0
X
O
=
®
>
2
>

User’'s Guide

Part Number: DS10005004

Copyright © 1995 by ParcPlace-Digitalk, Inc. All rights reserved.
Part Number: DS10005004
Revision 2.1, October 1995 (Software Release 2.5)

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Trademark acknowledgments:

ObjectKit, ObjectWorks, ParcBench, ParcPlace, and VisualWorks are trademarks of ParcPlace
Systems, Inc., its subsidiaries, or successors and are registered in the United States and other
countries. DataForms, MethodWorks, ObjectLens, ObjectSupport, ParcPlace Smalltalk, Visual
Data Modeler, VisualWorks Advanced Tools, VisualWorks Business Graphics, VisualWorks
Database Connect, VisualWorks DLL and C Connect, and VisualWorks ReportWriter are
trademarks of ParcPlace Systems, Inc., its subsidiaries, or successors. ENVY is a registered
trademark of Object Technology International, Inc. All other products or services mentioned
herein are trademarks of their respective companies. Specifications subject to change without
notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed and/or
distributed except in accordance with the terms of said license. No class names, hierarchies, or
protocols may be copied for implementation in other systems.

This manual set and online system documentation copyright © 1995 by ParcPlace-Digitalk, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or reduced
to any electronic medium or machine-readable form without prior written consent from
ParcPlace-Digitalk.

ParcPlace-Digitalk, Inc, 999 East Arques Avenue, Sunnyvale, CA 94086-4593

Contents

About This Book

Audience xvii

Organization xviii

Conventions xix
Typographic Conventions xix
Special Symbols xx
Screen Conventions xx
Mouse Buttons xx
Mouse Operations xxii

Additional Sources of Information xxii
Printed Documentation xxii
Online Documentation xxiii

Obtaining Technical Support xxiv
Before Contacting Technical Support

XXiV

How to Contact Technical Support xxiv

Chapter 1 Introduction

About VisualWorks 1
Building Applications 1
Read-and-Apply Tools 2
Visual Reuse 2

Starting VisualWorks 2

Saving Your Image 3

Exiting VisualWorks 4

Part | Smalltalk Language

XVii

Chapter 2 Object Orientation
Procedures vs. Objects 7
Objects and Methods 8

VisualWorks User’s Guide, Rev. 2.1

Contents

Composite Objects 9
Variables and Methods 11
Method Grouping 12
Classes and Instances 13
Class Variables 13
Class Methods vs. Instance Methods 14
Class Grouping 15
Class Inheritance 16
Looking up a Method 17
Overriding an Inherited Method 18
Abstract Classes 19
Nesting Abstract Classes 20
Choosing a Superclass 20

Chapter 3 Syntax 23
Naming Conventions 23
Capitalization Rules and Conventions 24
Literal Constants 24
Numbers 24
Characters 26
Strings 26
Symbols 27
Byte Arrays 27
Arrays 27
Booleans 27
Variables 28
Temporary Variables 29
Instance Variables 31
Class Instance Variables 31
Class Variables 32
Pool Variables 33
Global Variables 34
Special Variables 34
Undeclared Variables 36
Message Expressions 36
Unary Messages 37
Binary Messages 37
Keyword Messages 39
Messages in Sequence 40
Block Expressions 42
Formatting Conventions 44
Syntactic Elements Summary 44

iv VisualWorks User’s Guide, Rev. 2.1

Contents

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Control Structures
Branching 47
ifTrue:ifFalse: 47
Looping 48
Conditional Looping 48
Number Iteration 49
Collection lteration 50

Numeric Operations
Integers 55
Floating Point Numbers 57
Fractions 59
Random Numbers 59
Dates 60
Time 63

Time Zone 66
Abstract Superclasses 67

Collection Operations
Choosing the Appropriate Class 69
Set 70
Bag 70
Array 70
Interval 71
OrderedCollection 71
SortedCollection 71
LinkedList 71
Dictionary 72
Creating an Instance 73
Adding, Removing and Replacing Elements
Comparing Collections 76
Counting and Finding Elements 77
Copying a Collection 78
Converting and Printing 78
The Collection Hierarchy 78

String Operations

Creating a Character 81
Character Operations 82
Creating a String 83
Substring Manipulations 83

VisualWorks User’s Guide, Rev. 2.1

74

47

55

69

81

Contents

Pattern Matching 85
The String Hierarchy 85

Chapter 8 Processes and Exception Handling

Creating a Process 87

Scheduling a Process 88

Setting the Priority Level 89

Coordinating Processes with a Semaphore 90

Passing Data Between Processes 92

Using a Delay 92

Using a Signal to Handle an Error 92
Choosing or Creating a Signal 94
Creating an Exception 96
Setting Parameters 97
Passing Control From the Handler Block 98
Using Nested Signals 99
Unwind Protection 100

Part Il VisualWorks Tools

87

101

Chapter 9 Environment Tools
VisualWorks Main Window 103
Settings Tool 104
File List 105
File List Views 106
Display Options 106
File List Commands 107
Change List 109
File Editor 113
Project 113

Chapter 10 Smalltalk Programming Tools

System Browser 115
Structure 115
Class Categories 116
Classes 116
Protocols 116
Methods 116
Code 116

Workspace 124

vi VisualWorks User’s Guide, Rev. 2.1

103

115

Contents

System Transcript 125
Debugger 126
Inspector 130

Chapter 11 Application Building Tools 131
Resource Finder 131
Canvas Tool 132
Palette 133
Image Editor 135
Menu Editor 135
Enhanced Menu Editor 136
Properties Tool 140
Basics Properties 142
Details Properties 143
Validation Properties 144
Notification Properties 146
Color Properties 147
Position Properties for Bounded Widgets 149
Drop Source Properties 150
Drop Target Properties 151
Define Dialog 154

Chapter 12 Database Application Building Tools 157
The Data Modeler 157
Canvas Composer 157
VisualWorks Painting Tools 157
Embedded and Linked Data Forms 158
Mapping Tool 158
The Query Editor 158
Menu Queries 158
Ad Hoc SQL Editor 159

Chapter 13 Application Delivery Tools 161
Parcel List 161
Parcel Menu Commands 162
Utility Menu Commands 163
Parcel Browser 163
Structure 164
Parcel View 165
Category View 166
Class View 166

VisualWorks User’s Guide, Rev. 2.1 vii

Contents

Protocol View 167

Method View 168

Code View 168
Image Maker 169

Chapter 14 Debugging Techniques 171
Reading the Execution Stack 171
Tracing the Flow of Messages 173
Inspecting and Changing Variables 175
Inserting Status Messages 176
Interrupting a Program 177
Restarting a Program 177

Chapter 15 Managing Projects and Versions 179
Entering and Exiting a Project 179
Summarizing Project Changes 180
Reverting to a Prior Version 182
Sharing Code 184
Condensing the Changes File 185

Chapter 16 Accessing Databases 187
Overview 187
Data Interchange 189
Establishing a Connection 190
Securing Passwords 190
Getting the Details Right 191
Setting a Default Environment 191
Default Connections 192
On the Importance of Disconnecting 193
Using Sessions 193
Variables in Queries 194
Named Input Binding 196
Getting Answers 197
Handling Multiple Answer Sets 198
What Happens when you Send an Answer Message 198
Waiting for the Server 199
Did the Query Succeed? 199
How Many Rows were Affected? 199
Describing the Answer Set 200
Buffers and Adaptors 200
Processing an Answer Stream 201

viii VisualWorks User’s Guide, Rev. 2.1

Contents

Using an Output Template 202
Setting a Block Factor to Improve Performance 204
Cancelling an Answer Set 205
Disconnecting the Session 205
Catalog Queries 206
Controlling Transactions 207
Coordinated Transactions 207
Releasing Resources 207
Tracing the Flow of Execution 208
Directing Trace Output 208
Setting the Trace Level 209
Disabling Tracing 209
Adding Your Own Trace Information 209
Error Handling 210
Signals and Error Information 210
Exception Handling 211
The Database Signal Hierarchy 212
Choosing an Exception to Handle 212
Image Save and Restart Considerations 213

Chapter 17 Troubleshooting 215
Recovering from a System Failure 215
Start-up Errors 216
Source Code Unavailable in Browser 217
Low Space 217
No VisualWorks Main Window 217
Can't Exit from VisualWorks 218

UNIX 218
Macintosh 218
Windows 219

Emergency Exit (all platforms) 219
When You Need Assistance 219

Part Il Application Components 221

Chapter 18 Application Framework 223
Overview 224
Domain Model Is Separate From User Interface 224
ApplicationModel Acts as Mediator 225
Value Model Links Widget to Attribute 226
Builder Assembles User Interface 227

VisualWorks User’s Guide, Rev. 2.1 ¢

Contents

Chapter 19

Widget Has Visual Component and Optional Controller
About the Example Application 229
Domain Model 231
Overview 231
Data Storage 232
Data Processing 233
Application Model 234
Overview 234
Storage of Reusable Labels and Images 235
Storage of Interface Specs 236
Storage of Value Models 236
Dependent Notification 237
Application Startup 245
Application Cleanup 247
Builder 248
Overview 248
Storage of Ul Bindings 249
Interface Assembly 251
Interface Opening 252
Window Access 253
Named Component Access 253
Window 254
Overview 254
Damage Repair 256
Visual Component 257
Overview 257
Passive vs. Active Components 258
Autonomous vs. Dependent Components 259
Controller Linking 261
Model Linking 261
Redisplaying 261
Composite Visual Component 262
Wrapper 264
Controller 264
Polling vs. Event-Driven Controllers 266
Flow of Control (Polling Controller) 267
Flow of Events (Event-Driven Controller) 270
Selection Tracking 271

Graphic Operations
Background 274
Coordinate System 274

VisualWorks User’s Guide, Rev. 2.1

228

273

Contents

Points 276
Rectangles 277

Display Surfaces 280
VisualWorks Windows 281
Pixmaps 281
Masks 282
Host Residency of Display Surfaces 283
Graphics Context 284

Graphic Objects 289
Texts 289
Lines, Polylines and Polygons 290
Splines and Bezier Curves 291
Arcs, Circles and Wedges 291
Graphical Images 293
Image Processing 296
Bit Processing 297
Cachedimage 297
Cursors 298
Icons 299
Animation 299

Integrating Graphics into an Application 300
Integrating a Static Graphic 301
Integrating a Dynamic Graphic 302

Chapter 20 Color 303
Types of Color 303
Pattern 303
Coverage 304
Color 304
Palettes 307
Coverage Palettes 307
Color Palettes 308
Device Color Map 310
Policies for Rendering Color 311
NearestPaint 312
OrderedDither 313
ErrorDiffusion 313

Chapter 21 Weak Arrays and Finalization 315
Weak Arrays 315
Finalization 316
WeakDictionary 319

VisualWorks User’s Guide, Rev. 2.1 Xi

Contents

HandleRegistry 319
Finalization Example 320

Chapter 22 Parsing and Compiling 323
Scanner 323
Parser 324
Compiler 325

Chapter 23 Memory Management 327

Memory Layout 327
Fixed-size OE Spaces 328
Smalltalk Object Memory 333

Facilities for Reclaiming Space 335
Generation Scavenger 336
Incremental Garbage Collector 336
Compacting Garbage Collector 338
Global Garbage Collector 338
Data Compactor 339

Memory Policy Classes 339
ObjectMemory 339
MemoryPolicy 340

Part IV Application Delivery 343

Chapter 24 Overview of Application Delivery 345
Different Ways to Deliver an Application 345
Single Image File 345
Parcels 346
Development and Deployment Life-Cycle 346
Method 1: Delivery Combined with Development 346
Method 2: Delivery After Development 347
More Information 347

Chapter 25 Parceling an Application 349
What Are Parcels? 349
Characteristics 350
Contents 350
Restrictions 350
Parcel Files 351
Creating Parcels 351

