
Smalltalk Conferences in 2009 1
Smalltalk Conferences in 2009
This document contains my reports of
• the ESUG conference in Brest, August 28 - September 4th, 2009 (and

brief mention of the Camp Smalltalk before it)
• the virtual VASmalltalk User Group conference, April 21st - 22nd,

2009
I have put these two conference reports into a single document.

Style
‘I’ or ‘my’ refers to Niall Ross; speakers (other than myself) are referred to
by name or in the third person. A question asked in or after a talk is prefixed
by ‘Q.’ (sometimes I name the questioner; often I was too busy noting their
question). A question not beginning with ‘Q.’ is a rhetorical question asked
by the speaker (or is just my way of summarising their meaning).

Author’s Disclaimer and Acknowledgements
These reports give my personal view. No view of any other person or
organisation with which I am connected is expressed or implied. The talk
descriptions were typed while I was trying to keep up with and understand
what the speakers were saying, so may contain errors of fact or clarity. I
apologise for any inaccuracies, and to any participants whose names or
affiliations I failed to note down. If anyone spots errors or omissions, email
me and corrections may be made. My thanks to the conference organisers
and the speakers whose work gave me something to report.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
Although you can fly direct to Brest, I reached it by flying to Paris and
onward by train. After a brief tour of the adjacent buildings, I managed to
locate the one where the Camp Smalltalkers were staying. :-)

Instantiations hosted a drinks party in the hall on Monday which was a
pleasant companion to getting demos from the award entrants. We had a
wine tasting evening on Tuesday, hosted by a majordomo who knew a vast
amount about wine, albeit fewer of the English translations; perhaps some
of the terms have no English translations. I learned more ways of
classifying and assessing wine than I thought possible, and that you can
make red wine from white grapes by leaving in the skins.

The prizes were announced during a tour of the Brest Rade (i.e. the
maritime approaches) on Thursday, during which we saw the islet on which
the ancient celts buried their dead. We also saw the French navy’s nuclear
submarine base and were warned not to take pictures of it - but only after
we’d gone past it and had already taken pictures. :-)

2 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
Summary of Projects and Talks
I give the Camp Smalltalk 14 summary, then the ESUG activities reports
(including the awards presentation ceremony). Next I summarise the
conference talks, sorted into various categories:
• Smalltalk Development Environments
• Web Development Frameworks
• Coding and Testing Tools and Techniques
• Smalltalk and non-Smalltalk
• Managing Smalltalk Projects
• Applications and Experience Reports
• Reflection and Meta-Data
followed by the 10-minute talk track and Other Discussions. Talk slides are
reachable from http://vst.ensm-douai.fr/ESUG2009Media#slides.

Camp Smalltalk 14
Camp Smalltalk 14 ran for Saturday and Sunday before the conference, and
during the conference breaks, afternoons and some evenings of the five
conference days. There were 25 people there by the first afternoon and
several 10s of people attended first to last. All dialects had an active project
(except Dolphin; Tim MacKinnon will port the SUnit latest to Dolphin).

I paired with Thorsten to port the latest version of Magritte. Thorsten also
worked on porting a photo-management app to VW 7.7. This prompted us
to pair on an SQLite interface for Glorp, essential now upcoming VW 7.7
uses Glorp for Store, since Thorsten had his local Store in SQLite. Thorsten
made version one of the interface and I made Glorp mappings to SQLite’s
very limited time types. (I completed this afterwards; it’s in VW 7.7.)

For the Custom Refactorings and Rewrite Editor Usability Project, I paired
with Michael on his SUnitToo coverage tool which needed minor tweaks
to fit into the RB in VW7.7. Michael then applied it to Seaside 2.9, seeing
70%+ coverage, which was what he expected. Based on his experience
over many projects, Michael says you should never use code coverage as a
management metric; you should use it to review and understand your code
(his tool colours the code run/not run). To get 70% coverage via tests is
easy. To get the last 30% is often easier via manual testing.

Most of the time I worked on porting the SUnit project’s latest resource
work - see my talk - to other dialects, helped by Michael’s publish-to-
Monticello VW utility, and by Yuri Mironenko and others.

A good many, like me, were working on tasks they later gave talks on, so I
have integrated most remarks into those talks or into ‘Other discussions’.

Cloud computing was being done, both by Ernest (see his Cloudfork talk)
and by the PetroVR people doing monte carlo computations using Amazon
services. Moose was being ported to Pharo while Jannick and others were

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 3
using it to analyse software for code dependency cycles, etc.

Lucas, Julian et al were working on Seaside 2.9. Lucas ported 2.9 to Pharo,
helped by Pharo’s many bugfixes (meanwhile Stephane et al were working
on Pharo adding to these). Julian was redesigning the debugger to run in a
different Seaside session. Michael worked on a rich text editor (Javascript),
usable in Seaside in more browsers than the current one. Philippe was
generalising HTML-specific methods. Adriaan and Soemirno were
polishing the Seaside-powered VastGoodies.com site.

Dale, Monty, James and Martin were working on Metacello, on importing
Seaside into Maglev using Metacello, and on a Cocoa installer / UI for
GemStone on MacOSX, an alternative to Gemstone’s usual command-line.

ESUG Activities Reports
Conference Welcome and ESUG Activities Overview, Stephane
Ducasse, Noury Bouraqadi
Stephane thanked the sponsors (see their logos on http://www.esug.org/
conferences/16thinternationalsmalltalkjointconference2008); there was a
time when he had to work hard to get any. Now the slide is covered with
logos. He also thanked the local organisers, Loic and Alain (and gave them
jars of caramel with salted butter, a delicacy). He showed a slide from
Asterix - we have gone further than that famous Gaulish village to get here.

This is a second largest ESUG conference ever: 143 participants. There are
tutorials on Advanced Seaside, SqueakNos, Aida - in parallel tracks to the
talks. Yes, Stephane can’t be in two places at once either: life is about
choice. :-) The ‘Show us your projects’ session gives people 10 minutes
each - exactly 10 minutes, so when the audience starts applauding, that
means you time is up.

Stephane asked how many were attending their very first ESUG? Quite a
few hands were raised. He urged us to use the student volunteers as the first
point of contact for any questions about either the conference or the local
area, and also urged us to help the students get in touch with the Smalltalk
community by showing them our projects.

ESUG sponsors Smalltalk in various ways:
• ESUG can sponsor presentations of Smalltalk, i.e. pay travel expenses,

etc. In international conferences, 8 papers in 2008 and 4 up to now
(including best papers at OOPSLA and ECOOP!).

• Squeak Pharo runs on the iPhone; they paid John McIntosh to make it
so.

• SummerTalk2009: SqueakOpenDBX, Safara (new text editor)
• ESUG sponsors student volunteers, so they can attend, meet the

community, network.
• They sponsor other conferences: this year, they sponsor the 3rd

conference in Argentina.
• Old ESUG conferences since 1993 are online.

4 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
• They have sponsored some books;
• ESUG sponsors free Seaside hosting (handled by netstyle.ch).

http://www.seasidehosting.st. (will support pharo soon).
If you want to do any of this, ask: they will reply to let you know if they
will sponsor.

Attending ESUG is how you sponsor all this. (Registering late is how you
sponsor even more. :-) Next year, they are thinking of holding ESUG in
Barcelona. Any interested would-be local organisers please contact them.

Speed dating at ESUG
The networking at ESUG is very ad-hoc; can we do anything about that? If
you’re shy and don’t want to network, no. For the rest, perhaps we could
set up a game or other interactive way of connecting. Or, could we get one
minute each to say who we are, what company and our name and email -
Stephane has often realised only 1/2 way through the conference that this
badge name = that email. We did “who I am and why I’m here in one
minute” over one lunch.

Smalltalk Awards Ceremony, Noury Bouraqadi
Awards advertise Smalltalk. Any work in Smalltalk (or related work, e.g.
on a Smalltalk VM) is eligible, free, commercial, hobby. Think about your
entries for 2010. Stephane wants next year’s award entrants to do 5 minute
videos, not (just) PDF documents.

There were 6 entries at Kothen in 2004, 9 at Brussels in 2005, 11 in Prague,
15 in Lugano, 20 in Amsterdam and 21 this year. VW had 8, Squeak 7,
Pharo 3, VASmalltalk 2, VisualSmalltalk 1, GNUSmalltalk 2 (some entries
were on multiple dialects). Argentina, France and Germany tied for first
place as regards numbers from given countries. 10 were free, 11 licensed.
8 developers were academics, 7 were commercial and 5 were hobbyists.
Entries included WebVelocity, Glamour, WikiServer&ObjectiveCBridge,
Citezen, JavaConnect, Retrobjects, PetroVR, VisualGST, SqueakNOS,
BoBus (interacting with city lines), NXTalk, HRworks, PhidgetLab,
SqueakDBX, SqueakNxt, Iliad (web framework), PuissanceQuattre,
SqueakSave, BizPro Launcher, SageTea Developer and EVA.

The winners were:
• 1st prize (500 euros): Retrobjects (commodore 64 emulation; let some

of us play some well-remembered games)
• 2nd prize (300 euros): PhidgetLab: Etoys, control of sensors, robots,

etc.
• 3rd prize (200 euros): Glamour (DIY browser in 5 minute; see Tudor’s

talk) and SqueakNOS

Books
Pharo by Example (adapts Squeak by example to Pharo plus bonus
chapters), Andrés’ books on Fundamentals of Smalltalk Programming
Technique, Dynamic Web Development.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 5
Wrap-up, Stephane Ducasse, ESUG
We applauded the local organisers.

ESUG is in Barcelona next year. The local organisers have translated
Stephane’s book into Spanish. Many teachers in Catalonia now use it and
Stephane has a picture of the minister for Catalonia holding it.

Attending the conference is how you motivate the ESUG board to do the
next one. Sponsors are also good not just for the money but also for the
feeling that what is done here is wanted.

Anyone who attends the conference can be a member of ESUG. The board
is elected every two years (required legally by ESUG articles of association
or whatever). The new board is Alain Plantec, Damian Cassou, Michele
Lanza, Marcus Denker, Serge Stinkwich, Noury Bouraqadi, Stephane
Ducasse. They were elected by unanimous acclamation. Stephane invited
people to give the new board feedback on how to improve ESUG over
lunch. Meanwhile, he sought feedback on how to expand the community.

Andrew: we are a small community but very fragmented. There is a lot of
duplication and porting. A while back there was an effort to revive the
Smalltalk standards group. What happened to that? Can we make it
happen? James: the widespread cross-dialect use of Seaside and Glorp is
prompting a lot of standardisation. VW and Gemstone now both use
Monticello to/from Seaside, so we can interchange code. Bernard observed
that comp.lang.smalltalk is now no longer read by all in Smalltalk. Can we
revive this or use planet Smalltalk or something?

Tim Mackinnon noted that it would be good if the preferred ways of
publishing code for community and/or cross-dialect use were written up on
a web page: a tutorial on how to commit code back to the community. Read
Pharo by example. Come to the sprint.

Niall: go your local web or Ruby conference or usergroup and present
WebVelocity or GLASS or similar. ESUG will sponsor you to go to such
places. We are popular at Ruby conferences. Even at more general web
conferences, Niall has found you can get an audience. Someone went to a
a perl conference in Sweden and found that his talk on Seaside got interest.

Co-host? ECOOP suggested it but we did not want to join with a bunch of
academics with type systems. By contrast, co-hosting with a Ruby or
Python conference, or just being sufficiently near in time and space that
some would attend, might work. That said, Stephane backed Niall’s idea of
individual Smalltalkers just going to a convenient usergroup or conference.

Internally, Seaside is a huge success. What should a benevolent dictator of
the Seaside community now do? They should state a direction. Let’s make
the web page lively, do videos, etc. James is always looking for someone
to do the podcast: contact Michael Lucas Smith or James Robertson if you
have Seaside stuff to present (and non-VW, non-WV Smalltalks are fine).

6 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
Sherry pointed out that a good hosting story would help. If James and
Ernest put the Amazon story into text then it can go on the website as a
hosting story. Samuel offered them logos and that kind of thing helps.

Smalltalk Development Environments
VASmalltalk, John O’Keefe, Instantiations
(Stephane apologised for John’s talk being on Friday morning three years
running. John is too polite and never complained, “whereas some people
complain really well! :-)”

In his talk, Georg quoted a Garter guru’s assessment of programming
languages which likened programming in Smalltalk to eating fillet mignon
and drinking fine wine, while comparing other languages to less stylish
menus. Thanks to the local organisers, we have also spent the week literally
eating fine food and drinking fine wine; it’s been a great week.

John left IBM two-and-a-half years ago, taking Smalltalk with him, and
joined Instantiations. IBM wanted to drop Smalltalk and hired
Instantiations to provide support, thence transferred the software to them.
Instantiations has been shipping new versions of VASmalltalk since then.

VASmalltalk now has Seaside and its friends (scriptaculous, jQuery Core,
jQueryUI, etc.). Version 8.0 had Seaside 2.9 alpha 3 plus some later code,
Slime (an extension to RBSmalllint), etc. They have developed a porting
layer which primarily serves the needs of Seaside but also helps other apps
be ported from Squeak (and, to a degree, from other Smalltalk dialects).
The layer will grow over time and portions of it will move into the base.

The Seaside they shipped is an alpha so API changes likely. Continuations
are not yet fully supported so do self show: not self wait: (and so
not self call: since it uses wait:).

The Vastgoodies.com site is in Seaside on VASmalltalk: it has had 200
uploads and many more downloads. The intent is that all VASmalltalk
goodies will either be in Instantiations’ distribution or will be on
VastGoodies. Earlier this week, Adriaan demoed the NationaalSpaarfonds
Seaside insurance site now in production.

Old VASmalltalk had the Envy browsers, Trailblazer, the Refactoring
Browser, and the VAAssist browsers. John showed a VASmalltalk 7.5
browser, then the integrated 8.0 equivalent. Icons show if a tab has
anything behind it. They are using or emulating native windows common
controls. 8.0 did this for the main browsers, 8.1 will do the rest. They have
a version graph code tool. Integer inspectors show decimal, hex, octal and
binary. Inspector has a workspace pane where you can evaluate code and
not lose it (or be prompted pointlessly to save it) as you navigate around.
The bytecode browser is there - not too obviously so but it can be found
(people who look for bytecodeBrowser may manage to locate it).

Niall Ross updated the Refactoring Browser and the SUnitBrowser for
version 8.0 (and this week he ported SUnit 3.2 - and updated SUnitBrowser

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 7
for it - for release in 8.1).

Web Services now supports doc-wrapped literals. Its documentation
supplements “how to do web services in 10 minutes” with a second chapter
“how to do web services in 3 hours” (useful ‘how to’ and ‘debugging tips’
information). Further chapters on serialisation and hosting a web service
are in preparation.

The documentation has been revised. IBM had a lot of documentation but
mislaid the means of supporting it circa the 6.0 release (2001) so they have
completely reworked how it is managed. Now it is served to your web
browser via a local server you install or from the instantiations website as
you prefer. John showed an example of the old and the new look document.
The new documentation tool has an ‘email’ button: press it to report
anywhere in the documentation where you cannot understand what is said,
cannot find what you need or see an actual error.

They also support windows themes on XP (John sees many Macs and few
Windows laptops in this hall). They support import/export of parameters to
support cross-platform development. They have added their internal set of
examples to the delivered examples and made them more obvious.

Goodies are some new things and some old things moved out of the base
product. Goodies that have external dependencies such as documentation
(e.g. UML Designer) will be included in the product release. All others will
be put on Vastgoodies.com.

What’s missing: OS/2 is officially dropped; John is now removing that
code wherever he finds it. Martin Feldtmann has been given something in
exchange and John suspects noone else cares. UTF-8 support is not there
yet.

V8.0.1 (October 2009) will have Seaside 3.0 Beta and some of the porting
extensions will move to the base. The Vastgoodies.com Tools will be
included, so you can load goodies directly from the site to your repository.
The release will have initial support for UTF-8. There will be a portable
(i.e. emulated) progress view. Windows Server 2008 and Windows 7 will
be supported (everything already works in Windows 7 except the installer
- Com was hiccoughing there. cdecl calling convention support will be
there. Install on Unix/Linux will be smoother: no symbolic links from csh
to bash, X11 directory links handled, etc.

V8.0.2 (April 2010) will have Seaside flow. It will support Apache front-
ending of Seaside. Candidates for inclusion include SST Servlet multipart
forms. Ongoing stuff includes keeping up with Linux platforms (Ubuntu
9.04, Fedora Core 11) and performance improvements.

VM enhancements: they will look at 64 bit and incremental garbage
collection. Windows services management, which currently uses a separate
executable, will be moved back into the product.

8 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
Getting VASmalltalk: it used to be either a 30-day evaluation license that
in fact never expired) or a development license. Development licenses are
good - they bring in $$ - but now they will also offer:
• those who commit to an open-source project in, or ported to, VA, will

get a perpetual non-commercial license (go to ‘company’ then ‘open-
source’ on the website)

• an educational institution can have non-commercial license for
teaching staff and students (go to ‘pricing’ and ‘how to purchase’ on the
website)

• development builds for windows and linux will be available from their
website (they will announce on their forum, and c.l.s, when a
development build is available and what major things are in it)

John will send an email about the above to Stephane, who will send it round
the ESUG mailing list.

Q. Any chance of a Macintosh version? There is no business case. John
McIntosh will do it if someone will pay for it. Andrew Black noted that if
it did not run on Mac he could not use it in his classes. John took that point
and John McIntosh would be delighted to have a year of work (his very
rough estimate of what was required) but in the absence of a business case
or specific customer/external funding, it will not happen. Making it run on
OSX is easier now that Mac uses intel but what should the GUI look like?

Q(Bernard) The APIs are based on Motif; any plans to change that? No, as
noone asked for that to change; they asked for common controls support.
For now, John is more focused on having a Seaside UI.

Q. Supporting Windows widgets is good but does it decouple you from the
other platforms? As with the progress view, they are doing cross-platform
emulation of these widgets. Their focus on Linux is as a server platform,
not as a rich client platform because that is what their customers want.

Q. Seaside UI? John plans to expose more of their web environment in
Seaside, but not something like web velocity.

ObjectStudio, Dirk Verleysen, Cincom
ObjectStudio was an enterprise-oriented Smalltalk from the start, unlike
almost all other Smalltalks which were academic in origin. OS was file-
based and initially was called Enfin. It was one of the first MS1995-
certified apps.

Georg started the VW and OS integration project in 2004; now in OS8 you
can work on the VisualWorks VM and be file-based or image-based.
Cincom VW 7.7, OS 8.2 and Cincom WebVelocity 1.0 all run on the same
VM. In these releases, we have a unicode VM, internationalisation
(CLDR-based), Glorp and Store on Glorp, atomic loading from Store,
better delays, new prereq engine, various tools enhancements, new icons
and logo, Seaside 3.0.

OS 8.2 has a new look, a revamped modelling tool, a new mapping tool

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 9
exploiting Glorp (first release only does active record but the next version
will be whole Glorp) and unicode. He showed the old and new launcher
(the hardhat will disappear - that change happened this week).

OS supports namespaces but they must be subnamespaces of ObjectStudio.
OS handles change set notifications and will support announcements soon.

Dirk presented the modelling tool. You start with the use case explorer.
There you define domain objects which you then elaborate in the CRC
explorer (or not, as you wish). Then you can make interaction diagrams:
they are just a documentation tool for now but may be used more formally
later. The design explorer has submodels containing classes, which can be
in one or more models. You work with the design explorer and/or the object
diagrammer to edit the same data. From these tools, code is generated to
files or to packages. You can also import existing classes into your models.
Code generation can be customised by changing documented methods.

The mapping tool uses Glorp to map model classes to an SQL database.
You can view database rows (e.g. show first 50 rows in the database for this
class) to help you choose. Dirk showed the GUI.

OS8.2 supports LOB in Oracle and DB2, and stored procedures in those
databases and in Sybase and ODBC. There is better host variable support
For ODBC also support of stored procedures with input and output
parameters and return values.

OS8.2 lets you drag-&-drop between tree views. The RB has an edit button
for the controller (easier than looking in a long list on the launcher as the
prior versions do). The source tab is coloured if the source of a method is
of special OS type. A transformed source code tab shows where code is
changed, e.g. where os_add: has replaced add:, and also is coloured if
there has been a change.

ObjectStudio 8.3 will enhance modelling and mapping tools and will use
DLLCC for GUI calls. Native tools may also be improved.

Q(Christian) GLORP migration tools? (Michael) GlorpMigration package
supports migration between two different glorp schemas.

GemStone news, James Foster, Gemstone
James (QA, Seaside, Consulting, Training), Dale (Seaside lead), Martin
(GBS lead), Monty (co-founder) are all here, so the cancellation of
Smalltalk Solutions has had one good side-effect.

Gemstone 2.3 adds many more 64bit platforms. They find Solaris 64 very
stable with very good performance (and they speak as fans of Linux).

The have improved mark/sweep performance etc., and UTF8 primitive
encoding and other extended character handling. They are also moving
from GemStone’s 1-based collection positioning to ANSI 0-based
positioning, which will take time but they have found a way to let legacy

10 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
and ANSI coexist.

In 2.4, they reduce round-trips when you have lots of logged-in sessions. It
should also have a new Monticello, etc.

Version 3.0 will see a major VM rewrite. It will support DLL and C callout
much better than at present. It will support Ruby, and as a prereq for that it
will offer sandbox methods - methods in which the behaviour is different
depending on the sender, not just the receiver. (This will be namespaces for
methods, but not the same as, for example, Stephane’s colleagues’ selector-
namespace papers.) Thus Ruby and Smalltalk methods will find the right
methods in their class libraries despite existing in the same object space.
James opened a window on a Maglev environment and looked at the Ruby
gems that were running. (See Martin’s talk on the technical challenges of
this.)

You can run GemStone by downloading a VMWare in which it is installed.
GLASS can stand for GemStone Linux Apache Seaside Smalltalk or
GemStone Linux Aida Scribo Smalltalk. The Appliance is a VMWare
download that provides GLASS all pre-installed. Alternatively, you can go
straight to Mac and install native from the command line. He showed
standard Seaside (the Seaside tests pages) in both these modes.

James has been learning Cocoa programming (Objective-C) to provide a
wrapper so you can use GemStone without needing command-line setup.
The GemStone.dmg disk image is 78 Mb; just open it, drag to your
applications folder and start install. (Usual demo hiccough - ‘address
already in use’ - probably left over from his Maglev presentation above; he
killed it and proceeded). First launch opens a setup tool which tells you
what you need to set up on Mac (by default sets 4Mb of shared memory but
they recommend changing this to 1Gb!). James did this in his tool and in
successive tool UIs created an ‘ESUG’ database and started it. He started
a workspace, started a webserver, opened some squeak-like tools (and saw
second demo hiccough - “I thought I fixed that last night”).

An important component in using GemStone Seaside is Scaffolding,
created by Gerhard Oberlin. He opened a Scaffolding page. Scaffolding is
very like Magritte. You can create a class, give it a field, make a field
required, of type text or timestamp (with ‘current’ button) etc., and similar
commands. He stepped through setting up a simple blog post app. He
showed the default UI for adding a post and showed the result in the list,
then changed the Scaffolding value for the order of fields so the layout was
better. He then created another class to let comments be added, changed the
Scaffolding to have a 1-many relation between the post and comments
classes, then added a comment to his post, etc.

Then he opened the web class browser and looked at the code that his
Scaffolding operations had created: two domain classes and four views.

Metacello was created to let Dale manage Monticello packages across
Squeak, Pharo and GemStone. Metacello is the package management

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 11
system for Monticello. Monticello manipulates code. Metacello handles
the prereqs and package groupings. Metacello will handle conditional
loading of requirements that are common to all platforms, Squeak-specific,
etc. Metacello will also help them work seamlessly with Monticello 2 and
Monticello 1. He showed the list of all the packages in the GLASS
distribution - a long hard-to-parse list. In Metacello, the list is more
Smalltalk-like: its contents are reified into objects.

