4916_Ch00_FINAL 5/18/05 3:52 PM Page i $

Squeak

Learn Programming with Robots

STEPHANE DUCASSE

Apress*

4916_Ch00_FINAL 5/18/05 3:52 PM Page ii $

Squeak: Learn Programming with Robots
Copyright © 2005 by Stéphane Ducasse

Lead Editor: Jonathan Hassell

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,
Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Assistant Publisher: Grace Wong

Project Manager: Kylie Johnston

Copy Manager: Nicole LeClerc

Copy Editor: David Kramer

Production Manager: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Diana Van Winkle, Van Winkle Design Group

Proofreader: Elizabeth Berry

Indexer: Valerie Perry

Artist: Diana Van Winkle, Van Winkle Design Group

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Library of Congress Cataloging-in-Publication Data

Ducasse, Stéphane.
Squeak : learn programming with robots / Stéphane Ducasse.
p. cm.
ISBN 1-59059-491-6
1. Robots--Programming. I. Title.

TJ211.45.D83 2005
629.8'925117--dc22
2005013248

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section.

e

4916_Ch00_FINAL 5/18/05 3:52 PM Page iii $

4916_Ch00_FINAL 5/18/05 3:52 PM Page iv $

Contents at a Glance

FOrBWOI. . .. Xvii
About the AUthor. Xxiii
ACKNOWIedgmeNntsSo XXV
Preface ... XXVii
PART 1 Getting Started
CHAPTER 1 Installation and CreatingaRobot................................ 3
CHAPTER 2 AFirst Script and Its Implications 13
CHAPTER3 OfRobotsandMen, 29
CHAPTER 4 DirectionsandAngles.......................... 37
CHAPTER 5 Pica’sEnvironment.. 51
CHAPTER6 FunwithRobots................................ 61
PART 2 Elementary Programming Concepts
CHAPTER 7 Looping.......... ... 77
CHAPTER8 Variables... 87
CHAPTER 9 Digging Deeperinto Variables................................. 101
CHAPTER 10 LoopsandVariables 109
CHAPTER 11 ComposingMessagesccooviiiiiiin... 119
PART 3 Bringing Abstraction into Play
CHAPTER 12 Methods: Named Message Sequences 135
CHAPTER 13 Combining Methods, 149
CHAPTER 14 ParametersandArguments................................... 155
CHAPTER 15 Errorsand Debugging .. 167
CHAPTER 16 Decomposing to Recompose.................................. 183
CHAPTER 17 Strings, and Tools for Understanding Programs 197

e

4916_Ch00_FINAL 5/18/05 3:52 PM Page V $

PART 4

CHAPTER 18
CHAPTER 19
CHAPTER 20
CHAPTER 21
CHAPTER 22
CHAPTER 23

PART 5

CHAPTER 24
CHAPTER 25

CONTENTS AT A GLANCE

Conditionals
Conditions. 209
Conditional LOOPScoi i 221
Boolean and Boolean Expressions............................. 233
Coordinates, Points, and Absolute Moves...................... 243
Advanced Robot Behavior..................................... 261
Simulating Animal Behavior................................... 269
Other Squeak Worlds
ATourofeToy ... 289
ATourof Alice 315

v

4916_Ch00_FINAL 5/18/05 3:52 PM Page vi $

4916_Ch00_FINAL 5/18/05 3:52 PM Page vii $

Contents

FOrBWOr. . .. Xvii
Aboutthe AUthor. o XXiii
ACKNOWIBAgMENTS XXV
PrEfaCE . . . XXVii

PART 1 Getting Started

CHAPTER 1 Installation and Creatinga Robot........................... 3
Installing the Environment i, 4
Installation ona Macintosh 4
Installation under Windows 4
Opening the Environment.l 5
Tips forInstallation 5

First Interactions witha Robot 6
Sending MessagestoaRobot..................... 7
CreatingaNew Robot................. .. i 9
Quittingand Saving............ i 10
Installation Troubleshooting........................ .o il 10
SUMMANY 12
CHAPTER 2 A First Script and Its Implications 13
Using a Cascade to Send Multiple Messages........................ 14
AFirstSeript. ... 15
Squeak and Smalltalk. 16
Programming Languages.....................c. i 16
Smalltalk and Squeakl 17
Programs, Expressions, and Messages............................. 18
Typing and Executing Programs 18