Xii VisualWorks User’s Guide, Rev. 2.1

Contents

Deciding What to Parcel 351
Specifying Parcels and their Contents 352
Loading Parcels 356
At Start Up 356
From within an Application 356
Behavior at Load Time 358
Load Order 358
Load Errors 358
Filing Parcel Contents In and Out 359
Tips for Working with Parcels 359
Keeping Source Code and Parcels in Sync 359
Testing Parcel Files and Source Files for Matches 360

Chapter 26 Creating a Deployment Image 361

Setting Up a Deployment Image 362
Handling Errors 362
The Transcript 362
Undeclared Variables 362

Creating a Deployment Image 363

Operations Performed by Image Maker 366
Removal of Development Facilities 366
Optional Removal of Other Facilities 366
Preservation of Certain Facilities 370
Optimization of Memory Usage 370
Other Changes 371

Saving the State of Image Maker 371

Starting Up a Deployed Image 371

Debugging a Deployed Image 372

Exiting a Deployed Image 373

Chapter 27 Creating Applications without Graphical User Interfaces
375
Key Concepts 375
Setting Up a Headless Image 376
Running an Application in Headless Mode 377
When an Image Starts 377
If an Application Attempts to Access a Display 378
Debugging a Suspended Process 378
Creating a Headful Copy of a Headless Image 379
Tips for Programming a Headless Application 379
Techniques for Starting a Headless Application 379

VisualWorks User’s Guide, Rev. 2.1 xiii

Contents

Techniques for Communicating with a Headless Application 380
Terminating a Headless Application 380
Preventing Access to the Display 380

Delivering a Headless Application 381

Part V Appendixes 383

Appendix A Protocol Reference 385
Common Class Protocols 385
Common Instance Protocols 386

Appendix B Syntax Descriptions 387
Lexical Primitives 387
Character Classes 388
Numbers 389
Other Lexical Constructs 390
Atomic Terms 391
Expressions and Statements 392
Methods 394

Appendix C Special Characters 395
Composed Characters 395
Diacritical Marks 399

Appendix D Implementation Limits 401
Size Limitations 401
Open-coded Blocks 402
Shared Context 403
Browser Visibility 404
Block Optimization 404
The Debugger 406
Performance 406
Non-overridable Methods 407
Special Treatment Only at Compile Time 407
Special Treatment at Compile Time and Translation Time 409

Appendix E Keyboard Shortcuts 411
Editing Text and Components 411
Displaying Tools and Dialogs 411
Selecting Components 411

Xiv VisualWorks User’s Guide, Rev. 2.1

Contents

Moving Components 412
Aligning Components 412
Grouping Components 412
Changing Layouts 412
Changing Tool Focus 412

Appendix F User-Defined Primitives 413
Theory of Operation 413
Basic Capabilities 414
Defining a New Primitive 414
Installation and Access 416
Primitive Numbers 417
Arguments 417
Data Types 417
Failure Codes 418
General Advice 419
C Conversion 421
String to String 421
Byte Array to Byte Object 421
Integer Array to Array 421
Float Array to Array 422
Integer to Integer 422
Float to Float 422
Double Float to Double 422
Boolean to Boolean 423
Character to Character 423
Return nil 423
Smalltalk Conversion 423
String to String 423
Byte Array to Byte Array 424
Integer Array to Array 424
Float Array to Array 424
Integer to Integer 425
Float to Float 425
Double Float to Double 425
Character to Character 425
Boolean to Boolean 425
Success Return 426
Any Value 426
Nil 426
True 426
False 426

VisualWorks User’s Guide, Rev. 2.1 XV

Contents

XVi

Failure Return 426
Coded Failure 427
Type Checking 427
Character 427
String 427
Integer 428
Float 428
Double 428
Array of Integers 429
Array of Floats 429
Byte Array 429
Byte-like 430
Boolean 430
Immediate 430
Class Check 431
Object Allocation 431
String 431
Byte Array 431
Array 431
Other Object Types 432
Indexed Access 432
Indexed Variable 432
Instance Variable 433
Indexed Byte 433
Indexed Float 434
Sizing 434
Initializing 434
Other Support Routines 435
Registering Long-lived Objects 436
Interrupts and Poll Handlers 437
Unsafe Primitives 439
Example 440
C Code 440
Smalltalk Code 442

Index

443

VisualWorks User’s Guide, Rev. 2.1

About This Book

Audience

The purpose of theisualWorks User’s Guidie to show you how to use Visu-
alWorks® to quickly create applications that employ graphical user inter-
faces. It also provides detail about the ParcPlace Smalltalk™ syntax,
programming tools such as the Debugger, and advanced facilities such as
exception handling.

Descriptions are also included that tell how to leverage your development
resources further by implementing embedded interfaces and applications. We
also show how to build database access into your applications. In the
appendix, you will find keyboard shortcuts, message categories reference,
syntax descriptions, and special characters.

This guide address two primary audiences:

n developers of user interfaces
n developers of the models that support those interfaces

Both kinds of developers should at least be familiar with Smalltalk syntax and
object-oriented programming concepts, as described iishial\Works

Tutorial and the first part of theisualWorks User’s Guidéf you intend to
develop complex application models or customize the standard components,
you will need a more thorough understanding of the Smalltalk class library
and the basic programming tools, which you can get fronvithealWorks

User’s Guide

Organization

This VisualWorks User’s Guidprovides comprehensive instructions for
using Smalltalk and VisualWorks. It is divided into five parts:

VisualWorks User’s Guide, Rev. 2.1 XVii

About This Book

n Smalltalk Language

n VisualWorks Tools

n Application Components
n Application Delivery

n Appendixes

The first part, Smalltalk Language, provides a detailed discussion of the
Smalltalk language. The language is largely implemented via Smalltalk
classes, as are user-interface components. It begins with an overview of
object-oriented programming, providing a bridge that links conventional
programming concepts to the sometimes unfamiliar terminology of Small-
talk. Subsequent chapters examine Smalltalk syntax, control structures,
fundamental data structures, processes and exception handling.

The second part, VisualWorks Tools, provides detailed descriptions of the
tools that are available in the VisualWorks environment. These tools help you
manage projects, edit and compile code, trace bugs, edit text files, and more.

The third part, Application Components, provides detailed instructions for
using the many reusable software modules that are available in VisualWorks.
While you can reuse any part of the system in your applications, this manual
selects the more commonly reused components for inspection, such as views
and dialogs.

The fourth part, Application Delivery, describes the process for extracting
applications from VisualWorks in a form that makes them ready for use by
your intended end users. It includes information about breaking applications
into separately-loadable units called parcels and creating a deployment
image.

Conventions

xviii

This section describes the notational conventions used to identify technical
terms, computer-language constructs, mouse buttons, and mouse and
keyboard operations.

VisualWorks User’s Guide, Rev. 2.1

Conventions

Typographic Conventions

This book uses the following fonts to designate special terms:

Example Description

template Indicates new terms where they are defined, emphasized
words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and other

filename .xwd

windowSpec

Edit menu

C++, UNIX, or DOS constructs to be entered outside
VisualWorks (for example, at a command line).

Indicates a variable element for which you must sub-
stitute a value.

Indicates Smalltalk constructs; it also indicates any other
information that you enter through the VisualWorks
graphical user interface.

Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also indicates
emphasis in Smalltalk code samples.

Special Symbols

This book uses the following symbols to designate certain items or relation-

ships:

Examples

Description

File 2New command

<Return> key
<Select> button
<Operate> menu

<Control>-<g>
<Escape> <c>

Integer>>asCharacter

Indicates the name of an item on a menu.

Indicates the name of a keyboard key or mouse button; it
also indicates the pop-up menu that is displayed by
pressing the mouse button of the same name.

Indicates two keys that must be pressed simultaneously.
Indicates two keys that must be pressed sequentially.

Indicates an instance method defined in a class.

VisualWorks User’s Guide, Rev. 2.1

Xix

About This Book

Examples Description

Float class>>pi Indicates a class method defined in a class.

Caution: Indicates information that, if ignored, could cause loss of
data.

Warning: Indicates information that, if ignored, could damage the
system.

Screen Conventions

This manual contains a number of sample screens that illustrate the results of
various tasks. The windows in these sample screens are shown in the default
Smalltalk look, rather than the look of any particular platform. Consequently,
the windows on your screen will differ slightly from those in the sample
screens.

Mouse Buttons

Many hardware configurations supported by VisualWorks have a three-
button mouse, but a one-button mouse is the standard for Macintosh users,
and a two-button mouse is common for OS/2 and Windows users. To avoid
the confusion that would result from referring to <Left>, <Middle>, and
<Right> mouse buttons, this book instead employs the logical names
<Select>, <Operate>, and <Window>.

The mouse buttons perform the following interactions:

<Select> button Select(or choose) a window location or a menu item,
position the text cursor, or highlight text.

<Operate> button Bring up a menuagerationsthat are appropriate for
the current view or selection. The menu that is displayed
is referred to as theOperate> menu

<Window> button Bring up the menu of actions that can be performed on
any VisualWorksvindow (except dialogs), such as
move andclose . The menu that is displayed is referred
to as the<Window> menu

XX VisualWorks User’s Guide, Rev. 2.1

Conventions

Three-Button Mouse
VisualWorks uses the three-button mouse as the default:

n The left button is the <Select> button.
n The middle button is the <Operate> button.
n The right button is the <Window> button.

Two-Button Mouse
On a two-button mouse:

n The left button is the <Select> button.
n The right button is the <Operate> button.

n To access the <Window> menu, you press the <Control> key and the
<Operate> button together.

One-Button Mouse

On a one-button mouse:

n The unmodified button is the <Select> button.

n To access the <Operate> menu, you press the <Option> key and the
<Select> button together.

n To access the <Window> menu, you press the <Command> key and the
<Select> button together.
Mouse Operations

The following table explains the terminology used to describe actions that
you perform with mouse buttons.

When you see: Do this:
click Press and release the <Select> mouse button.
double-click Press and release the <Select> mouse button twice with-

out moving the pointer.

VisualWorks User’s Guide, Rev. 2.1 XXi

About This Book

When you see: Do this:

<Shift>-click While holding down the <Shift> key, press and release

the <Select> mouse button.

<Control>-click While holding down the <Control> key, press and

release the <Select> mouse button.

<Meta>-click While holding down the <Meta> or <Alt> key, press and

release the <Select> mouse button.

Additional Sources of Information

Printed Documentation

xXii

In addition to this User’s Guide, the core VisualWorks documentation
includes the following documents:

n

Installation Guide:Provides instructions for the installation and testing
of VisualWorks on your combination of hardware and operating system.

Release Notedescribes the new features of the current release of Visu-
alWorks.

Tutorial: This manual provides an introduction to the concepts and skills
needed by the new VisualWorks tasks.

Cookbook:Provides step-by-step instructions for performing hundreds
of common VisualWorks tasks.

International User’s GuideDescribes the VisualWorks facilities that
support the creation of nonEnglish and cross-cultural applications.
Object ReferenceProvides detailed information about the VisualWorks
class library.

The documentation for the VisualWorks database tools consists of the
following documents:

n

VisualWorks’ Database Tools Tutorial and Cookbolakroduces the
process and tools for creating applications that access relational data-
bases. The “Cookbook” chapter describes how to programmatically
customize various aspects of a database application.

Database Connect User’s Guiderovides information about the external
database interface. Versions of it exist for SYBASE, ORACLE7, and
DB2 databases.

VisualWorks User’s Guide, Rev. 2.1

Obtaining Technical Support

Online Documentation

To display the online documentation browser, opeitde pull-down menu
from the VisualWorks main menu bar and se@pen Online Documen-
tation . Your choice of online books includes:

n Database CookboolOnline version of the “Cookbook” part of tMsu-
alWorks’ Database Tools Tutorial and Cookbatdscribed above.

n Database Quick Start GuideBescribes how to build database applica-
tions. It covers such topics as data models, single- and multiwindow
applications, and reusable data forms.

n International User’s GuideOnline version of thénternational User’s
Guidedescribed above.

n VisualWorks CookboolOnline version of th€ookbookdescribed
above.

n VisualWorks DLL and C Connect Referenbescribes C data classes,
object engine access functions, and user-primitive functions.