James browsed Dale’s MetacelloTutorialProject. Specs are saved to
methods, e.g.
version03
^self versionSpec packages:
(self packageSpec
add:’Example-Core-anon14’;
add: ‘Example-AddOns-anon3’;
yourself)

A VersionSpec holds the usual stuff: description, doIts to evaluate before
or after loading, etc., and of course the actual contents. This code is stored
in another monticello package. Thus you can load the meta-data without
loading the package. James loaded the Pier package meta-data without
loading Pier. This lets you fix things you cannot load without having to
load them in order to fix them. Any VersionSpec attribute can be
conditionally modified.

They have added tools to the OmniBrowser to support this. See Dale’s blog
for more information about Metacello. See more at
http://seaside.gemstone.com and http://programminggems.wordpress.com

Q. Metacello can handle Monticello 1 and 2; can it also handle other CM
systems. Dale replied that on Saturday his answer would have been no but
since he paired with Tudor in camp Smalltalk on Metacello he thinks that
now it is yes.

Q. Cocoa application will be used in GemStone production releases?
Although we would see it as for developers, the Cocoa part is just buttons
running scripts and if clicking of the button starts the DB then that can be
a production DB. But it is not supported at the moment. It exists to
encourage people with Macs to try GemStone.

Q. Why would anyone not use GemStone? It does not have a GUI so in a
client-server application it is the DB not the client. It is aimed at high-end
industrial apps and historically the way to learn it was to be sent to a
training week by an employer. It was priced only for this until recently but
there is now a free for commercial use license, size-restricted. The tools are
developing in Seaside but perhaps Web Velocity will make Scaffolding
look weaker. There is no Refactoring Browser, etc.

Q(Tim) Some Ruby blog posts 8 months ago were refusing to believe
Maglev could be so fast? What do they say now? There is no such thing as
bad publicity. Some of their tests needed reexamination and of course you
cannot expect to hold performance lead forever. That said, the standard

12 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
ruby interpreter is buggy and slow and a stable fast VM has value.
However persistence is where Maglev has real value. If you have to use an
RDB for historical reasons, that is less important to you. If you are green
fields, it can be very important. Monty added that they are getting a lot of
good feedback. Maglev is that fast and the shared cache gives application
performance, not just VM performance. They had expected to have it
finished in a year and it will be overall two years for reasons that Martin
will discuss in his talk. Where Smalltalk and Ruby match, they are there
and very fast; where not, there are still some holes to fill.

Building Ruby on Smalltalk, Martin McClure, Gemstone
Maglev is a new ruby implementation. Question: why? Answer $ (except
that being in Europe, the answer is e with bars). Ruby people have respect
for Smalltalk and Java is a dirty word to them. Some Rubyists semi-convert
to Smalltalk; anyone like that here? (Julian raised his hand.)

Martin then gave his 45 minute gemStone for dummies talk in 3 minutes
(for really smart dummies). GemStone is a concurrent, persistent smalltalk
implementation. Gemstone is fast, can handle 10000 commits per sec on
good hardware and 2000 on ordinary hardware. Gemstone is Smalltalk all
the way down. Gemstone offers transparent persistence for the web via
GLASS.

Maglev aims to provide the same features to Ruby, plus a fast reliable VM.

First choice: use their current VM and extend to support Ruby or take an
existing Ruby interpretation (e.g. rubinious that tried to use Smalltalk-style
blue book) and write in ruby. They did the latter for Java ten years ago and
the former for ruby today.

This project started 18 months ago and Martin will talk about 5 technical
challenges.

Parsing Ruby. He showed the BNF for GemStone Smalltalk: two pages.
Then he showed the Ruby grammar: a blank page. There is no published
Ruby BNF. MRI (Matt’s Ruby Implementation) uses a Yacc variant written
in C to parse and it uses a hand-written file parse.y and it takes 130+ pages
(all in the same font!). That is Ruby 1.8.6 and later people hand-edited that
for later implementations. Ugh!

So what did GemStone do when Maglev started: they cheated. They had a
simple parser (in C) to parse Ruby into IR which they passed to the
compiler. They read Ruby from a source code file and push it to a Ruby
MRI program that parses it. Then a C program, written by Brian Davis, a
former-Smalltalker Rubyist, gets the abstract S expressions from the
parsed Ruby. These are then got back into GemStone via a Ruby-front-end
compiler (written in Smalltalk) that gets them into IR thence to compile.

Recently, they have cheated less. A Ruby parser written by Brian Davis
(and optimised by GemStone) in Ruby (so they still use the old way to
bootstrap) runs on Maglev and does the parse.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 13
Arity challenges: in Ruby the number of parameters in the message send
need not match the number expected by the implementation. You can pass
a block with every message send (ampersand parameter). You can pass an
array of keyword and parameter for variable arity. (In Ruby, Proc is the
class of block and the term ‘block’ is only used for the syntactic construct.)
In Smalltalk you never state the number of arguments because it is inherent
and their VM never passes that info.

They looked at adding that info and decided that would penalise their
Smalltalk so what did they do: cheat. The compiler synthesises bridge
methods. def foo(a, *b) means that if I pass 5 args, the first will be
a and the last 4 will become a 4 element array passed as b. The compiler
compiles 16 methods foo, foo*, fo&, foo*&, foo:, foo:*, foo:&, foo::*, ...
These are not legal Smalltalk methods but only the compiler cares about
that. Their VM will accept anything in a method name.

Q.Lazy? They considered using DNU and creating the method but decided
to generate all. You cannot analyse statically so any laziness would have to
be done dynamically.

Q(Christian) these are hidden? They are real messages in the method
dictionary but since Ruby has few tools noone notices. When they offer
better tools, they would have to be hidden.

Invoking some_object.foo(a,b,*c) compiles a send to the selector
foo::* which adapts the args and re-sends to actual message foo.

Q.Rubyists do this often? Yes - they do everything you don’t expect them
to do a lot. Rubyists are Rubyists because they hate Java so they do
everything the language lets them do a lot - meta-stuff and all - and
eventually, when they’ve been Rubyists a while (but noone has been a
Rubyist for long), they settle down a bit.

Coexistence of Ruby and Smalltalk: this causes issues of which one is
immediate classes. In Smalltalk, the pointer to an immediate object
encodes both the class and the state (Bool, Smallint, Character, ...). This is
far more performant and avoids Java’s absurd ‘Int or int?’ problems. This
fits Ruby which has SmallNum and BigNum like SmallInteger and
LargeInteger. Now the two must be the same class but their names and
methods and superclasses are different all the way up to Object.

They solved this by not cheating. They use environment-specific
behaviour. A class has a method dictionary per class per environment (or
you can share the method dictionary, or have the same compiled method in
two dictionaries where the classes share behaviour). Senders know what
environment they send in and bind to the appropriate environment
implementation.

Q(Stephane) Did you look at Dave Simmons work, where he compiled the
selector with the environment tag in the dictionary? GemStone did encode
the environment into the symbol but they also encoded it into the send call.

14 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
They can compile the environment tag into the symbol but its identity will
be the same in all environments.

Ruby allows per-instance behaviour: if you add a method to an instance
you create a lightweight class (this pattern was originally shown by John
Brant way back when). That was easy.

Per-instance variables: in Ruby, an instance variable is created by the act
of assigning to it, whereas in Smalltalk it is created with all its instance
variables, initial values nil. In Ruby an object has no instance variables and
if it has an assignment to ‘foo’ in the next line it will still say false if you
ask it in the line above whether it has instvar ‘foo’. This is part of the
language so Maglev has to endure this, but whenever possible they create
fixed offset values initialised to ‘I’m not here’ value that will reply false if
you ask them whether they exist.

Alas, they cannot do that always, so objects have fixed value instances and
name-value pairs that must be searched. Sometimes it is just too hard to
work out whether the class will have an instvar in the program. Instvars
defined in the class definition are named, others are indexed.

Q. Javascript changes the pointer to the class when the class gets a new
instvar; did you consider that? It is costly if you do these pointer switches
a lot so we try to catch all we can upfront. Later we may as a maintenance
operation do a sweep that fixes them up using this trick.

The started by passing 3,800 tests and are now passing almost 19,000 tests
and there are 24,000 tests so they are making progress.

Pharo: a progressive innovative open-source Smalltalk environment
for professional use, Stephane Ducasse, http://www.pharo-project.org
They want a stable system where bugs are fixed fast (professional) but that
is still innovative (progressive). Researchers are paid to sell ideas so they
need a language where they can try ideas fast and write papers about the
results.

Stephane would tell his students “If you faint or vomit, that’s normal”. His
students would ask, “Why does Morphic have 1000 methods?” and
Stephane would reply “Good question!”. Stephane told Lucas not to look
at Morphic when Lucas started in his lectures - if he’d made him look at it,
maybe Lucas would have left (or maybe he would have fixed morphic :-)).

Pharo removes MVC (all those isMorphic methods) eToys (almost all)
full BlockClosures (from Eliot via John McIntosh) new UI look, TrueType
character support, better Tools, many bugfixes and small improvements.
The preferences have been cleaned up. The license was also sorted (MIT
clean license) so Stephane will no longer get silly queries from the Linux
conference, etc.

The dream is to have better tools. They want next generation refactoring
(Eclipse is catching up with the RB), Smalllint++, better meta-object

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 15
support (first class slots) and much infrastructure improvement: first class
packages instead of all this string manipulation (maybe use Metacello).

Pharo should have an integration server: submit change, load into clean
image, run standard tests, get report emailed to you next day or in 20
minutes.

Q(Christian) Namespaces? Goram had a solution years ago but people
were not sure. Andreas has published a practical namespace package in
SqueaKSource so perhaps it will happen.

Lucas has been doing all his Seaside development on Pharo since Pharo
started. John has ported Pharo to the iPhone. Companies using it include
netstyle, cmsbox and GemStone.

This is important to keep their Smalltalk flame burning inside. They know
people who have been turned off by Squeak’s lack of concern for good
code. Stephane, Marcus et al were responsible for Squeak 3.9. They closed
700 bugs, and tried to clean the system without breaking unmaintained
code. The nice thing about Mac is that it does not have all the old ports
you’ll see on a windows box. Trying to clean Squeak with Monticello was
a pain.

They were called the random refactorer! Their reply is: what was the
superclass of SyntaxError? It was StringMorph!!! If you know that makes
no sense, you know they had to make these changes. Both Marcus and
Stephane were burned. Roel was fixing things and they were never getting
integrated so he went back to other work. Stephane and Marcus had to do
this to keep their Smalltalk flame burning inside.

Pavel has created a 2Mb image (no UI, etc.) so this may be their core
image. They have a tool to analyse dependencies, already applied to
Morphic and being applied to much else.

Help is welcome: write tests, report bugs, submit fixes: see their slides for
details.

There is a monticello inbox (much preferred to change sets). A fix that is
not in the bug tracker does not exist. There will be Pharo sprints: Lille in
October 2009 is the next one. There will be books: Pharo by Example is out
(on Amazon) and there will be a Spanish translation soon (talk to Gabriela).
Volume 2 (will be out soon) is not for newbies, it is for Stephane, so he can
read code, write his understanding and have it for the future.

They closed by showing a slide of the huge number who signed the licence
agreement (you must do this to have your fix integrated).

Q(Christian) Pharo, the name? They wanted ‘Sapphire’ but clashed so
decided that the Pharo(s) lighthouse was a good symbol.

Q. Slots? Marcus showed that with his new compiler (that can have

16 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
plugins) you can have first class instance variables without a performance
penalty. The problem is not so much to do it as to sell it as research.

Q(James) Relationship between Pharo community and Squeak Board? No
relation. The Squeak board was founded (by Stephane and others) as a do-
ocracy: people who do stuff get a say. Pharo will be the same.

Q. What do users of Morphic do? BookMorph and Nebraska have been
removed (neither were working) and EToys is mostly removed. Morphic
has property dictionaries that make it hard to know what is safe to remove.

Q. You will use Monticello 2? As soon as it is stable. Lucas has students
working on Monticello 2 stuff.

Q. Stay on the Squeak VM? Marcus will work with Eliot on the JIT, etc.
Time will tell.

There was also discussion on Floats with Hernan and others: they wanted
people to know when they were working with Floats as they are imprecise
by definition. At the end Hernan said he understood their approach.

People asked about support. If you need support, you must have money.

Squeak on iPhone, john Macintosh
ESUG paid John to build the Squeak VM on the iPhone. John has 47 slides
which is 50 too few to cover all the issues but may be enough. You can run
any image if you can fit it in memory. John took a Pharo image of January
2009 and ripped out half before Stephane did so,. The iPhone 3G S has
256mb so you could have a 200mb image size but it takes time to move
pages so that would make the app slow to start.

These figures are what we expected computers to be able to do many years
ago and that is actually a lot of computing power. People are surprised
when John runs a wiki server on his phone and they see instant response as
the click on pages on their screen, but they should not be.

The squeak interface is hideous. The pharo people have a more business
look. However he put two of David Smith’s blobs into squeak and has an
app that gets money (dozens every day).

John showed a Seaside Pier wiki/CMS running on his phone and, as he had
remarked, responding well. John had looked at the three bridges to
ObjectiveC and they were all incomplete, so he created his own, helped by
SqueakProxy concepts from Avi. The plugin is in the Mac VM and you can
do cocoa calls from it (and some people have been doing so). John listened
to the Cincom talk on how they implemented their ObjectiveC bridge and
used the doesNotUnderstand: pattern which is not efficient but he then
made it possible to swap in a more efficient pattern.

The older bridges addressed 8 or 9 of the 18 types of data. John browsed
what Python et al did and that educated him. He does not deal with all the

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 17
complexity. You can have structures in structure such that you need a parser
- John felt that whoever tried to use that could write the parser and give it
to the community.

Where do objects live: Squeak/oop or ObjectiveC? John decided that
objects live in one space or the other; no sharing.

John subclasses ProtoObject, so had to implement 37 methods just to make
the debugger work. He discovered that noone else has done this. however
Object has 400 methods in Squeak so it is a poor place to rely on
doesNotUnderstand:.

Q(Andrew) get 37 methods into a smaller number? Yes, but one has to
refactor the debugger - be my guest. :-) A protocol ‘debugger support’
would have made his life easier.

ObjectiveC calls are not the performance bottlenecks. In any iPhone app
you write, look for performance problems in your Smalltalk code or in the
ObjectiveC code.

The Squeak VM, being interpreted, wants to run all the time whereas the
iPhone wants to go to sleep all the time, so John reworked the Pharo image
to be more sleepful. You run this as a background pthread. Apple enforces
thread-safety. Even properties are tied to a semaphore tied to the pthread so
accessing across it raises a warning and you die. Deadlocks can also occur.

He showed the Smalltalk code that does the rotation of the screen as the tap
and change page. When you split calls across multiple invocations you get
multiple end-animation calls sent so to see the UI effect as you expect you
need it to be a block of C code so he had to have a rotateView:...
method.
infoViewString := ‘WikiInfoView’ asNSStringUTF8.

must eventually have
infoViewString release.

Objective C 2.0 provides garbage collection but it’s not available on the
iPhone thanks to an evil Mac engineer who decided it was too much like
work. Thus there are auto-release pools which have to be managed, which
is a pain. He could have piggybacked off finalisation but that is a complex
chore. His GStream plugin in eToys that he did last year does do the magic
release, so it can be done, but today the release call is done as above.
ObjectiveC wrapWithAutoReleasePool: aBlock

We cannot have simultaneous use of two auto-release threads in two
different Smalltalk processes. The monitor classes are not used in Squeak
because they are broken but in Pharo someone fixed them so John uses
them.

Suppose you tap a button on your iPhone and so we send
saeButtonWasTapped:, a simple message send. However we need an

18 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
ObjectiveCSqueakProxy to do the callback. Sleep, then tap, ObjectiveC
asks Squeak do you handle that? Squeak says yes so ObjectiveC locks a
semaphore and waits. Squeak wakes from waiting on a Squeak semaphore
and pulls the NSInvocation. It creates a messages send from its data and
sends it. It send messages to the proxy. The proxy is an ObjectiveCProxy
subclass of an interested ObjectiveC class. Thus you send a message the
superclass understands or that a Smalltalk override of it in your proxy
understands.

Eventually the Smalltalk thread gets back to waiting on its semaphore after
replying to the UIKit thread. Hence you cannot do any UIKit work in your
Smalltalk thread since the UI is waiting on your Smalltalk thread. In
ObjectiveC, a protocol is a description of what messages the object
supports. self proxy addSigViaStrng... you have to add the
message your proxy will understand.

Asking a text view for its text object sounded safe in the documentation but
that was a bug (the 23rd John suspects) that he reported because that string
is freed so at the end of the block so if you reference it later you will
reference a freed object so you die.

Alien is the latest greatest way to use FFI on the iPhone but there is no
support. (Want support? Call John with your chequebook handy.)

Pier and Seaside have hundred (thousands?) of tests. SUnit tests for
WikiServer UI: zero. he took 4 weeks (but could redo in a day) to create the
4 screens for WikiServer.

Apple uploads crash reports to Apple when you connect iPhone to iTunes,
so when John says its stable and does not crash he has reason. A few non-
Pier users have been blown away by its CMS and have sent John their
praise. There are 6 Smalltalk apps in the Apple store (excepting the Squeak
app itself which violates all the rules so you must email John to get it).

Q. Tim? Develop over VNC? If you think the Pharo browsers are slow you
will not like doing that. John has a cycle that compiles and runs to the
machine. You could use VNC for debugging if you get a walkback and
have no idea why.

Q(Bernard) What is the ratio of Smalltalk to ObjectiveC code in your
fractions calculator app? Very high ratio of Smalltalk to ObjectiveC: the
latter has very little code except to put up the help view. Apple’s UI auto-
generates the ‘on touch this icon open that app’ code. WikiServer has code
to do the view translations but all HTTP and rendering is done in Smalltalk.

NXTalk, Michael Haupt, University of Potsdam
The day he heard about Lego hardware he wanted to run Smalltalk on it.
256k Flash and 64k ram - that should be enough. So he looked for a student
to implement it (in academia Michael is too busy writing papers and
teaching).

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 19
You write your robot software in Squeak, where you have simulation of the
h/w (not perfectly but the compiler can tell you when you do something
wrong). The NXtalk VM is a Smalltalk VM implemented for this
hardware. NXTalk is not a port of Squeak to NXT; the Squeak VM is too
large. Underneath the NXTalk VM is NXOS (alternative h/w driver from a
French university) and they use it only for the h/w drivers, not for its other
features e.g. not for memory access.

The interpreter sits on NXOS and their own memory management and
object table (optimised to store more in the object table than the objects
themselves). Above this the image handles execution state, process data
and scheduling (they wanted to implement as much as possible in
Smalltalk).

NXTalk pointers are 16 bits wide as they are indexes to the object table, not
true pointers. SmallIntegers have last bit 0 which is neutral to arithmetic
and as fast to dereference as having the first bit be the tag. 1 means it’s a
true object. A 1 value there means you point into the object table and the
object table rows are 10 bits of payload and 22 bits of pointer (only 256k,
64k, no need for all 32 bits to point). 5 of the 19 bits are GC mark, free
memory indicator, moved flash to ram, indexable contents, etc.

Flash is (relatively) huge compared to RAM so most objects are store on
Flash but everything that is being written to is better off in RAM as writing
there is fast and writing to Flash must be done in chunks and is slow. Thus
living things like the object table (as opposed to the persistent object table,
which is in flash) and the heap (free space separates them - we hope and the
first grows top down and the second bottom up to postpone when they
clash.

When reference count of an object grows past its 5-bit store, we stop
counting and instead rely on the mark-compact (this was Smalltalk-80’s
strategy). When objects have not been written to since the last full GC they
are moved to Flash.

All bytecodes are 1 byte long, which buys them space but you cannot have
more than 32 literals in a method, etc. (“The VM encourages good coding
style.”)

Q(Andres, Georg, etc.) discussion of whether encoding methods as small
integers but they only have 6 bit integers and the smallest possible method
would be one word so maybe not.

The interpreter is a simple bytecode interpreter, no JIT or suchlike, and all
the dynamic stuff is objects on the heap. To avoid overeager GC, ref-zero
objects are put back in a pool, not thrown away immediately.

They use green multithreaded scheduling, simple round robin except for
writing processes - robots are often waiting for a sensor to reach a value
and then response needs to happen fast. NXT does not provide interrupts
so they had to fake them in the scheduler. Every X byte codes (a small

20 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
number) the scheduler checks whether some waiting process needs to me
made highest priority.

Q. NXT no interrupts? NXT by design decided to build it this way. the first
thing the lego firmware does is disable interrupts. The sensors and
actuators are managed by the main processor so the other processor must
not interrupt (clock can interrupt). The brick has two processors, an ARM
that does the main work and the other Atmel that manages external h/w
such as their sensors, bluetooth, USB. A real system would probably allow
interrupts, but they managed to fake it adequately.

The NXTalk system libraries are all the usual Smalltalk: classes, meta and
reflection, exception handling, processes. Some things have been flattened
e.g. you do not have Behaviour and Class separated, just one class
NXTClass (since they do not need ClassDescription as it manages class
categories and stuff that this runtime environment does not need). The
library provides collections, streams, weak arrays (fun to implement :-) and
hardware classes for sensors, buttons, motors, displays, event handling and
USB and bluetooth. The USBManager can be started and will wait for
commands. You can send it new classes to install in the image but not
remote method invocation (but it could be implemented and they want
remote debugging so will build it).

In Squeak, they have NXTPackageDescription which subclasses to various
ways of cutting the code, all of which can be told to install themselves to
the brick. The Squeak parser creates the AST. An RBNode visitor creates
the NXTalk bytecodes.

He demoed the robot from farscape playing Tchaikovsky’s 1812 overture
and shutting itself down if it bumps into things (or the sensor fails - the
ultrasound sensor on the lego brick is not robust). setUp enables the radar
and touch sensors then initializes the tunes data. spawnProcesses forks
off the driver, music, shutdown and other processes.
[true] whileTrue:
[self drive ahead.
radar waitTillBelow: 20.
self backOff.
self turn]

Q. How do you test your code? Upload it and run it. They want to do
simulation in the Squeak image but need to complete more hardware
mocks first. They will not be simulating all the hardware - that would take
much time.

The standard NXTalk leaves 161 Kb (which is more than typical NXT
apps). A context switch every thousand instructions = every 27 ms, taking
3 ms. The event handling latency is 4 ms with their default setting (no of
instructions between scheduler checks). If an application allocates many
small objects, it may reach exhaustion and GC kick in every 4 seconds.

So it works now but they want to do much more. Their bluetooth library is
not yet right. The VM has a bug or two (and there are tests for them - later

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 21
maybe there will be fixes). Better debugging is wanted.

The code is available from their squeaksource. They would be pleased if
anyone ported it to other Smalltalks.

Don’t download the VM from the webpage today; it is old. He will package
the current version soon.

VisualGST, Gwenael Casaccio et al.
IDE for GNUSmalltalk. GNUSmalltalk has namespaces so the structure is
namespaces, classes, protocols, methods. Below there is a the code tab and,
if you wish, below that there is another pane with tabs for the transcript, the
any compiler errors, any workspaces, etc. His inspector looks OK but he
said he wanted to improve its design somewhat. Another button brings up
an SUnit test runner that showed results and let you navigate to them. This
is all written via a GTK binding so it runs on Windows, Mac and Linux.

He also showed a lego game in Cairo.

Q(Lucas) saving? You can save your files in the image or to a directory.

