto self but implementedn the superclassesyredisplayedn orange.
Interactionswith otherobjectsarealsoconsideredandaredisplayedin purple,as
we canseeon Figure 7. Thusthe color choiceis consistentvith the oneusedin

the statechangesandaccessemicroprints,asshavn in Table 1. This consisteng

allows the userto interpretmicroprintsfaster

Fig. 7. Objectinteractionmicroprint.selfin blue,superin orange ptherin purple

Spotting patterns. This microprintallows oneto easilydiscover thetype of inter-
actiona givenclasshaswith otherclasseswhetherit is auto-subcient,relying on
its superclas$or certainbehaiors, or interactswith OforeigrclassesGCateyoriz-

176



Fig. 8. A methodcollaboratingonly with externalobjects.Yellow colorsmessagsendgo
classespurplemessagsenddo variables.

ing classesr setsof methodsin sucha way canhelp the programmetto pick an
areaof a classwhich is easierto understandaccordingto his currentneeds(like
understandingheinternalimplementatiorof a class,or its relationswith its super
class).This microprint alsoallows oneto detectareaswherehelpermethodsare
used(lots of self or supermessagesends).

Theexceptionalcasesrealsointeresting:A methodwith absolutelynointeraction
is eitheran accessoto aninstancevariableor to a constantA methodwith only
foreigninteractionssuchastheonedisplayedn Figure8, is really a utility method,
andprobablynever accessethe stateof the object.It could comefrom a previous
refactoring.

eval:

evalBlock:withArguments:

Fig. 9. An overview of the methodprotocol OgaluatingOof the classRBASTEvaluator,
usingthe stateaccessnicroprints.

177



5 Micr oprints at Work

Microprintshave beenintroducedn theprofessionalDE of Visual\WorksSmalltalk
andin CODECRAWLER in the context of classblueprints[12].

Packages Classes Method protocols Methods

Browser/ Edit Find View Package |Class Protocol Method | Tools Help

Pack Hierarchy | [instance | Class | Shared Variable | Ole

Base VisualWorks « 3-8 MicroPrint initialize-relea A lengthOrf "
CodeCrawlerDeve RBASTToSourceMa | accessing methodArea
Deprecation + WaordSplitter converting nodeForindex:

HotDraw * + 1 querying 1 pointFarindex:

I'source | Rewrite | Code Critic | MicroPrint |

pointForindex: integer 4 lstate changes/accesses
| point |
point:=0 @ 1.
source doWithindex:
[:char tidx |
char = Character cr
ifTrue:
[point
x:0:
y:pointy + 1)
ifFalse: [point x: point x + (self lengthOf: char)].
idx = integer ifTrue: [“point]].
*point

Method definition Method microprints

Fig. 10. Microprintsintegrationin a developmentervironment.

5.1 In a Programming Environment

We extendedhe VisualWorks Smalltalkclassbrowserto displaymicroprintswhen
it displaysmethodsor groupsof methods(called methodprotocolsin Smalltalk).
Whenthe browserdisplaysa method,several dedicatedmicroprintsaredisplayed
for the method(Figure 10). Whenthe browser displaysthe various protocolsof

a class,all the methodsin that protocol (suchas OaccessingOtestingQyc.) are
displayedusingthe samebut changeablenicroprint,asshavn in Figure9.

Themicroprintscanbe choserby the programmemccordingo theinformation he
needs.The programmeicanalsodebneotherdedicatednicroprints,by creatinga
newv mappingof Markers (objectsusedto detectandmarkelementof amethod)o
Colors, suchasdisplayingthe Oassignmeno variableQnarker in red, the Ocondi-
tionalmarkerGn green,. ... Theprogrammecanalsousethe framewvork to debne
his own kind of microprintsin additionto the existing ones(stateaccessgcontrol
Row, objectinteraction,andthe microprintsfocusedon dynamicbehaior which
arementionedn section8). We took careof having aneasilyextensibleframevork

178



for the microprintssosomeoneawvilling to dePnenew microprintshasjustto create
a new subclassof Marker. It canthenbe includedin all microprintswith a color
usingthe sameprocedure.