Obtaining Technical Support

If, after reading the documentation, you find that you need additional help,
you can contact ParcPlace-Digitalk Technical Support. ParcPlace-Digitalk
provides all customers with help on product installation. ParcPlace-Digitalk
provides additional technical support to customers who have purchased the
ObjectSupport package. VisualWorks distributors often provide similar
services.

Before Contacting Technical Support

When you need to contact a technical support representative, please be
prepared to provide the following information:

n Theversion idwhich indicates the version of the product you are using.
ChooseHelp ?About VisualWorks in the VisualWorks main window.
The version number can be found in the resulting dialog Welsion
Id:.

n Any modifications patch fileg distributed by ParcPlace-Digitalk that
you have imported into the standard image. Chételp ?About Visu-
alWorks in the VisualWorks main window. All installed patches can be
found in the resulting dialog undBatches: .

VisualWorks User’s Guide, Rev. 2.1 XXiii

About This Book

n The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, selespy stack in the error
notifier window (or in the stack view of the spawned Debugger). Then
paste the text into a file that you can send to technical support.

How to Contact Technical Support

XXV

ParcPlace-Digitalk Technical Support provides assistance by:

n Electronic mail

n Electronic bulletin boards
n World Wide Web

n Telephone and fax

Electronic Malil

To get technical assistance on the VisualWorks line of products, send elec-
tronic mail tosupport-vw@parcplace.com

Electronic Bulletin Boards

Information is available at any time through the electronic bulletin board
CompuServe. If you have a CompuServe account, enter the ParcPlace-
Digitalk forum by typing

go ppdforum at the prompt.

World Wide Web

In addition to product and company information, technical support informa-
tion is available via the World Wide Web:

1. In your Web browser, open this location (URL):
http://www.parcplace.com
2. Click the link labeled “Tech Support.”

Telephone and Fax
Within North America, you can:

n Call ParcPlace-Digitalk Technical Support at 408-773-7474 or 800-727-
2555,

n Send questions and information via fax at 408-481-9096.

VisualWorks User’s Guide, Rev. 2.1

Obtaining Technical Support

Operating hours are Monday through Thursday from 6:00 a.m. to 5:00
p.m., and Friday from 6:00 a.m. to 2:00 p.m., Pacific time.

Outside North America, you must contact the local authorized reseller of
ParcPlace-Digitalk products to find out the telephone numbers and hours for
technical support.

VisualWorks User’s Guide, Rev. 2.1 XXV

About This Book

XXVi VisualWorks User’s Guide, Rev. 2.1

Chapter 1

Introduction

About VisualWorks

VisualWorks is a fully object-oriented environment for constructing applica-
tions, using Smalltalk as the scripting language. It enables application devel-
opers to build graphical user interfaces rapidly for both new and existing
applications, augmenting Parcplace Smalltalk development facilities. In addi-
tion, VisualWorks provides convenient linkages to many popular databases
such as ORACLE and SYBASE.

Building Applications

You begin building an application by using a VisualWorks painter to place
visual components on a canvas. The characteristics of components on the
canvas are described by a variety of property-setting, menu-building, aligning
and positioning tools. The VisualWorks painter creates the user interface.

A Definer and object script browsers work together to create the application
logic. This is the “glue” that connects the components on the canvas with one
another, and with information obtained from an underlying domain model.
The domain model can reside in an external database.

A Builder connects the specifications for the user interface to the information
in the domain model. The Builder is embodied in an application model, which
serves as the coordinator between the user interface and the domain model.
The Builder creates the executable system, applying the look of any of several
different window managers.

Read-and-Apply Tools

The tools for painting and defining utilize a powerful read-apply metaphor
when operating on a user interface canvas. Each tool is linked to the structure
of the canvas so that it can “read” the characteristics of the components,

VisualWorks User’s Guide, Rev. 2.1 1

Chapter 1 Introduction

which enables you to understand current attributes. You can then refine the
properties and “apply” the refinement.

Visual Reuse

A key feature of VisualWorks is that it enables you to organize your applica-
tions so as to share with and inherit from one another. This sharing occurs at
several levels—we use the phragaial reusé¢o encompass the varieties of
sharing, including:

n Direct interface reuse—The same user interface can be connected to
different domain models.

n Interface nesting—A “larger” interface can incorporate selected parts of
a “smaller” interface, or all of it.

n Interface inheritance—You can arrange a hierarchy of application
models that refine the user interfaces they inherit from their ancestors.

n Direct application reuse—One application can invoke another, estab-
lishing interdependencies as needed.

This visual reuse augments the traditional benefits of reuse provided by an
object-oriented language such as Smalltalk. Every object in the
environment—including the tools and the application frameworks—is built
up from a hierarchy of classes that has surprisingly simple roots. Because
VisualWorks is an open environment, you can reuse any class of object in
your application. You can think of VisualWorks as a generic family of objects
whose evolution you shape to fit your needs.

Starting VisualWorks

VisualWorks runs on a variety of computer systems, under several different
window managers. Starting VisualWorks requires a slightly different proce-
dure in each windowing system, as detailed in wdsuwalWorks Installation
Guide

In general, if your system provides a special mechanism for launching appli-
cations, such as double-clicking on an application’s icon, use that method for
VisualWorks. If you normally launch an application by entering a command
string, enter a string of the following form:

oe-path image-path

2 VisualWorks User’s Guide, Rev. 2.1

Saving Your Image

Foroe-path , substitute the pathname of the object engineirfrage-
path , substitute the pathname of the standard system imagalim)
or of a custom image.

Saving Your Image

From using other applications, you may be accustomed to safileglzat

you have created. As a programming environment that permits you to modify
virtually any aspect of it, however, VisualWorks lets you save the entire
working environment. You accomplish this in a simple step knovasaasg

an imaggalso callednaking a snapshhtTo do so, chood€ile ?Save As...

in the VisualWorks main window. The current image name is provided as a
default.

If you would like to save the image with another name, enter a new name to
create a new image and leave the existing one as is. (Each image file requires
multiple megabytes of disk space, depending on how much code you have
added to the system—so make sure your disk can accommodate a new
image.)

The system appends the extension to the image file, except on a Macin-
tosh platform, where no extension is attached. Your image, or snapshot, will
contain not only code modifications you have made, but also the current state
of every window you have opened.

VisualWorks User’s Guide, Rev. 2.1 3

Chapter 1

Introduction

Exiting VisualWorks

To exit from VisualWorks, choodéile ?Exit VisualWorks... in the Visual-
Works main window. A dialog will be displayed, offering the following
options:

Exit

Save then Exit

Cancel
For best results, always exit from VisualWorks by using the VisualWorks
main window’sFile ?Exit VisualWorks... command. If you cannot exit via

theFile ?Exit VisualWorks... command, refer to “Emergency Exit (all plat-
forms)” on page 219.

VisualWorks User’s Guide, Rev. 2.1

Smalltalk Language

VisualWorks User’s Guide, Rev. 2.1

Chapter 2

Object Orientation

Much of the literature on object-oriented programming (OOP) tends to
emphasize how it differs from procedural programming. And it is different,

in many important respects. Working with objects requires some new ways of
thinking, just as touch typing requires that you unlearn hunt-and-peck habits.

Unfortunately, too often the strangeness of it all is overemphasized. This
chapter attempts to present object-oriented terms and concepts in a familiar
context, using your programming expertise as a bridge to the new world of
objects.

Procedures vs. Objects

In a conventional programming language, a procedure typically performs
multiple operations and handles several items of data. For example, when a
user inputs a customer record in an accounts receivable system and then
executes a ‘save’ command, a procedure might be invoked to validate the
dozen or more fields of information in a customer record.

What happens when the five-digit field for a postal code in an application has
to be changed to accommodate the six-character Canadian format? Three
sources of inefficiency become apparent immediately.

First, what amounts to a single conceptual change (modify postal code) has
to be programmed in two locations (database structure and procedure code,
as shown in part A of the illustration). Wouldn't it be nice if the data were
somehow bound more tightly to the code, so that only one system element had
to be changed?

Second, there are likely to be multiple procedures that handle postal codes—
besides customer data maintenance, there may be supplier maintenance,
distributor maintenance, and so on (part B). In each such procedure, the postal
code validation routine has to be modified. In an ideal system, such a change
would affect all pertinent procedures simultaneously.

VisualWorks User’s Guide, Rev. 2.1 7

Chapter 2 Object Orientation

Third, although only the portion of a procedure’s code pertaining to postal
codes is affected by the change, the entire procedure has to be scanned by the
programmer and recompiled (part C).

Expand postal cod Expand postal codé

validation routines
comorer | [o=[1om0

—p
—| Supplier

| nddress |
L

Distributor L

- Database

—P» Procedure

Figure 2-1 Modifying zip code in procedural programs

Objects and Methods

There has to be a way to isolate the changes more intelligently. In an ideal
programming language, each field in the database would be a separate entity
for the purpose of changing its attributes. Each atomic routine in a program
would be a separate entity for the purpose of maintaining the code. So now
we have a set of atomic data elements and a set of atomic procedures. It turns
out that the procedures cluster very naturally around the data. The procedure
for validating a postal code is something that only the postal code object
needs to know. Likewise, only the address object needs to know what its valid
inputs are. So if we can make each data object smart enough to perform the
useful operations on itself, we no longer need separate procedures at all.

8 VisualWorks User’s Guide, Rev. 2.1

Composite Objects

©

Recompile

Expand postal code

Postal code
object -

Figure 2-2 Modifying postal code in Smalltalk

The simple strategy of making data smart is at the core of Smalltalk. An appli-
cation is no longer a collection of procedures that act on a database, but a
collection of data objects that interact with one another via built-in routines
calledmethods The language isbjectoriented rather thaprocedure

oriented.

In fact, because Smalltalk variables are not bound to specific data types, no
change is required for client programs to be able to store a string rather than
an integer in a postal code.

To expand the definition of a postal code in Smalltalk, all you need to do is
broaden the postal code object’s validation routine. When another object,
such as the customer or supplier object, needs to know whether a postal code
is valid, it passes the proposed value to a postal code object, which uses its
built-in mechanisms to do the testing.

Composite Objects

Some objects, callecbmpositeobjects, contain several other objects. For
example, a customer object would contain identifying objects such as
customer number, name, address, city, state, postal code and telephone
number. Why have a customer object at all? Because some procedures have
to be performed for a customer rather than a postal code or a telephone
number.

VisualWorks User’s Guide, Rev. 2.1 9

Chapter 2 Object Orientation

Financial Management System object

Accounts Receivable Application object

Account object

Customer object

Postal Code object

Figure 2-3 Hierarchy of Objects

The ‘create’ command, for example, is best centralized up at the customer
level of abstraction, because it is an operation that affects all of the data
objects that make up a customer. What does that ‘create’ operation consist of?
In our example, the customer object simply fires off the same message to each
member of its collection: ‘Here’s your input—yvalidate it and store it. Let me
know if there’s a problem.’

Theoretically, the customer object would provide the customer-identification
part of an ‘account’ object that handles requests related to a customer’s
account status. A collection of account objects would make up the accounts-
receivable system, itself an object that knows how to answer questions about
its collection of accounts. And the accounts-receivable object joins an
accounts-payable application and a general-ledger application as parts of a
financial-management package. Hence, programming an application in
Smalltalk consists of building a hierarchy of objects. Another way of looking
at it is that you're creating a single object (the application) that contains
component objects, each of which may contain smaller components, and so
on. Figure 2-3 illustrates a portion of such a hierarchy.

Variables and Methods

An object typically is made up of one or more private variables (the data)
combined with a set of methods for manipulating that data. Each method is a
specialized subroutine.

10 VisualWorks User’s Guide, Rev. 2.1

Method Grouping

An object containing
variables and methods

Vari- Methods
ables getZip

zip setZipTo:
isValid

Zip Code Object

Figure 2-4 Variables and methods of an object

The two parts of an object are also knowstateandbehavior The values
held by an object’s variables define its state. Its methods—what it knows how
to do—define behavior.