The AnatomyofaScript............ 18
About Pixels 19
Expressions, Messages, and Methods 19
Message Separationc. i 21

e

vii

4916_Ch00_FINAL 5/18/05

viii

CONTENTS

CHAPTER 3

CHAPTER 4

CHAPTER 5

3:52 PM Page viii :F

Method. 22
Cascade. ... 22
CreatingNew Robots.o i, 22
Errorsin Programs 23
Misspelling a Message Selector 24
Misspelling a Variable Name 24
UnusedVariables i, 25
Uppercase or LOWercase?c.oueiuiineinannannn. 25
Forgettinga Period............... ... i 26
Words That Change Color.......................oiiii .. 27
SUMMANY ... 28
Of RobotsandMen.. 29
Creating Robots. 30
Drawing Line Segments. 31
Changing Directionsot 31
The ABCOfDrawingcoi i 34
Controlling Robot Visibility, 35
SUMMANY ... 35
DirectionsandAngles 37
RightorLeft? 38
A Directional Convention. 39
Absolute Versus Relative Orientation............................... 40
The RightAngleof Things i, 42
ARobot Clock. 45
Simple Drawings. ... 46
Regular Polygons. 47
SUMMANY ... 48
Pica’s Environment .. 51
The MainMenu 51
Obtaining aBotWorkspace 52
Interacting with Squeak i 53
Using the Bot Workspace to Save a Script 54
LoadingaScript..... 55
Capturinga Drawing. ...t 55
Message Result. 57

4916_Ch00_FINAL 5/18/05 3:52 PM Page ix $

CHAPTER 6

PART 2

CHAPTER 7

CHAPTER 8

CONTENTS
Executinga Script. ... 58
Hints. ... 58
TwoExamples. ... 58
SUMMANY ... 60
FunwithRobots... 61
RobotHandles i 62
PenSizeand Color i 62
More about Colors. ... 63
Changing a Robot’s Shape and Size 64
Drawing Your OwnRobot............... L 66
Saving and Restoring Graphics....................l 67
The “Save Graphics”Handle 68
Retooling the Robot Factory.................................. 68
Graphics Operations Using Scripts............................ 69
SUMMANY ... 73

Elementary Programming Concepts

Looping................... 77
AStarIs Born. 78
LoopstotheRescue i 79
LoopsatWork. ... 80
CodeIndentation i 80
Drawing Regular Geometric Figures 81
Rediscovering the Pyramidst 82
Further Experiments with Loops. 84
SUMMANY ... 86
Variables................... 87
BroughttoYoubythe LetterA........ 88
Variationsonthe Theme of A............... 88
Variablestothe Rescue 90
DeclaringaVariable................. 90
Assigning aValuetoaVariable 90
ReferringtoVariables, 91
AndWhat About Pica?. ...l 91

e

ix

4916_Ch00_FINAL 5/18/05 3:52 PM Page X :F

X

CONTENTS

CHAPTER 9

CHAPTER 10

CHAPTER 11

UsingVariables. 91
The Power of Variables 92
Expressing Relationships Between Variables 93

Experimenting with Variables 94
The Pyramids Rediscovered. 95

Automated Polygons Using Variables. 96

Regular Polygons with Fixed Sizes............................. ... 98

SUMMANY ... 98

Digging Deeper into Variables 101

Naming Variables. 102

VariablesasBoxes i 102

Assignment: The Right and Left Partsof := 103

Analyzing Some Simple Scriptsl 104

SUMMANY ... 108

Loopsand Variables 109

ABizarre Staircase 110

Practice with Loops and Variables: Mazes, Spirals, and More. 113

Some Important Points for Using Variables and Loops............... 115
Variable Initialization.................. 116
Using and Changing the Value of aVariable 116

Advanced Experiments................l 117

SUMMANY ... 118

Composing Messages 119

The Three Types of Messages. ..., 120

[dentifying MeSSagescoooviiiii i 120

The Three Types of Messagesin Detail. 122
Unary MesSages. ..ot 122
Binary Messagesooviii 123
Keyword-Based Messages.cooiiii.a.. 123

Orderof Execution. 124
Rule 1: Unary > Binary > Keywords. 125
Rule 2: Parentheses Firstooiiiit 127
Rule 3: From LefttoRight................................... 129

SUMMANY ... 131

4916_Ch00_FINAL 5/18/05 3:52 PM Page xi #:

CONTENTS Xi

PART 3 Bringing Abstraction into Play

CHAPTER 12 Methods: Named Message Sequences 135
Scriptsversus Methodsl 136

How Do We DefineaMethod?.................................... 137

AClass Bot Browserccoiiiiiiiin. 138

Creating a New Method Category............................ 139

Defining Your First Method 140
What'sinaMethod?................... .. 142

Scripts versus Methods: AnAnalysis 143

ReturningaValue i 144

Drawing Patterns. i 145

SUMMANY ... 147

GlIOSSANY 147

CHAPTER 13 Combining Methods 149
Nothing Really New: The Square Method Revisited. 150