Web Development Frameworks
Aida Tutorial, Janko Mivšek, Eranova
Janko Mivšek, Smalltalker since 1995, founder of the company Eranova
d.o.o., author of AIDA/Web web framework, maintainer of Swazoo web
server and passionate contributor to Smalltalk community, is currently
using Smalltalk and Aida for developing complex web-based systems to
manage business processes in many industries, from gas, logistics to
pharmaceutical.

For a change, the example is not a blog but a WeddingBook (i.e. a wedding
register), containing WPersons and their spouses. I worked in VisualWorks
development build for aug09.3. We created the model: WeddingBook and
WPerson with appropriate instvars and accessors.

In Aida, presentation classes are subclasses of WebApplication, named for
the model classes plus ‘App’ so we need WeddingBookApp, WPersonApp.
This is the observer pattern: each object in the domain model has one
instance of its corresponding app per session. You just create these classes
(being careful to get their names right) and then register the root object of
the application.

Guided by Janko, we created those classes and (corrected our typos and)
saw, ‘ERROR: view named #main does not exist’ when we tried to reach
http://localhost:8888/book. We logged into http://localhost:8888/admin,
the admin page (default user admin and password password), then created
viewMain on WeddingBookApp (not on WeddingBook) and worked on it
to create a viable page. http://localhost:8888/book now showed our layout.

In Aida, you link not to the page but to the model object, which is why we
must observe naming conventions in naming our classes <ModelClass>

22 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
and <ModelClass>App. We want our lists of names to be lists of the actual
persons. We first created a method that displayed the names of the people
in the wedding book using addText:, then commented that out, replacing
it with addLinkTo:text: to display actual links to the person objects.

viewMain
| e |
e := WebElement new.
e addTextH1: 'Wedding Book'.
self observee persons do:
[:each |
"e addText: each name, ' ', each surname."
e
addLinkTo: each
text: each name, ' ', each surname.

each partner isNil ifFalse:
[e addText: ' Married to: ', each partner name].

e addBreak].
self style pageFrameWith: e title: 'WeddingBook'.

Q. pageFrameWith:? Here, frame is no relation to HTML frame (ideally
it would be renamed but it is an old Aida method).

We clicked the link, saw ‘ERROR: view named #main does not exist’
again, which prompted us to create viewMain on WPersonApp.
viewMain
| e |
e := WebElement new.
e addTextH1: 'Person details'.
e add: self detailsElement.
self style pageFrameWith: e title: 'Person'.

Next we did MVC on the web. The *App class handles both the view and
the controller, i.e. the actions. We added a menu aspect on partner.
e addMenuAspect: #name
collection: self observee book persons
selectedToAspect: #partner
of: self observee.

A menu appeared on the person page showing the list of persons. It did not
do anything when the button is changed so we altered via an AJAX update
which in our code is just onChangePostAndUpdate: e.

At this point in a real application, one would work on domain model to
make it more precise and then develop the web pages further but as we
were using it to learn Aida, we left it there to survey other features. We
looked at Aida WebElement protocol ‘events’ and ‘events - ajax’ and
similarly for WebForm, WebButton, etc.

An Aida object always has a URL and it is RESTful, the same all the time.
Writing preferedUrl (that is the spelling Aida uses) on your model
classes hints to Aida what the URL should be. A domain model is a
network of objects and that maps naturally to the network of pages on the
web. Such networks suggest graph-like navigation whereas in GUI apps
tree-like navigation is more usual: open window, open subwindow, etc.,

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 23
then close subwindow to get back to super window thence to open another
subwindow. Aida combines the two styles as required. Usually, the
navigation is graph-like but there may be areas where it is tree-like.

(self ask: (WebDialog confirm: ‘Delete’))
ifTrue: [self observee delete].

is tree-like (and very new in Aida an still being perfected). Janko looked at
WebDialog>>buildConfirmation to show us how this worked. The
code that calls this is not a continuation; it is two processes, one of which
waits on a semaphore for the completion of the other, when it receives a
result. Thus treelike (or continuation-like) behaviour is achieved. Process
context switch and web context switch occur on this return, which makes
the code complex - sufficiently so that some aspects are still being tested.

Internationalisation was important for Aida from the very start. They use
UTF-8 on the web and unicode in the image. Aida uses i18n for content and
for text on the displayed pages. This can support (amongst other translation
approaches) inline translation in pages.

He opened VisualWorks (this part is not yet ported to Pharo) and scrolled
to the viewCalendar example and it opened in Slovenian, his computer-
set language; it opened in our languages on our computers. (English is the
default; there is no Russian translation at the moment so Yuri saw it in
English.) Translations are stored on the class-side of the application and
substitute for the English one which is written into the instance-side code.

Janko brought up an inspector on his session object, set it to development
mode (self setDevelopmentMode) and switched on translation, then
switched the language to French.

Aida runs on VisualWorks and ObjectStudio, on Squeak/Pharo and on
GemStone GLASS. Swazoo runs on all these dialects as does Sport, which
Aida uses for sockets, times and files. Aida/Web runs on these, which keep
it portable, and the Aida/Scribo core on top of Aida/Web. The system
comes with various apps such as the blog, the wiki, the website, the forum.

Future work: Aida 6.0 was released a week ago or so and is not yet in
production. Aida 6.1 (out soon) will be a maintenance release. Aida 6.2
will finish translation and do more with contexts (i.e. ask: etc.).
(e addButtonText: ‘Save’)
onSubmitDo: [self observee save]

Does the above break MVC (because you have actions inside your views)?
MVC is there to avoid spaghetti code. Ajax would allow you to offer
immediate feedback near the field, with submit failing if not validating.

Q.Aida is how old? It started in 1996, serving one Slovenian bookstore. An
app delivered in 1998 is still being used. A logistical system has been using
Aida for 9 years. Aida can scale in complexity.

24 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
Q. Aida used to create much garbage via some hard-to-release references.
Does 6.0 do anything about this? When testing a benchmark, Janko created
ten thousand sessions in a few seconds, creating 200Mb, so he did some
work to sort that. However it does grow garbage and they have Aida GC
functions which they call during the night. Also the new 6.0 contexts are
not yet well optimised for garbage so that is an issue.

WebVelocity, Michael Lucas-Smith, Cincom
WebVelocity is a development environment that runs entirely in the web
browser. The primary goal is to allow collaboration. Many projects use
relational databases, a fact that may be strange since GemStone exists but
is a fact of life. Mapping between objects and relational databases is hard
and is the reason TopLink existed; its successor is Glorp.

Ruby on Rails demos building a blog server with an existing RDB so we
will do the same. Michael started and chose an SQL platform. We could
choose SQLServer, MySQL, Oracle, etc.: he chose PostgreSQL; the web
page now shows what tables exist (he verified in pg3admin). Michael
clicked and got a spotlight-window to create classes for tables, active
record style, and did so. “We now have a working app.”

Scaffolding is provided in case you do not want to build the UI yourself or,
more probably, want a bit of help with it. He showed the objectClass
method showing which view a model-layer class is for. Then he opened the
blog server page, showed the posts etc.

Next, he created the Comment class. Clicking the class pattern matches it
to the Comments table, and there it is set up and with UI. Michael wrote a
post, added comments to it. (Standard demo hiccough: he gave his post the
same name as an earlier post so saw ‘conflicting values in rows’ warning).

There are some changes from standard RB behaviour. Once the code is
compilable, it is compiled for you. Until it is compiled, it is in the errors.
They found that non-hardcore-Smalltalkers were desperate to look at more
than one method at once, so that is provided. If he modifies an inherited
method, the change is saved to the subclass.

In Ruby on Rails, the moment it does not fit your needs, you are in the
wilds. Here, when you go off the scaffolding you are in a mature
development environment. Your app has Glorp, Seaside and Smalltalk.

A real Smalltalk development environment needs inspectors, debuggers,
etc. Michael showed the inspector and “this strange button called
‘documentation’ - Smalltalkers are unfamiliar with this concept.” Mark
Roberts, Cincom documentation guy, has written much documentation. It
was very noticeable that their Smalltalker testers were all demanding to
show source code whereas their non-smalltalker-testers were all
demanding documentation. Michael showed how the environment shows
both, with much text and graphics.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 25
Q. This documentation is in the RB? Not yet. This documentation is done
with DITA and XML so can be republished in PDF. Interactive
documentation is on the agenda.

Searchlight has been integrated into this environment. You use the same
tool to find the documentation and to find the actual method.

The undo/redo submenu lists all the edits you did on that method in this
session: select to go back and forward again in your recent coding.

Michael then broke his program to show the debugger. He made a
renderContentOn: DNU. We saw the typical Seaside walkback in the
browser but when he clicked the debugger we saw a real debugger in the
web browser, “and please note the speed of the response as I walk the stack,
execute code, drop back and resume.” Michael fixed the method in the
debugger, restarted the context, resumed and we saw the correct web page
again. (Applause!)

Because this is a web browser, two or more developers can connect to the
same browser and work together. The CSS guy can be making the app look
good while the DB guy is implementing it. If you see an error, you can send
the URL to someone and they can join you and help you. (GemStone can
save the error and re-present it. This is about live cooperative debugging.
They may add an indication to show when two or more are interacting.)

SQLite is provided with WebVelocity so you get Store set up for you. There
is a Google maps demo, a console widget, SeasideGlorp. Scaffolding
provides you with an Atom feed, plus an XML and JASON output for your
individual items. He went to the URLs http:// .../1.xml or 1.jason or
posts.atom and saw these.

VW supports internationalisation so this does too; users can be hitting your
website in multiple languages.

Michael looked at themes. A theme hotswaps the CSS to change your
application’s look and feel.

He opened a google map app for animals seen at various geographical
locations. This was very easy. In the web development environment it is
really easy to integrate video, audio, etc., so much so that it is a new
paradigm for Smalltalkers.

He opened a tagged to-do list. Click on ‘Smalltalk’ to see all to-do tasks for
‘Smalltalk’. Search for text, show completed items.

Like VW, this is supported on Mac, on Windows and on various Linux
distros.

Michael invited feedback and discussion on where this should go in the
future. Ernest wanted WV 1.1 to be headless on Linux. Someone else
wanted Magritte; Thorsten and Niall are porting the latest version to VW

26 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
so it will be there.

WV’s aim is to make the tools better than the RB. This might have seemed
impossible but recently the web browser has greatly improved - AJAX, JIT
in the browser, etc. Michael reopened Seaside in Firefox and asked, could
you make a web browser text editor that was so remarkable it was
unremarkable. He opened one (on Smalltalk class documentation) that he
hoped we could not tell the difference. He could word-wrap, syntax-colour,
undo and redo (that will surprise the VW people present :-) and so on.
Seaside has been pushing us towards an application development paradigm
that could leave the GUI behind.

Q(Christian) How much do you code in WV? 99% when doing WV, when
working on VW tools he uses VW GUI. WV 1.1 is being programmed in
WV1.1.

Q(Annick) Collaborative production of documentation; Eclipse has
concept of CheatSheets.? Michael noticed that every tester forgot that web
browser windows have tabs until it was pointed it out, and then they had
documentation open in one tab, code in another.

Seaside Update, Lucas Renggli and Julian Fitzell
Seaside has had 5 sprints in the last 12 months, one at Amsterdam after the
ESUG and then 4 in Switzerland. Seaside 2.8.4 with bug fixes was released
in June, Seaside 2.9 has had 4 alpha releases. There are now 73 packages:
Flow (continuations) RSS, HTML5, etc.

Render request handling is more robust. Many methods moved from the
session and the application to the request handler. jQuery support has been
refactored so the stuff common between it and Scriptaculous is shared.
There are 1,102 tests; good code coverage results from MLS were posted
recently. The suite helps with porting; it took Michael a day to port the
latest to VW. Many method comments have been added. It works in VW
and Pharo (and Squeak but anyone just doing work to check and tighten
that would be welcome).

The beta releases will be called 3.0. The goal for this ESUG’s sprint (Friday
and Saturday) will be to get 3.0b1 released.

Dynamic Web Development with Seaside, written by Stephane, David
Shaffer, Lucas and Julian, is online: get it at book.seaside.st (a Pier site).
You can comment on every page if you see bugs. There is a getting started
section on each major platform (the book is dialect-agnostic). The book is
free. (Stephane: “That does not mean that we do not accept money.” :-)

Pier is extended to be a publishing engine.

Seaside Tutorial, Lucas Renggli
The code was the newest bleeding edge Seaside 2.9 and Pharo. (Go to
code.google.com/p/seaside and submit a bug if you find any.) We started
with a standard blog app: a simple page where you can add posts and etc.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 27
The first exercise was on code unchanged from 2.8.
• restful URLs: make the ID of the post you are editing appear in the

URL. Update the URL with the number of the post, e.g.
http://localhost:8080/seaside/blog/2?_s=1awV51MQcz2t8ypv&_k=3
V5YqexkzeSWw5VT where the 2 is the number of the post

updateUrl: aUrl
super updateUrl: aUrl.
aUrl addToPath:
(blog keyForPost: post ifAbsent: [String new]).

• restful URLs: make the ID of the post you are editing appear in the
URL instead of the usual long garbage, i.e. make a URL such as
http://localhost:8080/seaside/blog/2 send you straight to editing post 2.
We implement this in initialRequest: (so called because it is
called when a request first arrives for a non-existing key).

initialRequest: aUrl
super initialRequest: aUrl.
self requestContext consumer nextIfPresentDo:
[:postId | self editPost: (blog postAt: postId)]

If the user types a number that does not exist that gets a debugger. We will
instead provide an error message using the standard responder.
self requestContext consumer nextIfPresentDo:

[:postId |
self editPost:
(blog
postAt: postId
ifAbsent:
[^postId = 'create'
ifTrue: [self createPost]
ifFalse:
[self requestContext responseGenerator

notFound;
respond]])]

When initialRequest: is called, you have your tree of initialized
components. You are not in a rendering loop so you cannot render. (They
also realised two days ago that you cannot call but they will fix that.
Meanwhile you use show: and answer:, which is an explicit continuation
- show component and when you have run do this block - that works on
Smalltalk’s without continuations). You will be able to do anything except
render.

You can write just pure restful stuff but to use the render loop,
continuations and all that you do need the _k... so it cannot be got rid of.

Session expiry: you could implement initialRequest: in the
PostEditor instead of the BlogEditor and do things to have the session be
longer when you’re editing.

We changed the response handler to be a BTResponseHandler (BT = Blog
Tutorial) in the blog configuration page. Then we overrode the notFound
error to make the response page look better.

28 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
notFound
self response
notFound;
contentType: WAMimeType textHtml;
nextPutAll: (WARenderCanvas builder
fullDocument: true;

"Full doc i.e. return whole structure with head tags
etc, not just body"

rootBlock:
[:root |
root title: 'Blog Post Not Found' .
BTFiles default updateRoot: root] ;

render: [:html |
self renderContentOn: html])

BTResponseHandler>>renderContentOn: html
html div class: 'wrapper'; with:
[html paragraph:
'Sorry, the blog post you requested, number: ',

self request url path last seasideString, ' does not
seem to exist'.

"self requestContext request url seasideString"
html paragraph: 'Try another number']

This ended the first session. I was speaker in the parallel track in the next
session, so could not catch the JQuery and handler parts of the tutorial.

GHPrintToWeb, Roland Wagener, Georg Heeg
How can a designer, who thinks of fonts, text and pictures in terms of
desktop publishing, create a web page. Designers are artists with their own
special language fonts, colours and perfect images. Asking them to express
themselves in HTML is not nice for them - they think visually.

Designers use PhotoShop, Quark-Express, InDesign. All these tools are
mainly targeted at print output. They do not export their work to web pages.
On the web, such documents are created as PDF or Flash, not as an HTML
page. Adobe page says ‘digital publishing’ but they mean Adobe Flash and
PDF, not HTML. InDesign is the same: export to PDF or Flash, sure; export
to HTML, no.

Ask a shop how they export to web. They export as a .png and give it to a
web programmer who slices up the image and puts the parts of it the web
programmer can use into the HTML page. “You’re not serious”, was
Roland’s first response but he finds companies routinely do this!

Show such a designer DreamWeaver and they flee screaming. Can’t use all
fonts, shouldn’t use all colours, images get squeezed and compressed,
positioning - well I’m glad you asked ... , oh and learn CSS.

There are companies who have their own proprietary fonts, part of their
marketing. Ask a designer at that company to use Helvetica and Arial and
maybe one other if you’re good - and they are horrified.

Exporting to PDF and Flash is so easy but Flash is not available on an
iPhone and not every user has a Flash player on their machine (companies

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 29
sometimes limit it internally) and the catalogue is 20Mb - not everyone
wants to download all that to look at the first page. PDF and Flash have
proprietary formats, need a browser plug-in, are large files fetched all in
one go, and Flash cannot embed Flash, but they can include fonts not
available on the client’s computer. HTML pages are separate giving shorter
download times per page, and can embed Flash.

Once they were satisfied that designers would stay with the tools they
knew, they thought about how they would help.

He showed an election poster (for the CDU in Germany). The CDU owns
the font they use in the poster. He opened the ‘export this document’ widget
in InDesign and looked at the formats. Some export formats are very good
at preserving appearance, fonts, sizes, etc. They looked at the best export
format IDML and the XML export and tried to combine them into an
export to HTML. He opened VW (not yet the packaged version) and
selected one of the exported files - the XML file. The system finds the
IDML file and started converting. The progress bar gradually advanced
through the 6-8 pages. This size conversion normally took 30 minutes and
now takes a minute or so. The helper program they use (a Java application)
to do image processing is the bottleneck, not VW, as they must process the
image into the fonts and etc. (It also crashed during the demo and he had to
redo the conversion).

Q. Different size pages? Yes, we must export the page several times and
have a browser that switches the page to the right size. This works well and
the user hardly notices that a page of the given size has been selected.

Q(Tudor) Use logical points (ems) instead of physical pixels? If you resize
the browser using relative size, it is not quite right and the designers see it
immediately. (They speak from experience.)

Q(Thorsten) do you end up with fonts or pixels? Pixels.

The similarities between the XML exports and the SVG files was their start
point but while some browsers will show SVG directly (e.g. Firefox), most
others will not or not well enough. They converted the SVG snippets to
PNG files and used SeaBreeze to build the complete HTML object.

The first prototype was shown to a customer after two weeks. The customer
had inserted errors into the test pages and they replicated perfectly
including those errors, which impressed the customer greatly.

They found the InkSpace C++ application to convert SVG files but it took
far too long to start on the command line, it was not available as a DLL and
InkSpace 0.46 created wrong images in some very complex transparency
situations.

Q(Annick) SVG package in Cincom OR, using Cairo? Roland thinks they
looked at it and rejected it after testing. Some of the test documents have
really tricky transparency situations that it did not handle perfectly.

30 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
They moved to the Java programme batik, connecting via JNIPort, and the
speed was better. (InkSpace was better as a drawing tool.)

They export text as vector paths. This way, the client sees the correct fonts
but this text is a .png. If the text must be editable, it would be better to use
a web-friendly font, but designers are very picky and will throw you out of
their office if you attempt to praise Helvetica. If the text must just be
searchable, you can attach the original text to the page and arrange for it to
be included in a search.

They wanted to use the converter as a web application. End-users wanted
to stay inside their InDesign application. They objected to the lack of
platform integration, of InDesign integration (but he has just received some
Javascript code that solves that), etc.

They are preparing a MacOSX application that supports drag and drop of
files (in 7.7 only) and integrates into the Mac menu (needed them to mess
around with the MainMenu.mib file - they have English and German
menus). Last week, he learnt how to trigger internationalisation in Mac by
dragging the language labels in the list in the internationalisation
preferences. VW7.7 provides an Objective-C Connect which lets them
synchronise the VW and Mac internationalisation (but not dynamic during
run-time).

InDesign knows about buttons and clicking on them to update other
pictures on the page. He converted a very simple page where clicking on
each of four buttons showed a different image beneath. The buttons on the
web page worked and updated the image.

“We have more impressive examples but the web design company we built
them with asked us to pay 15,000 euros for permission to show them to
you.”

Q.Why many .png files, not just one per page? To allow web programming
and to reduce apparent load time - the user sees that something has arrived.

Q(Annick) Resizing? The designer does not want resizing - it makes things
look bad (less perfect than their intended design). They only use the
browser size to determine the resolution to offer.

Q(Annick) Mac updates Java automatically; did you do any versioning /
checking? Thanks for the hint. No, we did nothing and hope it works.

Q. Text v PNG? Headlines can be converted as the page loads but he
thought not for whole page.

Private fonts cost money and you cannot just put them on the web if you
want, so withholding fonts is in some cases very commercially useful.

seaBreeze, Karsten Kusche, Georg Heeg
Karsten learnt Smalltalk from Georg in Anhalt university 7 years ago,

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 31
where he was told that “Everything is an object”. In 2004, ESUG was in
Anhalt and he mapped .ssp pages from Webtoolkit to VisualWaf. In
VisualWaf you can use .ssp or the PageView API. Then he worked in the
Bach project, where there were various ways to render the scanned text into
HTML.

In seaBreeze, everything is an object, both HTML elements like div and
span, and non-HTML elements like containers, conditions, U-tube
elements, etc. SBElement has subclasses SBDivElement and
SBContainerElement. SBElement knows about HTML properties, HTML
structure knowledge, CSS properties and how to render HTML.

A collection container has its objects and a prototype of which of their
values are of interest, and knows how to render these elements. The
SBEditorElement double-dispatches to render any object. The
scriptaculous file library is an object (who has every forgotten to add a file
library and then seen nothing - many hands were raised including mine).

The windowSpec is a literal array describing these. Use the Web Painter to
create sites. Elements know their structure and how they can be composed.
Input elements know they cannot be added to Body elements unless a Form
element is there to receive them. An element tree with icons to indicate e.g.
whether the object has local CSS properties. The toolbar lets you embed
object in others or extract objects from others, or duplicate them, delete
them, etc. The Element Editor lets you assign CSS, change values, etc.
Javascript is an object. You can specify which element to update at runtime
which is more convenient than standard seaside coding style which has you
having to know it at compile time. There’s a ‘use Ajax’ checkbox.

In seaBreeze, the scaffolding is very simple - the elements look as they did
when you were editing them. You can import from ObjectStudio Designer
or from InDesign (see Roland’s talk earlier today).

This runs on VW7.6 / Seaside 2.8, on VW7.7 / Seaside 3.0 and
ObjectStudio 8.2 / Seaside 3.0. It sort of works in Pharo (some pairing
welcome on one or two issues) and a feasibility study has confirmed it can
be ported to VA.

Q.Reusable components? Yes, the application models are components.

Q. Deployed sites? The Heeg website and a picture gallery site.

Q. HTML5? What seaside supports, we support.

Karsten demoed. He created a new application ‘ESUG application’. It
automatically created a component class and application and file library. he
then built the counter demo. He added an anchor for the ++. It was red (no
method in ApplicationModel); he clicked on it, was taken to the class and
coded number := number + 1. He added text and gave it the aspect
‘number’ to display the current value. He showed the page, clicked and, as
it was not initialised, got a walkback. He fixed and saw what we expected.

32 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
He then switched to ‘use AJAX’ and had the usual demo hiccough. He
breakpointed and debugged into it and what he saw reminded him that to
update an element you must tell its parent to update, not itself. The element
had no parent so he selected both the ++ and the number and put them in a
div. Then it updated. (Applause) That was an unusual demo hiccough that
helped the speaker show off one of the features (embed into) he had been
describing.

Iliad: a new web framework, Nicholas Petton, Sebastion Auder,
University of Montpellier
Nicholas Petton is student at the university of Montpellier II. He is a co-
developer of Aida/Web and author of the Iliad web framework. He talked
about Iliad, a new web framework. See http://demo.iliad.bioskop.fr/browse
http://iliad.bioskop.fr and also blog posts on the GNU Smalltalk site.