For example, a postal code object might have a variable iti¢d hold the
postal code string. It needs at least two methods to be a civilized object, as
listed in Table 2-1.

Table 2-1 Accessing Methods for the Postal Code Object

Method name Description
getZip Return a string containing the postal code
setZipTo: Replace the contents of the zip code variable with the

string that follows the colon

As you can see, each variable typically generates two accessing methods, one
for inquiry and one for update. Even a simple postal code object will often
have other methods. For example, it might have a method csalid,

which checks to make sure the string conforms to a recognized postal code
format.

Method Grouping

The method name is used by other objects to select that operation. Thus, a
method name is known as a mettsedector A method selector is sometimes
also called anessagethough technically a message consists of the selector
plus any arguments. In this manual set, we frequently use the method name

VisualWorks User’s Guide, Rev. 2.1 11

Chapter 2 Object Orientation

as an adjective, as in tgetZip message,” which is shorthand for “a message
involving thegetZip method selector.” The fundamental unit of any Small-
talk expression is an object reference followed by a messagepastiat
Code getZip. This expression asks thestalCode object to return the value
stored in its zip code variable.

Method names may contain letters, numbers, and underscores, but may not
begin with a number. When two or more words are combined to form a name,
as in this case, second and later initials are capitalized to improve
readability—this convention applies to all names in the system: objects, vari-
ables and methods. For global variables, the first letter is also capitalized. All
method names begin with a lower-case letter.

It is not uncommon for an object to have dozens of methods. From class to
class, methods tend to cluster in recurring groups—for example, objects that
have data also have a set of methods for accessing the data. Collectively, such
methods are known ascessingnethods. You may encounter the phrase
“accessing protocol,” which refers to the set of methods for accessing data
within an object.

Vari- Methods
ables getZip) |
Zip setZipTo: } accessing pl‘OtOCO
isValid -

testing protocol

postal code object
Figure 2-5 Two message categories in a postal code object

A message category, also callegratocol is a convenient grouping of

related methods, much as a file folder holds related documents. The Smalltalk
programming community follows informal standards in choosing protocol
names—Appendix AMessage categories refereniesis the more common
protocol names and describes their usage. The System Browser uses protocol
names to help you search the code library.

Classes and Instances

The question arises: How can there possibly be only one postal code object
that serves both a customer and a supplier when the real-world customer and

12 VisualWorks User’s Guide, Rev. 2.1

Classes and Instances

supplier might reside in different zip zones? For that matter, each new
customer might have a different postal code.

Obviously, there is a separate postal code object in each instance because the
values stored in the variables are different. On the other hand, it would be silly
to duplicate the postal code object’s methods for each instance, so there must
be one postal code object that is unique in that it knows how a postal code
ought to behave. The data-only object is known asstance the method-

holding object is called dass

Class names may contain letters, numbers, and underscores, but may not
begin with a number. The first letter of a class name is capitalized to distin-
guish it from an instance name. BipCode is a classzipCode, aZipCode
andcustomerZip are all instances.

A class can be thought of as the object behavior affixed to a data template. An
instance is created by cloning the template so a new set of variables can be
stored. TheZipCode class has a template specifying that each instance of
ZipCode will have one variable namezp. Any given instance of that class
consists of a value for that variable.

Class Variables

A class can also have its own variables, which serve as system constants. For
example, the built-in clad3ate has a class variable callbtbnthNames,

which stores an array containing names for the 12 month<ZipGode

class might have a class variable calk@imats, to store a collection of

known formats. In either of these examples, it would be wasteful to store a
new copy of the class variable in every instance that is cloned from it because
the value of the variable remains constant for all instances.

Like class names, class variable names begin with a capital letter. The class
variables are not part of the template used to create an instance—only
instance variables belong to the template.

Class Methods vs. Instance Methods

If an instance doesn’t have its own copy of the methods on board, how can it
respond to messages? In a manner that is transparent to the programmer, the
system looks for the appropriate method in the class from which the instance
was spawned.

The expressiomipCode getZip is equivalent to “ask théipCode class to
execute its instance method caltgetZip using the variables in the instance
calledzipCode.” Thus, though each instance does not use up unnecessary

VisualWorks User’s Guide, Rev. 2.1 13

Chapter 2 Object Orientation

memory space by creating a copy of the instance methods, the effect is the
same.

A message can also be sent to a class, which is also an object. Each class has
two different sets of methods, one for itself and one for its instances. When a
class receives a message directly, it looks for the corresponding method
among its class methods.

Thus, the expressiaipCode getZip executes an instance method that
returns the value of the instance variable. On the other hand, the expression
ZipCode formats causes a class method to be performed and the value of a
class variable (i.e., a constant) to be returned.

ZipCode (class)
/CIass h Class
variables methods
Formats formats
L) aZipCode (instance)
— Instance
Template Instance methods | | variables
for getZip zip
instance _Sel%g_“’:
- is ip L4
Vanables isCanadianZip
zip
- J
A

f

Figure 2-6 The parts of a class and an instance, and their interconnections

To summarize, the Smalltalk language consists of thousands of subroutines
called methods that are organized as a library of class objects. The typical
class object consists of class variables, class methods, instance methods, and
a template for instance variables.

Class Grouping

VisualWorks contains a library of class objects, more than 1000 of them. As
you might expect, they have been herded into categories to help you find the
one you need for any given purpose. For example, numeric classes such as

14 VisualWorks User’s Guide, Rev. 2.1

Classes and Instances

Integer andFraction belong to a category called Magnitude-Numbers.
Classeharacter andString are members of the category called Collec-
tions-Text. Category names typically include a subcategory name—there are
two categories of magnitude-like classes: Magnitude-General and Magni-
tude-Numbers. Collection-like objects are grouped into eight categories, all
of which begin with the word “Collections.”

Category names have no impact on your program’s functionalityintémger

class could be moved to the Collections-Text category or to an entirely new
category without affecting any program. Try it, if you've mastered the System
Browser, which uses category names to help you navigate the class library. In
the sense that they are group labels, categories are to classes as protocols are
to methods.

Programming in Smalltalk amounts to building new class objects and reusing
the existing ones. You can examine, use and even modify any class in the
system though, in practice, there are many that you will never need to think
about because they provide low-level support for other classes. (Changing
system classes except by extension is not recommended—it's easy to intro-
duce serious system bugs by doing so.)

Class Inheritance

The class library is organized in a hierarchy of specialization, very much like
the taxonomy applied to the animal kingdom. At the root of the tree is class
Object. One kind ofObject is a class calleMagnitude. If you dig down
through a few more levels of specialization within Magnitude subhier-
archy, you come to a class callgthallinteger. An instance of clasSmall-
Integer is an integer such as 3.

If you execute the expressi@mraisedTo: 4, the correct result (81) will be
returned. AraisedTo: message with an argumentis being sent t8,
which is an instance @&mallinteger. From the prior discussion about

VisualWorks User’s Guide, Rev. 2.1 15

Chapter 2 Object Orientation

instance methods, one would assume that the Skasdlinteger has an
instance method calladisedTo:, but that is not the case.

Object
Magnitude
ArithmeticValue
Number

Integer
Smallinteger

Figure 2-7 Inheritance hierarchy for the Smallinteger class

Looking up a Method

Smalltalk provides a method-lookup mechanism that starts its search for a
given method in the obvious place—the class of the object to which the
message was sent. If no such method exists there, the method finder climbs
up through the hierarchy, stopping at each level to look for the method. In our
example, the method finder has to go up two levels, pasttéger class to

its parentNumber. There it finds theaisedTo: method.

Smallinteger is a subclass dlumber, because it provides specialized vari-
ables and/or methoddumber is a superclass &mallinteger, as is the class
that sits between them in the hierardnyeger. ClassObject is the top-level
superclass of all other objects.

It's important to remember that the method finder has two ladders at its
disposal, one for finding class methods and the other for locating instance
methods. As it climbs upward through the superclasses, it uses only one
ladder or the other, but not both. Its choice of ladder is determined by the
message recipient. If the message is sent to an instance (3, in our example),
only instance methods are searched. A message sent to a classSmueli-as
Integer would push the method finder onto the class-method ladder. The

16 VisualWorks User’s Guide, Rev. 2.1

Looking up a Method

expressiorsmallinteger raisedTo: 4 would cause a fruitless search
resulting in an error.

L Object

— Magnitude ||

— ArithmeticValue —

Number —
raisedTo |
| Integer]
Smallinteger B

instance class

Figure 2-8 The upward search path of the object hierarchy

Overriding an Inherited Method

An instance of any subclassMfimber can respond toraisedTo: message,

but that doesn’'t mean they all Udember’s version of it. The subclagdoat,

for floating point numbers such as 3847.029, has its own instance method
calledraisedTo: because floating-point numbers require a specialized algo-
rithm for exponentiation. When the method finder goes to work on the expres-
sion3847.029 raisedTo: 4, it stops at clasEloat and never gets as high as
Number.

Inheritance also applies to variables. Thus, each class inherits all of the
methods and variables of its superclasses.

For example, thépplicationModel class provides variables and methods

that support a mechanism for notifying dependent objects of a change in state.
This mechanism is inherited by all subclasseapglicationModel. The
Customer class that we mentioned earlier might well be created as a subclass
of ApplicationModel. Then, if we create "iew that displays the values in
theCustomer object, theCustomer inherits methods for keeping thaew

VisualWorks User’s Guide, Rev. 2.1 17

Chapter 2 Object Orientation

in sync with the data changes. We don't have to write any code for such
dependency coordination.

Abstract Classes

The clas®bject is the ultimate superclass of all other classes, whether built
into the system or newly created by an application develope©Bjett has

an empty template for instance variables. This may seem odd considering that
instance variables hold the actual data. What would an instance of class
Object hold as its nugget of data? The answer is@géct is not intended

to have instances. Its behavior is inherited and used by its subclasses and their
instances.

When a class is not intended to be used to create concrete instances, itis called
anabstractclass. An abstract class is frequently useful as a repository for

variables and methods that are useful to two or more classes, none of which
is a logical subclass of the other. Another way of looking at it is that the simi-
larities shared by a group of objects are squeezed up from their separate loca-
tions and into a common superclass.

The postal code can serve as an example once again. Until now, we have been
trying to make a singl&ipCode class handle two very different postal code
formats. Presumably, as the customer base expands, more methods would
have to be added to handle other postal systems. Eventually, a plain old
United States numeric zip code would have to be stored in a class that had
more irrelevant methods than relevant ones—and that's the sort of awkward-
ness this object-oriented technology is supposed to avoid.

Let's makeZipCode an abstract superclass, with two new subclask®aip
andCanadianZip. They can both inherit thap variable and the accessing
methods getZip andsetZipTo:) as well as any class variables and class
methods. ThésValid method must be re-implemented in each of the
subclasses, to handle their specific formats. Zip€ode class’s version of
isValid can then hand off the validation request to the appropriate subclass.
To Customer, Supplier and any other objects that interact wfipCode,

the mechanism for finding out whether a zip code is valid has not changed.

Nesting Abstract Classes

18

A subclass of an abstract class can be abstract itself. One mightUi®zke
abstract, for example, and create one subclass representing the five-digit
format ©OldUSZip) and another for the hyphenated-nine-digit fornsao\y-
ToBeAdoptedUSZip).

VisualWorks User’s Guide, Rev. 2.1

Choosing a Superclass

Choosing a Superclass

When you create a new class, choosing its superclass is an important design
decision. The choice is made easier when you employ an architecture that has
been proven in many diverse applications.