Other Graphical Patterns 150

What Do These Experiments TellYou?............................. 151

Squares EVerywhere. 153

SUMMANY ... 154

CHAPTER 14 Parametersand Arguments............................... 155
WhatlsaParameter? i 156

A Method for Drawing Squares........................oo.... 156

Practice with Parameters. 158
VariablesinMethods. 159

Experimenting with Multiple Arguments 160

Parametersand Variables 162

Arguments and Parameters. i 164

About Method Execution. 165

SUMMANY ... 166

CHAPTER 15 Errors and Debugging 167
The DefaultValue of aVariable 168

Looking at Message Execution. ...t 169

AFirst Look atthe Debugger................ il 172

e

4916_Ch00_FINAL 5/18/05

Xii

CONTENTS

CHAPTER 16

CHAPTER 17

PART 4

CHAPTER 18

3:52 PM Page xii $

Stepping throughthe Stack.............. 175
FiIXiNg Errors 178
Example 1 179
Example 2. 179
SUMMANY ... 181
Decomposing to Recompose.............................. 183
Mazesand Spirals.co i 184
Centered SQUArescoiiiiiiiiiiiiaa 184
Spirals ... 186
GoldenRectanglesoo i 189
A One-Line-per-Rectangle Solution 190
TiliNg ..o 194
SUMMANY ... 195
Strings, and Tools for Understanding Programs 197
SUINGS. ..o 198
Communicating withthe User.............................ooiit. 198
Stringsand Characters. i 199
Stringsand Numbers 201
UsingtheTranscript ... 202
Generating and UnderstandingaTrace............................ 203
SUMMANY ... 206
Conditionals
Conditions................... 209
ARobot'sTrue Colors 210
Adding a Trace to See What Is GoingOn 211
The Value ReturnedbyaMethod 212
Conditional Expressions with Only One Branch 213
Choose the Right Conditional Method 214
Nesting Conditional EXpressions.cocooviviiiint. 214
Robot Coloring with Three Colors 214
Learning from Your Mistakes. il 216
Interpreting aTiny Language., 218
Further Experiments i i 219
SUMMANY ... 220

4916_Ch00_FINAL 5/18/05 3:52 PM Page xiii :F

CHAPTER 19 Conditional Loops...........................

Conditional Loops ..ot

AnExample.................
Experiences with Traces.
Stopping an Infinite Loop
Deeper into Conditional Loops
A Simple Interactive Application...................
When to Use Square Brackets.....................
SUMMAary ...

CHAPTER 20 Boolean and Boolean Expressions

Boolean Values and Boolean Expressions...........
BooleanValues.............................
Boolean Expressions........................

Combining Basic Boolean Expressions
Negation (not)..............................
Conjunction(@nd)...........................
Alternation (or) ...l
Allof the Above.............................

Some Smalltalk Points

Missing Parentheses (a Frequent Mistake)

ACaseStudyot
Using the Debugger.........................
Understanding the Problem
Similar Problems and Solutions.
Summary ...

CHAPTER 21 Coordinates, Points, and Absolute Moves

Using Grids. ...
A Source of Errors with Points.....................
Decomposing 50@60 + 200@400............
Decomposing (50@60) + (200@400)
Absolute Moves...............
Relative versus Absolute Motion...................
Some Experimentsl
Translations
Translating Triangles
FlyingGeese.............oovieviiinn...

CONTENTS xiii

4916_Ch00_FINAL 5/18/05 3:52 PM Page xiv #:

Xiv

CONTENTS

CHAPTER 22

CHAPTER 23

Absolute Moves atWork.c i 255
Loops and Translations.................... 257
Further Experiments........... 259
SUMMANY . .o 259
Advanced Robot Behavior 261
Obtaining a Robot’s Directiont 262
Pointingina Direction. 262
Distance fromaPoint................l 263
Back inthe Centerofthe Screen 264
Location If It Moved. ... 264
INaBoX 264
HeadingtowardaPoint ol 265
Center versus Position i 267
SUMMANY ... 267
Simulating Animal Behavior............................... 269
Wandering. 270
Separating Influences................. 271
Studying the Influence of the Length 272
Studying the Influence of the Side to Which the Animal Turns. . .. 273
Trappedin@aBoX 274
Following Borders 275
Flying to the Opposite Border 276
Random Direction o i 276
Introducing an Exitinthe Box 277
Staying in a Healthy Environment................................. 278
Further Experiments i i 280
FindingFood. 280
Comparing Distance ... 280
Taking One’sBearings. ..., 283
Simulating Vision 284
SUMMANY ... 286