Why another web framework? Smalltalk has several web frameworks:
Seaside, Aida, HttpView2 (little known, has a simple way to dispatch
requests). These frameworks all have great ideas so they decided to reuse
things from all these framework. They stole components from Seaside,
elements from Aida and dispatch from HttpView2.

He showed the counter application in Iliad - very like Seaside. They wanted
Ajax everywhere. Updating one counter does not need update of the whole
page every time. He showed AJAX just updating the counter. In Seaside,
the code for this is somewhat long. In Iliad, the code is simpler. In Iliad,
markDirty in model accessors tell it what things to update.

e h2: count asString.
e anchor
action: [self increase]
text: ‘++’.

e space.
e anchor
action: [self decrease]
text: ‘--’.

increase
counter := counter + 1
self markDirty.

decrease
counter := counter - 1
self markDirty.

The URL is RESTful, unlike Seaside and so the back button is no longer
an undo button. He showed a ToDo list in which he used URL style
http://localhost:7777/examples/todo#pending,
http://localhost:7777/examples/todo#completed and so the back button
works as expected.

Q. Sometimes the user moves the mouse over the link without clicking, to
understand the logic. Here, what they see will not be the same as what they
see if they click. Discussion.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 33
Iliad is on GNUSmalltalk, Pharo and Squeak. There is a Magritte package
for Iliad. There is an Iliad-UI package.

Nicholas thanked Sebastian Bonzini who made Iliad 50 times faster.

Coding and Testing Tools and Techniques
(Invited talk) Script your browser in 15 minutes with Glamour, Tudor
Girbe, Philipp Bunge
Tudor Girbe gave a superb talk on how to give talks last year. So no
pressure on him. :-) Do you love objects? Hands were raised. (Tudor thinks
geeks need more exercise so there were several question-hands calls in the
talk. :-) ESUG loves objects and dynamic systems so it’s a great place to
present.

This was the master project of Philipp Bunge. Lucas Renggli and others
helped.

There are many more objects than classes so the best friend of the Smalltalk
developer is the inspector. Anyone know what its browser is?

You can click through many menus and windows of a generic browser to
get what you want or you can build a dedicated browser that shows you
what you want. The class browser is a dedicated view of the system. A
generic browser is slower to use. A dedicated browser is difficult to build;
usually, it intertwines the rendering logic with control flow.
browser = GLMTableLayoutBrowser new.
browser openOn: Metacello versions.

shows list of metacello project versions.
browser
column: #versions;
column: [:c | c row: #packages; row: #comment];
shownOn: #versions using: [browser list].

shows a more interesting view.

browser
shownOn: #packages
from: #versions
using:
[browser text
display: [:v | v spec packageSpecsInRowOrder];
format: [:package | package name]]

This displayed but selecting did not show the comment. A final code
change and we see the comment when we select.
browser
shownOn: #comment
from: #versions
using: [browser text

display: [:version | version description]].
browser openOn: MetacelloMetacelloProject versions.

34 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
So there we are: 5 minutes into the talk and we have created a version
browser (applause).

This browser is in Squeak showing in Morphic. Maybe he wants to use it
over the web. He executed
SGLDefaultComponent
register: browser
on: MetacelloMetacelloProject versions.

and then opened a web browser and saw the same browser in it as a Seaside
component.

Q. Editable? You can edit, save changes and so on.

We still have 5 minutes left. So lets build a class browser.
browser
column: #classCats;
column: #classes;
column: #categories;
column: #methods.

browser
shownOn: #classCats;
using: [browser list].

browser
shownOn: #classes;
from: #classCats;
using:
[browser list display:
[:classCat |
(Smalltalk organization
listAtCategoryNamed: classCat)
collect: [:e | Smalltalk classNamed: e]]].

browser
shownOn: #categories;
from: #classes;
using:
[browser list display:
[:classC | class organization categories].

Getting the methods from the category would be good but we need the class
as well. If we just get from class we select method and do not see category
and vice versa (he demoed). So we need
browser
shownOn: #categories;
from: #classes;
from: #categories;
using:
[browser list
display: [:class :category | class selectors]
when: [category isNil]

and we have two more display:when: calls for the cases class isNil
and for neither class nor category being nil.

Q. Multi-selectable? Yes just specify that. (You get a collection, not a
single item in return and must code for that; see below).

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 35
browser row: #navigation; row: #details.
browser shownOn: #navigation using: [browser custom: ..

shownOn: means please show from the selection (the ‘port’) so you can
say #class->#entity, #classCat->#selection, etc.

browser
sendToOutside: #selectedCategories from: #classes;

from:

Use #class->entity, #classCat->selection because you cannot access
internal names directly for encapsulation).
browser
shownOn: #navigation;
using: [browser custom: self stNavigator].

browser
shownOn: #details;
from #navigation->#selectedClass;
from: #navigation->#selectedMethod;
using:
[browser text
title: ‘Class Definition’;
display: [:class | class definition
when: [:class | class notNil].

browser text
title: ‘Source code’;
display:
[:class :method | class sourceCodeAt: method]

when: [:class | method notNil]].

but the order above in using: is wrong - select both method and class and
get definition tab before source code tab - so swap it.
using:
[browser text
title: ‘Source code’;
display:
[:class :method | class sourceCodeAt: method]

when: [:class | method notNil].
browser text
title: ‘Class Definition’;
display: [:class | class definition]
when: [:class | class notNil].

He demoed (applause).

Q. Update? Yes, that is a current draw back. If you change the source code
in the other browser, this browser will not show a red code or similar. This
is next to do.

Q. Can you render trees? Change browser list to browser tree.

Next, Tudor showed us the machinery that empowers this. We have named
ports for the components of the upper navigation part, which we linked.
Then we gradually gave them behaviour. Similarly for the lower details
part and the links between them.

36 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
Objects can have many Ports. Panes can have many Ports. Ports can have
many Transmission relations between them. A browser has many Panes
and many Transmissions (subclasses Simple and Bundle). A Pane has
many Presentations (subclass List and Tree, and also Browser, which is
where browser custom: ... fits in). Browser subclasses are
TableLayout and Finder (think the Mac finder). Presentation can have
many Actions and that is how we edit and do other things. Actions can be
rendered as key short cuts, menus, whatever.

Mondrian is a scripting engine for scripting visualisations (see Tudor’s
talks at prior ESUGs). Using
viewEdgesFrom: superclass

he showed the class hierarchy (Mondrian visual style: graphic, not
indented text). For more complex visualisations, you can use Mondrian,
Magritte or whatever.

He created a message tally tree as indented text, with number of calls and
time in each call shown after the message printString.
title: ‘Messages’;
display: [:each | each sansOver: -1]
when: ... “-1 delay before displaying calls”

This is like OmniBrowser but simpler to implement.

Next he looked at the Finder code, in the example of a small inspector. He
can inspect Smalltalk, thence a class, thence its subclasses. But we want to
see allSubclasses without spawning another pane so he lets the text editor’s
output from the left pane’s Evaluator tab go to the right pane. Select left
pane, type sel withAllSubclasses and see the result in the right
pane, ready for further navigation.

Thus we can display the same browser in Morphic and in Seaside (thanks
to Lucas - he uses JQuery).

Their VW prototype is in Widgetry because it was easier for them to script
than Wrapper. Someone who knows wrapper is requested to do that bit.

(Pier doesn’t run in Seaside 2.9 yet.) He showed Pier in his browser
complete with the Mondrian visualisations.

This is built in 50 classes (but that includes 15 or 20 for the Morphic
binding) with some 2300 methods.

Q. Browser text; the naming convention is? Discussion in which Tudor
indicated the idea was to read the black-coloured code (see his slides).

Q. Dependencies? None except that if you want to use Mondrian you need
Mondrian, if you want to use Magritte you must load Magritte, etc.

Q(Andres) The specification of a browser and its instance? Are the same

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 37
thing; everything is done at run time and there is no spec instance, just the
actual graphical representation existing at run time.

Tudor: “Morphic is a pane :-). Why do I have to create a class just to wrap
a symbol. Widgetry is much better.

This is ANSI smalltalk and should port to any dialect. It is in Pharo/Squeak,
and in VW (using Widgetry and not the latest version at the moment).

Specify, Simplify, Explore with ComplexValues, Christian Haider
(smalltalkedVisuals GmbH) Thomas Schrader (counselling developer)
Value is an abstraction with no lifecycle; it is stateless and context-free. We
use them every day.
• Immediate values are very pure and the compiler recognises this: 42 =

42 and 42 == 42, $a = $a and $a == $a. Literals are not identical but
they are immutable.

• Other things are value-like but implemented as objects, e.g. ColorValue
red.

A complex value may have much structure yet be a value you do not expect
to change, e.g.
ChartText
style: (Textstyle
olor: (CmykColor
cyan: 1
magenta: 0.3 ...

font: ...

The ComplexValue approach specifies such values:
ChartText
style: (Textstyle ..)
string: ‘This is a text’

position: 5@10

is specified as
ChartText>>localSpecification
<constant: #style class: #{Textstyle)>
<constant: #string class: #{String)>
<constant: #position class: #{Point)>

A ComplexValue is an immutable composite object without identity, and
conversely a domain object that meets these criteria is a good candidate for
a ComplexValue. Each such candidate is assigned a class-side
localSpecification method.

Q. Existing instances when an optional attribute is added to your complex
value? You care more about code than about existing values, since you
usually do not hold onto them. That said, as in standard Smalltalk, you get
the default value or nil for the added attribute in the existing instances.

Q(MLS) how do you compute a hash for these? Since MLS had beaten
Andres in the race to ask this, Andres was asked for an answer. Discussion.

38 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
Values are created by sending a constructor to a class and then they never
change. Values are always trees, never cycles, since you must put all values
in at once. (Could add fixed-point operator to get round this but no cycles
is the flavour they use.)
Trade
time: <Time>
value: <Number>
volume: <Integer>
settled: <Boolean>

can have a value
Trade
time: 16:30
value: 42.13
volume: 200
settled: true

Values make testing easier - you can just verify the test recreated the
expected value - and it is relatively easy to translate them from Smalltalk
to any external state e.g. a C struct.

He showed the ComplexValue definition for a VW windowSpec and for
the VW Settings object, which is an XML string.

They find their systems become more reliable (values are immutable) and
simpler (values are modelled). Large parts of systems can be modelled as
values and at once they become simple and you can just forget about them,
leaving you time to worry about the real objects - the collections you are
manipulating and so on. Values are practical in Smalltalk; they are just
code. A value prints itself in a literal form that can be re-evaluated.

Q(Andrew) (who paid $ to reserve the immutability bit in the Squeak VM,
and so was very much in favour of this) How much work was this? Easy;
it grew naturally out of their programming style. (Christian would like to
talk to VM guys about enforcing the immutability.)

Q(Andres) use for changes? Yes, changes are pure values. There are two
change systems in VW. There is a className: setter that is only there to
create an instance and very dangerous to use any other way.

Q(MLS) creation methods are clean and nice, but in the windowSpec
example, is a TextEditorSpec a ComplexValue given that we edit it with the
UIPainter? This gave rise to discussion which I attempt to summarise: the
immutable thing is the literal array spec (in the method created by saving
in the UIPainter), not the objects edited by the painter while creating that
spec. We debated whether you should see the two as different objects or as
the same object in an epoch when it was editable, being created and not yet
a ComplexValue, then in a later epoch when it was a ComplexValue.

Mutation Testing, Hernan Wilkinson, University of Buenos Aires
Hernan works for a Smalltalk consulting company and also for the
University of Buenos Aires.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 39
Ordinary tests verify the quality of your source code. Mutation testing
verifies the quality of your tests.
• Step 1: create a mutant by applying a mutation operator to your basic

code to create the mutation. A simple operator might change and: to
or:, or - to +, in some method.

• Step 2: kill the mutant by running the test suite. If all the tests run, the
mutant survives. If one test fails, the mutant dies.

A surviving mutant will normally reveal a case that is not tested. (It may of
course reveal semantic equivalence between the normal and mutant code.)
self assert: (Card number: 123) = (Card number: 123)

will not reveal all errors in Card equality, whereas an extra line in the test
self deny: (Card number: 123) = (Card number: 789)

will catch many of those the prior line will not. In test-driven development,
you may write tests that just test the positive cases. Running mutation
testing after completing a test-driven development step can help improve
the tests’ coverage of negative cases.

MuTalk, the mutation tool, runs all the tests in the original, then applies one
of various operators to the code and reruns tests. Operators includes:
• <= change to =
• reject: change to select:
• ifFalse: change to false
• remove exception handler operator
They are finding out by experiment which operators give good results.

Hernan opened the tool, generated 10 mutants, ran his test suite and saw
that only two were killed. You display original code to mutated to show the
mutation your tests did not kill, thus suggesting new tests you need, or new
assertions in existing tests. He fixed the error that caused these failures,
then ran the tool again, creating 12 mutants of which 11 were killed and 1
survived. The tool showed text suggesting the likely missing test assertion
given the form of the mutant. He wrote that assertion and so killed the last
mutant.

If your test suite fails on the original code, it would kill all your test cases
trivially, so the tool warns you if you have any failures against the original.

Like Smalltalk, mutation testing is old. It is not widely used because
reasonable complete test suites are rare, the right test-driven development
processes are rare, and the tool support is rare. There is also the
combinatorial explosion problem.

40 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
If you had to compile and link and run each mutant in turn for all possible
cases, you would spend a thousand hours running a reasonable set of
mutations, so people who do this in C++ or Java try to compile all the
mutants at once with global variables activating specific mutant code. In
Smalltalk, we don’t have this problem. However Hernan has investigated
ways to reduce the time by looking at four ways of running:
• run all tests
• run all tests that cover the changed code
• mutate only methods covered by existing tests
• mutate only covered methods and run only their covering tests
The last method is often twice as fast but the first one creates more mutants.
The methods may not show the same results.

Q(Niall) Coverage itself may be changed by a mutant? Yes. The technique
is an approximation.

He showed statistics comparing the basic algorithm to the coverage
approach. The coverage is almost always faster but was slower for Pier,
where the time to compute coverage was long enough to make the coverage
approach slower than the basic approach.

Another speed-up technique is for MuTalk to look at test times. If the
mutated test takes more than 3 times longer than the original, assume it will
fail and treat that as a kill.

They would like to detect cases where two mutants are the same, e.g.
a = b ifTrue: mutated to a = b ifFalse: or a ~= b ifTrue:

A paper by K Wah (1995) claims that complex faults are linked to simple
faults such that a test suite that catches all simple faults will detect most
complex faults. So any fault is likely to have a set of mutants for which only
a test case that detects that fault will kill them. Hernan showed statistics of
the extra cases that his mutation testing added to a range of cases.

Q. Will this teach programmers to write better tests or just make them lazy?
The latter kind of programmer can be treated as a mutant and killed. :-)

Q(Niall) discussion: test-driven development is about writing tests to do
what you want/expect. This is a good complement? Hernan agreed; it adds
tests for things not on the test-driven development path.

Q. Needs good coverage to work? If your tests do not cover your code, that
is an problem in itself and should be addressed first.

MuTalk selects specific packages to mutate; they do not mutate the
collection classes or the basic arithmetic since the system would crash.
They test their code.

Q(Andres) Does one of your mutation operators replace a class reference

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 41
with another class reference? Not yet, could do. Java and C++ people
change public methods to private and etc. Which class would you mutate
to - one in the same hierarchy, one with a high degree of polymorphism?
Hernan does not test removing or adding return just because of the large
number of mutants that would create; he will explore that.

Hernan started this less than a year ago and is still investigating. He finds
it a powerful method and a great complement to test-driven development.

This is in Pharo on squeaksource under the MIT license. (Stephane: we’ll
be delighted to receive better tests for Pharo.)

Q(Bernard) Have you found any really obvious missing tests? Yes. Hernan
showed a case in a real system where an obvious issue was not found. A
colleague mentioned that the method helped him find a bug in his code.

Just-in-time resourcing: fast, flexible testing with SUnit and Friends,
Niall Ross, Cincom
SUnit 3.2 will be released in VW7.7. Ports to VASmalltalk, Squeak and
Smalltalk/X will be released at the same time. A port to Dolphin has been
arranged and I am working to arrange GemStone and other dialect ports. In
this talk, I looked at what had changed in SUnit 3.2 and why.

Once upon a time there were three classes - TestCase, TestSuite and
TestResult - and then there was a fourth: TestResource, introduced nine
years ago as an optimisation to avoid repeated setUp and tearDown of
expensive unchanging state. However TestResource in 3.1 and earlier has
several problems:
• The XP style is “Do it later” / “You won’t need it”. However, every

resource a suite requires is set up before any test is run, and if one
resource of one test fails in a suite of 15,000 tests then the entire run
does nothing – not what you want to see when you return from making
coffee, or come in the next morning.

• The XP style is to refactor. The rule is “first make it run, then make it
right, last make it fast”. When resources are used to optimise (their
initial and most common purpose), that often means moving code from
the setUp of a TestCase to the setUp of a TestResource. However
resources do not understand the assertion protocol, so refactoring e.g.
databaseSession := DBConnection connect.
self assert: databaseSession isOnline

description: ‘The database is not online’.

from the setUp of a TestCase that is getting slow to the setUp of a
TestResource gets a DNU.

• Resources can compete with other resources, for example if a system
can only connect to one database at a time but tests have been written
that run against several databases, and each database is modelled by a
resource. I coded the CompetingResource pattern: in SUnit 3.1 and
earlier; this was not easy! Stephane Ducasse and Martin Kobetic also
had patterns; they also found it not easy.

42 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
• It is even worse when resources rely on other resources. Tests (and
resources) can need their resources set up in the order given and torn
down in the reverse order, e.g. given
MyTestCase class>>resources
^Array

with: ConnectToDBResource
with: AddTestDataToDBResource

then the database connection resource must be set up before and torn
down after the resource that adds and removes test data from that
database. This was not handled in SUnit 3.1 and earlier.

In SUnit 3.2, a TestResource subclass has three possible states: not set up
(nil value for singleton instance), failed set up (nonce value for singleton
instance), succeeded set up (standard value for singleton instance).
• Resources are made available just-in-time. The first test that needs a

resource prompts it to set itself up. Later tests that need it either see that
it has been set up (by that first test) and so it is (assumed to be still)
available, or that the first set up attempt failed and so it is (assumed to
remain) unavailable.

• At the end of a test suite’s run, resources used in that run are guaranteed
to be torn down, as in 3.1. However in 3.2 a resource can also be reset
(i.e. torn down) at anytime, e.g. in the tearDown code of a test case
that uses it. The next test that needs the resource, seeing it is in not-set-
up state, will set it up again. Thus resetting in a test’s tearDown allows
a developer to trade test performance for test isolation: the resource will
be torn down and set up more often, but a test that fears it might corrupt
a resource can tear it down, ensuring other tests get a clean version.

• Resources understand the same assert:... and deny:... protocol
as tests do. TestResource>>setUp and >>isAvailable run inside the
handler, as tests do. (The guaranteed tear down of resources at the end
of a test suite’s run does not run inside the handler: at that point, a call
of assert: or similar is just more convenient protocol for the same
exception-raising behaviour that would have been done by hand in
SUnit 3.1.)

• Resource-processing is ordered. A test’s resources are set up in the
order in which the test presents them and torn down in the reverse
order. A resource’s resources are set up before it and torn down after it.

I walked through the code changes in 3.2 that do all this.

So once upon a time there were three classes - TestCase, TestSuite and
TestResult - and then there was a fourth - TestResource - and now there is
a fifth: TestAsserter, the abstract superclass of TestCase and TestResource,
and of any user-created TestCase delegate class. That’s enough! I am
determined to keep SUnit small.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 43
Any impact on Users?
• Anyone who overrides isLogging or failureLog needs to notice

that these methods have moved to the class side. logFailure: is now
on both class and instance sides. Niall asked if anyone did override
these methods; no hands were raised.

• Profiling of tests can be affected. The time to run a specific test...
method is unchanged. The time to run a test suite overall is also
unchanged. If you profile a test’s time in runCase:, it may or may not
include resource set up time; resource set up time has been moved from
the start of a suite’s run to the start of (some) tests’ runCase:.

Thus in SUnit 3.2, resources are in a somewhat better state than in SUnit
3.1. I thank Yuri Mironenko, Jan Vrany, Dale Heinrichs, James Foster and
Tim MacKinnon for helping me port to Squeak, Smalltalk/X, Gemstone
and Dolphin.

I then reviewed the aims of SUnit and various other test frameworks
spawned from it.
• SUnit aims to be cross-dialect, backward-compatible and small (5

classes). It has various UIs such as RBSUnitExtensions (VW)
SUnitBrowser (VASmalltalk), TestRunner (Squeak, etc.), etc., and add-
ons such as SUnitResourcePatterns, SUnitXProcPatterns, etc.

• SUnitToo is a VW-specific, experimental framework spawned from
SUnit where ideas, some of which may end up in SUnit, can be trialled.
It is slightly larger (11 classes). You can run SUnit tests in SUnitToo by
loading the SUnit-Bridge2SU2 utility.

• Assessments is a VW-specific, highly configurable framework of 40+
classes. It has transparent bridges configurable for SUnit, SUnitToo,
etc.

There is also GemStone’s test framework and various others.

Known issues and Future plans: SUnit will remain cross-dialect,
backward-compatible, small. SUnit welcomes all ideas that fit with that
goal. SUnit 3.2 is now finalised as a base point and with a view to its being
in the upcoming release of VW7.7. In SUnit 3.3, some fixes are already in
place:
• Tear down of test resources used by multiple other test resources has

been made more robust in 3.3; in 3.2, multiple reliance by resources on
a resource could still be torn down out of order.

• Circular references of resources are illegal of course, but if a developer
accidentally creates such a case then in 3.2 they correctly fail to set up
but still loop forever in tear down. 3.3 handles this better.

For SUnit 3.3 or 4.0 or later, here are some ideas:
• Within runCase:, we dispatch on the exception instead of having

three nested on:do: calls.

44 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
• Exploiting this, an add-on utility can allow a specialised TestResult to
be used to offer developers more outcome categories than just pass,
fail, error (e.g. when a test that only makes sense on one OS is in a suite
run on another, so is not run but should not appear as a failure).

• Look at making the ‘test*’ match: ... allSelectors way
of finding which methods to run as tests more easily overridable, more
efficient (e.g. begins: is cheaper than expensive match:, and we can
stop the search at TestCase) and able to accept pragma <test>.

• We would like to be able to tag tests as <takes a long time to run>,
<expected to fail at the moment> and so on via self expectFailure, self
noteLongTest, etc., or pragmas or whatever.

• In the various dialect’s CMs, we would like to save a result (or a result
constructor) with a test package - “Before saving I ran the tests and the
result was ...”. We also wish to compare results (c.f. Niall’s comparison
browser in VA).

• Rework sunitChanged: calls to make them easier to use in UI tools.
Q(Michael) The class-side isAvailable makes the resource available if
it is not already so should not have an is... name? I have indeed seen
cases where people have overridden the class-side isAvailable instead
of the instance-side isAvailable in their TestResource subclasses
precisely because of the confusion caused by this. Because the class-side
should not be overridden, it should be possible to rename it without
compromising backward compatibility since any subclasses that had
problems would be revealing that they were wrongly coded and needed to
be rewritten. (Whether users who met such problems would be happy is
another matter.) A proposed new name is beAvailable.

(Michael also offered an alternative name for TestAsserter. After all, if a
good name for a superclass of some Part... classes is Particle, what is a
good name for the superclass of some Test... classes? I decided not to
accept this suggestion. :-)

Smalltalk and non-Smalltalk
Why Smalltalk won the language shoot-out, Lucas Renggli and Tudor
Girbe
Lucas browsed the method
findEmail:
| rows |
rows := SELECT email

FROM users
WHERE username = @(/\s/*(...))

rows do: ...

in his Squeak image. Here we have Smalltalk, SQL and regular expressions
all mixed together in a method. So if you had not seen this example, what
architecture would you use to do that task?