‘ Object ‘

‘ Model ‘ ‘ View ‘ ‘ Controller

\/

Data & processing Display Menu

EEEEEEE Copy
EEEEEEE cut

EEEEEEE Past
EEEEEEE S%e
EEEEEEE ave
EEEEEEE

Figure 2-9 The containment hierarchy of the class library

The key to this architecture is to divide your application into two parts. First
develop the data structure and the attendant processing, then invent the user
interface. The user interface is further subdivided into input and output
modules. The data-and-processing module is referred to awtie The

output module usually consists of the screen displaying mechanisms—it's
called theview. The input module is called tleentroller because it enables

the user to control the sequence of events by entering data and commands.

Not surprisingly, Smalltalk provides an abstract class as the intended starting
point for each of these three modulsidel, View andController. Thus, the
architecture is known as model-view-controller, or MVC, programming. For
detailed information about MVC design, see “Application Framework” on
page 223.

We use the term “application” broadly here—an object as lowly as a postal
code can be regarded as a self-contained model that can have an associated

VisualWorks User’s Guide, Rev. 2.1 19

Chapter 2 Object Orientation

20

view (a box on the screen in which the postal code is displayed) and controller
(for accepting keyboard input to the model in the form of data entry). This
implies that an MVC application can be a component of a larger MVC appli-
cation, and so on. That is indeed the case, furthering the cause of reusability
by segmenting any given program into easily separated components. In this
sense, a model-view-controller triad is the fundamental unit of design just as
an object is the fundamental unit of implementation.

When you choose a superclass for a new class, you are selecting an inherit-
ance hierarchy—positioning the method finder’s ladder in the class library,
so to speakModel, View andController head three major subhierarchies
within the library. Your choice of superclass typically resolves to a class
within one of those subhierarchies, and often to the head classes themselves.

Many of the user-interface components that have been layered on top of
Smalltalk to form VisualWorks are subclassed frivlodel, View or

Controller. The remaining classes are typically subclassed @bject,
because as linguistic elements they stand apart from the MVC machinery.

VisualWorks User’s Guide, Rev. 2.1

Choosing a Superclass

VisualWorks User’s Guide, Rev. 2.1 21

Chapter 2 Object Orientation

22 VisualWorks User’s Guide, Rev. 2.1

Chapter 3

Syntax

ParcPlace Smalltalk employs syntactic rules that are unique in some respects,
as well as unusual naming conventions. We begin with a discussion of naming
style, then proceed to explore the syntax of literal constants, variables,
message expressions and block expressions.

Naming Conventions

Names of classes, variables, methods and other expression elements tend to
be lengthy in Smalltalk by comparison with most languages. For descriptive
purposes, a hame is frequently made up of two or more words. When this is
the case, convention dictates that the first letter of eadieddedvord is
capitalized. This convention is not enforced by the language or by any of the
development tools provided with ParcPlace Smalltalk, but it does improve
readability.

In conformance with the draft ANSI standard, VisualWorks does not allow
the use of periods in class names or other identifiers.

Capitalization Rules and Conventions

Table 3-1 provides rules and conventions that apply to the first letter of a
name.

Table 3-1 Capitalization Rules and Conventions

Type of name Initial capital Example

Class category Yes (suggested) Magnitude-General
Class Yes (mandatory) Date

Class variable Yes (mandatory) MonthNames
Global variable Yes (mandatory) MaximumUsers

VisualWorks User’s Guide, Rev. 2.1 23

Chapter 3 Syntax

Table 3-1 Capitalization Rules and Conventions

Type of name Initial capital Example
Pool variable No (suggested) cr

Instance variable No (suggested) year
Temporary variable No (suggested) aDate
Method protocol No (suggested) accessing
Method No (suggested) monthName

Literal Constants

Numbers

24

Smalltalk provides six types of literal constants:

n number
n character

n string
n symbol
n byte array

n array of literals (including other arrays)

In addition, three special literals are recognized by the compilgirue and
false. These are discussed following the six types listed above.

Numbers are represented in the usual way, using a preceding minus sign and
embedded decimal point as required.

Integers

Integers are expressed as numeric literals sut@lor as the result of arith-
metic operations involving one or more integers suchbas 46.

Floating Point Numbers

Floating point numbers must have at least one digit to the left of the decimal
point, so the compiler can distinguish a decimal point from a period used as
an expression delimiter. Thu®,005 is legal, but005 is not. In scientific
notation, thee is replaced by d in aDouble and aqg for quad-precision.

VisualWorks User’s Guide, Rev. 2.1

Literal Constants

Fixed-Point Numbers

A fixed-point number is useful for business applications in which a fixed
number of decimal places is required. Fixed-point numbers are expressed by
placing the lettes after a literal integer or a floating-point number. The
number of decimal places preceding shimplicitly specifiesscaleof the

number (the number of decimal places to be preserved). Note that an explicit
scale takes precedence over an implicit one, s®th86s4 is the same as
99.9500s, while 99.9500s2 is an error.

Nondecimal Numbers

Number literals can also be expressed in a nondecimal base by prefixing the
number with the base and the lettéfor radix). For example:

Octal Decimal
8r377 255
8r34.1 28.125
8r-37 -31

When the base is greater than ten, the capital letters starting with “A” are used
for digits greater than nine. For example, the hexadecimal equivalent of the
decimal numbePR55 is 16rFF.

Numbers in Scientific Notation

Numbers can also be expressed in scientific notation by including a suffix
composed oé (for exponentord (for double-precisiohplus the exponentin
decimal. Note that you can also use the letiastead ofl. The lettelq stands

for quad-precision, and is available for portability to other Smalltalk systems;
however, in VisualWorkgy has the same effect ds

The base is raised to the power specified by the exponent and then multiplied
by the number. For example:

Scientific Notation Decimal

1.586d5 158600.0

VisualWorks User’s Guide, Rev. 2.1 25

Chapter 3 Syntax

Characters

Strings

Symbols

Byte Arrays

26

Scientific Notation Decimal
1586e-3 0.001586
8r3e2 192
2rlle6 192

A character literal is always prefixed by a dollar sign. For example:

$a
$M
$-

$$
$1

A string literal is enclosed in single quotes (double quotes are used to delimit
a comment). Any character can be included in a literal string. If a single quote
is to be included, it must be preceded by a single quote, as in:

'l won"t fail'

A symbol is a label that conveys the name of a unique object such as a class
name. There is only one instance of each symbol in the system. A symbol
literal is preceded by a number sign, and optionally enclosed in single quotes.
For example#Float and#'5%' are legal symbols. If a symbol is enclosed in

an array, it must still be preceded by a number sign.

A literal byte array is enclosed in square brackets and preceded by a number
sign. Elements of the array must be integers between 0 and 255. They are

VisualWorks User’s Guide, Rev. 2.1

Literal Constants

Arrays

Booleans

separated by one or more spaces. The result, as in the following example, is
an instance of claBByteArray:

#[255 00 7]

An array literal is enclosed in parentheses and preceded by a number sign.
Elements of the array are separated by one or more spaces (extra spaces are
ignored). An array literal embedded in another array must still be preceded by
a number sign. The following example contains a number, a character, a
string, a symbol and another array (of three characters):

#(1586.01 $a 'sales tax' #January #($x Sy $z))

Note: The mutability of arrays and strings is a source of possible error in
using literals. When you change an element in a nonatomic literal constant (a
String, an Array, or a ByteArray), the change is reflected globally. For that
reason, experienced Smalltalk programmers rarely pass a mutable literal
constant from one method to another, but pass a copy instead.

The boolean constatriue is the sole instance of claSsue, which is a
subclass oBoolean.

The constanfalse is the sole instance of claBalse, also a subclass of
Boolean. Unlike most instances, the valuegrmie andfalse are hard-wired
in the compiler—which qualifies them as constants.

Their behavior, however, is defined in the instance methods of the classes
True andFalse. They implement logical operations suchmas.

Thenil object is the sole instance of classdefinedObject. As the class
name impliesnil is the null value given to variable slots that have not yet been
assigned a more interesting value. Like the booledhis, hard-wired in the
compiler. Its behavior is defined ndefinedObject—for example, it over-
rides theisNil method implemented bybject (answeringrue instead of
false).

VisualWorks User’s Guide, Rev. 2.1 27

Chapter 3 Syntax

Variables

28

Six kinds of variable are available in Smalltalk. Listed in order of increasing
scope, they are as follows:

n temporary

n instance

n class instance

n class
n pool
n global

Temporary and instance variables prigatevariables because their scope is
local to a method (for temporaries) or to an instance (for instance variables).
Class, class instance, pool and global variables have wider clienteles, as
described below. In addition, there are three special variables, which are
discussed after the section on global variables.

Variable names may contain letters, numbers, and underscores, and may not
begin with a number. By convention, the first letter is lowercase for local vari-
ables and uppercase for nonlocal variables.

The default value for any variable is thieobject. To assign a new value to a
variable, use a colon followed by an equal signfronounced “gets”), as in
the expression:

prompt := 'Enter your name'

The expression on the right-hand side of the assignment can be any legal
Smalltalk expression. The following examples are all valid assignment
expressions. They have the effect of creating an array of ice cream flavors and
selecting one of those flavors at random:

flavors := #('chocolate’ 'vanilla' 'mint chip").
index := (Random new next)* 3.
flavorChoice := flavors at: index truncated + 1

VisualWorks User’s Guide, Rev. 2.1

Variables

Assignments can be chained when two or more variables are to store the same
value, as in:

majorLoopCounter := minorLoopCounter := 1

Chained assignments should only be used with literal or read-only values—
otherwise, updating one variable has the side effect of changing the value of
the other variable similarly.

Temporary Variables

A temporary variable is most often encountered in a method, where it
provides temporary storage for an argument or a calculated value. Its lifetime
begins when it is declared by the method, or a block expression within the
method, and ends when the block or method finishes processing and returns
control to the calling object.

For example, the cla§sme provides an instance method called
hours:minutes:seconds:. This method declares three temporary variables
to hold its arguments, and names theoarinteger, mininteger andsecln-
teger. The first line of the method consists of the method name with these
argument names inserted, as follows:

hours: hourlnteger minutes: mininteger seconds: seclnteger

When a client object sends this message to an instarfféeef appropriate
integers are provided. Here is what the message expression might look like:

aTime hours: 11 minutes: 42 seconds: 15

The result of this expression is that, for as long as the method continues
processinghourlinteger is equal to 11mininteger is 42, andseclnteger is

15. Argument variables, unlike other temporaries, do not accept new values
by assignment. As a documentation convention, a temporary variable is
usually named so as to indicate the object type itis intended to hold. However,
any object can be stored in any variable.

A temporary variable can be used for dynamic storage as well as argument
storage. For example, tldctionary class provides an instance method
calledoccurrencesOf:, for counting the number of entries in a dictionary

that equal the argument. The method declares a temporary variable in which

VisualWorks User’s Guide, Rev. 2.1 29

Chapter 3 Syntax

to store the total. A temporary variable is declared by enclosing its name
between vertical bars. The declaration must follow the message definition,
and usually follows a comment explaining the method. The first three lines of
theoccurrencesOf: method look like this:

occurrencesOf: anObject

“Answer how many of the receiver’s elements are equal to
anObject.”

| count |

One or more white-space characters (space, tab, etc.) are used to separate
variable names when multiple temporaries are declared between the vertical
bars.

Instance Variables

30

An instance variable is used to store data in an instance. It is declared as part
of the class definition. The following definition of tiset class shows the
form of an instance variable declaration (on the second line):

Collection variableSubclass: #Set
instanceVariableNames: 'tally '
classVariableNames: "
poolDictionaries: "

category: 'Collections-Unordered'

When an instance of claS&t is created, thtally variable is initialized tmil.
Each time an element is added to or removed from the setjyitss updated
with a new count of the set’s elements.

Thus, an instance variable provides a place to store a value that can be used
by multiple methods (whereas a temporary variable is local to a specific
method). Its lifetime is that of the instance itself.

Instance variables are inherited, so an instance has its own copy of the
instance variables declared by all of its superclasses. For example, the class
SystemDictionary is a subclass @et, so it does not need to declare its own
tally variable because it can use thly that is declared in its superclass.