5.2 Within Class Blueprints

Classblueprintsaresemanticallyenrichedcall-graphof all methodsn aclasg12]
whoseprincipleis presentedn Figurell. A classblueprintdisplaysthe methods
andattributesof classesasnodesof a graph,wherethe edgesarethe invocations
of methodsor the accessesf attributes.MethodsareclassibPedn four catejories:
initialization, public interface privateimplementatiormethodsandaccessorésee
Figure11). The nodesof the grapharecoloredto displaysemantidnformationof
the representednethod However, evenif the programmeigetsvaluableinforma-
tion, heis oftenforcedto readthe code.

m O—t—
/D____ M =
= [ i
Initialization Interface Internal Accessor Attribute
Layer Layer Implementation Layer Layer
Layer
Invocation Sequence >

Fig. 11. Theclassblueprintin anutshell

Fig. 12. Classblueprintof the classTestRunnerusingthe stateaccessnicroprint

We extendedthe classblueprintview of CODECRAWLER [12] with microprints.
Theclassblueprintusescoloredrectangleso corvey semanticalnformationabout

179



the methodsandattributes.Microprints extendthe classblueprintby displayinga
microprintin therectanglaepresenting methodallowing theuserto haveamuch
betterview of whatthe codedoesandalsoto have a gestalt impressiorof amethod
body without needingto readthe sourcecode.The microprintto be displayedis
choserby theuser andcanvary betweerseveralblueprintviews. Figure12 showvs
theblueprintof aclasswith eachmethodnodeshowing the stateaccessnicroprint.
It is thenpossibleto displaythe sameclassblueprintusinganothemicroprint,such
ascontrol Bow, to have anothewiew of theclass.

The combinationof classblueprintsand microprintsallows the userto seea lot

of methodsat the sametime. The combinedvisualizationof the call graphallows

thereengineeto navigatequite quickly from onemicroprintto arelatedone. This

vizualisationallows theuserto literally Ohunt@r particularcodepatterngsuchas
the onesenumerate@bore), to quickly spotareasof classesvhich needsgreater
attention.If furtherinsightis neededthe actualcodeof the methodsis just one
click away.

For example , we canseefrom Figure12 thatseveralmethodsn theinterfacelayer
of classTestRunnerrelazy accessorgthey presenthe characteristicyan-redse-
guencementionedabore, with anoptionalyellow word). Thisinsightcouldbecon-
Prmedby switchingto a blueprintwith the control 3ow microprint, which would
displayared-bluesequenceasshown in Figure4.

It is alsopossibleto usethe classblueprintvisualizationon a hierarcly of classes,
allowing thento seea greaternumberof methods,asshavn in Figure 13. This
allows oneto graspcollaborationsatthis higherlevel, andalsoto cateyorizeclasses
basedon their behaior. This in turnsallows oneto easily spotplaceswherethe
codecouldbeduplicatedthusfocusingrefactoringefforts.

Fig. 13. A hierarcly of classeshaovn with microprints

180



6 Discussion

Microprintshave thefollowing propertiesthey take a smallamountof spacewhile
providing alot of information,they arenon-intrusve anddo not modify thesource
code.They supporttheidentibcatiorof visual patternssuchasred fragmentandi-
catingreturnsor exceptionhandling,or greenfragmentsndicatingloops.They also
presere codeindentation keepingcodefamiliarity andallowing the programmer
to mapthemicroprintto the methodwith betterease.

Whenlooking at a single method,the advantageof microprintsover simple code
coloringcomesfrom thefactthatcodecoloringcannotdisplayall the availablein-
formationdueto thelimited amountof colorswe canuse.With microprintsseveral
facetsof thecodecanbedisplayedatonce.