4916_Ch00_FINAL 5/18/05 3:52 PM Page xv $

CONTENTS
PART 5 Other Squeak Worlds

CHAPTER 24 ATourofeToy........................c ... 289
SteeringanAirplane. 290
Step 1: Drawing anAirplane 290

Step 2: Playing withthe Halo................................ 291

Step 3: Dragging and Dropping a Method to Create New Scripts . . 295

Step 4: Adding Methods ...l 296
Joysticks inAction. 297
Step 1: Creating a Joystick 297

Step 2: Experimenting with a Joystick........................ 298

Step 3: Linking the Joystick and the Script.................... 298
Creatingan Animation 299
Step 1: Creatingthe Holder 299
Step 2: Drawing Animation Elements......................... 300

Step 3: Dropping the Pictures into the Holder.................. 301
Step 4: Creating a Simple Sketch Recipient of the Animation 301

Step 5: Creating a Script with lookLike 302

Step 6: Displaying the Selected Animation Element 302

Step 7: Changing the Currently Selected Element of a Holder. . .. 303
AnotherWay 304
Carsand Drivers 305
Step 1: Draw a Car and a SteeringWheel 305

Step 2: Turning the CarinaCircle............................ 305

Step 3: Using the Wheel'sHeading........................... 306

Step 1:Sensors 308
Step2:TheRoad i 308

Step 3: Conditions and TestsineToy 309

Step 4: Customizing Color-Based Tests 310

Step 5:Adding Actions 311
SOmMe THCKS 311
Running Several Scripts.......................ooo 312
Clearing 312
CreatingaTile.............co i 312
Internationalization 314
SUMMANY ... 314

Xv

4916_Ch00_FINAL 5/18/05 3:52 PM Page xvi #:

XVi

CONTENTS

CHAPTER 25

ATourof Alice... 315
Getting Started with Alice.oo i 316
Interacting Directly with Actors. 318
The Environment 320
SCHPIS . o 321
AnalyzingaFirstSeript........... 322
Moving, Turning, and Rolling 323
ActorParts 324
Other Operationst 325
Getting Bigger. ... 325
Quantified Moves. ... 326
StandingUp ... 326
Coloring 326
Destruction 326
Visibility ... 326
Absolute Moves and Rotations 326
Pointing At. ... 327
Relative Placement of Actors.........................ciit 327
Time-Related Actions L 327
Animation 328
Your OwnWonderland. i 329
Multiple Cameras and Other Special Effects 330
AlarmS . 332
Introducing User Interaction 332
Hidden Aspects of Aliceand Pooh 333
Mapping 2D Morphsto 3D..............ooiii 333
Pooh: Generating 3D Formsfrom2D 335
SUMMANY ... 336
... 337

4916_Ch00_FINAL 5/18/05 3:52 PM Page xvii $

Foreword

By Alan Kay
President, Viewpoints Research Institute, Inc. & Sr. Fellow,
The Hewlett-Packard Company

The Future of Programming
As Seen from the 1960s

I started graduate school (at the University of Utah ARPA Project) in November 1966, and it is
interesting to look back on the world of programming as I surveyed it at that time.

The amazing Jean Sammit (who was an inventor of programming languages and their
first historian, as well as being the first woman president of the ACM) was able to count about
3,000 programming languages that were extant by the late 1960s. Much was going on, and
some of it was of great import and interest.

Algol 60, as Tony Hoare pointed out, “was a great improvement, especially on its succes-
sors!” It had many surface virtues, including a stronger feeling for contexts and environments
for meaning in a programming language, and one remarkable feature for its day—call by
name—which allowed its programmers a range of expression very similar to the language
designers themselves. For example, one could write procedures that would have the same
meanings and actions as the control statements in the language:

for (i, 1, 10, print(a[i])

where the first and fourth parameters would be marked name and thus bundled into an expres-
sion that correctly remembered the hierarchical namespace context of its variables, but could
be manipulated and executed from inside the body of the for procedure. Not even the original
LISP did this correctly at first!

And there was a little-known syntactic variant in the Algol 60 official syntax that encour-
aged a more readable form for made-up procedures. This allowed a comma in a procedure
call to be replaced by the following construct:

): <some comment> (
and this would allow the preceding call to be written as follows:
for (i): from (1): to (10): do (print(a[i]))

Do this with a nice display or IBM Executive typewriter made into a terminal (as JOSS
had), and you would get

for (i): from (1): to (10): do (print(a[i]))

which looks a lot like the Algol base language but done as a meta-extension by the programmer
for the benefit of other programmers. Xvii

e

4916_Ch00_FINAL 5/18/05 3:52 PM Page xviii $

xviii

FOREWORD

Perhaps the single most profound set of language ideas and representations happened
earlier than Algol, but took much longer for most computer people to understand (and many
never did), in part because of the different and difficult-to-read notation (for outsiders at
least), and because many of LISP’s greatest contributions were “really meta.” One of the great
contributions of LISP was its evaluator written in itself in a half page of code. This was a kind
of “Maxwell’s Equations” for programming, and it allowed many things to be thought about
that were essentially unthinkable in more normal approaches.