VisualWorks User’s Guide, Rev. 2.1

Variables

Class Instance Variables

A class instance variable is used to store data that varies with each subclass
in a hierarchy. It can only be accessed by a class method.

For example, suppose you have an abstractuageDictionary class that

has methods for looking up words to verify spelling, etc. You give
LanguageDictionary a class instance variable nanveatdCollection. Now

you create a series of subclasses corresponding to the English language, the
Polish language, and so on. TheglishLanguage class can initialize
wordCollection to hold English words. The other subclasses can initialize it
differently. Then when an instance of any subclass askedi@Collection,

it gets the appropriate language-specific version.

LanguageDictionary class

wordCollection ()

EnglishDictionary class

wordCollection (‘aardvark’ ../)

PolishDictionary class

wordCollection (‘abak’ ...)

Figure 3-1 Class instance variable

The advantages of this approach are that you still only have to initialize the
wordCollection once for each subclass (unlike instance variables) and all
subclasses can reuse methods that employ a common variable name (unlike
class variables).

Class Variables

A class variable is used to store data that is useful to all instances of the host
class and its subclasses. Because itis a shared variable (accessible by multiple
objects), the first letter of a class variable name is capitalized. Its lifetime is
that of its host class.

The initial value of a class variable is usually assigned in a class method
(normally namednitialize) and that method is typically invoked as the final
act of creating the class.

VisualWorks User’s Guide, Rev. 2.1 31

Chapter 3 Syntax

For example, class Date has five class variables, which are declared in the
class definition (third and fourth lines) as follows:

Magnitude subclass: #Date
instanceVariableNames: 'day year '
classVariableNames: 'DaysinMonth FirstDayOfMonth
MonthNames SecondsIinDay WeekDayNames'

poolDictionaries: "

category: 'Magnitude-General'

The instance variables change with each instance, so they can only be
accessed directly by the same object. The class variables, however, keep the
same values across instances. So when an instance wants to access the array
of integers contained in tH2aysinMonth variable, for example, it does not

have to send a messageDate. It can use the variable in its methods just as
naturally as it would use an instance variable. Objects that are not in the inher-
itance chain would have to quebgate for the information.

Pool Variables

32

A pool is a dictionary of global variables that is intended for use by a specific
set of classes. Its purpose is to provide quick access to the contents of that
dictionary (short-cutting the usual dictionary-lookup machinery). Each
element in the dictionary is a pool variable, and is available to any class that
declares the pool in its definition. For example, cleesg declares a pool
dictionary in its class definition:

CharacterArray subclass: #Text
instanceVariableNames: 'string runs '
classVariableNames: "
poolDictionaries: 'TextConstants'
category: 'Collections-Text'

The TextConstants dictionary provides keyboard mapping support for
various text-manipulating objects. Each key in its dictionary hames a textual
element or characteristic such& andUnderline. Each key’s associated
value is the character sequence that invokes that property.

Note: Pool dictionaries are not inherited, so you must add them to each class
that is to use them, even if they are declared in its superclass.

VisualWorks User’s Guide, Rev. 2.1

Variables

Global Variables

A global variable is accessible by any object. It must begin with a capital
letter. Its lifetime is that of the system, unless it is explicitly removed from the
system dictionary.

All class names are global variables, as obvious examples of objects that must
be accessible to all other objects. (Removing a class hame from the image by
deleting its entry in the Smalltalk dictionary is not recommended.) Object-
oriented programming style discourages the creation of globals other than
class names. In fact, only a handful of globals other than class names and pool
dictionaries exist in the syste@malltalk, Transcript andProcessor are
examples. They could as well be implemented in the form of class variables,
with class methods to return the values of those variables.

Special Variables

For three special variables, the value changes according to the execution
context but cannot be changed by assignnsstt; super andthisContext.

The most prevalent of these special variableglfs which holds a reference
to the object that is executing the current message.

In the simplest caseglf merely allows the programmer to direct a new
message to the specific instance that is executing the current method. In
effect, an object can execute another of its own methods. A hypothetical
doSomething method could use@mputeX method to calculate a number,
for example, with the expressiself computeX.

A more complicated case arises when inheritance is involved. Suppose the
doSomething method is located in the superclass of the object that received
thedoSomething message. ButomputeX is implemented by the subclass.

VisualWorks User’s Guide, Rev. 2.1 33

Chapter 3 Syntax

How do we send the method finder back to the bottom of the ladder to search
for computeX, rather than just starting from its superclass location?

doSomething method
aSuperclass

self computeX

anObject | computeX method >

anObject doSomething

Figure 3-2 The special variablself is a pointer to the object (in this casanOb-
ject) that received the message being executkSomething)

The surprising but pleasing answer is that the expressibnomputeX still
works. The new messagenfputeX) is directed aself, which refers to the
object that received the previous messaipSomething).

It's important to remember thaelf does not necessarily point to an instance
of the class whose method is being executed. In our example, the word “self’
is used in the parent’s method but it refers to the child. Thus, using self in a
method automatically provides for downward growth in the hierarchy.

Thesuper variable is very similar teelf, exceptsuper tells the method

finder to begin its search one level above the executing method in the class
hierarchy. This is useful when a subclass wants to add operations to its
parent’s method without having to duplicate the parent’'s code. Note that

34 VisualWorks User’s Guide, Rev. 2.1

Message Expressions

super is in the nature of a qualifier applied to the method finder, so it cannot
be assigned to a variable &@df can).

computeX method +7
) getX method
anObject |
super computeX

anObject getX

aSuperclass

Figure 3-3 Special variable super

The third special variabl¢hisContext, is a reference to the stack context of
the current process. Whigelf andsuper are commonly used by Smalltalk
programmersthisContext is rarely needed by application developers. It is
used by the system’s exception handler and debugger.

Note: In some of the literature on Smalltalk, self and super are referred to as
pseudovariables. However, other objects have also been called pseudovari-
ables, so the term is ambiguous—we call them special variables instead.

Undeclared Variables

When a variable is deleted while references to it still exist, its name is auto-
matically entered in a dictionary bihdeclared variables. This dictionary is
maintained by the system and need not concern you under normal
circumstances—but it can provide useful clues to certain kinds of program
errors.

Message Expressions

A message expression is the fundamental unit of programming in Smalltalk.
It has three kinds of components: a receiver, a method name and zero or more
arguments. |9 raisedTo: 2, the receiver is 9, the method nameaisedTo:,

and the argument is 2. The term message technically refers to the method
selector and arguments, while a message expression includes the receiver.

Every message returns an object to the message sender. In the example just
given, theraisedTo: method returns an instanceSrhallinteger—

VisualWorks User’s Guide, Rev. 2.1 35

Chapter 3 Syntax

specifically,81. There are three ways to denote the object to be returned from
a method:

n By default, the message receivself) is returned to the sender.

n Areturn operatory, entered as <Shift-6> on most keyboards) preceding
a variable name causes that object to be returned. For example, the
expressiorftanObject causeganObject to be returned.

n Areturn operator preceding a message expression returns the value of
that expression. For example, the express®m 4 causes the objet
to be returned.

Note: In prior versions of ParcPlace Smalltalk, an up-arrow symbol was
displayed as the return operator, though it was typed with the same <Shift-
6> key used currently.

A period is used to separate message expressions. No period is necessary after
the final expression in a series.

There are three types of message: unary, binary and keyword expressions. In
addition, two or more messages can be joined in sequence. Each of these
constructs is described below.

Unary Messages

A unary expression has a receiver and a method name but no argument. The
following are all unary expressions:

1.0 sin. "Returns the sine of 1.0."
Random new."Returns a random number generator."
Date today. "Returns today’s date."

Binary Messages

36

binary expression uses a special character such as a plus)sgrit$ method

name and requires one argument. Some binary selectors are combinations of
two special characters, such as the comparison setectgreater than or

equal to). If you create a new binary, the second character of its name cannot
be a minus sign).

The most common binary messages have to do with arithmetic operations,
comparisons and string concatenation. Table 3-2 describes all of the valid

binary selectors. One or more white-space characters before and after the
selector are optional.

VisualWorks User’s Guide, Rev. 2.1

Message Expressions

Table 3-2 Binary Method Selectors

Selector Example Description

+ counter + 1 Add

- 100 - 50 Subtract

* index * 3 Multiply

/ 1/4 Divide

** 4% 3 Raised to

i 13//-2 Integer divide (round the quotient to
the next lower integer; in the exam-
ple,-7). An instance oPoint can
also be rounded via this operator.

\\ 13\ -2 Modulo (return the remainder after
division; in the example, -1).

< counter < 10 Less than

<= index <= 10 Less than or equal

> clients > 5000 Greater than

>= files >= 2000 Greater than or equal

= counter =5 Values are equal

~= length ~=5 Values are not equal

== X==y Same object (receiver and argument
are the same object or point to the
same object)

~~ X ~~y Not the same object

& (x>0) & (y>1) Logical AND (return true if both

(x>0) | (y<0)

receiver and argument are true, oth-
erwise false).

Logical OR (return true if either
receiver or argument is false).

VisualWorks User’s Guide, Rev. 2.1

37

Chapter 3 Syntax

Table 3-2 Binary Method Selectors

Selector Example Description
, ‘abc','def" Concatenate two collections.
@ 200 @ 300 Return an instance of Point whose x

coordinate is the receiver and
whose y coordinate is the argument.

-> #Three -> 3 Return an instance of Association
whose key is the receiver and
whose value is the argument.

The assignment expression (:=) is not a method selector, so it is not listed
here even though it looks like a binary selector. Also not listed is the linking
symbol (>>) used in the debugger, which is also not defined as a selector. It
provides a shorthand way of referring to a method and its implementing class
together. ThusSet>>size refers to theSet class’s instance method called
size.

Keyword Messages

A keyword expression has a receiver, one or more argument descriptors
(keywords) and one argument for each keyword. Each keyword ends in a
colon. The following are valid keyword expressions:

aDate addDays: 5 "Add five days to aDate."

anArray copyFrom: startindex to: stoplndex
"Return a copy of that portion of anArray
that begins at startindex and ends at
stopIindex."

When there is more than one keyword, the method name is formed by concat-
enating the keywords. In the second example above, the method name is
copyFrom:to: (formally pronounced “copyFrom colon to colon”). There is

no limit on the number of keywords in a method name.

Messages in Sequence

38

Frequently, the receiver of a message is the object returned by the previous
message expression. To avoid creating a temporary variable to store the

VisualWorks User’s Guide, Rev. 2.1

Message Expressions

returned object, you can create a caravan of messages. For example, the first
set of expressions below can be compressed into the form of the second set:

interest := principal * interestRate.
principal := principal + interest.

principal := principal + (principal * interestRate).

This technique reduces the wordiness of the code, though sometimes at the
expense of readability. Parentheses can be inserted, as shown in the example,
to improve the readability and to assure that the intended parsing order is
followed.

When two messages have the same parsing precedence, parentheses are
sometimes required. For exam@ety 4 * 5 is very different fron8 + (4 * 5)
because binary selectors are all evaluated from left to right.

Parentheses are also necessary when a keyword expression is in the argument
expression for another keyword expression. For example, the first expression
below is valid but in the second version the method selector is interpreted by
the compiler aseadFrom:on:, which does not exist.

Time readFrom: (ReadStream on: '10:00:00 pm’).

Time readFrom: ReadStream on: '10:00:00 pm'. "WRONG"

The following rules summarize the parsing order:

1. Parse parenthesized expressions before nonparenthesized expressions.
Parse multiple unary expressions left to right.

Parse multiple binary expressions left to right.

Parse unary expressions before binary expressions.

Parse binary expressions before keyword expressions.

o~ wbd

VisualWorks User’s Guide, Rev. 2.1 39

Chapter 3 Syntax

40

The result of the following code fragment is that a number is printed in the
System Transcript—can you trace the logic using the rules above?

| aSet nbr|
nbr := 207.
Transcript show: (aSet := Set new add: nbr + 3 * 5 sin) printString

In the first line, two temporary variables are declared. In the second line, one
of the variables is assigned the number 207. In the third line, the following
sequence of events takes place:

Event Description

Set new Create an instance 8kt.

