
CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 1
CS10 and ESUG 13, Brussels, August 13th - 20th, 2005

I arrived at Brussels and confidently set out to walk from the train station
to my hotel. Fifteen minutes later, I turned around and started to walk back
to the train station. I then set out again, this time walking along a street
pointing 15 degrees further north than the one I picked before. :-)

We were treated to a beer-tasting evening (of 13 distinctive local beers), a
chocolate-tasting evening (generously supplied; we all ate lots and still had
chocolates with every coffee and tea break for the rest of the conference),
a walk round Brussels (“Please arrive on time or it will be a run round
Brussels and it is too hot for that.”), a brewery visit and a banquet.

Style
In the text below, ‘I’ or ‘my’ refers to Niall Ross; speakers are referred to
by name or in the third person. A question asked in or after a talk is
prefaced by ‘Q.’ (I identify the questioner when I could see who they
were). A question not prefaced by ‘Q.’ is a rhetorical question asked by the
speaker (or is just my way of summarising their meaning).

Author’s Disclaimer and Acknowledgements
This report was written by Niall Ross of eXtremeMetaProgrammers Ltd.
(nfr AT bigwig DOT net). It gives my personal view. No view of any other
person or organisation with which I am connected is expressed or implied.

There was much activity in the Camp Smalltalk room, only some of which
I learnt enough about to summarise (with possible errors) below.
Inevitably, my notes treat my project in much more detail than others.

Likewise, the talk descriptions were typed while I was trying to keep up
with and understand what the speakers were saying, so may contain errors
of fact or clarity. I apologise for any inaccuracies, and to any participants
whose names or affiliations I failed to note down. If anyone spots errors or
omissions, email me and corrections may be made. A single programme
track (save on Friday) meant I caught most talks; apologies to those missed.

My thanks to:

• Katerina Barone-Adesi and Felix Madrid for working with me in the
Custom Refactoring Browser project, Reinout Heeck for working with
me in the SUnit project, the organisers and/or university for providing
straightforward network connection, and the student volunteers for
ensuring that everything was present and working when required.

• the speakers whose work gave me something to report, the conference
sponsors (Cincom, Georg Heeg, Instantiations, MetaProg), and the
ESUG organisers (Stephane Ducasse, Noury Bourakadi, Roel Wuyts)

• above all, Roel (again), Maja D’Hondt, the team of local organisers and
students, and BSUG and PROG, for a conference that ran smoothly.

2 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
Summary of Projects and Talks
I begin with ESUG Administration and some Camp Smalltalk 10 project
summaries, followed by the talks, sorted into various categories:

• Web Frameworks

• Applications

• Analysing Smalltalk

• Developing Smalltalk

• Environments and Tools

• Design Discussions

and then the Academic Track:

• Awards Candidates

• Research Talks

I close with Other Discussions and my Conclusions. Talk slides are
reachable from http://www.esug.org.

ESUG Administration
ESUG Programme, Roel Wuyts
Roel explained we would use the same format as in Bled; if you wanted to
here more from a speaker, buttonhole them in the CS room during the
breaks and arrange a demo, etc. As at Kothen, there was:

• a business day

• a parallel-track education day

• an academic research half-day

• technical innovation awards prizes

Roel welcomes feedback.

ESUG Activities, Stephane Ducasse
Stephane thanked the audience for coming: attending this conference is an
easy and, he trusts, rewarding way of sponsoring both ESUG in particular
and Smalltalk in general. The student volunteers help run ESUG but also
get young people aware of Smalltalk. (ESUG pays all except their travel
expenses.) For example, Philipe was a student volunteer two years ago;
now he is a commercial Smalltalk programmer.

We need active local groups. Just do it. Stephane listed the Italian, Swedish
and Netherlands mailing lists. Sweden started with 3 and now have 30. The
French SUG started with 3 and now they have 135 people presenting
Squeak in French, writing books (and translating them), etc. (One such
book is ‘Squeak: Learn Programming with Robots’; it supports teaching
programming to children and is by a certain Stephane Ducasse. :-)

ESUG offers a free week of teaching and free books to any suitable
University; just apply. Stephane gave the list of recipients in 2002-4. After
a break of a year, this programme is now restarting. Tell any university you

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 3
have contacts with who might be interested.

ESUG will consider helping you present at Open-Source conferences (e.g.
RMLL2005, LinuxDays, etc.); contact them and they will evaluate what
you offer and may pay, help or whatever. (They sponsored Marcus when he
presented.) They will also pay if you get Smalltalk articles into magazines
(100 euros).

They are going to set up a Seaside server so people can put up a Seaside
system fast. They plan to advertise the conference in magazines. They will
advertise Smalltalk books. They plan to make the technology award more
exciting - a gadget of some kind maybe. They may sponsor a summer of
code: a student project to build something useful.

10 reasons I hate Smalltalk, Theo D’Hondt, dean of the university
This witty speech (very briefly summarised here) enlivened the banquet of
local delicacies. Theo expressed amazement at the idea of using a language
whose syntax has not changed in decades and that uses a period (a full stop)
to end its sentences. He also dislikes real-time debugging; computer
programmers should not imitate those lazy chemists, engineers and others
who use computers to help them do their jobs instead of demonstrating the
power of the human brain (and the value of job protection).

Smalltalk can’t be a real OO language if it has no nested classes. Instead
Smalltalkers talk about things called blocks - clearly some shoddy means
of covering up the fact that they failed to provide sufficient control-flow
structures. Also everyone knows that modern programming languages
strive to outdo each other in the number of visibility quantifiers they
propose; Smalltalk’s everything-global-or-local approach is just not trying.
Above all, where’s the static type-checker? This is especially important
today - how can you have internet security without a static type-system?

He made several other points but closed on his clincher, “Smalltalkers
visibly have too much fun to be using a real programming language.”

ESUG Business Meeting
The new board was elected; see the website for the list.

ESUG Conference Administration
Roel and Stephane talked through ESUG organising tasks with groups of
possible future local organisers of ESUG conferences in Prague, Spain and
Lugano. (The Spanish group is mostly expatriate or from the new world
and would be glad of contacts from Smalltalkers located in Spain. Info of
local Smalltalkers in the Czech republic or Lugano is also welcome.
Interested groups in other locations should contact the ESUG board.)

This conference was unusually early because Brussels hotel prices triple
when the eurocrats return from their holidays. Generally, ESUG aims to be
end-August/start-September, some months after Smalltalk Solutions (and
Smalltalk Solutions is usually earlier than it was this year).

4 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
You need several local organisers (four is a good idea) because there are
things to be done at various times during the year and any one person may
be on holiday or busy at that point.

The mutual ergonomics of the lecture room and the Camp Smalltalk room
are very important. The CS room must have sufficient tables (suited for
pairing, so e.g. not small round ones) and plugs. Some network connections
and cables (capable of serving almost any position in the room) are also
essential. The CS room for the weekend before the conference need not be
the same as the one during the conference but of course it must be equally
accessible from the accommodation. The CS room during the conference
must be very near the lecture room and where coffee breaks are held. The
ideal is that a large room has both the Camp Smalltalk area and the coffee
area, and the lecture room is next door.

The weekend Camp Smalltalk is self-organising. You must provide the
room and must sign it well by Saturday morning. Having something to
drink in the room is essential: a coffee urn, plenty of water and plenty of
paper cups. Some nibbles are also a good idea. Advice on nearby places for
lunch is also useful (and check which are open on Sunday).

There may be a single day of parallel business and education track talks,
needing two lecture rooms. Otherwise, there is only a single track so only
a single room is needed, capable of addressing in excess of a hundred
people (ESUG has never exceeded 150 in recent years).

Cheap accommodation is essential for the student volunteers and desirable
for the rest. It needs to be close to the venue or travel well worked out.
People usually arrange their own, except for the student volunteers, but
need to be advised on where to stay and probable costs well in advance,
Having a single main location for accommodation promotes interaction.

The student volunteers must be managed by the local organisers. They
must man the conference and CS rooms during breaks (2 x half of break
time). They must provide coffee and tea during the breaks, clean away, etc.
They must get the slides from each presenter promptly after each talk and
put them on the ESUG server.

The social event(s) must support interaction, and preferably also fairly free
choice of whether to leave early or stay late. A walk, visit to a site or boat
trip is good, allowing people to move around, and to talk or be silent. A
coach trip is bad. One or two small evening social events can be added.
Again, these should promote moving around and talking, so buffet meals,
tastings (wine, chocolate, etc.) and suchlike are good.

Sponsors are of two kinds, local and ESUG. The ESUG board is
responsible for ESUG sponsors. Local sponsors need to be found by the
local organisers.

Things to be done very early include choosing the logo and making the
budget projection. A safe budget is one that will break even with an

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 5
acceptable registration fee of 1/40 of the budget projection.

The web site travel information should be done a good few months in
advance so people can start thinking about attending.

Camp Smalltalk 10: Project Summaries
Camp Smalltalk 10 ran for Saturday, Sunday and Monday (a holiday in
Belgium) before the conference, and during the conference breaks,
afternoons and some evenings of the five conference days. There was much
activity in the room, only some of which I caught.

The Custom Refactorings and Rewrite Editor Usability Project
I spent more than half of my CS time on this.

Katerina Barone-Adesi and I paired on creating new refactorings. Our first
was a refactoring to split a cascade at the statement indicated by the
selection point. If the cascade’s receiver was not isLiteral or
isVariable then an ExtractToTemporaryRefactoring had to be added.
We knew to pass the overall refactoring’s model to it but it took a failing
test and a debug to realise that because (unusually) the two refactorings
affected the same method, we also had to pass the parseTree between them.

• Every refactoring has a variant of its standard creation method that
starts model:... and must be used whenever the refactoring is being
used as part of a composite, to initialise every refactoring with the
composite model. (This is so that all changes are assimilated in the
model which is then compiled atomically.)

• When multiple refactorings of the same method are applied in this way,
the successively-rewritten parseTree of the method must also be passed
between the refactorings.

Passing the parse trees was easy in code, because the parseTree is lazily
initialized later than refactoring creation, but was less immediately obvious
to us because there is no protocol for it and because the instVar has not been
pulled up to MethodRefactoring. The various subclasses had their own and
some called it sourceTree. With this mastered, we got it working with the
usual hiccoughs and test rewritings.

I then made an RBCommand and menu item for it. Meanwhile, Katerina
refactored the hierarchy to pull up parseTree and its lazy initializer to
MethodRefactoring. The way John Brant envisioned this kind of operation
being done was first to rename sourceTree in those subclasses that used it,
then pull up the now common instVar, then pull up the relevant method(s).
Katerina, naturally enough, started by pulling up parseTree and then sought
to assimilate sourceTree - whose renaming the framework forbade since
parseTree was now in scope in the superclass.

John’s is the theoretically cleaner approach but what Katerina and I wanted
to do made sense and was a situation that often arises when people reparent
hierarchies or fail to anticipate this situation and do work they do not want
to reverse. We therefore started work on our second refactoring of the
camp: PullUpToExistingVariableRewrite.

6 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
(There are a range of things the framework can do that can be known by the
user to be refactorings in a given context but are not provably so; we call
these ‘rewrites’ as opposed to refactorings and name their classes *Rewrite
instead of *Refactoring. Our intent is not to expose them at top-level in the
RB but to make them available when a RefactoringError means the
refactoring is not provably so but the user may wish to proceed with a
rewrite. It is a choice, and a philosophical debate, whether and when to
allow these. The project is interested in its users’ views; post in c.l.s and/or
the enhancements mailing list on customrefactor.sourceforge.net)

We created it, then ‘Create-Sibling-ed’an abstract superclass for it and
RenameInstanceVariableRefactoring. We rewrote the objecting scope
condition in the latter refactoring to raise a refactoring error with a
parameter block (i.e. something the user could choose to do instead) that
warned them that continuing was not known to be a refactoring. A
PullUpToExistingVariableRefactoring was performed by running the
block. Thus to the user it would seem that they had been allowed to proceed
after a strong warning though in fact the refactoring had been aborted and
a rewrite substituted.

We gave our new refactoring its own precondition warning if any methods
in the assimilated hierarchy already referenced the superclass’ instVar. If
that were so then the risk of its not being a refactoring would be greatly
increased. When it is not so, the operation is a condensed form of the
sequence PushDown target instVar, remove it from non-using classes,
rename rivals in those classes, pull up. These make a provable refactoring
when the superclass’ methods do not use the instVar (or when some do but
no method of any class in the rival sub-hierarchies could call them.)

We coded it all, passed model-layer tests and then tried it in the browser;
nothing happened! We stared at it, walked through a debug and satisfied
ourselves it was running our parameter block. Then we swiped the
refactoring error’s block code, passed it the test values as literals and
evaluated the block in a workspace; it worked. We reverted and ran it from
the browser again; no effect. We breakpointed the actual compilation in the
workspace-case, worked up to a method we’d seen called in the browser
case, stepped forward again, and saw that our refactoring had nil model in
the browser case so the RefactoringManager instance did nothing with it.
We suddenly realised that we were passing the first refactoring’s RBClass
to its successor, not the original Smalltalk class. The second one, already
having an RBClass, never lazily-initialised its model to get one. Changing
the class parameter to class realClass fixed things. When you
compose refactorings this never matters since you pass the model. But we
were not composing refactorings, we were substituting one for another.

(After the Camp, I realized that we actually needed to pull up the parseTree
instvar to a new subclass, ChangeMethodSourceRefactoring, sibling to
ChangeMethodNameRefactoring, and not to MethodRefactoring. This is
in our latest releases.)

Meanwhile, Felix Madrid and I paired to produce a widget that would let

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 7
you select multiple methods and see them all in a single text pane, cutting
and pasting between them but also able to use all the standard refactorings
and features of the single-method code tool. We first reused the rewrite tool
pattern (RewriteMultiMetaCodeTool and RewriteSingleMetaCodeTool)
creating BrowserMultiCodeTool and BrowserSingleCodeTool subclasses
of the BrowserCodeTool. This pattern overrides the basic parsing calls as

parse...
self alternativesDo: [super parse...]

so that the offsets (that map selections to their relative position in a method)
are captured before parsing that method and errors are similarly unoffsetted
again before being inserted at the right point in the overall text.

With this working, I then looked at the alternative solution of embedding
multiple BrowserCodeTool instances within an overall MultiCodeTool that
simply displayed a variable number of other tools. The latter is probably
better in most cases but requires more dialect-specific code. The former is
easier to write in dialect-neutral code and may be easier to use when the
aim is to make one method into two or vice versa, to do a find-and-replace
in several methods at once, etc.

We also looked at ‘extract with holes’: the ability to select text for ‘extract
to self’ or ‘extract to component’ and then select within it those parts that
were not to be extracted. In the model layer, this is ExtractToMethod
composed with a number of ExtractToParameters on the extracted method.
The cascade work on multiple refactorings of the same method had shown
the issues to watch. In the UI, adding a pane to the extract dialog window
showing the text being extracted, and a button to prompt ‘unextraction’ of
selected text to the parameter list, would let the user choose the ‘holes’.
Work continued after the CS; we hope to release it before the next Camp.

SUnit
In between Smalltalk Solutions and ESUG, Michael Lucas-Smith found
problems in my recently-released cross-process test case utility (in
SUnitUtilities in the open repository). He was using it in his WithStyle test
suite (much WithStyle code has multiple processes) and he sent me tests
that opened a window and sent it uiEvent or uiEventNow in a subthread,
all of which hung if run under my utility.

I paired with Reinout and briefly with Chris to resolve this. There were two
issues.

• Firstly, uiEvent and uiEventNow create DeferrableAction events and
these are then added to the event queue and run in a UI thread. If this
already exists, it will not be recognised as a spawned subthread of the
test process. The solution was to wrap DeferrableAction>>block: as
well as Process class>>forBlock:priority: so that any deferred blocks
created in test processes got wrapped with the test handler.

8 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
• This was discovered while investigating but was not really the
problem. Window managers started in formed blocks leave a thread
that is not then cleaned out after the window closes. Only when kicked
by the next window event does it die. If however the test was launched
in the main window thread (the usual case), then the UIProcess window
manager waits for it to complete before kicking anyone. The result is
deadlock: my main test thread waits for this thread to die and the UI
process waits for my main test thread to complete before killing it.

Reinout and I refactored the code to have the key test thread processing
done separately from the (now multiple) wrappers and to hold references
to test processes instead of renaming them. We also refactored the shared
queue of semaphores to be a single ProcrastinatingSemaphore (written in
Smalltalk, using valueUnpreemptively but it should be easy to clone
parts of Semaphore’s signal and wait primitives to implement its
signal and unsignal methods as thread-safe primitives). Finally we
looked at giving the procrastination loop some kind of loop to let the
window manager (and anything like it) kill threads. (Reinout persuaded me
to rename procrastinate to unsignal in the semaphore; he pointed
out that the former may be a word fairly recognisable to non-native English
speakers but the latter conveys more quickly the method’s intent.)

Other Projects
Avi worked on an OmniBase-on-non-Windows bug with Mike Roberts and
others. If you write the optimised b-tree structure to OmniBase 500 times
concurrently, it works on windows but Mac has problems. It emerged that
it was a file locking issue. OmniBase was developed on Dolphin
(windows-specific) and ported to the other dialects, adding some file-
access methods to replicate Dolphin helper methods. On Unix, the file lock
is requested but no check is made to verify that it was obtained; the code
just carries on blithely assuming that it was. This seems to be the cause of
the problem. There was also an issue of the computed file size under Unix,
whether it might be changed by something else and need recomputing.

Michael Kinberg has built an improved file chooser in Squeak. He will use
this with his application which is a children’s game to define characters,
have them interact and show the results in comic-strip style, e.g. moving an
ice cream to a sad face turns it into a happy face.

John McIntosh and David Shaeffer paired to improve Squeak’s poor
handling of connection requests. David wants to serve 100 connection
requests per second and had observed problems. They found two
infelicities in the code:

• The code was putting the last bit in the connection and closing it,
trusting the OS to flush before closing. In fact, the OS might wait only
a short time before closing and preempt the flush. Thus problems as the
number of connections grew were to be expected. They fixed this and
most of David’s tests to expose the problem ran green.

• The access loop ran at too high a priority, so the code was accepting
new requests more readily than handling the ones it had. One test
showed it taking requests till it hit the system file-handle limit, then

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 9
processing 200 and accepting more again, and so on (c.f. the classic
‘priorite a droit’ problem of traffic coming onto a roundabout having
priority over traffic on it, so of course the cycle blocks under load).

Much more was going on, both during the weekend and in breaks in the
conference. This year we had a large break room that had tables for Camp
Smalltalk at one end and the coffee, tea and cold drinks tables at the other.
Thus it was very easy to demo or pair-programme during breaks and in the
evening. (The drinks table also provided a kettle, so I drank passable tea for
the first time ever at a conference outside the UK! :-)

Web Frameworks
WithStyle: opening a new frontier on the Smalltalk user interface,
Rowan Bunning, Software WithStyle
Software WithStyle was founded in 2003 and is located in Canberra. It has
been involved in a range of things known to the community: NetResources
and NetResources WebDAV, LibTidy and LibXSLT, BottomFeeder
widgets. Rowan Bunning fills in the gaps that Michael and Steve, the core
developers don’t do.

(Rowan also works for Wizard Information Services. They have a web
framework product called WebCanvas, very much Seaside-inspired but in
VisualAge, so it has not got continuations but it does have callbacks and all
the rest, plus a good test framework.)

Rowan has been developing web sites for the last 8 years. Everyone was
interested in AJAX in the last talk. It is easy to see why it was popular; it
makes your web apps look better and the web browsers haven’t changed
much. But is this really the place we want to be; getting exited about ways
of working round the dullness of the browsers.