Like Switzerland, the IT world speaks many different languages and these
are not randomly distributed. People who speak French can visit the
German part of Switzerland and (mostly) can communicate; we would like

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 45
to do the same in the IT world. The same infrastructure is everywhere in
Switzerland and ideally we would like the same in the IT world.

The system that allows that findEmail: code is called Helvetia. Lucas’
talk was not about Helvetia; it is about what a language needs to allow that.

Minimal Syntax: transforming one language into another is a lot easier if
the syntax is small. He showed java’s huge list, Lisps two ASP nodes
(Atom and List) and Smalltalk (Pharo has 10 ASP nodes). Parsing an AST
and transforming it to the host AST is easier when this number is smaller.

Reflective Facilities: Smalltalk is very reflective but its meta-programming
support is not that good. Expressions such as
Parser parseExpression aString, ‘ asRegex’.

MessageNode
receiver: (LiteralNode value: aString)
selector: #asRegex.

are not that clear to read.

Helvetia borrows from Lisp: ‘‘(‘,(aString) asRegex) where the red part is
executed at runtime. Lucas recommends it be added to all Smalltalks to
enhance their metaprogramming.

Q(Christian) Helvetia? A system that lets you build new languages and
integrate them into the host. The purpose is to build a new Javascript. Some
problems are solved better elsewhere than in Smalltalk so let Smalltalk be
the host environment and get these others for their purposes.

Q. How did the comparison work out? Lisp was the only close competitor.
Javascript is strong in metaprogramming but the AST is not available.
Newspeak makes instVars more flexible but otherwise is Smalltalk for his
purposes. OMeta was too slow and not flexible enough for transforming
AST on the fly.

Cloudfork: cloud computing using Smalltalk, Ernest Micklei and Jan
van de Sandt
Cloud computing means a dynamically-scalable computing technique that
provides (often virtualised) resources. Google app is an example of a cloud
that provides platform resources. Another cloud might provide software
resources. A third example is infrastructure cloud computing: the cloud
gives you databases or disks and you combine these.

Cloudfork is an open-source Smalltalk library that offers the cloud APIs. It
was developed in Squeak and has been ported to VW and VASmalltalk.
(The experience taught them how to write portable Smalltalk code.) Their
first target was Amazon cloud computing services:
• S3: simple storage service
• SQS: simple queuing service (messaging)

46 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
• SimpleDB
• EC2: elastic computing cloud
All these services are built on the same architecture and business model.
There is no entry charge or registration requirement. You just use the
services and at the end of the month an amount is deducted from your credit
card. Amazon had been a successful store for 10 years during which time
it learned much which went into the design of these services. (Verner
Voegels, CTO of Amazon gave a speech explaining the background:
Amazon chose scalability over asset transactions since transactions do not
scale. It is better to have data that is inconsistent for a few milliseconds than
to have your system go down because distributed transactions don’t scale.
Their aim is to be basically available with soft state that is eventually
consistent.) The cost is very reasonable, e.g. S3 is $0.15 per Gb per month.

They offer a SOAP interface and a simpler REST-based interface that 95%
of their customers use, including Cloudfork.

S3 offers buckets in which you can store objects of up to 5Gb in size under
a key - just like a Smalltalk dictionary. Each object can have meta-data with
it; they use HTTP and so the page header becomes your meta-data. This is
used for storage, for streaming (whether 20 people view the movie or
200,000 is fine by Amazon - the latter just means bigger bill at the end of
the month), for software distribution, etc.

Their APIs are as you would expect (see slide for full details):
CFSimpleStorageService newWith: ...

SQS: Jan has a site where sometimes he has to do transcoding. Sometimes
his sight is not busy and one processor is enough. At other times it is busy
and he needs more. His code watches his private queue and sees when to
request more resources. He would not use SQS to transfer money.
sqs := CFSimpleQueueService newWith: ...

SimpleDB is neither relational nor object-oriented; it is a key-value store.
It is huge. Indexes and etc. are all handled automatically. To a Smalltalker
it is just a very big dictionary. One account can have up to 100 domains.
You can add up to 1,000,000,000 key-value items to a domain. You can
have multi-valued attributes for your keys. You store strings only. Do not
use it if you have complex joins or suchlike requirements. It is free until
you go above a certain number of accesses per hour. A typical arrangement
might be a testing domain and one or more production domains.
simpleDB := CFSimpleDB newWith: myCredentials.
simpleDB creadeDomain: ‘esug-2009-domain’.

(Use SimpleDB protocol or Smalltalk dictionary protocol. Since the
behaviour is not identical, they suggest to use SimpleDB protocol.)

They have used this for a couple of years now and find it very convenient.
You create EC2 images for your Smalltalk application and just charge for
use rather than making your customers pay up front. The smalltalk

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 47
community could publish images and exchange ideas. GemStone could
have a real opportunity here (Oracle already sells its databases as EC2
images).

Ernest then took over from Jan. Active Item Framework was build on top
of SimpleDB. Ernest was doing rails applications before he returned to
Smalltalk and he saw analogies between Rails’ Active Record and what he
wanted to do in SimpleDB.

The only thing SimpleDB can store is strings, so Active Item maps between
objects and strings. Active Items have ids and let you save, find and delete
your objects in SimpleDB. He wanted the same Domain Spec Language as
in Rails (belongsTo:, hasMany:, etc.) and he has inheritance, etc.
Domain Sharding maps between objects and domains.

(We then saw the most minimal demo hiccough ever; his Mac kept
bouncing the ‘update me’ icon.) He opened a WebVelocity image with
Cloudfork loaded. There is only one platform-specific package, called
Cloudfork-VisualWorks-... or Cloudfork-VASmalltalk-... or He looked
at method signStringSHA256:usingSecret:. Every request has a
timestamp so it is very important that your clock is right (and solving
timezone in all Smalltalks was a fun task) otherwise all messages will fail.

Next, he looked at the CFActiveItemDescriber object. Ernest did a project
for Flight School. They have many exams, many questions. The Question
class has a describe: method which states that a Question has an integer
‘weight’ attribute, ownsMany: choices, etc. and returns an instance of
CFActiveItemDescriber. The framework supports composition,
aggregation, etc. A composition stores the subordinate objects inside the
composer, flattening the structure for storage in SimpleDB.

He inspected an object and its description field, “and now you have to
believe me that this object is in the cloud.” He tried to get back the object
and (after correcting his spelling) got it. Then he deleted it again. The
object has an errors field as well as a description field: if e.g. the deletion
failed then the ‘errors’ will tell him why.

The SimpleDB expression query is done by block syntax expansion similar
to block.

He then went to a web browser and opened his AIBrow tool, a WebVelocity
app that lets him explore his objects in SimpleDB. By running this app in
an EC2 image close to your SimpleDB, you can minimise communication
overhead.

Q(Thorsten) can the map-reduce functionality that Amazon offers could be
used with Smalltalk? It sends code to Amazon who then evaluate it on each
element of a big array but they do not offer Smalltalk as one of the
languages in the array at the moment. Amazon would have to support it.
We can interface to it of course.

48 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
Q(Stephane) Your reason for building this? Money. It’s a commercial
project and he is now building a flex Glare API and another interface.

Cloudfork is open-source under the MIT licence.

The future: they can complete the API, add APIs to other Amazon services
and look at other providers (Google app is interesting but not Smalltalk,
Microsoft is offering Azure, Salesforce is another company, Sun has a lot
of white papers and have been bought by Oracle so will anything happen,
and Amazon keep offering new features). What should they do?

Q. Why did you choose Amazon? We did not choose them, we found them.
At that time, no others were offering this.

Amazon now offers load-balancing but do not yet offer sticky sessions so
that is not good for Seaside. They now offer Flexible Payment Service (but
restricted availability - some kind of legal issue).

Google bigtable is not accessible to Smalltalk images. If it were, they
would look at it. Azure is in preview, not production yet.

The Eclipse ‘deploy to Google App Engine’ is nice for Java. A Cloudfork
app engine could provide the same using Amazon features, thus evading
the problem that the Google App Engine does not offer Smalltalk. Stephane
offered ESUG sponsorship for this.

They could add Cloudfork support for Magritte and Pier as the persistence
strategy. Continuous integration could be done in the cloud, treating it as
your integration server and test framework.

A small API would let you store into Google App from Smalltalk.

Q. Encryption: SHA2 (deprecated) and SHA256 are offered. the APIs are
simple to use.

Getting on the Island, James Robertson, Cincom
James had his demo hiccough at the start. The screen failed and he had to
reboot. (“Conspiracy by Yann who was sorting pics back here with me -
revenge for last year’s ESUG photo of “Yann - man without Smalltalk”).

Everyone listens to Industry misinterpretations, judging by the hands. How
many people use Twitter or Facebook regularly. Few hands were raised -
fewer than James has seen in some audiences. James finds “Industry
Misinterpretations” useful: Ernest Micklei was the person who explained
to him during one of his podcasts that Facebook and others have never
heard of asLowercase so you must send all your stuff in lowercase. :-)

There are lots of APIs and libraries out there that we can use.

How many people have deployed web services on Smalltalk not on a
corporate network. Not many hands went up - because when you ask your

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 49
usual ISP they say they have perl, etc., etc. but not a Smalltalk image
running.

James opened a browser and showed his interface to Facebook. He then
executed code step by step to connect to Facebook. Facebook want you to
spawn a browser and go to their page and login, not send the HTML
emulating this. (After more demo hiccoughs - “Yann you’re going to pay
for this” - “Ok, I’ll delete the photo”) he got logged in.

After login, authenticating through the browser, he executed the code to get
a session (which Facebook says will last 4 hours but in fact will last till you
close your browser). He browsed the list of his Facebook friends in an
inspector. He published to Facebook from VW and showed in the browser.
He executed code to upload some photos he took yesterday.

He has Twitter integration that works similarly. Facebook has FQL
(Facebook Query Language) and James has an interface to it so you can do
arbitrary queries and get back arbitrary objects. He did a query to get all the
list of pictures uploaded by James Robertson.

The interface is small and can easily be ported to any other dialect.

Glare lets you talk from Smalltalk to Adobe Air. Ernest Micklei did this
and James did the things Ernest left as “you can also do”. He showed this
(Eclipse opened - not fast). White space at the end of the XML causes a
problem (James googled the error he got and found someone a year ago
who had met the same thing; how he diagnosed it James has no idea). Tudor
tells James that Glare and Glamour should work fine together. He showed
a Glare method finder that browsed Smalltalk methods with pattern
matching just like the standard one. The specific code is very simple; Glare
handles all the subtleties.

Most ISPs object to you running your server in their environment unless
you buy a root. With this, you can use Amazon S3 server and run in the
cloud. He executed some code to get three buckets from his Amazon S3
(Amazon bills him 2c/month because he uses so little). He opened a
picture. James used the S3 browser to add things to amazon or get them
back. Many other web services use S3 to store their stuff - watch for those
S3.... references. So you don’t need a server farm for your Smalltalk - just
use S3 as your back-end.

Language-Shifting Object in Inter-language Interoperability, Johan
Brichau and Coen De Roover
This work uses JavaConnect in VisualWorks. He selected a Java string
method and viewed its decompiled code in the RB.
zipfile := JavaWorld.java.util.zip.ZipFile new_String:
‘foo.zip’.

We have a Smalltalk VM and a Java VM running and JavaConnect calls
between the two. Often the low-level method that we call to in Java via the
above can be represented in Smalltalk as something similar and vice versa.

50 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
Can we translate such a Java method into a Smalltalk method to improve
performance? Static utility methods for example can be translated into
Smalltalk and save many calls to the Java VM. Since one translated method
will call other methods in Java, we need to translate some degree of
transitive closure. The Java parser creates a Java parse tree and then it does
not change in Java any more. We would like to save this structure of objects
into Smalltalk so we can keep this object structure, not have to re-parse
every time we start the Java VM (because the Java VM has no image i.e.
no memory).

JavaConnect puts the classes in place for us so we only need to translate
methods. We must translate expressions and statements. We can disregard
generics, method and field visibility (Java code will respect this and we can
break it anyway), lookup and overloading. We have problems with break
and continue.

He had to use another machine for the talk so could not demo during it but
demoed on his machine later. Meanwhile he showed slides on how it
works. He showed a visitor pattern where translating the method that does
the callback was a great performance gain, eliminating calls to the Java
VM. (You can do shiftToSmalltalk and also shiftToJava if you
want to translate it back again.)

The goal is to translate methods when needed and when possible. The
translation is a visitor pattern that they are incrementally completing.
managing the Java parse tree in Smalltalk is to-do.

(They tried to do it for Eclipse but their decompiler is throwing out bad
code.)

http://www.info.ucl.ac.be/~jbrichau/javaconnect.html

Security on JIT VMs, Gerardo Richarte, community.corest.com/gera
He has been doing security for 15 years. Who needs security? 7 + hands.
Who has ever heard of a Smalltalk security advisory. Is Smalltalk much
better than the other languages as regards security - or are we years behind?

You are running an Smalltalk app on a box. The attacker provides content.
The attacker makes this content execute code. Thus they escape security
restrictions and access private information. EToys, Croquet, etc., can all
involve mobile code.

We have a Smalltalk compiler the provides bytecodes and then a native
compiler maps them to assembler so we talk abut nativizing VMs. He
looked at VisualSmalltalk’s VM and VisualWorks. In both, the Smalltalk
stack is the native stack (whereas in GemStone the stack is a C stack but
not the native stack). Instance variables are accessed directly and the
Smalltalk contexts are stored on the native stack. In particular, return
addresses are stored on the stack.

He demoed a tool that lets him write bytecode on the left side and see the

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 51
assembler on the right side. (He also showed a VSE class browser tool that
Leandro and Valeria wrote to show bytecodes in the code tab.) The attacker
wants to manipulate the native stack to confuse the VM and so return from
the message send not to its caller but to somewhere else. If the attacker can
return wherever they choose, they can put their own program there and
execute any code - any C, any assembler, whatever.

In the tool, he started writing code to manipulate the native stack. If there
were a bug in the nativizer, there could be an incompatibility between what
the nativizer wants to do and what the microprocessor understands.

He started by pushing something and returning. The assembler restores the
stack pointer before returning so normally it would be pointing to nothing
but in this VM the compiler does some optimising when it does not need to
save anything so NoFrameProlog bytecode has no prologue and (very
interesting) no epilogue. In Leandro’s tool he coded to jump to 123456789
via
NoFrameProlog
PushSmallinteger 123456789
Return

The debugger showed a segfault as it was a poor choice of memory address
to jump to. With a better choice of address, we can jump out of the VM with
this. Can we do this without the NoFrameProlog bytecode.
DropToN 4
PopR
PushArgument1
Return

Before the return we have 3 pushes and the return address so we just pop 4
things out of the stack, push our return address, then let it return. We can
also save the original return address in a register so we can return later. He
coded this in Leandro’s tool and demoed. He used the opcode for a
breakpoint followed by ‘jump to the content of register AA-X’ code. We
saved the return address in that register so this will break then continue.
Run it, get to break, the windows are frozen, then do a continue and the
windows resume normal operation. Replace the break opcode with some
attacker code: that code will execute and you will see nothing.

The Cincom VM cannot be attacked this way because they have no Drop...
Instead he tried
DropToN 3
PopR
PushR
Return

When the send returns, the stack will be unbalanced so further actions will
overwrite stuff on the stack. He can clean things from the stack not in
balance with what he put there. By declaring arguments incongruent with
the arity of the selector he can bring up a debugger showing pops with the
same trick - break, continue - as before. The Cincom stack was tougher but
he did it.

52 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
If the attacker can transfer and execute a compiled method then they can
escape the VM and access the OS and if the OS does not provide storage
isolation and/or has privilege bugs, the attacker can get very far.

Securing Smalltalk could be attempted by reachability, sandboxing or a
verifier. Reachability from within Smalltalk is very hard to achieve.
Sandboxing is like reachability in the VM. In .net, every variable and
method is decorated with the privileges needed to use it and gets checked
but we also need to check primitive parameters and we also need to check
nativizing as we have seen above.

A nativizing verifier must check that the method arity agrees with the
pushes, drops, whatever.

How else could we escape the VM?
SmallInteger>>writeMemory
lodArgument1
StoreInstance1
return

SmallIntegers have no instvars so this can be an arbitrary memory read or
write.

We’ve heard Smalltalk is slow, Smalltalk is ugly, whatever - we will start
hearing Smalltalk is insecure.

He documents bytecodes; he needs to understand how every bytecode in
every variation was nativized. The best documentation is one you can
debug and trace through. So all his documentation is written in Smalltalk.
Each Bytecode is a class with methods showing how it works. He opened
TestRunner and ran the tests.

Q(MLS) How do you jump to a more sophisticated attack? If the memory
is marked as non-executable so how do you get the bytecodes to make a
sophisticated attack? His company markets tools that let you evade the
non-executable issue. Michael noted that an ExternalInterface method can
be insecure - it can go anywhere.

Q. How long to discover this attack? Two days but it took him much longer
to learn about e.g. the VSE VM.

The attacker looks for an error - usually a warning that something is not as
expected. They do not need to know everything about the machine, just
enough.

Bytecode Documentation, Gerardo Richarte
He had shown us (in the talk above) how unbalanced stack pushes and pops
were insecure. In this 5 minute session, he showed one of his tools. He
documented all the bytecodes in VisualSmalltalk so he wanted to test
whether his documentation works. He hooked into the call chain to call
back to Smalltalk when the nativizer is about to nativize his method. He
loaded every method that has been nativized by the VM. He did arrow up

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 53
and arrow down and saw some more methods being nativized. Further
moving around produced no more; all the image currently needs has been
nativized.

He started the test (had the usual demo hiccough - it crashed- and restarted
and reran) and saw that it worked. He flushed the memory of all nativized
memory, then ran and got his break point and continued.

Managing Smalltalk Projects
Project Planning, Tim MacKinnon, Iterex
Tim started in OTI and is now a consultant offering Agile consulting. He
usually joins a group to do cool stuff, then discovers they have planning
problems and addresses them as well.

Tim is very grateful to Smalltalk for producing good stuff, including stuff
better than Microsoft project. Adding “this task takes half a day” to this
task takes half a year” makes no sense, especially when these numbers are
put into MS Project. He quoted Tom DeMarco: “Software Engineering is
an idea whose time has come and gone. Software development will always
be experimental.”

Agile is an umbrella term for Scrum (Ken Schwaber), eXtreme
Programming (Kent Beck), etc. Scrum can be very flaccid - and a lot of it
is. Smalltalk’s eXtreme Programmers by contrast do a lot of what XP said
should be done.

Planning up-front is not cheap. Agile flattens the cost curve so that
decisions can be deferred. Where does planning - incremental planning - fit
into an agile project.

In a commercial context, there is usually a bit of upfront planning and
analysis mainly to secure budget for a period. Whole team (and customer)
involvement in this is good. Whiteboarding and brainstorming end up with
some ideas of what to do and what is required. Scrum calls these ‘epics’
and they may be represented as flip charts. A lower level output may be
story cards. These items may go away, never be used, etc., so little time
should be spent on them.

The incremental planning is forecasting - like weather forecasting and
unlikely to be more reliable.

Velocity is a buzz word that has unfortunate connotations. XP talked about
load factor (you estimate 1 week but it could be five times that) but that was
not taken up and velocity was used instead but really it is range - how far
will you go in the next iteration. Some consultants give you planning cards
with their logo - but fingers are as easy to count on. Tim says estimate in
‘ideal days’.

The number of ‘ideal days’ work you actually did in an iteration is your
velocity. The planning game is to pick stories, then discard and so on till
you iteration meets your velocity. At the end of each week you know your

54 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
actual velocity for that week.

Scrum puts these numbers into burndown but that is a scientific way to
think about it and most customers (and most developers) do not understand
it. Burnup is better. Tim’s diagram showed blue (work yet to start) yellow
(work in progress) and green (work done) histograms. In the standup
meeting, people put their magnetic avatars onto their tasks on the board and
explain how it has moved or why it has not. Tim’s software displays each
day’s daily standup report as a green/yellow/blue histogram. He showed us
a succession of weekly histograms from a real team.

It is a lot of work to convert an ‘epic’ into 150 stories, so Tim has in the
past asked people to offer weekly estimation for it but he has gone off that.
His software helps record this breakdown.

Q(Andrew) if you cannot break it down? Then you need to do more
storyboarding.

Kanban is a popular new method: let’s do no estimation. Tim has not yet
used it. In some Japanese gardens where only so many visitors could enter
at a time, entrants were given cards, to return when they left. When all the
cards had been handed out, people started queuing until someone left and
their card could be reused. Kanban works by queuing. Only so many cards
can be assigned to a team at a time. Whenever a space becomes free, the
customer can be asked what they now want most urgently that team can
handle. Tim’s problem with kanban is the siloing: the method assumes you
have several teams, each with a capacity. There is also the issue of when to
split a card.

Q(Niall) comparison with Rob Ven’s method / Georg Heeg method in
which, expressing it in the above terms, the ‘epic’ is a smalltalk model and
the cards are the parts of that model and/or the test cases created from
exercising it. This led to discussion and Niall and Tim resumed later.

Q(Yann) has not found a software that replaces paper? Tim agrees; his tool
is lightweight and only supplements paper and whiteboards.

When Flexibility backfires, Yann Monclair
Yann went to university in Brest where he got hooked on Smalltalk. Now
he works in the Kapital project, formerly in infrastructure, latterly in
financials. (Kapital was described by Georg in yesterday’s talk, by Yann
last year and by me in ESUG 2004, so need not be described again.)

Flexible: able to adapt when external changes occur. Knowing your
flexibility: understanding it is the first requirement. If you are working with
others, you also need to be able to explain it. If you can visualize it, you can
explain it to a wider circle: senior managers, clients, etc.

Flexibility is technical, architectural and political. Technical: how
flexibility impacts your code - which solution you implement. Architects
review how code will evolve over time. Lastly, how does it fit in with the

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 55
strategy of your team, how you are viewed by your customers, etc.

Where to be flexible, when to be flexible, how to be flexible? You can do
it anywhere in Smalltalk but that can get you into a mess. Will you be
flexible inside your application or in your interactions with others? Do you
want to be flexible when debugging, when prototyping?

There are times when it is not good to be flexible. Suppose that on Monday
morning your application is throwing error messages. Suppose the cause is
that an upstream system is sending you extra characters because that team
changed something. You call the upstream team and they say “well, we
need to get senior manager sign off and he’s on holiday and we can’t
bounce our systems so 16 hours.” You can fix it in Smalltalk in 10 minutes.
So you do that and send emails. Result: you look to the outside world as if
you caused the problem.

Another example is
self instVarAt: indexOfInsvar put: aValue.

That is flexible but not such a good idea in many cases.

Yann defined flexibility not = strict. Strict means enforcing
rules. (Yann is French so he’s great at getting round rules.) Strictness can
help flexibility. Yann gave an example: an old mail server was very tolerant
of invalid ‘from’ fields whereas the new server was not, so Yann made his
application enforce strict output format, adding a valid ‘from’ if absent. By
contrast, when an input system started supplying invalid input characters
that a downstream system would not accept, and the input system were
slow to fix it, Yann cleaned between their input and his output. Flexible
Input format, Strict Output Format let Smalltalk solve problems that were
none of its making.

Be comfortable with what you are doing: if ‘flexibility’ makes you afraid
to change your code, that is wrong: that’s why instVarAt: is to be
avoided. Sometimes it is OK to perform: aString because there is a
pattern. Do it not because you can but because you must (Yann ‘s tweak of
Georg’s presentation): be reasonable.