Onedravbackof microprintsis thatthe programmeihasto navigate betweenthe
codeandits microprints.However, microprints being smallerthan the methods,
scrollingis very rarelyneededassaidabove. Thusthe navigation doesnotinvolve

physicalmovementsWhile microprintsarereally effective whenusedin combina-
tion with classblueprintsor for entireclasshierarchiegor evenlists of methods)it

is not sure thatthey areusefulfor the understandingf a singlemethod.Smalltalk
codeis generallylessverbosethanother languagesuchasJava or C++ (The av-

eragelength of methodsin Smalltalkis 7 lines[11], one-linersbeingcommon).
We think thatin thoselanguageghe microprintswill prove even more useful,as
their utility scaleup with the quantity of codeto understandat once.We planto

conductarealevaluationwith otherprogrammerso asses# they bndmicroprints
avaluabletool andunderwhich circumstances.

A limitation of the microprintsis the way the control Row microprintsdealswith
nestedblocks. We statedearlier that we shouldusea few diversecolorsto ease
patternrecognition,but nestedblocksof codesuseshadeof purpleto distinguish
onefrom anotherThis solutionis notidealasit introducesnterpretatiorproblems
atsmallscalessuchasthe onesusedin microprints.lt is partof our futurework to
Pndasolutionto this problem.

Theintegrationof the microprintsin our tool CODECRAWLER providesa supple-
mentallevel of informationthatin termsof abstractneseesidesetweerthe class
blueprintsandthe actualsourcecode.An issueis however the scalabilityof the vi-
sualizationssincethey arepixel-basedhey needadebniteamountof screerspace,
while usingavectororientedapproacltonecouldalwaysscalethevisualizationgo
make themptin onesinglescreen.

181



7 RelatedWork

A similar approacthasbeenimplementedn SeeSof{6], which visualizesalarge
amountof codeusing pixel-basedepresentationsSSeeSofiprovidesa muchhiger
level view of thecode,(entireprogramsof up to 50000linesof code),arole which
is takenin our apgroachby othervisualizations Microprints on the contraryare
usedin smallerscaleviews, andprovide muchmoredetailsfrom the methodlevel
uptotheclasshierarcly level. Hencemicroprintscanprovide severalparallelviews
of thesamepieceof code whereasSeesoftendsto provide asingleview of all the
sourcecode.Moreover, Seesoftbeingmuchhigerlevel, it associates color to a
completeline and doesnot introducespecibcvisualizationfor methodsemantics
or bnergrainedentities.

Nassiand Shreidermanproposed3onchartsto representhe codeof procedures
with greatelinformationdensity[15].Warnier/Orrdiagramsdescribethe organiza-
tion of dataand procedureg8]. Both approachesnly dealwith proceduralkcode
and control-Bav. Crosset al.debPnedand validatedthe effectivenessof Control
StructureDiagrams(CSD)[3] [7], which depictthe control-structurendmodule-
level organizationof a program.Evenif CSD hasbeenadaptedrom Adato Java,
it still doesnot take into accountthe factthata classexistswithin a hierarcly and
thatthereis late-binding.

Integratedprogrammingernvironmentsprovide code coloring functionality Code
coloringis interestingbecauset directly affectsthe methodtext itself andenables
to have a single focus point while readingthe code.The limits of codecoloring

is thatwe cannothave simultaneoushdifferentviews on the samepieceof code.
In addition, text coloring doesnot really scalewhen several methodshave to be

understoodsincethe readerhasto scroll or openand switch betweendifferent
windows. A possibleextensionof our approachwould beto apply onemicroprint

asacodecoloringschemeanddisplaythe otherson the sideaswe do now.

Many toolsmake useof staticinformationto visualizesoftware,suchasRigi [19],
Hy+ [2] [14], Dali [10], ShrimpMews [18], TANGO [17], aswell ascommercial
toolslike Imagixto namebut afew of themoreprominentexamplesMost publica-
tionsandtoolstreatclasse®r methodsasthe smallestunit in their visualizations.
Thereare sometools, for instancethe FIELD programmingervironment[16] or
Hy+ [2] [14], which have visualizedthe internalsof classesbut usuallythey lim-
ited themselesto shaving methodnamesattributes,etc. andusedsimplegraphs
without addedsemantianformation.