5 sin Calculate the sine & (-0.958924).

nbr + 3 Add 3 tonbr (210).

L Multiply 210 by -0.958924 (-201.374).

.. add: ... Add -210.374 as an element in the set created in Step 1.
aSet := Assign the set to the varialdSet.

... printString Convert the set to a printable string.

Transcriptshow: Output the printable string to the System Transcript.

When two or more messages are to be sent to the same object, a semicolon
can be used toascadehe messages. This avoids having to repeat the name
of the receiver, though frequently at the expense of readability. For example,
the first set of expressions below has the same effect as the final expression,
in which the messages are cascaded:

Transcript show: 'This is line one.".

Transcript cr. “Carriage return.”
Transcript show: 'This is line two.".

Transcript cr.

Transcript show: 'This is line one."; cr; show: 'This is line two."; cr

VisualWorks User’s Guide, Rev. 2.1

Block Expressions

Block Expressions

A block expression represents a deferred sequence of operations. Blocks are
used in control structures, so they will be discussed in more depth in Chapter
4, “Control Structures.” The syntactic characteristics of block expressions are
discussed here.

A block expression is enclosed in square brackets, as in:

[index := index + 1.
anArray at: index put: 0]

The messages inside the block are not sent until the block object receives the
unary messagealue. The following expressions have the same effect:

index := index + 1.
[index := index + 1] value.

Up to 255 separate arguments can be passed to a block. Argument names must
be listed just inside the opening bracket. Each argument name must be
preceded by a colon. The final argument name must be followed by a vertical
bar. For example:

[:counter | counter := counter + 1]

The argument variables are private to the block. The values of the arguments
are passed by using variants of adue message. There are four variants, to
be used depending on the number of arguments:

value: anObject

value: anObject value: anObject

value: anObject value: anObject value: anObject
valueWithArguments: anArray

Passing an argument to the example above would be arranged thus:

[:counter | counter := counter + 1] value: 3

VisualWorks User’s Guide, Rev. 2.1 41

Chapter 3 Syntax

Temporary variables can also be declared within a block. They must be
enclosed in vertical bars and placed after the vertical bar that separates
argument variables. They are local to the block.

The full syntax for a block is as follows:

[:argl :arg? |
[templ temp2 |
statementl.
statement?2.

]

Formatting Conventions

The compiler ignores tabs, carriage returns and extra spaces. Formatting
conventions vary but readability favors the following guidelines:

1. Start the message definition at the left margin and indent all other
contents of the method one level.

2. Leave a blank line beneath the method comment and as a separator
between sections of a long method.

3. Follow each period that ends an expression by a carriage return.
4. Indent as needed to visually identify each subordinate section of code.

The code browser provided with ParcPlace Smalltalk provifesreat
command for automatically applying these rules.

Syntactic Elements Summary

42

The following table summarizes the syntactic elements discussed in this
chapter. The ellipsis (...) is used in examples when irrelevant elements are
not shown.

Table 3-3 Syntactic Elements Summary

Element (punctuation) Example

Character ¢) $a

String (...") 'The address is', clientAddress
Symbol (#) #Time

VisualWorks User’s Guide, Rev. 2.1

Syntactic Elements Summary

Table 3-3 Syntactic Elements Summary

Element (punctuation) Example

ByteArray (#[]) #[255 76 0 49]

Array (#()) #('Three' #Three 3)
Comment ("...") "Multiply two numbers."
Nondecimal number 16r3F "Hexadecimal"
Scientific notation 1.586e5

Temp. variable declaratior| () | index counter |
Assignment (=) index :=0

Return (*) rself

Parser grouping(()) 3+(4*5)

Block ([1) [index :=index + 1]
Block argument (... |) [:arg|arg:=arg+1..]
Block variable (...|) [temp| temp :=0 ...]
Unary message 'J.G. Kilhoon' size
Binary message index < 10

Keyword message:() currentDate addDays: 3
Cascaded message) Transcript; cr; cr; cr
Messages in sequence X index := 0. counter := 1
Object-method pairing ¥>) Date>>addDays:

The following example illustrates a typical, fully assembled method. It is the
Dictionary class’s instance method calledludes:

includesKey: key
"Answer whether the receiver has a key equal to the
argument, key."

| index |

VisualWorks User’s Guide, Rev. 2.1 43

Chapter 3 Syntax

index := self findKeyOrNil: key.
(self basicAt: index) ~~ nil

Naturally, the ParcPlace Smalltalk class library contains thousands of other
examples of methods.

44 VisualWorks User’s Guide, Rev. 2.1

Syntactic Elements Summary

VisualWorks User’s Guide, Rev. 2.1 45

Chapter 3 Syntax

46 VisualWorks User’s Guide, Rev. 2.1

Chapter 4

Control Structures

Control structures in Smalltalk are invoked by sending messages to various
objects. The boolean objedtsie andfalse provide the if-then-else

machinery, while numbers, collections and blocks provide the looping
methods. These two types of control structure—branching and looping—are
described in this chapter.

TheBlockClosure class provides the machinery with which these control
structures are implemented. You can use the same machinery to create new
control structures. Block syntax is described in “Block Expressions” on

page 41.

Branching

The boolean objectsue andfalse implement methods for performing condi-
tional selection (if statements). However, you will rarely tsae or false
mentioned explicitly in such an expression. Instead, an expression such as
index > 9 returns a boolean value, and that returned value is the receiver for
the messages described below.

ifTrue:ifFalse:

The Smalltalk version of if-then-else is tifierue:ifFalse: method. It takes

two blocks as its arguments, one to be executed if the recetuee iand the
second to be executed if the receiveialse. In the following example, a

prompt string is altered depending on whether the application user is a mana-
gerial employee:

(userType == #Manager)
ifTrue: [prompt := 'Enter your password']
ifFalse: [prompt := 'Access denied—sorry']

VisualWorks User’s Guide, Rev. 2.1 47

Chapter 4 Control Structures

Looping

Either of the blocks can be left empty when no action is required. This is so
often the case th#fTrue: andifFalse: are provided as separate methods. In
the example above, if no password were requiredfTthee: portion of the
expression could be dropped entirely. ifiralse:ifTrue: method is also
available, when théalse condition is more prevalent.

Smalltalk has no equivalent of tkasestatement provided in many
languages—a case statement tends not to be object-oriented.

Three types of iterative operation are available: conditional, number and
collection looping. This section discusses the three types of looping.

Conditional Looping

48

Conditional looping involves a conditional test that determines whether to
repeat the loop.

whileTrue: and whileFalse:

In the previous example, the expresgioserType == #Manager) is evalu-
ated just once. By contrast, the condition that drives a while loop has to be
evaluated multiple times. In Smalltalk, it is enclosed in the square brackets
that identify it as a block (an instance of cl&ésckClosure). The

whileTrue: message causes that block to receivalae message, which
triggers execution of the block’s contents. If the expressions in the receiver
block return arue, the argument block is executed. Thvatue is again sent

to the receiver block to see if it is stillie, repeating the cycle.

The following example might be used in a game that ends when there is only
one player (the winner) left in the game:

[players > 1] whileTrue:
[nextPlayer takeTurn.
(nextPlayer outOfGame) ifTrue: [players := players - 1]]

To reverse the logic of the test, ugkileFalse:. For example, to process a
stream of objects until the endpoint is encountered:

[self atEnd] whileFalse: [aBlock value: (self next)]

VisualWorks User’s Guide, Rev. 2.1

Looping

For situations in which no argument block is needed, the unary messages
whileTrue andwhileFalse are available.
repeat

When a block of statements contains its own (reliable!) test for returning from
the loop, the simple messagpeat can be sent to the block.

Number Iteration

Number looping corresponds to the traditiofmalloop, and is implemented
via messages to numbers.

timesRepeat:

To repeat a block of expressions a specific number of times, send a
timesRepeat: message to a number and provide the repeatable block as an
argument. For example, to send the string ‘Testing!’ to the Transcript
aninteger times:

aninteger timesRepeat: [Transcript show: ‘Testing!"]

to:by:do:

A more elaborate sort é6r loop comes in the form of the:by:do: method,

which lets you specify a starting integer, a stopping integer, the step increment
and the block to be repeated. For example, to print something like a word
processor’s tab-setting ruler on the Transcript:

10 to: 65 by: 5 do: [:marker |
Transcript show: marker printString.
Transcript show: '---].

Here’s a translation: Count by fives from 10 to 65. Pass each such value to the
block, which converts it to a string and outputs it to the Transcript, followed
by three hyphens. The output looks like this:

10---15---20---25---30---35---40---45---50---55---60---65---

Notice that, unlikeimesRepeat:, theto:by:do: method automatically passes
the value of the counter to the block (picked up by the argument named

VisualWorks User’s Guide, Rev. 2.1 49

Chapter 4 Control Structures

marker in this case). The block must declare an argument variable to catch
the passed value.

to:do:

When the counting increment is 1, you can use the sinmbo:. The
following example prints the ASCII equivalents of the numbers 65 through
122 in the Transcript.

65 to: 122 do: [:asciiNbr |
Transcript show: asciiNbr asCharacter printString]

Collection lteration

50

Collection looping supports scanning, counting and other operations
involving one repetition for each member of a collection. It is frequently
useful to repeat a series of operations for each element in a collection of
objects (collections are discussed further in Chapter 6, “Collection Opera-
tions”). The integer iteration discussed above is a special case, dealing exclu-
sively with numeric intervals—i.e., collections of integers. The iteration
methods discussed in this section apply to other kinds of collections as well.
All are implemented by th€ollection class, which is the superclass of
dictionaries, arrays, sets, strings, etc.

do:

The simplest methodlo:, evaluates the block for each member of the collec-
tion. For example, to capture the contents of an array during program execu-
tion, we might want to convert each member to a printable string and output
it to the Transcript:

anArray do: [:anElement |
Transcript show: (anElement printString); cr]

select:

To filter a collection and wind up with a desired subset sesect:. Each
member of the collection that satisfies the conditions in the block is stored in
a new collection of the same type, which is returned by the method. The
following example counts the number of question marks in a string by gath-

VisualWorks User’s Guide, Rev. 2.1

Looping

ering the question marks into a new collection and then findingizieeof
that collection:

(aString select: [:eachChar | eachChar == $?]) size

reject:

Thereject: method is the opposite sélect:. It gathers the members of the
original collection that fail the test rather than those that pass it. Substituted
for select: in the example above, it would create a collection of non-question-
marks, which would then szed.

detect:

Thedetect: method, likeselect:, tests each element of the collection. But
instead of returning a subcollection of those elements that pass the test, it
returns the first such instance (and stops testing at that point). The following
example locates the first instance of the integerahifsrray:

anArray detect: [:each | each == 8]

collect:

Thecollect: method performs a transformation on each element of the collec-
tion and returns a new collection containing the transformed objects. For
example, to get an uppercase versioa%ifing:

aString collect: [:each | each asUppercase]

inject:into:

Theinject:into: method enables you to pass an explicit argument to the block
in addition to the collection’s elements. This explicit argumentiftjeet:

part ofinject:into:) is used to initialize a counter for a cumulative operation
such as summing. For example, to add the numbexSet

aSet inject: 0 into: [:subtotal :nextNbr | subtotal + nextNbr]

Table 4-1 summarizes the branching and looping methods discussed in this
chapter.

VisualWorks User’s Guide, Rev. 2.1 51

Chapter 4 Control Structures

52

Table 4-1 Control Structure Methods

Method name

Description

ifTrue:

ifFalse:

ifTrue:ifFalse:

ifFalse:ifTrue:

whileTrue:

whileFalse:

whileTrue
whileFalse

repeat

timesRepeat:

to:by:do

to:do:
do:
select:
reject:
detect:

collect:

inject: into:

If the prior expression igsue, execute the argument block.

If the prior expression returrfialse, execute the argument
block.

If the prior expression igue, execute the first block; other-
wise do the second block.