Q(Andres) other examples of perform:? We sometimes generate
methods like ..._London_secondFloor_<timestamp>.

QAnnick) Being generic and being flexible differ how? Generic: works for
every scenario. Flexible: can be adapted to the latest scenario.

Q(Andres) Cost of being flexible versus maintainable? Phone rings, bug
reported, fix it immediately but these fixes accumulate, making the system
slower to understand, so you must work them back into the main system.

Q(Bernard) I more often see too flexible than too strict; your view? Yes. We
did an experiment trapping all unhandled errors. The log files became
unreadable and noone saw errors until much later. Strict has its upside.

56 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
Q(MLS) I’ve seen defensive programming (nil checking, error handling)
where, instead of seeing why the bad value came in, they just protect
against it? Yann has seen the same: == true instead of isTrue:
because they’re not sure.

Applications and Experience Reports
Modelling with Smock, Testing with PicUnit, V. Verbeque, Alain
Plantec, Thales
Thales is Brest-located company who have been using Smalltalk for 20
years. Smalltalk is considered exotic so their projects had to succeed to let
them stay in Smalltalk. They develop code for hardware devices (military
hardware and etc.). They develop their MMI in Smalltalk translating to
real-time operating systems via a C translator. Since 2002, they have both
modelled and tested systems in Smalltalk.

They chose Smalltalk 20 years ago. It had really powerful features (and
was the only multi-platform solution back then) and TNI who are located
nearby were able to give them feedback and mentoring. Their target OS is
a middleware item. They do applications for police, customs, pollution
monitoring, maritime traffic surveillance, search and rescue control,
submarine detection, electronic warfare defence. Their defence
applications are deployed on the MOSAIC architecture which contains a
number of PIC components.

They model what a given PIC must or can do. An important role of these
is it demonstrate to potential customers, and internally in the company.
They use SMOCK (the S is smalltalk) to mock-up something, thus create
a better specification of what is needed, then model (model-driven
engineering) therefore design the architecture and software of the real
component. Then they test it with PicUnit.

He handed over to Alain who explained SMOCK. They have evolved to an
formalised approach with components, architecture, packages and
contracts. All the software they produce obeys its contract which defines
the services it provides. Their subcontractors can see what their
components provide and require.

Inspired by the Jaguar-component modelling method, they created SCM
(their variant of CCM) for modelling components.
MyNameSpace
define: #MyServices
super: nil
with: #(serviceOne serviceTwo)

These models map to real components that exist in their systems so they
can mock-up real configurations and connect them to real UI. Letting the
customer play with a model of their intended system is very useful.

Q(Christian) how do you see that the real component fits the requirement?
Smock is just to model requirements. PicUnit is to test that the real
component matches the requirement. One cannot test everything of course.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 57
SMOCK includes a cost model for pricing scenarios. A mock-up takes
from a few days to a month to create.

Alain then handed back the microphone. Suppose navigation equipment
talks to a PIC NAV which talks to a PIC LSE which talks to a PIC RAD
which talks to RAD equipment, all PICs also talking to a DB, all using
CORBA. PicUnit must validate each component and also their
communication with each other.

PicUnit can simulate other components to the component under test. It can
be the receiver and initiator of the CORBA messages and it can read and
write to a database. PicUnit uses SUnit, DLLCC and OT/DST from
VisualWorks. Above these, they implement their own packages (see his
architecture slide). UIs let them define what messages will be sent and
expected. A code tool in the RB (RBSunitExtensions-like with additions)
shows test results and front-ends more detailed displays of them.

A Mock is a Smalltalk bundle that represents a PIC. Mock-LSE had 10
functional packages and a packages of tests. These Smalltalk Mocks are
not small but of course, there is much inheritance, reuse of patterns, etc.

They would like to integrate PicUnit and Smock so that a model defined in
Smock would automatically generate tests in PicUnit.

Smalltalk is powerful. Its debugger is much better than in any language
they have considered. It can do anything. “Its a Swiss army knife”. When
they train people, it is tricky to explain what the image is since other
languages do not have this concept. The first step into Smalltalk is a
psychological hurdle. Because it is not a language people know, they have
to teach Smalltalk to newbies.

Q(Annick) You know DDS? They know about OMG DDS. They have
evaluated it and do not see DDL as useful.

Q. When do you replace the C generation with Smalltalk? Static typing is
demanded in the real products for security reasons. Some security checks
use type inference. Top management will not allow that to be dropped
anytime soon.

Multicore playground: how can we get the most out of our most
modern CPUs, Arden Thomas
Arden is the product manager for Cincom Smalltalk. That includes keeping
the product moving forward and exploiting areas where the rest of the
world is moving forward.

Today it is an unusual machine that has only a single core.

Arden heard a presentation from Grace Murray-Hopper who worked in
computers when mechanical relays could be blocked by moths and ‘we
have a bug’ was the literal diagnosis. She showed what a nanosecond was
by showing the length of wire an electron traversed in that time. She

58 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
explained that when a farmer can’t pull up a stump with a horse, he does
not go back to the barn for a bigger horse, he goes back to get another horse.
Using multi-core makes sense.

Concurrency is not easy. The area has been studied for decades, producing
poor solutions and OK solutions and no perfect solutions. AMD and Intel
have spent money in universities to study concurrency; they build multi-
core CPUs and wish they and their customers knew how to use them.

As the power to use concurrency grows linearly, the complexity grows
exponentially. So how do we use concurrency?

We can run multiple applications: that we do today. It is easy and means
there is very little contention but it is not very powerful. You probably
cannot use the multiple applications to solve a single problem.

We can run multiple process threads in a single application: these threads
can work on a single set of objects. This allows more power on that set of
objects but also the danger of unsynchronised access, object contention. If
one thread goes wrong, does the entire application fail?

VW and OS8 have green threads, not native threads. Green threads were
very effective (more than native) for modelling producer/consumer tasks.
VW offers Process, Semaphore, Promise (evaluate forked and return value
when fork completes) and SharedQueue.

We can run multiple process threads within a VM: one thread does GC, one
JIT, one execution. Then in a single-threaded application we could use
multiple cores. Some of the engineers ask whether the contention between
these threads might be so great as to nullify the advantages? Answering
that question will require building a VM that uses this to see what then
happens, so this is a costly and long-term strategy.

Coordinate multiple applications: this would need only small changes to
your individual applications to work. This would only solve that subset of
problems where there were sizeable independent pieces.

Coordinate multiple applications sharing memory: this can solve a broader
set of problems. (Niall: Kapital uses this approach). There is a distributed
GC problem to solve and the usual concurrency problems.

Arden has pushed to have this put on the roadmap. Asking our engineers to
solve concurrency is like asking them to cure cancer “and we deliver in
nine months.” The great thing about Smalltalk in that the language does not
add complexity to the problem space. We can solve difficult problems. The
CST engineering team have some good ideas on how to attack this
problem. They have created Polycephaly (“It’s not contagious: it means
having many heads.”) You start up multiple headless images (“should it
mean having many no-heads”) and hand out tasks and get results. This is
not a general solution to the concurrency problem. It will solve some
specific problems effectively. It will be in preview in a later release of VW.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 59
Arden has experience with code to get market data and show graphs of
stocks, etc. Files from Nasdaq, AMEX, NYSE, 24,000 mutual funds and
etc. The sequential code to load all this information from the web took 114
seconds to execute. He did some experiments:
• He used the #promise: method and polycephaly to evaluate loading

each type of file separately. promise begins work immediately. When
you ask a promise for its value, the promise returns its value or waits
until the fork has completed and then gives it.
Arden started 5 promises, then requested 5 for their value. Arden’s
promise used polycephaly. His machine was a dual-core CPU and the
result took 80 seconds, an improvement but not startling. Checking
times, he found that the mutual funds (24,000 of them) took much
longer than the others.

• He looked at how he got mutual funds and saw he was chunking them
into 26 alphabetical calls (all starting ‘A’, all starting ‘B’, ...). He made
each letter an independent task and assigned them to drones. With 3
drones, loading the mutual funds ran in 30 seconds and the sweet spot
was running with 8 drones, which loaded mutual funds in 17.5 seconds.

These times include startup of drone VMs. In fact, in the real world
drone images will exist and be waiting, ready for work so the real world
improvements will be greater. Arden deliberately included these times
so his figures had ‘no cheating’ in their comparisons. These times also
include object transport time which could also be optimised in a real
system.

Q. New VM copies object space? No, start up of drone copies original
image.

• One of the engineers pointed out to Arden that his HTTP calls were not
synchronous. An HTTP call is a call, a long wait to get a reply and then
a short-time processing of the results. Arden overlapped the waits by
forking all the http calls in green threads for the mutual funds. This
used 13 green threads and that reduced the load time to 15 seconds in a
single image. (26 threads made less than a second difference.)

• Finally, he combined both, green threads for mutual funds and that
being one of the polycephalic loads of the 5 types of fund. He got an
overall time of 35 seconds.

Lessons learned: always measure where the bottlenecks are, do not guess.
There are many ways of handling concurrency; do not get into “everything
is a nail because I have this hammer” mode. Launching headless drones
was faster than he had expected, i.e. noticeably faster than headfull.

Q(Georg) what operating system? Windows Vista.

Mechanisms for handling common issues make things easier. He ensured
that shutting down his main image closed all of them - easier than searching
for all the drones if things get into a mess. You can also ensure that if a local
process starts a drone and then is terminated, the drone is shut down.

60 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
Remote errors can be retrieved locally: you can arrange for a green thread
of your main image to get the exception raised in a drone image.

Q.Size taken up by drones? For Arden’s experiment, this was never an
issue in today’s computing environment.

Q. Did you do any testing that was not I/O bound (i.e. would green threads
have worked as well)? Arden has not yet tested an entirely green-thread
solution.

Q. Erlang-style actors? Some disconnect between that style and Smalltalk.

Andres has done some similar experiments. When you have many green
threads in VW, there is a native stack and it will not have enough space and
contexts will be removed and restored, so just increasing the native stack
size can show a 10-fold improvement in many-green-thread experiments.
When running many images, be aware that GC is memory-intensive and if
all your images do GC at once the cache may not be large enough and
things will get slow.

Q. A customer used 650 images and use the same approach to testing. Their
tests took an hour to run, so one of their engineers used OpenTalk to run
the tests on 8 machines and that let them run their whole suite every
integration.

Q(Georg) I researched dual-processors in Smalltalk-80 when ESUG was
last in Brest. It is very important how you distribute the work and how
many activities you do before you synchronise. Also, have you looked at
the GemStone architecture?

I mentioned the Kapital architecture as an example of shared memory
solution.

Smalltalk is Hot, Georg Heeg, STIC
In French and then in English, Georg said he had been in Brest twice. His
first ever OO conference was in the town hall (and everyone spoke in
French and very fast).

STIC are friends and sponsors of ESUG. STIC organises Smalltalk
Solutions. STIC’s members are Cincom, Instantiations and GemStone,
plus Georg Heeg (director) and Cherniak software (treasurer).

Georg showed the oldest mention of Smalltalk. It was in August 1978 and
was not the famous byte magazine cover of 1981 but a cover showing the
‘Pascal triangle’ with a small Isle of Smalltalk in the picture. Georg saw the
island of Mont St Michel and thought it was very like the Isle of Smalltalk.
(Is Smalltalk a tourist attraction? :-) The text described it as “a snow-white
island rising like an ivory tower surrounded by shark-infested waters. Here
we find the fantastic kingdom of Smalltalk where great and magical things
happen.”

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 61
What are these magical things? Well, Smalltalk maps the way domain
experts think into classes and objects one-to-one (and so find the flaws in
their thinking, when present). Smalltalk creates a virtual world. Other IT
people takes the computer way of thinking - states, data structure,
processes - and map that into the domain. When Georg started as a
computer student, you could rent computers by the hour or programmers
by the month for similar sums. Smalltalk takes the external world seriously.
Examples:

• Last year, Georg solved a 130-year-old problem by modelling the
existing historical knowledge in Smalltalk.

• Other web applications think of HTML as a sequence of characters.
Seaside takes HTML as a sequence of message sends. SeaBreeze takes
them as a sequence of objects.

Smalltalk is active. WebVelocity is a better Ruby-on-Rails, out this week.
GemStone has GLASS, VA has Seaside, new Pharo, new Dolphin version.

Robert Martin’s talk “What killed Smalltalk could kill Ruby too” claimed,
“It’s so easy to make a mess in Smalltalk” but his argument is quite wrong.
The truth is, “It’s so easy to see where there is a mess in Smalltalk”. Robert
thinks there are more messes in Smalltalk. Wrong: there are far fewer, but
you can see them. Trying seeing them in Java or C++ is much harder.
(James Robertson also responded to his talk - see his blog and his “Industry
Misinterpretation”. Georg concludes that “Totgesagte leben länger” - there
is life in the old dog yet.

Bob the Builder’s motto was: “Yes, we can.” But Georg does not want to
use that, nor the ‘yes we can’ of the Obama campaign because the actual
convention picture showed signs of ‘Change we can believe in”, not “yes
we can”, but that too is not the slogan he wants. The ParcPlace logo was
“Design for Change”. Unforeseeable surprises happen and those are the
changes that Georg is concerned about.

Currency exchange systems now effect transactions on a timescale of
seconds. Get it wrong and you can lose a lot of money quickly. But JPMC
made $2.1 billion in the first quarter of this year: financial crisis, what
financial crisis? JPMC got the derivatives risk award in 2008 and 2009.
Spiegel claimed that JPMC invented Bistro “the product of the credit
bubble”. He showed the JPMC definition of it - not easy to grasp quickly.
:-) JPMC’s Kapital system has received a ComputerWorld honours award
and much other praise. Kapital went to the traders and mapped their
concepts into a system and that is where its success came from.

Georg has a very old left-handed cup with Smalltalk logo from parcplace
(left-handed because if you turn it round it shows an ObjectWorks for C++
logo). Gartner’s Mark Driver says programming in Smalltalk is like eating
filet mignon sole and drinking fine wine while programming in Java is
more downmarket, culinary-wise. Smalltalk is cool again.

The ability to model everything empowers you but only you have a goal.

62 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
Q(Stephane) Smalltalk Solutions? Because of so many commercial
companies restricting travel as a cost measure, they decided to support
ESUG and the argentine conference. Georg hopes to have a Smalltalk
Solution in 2010. ESUG would like a student volunteer programme at
Smalltalk Solutions. Could we have a phone conference?

Q(Janko) So Smalltalk is responsible for the financial crisis? :-) (Niall) No,
they could see the danger earlier in Kapital, whereas the others could not
see and ward it off. :-) Yuri M: yes, companies using spreadsheets made a
mess and, for the same reason did not see it in time. :-) (Andres) and let’s
blame people, not languages. :-)

Reflection and Meta-Data
Thomas Kowark, Robert Hirschfeld and Michael Haupt, Object-
Relational Mapping with SqueakSave
SqueakSave generates SQL queries. SqueakSave is 20% slower than
GLORP on the 007 benchmark, mainly (they thought) due to Glorp’s
caching mechanism. SqueakSave is faster than Glorp for complex joins
due to the Glorp framework having some overhead. Essentially if
everything is sucked in from the DB, Glorp is twice as fast. If everything
is in memory, Squeak is faster because it is just traversing, whereas Glorp
is doing some cache maintenance at the same time.

SqueakSave is easy to set up and use. They need to work on SqueakDBX
usage, eager loading and performance optimisation.

Q.Why use this not Glorp? Glorp needs configuration. (Glorp
ActiveRecord work makes it easier to generate that config from any data
you have.)

Q.(Lucas) Change classes or multiplicities? Class new field will be added
transparently, multiplicity is harder and will need config.

Experiments with pro-active declarative meta-programming,
Veronique Uquillas Gomez
The source code of an application provides a great deal of meta-
information about it. It would be nice to see how far the current
implementation matches the design. SOUL is a logic-oriented Smalltalk-
related language for reasoning about programs. The aim is co-evolution:
keep design and code in synch. Currently, SOUL is developer-driven and
relies on reasoning at snapshot times, not continuously.

Smalltalk Open Unification Language (SOUL) runs in Squeak and Pharo
(and VW IIRC)
class(?class) if
member(?class,[Smalltalk allClasses])

Here, the code in the block is Smalltalk. The rest of the code is prolog-like.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 63
Programming And Reasoning About Changes Using Time: Parachut. They
use the syntax of SOUL but only forward-chaining, not the backward-
chaining that SOUL supports. They use forward-chaining to provide
immediate feedback. Changes to the code are the events that trigger
problem solving.

She showed an example: a rule that reimplementing the = method requires
reimplementing hash and vice versa.

The SOUL Clause Browser (very like the class browser in the layout of its
panes) is implemented in VW. The Pulsar class pattern concerns a class that
keeps growing then shrinking then growing again. A simple predicate
catches classes that are the same size at two points and twice as big in size
at a point between.

Q(Andrew Black) Just add one method and remove it, would that be
caught? The inference engine determines at what point to make the check.

Smalltalk Metaprogramming supports Probabilistic Analysis, Dave
Mason, Ryerson University
He researches program reliability. He seeks paths through the program that
correspond to subsets of the input domain. He therefore wants to do path
discovery.

The number of paths in infinite. Depth-first may disappear into infinity.
Breadth-first may spend much time on trivial paths. Heuristics that assume
that e.g. loops always go round ten times and so on are used. If we know
the probabilities of the inputs, we can attack the problem that way.

We need a probability density function (PDF) for the domain: a probability
value for each point in the domain. This can come from data, e.g. phone
records, or from a domain expert.

A pure approach might use a continuation-based model. All the parameters
are in the PDF. Anywhere we have a decision point, we can snapshot at that
point of the continuation and put it on a priority queue for the true case and
for the false case. Then we take the first continuation off the queue and
proceed. When a branch terminates, we then take the next continuation off
the queue and proceed it, and so on. Many paths may be in partial
execution.

The result is that paths complete in frequency order. The first path to
complete is the highest probability path through the program and so on.
The next path to complete is the next most probable, and so on. We know
how probable because we know the input probability.

The above is very pure solution but it has many continuations in play at a
time and this is not cheap. A more practical approach uses monte carlo
statistics. We generate a random input point, check it is not already in the

64 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
domain, and execute by just adding the correct decision point result (true
or false) at each decision point. This is less certain to be most probable but
you can choose the ‘random’ point to help on this.

Smalltalk has the key technologies this needs: dynamic types, first class
booleans (rarer than all the other features in languages). Extending boolean
to some ‘maybe’ classes lets ‘loop’ and ‘if’ decision points capture
information. He uses mustBeBoolean to let these work with the
optimised compiled rather than switching boolean optimisations off.
Maybe>>mustbeBoolean
ProbabilisticExecution currentExecution
atContext: thisContext sender
addPredicate: self.

He stole continuations from Seaside. Dynamic code generation is not
essential (he could interpret predicates) but the very large predicates that
determine whether a point is in a domain are faster if generated.

No other language can do all these things.

Q(Niall) Probability calculation deep within the program? The probability
integral at the start of program is for the input variables and computes new
values for the output continuations, so the next computation uses these
calculated probabilities.

Object Spaces for Safe Image Surgery, Gwenael Casaccio et al., INRIA
Do you want a self-modifying image, an image you can observe, an image
with software process isolation? Then you need an ObjectSpace. An object
in an ObjectSpace cannot access an object in another ObjectSpace.

You can create an ObjectSpace by cloning a running image or by
bootstrapping Smalltalk in Smalltalk via deep copy of the classes and
objects (changing their classes to those of the new system). This creates a
system that has no references to the old system. CompiledMethods must be
copied and recompiled to reference the new classes.

Reflection does not work: a mirror must be used. They still need to be able
to load and save ObjectSpaces. That, capabilities and security are TBD.

He opened a window (terminal-style but responding to typed smalltalk),
created a new ObjectSpace and demoed making it respond to simple
methods. He showed he could arrange that
(smalltalk environmentAt: #Object) new foo

would fail whereas
(space environmentAt: #Object) new foo

would not (he having added the method in the ObjectSpace).

Q(Lucas) An ObjectSpace differs from a namespace in which all classes
have cloned duplicates because...? An ObjectSpace isolates its objects.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 65
Q(Andrew, then Niall) ObjectSpaces cannot talk to each other or to
Smalltalk but Smalltalk can talk to all of them.

Q. Can I put an object from Smalltalk into the variable of an object in an
ObjectSpace? Yes, but it would be the deep copied and reclassified object.

Jorge Ressia and Oscar Nierstrasz. Dynamic Synchronization - A
Synchronization Model through Behavioural Reflection
He showed the dining philosophers problem: each of them needs two forks
to eat and deadlock occurs if each has only one.
SynchronizationSpecification
for: Philospher
on: #eat
interestedIn: #forks. (third param could be block)

controls when the eat message can be sent to a philosopher, This
specification is registered with the main application and then uses code
adaptation: modify the behaviour of the code depending on what events
happen in our object model. Call
DynamicSynchronizationSystem current register: ...

to register the spec. Markus Denker built the tool Reflectivity last year.
Using this, they implemented a solution. Some problems are solved 1700%
slower than the optimal. Others, e.g. the dining philosophers, they can
solve only 0.27% slower than the optimal solution.

He demoed. The system runs in Squeak. The Philosopher class implements
dropForks, eat, forks, etc. where forks returns a set of objects: the
philosophers position and the state of the forks at that position.

He ran the test, first without synchronisation (so philosopher 2 can pick up
forks while philosopher 1 has them) and with (the true problem) but it had
the usual demo hiccough and many questions attempting to clarify what he
was saying left no time to restart.

CLIC: a Component Model Symbiotic with Smalltalk, Noury
Bouraqadi and Luc Fabresse, Ecole des Mines de Douai
Clic (click) as in “the components just click together.” Code may be out of
synch with documentation or dependencies may be hidden inside methods.
A component should be a self-documenting piece of software with explicit
connections to the rest of the software.

We could reify components into OO but each component will require quite
a few objects or we could start from a pure component language but then
implementation is harder.

CLIC design idea is to say components are objects and (other) objects are
dirty components - components lacking some features. A clic component
has required and provided ports (very reminiscent of telecoms models).
Attributes are private or shared, handled via accessors only and observable
via ports. He showed the CLIC component code for a counter.

66 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
CComponent subclass #Clock
localPrivateAttributeNames: #(count)
privateAttributesInitDict: {#count -> 0}
sharedAttributeNames: #()
sharedAttributesInitDict: {}
localRequiredPortsDict: {}
category: #'ClicExamples-Clock'

and for a stopwatch
...
localPrivateAttributeNames: #(counter ticker)
privateAttributesInitDict: {
#counter -> Counter @ #new.
#ticker -> GenericTicker @ #new}

sharedAttributeName: #(Scheduler)
operationsExportDictFrom:
{#counter @ #(count) -> #(seconds)
#ticker @ #(start stop)};.

The stopwatch can forward messages to its subcomponents (e.g. the ticker
to start ticking) and can translate messages for them (e.g. seconds is
translated to count on the counter)

Q(Niall) Is this the Smalltalk way? Discussion.

Q(Thomas Shrader) But this does not provide the semantics? Their hope is
that the system will infer them from code.

Detecting System Cycles with DSM, Jannick Laval
Jannick is a Ph.D student with the RModTeam in INRIA (Lille). A
Dependency Structural Matrix sorts tasks based on their dependencies. A
cycle is a closed path: a path that returns to its origin. Package
dependencies should not be cyclic. Just looking a complex graph is a poor
way to find dependencies. The dependency matrix records in each cell the
dependency between the two graph elements that key that cell. Rows are
using packages, columns are used packages. Cells can contain booleans or
numbers expressing the strength of the dependency. Numbers can represent
inheritance from a class in another package, extension of a class from
another package, reference to a class in another package, etc.