Arevalo [1] proposesX-Ray views, virtual cateyorizationsof methodsaccording
to certainheuristicsusing conceptanalysis.Threeviews are proposedbasedon
the stateaccessthe superandself calls andclient accesseddowever, thereis no
visualizationpersein X-Rayviews. Theanalysigperformedor X-Rayviews could

182



be usedto creatededicatednicroprints.

Classblueprintg12] providesacall-Bowv basedepresentationf classesAlthough
classblueprintsare enrichedwith semanticainformation extractedfrom method
analysisthey do not provide Pne-graineanethod-basethformation.

CoDECRAWLER is alsousedasa visualizaton tool for software metrics. Micro-

prints usemarkersinsteadof metrics,andwork on a smallerscale.A marker can
be seenasa binary metric,i.e., a programelementcancomplyto the marker, or it

cannot.We usemarkersinsteadof metricsdueto the constrainthatwe mustusea
limited numberof colors.Usingmetricswouldinvolve usingshade®f color, which
will reducethereadabilityof suchsmallvisualizations® . Whereasnetricsaremost
of the time assignedo entitiessuchasclassesmethodsor packagesmicroprints
are marking programelementsinside a methodparsetree, suchas referenceso

variablesor methodcalls.

Dekel usesConceptAnalysisto visualizethe structureof the classin Java andto
selectan effective order for readingthe methodsand reveal the stateusage[4].
However little informationis extractedandthe developerhasto understandhow to
readconceptatticesin connectiorwith sourcecode.

8 Conclusionand Futur e Work

In this paperwe presentmicroprints,pixel-basedrepresentationsf the methods
andtheir bodies.We presentedhreededicatedmicroprintsthat eachtarget a dif-
ferentunderstandingyoal. We have also shavn how the microprints have been
integratedin a commerciallyavailable developmentenvironment(Cincom Visu-
alWorks Smalltalk) andin a known visualizationtool, CODECRAWLER. Even if
microprintshave beendevelopedfor Smalltalk code,our belief is that the tech-
niqueis easilyadaptabldgo otherobject-orientedanguagesgiven a parserfor the
targetlanguage and given somededicatedcode markerstaking into acounttheir
peculiarities.

In thefuturewe would lik e to displayrun-timeinformationsuchaswhich partsof
the methodshave beenexecutedandthe frequeng of this execution.We currently
have alreadyanimplementatiorusingthefoll owing schemea dedicatedsmalltalk
interpreterbroadcast&xecutionevents(variableaccessesnessageendsexcep-
tions being thrown and caught),and specialMarkers can mark the code of the
methodbeingrun. The programcodeis thenexercisedoy runningits testsuitewith

3 It is still possibleto usemetricswith microprints, it is just not recommendedFor ex-
ample,one of the microprintsvisualizing dynamicbehaior mentionedin section8 uses
metricsto visualizehow oftena pieceof codeis executed

183



thisinterpreter Theimplementatioris hovewer not matureenough andconsistent
coloring have yet to be found. In addition, this kind of microprintis lessportable
thantheonesdescribedere . Anotheruseof dynamicinformationwe ervisionis to
displaywhenexceptionsareraisedandcaughtat run-timeby theinterpretedcode.

Moreover, we want to validatethe usefulnesof the microprintsin an industrial
contet by releasingthe software to the communityof Smalltalk developersand
evaluatetheir feedbacko amelioratethe microprints.

Acknowledgments.We gratefully acknavledgethe Pnancialsupportof the Swiss
National ScienceFoundationfor the projectRecast: Evolution of Object-Oriented
Applications (SNF 2000-061655.00/1). Thanksto TudorGirba,OrlaGreevy, Cyrus
Hall, andMircealLungufor their comments.

References

[1] GabrielaArevalo. Understandindehaioral dependencies classhierarchiesusing
conceptanalysis.In Proceedings of LMO ’03 (Langages et Modeles a Objets), pages
47D59Hermes Paris,January2003.