WithStyle is an XML UI with CSS rendering 100% in Smalltalk. It aims to
have the abilities of the Smalltalk GUI and of a web browser. WithStyle lets
end-users customise the user interface. XML has a lot of mainstream
mindshare (and with wider use of XForms will have yet more; W3C know
that HTML forms are poor so offer a standard for next-generation forms).

Many owners of client-server applications want them to become web apps
which means a huge step backwards in usability and flexibility today. It is
also hard on the developer. Rich internet application is jargon for making
web applications as good for the developer and user as client-server.

WithStyle targets business applications rather than public sites. It can be
deployed embedded in your desktop app (c.f. BottomFeeder), as a thin
client, or as an intranet or extranet application. That it has the usual
Smalltalk openness (all code visible) makes it very flexible to integrate.

At Smalltalk Solutions 2004 they had 600 tests and 35,000 lines of code
versus Mozilla’s 16 million LoC. Today they have more tests and less code,
~2150 tests and 33,500 LoC (good!). They also have CSS3, scripting
support, and several commercial applications. WithStyle uses LibTidy and

10 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
their own code to tidy the HTML and XML they are given.

He opened an image and inspected a WithStyle.SpecializationDocument.
He then browsed it, showing a Zen Garden document. Yes, WithStyle does
have a web browser but no they are not competing with Firefox; their aim
is not to build a web browser.

Rowan walked round the slideshow app (which he’d been using since the
start of the talk) that Michael coded during StS2004. Then he showed the
tool set architecture, network management (download manager), etc.

XML handling: LibTidy and wrappers around it do their best to tidy the
(X)HTML it is given. They also use XML events to hook in Smalltalk
scripts (v. similar to Java script but XML events are more generic).

Layout handling: their CSS parser is much better, much more robust to
small CSS errors on the sites they browse. The Pollock GUI framework is
fully integrated underneath this, giving potential for very interesting hybrid
layouts. They are adding rendering services for GIFs, JPEGs (mostly there
on Windows, not yet all on the Mac he’s demoing on here).

Editing tools: these let you backmap so when what you see is massively
XSLT-transformed from what was originally served you can edit and get
your change backmapped to the original. One of the backmappings
supported of course is to Smalltalk, so you can edit any Smalltalk object as
XML. They allow structure editing and are enhancing to support data types
in schemas, which can be important to enforce in XForms. Text editing is
trickier than it at first appears and must work nicely with the underlying
structures. Spell checking has been added on Windows.

Development tools: you get an example browser and diagnostics for links
and for layouts. The RB now has a WithStyle tab.

He listed application areas (quotes are from customers):

• Embedded Browser: an example is BottomFeeder. “A working beta
was ready two days after the migration started” (and had to deal with
all the buggy XML/HTML that there is out on the web, especially in
hacky buggy free blog apps). Rowan demoed.

• Embedded editor: an example is BottomLine. He demoed editing the
post he’d just shown in BottomFeeder, popping up hierarchic context
sensitive menus (operations you can do on word selected, on paragraph
selected, etc.). On Windows, the hierarchic context being considered is
outlined by a dotted line (not on Mac yet). “The new editor not only
simplified the posting tool; it simplified the back-end server.”

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 11
• Web app client: an example is Seaside with rich UI. They can script on
the client side in Smalltalk, not in Javascript, do validation on the
client-side etc. WithStyle client with Seaside server is a very natural
and powerful match. You could also extend the interface on the client
dynamically under the server’s control. You can use the Pollock form
widgets, etc. He demoed using CSS styles to turn tags (name, text input
field, text editing field) into Pollock widgets. These widgets are
rendered by WithStyle like everything else they handle so flow around
as you resize the page just as you expect.

• WYSIWYG XML editing: an example is EzyXML, the editor they
have developed. They have delivered this (via Wizard) to 6 Australian
government sites and they have heard no bug reports, just praise, since
they started delivering in 2004 (in contrast to the expensive large-
vendor solution those site used previously). Currently they support
XHTML (all 3 variants), Simplified DocBook, Resum XML and
Scrum Backlogs. They will add DocBook and HR-XML.

— Cross-platform dialogs for business users

— Beta version of it is downloadable.

They are talking to several possible customers for WYSIWYG XML-
editing. One is an HR department, needing to handle forms, resumes, etc.

He demoed. They’ve re-labelled XML names to give end-users something
they can understand (Division, not <div>, paragraph, not <p>, etc.) which
many other XML editors still don’t do. Backmapping lets you edit the
original, regardless of the wrappered look-and-feel and the XSLT changes.
He edited, changing look and feel between operations.

They are working on hardening it so end-users can configure it without
seeing interesting exceptions. They integrated WebDAV so you don’t edit
and have to go somewhere completely different to edit the look-and-feel to
match. Various files hold the vocabulary definitions, the schema, the menu
filters (can have their organisation differ from the schema default).

Their roadmap:

• new CSS engine

• new styled XML objects to minimise recalculation

• drag and drop

• before: and after: is CSS’ way of saying ‘put this here’. This will
be easier than using XSLT to do that kind of layout.

• zooming, paging, scrollbars,

• they want to use Pollock embedded widgets for HTML forms. XML
translation of Pollock widgets is the starting point but they also want to
map the names of elements so they can apply CSS to them in detail.

Rowan opened a WithStyle browser on a Smalltalk string, edited and
showed that the string had changed.

12 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
Q. (Reinout) Licences? Announcement soon on licence details. There will
be a difference depending on kind of app (very simple like just a help
window as against very complex) and whether internal or external usage.

Q. (Christian) Speed? WithStyle 3 on the Windows VisualWorks VM has
great performance. WithStyle 4 will have yet better performance which
will also look fast on the Mac’s slower VM. [It looked OK to me.]

SmallWiki and Magritte, Lucas Renglii, netstyle.ch (www.netstyle.ch)
Magritte is the meta-model of SmallWiki2, which is the re-implementation
in Seaside of SmallWiki. Why SmallWiki? Well, there are some 200 wiki
implementations and they all use s///g, they all hold huge meaningless
strings and they all duplicate the parser everywhere. He has SmaCC parse
the wiki into meaningful objects.

He compared SmallWiki2 to WikiPedia (written in php). The WikiPedia
parser is 117,000 Lines of Code; SmallWiki’s is 555 LoC. WikiPedia’s
unsophisticated query engine is 20,970 LoC; SmallWiki’s is 195 and gives
a better search engine. (To be fair, he noted that the WikiPedia LoC
includes comment lines and 100 lines of the 3-page licence, etc., but this
does not change the order-of-magnitude comparison.)

He showed some SmallWiki sites, including the ESUG site. He showed
editing, creating a link, getting a form to say where to link to, etc., embed
or link (+ or *), edit page, upload file (inline or link), with nested lists
embedded as subpages in the main page.

SmallWiki is implemented in Seaside so he can put any Seaside component
or application in his wiki. He added the sushi store to the RHS pane of his
page. The Wiki editing app is itself a Wiki so can be used and changed in
the same way; he added ‘hello world’ to all the editing pages.

SmallWiki is neither small in what it can do nor just a wiki. It is a content
management application and can be used to build applications. There are a
range of widgets provided, some at Stephane’s request: a detailed search, a
calendar, a photo-gallery, a refactoring engine for wiki pages, a plugin to
import other wikis, etc. View-model separation has been done rigorously
so you can plug in any view to your components. This also allowed better
testing. SmallWiki has 170 tests, Magritte has 1000 tests.

SmallWiki 1 won first prize at last year’s innovation awards. It was
implemented in VW and has been ported to .Net by John Brant, to Squeak
(latest version released yesterday) and other dialects. There are several
users, some major, some just using the parser. The production version of
SmallWiki 2 should be released near the end of this year.

Seaside is now the default view of SmallWiki2. The new storage frame-
work is a changelog-based framework where you do snapshots from time
to time. He captures changes so can go back to an old image and replay.

The basic architecture starts with root WikiObject with subclasses

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 13
DecoratedObject and Decoration. DecoratedObject’s subclass Structure
has only Children (subclasses Page and File) as decorations (the other
Decoration subclass is Security). This part of the framework is stable. The
Kernel and Views are ongoing (those things never end) and he is still
working on Security.

Q. (comment) We’ve just finished the first version of an external storage
for SmallWiki and will release the code in 2 weeks (demo version here)
because we’ve been nervous of the image snapshot storage.

Magritte is SmallWiki2’s meta-modelling framework. Lucas soon realised
that it can be used in other Seaside projects and indeed beyond. Magritte
lets you build views, reports and validated editors. An edit command in
SmallWiki2 (Command subclass: EditPageCommand) has description a
TextDescription, part of the Description hierarchy. Send asComponent to
an EditPageCommand to build a Seaside component, a simple form, or
asMorph to get a Squeak view of it. He showed this in Squeak (new work,
updating still needs you to click it - and the usual demo hiccough - he had
edited his pages from two different locations during the demo so got DNU).

EditpageCommand class>>descriptionTitle
^(StringDescription selector: #title label: ‘Title’

priority: 100)
beRequired;
yourself

This is Magritte and lets you add a new field to all the above views, the
morphic, the Seaside, etc. He can qualify them as #accessor, #label,
#comment, #default, #readonly, #required, etc. He has a deep Description
hierarchy. Magritte lets you build a range of views and editors from a single
description (say once, get everywhere) and then attach your own preferred
view to it.

He then demoed. The UI for Magritte descriptions is defined in Magritte.
He edited a description using Magritte, adding a comment text field and a
colour field to the name description. He opened the new form and could not
instantly save because the name field is required. He added a name, set a
colour and saved.

He then showed how to extend SmallWiki2’s commands. He wants to let
people tag edits as ‘minor change’ i.e. not put in the generated RSS feeds.
He added a new field ‘Minor change’ that is a boolean description with a
large priority number, so it appears at the end, and #auto setting so he gets
the accessors, etc., automatically. It generates the methods and adds the UI
element to the page-editing form. In the Squeak OmniBrowser morphic
form he has the same new field. He can now tie it up to the RSS behaviour.

Don’t let php, python, .Net and Java win the race. Join, test, help.

Q. (Niall) Relationship to MEWA? It’s a new implementation. MEWA did
not describe itself and was not storable.

14 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
Q. (Niall) Am I right in thinking that your Container class duplicates the
Collection class for the usual meta-programming reasons? Yes. (Rest of
discussion is in my Design Discussions issue below.)

Q. When in VW? By all means help port it. It’s just a question of who
works on it; at the moment more Squeakers are in the project so it advances
in Squeak. As SmallWiki1 is in VW, the port should be easy. Lucas loaded
Magritte in VW and out-of-box 80-90% of the tests ran (not the Morphic
stuff of course). From his SmallWiki1 experience he can help whoever
ports SmallWiki2. If you want it in VW, contact him and offer to port.

Advanced Seaside I, Lucas Renglii, netstyle.ch (www.netstyle.ch)
Lucas is a student at Berne but also works at netStyle building Seaside apps
for customers. He showed a picture of him and Adriaan at ESUG 2002 in
Douai, when it all started. Avi having recently done the first Seaside, he
wrote an app on version 0.9. By ESUG 2003 in Bled, they’d written a huge
insurance app for a client in Seaside and presented on it. At ESUG 2004 in
Kothen, Avi was there (and he was at Camp Smalltalk this year but had to
go back to Canada yesterday).

Lucas has a tutorial on the web and there are several others. The slides are
all on www.lucas-regglii.ch/.seaside/advanced. This tutorial assumes you
know the basics. Lucas invited people to ask questions during the talk. His
slides give references at the end of each section.

Topics:

• backtracking: The client goes from page to page and then back to a
page and then from that to a new page. What should the server do,
given that the browser takes the back-tracked page from the cache so
the server receives no new request.

• Ajax

• the Presenter hierarchy

• REST URLs

• The Call/Answer continuation framework: he will show what lies
behind it, how does it work.

• Customising Session, Error handlers, Renderers

• Professional Apache Serving with Seaside

• He also recommends David Shaeffer’s testing framework (subject of
the next talk) and his talk on SmallWiki2 which uses Seaside.

He then had the audience vote on which to present now, which on Saturday.

Seaside supports Ajax live updates. Google uses it in gmail, etc., doing all
kinds of Javascript tricks to avoid updating the whole page, just the part
that needs it. Seaside supports this.

WAPresenter subclasses WADecorator, which decorates WAComponent
which has children other WAComponents, some of which are of subclass

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 15
WATask.

Seaside URLs are not REST compatible. The session key and continuation
key are embedded in the URL e.g. ...seaside/counter/_s=TVSOVzhb... so
it cannot be bookmarked. However Seaside provides means to make the
URLs REST-compatible., You must write additional code and Lucas will
show how it works.

AJAX (Active Java something :-): HTTP (1989) and HTML (1992) are
very old but customers want UIs that feel like client apps. One solution is
to use Javascript to just update a part of the page in response to a user
request. This feels much faster to the user since they do not see a whole
page reload. AJAX is used in Google gmail, google maps, a wiki, etc.

If you use AJAX with Seaside, you don’t have to know any Javascript
(unlike with other frameworks). Seaside is server-based so uses no
Javascript. It includes a small Javascript library into the resulting HTML.
The Smalltalk renders your controls with all the rest.

My Link...
<div id=”unique”>foo</div>

Javascript sends request to Seaside, via the unique div. Javascript parses the
response and puts it in. You put live update in your Seaside app with the
obvious helper methods:

html
anchorWithAction: blockEvaluatedIfJavaScriptDisabled
liveAction: blockIfJavaScriptEnabled
text: ...

For example:

self renderTimeOn: html “whole html page”
html
anchorWithAction: [...]
liveAction: [:renderer |
self renderTimeOn: renderer]

text: ...

One common very-hard-to-find mistake is to pass the old rendered to the
live update block.

self renderTimeOn: html “whole html page”
html
anchorWithAction: [...]
liveAction: [:renderer |
self renderTimeOn: html “WRONG”]

text: ...

He demoed this with and without reload of full page.

html
textWithCallback: [:value |...]
liveAction: [:value :renderer |
...]

...
The current framework just supports updating one simple div. It would be

16 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
easy to make it support updating multiple divs each with its own unique id.

scrollBarWithHeight: [:value |...]
size: self numberOfItems
liveAction: [:value :renderer |
self renderValue: value on: renderer]

...
updates based on where you are/where you select in scroll bar. You can also
update automatically:

html
refreshDivNamed: ...
with: [:value :renderer | ...]
every: self duration

Update time is a constant in Javascript (200 millisecs) but can be changed.

Lucas is no fan of javascript but finds this an excellent way of improving
his commercial apps UIs. More reading: ajax.pattern.org, plus Avi showed
some patterns on his blog, plus look at exercise 24 in the web tutorial.

Q. example of using the javascript-disabled block? Lucas added a

self inform: ‘Sorry, javascript not supported’

to a test of Avi, switched off javascript in his browser and showed the
effect. In real commercial apps you have to store the value you want to
update in a variable and pass it to the code that will do a whole-page update.
(Or you can choose not to use Seaside and find yourself, like Google,
building effectively two web applications.)

REST: the idea of Representational State Transfer is that every URL is a
fixed resource that can be used with GET, PUT, POST, etc. independent of
the client and the server and at any later time. Seaside embeds the session
key and the continuation key in the URL so it is not REST-compatible.
Suppose you want it to be. Every Seaside component can update the URL
by adding new stuff to it. updateURL: lets you add path elements (i.e.
subdirectories), parameters and/or fragments:

aURL
addParameter: ‘language’ value: ‘en’;
addToPath: ‘subdir/...’;
addFragment: ...

N.B. the default behaviour is to reuse the session and continuation keys.
Only if they have expired does the REST-behaviour kick in trying to set up
the model from the parameters.

You create a subclass of WARenderLoopMain and override start: to add
whatever you need. (New framework posted yesterday so it may be easier
now than in his example.)

Lucas subclassed the counter application. He set up count 3, bookmarked
it and revisited the bookmark while the session was still valid (no problem)
and after flushing the session (usual demo hiccough, “how do I do that?”;
Ian Prince and David helped out) whereupon he got ‘Page Expired’ instead

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 17
of ‘Page Not Found’. He had implemented an override of updateURL: on
his subclass to handle the bookmarked URL.

Q. If the model is very complex to store? Yes, you have to think about that.
Maybe you could have an id. But usually you just want the expired
bookmark to take the user to some simple start point in your app.

See exercise 41-42 in his tutorial and Avi’s blog posts (URLs on slides).

Advanced Seaside II, Lucas Renglii, netstyle.ch (www.netstyle.ch)
Presenters: how to nest components and decorate components.
WAPresenter subclass WADecoration decorates WAComponent (with
children other components), subclass WATask. Whenever you want to
build a part of a page you subclass Component. The Task defines flow of
pages by overwriting go. next returns another component.

Components are nested by the composite pattern and displayed using
WAHtmlRendered>>render: You also have to initialize your children, e.g.

SomeComponent>>initialize
super initialize.
myCounter: WACounter new.

However you may often do it lazily as you may not know your model at the
right time. Seaside must know for every component, what its children are,
so children must return a collection of all the components that it might
display, so at a given moment children may return more components
than are actually being displayed at a time. It needs to know this before
rendering happens.

If you fail to specify children correctly you will eventually see a walkback
‘components not found’ when processing callbacks. Children render
themselves via

SomeComponent>>renderContentOn: html

and are rendered by others via e.g.

html heading; render: myCounter

noting that you must always use render: not renderContentOn:,
when rendering children in their owners.

Always register components for backtracking (see below) i.e. if you do

SomeComponent>>reset
myCounter := WACounter new.

instead of just resetting the counter to zero, you must re-register your new
child component.

He showed a children method that lazily initialized four store components
rendered one under another. This may not impress you but it wows Java
and Struts programmers. He can buy things in the various stores and it all
works, with no need to change anything within each store component.

18 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
Decorations can change the behaviour or the look of the decorated
component; some decorations change both.

• Look: WAMessageDecoration just renders a title above a component.
WAFormDecoration renders an HTML form tag around a component
with buttons (OK, Cancel) below that send messages to the component.
WAWindowDecoration gives you a border and a close button for a
component.

• Behaviour: WABasicAuthentication protects your component with a
basic password check. Lucas wrote WASessionProtector because
sessions can be hijacked in Seaside if you know how. When protected
this way, it verifies the request came from the same machine.

(Q. We use net-oop pool, so if I leave my session for 15 minutes I would
probably get a different net-oop to get out, preventing hijacking.)

WAValidationDecoration checks the answer arguments and renders
error messages. WADelegation does call:, WAAnswerHandler does
answer:, WATransaction does isolate: (these used to be hacked
into basic Seaside; now they are done more elegantly as decorations).

You can do your own decoration by overriding renderContentOn: to
emit XHTML around the decorated component. Call renderOwnerOn:
where you want owners to provide their content. Example:

AlignDecoration>>initialize
super
self be Centered.

...
PerformanceDecoration>>processCallBackStream: aStream
“rare example of overriding processCallBackStream:”
| timing continuation |
continuation := self session escapeContinuation.
self session escapeContinuation:
[:response | self logRequest ...].

Q. Adding decorations - need to handle as children? No, they are not
children of the component. Decorate child - need to do anything? No, that
is chain of responsibility pattern, not composite pattern.

To Customise sessions, rendering, error-handling, Seaside into Apache,
etc., you create a subclass of WASession and register it in the configuration
interface. He demoed calling up the config interface on the web; you just
go to the session class field and put in your class.

Q. Several components with different sessions? No; you will not need this.
PHP programmers love session classes but in Seaside your components are
more powerful and do not need them. It is e.g. the current user or the
database connection that you want to hold because all components, not any
single one, want to use the same connection or be for the same user.

You clean up (e.g. to close your database connection) by overriding
unregistered (be aware, it will be called when the GC collects it, so not
at some defined point).