The squared adjacency matrix is matrix multiple of the raw matrix by itself.
If a non-zero number appears on the diagonal in such a matrix. There is a
direct cycle (e.g. A -> B -> A). However it is hard to see which numbers
correspond to which cycles. Path searching is rather clearer but slower to
compute.

When you have a cycle, you can then regard all packages in the cycle as a
single package and then recompute its relations to the remaining packages.
This gives rise to a new matrix without the cycle.

Jannick showed colouring the matrix to distinguish cycles. He wants
inheritance, extension, invocation and direct class reference distinguished
as distinct numbers. An asymmetric cycle can perhaps be removed via
extensions. A symmetric cycle can be merged.

CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008 67
Seaside 2.9 has a complicated graph. he showed the matrix; there were no
entries above the diagonal, i.e. there are no cycles.

Next he showed Pharo. There was quite a bit above the diagonal in the
lower right of the diagram. (The package right in the centre is Moose.) He
then showed using Moose to display informative graphics inside the cells
indicating the nature of the cycles. http://moose.unibe.ch/

Q. Invocation dependencies are static or dynamic? Static.

Q. Metrics for good package structure? The DSL is only about paths
between packages.

Q. How long to do calculation. It takes 3-4 minutes to do the analysis. If
you analyse Pharo as if it were not written in Smalltalk and so needed you
to parse all the code into Moose first, that takes 3-4 hours.

I mentioned Travis Griggs’ Browser-Prerequisites tool, released in VW7.7.

Show us your projects: ten-minutes presentations
Parallel sessions meant I only caught some of these talks.

VAStGoodies.com, Adriaan van Os, NationaalSpaarfonds
Vastgoodies.com is an open-source repository for Envy goodies. By intent,
it looks very like the Envy browsers for config maps, apps, etc. You can
download from the page or load an app Ernest Micklei made and download
to or upload from your local Envy repository. If you upload to the site, you
are asked for some meta-information (and must upload maps owned by
your own user name, not owned by the library Supervisor, so this meta-
information can be stored against your user name in the site’s repository.

Q. Stability issues? Fine (it’s a windows server so we reboot it from time
to time but generally fine).

Q. Code for the site available from the site? Not yet, will be.

Seaside in VA, Adriaan van Os, NationaalSpaarfonds
Adriaan demoed the NSF auto insurance app on the web. This was written
in alpha 3 of Seaside 2.9. He entered a license plate, kilometres per year,
etc. He entered an invalid date to show the error reporting, then completed
and the app showed a picture of the car type with the licence plate.

Interfaces on SoundWaves, Koenig
This was done in Squeak. Koenig is studying sound interference for
concerts of audience of hundreds where the singers can suffer feedback
into the microphones. For high frequencies, a horn in front of the
microphone solves the problem but for deep cycles - 30 cycles or so - the
sound is emitted as a sphere and will feedback. When sound is emitted
from one speaker, the idea is to have a cancelling signal at the other speaker
adjusted for distance between the speakers. The second speaker also
provides feedback to the first so the calculations are quite complex.

68 CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
He showed a diagram of the speakers being rotated around and the wave
effects at various audience angles. Then he showed the plot of two speakers
back-to-back with cancellation signals. He uses these tools for automatic
testing, sending sounds to the speakers on a test rig and monitoring results.

Yuri Mironenko
Yuri is from Rostov and has finally made it to ESUG (he hoped to come to
ESUG 2007 and 2008 but travel arrangements and visas got held up in slow
offices both times). He has implemented a game of travelling in a rocket in
the solar system. He demoed correcting trajectories for your orbit to reach
your target.

Michael Haupt, Potsdam University
He and his students have implemented a game (for young children) of
guiding a cow to a target in a field with various obstacles. It has 30 levels
of increasing difficulty. The talk was less about the game than about the
community website where somewhat older children (i.e the students and
the speaker) can create levels. He created a new level, then opened the
game. The cow got stuck because he had not set one of the doors to be
openable; he connected that button and then the cow could open the door.

His students have devised many levels. He is stuck in level 28. He can
review the levels, rate them for difficulty and fun, mark them as
unsolvable, etc. If you devise a level the students cannot solve, you win a
meeting with them.

This is written in Seaside, Ajax and Java script.

Nicole de Graaf
She works 40 hours per week at a Smalltalk company but also wanted to
use Smalltalk in her own time. She created a DirectX interface and two
others for VW. She took a month to make a multicoloured triangle rotate.
Then she had a 3-d background with spheres and then a spaceship and then
a game: draughts. She wanted a taken draught to explode; she can do an
explosion and the draught moves but not yet put them together. She can
make the spaceship make a sound. Now there is a forest we can walk
through. She has code tools in the RB for working with these interfaces.

Igor Stasenko
Igor opened a Squeak image. We know what Flash is. Many people would
like to draw vector graphics like Flash. A few years ago several companies
created a new standard for vector graphics, OpenVG. He created an API for
it in Squeak, which took him one week. There are 5 implementations of
OpenVG for different platforms and luckily one of them is for his platform,
so he loaded the libraries (doIt on some loadLibraries: ...dll
code). He ran a basic tests that showed circles, lines, etc. His main demo
was a tiger’s head, very detailed (just under 17,000 data points) which
expanded and contracted and simultaneously rotated and so on. It was not
anti-aliased and was rendered at 55 frames per second (his VGA driver
could be better).

VASmalltalk Virtual Conference, April 21st-22nd, 2009 69
Q(Christian) the base shapes did not render very well; can you show them
again? The tiger demo reset the colours so he could not at first, so restarted
the image and showed and yes the lower left corner of the rounded
rectangle was indeed bad. The OpenVG allows nicest or fastest and this is
the latter.

Other Discussions
John McIntosh found a bug in NetNameResolver in Pharo/Squeak last
week. It found the full list of interfaces, including any VMware and
parallels ones, and just picked the first, which might not be the one you
wanted, so was failing a loopback test. (And it was not getting the value
quite right anyway but that was another bug). John has discussed with Dale
making an interface from iPhone Mac core data to GemStone.

Lucas talked more about Helvetia. A LanguageBox defines change:,
compile:, debug and other methods to say how the parse tree is changed,
how it is compiled and how it should be debugged. Later Lucas will use
Glamour for a more detailed debugger view but the debugger opens OK.
The RB parse tree is the one used (so Helvetia will work wherever the RB
is). He showed a simple case of Regex. Change recognises / followed by a
literal followed by / and converts to that as a string sent asRegex. The SQL
is more complex and bidirectional - you can put SQL statements in
Smalltalk and Smalltalk statements inside an SQL ‘where’ clause, etc.

Maglev now handles private methods (a year ago it did not). James Foster
noted that VW’s Store runs over Glorp, providing a Glorp front-end to
GemStone means Store could use Gemstone as the back-end.

We should code up a version of the dining philosophers problem - the
power-socket-seeking Smalltalkers problem - as a solution is certainly
needed at every ESUG. :-)

Richarte and Leandro can run VisualSmalltalk in Linux; just the
VisualSmalltalk app plus some tweaks makes it possible.

I will look at using StoreForGlorpReplicator to do the Monticello import
into VW7.7. I will send SUnit report text to Stephane, with examples and
look at Keith Hodge’s stuff.

VASmalltalk Virtual Conference, April 21st-22nd, 2009
Travel to a virtual conference is painless.

Summary of Projects and Talks
Tina Kyvale (Instantiations marketing manager) introduced the event and
explained web conference protocol for questions, etc. Recordings are on
http://www.instantiations.com/mktg/events/vastsummit09-delivery.html.

70 VASmalltalk Virtual Conference, April 21st-22nd, 2009
VA Smalltalk: Today, Tomorrow and Beyond, Mike Taylor, Eric
Clayberg, Instantiations
Mike started early in Smalltalk (Digitalk). Eric used alpha Smalltalk at
University in 1985 and began commercially working in it in 1991.

Apple’s Smalltalk add: well, they were in Smalltalk once and maybe will
be again. :-)

ST business is very good right now. They have 20% growth in 2008 which
is very good considering the state of the world economy in general. They
are seeing new licences and new customers.

Recent customer survey (in March, 921 invited, 231 responded). Smalltalk
is used all over the place, in finance, insurance and other areas. USA is 47%
of their business and Europe is 38%. Desktop and sever apps are common
but 21% have web apps. Of course, most of the respondents use
VASmalltalk (49%) or VAST (24%). 46% are stable, with 1-2 releases
annually. 36% are just deployed, 7% being developed. Just 11% are
maintenance-mode only.

US and Europe had 30% evolving quickly, UK 25% being built not yet
deployed. Generally 2/3 legacy, 1/3 new development is the rule. Current
applications are 90%-plus expected to be in use for at least 3-5 years and
20% say they expect the current system to be in serious use 10 years from
now.

Most expect their Smalltalk use to stay the same with significant
percentages expecting to increase it in the UK and Germany and non-trivial
everywhere. Only 1/3 of customers were considering replacing any
Smalltalk system, usually with a Java system.

Value of Smalltalk? 85% say it is excellent or good.

Mike handed over to Eric at this point. Eric reviewed their releases, support
stats and online forum data.

VA 8.0.0 is being released today, the culmination of the 2 years since
Instantiations took over VAST and re-branded it VASmalltalk. They’ve
had ~ 1850 support cases of which 924 cases were answered without
product changes; 167 were fixed with product changes. 300 are still open.

Their user forum has 1850+ posts (475+ by Instantiations) and has had
520,000+ views of the topics.

Customers want VASMalltalk to keep up with operating systems, to exploit
64 bit, to be robust; Seaside was another interest. Only 18% of respondents
had not heard of it. It was critical to the current development of 4% and
important to more than a quarter of them. Seaside was especially important
to smaller development teams. 64 bit was a common interest across the
customer base.

VASmalltalk Virtual Conference, April 21st-22nd, 2009 71
In the next 18 months: currency (not euro symbols but keeping
VASmalltalk current on all important OSs, Databases, e.g. Oracle, and so
on), web services (wizards, performance, deployment, documentation),
unicode (unicode work should be finished soon, including using UTF-8
internally), look&feel (7 had VAAssist, 8 has flat-look windows toolbars,
need to support 24 bit and 32 bit icons), VM Enhancements (continuation
support is continuing, 64 bit is being investigated and associated GC
improvements to handle massive amounts of memory), Seaside (8.0 uses
2.9 alpha and will use 2.9 in 8.1 as soon as it is released; they’ll provide
Seaside development tools, etc.), Performance (hotspot analysis of base
classes and XML parser), Security, ANSI Smalltalk, Glorp (version
available, will be included in release), Documentation (many out of date
docs have been, are being and will be updated, and there are new ones for
new features). There will be a VAST team, blog and public development
builds.

Q. Cross-Smalltalk cooperation - monticello 2, etc? We are looking into
Seaside-related tools cross-vendor.

Q. Do we have to use tabbed browsers? Existing browsers are all there so
you can stick with them and turn off tabs if you want

Q. Improved graphics? Answered in John’s talk.

Q(Niall) Smalltalk is surprisingly strong now (both VASmalltalk and other
vendors); any views why it is strong right now, when the economy in
general is weak? Partly, tough times need productive tools, partly, tough
times make you keep what you have.

Q. Window builder for Seaside? To be investigated.

Q. WindowBuilder Pro or other kits in base product? WBPro yes could be
considered because Instantiations own it (of course, it only works on
Windows). Not the other two because they include others’ libraries.

Q. Can Linux users expect UI bindings e.g. GTK or anything other than
Motif? Being looked at, no promises.

Q. Upgrade directly from 6 to 8? Yes, perfectly doable.

Q. Free academic licence? Trial version is usable for academic learning and
has no time bomb. Academic use encouraged.

Q. How often will the development build be available? Perhaps once a
month, certainly more often than current every 4-6 months.

Q. Make it easy to exchange source code with VW, Squeak, etc. (e.g. JP’s
framework)? Not thought of, ask John. A talk about porting from Squeak
to VA is later (VAStGoodies).

64 bit Qs were deferred to the end-conference Q&A session.

72 VASmalltalk Virtual Conference, April 21st-22nd, 2009
Q. Product pricing? Survey asked if lower price would increase use?
Answer was that while a few said lower price would let them increase use,
general answer was that price was not the issue. They may offer a lower-
price version but currently customers report high value so cost and value is
well balanced. By all means talk to them if you have “cost leading to more
use” scenarios.

Q. Interaction with MS .Net? No specific plans. (Any .Net specific
frameworks people are interested in, tell them.)

Mike closed by stressing that Smalltalk ideas were welcome; email the
team with your advice on what you need from VASmalltalk.

RESTful Web Services in VA Smalltalk, Joachim Tuchel,
ObjectFabrik
(Had to miss this talk; the one disadvantage of a virtual conference is that
you can’t duck out of other meetings so easily as when you’re not there. :-)

VASmalltalk 8.0, John O’Keefe, Instantiations
John O’Keefe has a long history with Smalltalk. He first saw (Digitalk)
Smalltalk in 1987 and was a founding member of the Smalltalk team at
IBM. He was very glad to forge a relationship with Instantiations in 2007
when IBM retired from Smalltalk. He leads the development team at
Raleigh, North Carolina.

Instantiations supported VisualAge Smalltalk in 2004, licensed it in 2005.
For the last two years, Instantiations have maintained and sold
VASmalltalk which was formerly VisualAge Smalltalk at IBM. They
released VASmalltalk 7.5.0, 7.5.1 and 7.5.2 during that time, focused on
tool integration and improvements to the product. They added new
platforms Vista, SuSE Linux and 64-bit integration.

VASmalltalk 8.0 adds: Seaside, Browsers and Tools are enhanced. Web
services are enhanced. After a long time in which the inherited
documentation had fallen behind the product, they have now written new
documentation and improved the documentation system. There are also
various small changes.

Seaside, also jQuery and Scriptaculous libraries for AJAX-style
interactions.
Scriptaculous has also been ported. A (Squeak-oriented) Seaside porting
layer has been developed and provides functionality in three ways: the base
is Seaside2.9alpha3 plus Core, JQuery, Scriptaculous, RSS and Slime
(RBSmalllint extension that ensures your seaside code follows seaside
patterns.) There are also Seaside Tools and a Seaside Porting Layer.
John showed the Seaside server control panel and the web-based tools for
showing e.g. the processes being run (so you can terminate a runaway
process, inspect things, etc., from the web).

Seaside 2.9 is alpha-level so it may change, and so may the porting layer.

VASmalltalk Virtual Conference, April 21st-22nd, 2009 73
The Seaside flow is only partially supported. There is no wait: method
because continuations are still being completed. Instead you use
show:onAnswer: aBlock to achieve the same effect. Seaside encoding is
Latin 1 only. You must use the built-in SST HTTP Server. All these limits
will be lifted in later releases.

Users wanted improved and integrated browsers. John showed a 7.5
browser and then the changes in 8.0. The 8.0 had code tabs (class
definition, method source, method comment, method notes) and method
pane tabs (‘public’, ‘private’ and ‘all’). 8.0 buttons are flat and are native
or emulated (toggle as wished) on Windows (still always emulated on
Unix). Tabs can be sticky (navigate preserves selected tab) or not (always
revert to class definition). Additional tabs show class version history
graphically (looked good, like the TrailBlazer utility).

These affect all EtWindows and the Class(es) and (Shadow)App browsers.

Inspectors have workspace where selecting items does not lose typed code,
and show more data (all forms of integers: binary, octal, etc.)

RB and SUnitBrowser fixes: AddParameter handled better,
RemoveParameter more available.

Q. Squeak-porting tools? Adriaan will discuss and also see the Seaside
library package which exports packages from Squeak to VA (thanks to
Adriaan and Lucas).

Q. Test suites for regression tests? They have two. One (non-SUnit) tests
low-level classes. Another (as mentioned above) is used to test UI, and
there are SUnit tests. John will consider whether to include the SUnit tests.

Q. Stay up-to-date with Seaside? Absolutely. John is participating in
Seaside open-source activities, not just porting code. They will deliver
updated Seaside in every release.

Q. Report writer update? No plans. John recalls that some asked for it to be
made available on Unix platforms for example.

Q. WebService cookbook tells you how to package them, especially
package headless?

Q. RB browsers? Available as separate UI or integrated (via Mastering
Envy Developer map).

Q. Migration from 7.x to 8.0 issues? There is always something to do when
upgrading but John thinks it is pretty minimal between 7.5 and 8.

Q. Test and Quality approaches? Some tests are automatic (e.g. VM builds
have lots of automated tests, SUnit tests are run in batch process), some are
manual (e.g the GUI tests are manual; change a UI, run its tests).

74 VASmalltalk Virtual Conference, April 21st-22nd, 2009
Q. New widgets on windows only or other platforms as well? Today, focus
is on windows because most of VA client apps are there.

Q. Classic browsers still available? Yes, just disable VAAssist.

Q. Timelines for 8.0.1 and 8.0.2? Not at the moment. Plan is to release
every 4-6 months.

Q(Martin) Plans for EDECL calling support under windows? Yes, there are
plans. (Lost from V8 because of time constraints but OpenSSL updates
mean we will need it.)

Q. Envy/Manager on multi-processor PC? It will warn you on a multi-
processor PC because that code belonged to IBM till recently.
Instantiations now has it, will update the code, and has never seen a
problem except on Windows NT Server. Just use the -nt switch and it
should be fine.

Q. REST? See Joachim’s talk.

Q. Fully automatic builds? Builds are automated now. Except when
network connectivity hiccoughs, 2 hours of wallclock time is enough to do
a build.

Q. Glorp port is done for VASmalltalk? A port of Glorp 0.3.178 is complete
and available. An upgrade to latest Glorp is underway. The intent is to offer
Glorp with the release in due course.

Q. Can we have 4 or 8 Gig addressing in a developer release (i.e. soonest;
users very interested)? Nothing is held back so you will see it as soon as we
do it.

Q. Improved EMSERV on linux (no more 2Gig limit)? Now we have the
code, we’ll be working to fix that. (John has a large manager.dat.)

Web services: a new style of WSDL called doc literal wrapped has come in
during the last two years. 8.0 supports the wrapped doc literal style in 8.0.
They provide a cookbook on debugging and will add sections on
serialization and hosting. They explain debugging techniques because it is
easy enough to do once you know how but there was no explanation of
how.

The old web-presented VA documentation was ugly and the source for it
has been unavailable for several years (long story). This is partly why the
documentation has not changed since 6.0. They have revamped the
documentation. The documentation server is gone; they use WebWorks.
Search and all other features now work both locally and through the web.
CSS is used for formatting. Later, new PDF books will be written.

John showed the appearance of a page in the prior system and in the new
WebWorks system. Contents tab shows structure of document and which

VASmalltalk Virtual Conference, April 21st-22nd, 2009 75
parts can be expanded to more detail. Search can be per book or over all
books. A favourites tab lets you bookmark (but does not always work
locally on IE or Google Chrome - ‘feature’ of those browsers).

An email button lets you send feedback to developers, giving page ref in
subject line and printing the page in the email.

Themes are supported on Windows XP (XD image parameter).

ENVY/Image Interactive Tests Suites are provided as additional examples
of how to use widgets, graphics and printing. You can benchmark with
sampleAndBrowse or traceAndBrowse. (The Performance Workbench
is powerful but takes a little more setting up; these take a block and open
the results in the Performance Workbench.)

In V8, they have begun providing Goodies: not-quite-ready features. Some
existing goodies are also being provided, e.g. UML Designer. They will
keep these goodies in synch with the V8 goodies, in the sense that they will
load and are not obviously broken.

What is missing? OS/2 will not be supported in VASmalltalk 8.
Instantiations has never formally supported OS/2 but till now has kept it
running there. However 7.5.3 is the last such version. Most OS/2 code has
already been removed from 8; the rest will go soon.

UTF-8 support is deferred; it will be in a follow-on release.

Get V8 from http:/www.instantiations.com/VAST

V8.0.1 will have Seaside 2.9 Beta, UTF-8, more ANSI Smalltalk
(Exception extensions and Timezone support), SST Servlet multipart
forms, Web service wizard enhancements, GLORP (ActiveRecord support
will be further in the future), Window Server 2008 support (runs now and
customer OK with it but not yet full regression test on that platform).

8.0.2: Seaside 2.9, Seaside class browser and profiler and deployment
tools. OpenSSL being brought up to latest release and with wrapped
OpenSSL security interfaces.

Ongoing: platforms (Windows 7, Ubuntu 8.10, Fedora Core 11),
performance enhancements (John is doing hotspot analysis of the base, the
XMP parser and other areas to determine where performance needs work).
VM enhancements to 64-bit will need incremental GC. Look&Feel will be
worked on (also .png and .tiff support). A single install/repair/uninstall
would be useful, as would delta manager exports and more documentation.

ANSI exceptions are fully supported. Their old instance-based exception
system is integrated with them in 8.0. You can now use the ANSI on:do:
(class-based) or when:do: (instance-based) or a mix of both. John has
switched the SUnit preload over to use ANSI: the rewrite was a useful test.

76 VASmalltalk Virtual Conference, April 21st-22nd, 2009
They will improve serialization to support the wrapped literal style which
has become popular in the .Net domain. The standards are rather vague in
some cases so they have studied how this works and should work and will
provide working examples.

There is full support for UTF-8 locales. Most Linux platforms now use
UTF-8 is their default out-of-the-box so it was a problem even to install
without it. They will complete their support for UTF-8 locales.

Not Your Regular Pet Project: Using Smalltalk and Seaside in the
Enterprise, Ernest Micklei and Soemirno Kartosoewito,
NationaalSpaarfonds
Ernest is an old-time Smalltalker who has recently been re-infected by
Seaside. Soemirno is new to Smalltalk.

NationaalSpaarfonds is a leader in car insurance in Holland. They also
offer pet insurance. The new web app handles claims under this insurance.
Ernest showed the screens taking you through the five-stage process: the
user enters data, is advised of conditions and of process (email sent to them
confirming data of their claim, another when claim processed, etc.).

Next he talked through the architecture of the application. There is a
Firewall between the seaside application that talks to the web and the
identical (in the model-layer) back office application where the instance
created for the user is processed.

Then he introduced how these pages talk to the Seaside application.
Soemirno took over and walked through the technical details. jQuery with
validations drives the pages, binding form fields to model fields. Soemirno
showed the page, its code and the Seaside Smalltalk code, showing how
fields are bound to model aspects, ids assigned for jQuery feedback, etc.

[Rather than type lots of code here, I invite readers to watch this part of the
talk from the instantiations website.]

The application uses jQuery javascript to catch when the user inputs to a
field. Soemirno showed the very simply Smalltalk calls of onChange: and
the much less simple javascript resulting from it in the web page’s HTML
code. By this means, the model calculates any fields dependent on the one
the user changed, and so they are updated, giving the app a client-server
feel.

Why use jQuery with Seaside; it is a current de-facto standard, it is cross-
browser, they knew it, and its programming model is a good match for
Seaside.

Problems: both the Seaside/jQuery codebase and V8 were moving targets.
Some things were slow on IE6.0.

Q. Lucas’ changes just for NationaalSpaarfonds or also in 2.9? Also in 2.9.

VASmalltalk Virtual Conference, April 21st-22nd, 2009 77
Q. How long to develop? Started December, current state is what you see.
It was the team’s first Seaside application and the Soemirno’s first
Smalltalk app.

Q. Did you miss the support for continuations? Not really; designed the app
around their being absent so might have used it if they had been there.

Q. Does jQuery allow rendering of several fields that depend on each
other? It can but they have used it single field only so far.

Q. Strategy decision about the use of Seaside? Yes, chose to use framework
maintained by larger community rather than in-house framework.

Q. What problems did you encounter? Learning curve of Seaside (and
jQuery), then the fact that the code was evolving in the v8Beta as they were
developing.

Q. Marketing teams opinion of app? App is used by existing customers to
make claims, not to get new customers in, so marketing guys had less say.