LISP itself was driven into existence to be the programming system for an interactive
commonsense agent—The Advice Taker—that could take the wishes of a human user given in
normal vernacular and turn them into computer processes that would carry out those wishes.
Some very interesting intermediate languages, such as FLIP, and attempts at doing some of
the Advice Taker properties, such as PILOT, were created in the mid 1960s.

Sketchpad was perhaps the most radical of the early systems because it tried to leap all
the way to a reasonable interactive framework for people who wanted to use the computer for
what it was best suited: interactive simulations of all kinds. The three cosmic contributions of
Sketchpad were

* The first usable approach to interactive computer graphics
» Areal object structure for all of its entities

* A nonprocedural way to program in terms of the desired end results, where the system
could employ various automatic problem-solving processes to come up with the
desired results

This was helped tremendously by a “tolerance approach” to solving constraints, which instead
of trying for perfect logic/symbolic solutions of the sets of constraints instead tried to solve
the constraints within global tolerances. This approach allowed many important problems to
be dealt with that are still difficult or intractable symbolically today.

JOSS was a very different cup of tea: it did “almost nothing” (basically numerical calcula-
tions using numbers and array structures), but what it did do was done perfectly and in the
form of what is still one of the great user interface designs in history.

A Programming Language was the name of a book by Kenneth Iverson that took a highly
mathematical approach to programming via functions and metafunctions expressed as a kind
of algebra. In those days the language was called “Iverson.” An actual system in which you
could program a computer was still just an IBM rumor at the time, but many paper programs
were written using these ideas. The best thing about Iverson was that it really paid off if you
thought of it as mathematical transforms and relationships, and didn’t worry about how many
operations would be required. Not worrying about number of operations was almost unthink-
able in those days of 1 MHz clocks on multimillion-dollar building-sized computers, so
Iverson and LISP were both very liberating vehicles for thinking ahead to the future, when
machines would be smaller physically, and larger and faster logically.

The Simula designers wanted to model large, complex dynamic structures and realized
that Algol blocks would do the job if you could cut them loose from Algol’s hierarchical control
structure. In the creation of Simula I in the mid 1960s, they were able to see that their ideas
had great relevance to the language and its programming, and when they did Simula 67 they
could replace many formerly built-in data types, such as string, with a Simula 67 class.

e

4916_Ch00_FINAL 5/18/05 3:52 PM Page xix $

FOREWORD Xix

The idea of extending the syntax, semantics, and pragmatics of programming languages
constituted an entire genre of investigation in the mid-to-late 1960s. One of the reasons for
this is that it had become abundantly clear that programming was going to be difficult to
scale, and that scalability in most dimensions was going to be critical to the health of comput-
ing. Where complexity is a central issue, architecture dominates materials. This realization
started to make programming appear as something different from math, and it started to
reveal itself as a new form of engineering. There were calls for the formation of a discipline to
be called “software engineering” and to have a conference to try to figure out what this might
mean (how to cope if you can’t just do math?).

ARPA Information Processing Techniques Office (IPTO) was in full swing by the time I went
to graduate school in 1966, and it had already made some great starts toward its collective dream
of having interactive computing for everyone pervasively connected via an “intergalactic net-
work.” Just how to create this network (which had huge scaling requirements) generated some of
the best systems thinking of the time, and was an important part of my own thinking about the
future of programming.

The ARPA funders were wise and did not turn the vision of their dream into funding goals,
but instead tried to find and fund talents that had their own ideas about what the dream meant
and how it could be done. This resulted in about 17 sites in universities and companies, most of
which had come up with very interesting and different designs and demos. This constituted a
community of both “agreement and argument” that made everyone in it much smarter than
they were before they joined the great dream.

Of course, given Jean Sammit’s 3,000 languages, there is much I haven’t mentioned, and
much interesting design that happened from 1967 to the end of the decade that has to be omit-
ted here. To pick just five developments of particular relevance to the readers of this book, I
would choose the conception of objects that I came up with, and how they were supposed to be
useful to end users of personal computers; Carl Hewitt's PLANNER system, which was the most
cohesive system for doing “programming as reasoning”; Ned Irons’s IMP system, which repre-
sents perhaps the first really useful completely extensible language; and Dave Fisher’s Control
Definition Language, which illuminated extensibility in general and with respect to control
structures in particular.