[2] Mariano P. Consensand Alberto O. Mendelzon. Hy+: A hygraph-basedjuery
and visualisationsystem. In Proceeding of the 1993 ACM SIGMOD International
Conference on Management Data, SIGMOD Record Volume 22, No. 2, pagess11D
516,1993.

[3] JamesH. Crossll, SaeedMaghsoodloo,and Dean Hendrix. Control Structure
Diagrams:Overviev and Evaluation. Journal of Empirical Software Engineering,
3(2):131D1581998.

[4] Uri Dekel. RevealingJAVA ClassStructuresusingConceptLattices. Diplomathesis,
Technion-Israelnstituteof TechnologyFebruary2003.

[5] AlastairDunsmoreMarcRoperandMurray Wood. Object-Orientednspectiorin the
Faceof Delocalisation. In Proceedings of ICSE *00 (22nd International Conference
on Software Engineering), pagesA67b476ACM Press2000.

[6] StephenG. Eick, JosephL. Stefen, and SumnerEric E., Jr SeeSoftNa tool
for visualizing line oriented software statistics. [EEE Transactions on Software
Engineering, 18(11):957D96&\ovemberl992.

[7] Dean Hendrix, JamesH. Crossll, and SaeedMaghsoodloo. The Effectiveness
of Control StructureDiagramsin SourceCode ComprehensiorActivities. [EEE
Transactions on Software Engineering, 28(5):463D47 May 2002.

[8] David A. HigginsandNicholasZvegintzov. Data Structured Software Maintenance:
The Warnier/Orr Approach. DorsetHouse Januaryl987.

184



[9] DeanF. JerdingandJohnT. Stask. The informationmural: Increasingnformation
bandwidthin visualizations.TechnicalReportGIT-GVU-96-25,Geogia Institute of
TechnologyOctober1996.

[10] Rick Kazman and S. J. Carriere. Playing detectve: Reconstructingsoftware
architecturdrom availableevidence.Automated Software Engineering, April 1999.

[11] Edward J. Klimas, SuzanneSkublics,and David A. Thomas. Smalltalk with Style.
Prentice-Hall 1996.

[12] Michele Lanzaand StephaneDucasse. A Catajorizationof Classeshasedon the
Visualization of their Internal Structure: the Class Blueprint. In Proceedings of
OOPSLA 01 (International Conference on Object-Oriented Programming Systems,
Languages and Applications), pages300D311ACM Press2001.

[13] Michele Marchesiand GiancarloSucci, editors. Extreme Programming and Agile
Processes in Software Engineering. Springer 2003.

[14] Alberto MendelzorandJohanneSametingerReverseengineerindyy visualizingand
querying.Software — Concepts and Tools, 16:170D1821995.

[15] I. Nassiand B. Shneiderman. Flowchart techniquesfor structuredprogramming.
SIGPLAN Notices, 8(8), August1973.

[16] Steven P. Reiss. Interactingwith the bPeld ervironment. Software — Practice and
Experience, 20:89D9115]1990.

[17] JohnT. Stako. Tango:A framewvork and systemfor algorithm animation. /EEE
Computer, 23(9):27D39Septembef 990.

[18] Margaret-AnneD. Storey and Hausi A. Muller. Manipulating and Documenting
SoftwareStructuresusingSHriMP Views. In Proceedings of ICSM 95 (International
Conference on Software Maintenance), page275b284EEE ComputelSocietyPress,
1995.

[19] Scott R. Tilley, Kenry Wong, Margaret-AnneD. Storg/, and Hausi A. Muiler.
Programmableeverseenginnering. International Journal of Software Engineering
and Knowledge Engineering, 4(4):501D5201994.

[20] EdwardR. Tufte. Envisioning Information. GraphicsPress1990.
[21] Colin Ware. Information Visualization. Morgan Kaufmann,2000.

[22] NormanWilde andRossHuitt. MaintenanceSupportfor Object-Oriented®rograms.
IEEE Transactions on Software Engineering, SE-18(12):1038D104BDecembed 992.

185