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 19
WARequestHandler has subclasses WAEntryPoint and WAErrorHandler.
When starting a new session, requests comes to the dispatcher which
chooses the right application which starts the whole render loop of the
Seaside session. You can easily customise the error handler e.g. to let your
customers see not the stack trace but some more useful dialog to continue
the session or to backtrack the state or to send an email to the developer
with stack-trace and debug link (useful if your developer is fast enough to
remote-connect before the session times out; maybe in future Seaside will
have various time outs for various conditions, so will wait longer for the
developer to connect :-).

Use class extensions to add new tags or repeating layout constructs to
WAHtmlRendered. Alternatively, you can override renderedClass in
your components (subclasses of WAHtmlRendered). Or you can avoid
further growth of WAHtmlRenderer (187 method and growing) by using
WARender-Canvas. This returns a brush which you configure by sending
messages to it. This new framework looks similar to the old. Old examples:

html
anchorWithAction: [self click]
do: ‘link’

html
anchorWithAction: [self click]
liveAction: ...
do: ‘link’

html
anchorWithAction: [self click]
text: ‘link’
submitFormNamed:...

versus examples of the new approach:

html anchor
callback: [self click];
do: ‘link’

html anchor
callback: [self click];
liveCallback: [:r | self live: r];
do: ‘link’

html anchor
callback: [self click];
submitFormNamed: ‘formid’;
do: ‘link’

Q. Why call it brush; it looks like an anchor? It is an instance of the class
WAAnchorBrush. The name brush came from someone else (from another
web framework’s term, Lucas thought).

The result is you don’t have more and more methods, you just combine
options. You get your brush and send it whatever combinations of
messages you want.

Apache: you may want virtual hosting, security and SSL (which you can

20 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
do in VW but Squeak has no library for it yet), to serve huge static files
(gifs, etc.). You my also want to hide huge long access paths and you may
want to map Seaside applications into some existing directory tree. These
are all reasons for using Apache.

Apache handles incoming (including SSL) and the file system, and it then
talks to the Smalltalk, proxying its server to the outside world. He showed
an example configuration file:

<VirtualHost myapp.server.com>
ServerAdmin myEmail@myLocation.somewhere.ch
DocumentBook /var...

RewriteEngine On
RewriteCond %(REQUEST_URL
...

Q. You use the rewrite rule rather than the proxy path rule? Yes; he finds it
works better. Some things are not possible in proxy-path.

Call and Answer: noone would admit to not knowing what a continuation
was :-). The issue is that one page means one script to run (e.g. in PHP
request = start PHP, do processing, generate page, return, quit program; this
happens over and over again). In Seaside call: transfers control to a
component and answer: returns control to original so A can call B which
can then answer back to A. In your code this looks just like a program.

Why do other frameworks not give this simple paradigm? A continuation
is an Escaper and a Context. In Smalltalk, continuations use no primitives,
it’s just normal Smalltalk.

Continuation class>>currentDo: aBlock
| result continuation |
result := Continuation currentDo:
[:cc |
continuation := cc.
false].

result ifFalse:
[continuation value: true]

self assert: result.

So who can explain this code? (Hey, you all said you all knew what a
continuation was. :-)

Continuations are used for several things in Scheme and elsewhere, and are
good for web control flow. He showed the scheme 8-line form:

send-suspend: page-builder
return continuation: [:cc |
co-url := create unique url.
register
...

Continuation takes a block, captures the state of the application, evaluates
the block immediately and returns the continuation. Later, if you evaluate
the continuation, you get back to where you were, even if the process has

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 21
terminated in the meantime.

WAComponent>>call: aComponent
^Continuation currentDo: [...
... show: ... onAnswer: ...

show: aComponent onAnswer: aContinuation
“just adds as a decoration and on answer removes”

delegation :=

Code from top to bottom is not answered from top to bottom. At first it just
adds the delegation showing the new component which does what it likes
till it receives an answer whereupon it evaluates the block and removes the
decoration inside the continuation which returns the answer.

The bottom line: you don’t have to care about this, just use it.

Q. Need to know about it when debugging? Yes, and also if you step into a
call the debugger locks; you must go to the browser and do something.

Seaside Testing Framework, David Shaeffer, Department of
Mathematics and Computer Science, Westminster College
[See my Smalltalk Solutions 2005 report for an earlier write-up of this talk.
The text below is brief on things already covered in that version.]

They use Smalltalk a lot in Westminster and there is a course on Seaside.
David needed a testing framework for the students to use. David is also a
consultant and needed it for his work.

The tests run on the same server as the component being rendered so you
get detailed access to its state. In standard web pages it’s easier to ask about
the contents of the web page so people often do but it’s not always the most
useful thing to test.

You also get the Smalltalk debugger. He has a web test runner. Thanks to
Michel Bany, this is all in VW as well as in Squeak.

He started with a simple single component example.

self newApplicationWithRootClass: SCTestComponent1.

Every seaside testcase must start by creating an entry point

self establishSession.

Start the session and keep track of the most recent response.

self assert: self lastResponse ...

Now we can test what Seaside rendered.

He tags everything in components he wants to test.

self cssId: ‘first’
self anchorWithAction: ...

22 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
Now we can test it.

sef followAnchor: (self lastResponse ...
self assert: self lastResponse ...

The response is parsed to an XML.DOM tree and this is then turned into an
SCSeasideResponse. You often search for things like anchors. He has
naming conventions anchorWithId: (uses CSS id), anchorWithLabel:,

He showed his webtest runner. He adds a new halo icon to components
which runs the unit test on a fresh instance of that component’s class (not
on the instance on which you clicked the halo). The test runner keeps the
history so you can see the last thing you got back from the server. You can
then work back in the history using the left arrow and the history is locked
but you can interact with it, e.g. click the OK button again, while the
session is still valid (rerun test, lose this and the old history).

He showed a more complex component and its test, which invoked a
component with a form, got the form, submitted it and checked it
responded correctly.

form := self lastResponse forms first.
...
self submitForm: ...
self lastResponse ...

David finds that testing the state of the component is less brittle than testing
exactly what has been displayed. He finds you often want to test that what
was answered was what you expected. And he wants hooks to callback to
components.

State: component answers the component that satisfied the last request
(because Seaside has backtracking). He showed that he added an accessor
for counter to get its state in his tests.

self followAnchor:
(self lastResponse anchorWithLabel: ‘++’).

self followAnchor:
(self lastResponse anchorWithLabel: ‘++’).

self assert: self component count = 2.

Detecting Answers: he showed a component that was a YesOrNoDialog
that answers a boolean. He set up a test to confirm this:

...
self
submitForm: form
pressingButton: (form buttonWithValue: ‘Yes’).

self assert: self answer.

It would error if it didn’t answer, and in this case happens to answer true.

Callbacks: he demoed the WAMiniCalendar. To actually use this you
would create an instance and give it select: and canSelect: blocks.
But his test framework asks Seaside to create this component: he’s not

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 23
doing it. So he provides an initialisation block:

self
newApplicationWithRootClass: WAMiniCalendar
initializeWith:
[:calendar |
calendar
canSelectBlock: [:date | true];
selectBlock: [:date | selected = true]].

...

You can also get the session. There are configuration hooks. You have the
live history. How do you test the appearance? Well, two different browsers
will have two different appearances. Using markForInspection, he can
mark tests to keep a record of what the rendered page looks like (i.e. the
actual HTML) in a given browser and he (actually, his wife; she has a better
eye for this) single steps through to see there are no differences.

He has a Seaside tutorial at http://www.cdshaeffer.com\david\Seaside.

What he would like to fix: visual appearance, as noted, and live updates.
When he spoke at Smalltalk Solutions, he had no answer but now he has at
least a demo of a Selenium driver he has written for Squeak. Selenium runs
in the browser and can invoke Javascript so he now needs to merge these;
at the moment, his Selenium tests look very different and are usually
distinct test classes because Selenium provides very few accesses to things
to test - “Is this on this page”, is about its level.

SmallHttpUnit is a VW thing that runs outside the server and has an
excellent API (that he will steal sometime).

HttpUnit is a outside-server framework written in Java. (There is also
Struts, etc., for such as want them.)

He then demoed some simple tests in Selenium (from ThoughtWorks,
selenium.thoughtworks.com). It uses an awkward interaction mechanism
and he sometimes has to have tests wait on semaphores, etc., see his
example code. He hopes to use this to test live update.

Q. Can you use this to create scripts and watch the test run. He has the XML
doc for the page in Squeak but not a web browser at present.

Q. Maybe do string compare and use WithStyle to display in browser?
Usually it is browser-specific (e.g. OK in Mozilla but not in IE) plus he’s
unsure he could tell when to save (maybe do string compare until value).

He has overwritten the Seaside examples he tests to be much more tagged;
his overwrites of Seaside code make no other changes.

Applications
Rule-driven Workflow Enactment, Adriaan van Os of Soops and Tim
Verwaart of LEI
See my report of the talk in Kothen last year for the background to this

24 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
system. Last year, they presented the Artis system. This year they want to
present how they compare the actual database data to the business
workflow rules to see what they must do.

They have 60 employees in regional offices collecting data on farming in
the Netherlands and putting it into a central database. Some 10 to 20
researchers access the database and extract data profiles for themselves and
for others. These customers generate questions which defines the data
need.

The data need is first represented as data model (standard UML-ish model
diagramming). Adriaan took over here (at every demo stage, Adriaan and
Tim swapped roles, customer to implementor) and created a model
(‘Farming at ESUG’) which modelled assets, who held them and who paid
for them. (This is a typical, albeit rather simple, model; others might look
at usage of chemicals in farming, crop implants and yields, etc. and most
would be considerably larger.)

The model alone is not sufficient to capture the data need. They may not
care about assets worth less than £10. They may only care about hardware
assets. They may only care about purchases at certain times and they
certainly care about the timeliness of the data. Thus they have relevance,
integrity and actuality rules for each attribute.

Adriaan created the rules showing the UI and then inspecting the resulting
structure. The rules held blocks and he extracted the source. The aspect that
a rule applies to becomes an argument to the block. They use a special
operator that can handle nils on both sides, since the data may not be there.

By attaching rules to the data structure model in this way, they define the
data need very precisely and so can discover any violations, thence the
person responsible, and so discover what they should do to remedy the
data. A rule violation gets added to the workload tasks for the responsible
employee (can be a shock to that employee but then they get on with fixing
the issue). If the value is not current, or it is current but does not satisfy the
integrity constraint, they must pursue the correct value.

Adriaan added constraints to the model. He added prices of tractors and
noted they would change from year to year. You can export the resulting
table, which asks for a value for each year, to excel, html, or whatever and
work on it there.

Tim explained that this is then entered into the workload of the employee.
The database also has a set of procedures and notes their applicability to
the various rules. Thus a violation can be mapped to an applicable
procedure and the system then simply enters the first task of the procedure
into the employee’s to-do list. Adriaan demoed building a prodedure called
visit farm, within which some account analysis is done. The rule says that
if the farm has assets satisfying the rule then the book values should be
recorded. He added an example asset to the example farm and saw some
rules violations; the tractor has an undepreciated value, etc. Adriaan fixed

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 25
some violations.

They find it straightforward to create workflow by running business rules
over the database. They have used this for 5 years and it has let them reduce
their staff count; fewer people (60, and 4 defining the models and rules in
the central office) can do more work. The temporal data model is essential.
You also have to model responsibilities of people and applicability of
procedures.

Q. Can you track outstanding actions for given people and offices? Yes,
there are statistics of the programme of work of employees.

Q. Your query language; is it a standard? No, it is completely invented by
us. We train new users in it. It’s just like learning a simple programming
language.

Q. How data-driven is the model? Wholly; there is no need to change the
Smalltalk to change the model. It is implemented in our own meta-
language (implemented in Smalltalk) so only deep semantic changes need
Smalltalk changes. The model is wholly temporal but omitting the time
period would it a non-temporal model.

Q. Rule to model mapping? You can use different rules for the same thing
and vice versa. Rule assignments are temporal too; this rule for this year,
next year use that rule.

Q. Reasoning and forecasting workflow? No, it is purely reactive to rule
violations. (You could of course use past data for forecasting. They did not
want to reimplement the various tools that do that; you can extract the data
to those tools if you want.)

Robots, Serge Stinckwitch
There is an annual robot contest in France. Contestants want to run on
Linux, not just Windows and to have subtle control. MEC (Module
Electronique de Command) is a very easy-to-use module to communicate
between the computer and the module. Each controls one group of sensor
so several parallel modules control the overall robot. SuperMEC is an
extension of it. I2C is the protocol it uses.

Squeak utilities have been written to support this module: drivers for
multiple parallel ports, and I2C protocol support.

Serge then showed pictures and videos of using this with children. The
children put together various robots: explorers, caterpillars, walkers, etc.
Sometimes the kids come up with ideas that are useful to the researchers.
Etoys controls the robots remotely. It is always connected to the parallel
port (these are not autonomous robots). A video showed a boy building and
operating a walking robot. The we saw a girl build a caterpillar robot and
use Etoys to experiment with how to make it move correctly.

SqueakLive (based on Linux Gentoo LiveCD) boots directly into Squeak.

26 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
It loads the tools and all the teaching material from the CD. This will be
available soon.

They are also letting the children interact with real robots. Koala is made
by a Swiss company. Unfortunately, Koala’s s/w support is very bad (any
language you like as long as it is C compiled by GNU and can fit in small
memory). They tried to use Spoon, a small Squeak-derived VM, but have
difficulties and are now looking for another platform. Meanwhile they are
simulating Koala, scripting with Etoys and using the ODECO Squeak
plugin for the physical engine. He demoed programming the robot with
various behaviours and running the simulation.

Info is at www.iutc3.unicaen.fr/serge/SqueakBot (page is currently poor,
will be rewritten). The code is in SqueakSource.

Q. This behaviour is in Smalltalk, in Etoys, where? Serge opened a robot’s
script and showed the script items which just presented Smalltalk in a
Squeak UI. (See the Kothen talk: drag-drop script items, etc.)

Smalltalk and Hardware, Bernard Pottier, LESTER Architectures
and Systems - University of Bretagne Occidental, Brest
Unusually for ESUG, Bernard studies hardware, not software. Stephane
introduced him as the Asterix-like inhabitant of a small(talk) village
resisting the surrounding power of C#, Java et al. in his domain. The
LESTER lab researches system integration, power consumption, device
reconfiguration, etc. Bernard’s subunit (AS) has 5 full-time and five
sabbatical people.

Bernard started to work on Smalltalk a few hours after the release of the
spec (he built a VM for it). He found the microprocessor performance poor
at running it. In 90-95, he worked on reconfigurable hardware and parallel
hardware; it is very hard to program these. Since 96, he has concentrated
on reconfigurable circuits and systems (the Madeo workbench). You can
spend a lot of time learning the industry tools, build something on them,
and find the industry has moved on and your tools are obsolete. So they
switched to using VW to build their own system and since then have found
industry coming to them instead of leaving them behind.

Rapid development is demanded by industry but conflicts with current
hardware development methods. The industry tools are inaccurate. The
frontier between software and hardware is becoming less clear. Multi-
processing is essential.

They run their workbench on PCs. They find Smalltalk powerful. They can
build compilers, models and interactive tools, quickly. The ease of
extending the language is key to this and the fact that it is not bound to a
fixed type system is key to that ease of extension.

They would like to evolve Smalltalk to use emerging technologies:

• (they already have in their lab) numeric processing with new hardware
primitives (arbitrary floating points, fixed points, Galois fields, etc.)

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 27
• automatic synthesis of circuits from code

• implicit parallelism

The electronic industry expects continuing exponential increase in
transistors and memory (1982: 64k RAM, 100k logic gates; 2005: 1Gig
RAM, 1.7Gig logic gates). It also expects nanotechnology to provide more
flexible integration components. From this, they deduce a future of
massive parallelism handled by synthesis in software rather than hardware
developments. Tools will map your software computation to the parallel
arrays.

This strategy raises various problems.

• need more reliable characterisation of hardware behaviour

• must handle exploding state space

• you must integrate 3rd party components, so your design tools must
interoperate with their design specs

• time-to-market may be short, causing high levels of risk for projects

LSI (low scale integration) is long dead and VLSI is on the way out (does
not scale for microprocessors). Processor styles:

• A time-shared multi-tasking processor runs straightforward time-
slicing on a single processor.

• Simultaneous multi-threading processors lose part of the processor
power but do real multi-processing.

• Multi-cored processors can share memory while running two threads
on two different cores.

• System-on-Chips (SoCs) are made for mass markets (otherwise they
are not economic) such as PDAs, phones, set-top-boxes, cameras, etc.

FPGAs are more generalisable systems sold to do a range of tasks.There
are three kinds, oriented to logic, to single processes (dsp) and to systems.
He showed the characteristics of each type. The idea is to have a set of
operators run with (random) logic integration of multi-processors using
high-speed communications; you can buy these today.

Moore’s law will carry on as before but we are at a turning point in how we
think about parallelism. He presented two points of view being debated in
the academic community today:

• One (David Patterson’s ‘Call to Arms’) holds that obsession with
performance and ridiculous reliability figures should decline in favour
of processor design and architecture effort, and that current methods
will not scale from where we have now reached. Patterson also wants
more attention to human-oriented factors of interest: security, privacy
and specific applications.

28 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
• Alan Kay compares today’s software industry to pyramid building: the
brute force construction of layers without vertical coherence. (This is
very true of hardware development.) Personal computing has caused a
retrogression of systems (c.f. the B5000 and pseudo-codes of Wirth,
rejected by industry developments.) Kay stresses the importance of late
binding.

Bernard then presented his own point of view. If you can speed up your
system by using cheap resources from a range of sources then it makes
sense to model the whole translation and execution chain transparently, i.e.
using the same tools, because a high layer may need to get feedback from
a lower layer (e.g. one in or near the hardware).

The Madeo project was started in 1995 to let the lab survive the rate of
change of industry tools. They have explored modelling technology, logic
and system synthesis, portable physical tools, structural design, etc.

A reconfigurable architecture has a lot in common with the way nodes are
organised in a program tree. Basic units such as switches, buses, logic cells
and memories are organised in replicable hierarchical patterns. He showed
a UI of logic cells connected to form a directed acyclic logic graph.
Equivalent graphs can then be placed in the architecture. From such an
architecture, you can do physical synthesis by mapping the graph to the
resources of an actual circuit. Algorithms find circuit components able to
perform primitive nodes in the graph and allocate them and their
connections accordingly. Floor-planning comes next: real systems are
hierarchies of graphs and you must minimise the use of resources across
the graphs. Their physical tools for FPGAs are mature and have been
applied in several experiments and commercial developments.

Logic synthesis: logic blocks are produced from Smalltalk methods. A
compilation context holds the data that will be operated by the resulting
circuit. The aim is to reduce the graph of complex nodes to simpler graphs
of synthesisable nodes. Smalltalk has been powerful in enabling these
tools. Currently they only do logic synthesis, not numeric synthesis; they
are working on this.

You can cut and paste designs; they reused framework code from the rather
similar area of interface building.

Their Morpheus project is extending the current workbench to model
systems of different grain addressing the same resources.

VMs: Dorado used microcode, which matches current hardware styles
well. Six stages of computation were cascaded: the instruction-fetch unit
gets the microcode address to the micromachine up to 6 bytes in advance
so the CPU runs at nearly 100%, much more efficiently than an interpreter.

Lastly, he showed a typical modern architecture: four 256 x 8bit RAMs
connected to two 16 bit multipliers, etc. Using Microcode on the data path
can make this a reconfigurable unit. He presented a suggested outline
Dorado architecture configuration on this architecture.

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 29
Their task is to build tools now to model these upcoming architectures that
have concurrency at circuit level. They cannot wait for the C compiler that
will produce parallelism and portability (it will not be easy to map C onto
these new architectures).

They would like Smalltalk to have the ability to describe spatial parallelism
and processes, time constraints and type systems.