My background was in mathematics and molecular biology (I worked my way through
school as a journeyman programmer) and in the arts. Circumstances forced me to try to
understand Sketchpad, Simula, and the proposed ARPA intergalactic network in my first week
in graduate school, and the reaction I had was cataclysmic. They were similar in some ways
and very different in others, but they were different species of the same genus if one took both
a biological and mathematical perspective. Biologically, they were “almost cells” crying out to
be cells. Mathematically, they were “almost algebras” crying out to be algebras. So my initial
fusion of these metaphors with computing was that you could make everything from entities
that were logical computers that could send messages (which would also have to be logical
computers). The logical computers would act the part of cells, and the protocols devised could
be very algebraic—what today is (incorrectly) called polymorphism. This would result in great
simplicity and scalability at the “materials level,” and would open the door for advancements
in simplicity and scalability at the “expression level” where the programmer lived.

Several years later I found Hewitt’s PLANNER, and realized that it was the basis of a way
to get programs to be both more meaningful and more scalable. (Many of the ideas of PLAN-
NER also turned up in the later language called Prolog.) It was pretty clear that trying to send
messages that were goal-oriented could greatly help scalability, in part because there are far

e

4916_Ch00_FINAL 5/18/05 3:52 PM Page XX $

XX

FOREWORD

more ways to try to satisfy goals than goals (think of sorting as a goal versus all the ways to
sort), and this separation could have great benefits in keeping programs more meaningful
and less about optimizations mixed in with the meanings.

Meanwhile, the extensible language IMP had appeared, and there were several clever
ideas that allowed it to be practical and not just wallow in its own meta-ness.

And, in parallel to the thesis I was working on about personal computers and object-oriented
systems for all levels of users, Dave Fisher was working on a very nice complementary set of ideas
about how to make control structures extensible via being able to add new meanings dynamically
to a LISP-style meta-interpreter.

LOGO, the first great programming language for children, was a happy combination of
JOSS and LISP, by Papert, Feurzig, Bobrow, and others at BBN. This opened up the idea of chil-
dren as very important end users of the powerful ideas of computing, and changed my idea of
computing from a tool or vehicle to a medium of expression that had a similar cosmic destiny
to that of the printing press.

These five systems and the invitation to help start up Xerox PARC were the impetus for
Smalltalk, and are most noticeable in the first versions of Smalltalk.

Looking back from today; it is striking that

* The level of expression in today’s programming is so low (really back around 1965 for
most of it), and very few programmers today program even at the level of what was pos-
sible in LISP and/or Smalltalk in the 1970s.

* Smalltalk has not changed appreciably since it was released as Smalltalk-80 in the early
1980s, even though it contains its own metasystem and is thus very easy to improve.

e Moore’s Law from 1965 turned out to be pretty much correct, and we can now build
huge HW and SW systems, yet they are very fragile because the scalable concepts
beyond simple objectness have not been added (i.e., we perhaps have cells, but no
concept of even tissues, or how to build/grow multicelluar organisms).

* The Internet turned out to be a very successful expression of a radical approach to
architecture and scaling, yet no software/programming system is set up to allow pro-
grammers to express Internet-like systems (what would the programs for the exemplary
systems of Google and Amazon look like in such a new kind of programming system?).

What happened to progress in the last 25 years? And why is Squeak essentially just a free
Smalltalk, if we desperately need progress?

In 1995 the Internet had gotten mature enough for us to try some experiments with media
that we'd long wanted to do. And the Java (and other programming systems) of the time (and
today) missed pretty badly in being flexible, meta, and portable enough to serve as a vehicle.
Since we had done Smalltalk once before, and had written a book about how to do a complete
such system, it made some sense to take a year to make a free, controllable Smalltalk and release
it on the Internet (in fact, it took about nine months). The idea was that Squeak should not even
be the vehicle so much as the factory for a much better twenty-first-century language.

However, programming systems in which programmers can program often take on a life
of their own, and much of the Squeak open source movement and interest is in precisely a free
Smalltalk with a media system that is highly portable. I think it is safe to say that most of the
Squeak community is dedicated to making this Smalltalk more useful and accessible, and not

e

4916_Ch00_FINAL 5/18/05 3:52 PM Page xxi $

FOREWORD XXi

devoted to making something so much better as to render Smalltalk obsolete (a fate I would
dearly love to see happen).

So, I would like to encourage the readers of this excellent new book to not think of
Smalltalk as a bunch of features from the vendor gods that must be adhered to, but as a sys-
tem that is capable of great extension in all dimensions that will reward those who come up
with better ways to program. At PARC we changed Smalltalk every few weeks, and in a major
way every two years. Though it has hardly changed since then, please do and put those big
changes out on the Internet for all of us to learn from and enjoy!