Q. How does it work with HTML and CSS? There is no writing of HTML;
that is all created from Smalltalk by Seaside. CSS was written by a separate
style designer; they sat with the designer and he told them what classes he
needed.

Q. Deployment set-up? (Not in production yet) This app will have low load
so may well be a few images and load monitored.

Creating VAStGoodies.com - a VA Smalltalk Seaside User Experience,
Adriaan van Os, NationaalSpaarfonds
Adriaan showed the vastgoodies.com site, which looks very like an Envy
configuration map browser.

VAStGoodies.com has two goals:
• Socially, to facilitate VASmalltalk open-source software, and to build a

more active and visible VASmalltalk community. The VASmalltalk
community is (relatively) silent.

• Technically, none of the existing open-source repositories fit Envy well
as Envy is not (simply) file-based so VA goodies are all over the web
and you find dead URLs and so on.

VAStGoodies is an Envy-format source code repository. It is indexable by
search engines. It can be linked to by other web pages. VAStGoodies is a
hang-out, not a hide-out. By all means use other sites to manage your
feature requests, etc., but put them up on VAStGoodies to make them
visible.

A Hosted Projects page gives data about the projects, other web pages for
them, etc.

VAStGoodies sticks to the Envy model that its users all know. By using

78 VASmalltalk Virtual Conference, April 21st-22nd, 2009
Config maps and apps, we can be sure that things load and we’re using the
versions we think we are. By using the Envy user model, no additional user
data is needed.

The VAStGoodies server sits on Seaside and a servlet and Envy. Seaside
and the servlet sit on SST and the whole sits on VASmalltalk.

It took Adriaan 10 days / 25 hours of effort to get the first version up.
Issues: Envy is a single-client-user tool with modal dialogs and a single
repository file. You do not want to show all the maps on the web, just the
ones that are goodies. Hence Adriaan silenced all the dialogs and serialized
all repository access via a semaphore so you see the goodies repository, not
any other.

He also did some caching (for performance) of names of visible config
maps and their editions, and of the names of projects.

Downloads are just exports from Envy which are kept and served by the
web server.

V8 beta had no continuations so no flow. There are no mime types which
were wanted for uploading config maps’ meta-data. There was no RSS.

Adriaan did not use continuation-passing coding style because it got ugly
quickly and anyway the continuations will be there soonish, so instead he
used jQuery as that was fast enough at the moment.

Adriaan ported jQuery (and jQuery UI, not used in VAStGoodies yet) from
Squeak. Mime types he hacked. RSS he did a port. Lucas ported TinyWiki
that renders wiki-syntax code on the web.

Aside on porting: porting used the VA Smalltalk Porting layer and the
VAPackageExporter. Adriaan observed that Seaside is bringing all
Smalltalk dialects a bit closer. This is good for Smalltalk and for its open-
source projects. PackageExporter was originally written by Avi Bryant for
Squeak-to-Squeak porting and John enhanced it to VAPackageExporter.
Lukas Renggli and Adriaan created a differences exporter so you can just
port the changed code after having done your first baseline port of a utility.
John enhanced it further and it is now very useful for porting.
VAPackageExporter fileOutPackageNamed: aString.
VAPackageExporter
fileOutPackageNamed: aString
deltaFrom: aVersionString.

There are porting issues. aNumber asInteger is truncated in Squeak
but VASmalltalk rounds as ANSI directs. Using aNumber rounded
avoids the issue; the Pharo guys have been alerted to this. (In such cases,
remember always to fix the reference implementation, not the port.)
Prereqs were not always well-defined in Squeak. Look at WAPackage and
VAPackageExporter>>prerequisites for examples of how they addressed
that. Always run Slime, since it tracks non-portable classes and methods.
Finally, when versioning, reference the source version id.

VASmalltalk Virtual Conference, April 21st-22nd, 2009 79
Back to VAStGoodies. The site wants meta-data on your project, such as
licence information, any URLs of related sites, and any additional info for
the pages. Ernest Micklei build the VAStGoodies tools, i.e. the web service
and client. Load this app into your image and then invoke the Annotation
Editor to talk directly from your image to the VAStGoodies server. Adriaan
showed the editor UI. It demands that you provide licence info. The licence
must be clear or companies won’t use it. You must choose one or
companies can’t use it. MIT is easy.

The site will add an application page, like the config map page, and a
statistics page.

Lastly, Adriaan thanked John, Lucas, Ernest and others for coding help,
and Louis Andriese for providing free hosting of VAStGoodies.

Q. Is the VAStGoodies server code also open source? Adriaan wants to
have a single site so it builds a community but perhaps if we grow large that
would justify multiple sites. By all means talk to him if interested.

Q. Continuation-passing style disliked because?
• If you have a complicated flow, the style gets clunky.
• It is not the final state so would have been temporary code.
• Adriaan wanted to try jQuery.

Q. How to ensure not exposing internal code when using a shared Envy?
The non-config maps are hidden but that’s all he does currently. [Niall: the
repository would naturally have just the VASmalltalk 8.0.0 base maps, the
VAStGoodies server map(s) and the visible maps, so if more of these were
reachable than just the intended maps, it would seem no great matter as
what user would not have these maps locally anyway.]

Q. Issue tracker? Use an external one. Adriaan will not build one and using
e.g. GoogleCode gives Smalltalk visibility on those sites.

Q. Download of config map with all prereqs? Yes that could be offered but
it would only be a download of all visible maps.

Q. Mime-type support required what? Some dirty hacking. Adriaan looked
at what Seaside-Squeak did and just grabbed what he needed, not elegantly
but just to make it work by cut-and-paste from Squeak.

Q. The VAStGoodies site was built with jQuery events and Seaside canvas?
The UI is wholly rendered within Seaside. Adriaan manipulates the DOM
by AJAX callbacks to the server.

Q. Use this code for a distributed project? One could, but does it add much
functionality to what Envy replicator can do already?

Q. Where is VAPackageExporter? Go to Adriaan’s blog
(http://a3aan.st/sunrise) and its location will be findable from there.

80 VASmalltalk Virtual Conference, April 21st-22nd, 2009
Q. Enforce comment field to make uploaders provide an overview
explaining what their upload does? Now that upload is only possible via
VAStGoodies Tools, that already encourages this.

Q. Harvest existing code? By all means try to find an owner of any useful
utility and arrange its upload.

Q. Include 7.5.2 and 8.0 to show all prereqs? Adriaan agrees that some
prereqs are missing

Q. Have a ‘remove’ command to deal with old code? For now, just email
Adriaan. Later, he will see.

Implementing Genetic Algorithms Efficiently in Smalltalk, Bob
Whitefield, Model Design Corporation
Bob started in Smalltalk in 1989, and has yet to find a language he likes
better. He founded ModelDesign in 1997.

Genetic algorithms create a population of potential solutions then evaluate,
select, combine and mutate them to try to produce a superior population.
GAs are most useful for solving problems where no known algorithm
exists or where the time to find a solution algorithmically is not affordable.

He defined genetic terms in a computer context: gene (a slot), allele (value
that can be held in a slot), crossover (combining material from two
solutions to create a new one), fitness (a function that evaluates how good
the solution is).

Bob developed the Mendel framework so that users could apply GA to
problems simply, flexibly and efficiently. He has a hierarchy of simple,
composed and grammar gene classes, with operators optimised for
blending and recombination. Various techniques avoid known GA issues
such as premature convergence, accidental loss of the best solution, etc.

He started with a simple guess-the-hidden-value problem; all you are told
is how many 0s and 1s you got right in a 100-bit number. He showed the
fitness value. The correct result was found after 5000 iterations and 10,000
evaluations. A human could reason the answer faster but a mere
enumeration would have been much slower. A 3-d contour was similar.

Next he looked at the travelling salesman problem. He listed the creation
protocol that the Mendel framework offers to let you set up the problem,
set population parameters (can always use default values for these but
setting values that fit a problem can let you reach the result faster). The
fitness function for this problem simply sums the distance travelled,
seeking to minimise it. He showed the diagrams of the paths as Mendel
converged on the ideal no-crossed-paths solution. this solution took 41
seconds (a rerun could take 30 - 90 seconds depending on chance factors).

Next he looked at a scheduling problem: maximise the number of widgets
produced at various bays while allowing employee choices of preferred

VASmalltalk Virtual Conference, April 21st-22nd, 2009 81
work and minimising how often an employee changes bays. An employee
has 4 genes (start times, periods worked, lunch periods and bays). The
fitness function minimises departures from employee preferences and bay
changes via 6 criteria, each weighted to balance the goals.

Genome design needs to avoid redundant information that must be kept in
synch. Simpler is better; let the solution do the work, not your gene design.

Some deviations from pure OO design were done for performance.
Chromosomes (units of recombination) are not first class objects; instead,
genes contain all the behaviour and they operate on the allele data. Genes
are not implemented as instance variables.

His last example was a case study he did for a major agricultural supplier
who must make hundreds of shipments each week. Tours that keep the
truck in service for 4-5 days offer serious cost savings. He solved this with
a hybrid technique: GA plus an insertion algorithm. Each solution is a
permutation of all shipment legs and the insertion algorithm inserts it into
a leg of a tour that saves the most money. If no saving is possible on an
existing tour, a new tour is created. The resulting collection of tours is a
shipping plan and the fitness function evaluates the cost of the shipping
plan. He showed tours being visualised in google maps. the company
believes they will save $800,000 this year by using the tool.

Mendel is very computationally expensive so he had to watch performance
• minimise instance creation: it is faster than in other OO languages but

still slow and the instances must be GCed
• use SmallIntegers, not Floats, wherever possible
• use Arrays and OrderedCollections instead of Sets, Dictionaries or

SortedCollections
• pre-allocate collections whenever you can estimate their eventual size
• etc.
Do not optimise until and unless you know it will help. The simplest thing
that could possibly work is usually fast enough. Only remove accessors in
very critical code. Lazy initialization is often fast enough and sometimes is
actually faster.

Smalltalk’s advantages were speed of development (always) and speed of
execution (sometimes): C++ or Java would have run faster but been 5-10
times slower to write. Ruby, Python or Perl would have been slower both
to write and to run. Bob has seen how Smalltalk applications are still
working on platforms that did not exist when the apps were first written: he
likes the insulation from platform changes that Smalltalk provides.

Q. Use GA to classify emails? Yes if you used GA to train a neural net. NNs
are powerful but hard to train and GAs are good for that.

Q. Commercially available? No, currently it is only available as part of his
consulting work.

82 VASmalltalk Virtual Conference, April 21st-22nd, 2009
Q. How long does it take to have working code? The truck tour
optimisation took 3 months, most of which was understanding the problem,
ensuring the solution did not violate any constraints, working out how to
combine the tours. By contrast, if you already have a well-defined fitness
function, it can take only a few days to have a working Mendel system.

Gaining Object Persistence, Martin McClure, GemStone
Martin’s talk was entirely a demo (so see it on Instantiations’ website). His
demo was of a simple employee app that originally used a relational
database. He got this app from Solveig; she and Martin stripped out the
relational persistence from it. Martin will now show adding GemStone
persistence.

Martin walked through the app structure: classes for employee, department
and so on, with some class vars for caching AllDepartments, holding
LastID (to generate unique IDs for employee) and so on. The GUI was
generated by WBPro.

Martin initialized, clearing out all employees and departments, then added
some sample data. He looked up employee McClure, upped his salary and
so on. :-)

This data is all in-image. Now we make it persistent using GemStone/S.
GemStone/S is a server smalltalk implementation: it is headless (no GUI),
has shared transactional persistence (committing is like image save but
multi-user, with changes being merged on commit). GemStone/S is called
an object database but that is not all it is. GemStone/S is synergistic with
VASmalltalk. VASmalltalk provides a GUI and other things that
GemStone/S does not have, while GemStone/S has the multi-user
persistence that VASmalltalk does not have. GemBuilder for Smalltalk
(GBS) runs in VASmalltalk and lets the two work together.

Martin opened the GemStone session browser and looked at a GS code
browser. He showed that this brand-new GS implementation knew nothing
about the employee app yet.

The app UI stays on the client. Its model layer is reflected on the GS server.
He published (select the classes and menuclick) and showed that the model
classes now existing on the server; the classes, but as yet no methods.
Connectors have been automatically created to relate the client and server
classes. He showed how the Department class connector mapped the class
var ‘AllDepartments’ between the two. Use connectors for root objects you
want to connect on startup; they will lookup (by name) and perform the
appropriate postLoad action (updateST, updateGS, etc.). He set updateST
to show how that nilled the image’s data for the class vars.

He added employee John O’Keefe, logged out, showed how the app failed
(var is now nil) logged in again and could again see employee O’Keefe.

Martin showed how to add auto-login/logout to application startup and
shutdown, committing whenever you save. It’s that simple - unless you

VASmalltalk Virtual Conference, April 21st-22nd, 2009 83
want to deal with some performance issue, which is the usual cause of code
becoming less simple, so he closed by looking at a performance technique.

He added 10,000 employees, logged out and logged in again. All 10,000
employees were replicated, taking 5 seconds to move 2Mb from the server
to the client and create all those objects. It would be better if we moved
‘AllEmployees’ to the server and the client only had the one, or the few,
that it was using at a time. So far, we have used replicates. Now we use a
forwarder. Forwarders have no state on the client and forward all messages
sent to them onwards to the server. Only the result is replicated back to the
client. He made AllEmployees a forwarder, logging out and giving its
connector a forwarder postConnect action. He logged in again and got a
DNU; the employeeNamed: method is forwarded to the server class
which does not understand it. He therefore by menuclick copied all the
needed methods to the server. Next he got another DNU; he showed how
the Gemstone-extended VASmalltalk debugger walked up into the server’s
calls (prefaced by GS: in the stack); the server class has no data. He copied
also the accessors to let data be added and now it all worked. Login was a
lot faster than the 5 seconds we saw before. He showed GBS inspectors on
the server-side objects.

Now we have some server-side Smalltalk execution.

Q. GemStone over a wide-area n/w - is the protocol chatty? It is not very
chatty. Care in coding the application will help.

Q. Shape-changes, old and new class versions? GemStone has class
histories that group different versions of a class. GemStone provides
migration code and hooks to add complex migration code if needed and
you can migrate all instances at once or migrate lazily.

Q. Forwarders? are never stored on the client?

Q. Classes under envy? There is a public-domain kit for Envy that lets you
put GemStone classes into the client and put them under Envy control.
Native source-code control is Monticello (the Squeak CM tool).

Q. How do you keep client and server code in synch? Some want the code
to be identical and some do not.

Q. GBS for VASmalltalk 8.0.0? It will probably load and run right now but
allow a few months for GemStone to finish testing and release supported.

Q. Methods live in both machines? You can have the same method in client
and server and executed in both; in some circumstances that is a sensible
thing to do.

Q. End-user reporting tools? There is no GemStone-specific reporting
tools. Various customers have built very sophisticated report-writers based
on GemStone. You query GemStone like other Smalltalks via select: and
suchlike on collections and so on.

84 VASmalltalk Virtual Conference, April 21st-22nd, 2009
Q&A Session
Improve packaging performance? Not currently planned, can look at.

GTK and similar bindings for VAST? We have not looked into it. It is not
on our list to look into at this time. SWT similarly has no overlap with
Smalltalk that they can see. Instantiations has strengths in that area in their
Java products so if there were a customer case they could do it - but they
see no business case.

Backward compatible VMs? John runs version 3 images on version 8 VMs.
Just be sure you run a complete set of binaries from a given release; do not
mix binaries from releases.

How do you promote Smalltalk and help customers dissuade managers
who say they will rewrite in Java? The cost of rewriting a Smalltalk app to
Java will probably be more than the cost of creating it in the first place, and
the errors-per-function point measure for Smalltalk is much lower (3-10
times lower) than in Java. Finally using automatic translation tools has not
been an effective route either (block closures are hard to translate and
automatically-generated code is unreadable). They have material they can
share with people to show to their managers to make a compelling cost-
oriented case. Actual translation of Smalltalk systems to Java is rare; more
often, people decide that an Smalltalk app is ‘near the end of its life’ and
then a new Java app is written but they have also found themselves keeping
the Smalltalk app after doing so.

Multi-core such as quad-core, and forking threads to use 100% of each
core? V8 is single-threaded on a core and callouts can be asynch and,
unless affinity is set, these will run on other cores. They have often seen
VASmalltalk taking 20% of one core while 3 other cores are maxed out for
the DB and etc. keeping up with it. The ‘single-core for Smalltalk, other
cores for the other apps’ approach is in fact very performant.

Tools to automate build processes? We do automated builds but you do not
want our build process so briefly no.

Windows and Linux are most deployed-on platforms but can we count on
continued support for Solaris and AIX? Yes!

What kind of code contribution do you want from your users? Any
interesting things are welcome. Now that Seaside is available,
VAStGoodies has GoogleCharts and there are other Seaside things

Tools to integrate with MS tools: .net, SharePoint or Office? No .net plans
but they’ll look at it and SharePoint. Office OLE interaction is available.

Known buglist on the website? Yes, provided we can figure out the
mechanics of it. We have a nice internal system behind our firewall so must
work out how to get the appropriate parts of it visible.

Support for programming against interfaces? SmallInterfaces was an

Conclusions 85
interface browser. Nothing new here.

Tracking non-GCed objects? See KESStacks goodie.

Development builds? Unregression-tested so use at own risk.

Enhance Smalltalk language, e.g. namespaces, mixins, aspects, class
extensions that define instance variables? The last is possible. Mixins not
looked at or planned. There is in fact some namespace support
(Classname::Classname) but it is not visible and not high on their list (if
there were a business case ...).

GUI designer will be WBPro or the Composition Editor? They will support
both and are considering bundling WBPro but be aware WBPro only runs
under Windows, which is the only reason it is not already in the base.
WBPro is also revenue-generating so if many customers say it is high value
it may go in the base and if not they may leave things as is.

Seaside-oriented tools? We have no plans like web velocity but have
thought of something like SeaBreeze; no specific plans or schedule yet.

Sandboxing? Not thought about yet. Security framework for encryption is
planned.

Looking for ST programmers? Ed mentioned some American sources and
providers. The Smalltalk jobs DB and the national and local Smalltalk user
groups are worth using to hire Smalltalkers. The conferences are also a
good place, especially ESUG if you are this side of the Atlantic.

Closing Discussions
They are thinking of offering this as an annual event.

Other Discussions
The one problem with a web conference; there aren’t any other discussions.

Conclusions
My eleventh ESUG and my third VASUG:
• Seaside just keeps growing
• Being respected by adherents of now-fashionable Ruby makes a

pleasant change from being rejected by adherents of no-longer-
fashionable Java.

• Smalltalk’s second surge was still much in evidence; given the state of
the economy in general, that is doubly impressive.

Written by Niall Ross (nfr@bigwig.net).

* End of Document *

86 Conclusions

	Smalltalk Conferences in 2009
	Style
	Author’s Disclaimer and Acknowledgements

	CS14 and ESUG 17, Brest, Aug 28th - Sep 4th, 2008
	Summary of Projects and Talks
	Camp Smalltalk 14
	ESUG Activities Reports
	Conference Welcome and ESUG Activities Overview, Stephane Ducasse, Noury Bouraqadi
	Speed dating at ESUG
	Smalltalk Awards Ceremony, Noury Bouraqadi
	Books
	Wrap-up, Stephane Ducasse, ESUG

	Smalltalk Development Environments
	VASmalltalk, John O’Keefe, Instantiations
	ObjectStudio, Dirk Verleysen, Cincom
	GemStone news, James Foster, Gemstone
	Building Ruby on Smalltalk, Martin McClure, Gemstone
	Pharo: a progressive innovative open-source Smalltalk environment for professional use, Stephane Ducasse, http://www.pharo-project.org
	Squeak on iPhone, john Macintosh
	NXTalk, Michael Haupt, University of Potsdam
	VisualGST, Gwenael Casaccio et al.

	Web Development Frameworks
	Aida Tutorial, Janko Mivšek, Eranova
	WebVelocity, Michael Lucas-Smith, Cincom
	Seaside Update, Lucas Renggli and Julian Fitzell
	Seaside Tutorial, Lucas Renggli
	GHPrintToWeb, Roland Wagener, Georg Heeg
	seaBreeze, Karsten Kusche, Georg Heeg
	Iliad: a new web framework, Nicholas Petton, Sebastion Auder, University of Montpellier

	Coding and Testing Tools and Techniques
	(Invited talk) Script your browser in 15 minutes with Glamour, Tudor Girbe, Philipp Bunge
	Specify, Simplify, Explore with ComplexValues, Christian Haider (smalltalkedVisuals GmbH) Thomas Schrader (counselling developer)
	Mutation Testing, Hernan Wilkinson, University of Buenos Aires
	Just-in-time resourcing: fast, flexible testing with SUnit and Friends, Niall Ross, Cincom

	Smalltalk and non-Smalltalk
	Why Smalltalk won the language shoot-out, Lucas Renggli and Tudor Girbe
	Cloudfork: cloud computing using Smalltalk, Ernest Micklei and Jan van de Sandt
	Getting on the Island, James Robertson, Cincom
	Language-Shifting Object in Inter-language Interoperability, Johan Brichau and Coen De Roover
	Security on JIT VMs, Gerardo Richarte, community.corest.com/gera
	Bytecode Documentation, Gerardo Richarte

	Managing Smalltalk Projects
	Project Planning, Tim MacKinnon, Iterex
	When Flexibility backfires, Yann Monclair

	Applications and Experience Reports
	Modelling with Smock, Testing with PicUnit, V. Verbeque, Alain Plantec, Thales
	Multicore playground: how can we get the most out of our most modern CPUs, Arden Thomas
	Smalltalk is Hot, Georg Heeg, STIC

	Reflection and Meta-Data
	Thomas Kowark, Robert Hirschfeld and Michael Haupt, Object- Relational Mapping with SqueakSave
	Experiments with pro-active declarative meta-programming, Veronique Uquillas Gomez
	Smalltalk Metaprogramming supports Probabilistic Analysis, Dave Mason, Ryerson University
	Object Spaces for Safe Image Surgery, Gwenael Casaccio et al., INRIA
	Jorge Ressia and Oscar Nierstrasz. Dynamic Synchronization - A Synchronization Model through Behavioural Reflection
	CLIC: a Component Model Symbiotic with Smalltalk, Noury Bouraqadi and Luc Fabresse, Ecole des Mines de Douai
	Detecting System Cycles with DSM, Jannick Laval

	Show us your projects: ten-minutes presentations
	VAStGoodies.com, Adriaan van Os, NationaalSpaarfonds
	Seaside in VA, Adriaan van Os, NationaalSpaarfonds
	Interfaces on SoundWaves, Koenig
	Yuri Mironenko
	Michael Haupt, Potsdam University
	Nicole de Graaf
	Igor Stasenko

	Other Discussions

	VASmalltalk Virtual Conference, April 21st-22nd, 2009
	Summary of Projects and Talks
	VA Smalltalk: Today, Tomorrow and Beyond, Mike Taylor, Eric Clayberg, Instantiations
	RESTful Web Services in VA Smalltalk, Joachim Tuchel, ObjectFabrik
	VASmalltalk 8.0, John O’Keefe, Instantiations
	Not Your Regular Pet Project: Using Smalltalk and Seaside in the Enterprise, Ernest Micklei and Soemirno Kartosoewito, NationaalSpaarfonds
	Creating VAStGoodies.com - a VA Smalltalk Seaside User Experience, Adriaan van Os, NationaalSpaarfonds
	Implementing Genetic Algorithms Efficiently in Smalltalk, Bob Whitefield, Model Design Corporation
	Gaining Object Persistence, Martin McClure, GemStone
	Q&A Session
	Closing Discussions

	Other Discussions

	Conclusions