Q. Before building Madeo in Smalltalk, you could not keep up with the rate
of technology advance; does that mean academia was (is?) not influencing
industry? Most of their projects are done with industry people working on
basic technologies.

Analysing Smalltalk
Typing the Image, Roel Wuyts
The previous talk ran over, so Roel had to squeeze his presentation. It is
therefore lucky that it only takes him one-and-a-half minutes to type the
whole Smalltalk image otherwise we would all have missed lunch.
Conveniently, Roel’s name is pronounced ‘Rule’ so RoelTyper makes a
good name for his tool.

Have you ever wondered what ProgramNode’s instVar mapEntry is about?
Probably not but if you are doing something with the compiler you will.
Roel just clicks on the typer and 3 milliseconds later he knows. He only
finds types for 80% of cases, so you know more than you did before and
are no worse off the remaining 20% of the time. (VW has 54,000 instVars
of which he finds types for about 80%.) His aim was to provide correct
useful information fast to the coder, not to be theoretically complete.
(Compare the RB’s class comment tool which finds types if a class has no
comment. Because this can lock up for several seconds if called on a class
whose instVars need difficult type computations, coders rarely check it.)
He demoed by implementing

Point>>double
x double + y double

The tool instantly told him that Point’s vars x and y are SmallIntegers but
SmallInteger does not understand double.

Roel talked through the heuristics that find types. He starts with those that
the RB’s typer uses but he has ported them directly to Smalltalk bytecode
so they run faster. A subclass of InstructionClient is used by his bytecode
interpreter to do symbolic evaluation of bytecode to see which messages
are being sent to instvars, in assignments, and so on. For each selector, his
algorithm then asks Object whether it implements it. If not, it finds all roots
that do. Repeating with the next selector works down to a set of roots that
can understand all the selectors in a given message set. (For example, in
Point, RoelTyper quickly finds that ArithmeticValue is the only possible
root for instVar x.) Root-finding typically takes 27 milliseconds, so the
whole takes an average of 30 milliseconds per instVar.

In assignments, he looks at literals and literal arrays, direct assignments of
classes and ‘instance creation’ protocol (he assumes the receiver is the

30 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
possible class). This assumption about methods in the ‘instance creation’
protocol is one of his heuristics; he has experimented with subtler rules.

RoelTyper runs in VW and Squeak, with the same SUnit tests for both. The
InstructionClient differs between the two dialects since it must know how
Squeak and VW handle blocks, etc. Likewise the TypeCollector must
understand Squeak versus VW differences in SmallInteger handling, etc.
Given the correct instances of these, all else is dialect-neutral. VW and
Squeak have very similar bytecode sets. His slides list the few differences.

Squeak only has the core part at the moment. In VW, he has begun adding
tools. He has a SourcesAndTypes tab in the RB, an editor to let coders edit
the captured types list (and the tool will warn later if your choices become
statically no longer possibly correct), an explaining tool (show why the tool
thinks this type is possible in terms of messages sent) and a logging tool.

He would be very glad of help, noting that he insists all collaborators keep
the VW and Squeak versions compatible, so if you are working in Squeak,
for example, you must either touch only the Squeak-specific classes or else
always save to both Monticello and Store.

Q(Niall) I have seen methods in protocol ‘instance creation’ of the form

newWith: parameter ...
guardClause ifTrue: [^super newWith: parameter ...].
^self newMoreDetailed: parameter ...

and
newWith: parameter ...
^(guardClause
ifTrue: [OneSubClass]
ifFalse: [OtherSubClass])
newWith: parameter

(there are examples in the RB). Your heuristics would probably give a
sensible answer for this as the alternatives are super or subclasses.
However there are also examples where the new class does not share
hierarchy with the old (though likely to share protocol, obviously). How
well do they capture this? Roel will check. He noted the aim is to get useful
type info fast rather than complete type info too slowly to help coding.

Q(Niall) Should this be integrate this with Michel Tilman’s Dynamic type
work (the Zork-Analysis browser). He has not done that yet but it could be
done and seems worth doing.

Q.Temp handling? He has done some experiments.

Q(Michel Tilman) If the typer finds that the message set is satisfied by two
distinct classes? He just returns the set of classes found.

Q.Could type conflict checks be run as a test? Yes, but usually you want to
know while coding, not later. RoelTyper warns when you accept a method.

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 31
Understanding your code assets with Moose, Stephane Ducasse, Tudor
Girba and Adrian Kuhn of the Software Composition Group
University of Bern, and Michele Lanza of the University of Lugano
Moose started in 1997. The aim is to understand legacy systems that have
been dragged far from their original clean design by developer turnover,
hasty implementation and misunderstood requirements. Reverse
engineering means creating a high-level view of your code by stripping
away details. Which details to strip away depends on the problem and the
purpose for which you are doing reverse engineering. Moose analyses the
code and provides a range of tools for presenting various high-level views.

The easiest thing to do is just count: they count classes, methods, ratios, etc.
Visualisations convert counts into pictures. Browsing code gives you no
sense of spatial orientation but humans are good at reasoning spatially.
Moose uses a technique they call polymetric views. You have nodes and
edges. On the nodes you can set five properties (width, height, colour, and
x/y positions).

He opened a Moose repository, containing some ten system models, in this
case ten versions of the same case study which is Jun, a 3D framework
written in VW. (These models are exportable and importable between
Moose databases.) They have kept the UI very simple. In the right-hand
pane, you see something, you select it, you right-click to see what you are
allowed to do with it. In the left-hand pane you have the StarBrowser tree
which displays selected in the RHS pane and lets you manipulate the tree
and drag-drop to/from it. He selected some classes and opened a
visualisation of them.

(Long ago, an analysis revealed lots of duplicated code which they pointed
out to the customer who replied, “Isn’t that good? It’s code reuse, isn’t it?”)

He then showed a class blueprint view, showing the class initialization,
public interface, accessors and instVars. Edges (i.e. lines) showed usage
and were colour coded to show usage types. From this you can see e.g. an
instVar mostly directly accessed but occasionally accessed by accessor
from within the class. (You can browse the source directly from any of this
if the code is loaded but the browsing the Moose analysis does not require
that the code be loaded.)

He noted some interesting classes, put them in a view and saved it. (The
editor has a window at the foot that does search and select.) In metrics, a
DotClass means a class that encapsulates too much, does too much and is
therefore much used and dangerous to change. They have query that
searches for DotClasses in terms of metrics. He found 23 classes in the total
of 334 that the query offered as suspected DotClasses. He called up a view
of how these classes were distributed in the system.

At this point in the talk, we have looked at Jun metrics but we don’t really
know much about what it does. Systems have much knowledge in the
names of classes and methods. They have a fuzzy string match, synonym
match, etc., to find concepts. He showed two uses of this, one to find

32 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
concept in the system and another to see how similar the vocabularies of
two classes are. Running the match returns a correlation matrix, whose
individual dots are correlations between pairs of classes and whose axes are
ordered into class similarity clusters. The view had two class list panes on
the right showing the two classes of any dot you have selected and, in a
third pane, the correlated terms. He selected a correlated pair and noted that
the terms were mostly VRML-related. Another pair had some correlated
names of methods; these were uncommented but opening a view revealed
a well-structured hierarchy that was clearly handling a single concept.

Time contains useful information for reverse engineering. History can tell
you which parts are change-prone and which changes are time-correlated.
They have a history object (once talking to Java programmers, he found it
hard to explain why one would want an object for a thing when wanting to
reason about that thing). The UI for reasoning about histories is much the
same as that used to reason about classes. JunBody is the most changed
class. We can inspect it in a view where node colour indicates age and node
size indicates frequency of change. Colour and thickness coded edges
show what relationships have changed.

Moose is not just a tool. It is an environment for integrating code analysis
tools. It handles VW directly and Java and C++ via external parsers. They
have applied it to large systems (11,000 classes). Moose is on the VW
distribution CD and at www.iam.unibe.ch/~scg/Research/Moose/.

Q. Does the tool correlate semantic info (the concept-finding text/synonym
match) with hierarchic info (the counts)? Not now, because it is fairly easy
to navigate between them by hand on a system you’re studying, but they
should and Tudor will (should take him two days or so).

Q. Could this be used as a code checker when coding like Smalllint. For
example, it could show instVars that are mostly directly addressed but
sometimes self-addressed by accessors, to prompt the user to decide
whether refactoring to all one pattern or all the other is appropriate.

Intensional Tools, Frederic Pluquet, Universite Libre de Bruxelles
The Intensional Model is a collection of set definitions, called Views, and
relations between them. Relations also have definitions, e.g. all methods in
first view must call at least one method in second view. Using this model,
his group analysed each of three versions of the SmallWiki tool.

He talked through SmallWiki briefly (structure of Pages, actions on Pages,
etc.) then showed it in the StarBrowser with the view tools shown, starting
just with the default views of all classes and all methods. He opened the
view editor tool (RHS of StarBrowser). In the centre pane of the tool you
write SOUL logic expressions, with embedded Smalltalk as required, to
define the intension. A button lets you run it to see its current extension. He
defined views and a relation, one view being a subset of another.

SmallWiki has protocol ‘action’ and many ‘execute*’ methods; these two
views have the same extensions and this relation can be set up. He

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 33
calculated the extension; a green bar indicated that the relation held. Other
views defined naming conventions e.g. action classes are the class acted on
suffixed by ‘Action’.

He then showed the graphical tool (from Moose) that displays views in
rectangles whose heights indicate the number of methods and tints indicate
the number of classes; relations are lines between the classes, coloured to
show if the relations hold. He selected a violated relation and brought up a
list browser on view elements to show the missing element. Sometimes it
is appropriate simply to note an element as a known exception to the rule.
The rule now runs green (and will run red in future if the element changes
to be an exception no longer). Example: all classes in package satisfy rule,
class that doesn’t is later moved to other package. Rule will now run red
again and you remove the known exception to fix it.

He then looked at the next version (one month later) and recomputed the
view and relation extensions. Only one change to the captured relations is
now visible in the graphical tool and can be inspected.

Q. Can I use this in production tomorrow How stable is it? It is a research
prototype. It has been much used and now is fairly stable for our use. We
will gladly give it to you to try.

Developing Smalltalk
SCRUM: Mastering your Process, Joseph Pelrine, MetaProg
(Christian and I started taking to Joseph at breakfast about Ginsu, iViews
and other interesting subjects, and I should have said ‘Time to go’ five
minutes earlier than I did. I had timed the subway journey from the hotel
with an adequate margin but I forgot that the walk from the metro to the
venue was a good ten minutes. We got there within a minute of the start
time, and Joseph gave an excellent talk about the importance of time-
keeping in meetings, the strictness with which it should be enforced - and
how Niall’s journey-time-estimation should be a bit less agile. :-)

Joseph started by saying how nice it was not to recognise so many people;
new people are coming into Smalltalk. [Niall: Several other people made
similar remarks to me during the conference.]

Joseph opened with a story about inviting us all to a party. He has limited
time to prepare as he must work for a living so in his hour-long lunch break
what is the most important thing he must do in that time? Maybe he’ll give
us lasagna with asparagus, white wine and shrimps and ... (it sounded like
it would be a great dinner). So he must buy some of these ingredients. Next
time he goes shopping, what’s the most important thing? Maybe he’ll give
us a salad as well; peaches (which he’ll rip, not cut; a rough surface holds
the olive oil better, yummy) but they have no peaches. OK, he can switch
to using plums. But if he can’t get the asparagus (maybe it’s not the right
time of year) then the basic idea of the dinner is in trouble.

Suppose he takes a few friends shopping with him. They could optimise
going through the supermarket by splitting up to get things and meeting

34 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
again in fifteen minutes to see if they are all on track or else have to switch
some ingredients. That’s SCRUM: people doing things and meeting from
time to time to see if they are on track, or must switch something small, or
must switch something big.

The party metaphor points out that there are various tasks. Some tasks need
to be done in order. Some tasks have an innate time that cannot be hurried
(the pregnant woman principle: if one woman takes nine months to create
a child, nine women will do not do it faster).

The odds are against us. The Standish group regularly interview people
who do big projects to see what percentage succeed and what fail, and why.
They do this to educate us about the odds (or maybe they’re sadists :-). He
showed the 2000 statistics. The 2004 statistics have just been published and
are even worse. The larger the project the greater the chance of failure. But
this is not all bad for certain kinds of IT managers. If you owe the bank
£10,000, they have you. If you owe the bank £10,000,000, you have them.
The bottom row of the most complex, never succeeding projects are run by
Accenture and suchlike; their 0% success rate does not hurt them because
such huge projects become uncancellable till the overspend compels it.

A Harvard business school study (in 2001) found that managers thought
that they could plan projects, could get the plan right enough that it would
not need to change, and that it was a good idea to run projects like that.

Joseph works in the field of organisational complexity, basing his work on
the research of David Snowden. Your ontology often influences your
epistemology which often influences your behaviour. Joseph showed some
2x2 matrices (lower-left = bad, upper-right = good):

• systems can be ordered or un-ordered (c.f. undead: not dead or alive)
un-ordered means order may spontaneously arise but is not imposed

• systems can be causal or un-causal

Lean development is the latest attempt to move ideas optimised in the
manufacturing domain to the more people-oriented domain of software. To
a first analysis, these attempts fail because people mostly do not act
according to rules. Managers who know this nevertheless think they can
express a vision and construct rules that influence people to realise their
vision. They do not question the underlying assumption that the system
they are dealing with is based on order.

Joseph can make a list of what the party needs to be a success. Afterwards
(only) he can say whether the party was a success. Was it a success because
he followed his list? This is called retrospective coherence. Rule-based
epistemologies often confuse correlation with causality. You can confuse
simulation with prediction just as you can confuse correlation with
causality. People who believe that may try to do systems analysis and then
to convert their analysis into heuristics.

How do birds fly south for the winter? They call the airport for a weather
report, file a flight plan, hold a union meeting to discuss rules, then agree

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 35
an order of precedence for who will take off first. NOT! :-)

• Humans are not ants. Only autists make rational decisions [Niall: I
make rational decisions. But I’ve known managers who didn’t. But I
though they were autists :-)]. Humans make decisions based on first-fit
to past experience and then rationalise that (this statement comes from
research published by Gary Klein). [Niall: my managers are more apt
to complain that I seek the best fit decision when first fit would do. :-)]

• Humans have multiple identities even within one system (and we
coexist in several systems). Stephane is a professor in two universities,
does research, has a family, etc. He has multiple roles in each of these
systems and the role priorities can change unpredictably.

• We also tend to impute intention when none exists: “I just made a
mistake but he did that on purpose.”

• We can evolve into malicious gossips, passing on bad news faster than
good. This makes it hard to collect best practice stories; maybe it would
be more in line with human nature to collect worst practice stories.

(Q. best practice is good? Discussion. Simple and effective versus
simplistic is the issue. Joseph certainly sees a role for noting best practice.)

Many cultures have a tradition of passing on worst stories. For example,
the Sufi culture write ‘Nasrudin’ stories. If a Sufi does something silly he
writes a story in which legendary Nasrudin did whatever he in fact did -
arrive at JFK the day his visa expired or whatever. We have the same; it’s
called Dilbert. Any consultant arriving at a new client looks to see whether
Dilberts are pinned up and what Dilbert cartoons are there.

So what does all this philosophy have to do with SCRUM? Joseph showed
a primitive artefact from the last century called a PERT chart which
assumed you knew all about your project in advance. Actual software
development is like driving: continual observation and correction (tending
to cluncky over-action and over-correction when you are new to it).

“Driving out inefficiencies increases vulnerability to new threats as the
adaptive mechanism of the complex system is lost” David Snowden.
[Niall: I prefer Edmund Burke’s 18th century prose: “A state without the
means of some change is without the means of its own conservation.”]

Joseph picked up a water bottle to represent the timeline of a project. “If I
open this, it really will be the waterfall model.” The worst point to discover
you screwed up is at the very end; the best point is the very beginning.

A team can work very quickly in SCRUM but you cannot control them,
something some managers do not like. Joseph showed various guru quotes
on this, including one from Watts Humphries (CMM’s inventor) admitting
the impossibility of pre-specification. Agile is the art of the possible.

Babatunde Ogunake (chief chemist at DuPont) studied which management
methods handle systems of various complexity. He found that defined
processes decline rapidly in effectiveness as complexity increases.

36 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
So what is SCRUM. It has just three roles:

• SCRUM master: establish practice and rules.

• Product owner

• Team member

In relation to tasks, it also classifies people into chickens and pigs. (From
the joke about the chicken and pig who plan to open a restaurant. The
chicken suggests calling it ‘Ham and Eggs’. “No way”, replies the pig. “I’d
be committed. You’d only be involved.”) In meetings, only pigs can speak.
We’ve all been in meetings where a chicken is talking on and on while the
pigs want to get back to work.

SCRUM has three different types of meetings:

• Planning meeting: the product owner meets with the development team
at the start of every Sprint iteration.

• Daily meeting: always in a neutral meeting room. It is not a coffee
break. No drinks may be brought into the room so it starts on time.
Everyone stands and answers three questions only:

— What did you do since last meeting?

— What will you do till the next meeting?

— Are there any problems blocking your progress?

That is all you do. Joseph has seen teams of 15 get through this in 10
minutes. (There may then be 20 minutes of several bilateral discussions in
the coffee room afterwards and that’s OK.)

SCRUM master training is one thing Joseph does. (How do you deal with
the guy who always blames someone else for his problems? How do you
deal with the guy who always wants to help someone?)

The further ahead things are the less you plan them. A task estimate is like
the label on food. It has a shelf life, so should have a sell-by date which is
one or two iterations long, after which your estimate is worthless (because
the basis on which you made the estimate has changed, because in two
iterations you learned something more about the system and if you didn’t
you should be in another job).

SCRUM teams are self organising. Seven plus or minus two is a good
estimate of how many people can be in a single conversation round a table
(if people are to engage on equal terms). People commit to doing tasks and
can do what they need to get the task done (Grace Hopper: ‘It is better to
beg forgiveness than ask permission.’ JP: working code is the best excuse.)

The Product Backlog is a list of things you think you need to do (functional
decomposition). The Sprint backlog is what you plan to do in the current
iteration (task decomposition). You may also have what you plan to do in
the next iteration and for the release; that’s it. Further off have no ‘expected
to be done by’ date.

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 37
The standard sprint is a month, i.e. 30 days, i.e. 20 working days. Joseph
personally prefers two weeks. Use the period that works for you. How long
can you develop before you must make a decision based on what you’ve
done. How long can your manager leave a team alone before they feel they
must exercise control.

You do not ever extend the period. When it closes, what you’ve done is
what you have. All else goes back into the backlog for consideration at the
next planning meeting.

Estimates are given in burn-down times. A burn-down time is how much
time you think remains to be done in a task. You estimate it will take 8
hours and work on it for 8 hours, then at the next meeting you estimate it
will take 2 hours. The burn-down time is 2 hours.

SCRUM fits well with XP. Joseph briefly ran through his XP coding cycles
(TDD, refactor and pair-programming), team cycles (40-hour week), etc.

Q. You’ve told us some SCRUM best practices but before you told us there
is no solution to complex systems and no best practices? Joseph drew four
domains of complexity: Simple (elements weakly connected, top-down
arranged), Complicated (elements interact strongly so the order is
networked, not hierarchical or otherwise simple and repeatable), Complex
(strong connections between agents with no initial order, only an emergent
order) and Chaotic (weak links everywhere). Complex systems are resilient
to change whereas Chaotic systems are subject to the butterfly effect and
can be very sensitive to input. Using techniques from the ordered realm in
the unordered realm is very wasteful. Using techniques from the unordered
realm in the ordered realm forfeits chances for optimising and thence
achieving scalability.

Q. We like to think of software development as a learning process. How
does this relate to that idea? Software development is indeed a learning
experience. An estimate has a shelf-life precisely because of this.