4916_Ch00_FINAL 5/18/05 3:52 PM Page xxii $

4916_Ch00_FINAL 5/18/05 3:52 PM Page xxiii $

About the Author

STEPHANE DUCASSE obtained his Ph.D. at the University of Nice-Sophia Antipolis and his
habilitation at the University of Paris 6. He was recipient of the SNF 2002 Professeur Boursier
Award. He is now Professor at the University of Berne and the Université of Savoie.

Stéphane’s fields of interests are design of reflective systems, object-oriented languages
design, composition of software components, design and implementation of applications,
reengineering of object-oriented applications, and teaching novices. He is the main developer
of the Moose reengineering environment. He loves programming in Smalltalk and is the presi-
dent of the European Smalltalk User Group.

Stéphane has written several books in French and English: La programmation: une
approche fonctionnelle et recursive en Scheme (Eyrolles 96), Squeak (Eyrolles 2001), and
Object-Oriented Reengineering Patterns (MKP 2002).

If you want to discover why Stéphane is having fun with Squeak and actively participating
in its development, check out http://www.squeak.org/. Check out http://smallwiki.unibe.ch/
botsinc/ for the web site of this book.

XXxiii

4916_Ch00_FINAL 5/18/05 3:52 PM Page xxiv $

4916_Ch00_FINAL 5/18/05 3:52 PM Page XXV $

Acknowledgments

I would like to thank all of you who read parts and drafts of this book and provided feedback.
It is not an easy task to read a work in progress, and I am grateful to all of you who made the
effort. I will not attempt to list all your names here, because I am sure to forget some of you.
However, I must mention Orla Greevy, Ian Prince, and Daniel Knierim, who read the entire
manuscript. Thank you for your feedback and support. I would also like particularly to mention
Daniel Villain, who read a draft of the French version.

I want to thank the Squeak community for the help they have provided me during the
development of the environments used in this book, and for developing the amazing Squeak
environment in the first place. In particular, I would like to thank Nathanael Schérli and
Ned Konz for their help. I offer special thanks to all the developers who helped Smalltalk to
escape from the clouds of dreamland and become a reality. I would also like to thank all the
“Smalltalkers” who made this language and community so exciting. May you continue to
make your dreams come true.

Writing this book has been a long and difficult process, because teaching novices is diffi-
cult. Moreover, I am not an easy person to live with, and as a researcher, I become excited by
too many topics. I want to thank Didier Besset particularly for many fruitful discussions at the
beginning of this project.

I also want to thank my wife, Florence, and my sons Quentin and Thibaut, two small boys
who loved to run noisily around my desk when I was trying to concentrate on my work. Thank
you for accepting a husband and father who was not always present, enthusiastic, and acces-
sible. But soon we will be programming together.

XXV

4916_Ch00_FINAL 5/18/05 3:52 PM Page Xxvi $

4916_Ch00_FINAL 5/18/05 3:52 PM Page xxvii $

Preface

Knowledge is only one part of understanding. Genuine understanding comes
from hands-on experience.
—S. Papert

Goals and Audience

The goal of this book is to explain elementary programming concepts (such as loops, abstraction,
composition, and conditionals) to novices of all ages. I believe that learning by experimenting
and solving problems is central to human knowledge acquisition. Therefore, I have presented
programming concepts through simple problems such as drawing golden rectangles or simulat-
ing animal behavior.

My ultimate goal is to teach you object-oriented programming, because this particular
paradigm provides an excellent metaphor for teaching programming. However, object-
oriented programming requires some more elementary notions of programming and abstrac-
tion. Therefore, I wrote this book to present these basic programming concepts in an elementary
programming environment with the special perspective that this book is the first in a series of
two books. Nevertheless, this book is completely self-contained and does not require you to
read the next one. The second book introduces another small programming environment. It
focuses on intermediate-level topics such as finding a path through a maze and drawing frac-
tals. It also acts as a companion book for readers who want to know more and who want to
adapt the environment of this book to their own needs. Finally, it introduces object-oriented
programming.

The ideal reader I have in mind is an individual who wants to have fun programming.
This person may be a teenager or an adult, a schoolteacher, or somebody teaching program-
ming to children in some other organization. Such an individual does not have to be fluent in
programming in any language.

The material of this book was originally developed for my wife, who is a physics and
mathematics teacher in a French school where the students are between eleven and fifteen
years old. In late 1998, my wife was asked to teach computing science, and she was dismayed
by the lack of appropriate material. She started out teaching HTML, Word, and other topics,
and she remained dissatisfied, since these approaches failed to promote a scientific attitude
toward computing science. Her goal was to teach computer science as a process of attacking
problems and finding solutions.