Q. How do you deal with those who want an answers on cost and time?
That takes longer to explain in full than SCRUM but he can gives some
suggestions. If I ask you for an estimate you can reply with a number and
a confidence estimate for that number. A fixed price project’s bottom-line
cost has much to do with politics and company goals but little with the
work. Marketing and finance people are happy with this because they are
accustomed to having ‘how good do I feel about this’ estimates on their
decisions, e.g. how important is it to win this customer?

(Of course, many managers have read-only memories.)

Cooking with SUnit, Joseph Pelrine
This is an Intermediate level talk. On the one hand, it assumes you’ve
written tests and know what assert: and deny: mean. On the other hand, it
will not talk of CrossProcessTestCase or CompetingResource or
SharedSetUp or any similar subtlety.

38 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
SUnit: never has so little code changed software development so much.

Ralph Johnson got people together at the first Camp Smalltalk to prepare
ANSI compatibility tests and they promptly found the tests did not run the
same on all dialects, never mind ANSI. So Sames, Jeff O’Dell and Joseph
began SUnit 2.6 and 2.7 to be dialect neutral. Later, Alan Knight kept
asking him for Glorp things and so he added some stuff to SUnit which few
other people use or indeed understand. That’s what this talk is about.

(All his demos are in VisualAge because that is what his current client is
using. No dialect preference is implied.)

JUnit is a big fat baroque testing framework for Java whose only affinity
with SUnit is that Kent Beck worked on both. People use JUnit as the basis
for ports which is why the first version of NUnit was so bloated (later ex-
Smalltalkers slimmed it). Joseph did steal something from JUnit:

self assert:...description: ‘what does failure mean’.
self deny:... description: ‘what does failure mean’.

Joseph ran testLeapYearDates (and had the demo hiccough - it ran -
he’d opened test runner before loading tests :-). He showed getting
‘Assertion failed’, thence debugger and work back to what failed, then
redoing with a description that told him which year failed. Descriptions can
often save you having to go to the debugger before fixing your test. (In
Rosetta, his description string actually printed out the class definition so
when his load failed for lack of a class he could create it instantly.)

[Niall: descriptions also document your tests; text in a description string is
more useful than text in a comment.]

self assert: ... description: ... resumable: aBoolean

By running his leap year test with resumable: true and a meaningful
description string, Joseph sees that 2004, 2008, 2012, etc., all fail the
‘February has 28 days’ test - perhaps this tells him something. :-)

The Glorp group needed TestResources. Each test runs setUp and
tearDown. So a sequence of tests is

setUp ... tearDown setUp tearDown setUp ...

and some connections just cannot take being hit that often. Moreover, some
connections take very long to set up. Moreover some things are essential
for tests but you expect them to be invariant during the test so the resetting
has no value. Joseph created a simple resource that just wrote to the
transcript (TestResource subclass: #MyFirstResource). To use
it, he must tell all the test cases that need it.

MyTestCase class>>resources
^Array with: MyFirstResource

He showed running MyTestCase alone and also as part of a group of tests.
(Vassili’s “Do what I mean” utility saved him repeatedly - ‘Run this one in
the TestRunner’ and so on.) He set up a TestResource to capture the

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 39
TestResult object.

MyTestCase>>testDummy
self assert: true.

MyTestCase>>run: aResult
MyTestResource current result: aResult

He then made it print to the transcript on tear down, so running tests had
the transcript showing the overall number run, passed, failed, errored.

(Joseph noted that Jeff O’Dell’s SUnitBrowser for VA, excellent in many
ways, does things with test resources that means this would not have the
effect intended if run in it. I mentioned my extensions to it.)

Often, his clients don’t want to set up databases so he bosses out data and
similar simple solutions. He does not want to test on his live data so he has
a StoreStateTestResource that he can capture data into. He always reloads
on setUp because he might have changed the data. When he reloads this
resource, he runs tests to check the data is the same.

StoreStateTestResource>>setUp
self reload.

He noticed that, when developing tests, failures tended to be either solved
in 5 seconds from the description string or after 10 minutes in the debugger.
So, when working with IntelligentViews (Jan Schuemmer et al.), he put
together a TimeDelayedTestResource to delay resource tearDown. He ran
tests including one with this resource. They ran, then we waited five
seconds before the Transcript showed the resource tearing down.

TimeDelayedTestResource>>current
self stopTearDownProcess.
super current

TimeDelayedTestResource>>reset
self ...
super reset

If one had failed, he’d have had time to investigate before losing the
connection which would make debugging state left by the test harder.

There are many tools that it would be nice to wrap in SUnit.
ExtensibleTestCase lets you define a different behaviour for a test
depending whether you are running it or debugging it. If your test is
comparing two strings, you don’t want to see the debugger first thing when
you hit debug, you want to see a string comparison tool. He ran a failing
test and debugged it and it popped up his string comparison browser. The
first implementation was complex; he has rewritten it to be simpler.

He showed a Smalllint test case where debug brings up the Smalllint
browser. There is no test* method. SUnit method allTestSelectors
that recovers those methods it thinks are tests. SmalllintAbstractTestCase
and its subclasses override this to return the applications (packages,
whatever) that should be tested. It also sets which rules should be run.

40 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
Q. Why not just run Smalllint? Automation; Joseph has SUnit running
outside of images in builds. It’s very convenient to have all the checks he
wants to make being reported to one place.

Joseph then started reflecting on where SUnit should go from here.

1) He is thinking of dropping the TestRunner. In the latest versions of VW,
VA and Dolphin, almost no one uses them. Joseph is integrating the
description strings into hover help in Jeff’s SUnitBrowser so you don’t
even have to open the test to see the error description.

2) He has an SUnit3.2 in beta. Should he just ship that and then resume
work on SUnit4?

SUnit4 has standard logging mechanism based on Toothpick. He looked at
Log4J which is a bad Java open source implementation of some good ideas.
His first implementation was called SmallLog and was very bloated like its
Java inspirer. It was refactored to Chopstick and thence to Toothpick,
getting smaller and smaller (these names are Vassili’s; any smaller and
they’ll have to call it Splinter). The logging is event driven and can log to
files, email, transcript; with just error, with timestamps, whatever.

He also wants to refactor the SUnit core to use events to signal running and
results, etc. He wants to make TestError and TestFailure into objects in
their own right, not just instances of Exception. Working on 3.0 and 3.1
taught him about compatibility layers.

SUnit2. Joseph has talked to Travis who has very good ideas. SUnit2 was
built for one dialect; Joseph want to take those ideas that are cross-dialect.
There is also the question of what’s in the core and what is add-ons. Are
resumable test failures an add-on.

Joseph is back and 3.2 and 4 will appear (and then he’ll make arrangements
to pass on stewardship).

Go to http://www.metaprog.com/ESUG for some old images, the Smalltalk
Knights of the Square Bracket logo, the ‘extreme programming exploited’
book cover, etc.

Q. (Hernan) They have made some changes in SUnit. When there is no
description string, a description string of the line of failing smalltalk code
is shown - it is better than just ‘Assertion failed’. They have tests marked
‘for future - we don’t support this yet’. They have a different way of
running Smalllint in SUnit. (They have also done something with
signalling which Joseph liked but on which my notes are inadequate.)

Q. Why are TestResources so misunderstood? No manual yet, he’s written
the first ten pages (available on his web site).

Plan to write book, 80 pages, all proceeds to ESUG, heavy hitters wanted
to help write and to be part of SUnit team. Also role for reviewers (who

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 41
should not be heavy hitters).

Cincom Smalltalk Business, Suzanne Fortman, Cincom
She started with Digitalk VSE way back when. Since January 2005 she has
worked for Cincom. Tom Nies recently said ‘If Smalltalk is doing this well
without our doing anything with it, what could we achieve if we actually
pushed it?” So they wanted to beef up their marketing and Suzanne’s name
kept cropping up in discussions of who could help. So, she’s back.

Suzanne toured North America in the last six months. They love Smalltalk.
They need more visibility of it, primarily in the vertical markets. They need
their managers to be reading about it. So Suzanne’s aim is Visibility,
Visibility, Visibility. We must talk outside the Smalltalk community. Tell
Java people that Smalltalk is good, not that Java sucks.

Suzanne likes the mission statement of ESUG. If she does her job right, all
the students in the other session will have jobs. This is her first ESUG so
most faces are new but she’s delighted that Giorgio Ferraris is also saying
‘All these new faces!” and that’s great. She knows lots of people who say
“I love smalltalk but I have to work with Java/.Net/, ...”. The students here
want to know if they will be able to work in this cool language they’re
learning.

She mentioned what she did over lunch at a conference and someone said,
“I thought Smalltalk was dead”; she replied, “You have three divisions in
your organisation running Smalltalk applications.” This kind of thing was
happening even in Cincom, which is a large organisation where some lines
have no real knowledge of what Cincom does with Smalltalk. So she has
begun marketing Smalltalk within Cincom, mentioning customers. This
has led to Cincom people asking whether they should use Smalltalk.

Lots of customers say, “What can I tell my boss to say why we should use
Smalltalk.” She aims to create a climate in which if people cannot talk
publicly about what they do with Smalltalk they can at least talk about it
within their own organisation. And that will mean that next time they go to
their decision makers, it will not be “Why do we still use Smalltalk?”

Suzanne needs the community’s help to put the apps written in Cincom
Smalltalk out to the vertical markets. You are not the decision makers.
Some other guy signs the check and he’s reading a different magazine from
you. Kapital and JPMC are cool for them, OOCL is cool for them, and there
are people here from both those projects but the decision makers don’t read
the ESUG report. [Alas :-/)]

She wants to build the Smalltalk community, not just Cincom Smalltalk.
Building the community will build her share of it and we are too small a
community to do anything else.

Because Smalltalk gives competitive advantage, she often hears, “I can’t
talk about it”. Suzanne does not say, “Use Smalltalk”, when she visits
companies. She says, “You have a problem; I have a solution. By the way,

42 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
it’s in Smalltalk”. Customers are not interested in being told to go to this
website where there’s a list of apps written in Smalltalk; they’ll tell you
where to go. Give them the info, don’t make them search for it.

Lots of people this week have told her about great apps written in Cincom
Smalltalk; let’s market these. These apps were written to fill needs. This
can be talked about. We must start talking outside the Smalltalk
community. We must talk in the language decision makers understand. “I
have a problem. I need a solution. I know that many solutions have been
written in Cincom Smalltalk.”

Resources: the community has people saying I love Smalltalk and I can’t
find jobs and the customers are saying I find Smalltalk valuable but I’m
worried I won’t be able to find Smalltalkers. (Also “Smalltalkers are more
expensive” - but they are more productive and they’re not more expensive,
e.g. Lucas Renglii is still at university and at NetStyle.)

Cincom now has an add-ons and applications programme, aimed to help
them make it possible to get the success studies out.

So what can we do?

(Reinout) Joseph Pelrine’s talk mentioned success rates of projects versus
price. Can we publicise that? Suzanne’s been back in Smalltalk for 7
months and is aiming to get that research.

(Niall) We don’t know what magazines and conferences decision makers
are interested in? If you tell us (web site, whatever), that may influence us.

(Mike Roberts) Universities don’t mention Smalltalk, nor do geeks. He did
audio and music and knew audio drivers were written in C so that’s what
he looked at. Smalltalk had a good programme in the old days and it has
dwindled. Now they will restart. Ralph Johnson has told her lets start with
high-schools: get them young. They will do something in this. The kids
will still know Java. We must make them aware of Smalltalk.

Q. People are very helpful in the Smalltalk community about giving links
and web stuff. We need more things like SqueakSource where you can find
out about things written in Smalltalk? Yes, she wants to have one place, not
be told go here, go there, and to start pushing data out.

She played a game with a fellow-passenger: he started noting, “They use
our product”, of the firms they passed so she had, “They use, and them, and
them, and ...”. Him: “This is no fun; you have all the cool customers.”

Q. Often here “We need industry-standard solution” (meaning Java). How
do we tell them that Smalltalk is an industry standard in the sense that lots
of industry solutions use it? Yes, to many people ‘standard’ means
“something I hear about all the time”, not “something that works all the
time”. (Be aware: her programme activities will be aimed at those people,
not at us.)

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 43
Q(Roel) He wants to be able to tell the students and the university people
that students will be able to use this language in industry.

Q(Francisco) We could get leverage by working with others and committed
groups? You’re sitting where Petr sat at Smalltalk Solutions when he asked
about working with Java. With mergers and acquisitions, people must work
with other systems. (James) You don’t have to make Smalltalk universal;
you have to make it universally regarded as an elegant and effective
solution. (Niall) use Georg Heeg’s examples of Smalltalk being good at
making 3rd parties talk to each other. (Suzanne) I’m looking at having
tracks in Linux and elsewhere, so STIC will look at rolling Smalltalk
Solutions into a larger conference or similar.

Suzanne wants to create the ‘me too’ mentality with the applications and
add-ons programme. She’s excited about Cincom Smalltalk these days and
about Instantiations and what they will do. Tom Nies has mentioned
Smalltalk in the last few interviews he has had (which is good internally).

Teaching with Squeak, Rite Freudenberg, University of Magdeburg
(This talk was guaranteed to run to time because Maja d’Hondt had
arranged that the workmen next door would resume drilling at coffee time.)

Rita has spent her last year teaching teachers to use Etoys and also children
and students. Her talk is about the differences she has seen teaching Etoys
to these three groups.

Children: at her son’s school, she and another teacher taught a group of five
children aged nine. First you must explain and then give the laptops; if the
laptops are open you will never get the kids attention. Except for this, it is
easy to motivate the kids to attend lessons on computers and robots. You
must go slowly. You must have things in the native language; great that
Etoys is available all in German. Many Etoys explain themselves.

Drawing and geometry is a good start point. Their first exercise was to tell
them to draw a Santa Claus house. It made them think about where to put
the lines and angles. It was hard to get them to end the lesson; they wanted
to carry on. Everyone wanted help so they could have done with 5 teachers
for the 5 children. Children try anything so get themselves into all sorts of
unforeseen situations, then ask you to get them out of it.

You must have simple tasks. There are no computer science classes for
children so they borrowed books from the university. It took her two hours
each lesson to collect the books and computers and take it over to the
school. (It’s a lucky German elementary school has two computers.)

Students: she taught various courses, some for girls, some for boys (i.e.
also for boys, I think, not just for boys). The girls course was introduction
to computing and involved drawing/painting and animation with
computers. They had bugs trying to escape from mazes, bugs replicating
themselves, etc. The students had all chosen the course so were motivated.

44 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
A school course for 16-year-old girls (a get-interested-in-computers
course): painting and animation was interesting.

A ten week EU project for 8 students was to go to firms and do micro-
controller programming, voluntarily for 3 hours from 17:00 after school.
She found drawing only occupied one hour (plus boys draw fight scenes,
not flowers, which was less motivating for her :-). so she integrated micro-
control work to do a traffic light control project.

Older students can read documentation, including documentation in
English (very useful for reusing examples on the Squeak page; she
translated the first example to get them started, then let them read the rest
in English). Squeak animations are certainly suitable for getting girls to
take an interest. They get interested and become willing to try more
complex tasks.

Teachers: these teachers were seeking an extra qualification to teach
computer science along with what they were teaching at high schools. Thus
they visited the university once a week to study, over and above their
weekly workload. She showed the squeaker DVD and they liked it but saw
no relevance to their teaching tasks as the children on the DVD were much
younger. They were not enthused by the idea of the gravity example for
their own use. They could not see from the DVD what Squeak would let
them do. She was surprised by this as the DVD had motivated her but her
teacher pupils were dismissive; they only saw that the children were
younger. So she has the problem; how to make these teachers see the power
of Squeak.

They also saw the English documentation as a problem. This is not just the
older teachers; she found even teachers in training were demotivated by the
thought of having to handle English documentation. Typical reactions were
along the lines of: “Would you like to use it in your classes?” “No, we have
no time for this because we have guidelines for every subject. We could use
it for Computer Science but there we must just teach computer science”
(and Squeak is about using computers for things). You can’t find much
about using computers in other subjects in the guidelines. So somehow she
has to find how to integrate Squeak-use into the existing guidelines.
(Germany has 16 states each with its own education system so maybe she’ll
find one.)

There is one exception: the project week. Once or twice a year, the teacher
is allowed to escape from the guidelines and teach something they plan for
a week. So maybe they could provide a Squeak package oriented to this.

She has one power; she controls the course and can say what the teachers
must do to get their certification so she plans to make them do a one-week
Squeak course as part of it.

“It’s hard but we must use the teachers we have.” :-/)

There are also the non-public schools (i.e. not state owned: what in the UK

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 45
would be called public schools :-). They are also compelled to regard the
guidelines but have more freedom. She has two motivated teachers from
such schools teaching 11 year-olds. There is a project where you connect a
temperature measurement device to the USB port and use Tweak in Squeak
to sense the information. They can connect Squeak to Fisher-Technik.

Q. Stephane has seen the same thing with his wife who is a teacher. The “so
what?” factor does occur. It can be helped by providing more info on what
is the goal of this example, what do the children learn from it.

Fun with Programming, Stephane Ducasse
Etoys is not enough. Stephane wants to teach computer science. If Squeak
is good for teaching then it can be used for that. What is a program, a class,
a method, etc. The book uses OO terms throughout but not ‘late-binding’
and suchlike as that would be too complex.

Stephane’s book is for novices of all ages, and those who are teaching them
(parents, teachers, whatever). There are no expectations on the background
knowledge of the readers. Stephane’s wife (a teacher) proof-read it for
usability. Her aim was to be able to reuse just the diagrams and pictures in
her classroom. (Visit the web site for sample chapters and code, etc.)

He starts with simple graphical manipulation and concepts; difference
between absolute and relative angles, etc. Then loops: why, what are they,
etc., used in staircase-drawing examples. Then he presents some problems.
Start coding squares within squares, pyramids, etc. Drawing uses a turtle
and users tell it to go (draws) or jump (move to new position without
drawing).

Another example is a bug wandering around the screen. All scripts in this
chapter are 5 lines long and let the bug look for food, look for the way out,
look for friendly environments, etc. This teaches controlling the bug by
direct manipulation, then by scripting, finally by methods and abstraction.
Later maze-escape examples teach path following and recursion.

He is rewriting everything in tweak because when he had a large multiple
turtle example in Morphic the semaphores everywhere sometimes locked
up; it was too complex.

His standard presentation screen has the simulation display and a very
minimal Smalltalk browser where people can define methods and classes.
His syntax highlighter has been customised to help users. He showed what
he did with children at the last conference he attended. He wrote a script to
draw a staircase.

r2d2 := Bot new.
4 timesRepeat: [r2d2 ...

He showed an environment of coloured squares with a robot moving from
square to square.

Stephane’s wife teaches computer science at the French school in Berne to

46 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
11 - 15 years old and was his first customer. “I recently started a course
with 7th-graders [13 years old] with Stephane’s book -- they love it” Klaus
Fuller, Germany.

He has one user (an elderly teacher) who uses the environment to create
pictures.

He wrote 900 pages and 300 are in his book. So if it sells, there are likely
to be sequels. Details are on the squeak wiki.

Q. How do you tell children that 4 timesRepeat: is how to loop?
Stephane’s wife finds that is much better than loops in other languages. The
children were soon doing 2500 timesRepeat: with variable handling that
caused it to look slow so he moved the variable stuff a little later so they
met it when they knew enough not to do that.

Scratch, Mike Reuger
Scratch is based on Etoys and is used in computer clubs. It is visual
programming of scripts: drag-drop, etc. in LHS pane to control visuals in
RHS pane. You can have several elements and step them (at different
rates). Much effort has gone into the sound part of it. It is downloadable.

Benefits and Risks of Service-Oriented Architectures, Andy Berry
Web services let your systems and your customers’ systems exchange
messages over the web. Service-Oriented Architectures could convert your
isolated applications into an architecture and bring you closer to your
customers and your suppliers. Andy thinks that web services will take off,
so your architecture will be future proof.