Xxvii

4916_Ch00_FINAL 5/18/05 3:52 PM Page xxviii $

Xxviii PREFACE

As a computer scientist, I was aware of work on the programming language Logo, and I
particularly liked the idea of experimentation as a basis for learning. I was also aware that the
programming language Smalltalk had been influenced by the ideas of Seymour Papert and
those behind Logo, and that it had originated from research on teaching programming to
children. Moreover, Smalltalk has a simple syntax that mimics natural language. At about that
time, the Squeak environment had arrived at a mature state, and books started to become
available in late 1999. But these were for experienced programmers, so I started and wrote
the present book.

The environments that I use in this book and its companion book are fully functional.
They have gone through several iterations of improvements based on the feedback that I have
received from teachers. A guiding rule in our work has been to modify the Squeak environment
as little as possible, for our goal is for readers to be able to extend the ideas presented in this
book and develop new ones of their own.

Object-Oriented Structure and Vocabulary

The chapters of this book are relatively small, so that each chapter can be turned into a one-
or two-hour lab session. I do not advocate presenting the material directly to children for self-
instruction, but each chapter in fact has all the material for such an approach.

Although object-oriented programming is not developed in this book, I use its vocabu-
lary. That is, we create objects from classes and send them messages. Object behavior is
defined by methods. I made this choice because the metaphor offered by object-oriented pro-
gramming is natural, and children have an intuitive understanding of the idea of objects and
their behavior.

Those who are used to Logo may wonder why our robots do not have “pen up” and “pen
down” methods, but instead “go” and “jump,” where under the former, a robot moves leaving
a trace, while the latter moves a robot forward without leaving a trace. I believe that the go and
jump paradigm is better suited to the ideas of object-oriented programming and encapsula-
tion of data than the traditional pen down and pen up design. An excellent analysis of these
two approaches was made by Didier Besset, who collaborated with me on this project in its
early stages.

Organization

The book is divided into five parts, as described below.

Getting Started. Part 1 shows how to get started with the Squeak environment. It explains
the installation process and how to launch Squeak, and then presents robots and their
behavior. A first simple program that draws some lines is presented.

DOOO

e

4916_Ch00_FINAL 5/18/05 3:52 PM Page xxix $

PREFACE XXix

Elementary Programming Concepts. Part 2 introduces first programming concepts, such
as loops and variables. It shows how messages sent to a robot are resolved.

Bringing Abstraction into Play. Part 3 introduces the necessity of abstraction, that is,
methods or procedures that can be reused by different programs. The most difficult con-
cept introduced is the idea of composing new methods from existing ones to solve more
complex problems. Several nontrivial experiments are proposed, such as drawing golden
rectangles. Techniques and tools for debugging programs are also introduced.

Conditionals. Part 4 introduces the notion of conditionals, conditional loops, and Boolean
expressions, all of which are central to programming. This part also introduces the notion of
references in a two-dimensional space and some other types of robot behavior. Finally,
ways of using robots to simulate the behavior of simple animals are presented.

Other Squeak Worlds. Part 5 presents two entertaining programming environments that
are available in Squeak: the eToy graphical scripting system and the 3D authoring envi-
ronment Alice.

e

4916_Ch00_FINAL 5/18/05 3:52 PM Page XXX $

XXX PREFACE

Why Squeak and Smalitalk?

You may be wondering why among the large number of programming languages available today
I'have chosen Smalltalk. Smalltalk and Squeak have been chosen for the following reasons:

* Smalltalk is a powerful language. You can build extremely complex systems within a
language that is simple and uniform.

* Smalltalk was designed as a teaching language. It was influenced by Logo and LISP, and
Smalltalk in turn heavily influenced languages such as Java and C#. However, those lan-
guages are much too complex for a first exposure to programming. They have lost the
beauty of Smalltalk’s simplicity.

* Smalltalk is dynamically typed, and this makes transparent a number of concerns
related to types and type coercion that are tedious to explain and of little interest to
the novice.

* With Smalltalk you need to learn only key, essential concepts, concepts that are to be
found in all programming languages. Thus with Smalltalk I can focus on explaining the
important concepts without having to deal with difficult or unattractive aspects of
more complex languages.

* Squeak is a powerful multimedia environment, so after reading my books you will be
able to build your own programs in a truly rich context.

* Squeak is available without charge and runs on all of today’s principal computing plat-
forms. And it should be easily portable to the platforms of the future.

¢ Squeak is popular. For example, in Spain, it is used in schools, where it runs on over
80,000 computers.