However there is the risk of being an early adopter if web services fail.
Fortunately, it is easy to find small aspects of your apps that offer specific
benefits from being made into web services. Andy recommends having a
mentor and choosing your product with care. With your prototype, get buy-
in from the company/client.

Web services are well implemented in several Smalltalk dialects. It took
Andy one day to add the google service to his Smalltalk app. Just do it. [See
Alison Dixon’s talk and Kirk Blackburn’s talk in my ESUG 2002 and
Smalltalk Solutions 2002 reports.]

So what’s next, beyond SOA? It would nice if we just paid for the services
we used.

Q/. What do the commercial products you mentioned provide? Basically,
they provide ready-built adapters for certain applications. Thus they do
half of the work for you.

Q. Pay as you go will go the way of Java’s wild claims? Yes, it’s a risk but
Andy believes it will go further. It is a risk and that’s why he says start
small.

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 47
Q. Is this market anywhere near developed enough to be commoditised? If
not, will the result be charges you cannot predict or collect? The services
metaphor only works when you have a commodity and this seems nowhere
near commoditised. How will it benefit business to give out control of their
architecture when there is no clear way to call for a service and there is no
market so you can’t tell what to expect when you call for another? (Andy
and Reinout) To people who use the service, it can easily be commoditised
but the people who provide it are an issue. Discuss more off-line.

Environments and Tools
OmniBase, David Gorisec
OmniBase is a multi-user persistency system for Smalltalk, not a database
in the usual sense. It aims to let you save single objects, objects in
transactions, etc., but otherwise have the directness of image-saving in
making objects available to you.

It aims to be cross-dialect so no GUI code. It runs on Dolphin (most up-to-
date because that’s what he uses.) It has been ported to VW, Squeak, VAST
and ST/X by other Smalltalkers and these are maintained by him and
updated from time to time on request. (If you have a need, contact him and
offer to help.) Porting to Linux has problems with file-locking as it calls
directly to the file-system, not via sockets, and somehow seems to be
depending on Windows semantics [CS work seemed to find the cause; see
CS report above]. OmniBase is used at 150 sites. It was made an open-
source project recently.

OmniBase has multi-version concurrency. You see the snapshot of the DB
at the point in time when your transaction started. Each update creates a
new object with its own version number.

OmniBase has a basic schema migration mechanism. It has the obvious
semantics for when instVars are added, removed or reordered and offers an
ODBUndefinedObject for cases when deleting classes creates a need for it.

db := OmniBase createOn: ‘c:\myDB’“new”
db := OmniBase openOn: ‘c:\myDB’“existing”

Cycle is start transaction, get, create or change persistent objects, commit.
Transactions can be used explicitly or implicitly by associating a
transaction to the active process. A typical use is to start a transaction when
the user opens a GUI and commit it when they press OK.

[OmniBase root“implicit”
at: EMP001’ put: Employee new]
evaluateAndCommitIn: db newTransaction

txn:= db newTransaction.
txn root at: EMP001’ put: Employee new.
...

The root object is a dictionary by default but you can change it to whatever
you want. Only what can be reached from the root is safe from garbage

48 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
collection (persistence by reachability).

OmniBase root
at: ‘misc’
put: (OrderedCollection newPersistent

...)
...
coll := OmniBase root at: ‘misc’.
coll add:
coll markDirty.

You must markDirty to tell OmniBase the object has changed.

A cluster is how OmniBase understands a complex object that is the root
of a graph of objects you will always want to be fetched as a unit. Clusters
are serialised as a contiguous stream of bytes and stored together in
OmniBase under a unique id. Thus clustering choices will affect
performance. He showed an example from his web page of storing a
collection of strings as a cluster or as a set of strings or as the strings being
clusters. This affects uniqueness. Strings as clusters ensures that the string
is recovered uniquely via references but if a clustered collection is
recovered and the unclustered string is recovered via another root you will
have two copies of the string. OmniBase uses isIdenticalTo: to check
identity in cases where you cannot tell whether OmniBase will return the
real object or a proxy to it.

There are various issues with markDirty. If you add to a collection, the
object added has not changed, only the collection. Generally, parents need
to be told when their children change. You could add a trigger to tell all
parents when their children change or you could serialise all objects on
committing and compare them to see what has changed. You could also
make objects immutable on load and change that when changing. He has
not implemented any of these as yet, just done experiments. He expects to
use exceptions when changing to handle this in the next generation of
OmniBase for Dolphin and VW.

OmniBase indexes work much like Smalltalk dictionaries but Smalltalk
dictionaries don’t perform well past certain sizes [Niall: 10,000 entries?].
There is also the problem that Smalltalk hashing does not handle object
versioning. A later version of the object will have a different hash. This
causes serious problems with parallel updates. He therefore has added a b-
tree dictionary, with better large size performance and safe parallel update
behaviour. An object automatically becomes a persistent cluster when
added to a b-tree.

index := OmniBase root at: ‘misc’.
...
index keysFromDo: ...
index transactionsDo:
[:txn :eachEmployee |
self processEmployee: eachEmployee].

...
A btree dictionary can also act as a cursor with getFirst, getLast,
getNext, etc. The sequence is the sort order of the keys.

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 49
OmniBase also has a full text search support utility, added recently. You
can add a declarative model on top to support more SQL-like queries.

You get the object as it was when your db transaction started. To update
your view you must restart your transaction. You can use object locks to
prevent anyone else changing the object while your transaction is running
(only write-locks, no read-locks). Locking is fast as it uses file-locks.
Dictionary key-locking is slower as it must change things in the file but it
may be overall faster to lock a b-tree if you are doing massive updates to it.

Be aware that b-tree dictionaries are versioned objects too, so it is wise to
preserve the order in which you update it in your application.

Users wanted on-line backup; they now have this. There are no DB
administrator tools; you must call Smalltalk methods (so can easily write a
GUI if you want). There is no on-line garbage collection (usually not an
issue for users with today’s cheap memory). The case of a b-tree growing
towards the 32-bit limit can be handled via the b-tree reorganisation code.

Info is at wiki.gorisek.com. Downloads are at www.gorisek.com.

Q. Performance and size limits? 4G limit on each index size file and 2G
limit on each container. Speed is very model and app dependent. (Usual
demo hiccough: he tried to demo performance but the internet connection
to the projection machine had been lost.) 16bit (~65,000) users limit.

Q. Why have your 150 sites used OmniBase instead of e.g. Oracle? He
thinks because they prefer to use Smalltalk rather than embedding SQL in
their code. There are Seaside sites, e.g. Argentinian army uses it. Maybe
also users like the fact that there is no licence-oriented user limit.

Q. VW limitations? There is a concurrency limitation. VW file-locking
under Linux is not completely the same as in Windows. Dolphin is
Windows-only so for VW they wrote wrapper code to simulate the
behaviour but it seems to have an issue. With one image it is no problem
but if you have two images concurrently writing to the same b-tree you can
see a problem. [As noted above, Camp Smalltalk work seemed to have
made progress solving this; see the Camp Smalltalk report above.]

Q. You use it in your commercial work? They use OmniBase-RDB which
they have not yet had time to make available.

GemStone 64 bit, Adriaan van Os, Soops
GemStone is a privately-owned company with 100 employees, 200+ client
companies. Their products include GemStone/S, Facets (GemStone/J) and
GemFile (distributed caching and continuous data stream querying). Their
Smalltalk market is growing and the customers are very loyal (90%+
renewals). GemStone 6.1 (currently 6.1.4) runs on a range of platforms.
Their customer feedback has told them to keep GemStone/S current (on the
latest platforms and OSs) and to keep it stable. The next release (6.1.5; due
late 2005 or early 2006) will fix bugs and support AIX5.3 and Solaris 10.

50 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
However, 32 bits are limiting; 64 bits allows much larger object caches.
The shared page cache size rises from a best of 3.75GB on SUN for 32 bits
to 16 terabytes in GemStone/64. The maximum object count rises from 1
billion to billion in the first release (still 32 bit object pointers) but 1 trillion
(240) in the next release as it will have 64-bit object pointers.

The 64bit project was funded by OOCL, a shipping company who are a
major customer. The projects started in 2003 and will complete in 2007. It
has 3 phases Ashland, Bend and Corvallis (no, Adriaan cannot explain
these names :-). Ashland aims to improve performance, Bend to improve
scalability, while Corvallis will address tuning.

Ashland delivers a VM that is twice as fast, 16,384GB shared page caches,
better garbage collection (keeps a not-connected set, collects large objects
better) and an online backup capability. The server runs on Sun Solaris 2.9
and HP HPUX 11.11 (on PA RISC). Clients run on Win2k and XP for VW
(7.3 and 5i.1) and VA (5.5.2 and 6.0.2). (Alfred Wullschleger has also got
GemStone/64 client running in VW3, which he uses in Swiss National
Bank; their performance limits are all from GemStone so they have not
ported forward from VW3 yet.) It was released in Beta at the end of last
year and fully at the end of March.

Ashland 1.1 was released in Beta mid-year; full release in due in early
September. It adds GemConnect for Oracle, epochal GC, soft references
and System continueTransaction (and runs on AIX 5.3L).

One drawback is that you need to know how much memory you will use in
your session and exceeding that kills it. Customers are not happy about that
so maybe they will change it.

Bend will do 64 bit object ids so giving 1 trillion objects. Page size will rise
from 8k to 16k to match this. The SmallInteger range will be expanded to
+/- 260 and there will be SmallFloat and a special date-time class (unique
dates). It will offer indexes on IdentitySet and IdentityBag. It will support
GemEnterprise/SMF and GemBuilder for Java, and will run on Linux.
Bend is due out in Beta at the end of this year and fully next Spring.

Corvallis will give a faster VM, multi-threaded GC, faster tranlog replay
and restore, etc. Its beta release is scheduled for end 2006, full in mid-2007.

GemStone has 1 customer in production and two more will deploy this
year. Soops is one of 8 customers implementing a proof-of-concept system.
Adriaan showed a list of 15 things where performance impacted Soops’
users. He has run benchmarks for all of them, doing first time and second
time (caches populated) checks for each. He showed the raw out-of-the-
box upgrade benchmarks. The 64 bit first time always equalled or beat the
32 bit second time. On direct comparisons it was noticably faster: some
factors were 6-to-1.

One drawback is the GemStone now copies objects from the shared page
cache to the line session so if you only do one thing with that object, that

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 51
is slower.

Q.(Alfred) The shared page cache is so complex that two runs can give
very varying results. How consistent were these ratios? Fairly consistent;
we did several runs and did see variations as you say. (Discussion with an
OOCL guy raised the point of tracking CPU time in such cases, seeing how
much of the page was read, etc. If I understood aright, OOCL people
running benchmarks have done these checks.)

Q.(Niall) The memory limit; why? GC in Gem has always been expensive
so they tried to eliminate it with this memory limit. There has been lot of
opposition from customers to this Java-like limitation and Adriaan hopes
this will be reverted. (OOCL guy confirmed this and discussed the
technicalities in some detail. If you take enough memory to guard against
this then you will anyway not encounter the overflow problems that are the
only issue for which this is a solution.)

VASmalltalk Going Forward, Mark Johnson, Instantiations
My Smalltalk Solutions 2005 report covers this in great detail so here I just
note additional information.

Mark showed ‘the wheel of reincarnation’ showing how ‘the Smalltalk
companies they have been involved in have been merging and splitting off
since 1984. Instantiations is now offering the VASmalltalk product.
Instantiations is in many programmes (IBM PartnerWorld for Developer
and PartnerWorld for Software, Ready for Rational and Ready for
WebSphere). More impressively to me, they are a member of STIC.

IBM wanted to get out of the VASmalltalk business. (Since that lets
Instantiations pick up the torch and carry it, Mark is not sorry. Eric is
passionate about Smalltalk and has been hoping for this opportunity for
years.) In IBM-speak, Instantiations is part of their longer term, “staged
transformation” strategy, where IBM recognise (sotto voce) that the stages
might be so very long that customers never do actually move away from
Smalltalk. However it is part of the contract and obligation that previews
of migration tools (Synchrony and etc.) are included in these talks.

VASmalltalk 7 is based on VASmalltalk 6.0.3, fully backward compatible
but with Instantiations products added (VA Assist and WidgetsKit, plus
GF/ST as a goodie). VA Smalltalk is an Instantiations product, not an IBM
product, and Instantiations supports it.

Mark then spoke of the road map. He stressed they welcomed emails from
customers on their long-term needs. They will improve DB interfaces
(IBM’s interest were limited to their own DBs). There will be a 7.5 release
next summer and 8.0 the year after that.

Pricing New $6995, upgrade-from-IBM-supported $1495, upgrade from
unsupported $1995 (also from other Smalltalks). For consultants, academic
and ISVs, there is a greatly reduced rate.

52 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
IBM 6.0.3 has only just been delivered so that delayed the VASmalltalk7
release correspondingly. Release Candidate 1 will be available for
download by the end of today (in the US). VASmalltalk release for
windows will be released end-next-week. Linux, AIX and Solaris will be
out by the end of the month. For info, visit www.instantiations.com or
email sales@instantiations.com (for sales info), vast@instantiations.com
(seen by Eric and whole team) for general info.

Q. Macs? They have no stated intent to provide a Mac VM. If there is a
business case, they’d consider it. You may notice that they have dropped
OS/2 and HPUX which IBM were supported. They must have an adequate
business case to support a VM.

Q. Embedded development? IBM never sought to position it so. They do
support it on MVS and IBM have committed to continuing to market, sell
and support the VM on MVS (not to enhance it beyond keeping it current
with latest MVS). Instantiations are committed to being fully compatible
with the MVS version.

Q.(Roel) We are a university with IBM deal to get IBM tools free for use
in teaching; can we get the same deal? Talk to us, we will be flexible.

He then fired up VASmalltalk7, not to demo, just to show us it was there.

The Squeak VM: Exploring Garbage Collection; a view from 10,000
metres to the bits, John McIntosh, Corporate Consulting
John is the maintainer of the Squeak Macintosh VM and works with Ian
Piumarta and Tim Rowledge on the Squeak VM generally. He also works
on the Sophie/TK4 project.

Having spent years looking at pretty graphs of GC info in VW and
elsewhere, he remarked that it would be nice to be able to see the same
information in Squeak. He then of course found that he was the obvious
person to do that, making the VM collector have a memory policy that can
change its behaviour, as in VW.

The original Squeak aim was to GC in less than 10ms so that Squeak could
play sounds. So they implemented a copying compacting GC which copies
and compacts from free space up to the end. The downside was that a full
GC became expensive.

The other thing they did was to use direct OOPs. At load time they do bit
reversal (big/little endian).

You allocate objects in young space; how big should it be, when do you
stop and do an incremental GC. So periodically it does, based on values set
in the late 80s or early 90s; maybe these values are no longer appropriate.
:-) When you GC, you decide whether to tenure objects: do you expect
them to live forever?

The garbage collector is triggered at a number of points, one of which is

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 53
after 4000 objects, which took less than 10milliseconds years ago and is
now done in microseconds.

Roots point at objects from the remembered table. ‘Mark’ finds dead roots
and ‘sweep’ compacts, so the dead objects are all moved together, creating
free space. If there’s a problem you will find it fast; the VM will attempt to
refer to somewhere in the middle of another object and instantly crash.

A pointer is an unsigned integer. Slang returns a signed integer by default.
Thus on a 4Gig machine you cannot go over 2Gig without getting into
signed versus unsigned issues and the VM crashes. Work is ongoing to fix
it. The 64 bit machine semi-fixed it so you could address 63 bits before
seeing the problem. If you ask for a Gig of memory, the OS may give it to
you over the 2Gig boundary and then the VM crashes. How many have
seen that (several hands).

Past the boundary, objects get tenured. Question: is that boundary set
sensibly for today’s machines. A full GC can shrink YoungSpace. The
remembered table is resized recursively (not exactly but it means Squeak
will simply get slower, not crash if it turns out that the RT is too small,
unlike VW in the case where it needs to resize the remembered table and
demands more memory from the OS and the OS refuses). This was done
because Squeak wanted to be able to run if there were no underlying OS.

If you allocate a big collection in old space then place new references in it,
Squeak can get slow as incremental GC scans every slot in the collection.
The workaround is to allocate the collection then do a full GC, promoting
the new collection slots into old-space.

Free space is calculated after the remembered table and that can cause an
issue (if the RT needs free space but what you just did filled it).

You can fail to finalise young weak objects that are referenced by
WeakArrays living in old space, so not finalised until a full GC. This has
been fixed in April 2005, being ported to all platforms in Summer 2005.
However, Seaside used weak objects for session data and found that if you
had 40,000 objects you scanned all 40,000 looking for the one to finalise.
They switched to a different pattern.

Squeak used to raise dialogs re the lowspace threshold. With current
machine times the user gets 0.3 of a second to decide how to respond.

In 2004, John discovered that when you approach the end of memory you
try to increase memory but you accelerate your GCs so as you approach the
boundary you would do 500-600 GCs before reaching the boundary and
increasing the memory. This became obvious in progress dialogs that were
hanging briefly at a certain point. John changed the memory bound logic
to imitate VW’s: you can now grow to 16Mb before becoming aggressive.

This summer John added another 120 values to what the VM GC collects.
He showed diagrams of GC when starting up Croquet, which takes the

54 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
image up to 200Mb, comparing before and after changing to let it grow to
16Mb before becoming aggressive. Croquet started 8 seconds faster but
still took 500 seconds. He then looked at marking, reducing the amount
done by forcing tenuring if the rate of iteration in the marking is high, and
saved another 40 second clock time.

Of course the optimum solution is to rewrite the logic. (Does anyone have
a million to spend?)

Q. Did they (or should we) consider multi-generation? Way back when,
they saw a two-generation GC would do for their requirement. They
decided that was the simplest thing that could possibly work. It works, and
would be fine with rewritten logic.

Q. Specific tuning? He showed an example of actively changing the GC
parameters for a Seaside app. The result was a 15% improvement (167
seconds v 190 seconds for a given benchmark test of tasks).

John’s slides list some added GC commands and new work planned. Time
prevented him from talking about the forwarding logic but his slides are on
the website.

Q. Any plans to introduce parallelism in Squeak? Do you have a million to
spend. Seriously, you need to fund a couple of people for a while. This will
have to wait until a real funded customer appears. Parallel algorithms are
hard to do. VW looks parallel but is really incremental. The OldSpace
collector marks 20,000 and then sweeps them and so on. Some Java
implementations claim to be multithreaded but people say their
performance is dismal when stressed, which probably indicates that the
algorithms do not work well.

Q. (Mike) Where do you hold these VM stats? I just write them to a file and
then produce these charts from Excel. You could write them to a socket and
do remote diagnostics.

Q. (Mike) Effect of collecting on collection? He has set it up to capture data
every tenth of a second without (he believes) affecting the application.

Q. Finalisation problem on fonts? Objects were dead in OldSpace for a
long time but not finalised till a full garbage collect occurred which might
not be for an hour. One case was a program that failed to keep a strong ref
to font-rendered stuff so it lived for ages in OldSpace and rendered
characters fine then good GC was done and suddenly it ran 50 times slower.
Fix was to keep that string reference (done a week ago he thinks).

John stressed that any Squeak Mac problems he is happy to hear about.
Core dumps are acceptable, especially with full descriptions of what was
being done when they happened.

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 55
Design Discussion
Collections in Meta-Data Frameworks
I presented the problem of handling the collection hierarchy in metadata
frameworks.

A typical metadata framework will have the means to build graphs of
objects and to walk these graphs for various purposes. These graphs are
built from instances of subclasses of a metadata class (call it ‘Frame’ for
discussion purposes). This class may have a class instance variable (call it
‘meta’ for discussion purposes) which holds metadata information. This
information usually includes a dictionary whose keys are instance variable
names and whose values are objects that control the code that walks the
graphs: is the instvar persisted, what values can be added to it, etc. All
objects in a graph, except possibly for some leaf nodes, are of kind Frame.

InstVars of subclasses of Frame are controlled by their class’ metadata (call
such controlled instVars ‘slots’ for discussion purposes). Class Frame itself
may have instVars that are used in constructing and walking graphs; for
example, the graphs may have a tree structure defined by a ‘parent’ instVar
of Frame. Frame’s instVars are part of the framework-defining code, so are
exempt from the metadata rules that control the slot instVars of subclasses.

The problem I wanted to discuss arises when you want to use collections
in the slots of your metadata framework graphs. The graph-walking code
expects every object it finds in a slot to understand the whole meta-data
protocol, for which it requires Frame’s class-side and instance-side state as
well as Frame’s methods.

• A common solution is to clone the whole collection class hierarchy as
a subhierarchy of Frame. This is not good. Typically, the initial clone
replicates only the classes thought to be needed. Later, others are
implemented hastily and poorly (as the initial lot may have been). The
two hierarchies get out of synch as the Smalltalk dialect upgrades, but
there is rarely time to port this to the metadata duplicate. Divergence
causes irritating protocol differences and further cloning of code. Poor
or old cloned implementations cause performance problems.

• A solution I have used is to reuse the Object subclass: #Class
pattern. Instead of cloning the collection class hierarchy under Frame,
clone Frame under each concrete subclass of the collection hierarchy
that the meta-data framework wishes to use. Put any collection class
methods that need overriding (e.g. copyEmpty) into an extension of
the cloned class. This arrangement is a kind of poor-man’s mixin. It lets
vendor upgrades slot in much more naturally. It minimises real code
cloning; since class Frame is under your control, you know about any
changes to it and simply replicate them.

Discussion raised several solutions:

• A true mixin implementation exists in Squeak; it takes 5 lines and
should port easily to other dialects if not already done. Use this with
Niall’s solution.

56 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
• Terry Raymond has implemented Traits with state in VW. Use this to
extend the collection classes (or trivial subclasses of them, as in Niall’s
solution) with meta-data abilities.

• Give Frame a single subclass CollectionFrame that encapsulates a
collection. Give CollectionFrame the Roel / Blaine Buxton behaviour
that a DNU is forwarded to the collection but also (if understood there)
is statically compiled into a delegation forwarder.

I like the first solution. The second is good if the Traits implementation is
performant. The third is good provided delegation is the right answer in
general. It adds a message send to all metadata framework collection
handling so has a slight performance impact.

Collection Evaluation Protocol
Someone wanted #(1 2 3) sum to return 6, #(1 2 3) text to return
‘123’. Reify so have CollHandler text: myColl, CollHandler sum:
myColl. You could give your collection subclass a type and use DNU plus
Type subclass: IntegerType to which you forward. He wants at the
moment one collection type and many types of objects in collections. Their
current solution is GCollection subclass: #IntegerGCollection
and GCollection new add: 1 causes an empty collection to be
constructed and then to become: an IntegerGCollection.

Reinout and Niall suggest dispatch to first element with default values for
empty collections. Roel and others recommended reifying the messages to
objects; it will be easier in the long run.

Design heuristics
Hernan Wilkinson has some rules he uses while designing and would
welcome review of.

• Use immutable objects as much as possible

• Validate all new objects when created (c.f. contrasting case of VW date
where you can change the year to anything just by resetting it)

• Wrap old objects in current objects rather than changing them

Reinout remarked that he uses flyweight for dates so these are good rules
for these situations. You can use these rules in maximum table sharing
situations. Katerina mentioned monads, Roel gave the book reference. As
soon as you need to share, you need to synchronise and then the model
becomes complex. Hashing is about storing things based on a value (must
be strictly nested hierarchical model). Get a ref to the same object via
flyweight. Hernan noted that a later deal is not the same as earlier deal.
These rules are not just for flyweight identity patterns.

Christian Haider said these rules simplify systems when applied to objects
that interface between subsystems: they make testing the two sides of the
interface very easy. He uses them and will give a talk on it in a later year.

Issue of validating when the context is needed, or when e.g. you create
three objects in a collection or in the slots of another object and only then
can sensibly validate them.

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 57
Equality in Serialisation
Lucas Renglii would like a way to implement = when there are no real
natural values to compare to. His WebDescriptions live in a dictionary
where they are the keys. Identity works fine but if he stores them to disc
and restore them then he must have =. Reinout suggested interning your
objects when you read them in after unmarshalling them from disc.

Set>>intern: anObject

Suppose the description objects consist of two strings and have been sent
out on disc. The two strings will be mapped to their unique strings in the
set and so the Description will be uniquely identified. This only works with
acyclic structures. If this will not work, e.g. because you have changed a
label, you must use identity.

Niall: use model location. Read them in, accepting they will be different
briefly, and then walk the model, unifying any descriptions that are pointed
at by identical model objects.

Immutables and Copy-on-Write
Petr had a copy-on-write issue. He has one million ordered collections
sharing an immutable object. Reinout: there is a special parcel that makes
it possible to share immutable data bits, designed by GemStone and given
to Cincom. Ask Eliot for it. Be aware it is experimental: Reinout has found
that the debugger will lock up more often than before with it loaded.

Protecting self
Petr also wanted to catch references to some kind of protected object, so
that self was always accessed through some wrapper. You could use
yourself or method wrappers or subclass via a lightweight subclass
(Hernan suggested this, c.f. John Brant’s ‘Unique Instances’ paper).

Lastly we reviewed the discussion. It was thought very useful. It was
suggested that someone should chair and determine who speaks.

ESUG Innovation and Academic Track
ESUG Innovation Award Demos

During the beer tasting, the eight entrants demoed at tables scattered
throughout the hall, after which we dropped our ballots in the box giving
our choices for first, second and third-best apps. (I note the person demoing
when I visited each table.) As I was wandering from table to table with
others, joining demos half-way through, etc., I could not take notes on my
laptop so the notes below are from memory.

Promoter, Noury Bouraqadi
Promoter is a Seaside app that lets you register your site with search
engines. It is easy to drive so users (like me :-) who know nothing about
registering with search engines can make it work.

WikiDoc, David Gorisec
This is a documentation system. To all the usual wiki capabilities it adds a
range of useful features: support for cross-references, etc.

58 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
Intensional Views, Andy Kellens
(See Kim Mens’ talk for a detailed overview of this system.)

When you browse an individual method or class in a classification, the
StarBrowser shows a Refactoring Browser with it selected. I suggested to
Andy that when a whole classification was selected, it should show a
(spawnable) browser on the environment containing just that
classification’s methods and/or classes. This in turn could be the basis for
using the StarBrowser as a tool for composing environments on which to
open a RefactoringBrowser or RewriteRuleEditor. Andy agreed that this
made sense and noted the idea for future work.

We also discussed saving extensional classifications built by users while
doing tasks. Classes and methods are easy to save. Instances may make less
sense to save and reconstruct. A user might be willing to live with saving
the classes of instances or some other simplified memory-trigger of them.

RoelTyper, Roel Wuyts
This year’s winner. See Roel’s talk for details.

SqueakSource, Lucas Renglii, netstyle.ch
SqueakSource has some 350 projects, probably indicating a thousand
users. It provides a web interface to Monticello. People and projects
register themselves, gaining keys they paste into Monticello to get access.

BottomLine, Jim Robertson, Cincom
The posting tool for Jim’s blog application, now a stand-alone tool usable
off-line and with WithStyle-empowered WYSIWYG editing. Jim also
presented the BottomFeeder and Blog apps. While demoing the referrers-
tracking system on his Blog, a delighted Jim suddenly discovered that he
had made Feedster’s 500 list today (at position 335)! From that moment, I
think he hardly cared whether he won the award or not; he had just won
something far more valuable to a blogger. :-)

From small beginnings this has grown to a very impressive system, and not
just technically. If Jim had thought for a year, he could not have made a
better choice than this suite of apps for something to build that would
empower a product manager. It’s a communication tool. It gives him the
valuable experience of being a customer of his own product. It is a
Smalltalk product that does something that vast numbers of people who’ve
never heard of Smalltalk want. It gets compared to rival apps built in other
languages in all the web-geek magazines, consistently scoring better on
supporting even more standards variants, etc. It plugs Jim into the growing
world of blogging, and because that world is exploding and he got into it
in what was still its relatively early days, that gives leverage.

Of course, Jim didn’t think for a year. He just likes to rant and has the self-
discipline to rant constructively, so was a natural to notice the blog-world
early and choose that for his application.

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 59
Moose, Tudor Girbe
Moose is a code analysis system and metrics tool implemented in
Smalltalk, integrated with the StarBrowser, able to analyse Smalltalk, Java,
C/C++ and COBOL. It presents the structure of the software graphically.
Classes are shown as rectangles, larger if they have many methods, tinted
to show few or many lines of code, coloured to show how a class evolved
over time (extracting information from Store).

AmlTalk, Jean-Francois Perrot
This Seaside-based system allows ecologists to define ecosystems and
simulate effects, interacting with them.

ESUG Research Track
Open Aspects, Robert Hirshfield and Stefan Hanenberg
Robert and Stefan have extended the AspectS system. In standard aspect
systems, the base model plus the aspect model produce the overall model
which is then compiled. In AspectS, an Aspect class might have a method
returning the result of

BeforeAfterAdvice>>qualifier:pointcut:beforeBlock:

(all taking blocks as parameters). You install / uninstall an aspect,
just as you would a method wrapper, to modify / restore the base model.

If you subclass or add a method after installing an aspect at a pointcut, the
old implementation of AspectS, in common with many other aspect
implementations, would fail to instrument the new code (so in the example
in his slides, mouseEnter and mouseLeave would not be caught because
they were not present at weaving time). Unweaving is similarly not done
when needed. OpenAspects fixes these. Another benefit is that changes to
aspects after they are installed (e.g. to add a counter) take effect in weaved
systems.

Robert then looked at adding components to weaved systems. Most
systems require intervention in such cases. OpenAspect supports policies
to determine if components are weaved, left unweaved, or prompt the
whole system being unweaved. Removing components similarly is policy
controlled: do nothing, withdraw aspect from whole system, or prevent
removal. Changing the aspect pointcut expression is also policy controlled.
OpenAspect uses a dynamic conditional model composition of the base
model, the aspect model and the adaptation model.

Implementation: The weaver takes the BlockContext, the AdviceQualifier
and the Receiver’s class and selector. Thence it populates the method
dictionary with method wrappers that execute the advice behaviour.
Previously, every installation of an aspect executed the pointcut expression
which placed the method wrapper in the system. Now we remember where
these wrappers were placed in the Adaptation and monitor (via system
change events) differences between the current pointcut evaluation and that
we obtained at weave-time. Any difference prompts a policy-controlled
corrective action such as prevent, unweave or allow.

60 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
They have also improved the weaver.

Q. How to decide what policy to use? Application dependent. Default
should be system always matches current pointcut.

Q(Niall) is security one application? That was the original motivation of
the work. Prevent key code being uninstrumented, ensure the system
remained secure as it evolves, etc.

Towards Unified Aspect-Oriented Programming, Noury Boraqadi,
Djamel Seriai, Gabriel Leblanc
Noury summarised aspect-oriented programming as a technique of coding
orthogonal properties (functional, logging, security, etc.) separately, the
code being integrated (‘weaved’) by the aspect system. The application
core is the unaspected functional code. Aspects crosscut these core classes
by altering the application structure (add new classes and methods: static
cross-cutting) or execution flow (change e.g. message dispatch: dynamic
cross-cutting).

AspectJ has serious limitations. They provide different constructs for the
two kinds which causes unwanted complexity and also seriously obstructs
reuse. It also fails to handle all possible conflicts between aspects.

Noury explained mixin-based inheritance, an alternative to multiple-
inheritance that avoids the code duplication of single inheritance and the
problems of multiple inheritance. His implementation generates implicit
classes into a Smalltalk single inheritance tree. The developer sets the order
of mixins which becomes the order in which implicit classes are inserted
into the single inheritance tree.

A reflective language gives access to its own semantics. The program
handles the base level, the evaluator handles the meta-level. A meta-object
gives access to base classes. He showed a ‘noury’ instance of class Person
with method sayHello, and instance logMetaObject(#sayHello) of
LogMetaObject recording the execution of sayHello on instance ‘noury’
of Person.

With this terminology established, he explained two Aspects X and Y, with
Y having one Mixin and X two. For each base level class, the weaver
applies the mixins. Thus base class C has mixins X3 and Y2, and ‘C meta’
has Mixin X2 and Mixin Y1. Instances c1 and c2 of C have metaobjects ‘c
meta 1’ and ‘c meta 2’, both instances of ‘C meta’. (Looking at the slides’
diagrams while reading this paragraph may help. :-)

The weaver puts static crosscutting at the meta level and dynamic
crosscutting at the base level.These unified aspects are application-
independent. Weaving evaluates preWeaving scripts, does the standard
linking of mixins to classes and then runs some postWeaving scripts.
Because the two kinds of crosscutting use the same approach at base and
meta level, reuse is as easy (much like moving code from class to instance
side). Mixin conflicts are handled by the ordering of the mixins.

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 61
They need to study whether evaluating all pre/post-weaving scripts
before/after mixing mixins is sufficient or needs to be more configurable.
They have built a framework for weaving; they must marry it with an
expressive language for weaving. They should look at persisting choices
across application rebuilds. They want to think about finer-grained
weaving at the method and instance variable level.

Q. Why mixins, not just extensions? Two reasons: you may need to change
the class structure (i.e. add instVars) and you may want to handle conflicts
by ordering; extensions cannot be ordered.

Q. AspectJ versus your system? Noury has examples of how reusing even
simple aspects quickly becomes complex in AspectJ.

Q. (Remark: some people in Bonn are trying to extend AspectJ with a logic
language to solve the reusability issues.) Granularity? Tom Mans has a
very good paper on mixins, encapsulation and granularity.

Q. Traits work suggests that ordered composition is not enough for
‘classical’ use of mixins? Alex is working on inserting state into Traits
whereupon Noury may switch to using it. Until then, he must use Mixins
to insert state.

Q. Scripts? Standard smalltalk code.

Inter-Language Reflection, Kris Gybels, Maja D’Hont, Stephane
Ducasse, Roel Wuyts
Inter-language reflection is a combination of traditional reflection and
linguistic symbiosis, the latter meaning that two programs can manipulate
each other as data. Work has already been done on each of these at Proglab,
e.g. in SOUL. The new work applies them to maintaining causal
connection.

The motivation is that ProgLab has been studying writing declarative
programs and meta-programs for some years. There is no need for the base
language manipulated by the tool to be the same as that of the declarative
meta-program. Tyruba is a logic programming language for reasoning
about Java. It parses Java programs into a set of logic facts. You can then
write rules to extract more information, e.g. to recognise a double-
dispatching pattern. Because Tyruba is not Java, there is no causal
connection between the modelling program and the base program, unlike
in Smalltalk where the two are the same.

Their goal is to maintain the causal connection while still using different
programs for base and meta representation, and ideally to let either
manipulate the other.

In SOUL, causal connection was maintained by rules that exploited
Smalltalk’s reflection. He showed the code, which had a key piece of
reflection-exploiting Smalltalk embedded in its logic rules. Thus SOUL
and Smalltalk are each individually reflective and you have a protocol

62 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
mapping of meta-representations between the two.

SOUL’s model was applied in ProgLab’s tools RBCL (for C++) and Agara
(for Java). Agara is a prototype-based language unlike Java. He showed
code installing a listener on a Java object in Agara.

Maja has worked on applying logic rules in SOUL, for how customer
loyalty is mapped to discounts, to a Smalltalk application for managing
purchases. She has Smalltalk code (to discover if the customer has a store
charge card) within her logic rules.

To achieve the same generally, they need Java objects to appear in Agara
and conversely. This is done by a common meta-level language that has
two meta-level interpretations (one for Java, one for Agara) and a protocol
for mapping between them. However message sends in Java are dispatched
on an argument’s static type, unlike in Agara. They dealt with this by
letting Agara methods include argument types in their name. A second
issue is that travelling to Java from Agara and back should return the
unwrapped meta-object, not a double-wrapped one.

In SOUL, Smalltalk objects are unified if they are equal in Smalltalk’s
semantics. SOUL is implemented in Smalltalk, which therefore acts as the
common meta-level but this can cause confusion. In Java, you don’t have
access to the full meta-level so you must first wrap the base-level object.
This wrapper maps base-level Java objects to meta-level Agara operations
(i.e. you get a message send to an object, not object send: #message.

Q. Relationship with CORBA, .Net? CORBA and .Net choose one
language to be dominant and all others must map to this. It must also be
done on the base level since they have no idea of reasoning about meta-
level differences.

Q. Java’s limits mean you in practice make Agara dominant? Yes, Agara to
Java is a map down from meta to base. The clear separation in Agara
between base and meta keeps the overall mapping clear.

Q. The Piccola language (maps from Java) uses optimisations; could your
approach reason about these? Discussion.

Q. Writing business logic in a logic language is attractive; how would the
idea scale? Ask Maja. The work aimed to improve the SOUL-Smalltalk
linguistic symbiosis so if later you decide your logic will be better in
Smalltalk, it is easy to take the rule to a method without rewriting anywhere
it is invoked.

Runtime Bytecode Transformation for Smalltalk, Stephane Ducasse,
Eric Tanter, Markus Denker
Transforming bytecodes can let you adapt your system to e.g. a new
platform, trace it for debugging or add new language features. Smalltalk
lets you add methods and classes at run time but you have no means of
changing a method body other than overwriting the whole. ByteSurgeon

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 63
lets you change parts of methods. It runs in Squeak and should be easy to
port.

Changing bytecode means

• you don’t need to change the VM

• you don’t need the source

• you could operate on other languages that compile down to Smalltalk

• it has better performance by minimising what is changed to just part of
a method: their benchmarks show excellent performance.

He showed various examples. The simplest was just to add code to the
send, e.g.

(ExampleClass>>#aMethod) instrumentSend:
[:send | Transcript show: send selector printString]

You can also insertBefore:, insertAfter: and replace:. So using
insertAfter: counts only sends that actually complete. You can
concatenate strings to construct code but it is ugly so they wrote a simple
quasi-quoting method insertAfter:...using: aNameDictionary
to get the bindings of variables in the method.

ByteSurgeon provides meta-variables to let you access vars on the stack,
e.g. the receiver is accessed in

instrumentSend:
[:s |
s insertAfter: ‘Logger logSendTo: <meta: #receiver>’]

Smalltalk has scanner/parser sending AST to a code generator. Squeak has
a two-phase code generator that translates the ST to a simpler intermediate
representation from which code is generated (this IR could be the same in
VW and Squeak). They worked on the IR, which was much simpler than
the AST would have been.

MethodWrapper with ByteSurgeon is 6 times slower to install but 40 times
faster to execute.

Marcus showed a simple meta object protocol, written in ten lines of code
(see slides).

ByteSurgeon has shown that bytecode can be usable but ASTs have some
nice properties; they want to review the level at which they act. A project
to implement a very fine grained meta-object protocol is ongoing. A newly
started project is the OmniscientDebugger.

Q. Make method wrapper available with same public protocol (for apps
where you want to trace without hitting performance)? Can do.

A New Object-Oriented Model of the Gregorian Calendar, Hernan
Wilkinson, Maximo Prieb, Luciano Romeo
Hernan teaches Smalltalk at the University of Buenos Aires and also works

64 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
for Mercap. Time is key in many domains. The Gregorian calendar is the
one used in the financial domain. The irregularities of the Gregorian
calendar (month lengths, leap years) cause many problems. You need to
manage time precedences, lengths, and subintervals. You need to
distinguish kinds of time: working days is the most obvious. He demoed by
executing various time expression examples.

The existing applications have problems. Smalltalk80 uses symbols for
days (so #monday > #friday). In VA, everything is a calendar and it’s very
hard to see what you are dealing with. (Java is worse; he read the whole
documentation for the Java calendar class and could not find how to create
a date!) Squeak is best but uses too few too powerful classes: for example,
you can ask today how many days it has.

Their metaphor starts with time’s hierarchic granularity: GregorianYears
have GregorianMonths have GregorianDays have DateTimes. These are all
subclasses of PointInTime, a subclass of IntervalAwareMagnitude.
GregorianLeapYear is a different class to GregorianNonLeapYear and that
is how they handle irregularity. DateTimes simply encapsulate a date and a
time.

Some time are circular, e.g. the months go from January to December
thence to January and so round again.

Q. Days in February in leap year? The instance of the month February
double-dispatches to its year.

Measurements model distances between time. Measurement has an amount
and a unit. He selected various expressions to demonstrate.

(January distanceTo: February) = 1 month.
(January 2005 distanceTo: February 2005) = 1 month.
1 year + 6 months = 18 months.
5 days + 3 weeks = 26 days.
1 day + 1 hour = 25 hours.

By contrast, 3 months + 5 days returns a measurement of these two
incommensurable entities. 0.1/(1 year) = 0.0333333 months.
Their base calendar can then be subclassed to add more units such as
Decade.

They have MCPInterval. (Q. Why not TimeInterval?) They model the
beginningOfTime and theEndOfTime which are very important (but he has
not the time to explain why :-).

holidays := TimeLineView
addDayRule: Saturday;
addDayRule: Sunday;
add: August first;
...

They can filter points on timelines, apply them to intervals, etc.

They need to expand their Timespan protocol. There is no singleton pattern
yet; they know they will need that in GemStone.

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 65
Q. Kent’s paper on multiple timelines to handle the time-related errors and
corrections and putting-retrospectively-in-force of corrections that real
systems need? Yes, multiple timelines is something they will have to
model.

Q. January special? Yes, the circularity is better modelled with a special
class.

Q. Locate problems: e.g. first day of week, time zone? You can set which
day of the week is first. They have not yet completed TimeZones; should a
day compare equal to a day in a different TimeZone or not?

Q. Beginning of time? It is a transfinite, so will always return itself to
operations, as for Infinity.

Q. Available? They are considering making it open.

Towards a Taxonomy of Unit Tests, Markus Galli, Oscar Nierstrasz,
Software Composition Group, Bern
Markov worked for 6 years in OS Smalltalk programming, where it
annoyed him to have two browsers, SUnit and the class browser where the
code being tested was displayed. More seriously, the test is easy to write
but the scenario can be hard to set up. His goal is to make it easier to
navigate from tests to methods, and to compose tests into test scenarios.

Romain Robs wrote a Squeak BrowseUnit tool that lets you navigate from
a method to all unit tests that call it. It is good to have but will often show
tests in which your method is being used as a given, not really being tested.

He starts by classifying tests into those focusing on a single method and
those which do not. The former split into those that don’t expect exceptions
and those that do, and he splits the former into one-method tests and what
he calls test suites [Niall: seemed a non-standard usage of this term to me]
that have many asserts. 53% of Squeak’s tests check exactly one call of a
method under test. The latter he splits into optimistic and pessimistic tests,
based on whether they seem to expect success or not.

His multiple-method commands split into those that apply the same
scenario to a range of commands, and the others

Multi-faceted test suite: Constraint tests look at the interplay of methods,
no one being the main subject.

Cascaded tests reuse the results of one test in another (e.g. test encoding
works, then that decoding returns original).

He noted that tests can return results [Niall: mine often do]; VOID has no
meaning in Smalltalk.

He showed a five-pane Squeak browser of methods and the tests calling
them. (Delay here while he tried to reset the screen to have a small enough

66 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
resolution to show it.)

Q. Use dynamic coverage? He does (important point)!!! Thus his browser
is showing tests that exercise a method, not just that call it at top level.

Co-evolving Code and Design with Intensional Views, Kim Mens,
Andy Kellens, Frederic Pluquet and Roel Wuyts
The tools were demoed in the awards track. This talk focuses on concepts.
Intensional views and relations aim to document the high-level source code
structure in an active way, i.e. you can run the intensions against your code.
They did a case study: document initial version of system, rerun after small
evolution of one month, rerun again after large evolution of one year.

Typically when you want to change a system you want to focus on a subset
of all application code. Roel’s StarBrowser lets you define intensional and
extensional classifications. Suppose a bank application has the idea of
BankCards and BankAccounts. You can put all subclasses of BankAccount
in an extensional view or define an intensional view of it (more robust).
SOUL (see talk above) can be used to define intensional views. You can
define different definitions that you think equivalent of a given intensional
view and check they are extensionally consistent (i.e. that they find the
same contents).

Your views will be related. All Account-changing methods should call
persistence methods for example. This can be expressed as a logic relation
using the standard quantifiers (for-all, there-exists, plus some they added:
most, a-few, etc.)

Their toolset integrates seamlessly with VW7.3, using the StarBrowser,
SOUL and Moose. Tools let you define your classification relationships,
see which relationships break (like a unit tester). Colour-coding sorts
derived, user-defined and broken.

SmallWiki was their case study.

• A manual code review, recording all interesting classifications they
noticed, had 15 views, 15 nesting views and 17 relations (and revealed
some small bugs, inconsistent protocol uses, etc.).

• After a month, there were several red lines. Some were just renamed
classes or new classes. Sometimes exceptions they had flagged were
fixed and so now the rule showed red because the exception was now
in the view.

• After a year, it was much the same, probably indicating that SmallWiki
was stable and well tested.

It showed them what had changed.

Why use SOUL? He showed an example where the SOUL was 3 lines and
the Smalltalk was 17 lines. Mixing the languages worked best.

They are thinking of using line thickness to convey information, e.g. how
important is this relationship. They want to mine source code for views.

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 67
They want to understand how scalable the tool is; will it be better to look
at subsystems of a large system?

Q. Can I version my views in Store? Yes they are stored in class methods,
so can be put in any SCM system.

Q. Can I put views in views to handle my large system? Yes, he thinks that
can be done. You’ll need mining to handle a large system.

Q. How to mine manually; do you have any rules? They are thinking about
mining so have not yet written up a methodology.

Q. (Niall) There is an alternative to mining source code. Test-driven coding
helps the user code faster up-front and incidentally builds up a refactoring
suite. Similarly, the StarBrowser lets the user grab classes, methods,
objects, tests, etc. while solving some task. If you provided an easy way to
save such extensional collections, or parts of them, under memorable
names, the user would be grateful: a month later, when doing a similar task,
they could recover the classes and methods they found relevant last time
from the StarBrowser, not from their memory. Meanwhile, you would have
a set of saved collections that would be the basis for intensional analysis.
So what do you think of mining user actions? Yes, some work has been
done by Andy Murphy and others (using their tools, which are similar).

Microprints: a Pixel-based semantically-rich Visualisation of
Methods, Romain Robbes, Michele Lanza and Stephane Ducasse
Romain considered human limitations to visualisation techniques. A
picture may be worth a thousand words but when starting to look at an
unknown code base, a UML diagram is often worth rather fewer. Syntax
highlighting can also be used and Moose provides a variety of polymetric
views using size shape, connections, etc., to convey much data.

Humans impose limits. Colours cannot be too close to each other or too
numerous. Past a certain point, too many annotations (strikout, underline,
etc.) start confusing rather than helping. The microprint approach assumes
that it is easier to merge information rather than to sort it out. Thus you
should offer many code views (variable access, control flow, object
interactions, code coverage, etc.), not a single much-annotated view. Since
all the views now risk becoming excessive, you have a main view and
many stacked reduced-size views.

He showed a browser of the main pane and views stacked in the RHS code
pane. The stacked views were massively reduced in size but colour-coded
and preserved the method’s format shape so some understanding of where
the colours were in the main method was possible (c.f. thumbnails).

Romain showed some example. The lazy initialization pattern can be easily
spotted in the microprint, as can ordinary initialization, early guard clause,
and (probable) pure utility method.

Alternatively you can look at microprints from CodeCrawler (usual demo

68 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
hiccough; not on right screen to invoke at first), seeing the microprints
within CodeCrawler boxes. This can help to spot duplicated patterns or
maybe code.

Implementation: microprints use the RBParser, the RB’s AST and their
visitors. Each microprint is a colour-to-mapping marker. Markers are
subclasses of RBProgramNodeVisitor that mark nodes matching their
criteria with the appropriate marker. Sometimes a node will match two
marking criteria so they must have a priority. It is easy to create new
markers and self mark: a Node or self mark: aNode value: v
(the latter capturing an integer metric).

Q(Joseph) Visualisation needs standard code formatting. Do you do this?
They keep the method’s format but do not reformat at present. Joseph
learned from Kent to reformat code when mastering an unfamiliar code
base.

Q(Christian) Easier to merge than to sort; is this true? Stephane has asked
this question of himself.

Q. Markers definable only for individual nodes or for patterns of nodes?
That is possible (RB nodes know their adjacent nodes) but it has not been
done. You can also find larger patterns using the Rewrite framework and
he has coded the means to do this.

Q(Niall) Agree with Christian in general but there will be tasks where the
side view of e.g. variable access will be valuable. If it’s an optional non-
default code tool in the Refactoring Browser, we’ll find what it’s good for
in time.

Other Discussions
Mercap uses single-access merge integration procedure; you have to get
the token and then you can merge. This resembles Lifeware’s remotely-
accessed integration machine; only one person can share to it at a time.

John McIntosh described recent work for a client in Ottawa. His client had
300Mb images; John realised that perm-saving the image would reduce the
amount of fresh daily loading from 6 million objects to some 300,000, by
doing some timestamp comparison. This saved 5% of startup time which
was worth doing. The client stripped their image because ParcPlace had
required them to do so years ago; they were pleased to start just hiding the
development tools (until the developers needed them to debug a production
problem). The client uses the old trading software from integral solutions
(the company that turned itself into a fossil by obeying its investors’ and
managers’ decision to switch to Java; see my ESUG2000 report).

Christian Haider has been contacted by Romax, who were pleasantly
surprised by his not-too-alarming estimate of what a port from VSE to VW
Pollock would require.

Andy Berry is working as a technical architect.

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 69
Alfred Wulshlegel has back-ported code to allow GemStone 64 to run with
his VW3 image. Swiss National Bank’s performance limits are all on the
GemStone side, not on the VW side, so they feel no need to upgrade from
VW3 yet; other tasks take priority.

Ian Prince, like many, was forced out of Smalltalk in the mid-90’s. He got
back into it by discovering Smalltalk wikis, and then Seaside.

Through pairing with Avi in Camp Smalltalk, Mike Roberts has gained
insight into Seaside idioms. He will use it for some internal webapps, and
present on it internally.

Maximal Usage of Tree Structure, Alfred Wulshlegel, SNB
Alfred gave me an overview of a tree structures utility used in many places
in his system. The system defines forms saying what data is of interested
and how structured. Messages come from banks supplying this data: state
of current accounts, deposits, etc. The archive has 1.5 million messages.

Open message to add rows. One observation is one coordinate tuple with
typed value (types are number - no float/int/... distinction - enumeration
and date). He showed a Form with 80 observation positions (defined data
values) in its matrix and an example message with 36. They will not accept
messages that do not match the data model defs (i.e. the defined positions).

The Message object is the basis (and was defined long ago). Alfred brought
up a new tree (folder-like icons). The second tree was a tree of forms;
double-clicking opens a set editor. This has two panes: above has time
intervals; below, when interval selected, you get the data for that period e.g.
what form must banks use for reporting during a given time period. The
row between varies according to type of data e.g. showing columns.

The system knows nothing about the economic meaning of the data it
manages: a number is just a number and a tree node is just a tree node.

A second dimension of data is who is obliged to supply data (all Swiss
banks). You can expand an interval to show what has changed in a time
period (how many banks there are, which have been added, which have
disappeared, and then can see what those banks were). All things are set-
based so users never have to learn new ideas of how to browse.

Third dimension: when must information be supplied. Legal requirements
keep that simple (20th of month, every 3 months, biannual, etc.) plus some
special ones (e.g. end-April three years after 1998).

These are put together in erhebung (inquiry), of who, when, what
(definition) (date, subject, form). He showed a period change; 6 month
reporting changed to 3 month reporting.

Subject is implemented as a tree structure (composite pattern). He showed
the tree structure and the form generated from it (laid out as a typical form).
Tree structure elements know whether to display themselves or their

70 CS10 and ESUG 13, Brussels, August 13th - 20th, 2005
contents. Paging is done so that a form can cover multiple pages (to lay out
all elements well). There are also other browsers to see the definition of
each element of the three in the RHS. He selected one leaf element and
showed the dynamically-constructed form for just that element. Colour
coding shows the types of elements, and icons show e.g. whether they can
be temporalised (vertical bar) or are temporal (horizontal bar). The periods
of invariance are shown (for tree and for selected subtree). You can supply
a date and see the tree at a given date.

He showed a node that could be added to (red colour) and clicked to add.
It provided the list of what node types could be added to this type. He tried
to add one to trigger a warning (‘instance already supplied of that one-only
type’). Shadow icon means ‘structure can be duplicated’.

Trees can control the modification of trees into other trees. He opened the
configuration editor (only for power users). The tree of this editor contains
a range of tree-homomorphic structures. He opened one of three elements
that were extracted from the tree. Thus it both presents certain attributes
and adds data to those attributes. A typical example would be exporting to
a relational database; the homomorphism selects the elements to export,
the names of the tables to export them to and the grouping, etc. Generating
SQL is then trivial.

From time to time the customer wants to change the form, not just for new
banks but for all banks, and they want to look at past data in the new form.
Banks vary in how much data they must supply and therefore what tree
they have; large banks must report much, smaller banks need report less so
have a simpler tree. The tree defines each bank’s reporting requirement (the
law classifies banks to define what they must report). The application in
which he first developed this utility (for the Swiss police) had 150
templates. For banks there is essentially just one but some subtrees don’t
apply to small banks so are removed from the trees of individual banks.

Delta trees morph trees by applying a user-created delta node that
transforms all trees by adding specified new elements (or deleting - rarely
used but done for removing titles). They use names (associations of
affinities), not direct pointers, and the transformation nodes hold the names
of the nodes they will transform and are underneath their clones in tree. The
presence of a node in a delta tree tells it that all trees with that node will be
transformed. The children know which node to transform by name
reference, not by being children, but having them there makes them easy to
find, so it is easier to leave them in that structure.

He then showed using a tree to define what a tree was, thence generating a
form, thence creating a tree. They have used this to define which
configuration was in production by extracting the current production to the
form the configurer was editing. Their configurer has said it was a huge
relief to know that he was working from the current production state.

Alfred opened the nodes field layout form and edited it (based on a grid of
80 character positions per line and changeable defaults on when to have a

CS10 and ESUG 13, Brussels, August 13th - 20th, 2005 71
new line for new elements). Trees have RSSets wrapping them (see
Alfred’s talk at ESUG2002) so you have security on them.

Next he looked at trees which hold rules to verify forms. The system
automatically generates a tree that applies known rules to form elements.
He added a program node and thence created a tree with a data-defining
node, an ‘exists’ operator node, and a severity node. The resulting form had
a text field where you could say what the meaning of the rule was. He then
generated a test tree. This added a node to the rule tree that could be run to
show whether the tree was correctly constructed. The test tree can then run
over real data of the appropriate time period to verify the rule is satisfied.

The final type combines subject info (a homomorphic tree) plus test tree to
create a report.

To Do
• Ask Noury for mixin code in VW.

• Discuss full RB and Envy integration in VASmalltalk7 with
Instantiations.

Conclusions
My seventh ESUG and a lot of fun. Having a large room that doubled for
Camp Smalltalk and for coffee breaks, demos, etc., meant that Camp
Smalltalk went well.

* End of Document *

	Style
	Author’s Disclaimer and Acknowledgements
	Summary of Projects and Talks
	ESUG Administration
	ESUG Programme, Roel Wuyts
	ESUG Activities, Stephane Ducasse
	10 reasons I hate Smalltalk, Theo D’Hondt, dean of the university
	ESUG Business Meeting
	ESUG Conference Administration

	Camp Smalltalk 10: Project Summaries
	The Custom Refactorings and Rewrite Editor Usability Project
	SUnit
	Other Projects

	Web Frameworks
	WithStyle: opening a new frontier on the Smalltalk user interface, Rowan Bunning, Software WithStyle
	SmallWiki and Magritte, Lucas Renglii, netstyle.ch (www.netstyle.ch)
	Advanced Seaside I, Lucas Renglii, netstyle.ch (www.netstyle.ch)
	Advanced Seaside II, Lucas Renglii, netstyle.ch (www.netstyle.ch)
	Seaside Testing Framework, David Shaeffer, Department of Mathematics and Computer Science, Westmi...

	Applications
	Rule-driven Workflow Enactment, Adriaan van Os of Soops and Tim Verwaart of LEI
	Robots, Serge Stinckwitch
	Smalltalk and Hardware, Bernard Pottier, LESTER Architectures and Systems - University of Bretagn...

	Analysing Smalltalk
	Typing the Image, Roel Wuyts
	Understanding your code assets with Moose, Stephane Ducasse, Tudor Girba and Adrian Kuhn of the S...
	Intensional Tools, Frederic Pluquet, Universite Libre de Bruxelles

	Developing Smalltalk
	SCRUM: Mastering your Process, Joseph Pelrine, MetaProg
	Cooking with SUnit, Joseph Pelrine
	Cincom Smalltalk Business, Suzanne Fortman, Cincom
	Teaching with Squeak, Rite Freudenberg, University of Magdeburg
	Fun with Programming, Stephane Ducasse
	Scratch, Mike Reuger
	Benefits and Risks of Service-Oriented Architectures, Andy Berry

	Environments and Tools
	OmniBase, David Gorisec
	GemStone 64 bit, Adriaan van Os, Soops
	VASmalltalk Going Forward, Mark Johnson, Instantiations
	The Squeak VM: Exploring Garbage Collection; a view from 10,000 metres to the bits, John McIntosh...

	Design Discussion
	Collections in Meta-Data Frameworks
	Collection Evaluation Protocol
	Design heuristics
	Equality in Serialisation
	Immutables and Copy-on-Write
	Protecting self

	ESUG Innovation and Academic Track
	ESUG Innovation Award Demos
	Promoter, Noury Bouraqadi
	WikiDoc, David Gorisec
	Intensional Views, Andy Kellens
	RoelTyper, Roel Wuyts
	SqueakSource, Lucas Renglii, netstyle.ch
	BottomLine, Jim Robertson, Cincom
	Moose, Tudor Girbe
	AmlTalk, Jean-Francois Perrot

	ESUG Research Track
	Open Aspects, Robert Hirshfield and Stefan Hanenberg
	Towards Unified Aspect-Oriented Programming, Noury Boraqadi, Djamel Seriai, Gabriel Leblanc
	Inter-Language Reflection, Kris Gybels, Maja D’Hont, Stephane Ducasse, Roel Wuyts
	Runtime Bytecode Transformation for Smalltalk, Stephane Ducasse, Eric Tanter, Markus Denker
	A New Object-Oriented Model of the Gregorian Calendar, Hernan Wilkinson, Maximo Prieb, Luciano Romeo
	Towards a Taxonomy of Unit Tests, Markus Galli, Oscar Nierstrasz, Software Composition Group, Bern
	Co-evolving Code and Design with Intensional Views, Kim Mens, Andy Kellens, Frederic Pluquet and ...
	Microprints: a Pixel-based semantically-rich Visualisation of Methods, Romain Robbes, Michele Lan...

	Other Discussions
	Maximal Usage of Tree Structure, Alfred Wulshlegel, SNB
	To Do

	Conclusions