Checks for a false condition first.

Repeat the argument block until the receiver block is no
longertrue.

Repeat the argument block until the receiver block is no
longerfalse.

Repeat the receiver block until it no longer returos.
Repeat the receiver block until it no longer retuaise.

Repeat the receiver block until it executes a return or other-
wise breaks the loop.

Repeat the argument block, using the receiving integer as a
counter

Repeat for a specified interval, incrementing the counter by
a specified value. Use the repetition counter as a block argu-
ment.

Same as above, using 1 as the counter increment

Repeat a block for each element in the receiver collection.
Collect all elements that pass a test.

Collect all elements that fail a test.

Return the first element that passes a test.

Transform each element and return the transformed version
of the collection.

Perform a cumulative operation such as summing the ele-
ments.

VisualWorks User’s Guide, Rev. 2.1

Looping

VisualWorks User’s Guide, Rev. 2.1 53

Chapter 4 Control Structures

54 VisualWorks User’s Guide, Rev. 2.1

Chapter 5

Numeric Operations

ParcPlace Smalltalk provides several classes that represent elements in
various kinds of linear series. They include various kinds of numbers as well
asDate andTime. Operations involving these classes are discussed in this
chapter. At the end of the chapter, the numeric classes are placed in the
context of the class hierarchy with a discussion of their abstract superclasses.

Integers

Thelnteger class is an abstract superclass with three subclasses:
Smallinteger, LargePositivelnteger andLargeNegativelnteger. The
boundaries betweedmallinteger and its larger neighbors occur &84
(536,870,911) and 2. Large integers have no size limit (other than memory
availability). However, the system coerces integers into the proper subclass
transparently, so you rarely need to pay attention to this issue.

Most of the behavior is defined integer, so in this section we will speak of
integers generically.

instance creation and arithmetic

No specific methods are needed to create an instance of an integer (or any
number) because they are typically created by calculations involving literals.
Instances take the form of literals sucii @&, and are derived via arithmetic
expressions such &% + 46.

The usual arithmetic operations are supported, with three types of division:

n Exact division (/), which returns a fraction if the result is not an integer
(see “Fractions” on page 59)

n Integer division (/), which returns the quotient rounded to the next
lower integer (i.e., rounded toward negative infinity); \ite get the
corresponding remainder (modulo)

VisualWorks User’s Guide, Rev. 2.1 55

Chapter 5 Numeric Operations

56

n

Truncated divisiondquo:), which returns the integer portion of the
guotient; useéem: to get the corresponding remainder

Integers also support the following functions:

n

n

n

abs (absolute)
factorial

gcd:, which returns the greatest common divisor of two integers (the
receiver and the argument)

Icm:, which returns the least common multiple of two integers (the
receiver and the argument)

negated (reverse sign)

raisedTo:, which can also be written as double-asterisk)(if the
argument is an integerisedTolnteger: is faster

reciprocal
sqrt (square root)
squared

testing

Integers return &rue or false from the following methods:

n

n

n

n

even

odd

negative

positive (>=0)
strictlyPositive (>0)
isinteger

isLiteral

isZero

Thesign method returns 1 if the receiver is positive, -1 if it is negative, and
zero if it is zero.

comparing

Integer instances respond to the usual binary comparison messages (
<, <=, etc.).

VisualWorks User’s Guide, Rev. 2.1

Floating Point Numbers

converting and printing

TheasCharacter method returns a character whose ASCII value is the
receiving integer. The expressiB@ asCharacter returns$P.

TheasFloat method returns a floating-point representation of the integer, so
80 asFloat returns80.0.

TheprintString method returns a string containing the integer. A radix
integer is first converted to base 10, so the expred$dti printString
returns'17’. To print the integer in any base, ysantStringRadix:. Thus,
16r11 printStringRadix: 16 returns11’.

Similarly, theprintOn: method for printing an integer on a stream has a
printOn:base: version for specifying a nondecimal base.

Floating Point Numbers

TheFloat class creates instances of single-precision floating point numbers
between 1038 and -1038, with eight to nine digits of precision Dbhuble

class creates double-precision floating point numbers between plus and
minus 10307, with 14 to 15 digits of precision. B&lleat andDouble are
subclasses dfimitedPrecisionReal, an abstract superclass that contains the
behavior that is common to single- and double-precision floats.

In this section we will speak of floats generically.

instance creation and arithmetic

Instances take the form of literals suctB823.95, and are derived via arith-
metic expressions such 381.50 + 26.45. In scientific notation, &ouble
displays a instead ok, as in3.015d67.

The usual arithmetic operations are supported, including the three types of
division described above for integers.

Floats also support the following functions:

n abs (absolute value)

n COS, sin, tan, arcCos, arcSin, arcTan

n fractionPart, which returns the fractional part of the number

n integerPart, which returns the integer part of the number as a float
n In (natural log)

n negated (reverse sign)

VisualWorks User’s Guide, Rev. 2.1 57

Chapter 5 Numeric Operations

58

n raisedTo:, which can also be written as double-asterisk)(if the
argument is an integerisedTolnteger: is faster

n reciprocal

n rounded, which rounds to the nearest integer, emuhdTo:, which lets
you specify the rounding factor (such as 100)

n sqrt (square root)
n squared
n truncated, which returns the integer part of the number as an integer

testing
Floats return &rue or false from the following methods:

n evenNegative

n oddPositve (>=0)

n strictlyPositive (>0)
n isLiteral

n isZero

Thesign method returns 1 if the recipient is positive and -1 otherwise.

comparing

Floats respond to the usual binary comparison messages, (<, <=, etc.)

converting and printing

Useaslnteger to remove the fractional portion of the float and return an
integer.

TheasRational method converts a float to a rational number (integer or frac-
tion). For example, the expressiolm asRational returns the fractiod5/2.

Floats also provide methods for convertdegreesToRadians and
radiansToDegrees.

TheprintString method returns a string containing the float.

VisualWorks User’s Guide, Rev. 2.1

Fractions

Fractions

An instance ofraction is a number with a numerator and a denominator,
separated by a division slash, a8id. Fractions are always reduced to
lowest terms.

Fractions respond to most of the messages described for integers and floats—
exceptions are easily accessible to common sense and experimentation. Frac-
tions come equipped with additional methods as follows:

n An instance can be created via arithmetic or explicitly, as in the expres-
sion Fraction numerator: 3 denominator: 4.
n nhumerator anddenominator, for accessing the components

n asFloat andasDouble, for converting to a floating point number

Random Numbers

An instance of clasRandom is a random number generator. The easiest
method of generating a random number is with the expreBsiadom new
next.

TheRandom class comes with seven sets of parameters that correspond to
seven generators. Each requires a starting value (called a “seed”) on which to
perform arcane calculations resulting in a series of random floats. Thus, the
more explicit means of creating an instanc®&ahdom is with thefrom-
Generator:seededWith: method, as in:

Random
fromGenerator: 1
seededWith: (Time millisecondClockValue)

The example, as it turns out, is what tlesv method does. It uses the first of

the seven generators, seeded with the number of elapsed milliseconds on the
system’s clock. (You can provide a literal seed number for a reproducible
sequence of random numbers.) Once the generator has been created, send it
the messageext to get the next random number in the series. If multiple
random numbers are needed, assign the generator to a variable anebdend

to the variable, as in the following loop:

| aGenerator |
aGenerator := Random fromGenerator: 7 seededWith: 234.

VisualWorks User’s Guide, Rev. 2.1 59

Chapter 5 Numeric Operations

Dates

10 timesRepeat: |
Transcript show: (aGenerator next) printString.
Transcript cr]

This code fragment prints ten random numbers in the Transcript. Each time it
is executed, it prints the same ten numbers unless the generator or the seed is
changed. That’s why the seed is frequently derived from a near-random
number itself, such as the current time.

60

In Smalltalk, a date is defined by a day and a year—so March 5, 1980 is day
65 in the year 1980. This is another way of saying thdd#te class provides

a template for two instance variables, catleg andyear. However, a date
object comes equipped with methods for converting itself to and from
standard month-day-year representations. Its public interface, therefore,
makes it appear to be an object having a month, a day and a year.

instance creation

Date provides five class methods for creating a new instance, each using a
different kind of input.

n newDay:month:year: creates a date object from a day number, a month
name and a year number. The month name must be a symbol, as in
#March—only the unique first letters of the month name need to be
given, so#Mar is sufficient in this example. If the century part of the
year is omitted, the current century is assumed. To create an instance of
Date with the value of March 5, 1980, use the expresBiate
newDay: 1 month: #March year: 1980.

n today creates a date object with the current date as its value. The full
expression iPate today.

n readFromsString: (inherited fromObject) takes its input from a string,
as in:

Date readFromString: 'March 5, 1980’

The string can begin with either the month or the day, though if both are
integers the first will be assumed to be the month. The month can be a number
or the (unique first letters of the) name. Any of the usual separators (space,

VisualWorks User’s Guide, Rev. 2.1

Dates

comma, hyphen, slash or nothing) can be employed. Thus, all of the following
strings would be converted successfully:

‘March 5, 1980

'MAR 5 80

'3/5/80'

'3-5-1980"

'5 March 1980’

'5MARS80

n Also available armewDay:year, which returns a date object that is a
given number of days after the start of the specified yearframd
Days:, which is similar except that it uses 1901 as its starting year.

2 O o o o o

comparing
Date instances respond to the usual binary comparison messages €,
<=, etc.). Thusthe following expression returtigie:

(Date today) > (Date readFromsString: '4/1/01")

arithmetic

A number of days can be added to or subtracted from a date object, using
addDays: andsubtractDays:, as incurrentDate addDays: 7, which

returns a date seven days later tharrentDate. The difference in days
between two date objects can be found withtractDate:.

accessing and inquiries

Table 5-1 lists methods for finding some atomic piece of information about a
date.

Table 5-1 Date Methods

Method name Object returned

day Number of days since beginning of year
weekDay Name of the day of the week, as a symbol
dayOfMonth Number of days since beginning of month
previous: Date of previous specified weekday

VisualWorks User’s Guide, Rev. 2.1 61

Chapter 5 Numeric Operations

62

Table 5-1 Date Methods

Method name Object returned
monthindex Month number
monthName Month name
daysinMonth Number of days in month

firstDayOfMonth Number of days from beginning of year to first day of the
month, inclusive

year Year number

daysinYear 365 or 366 (until the calendar goes metric)
daysLeftinYear Number of days to end of year

leap 1 if the date is in a leap year, otherwise
printing

TheprintFormat: method returns a string representation of a date object,
using the format specified in the array that is passed as an argument. The array
consists of six integers, as shown in Table 5-2.

Table 5-2 Parts of a format array for printing date

Array index Purpose

1 Day’s position in output (1, 2 or 3)

2 Month’s position in output (1, 2 or 3)

3 Year's position in output (1, 2 or 3)

4 ASCII number of the separator character

5 Month format (1 = number, 2 = abbreviation, 3 = name)
6 Year format (1 = full number, 2 = last two digits)

For example, to print the current date in the forma#afch 5 1980:

(Date today) printFormat: #(2 1332 3 1)

VisualWorks User’s Guide, Rev. 2.1

Time

Time

For most purposes, tipeintString method supplied by th@bject superclass
suffices. The expressidDate today) printString returns the current date in
the formats March 1980, though that format can be altered in pnmtOn:
instance method supplied Date.

Date also provides methods for printing a date object on a strpam@n:,
mentioned above, amintOn:format:), and for printing an executable
expression on a strearstg¢reOn:) such that the expression will return the
original date object.

A time is defined by an hour, a minute and second relative to midnight. An
instance offime having3:47:26 pm as its value containk5 in its hours
variable 47 in its minutes variable, an@®6 in its seconds variable.Time’s
public interface provides methods appropriate to this representation as well
as a seconds-since-midnight representation.

instance creation

TheTime class provides three methods for creating a time object:

n now returns the current time, in the fornda#7:26.

n fromSeconds: returns a time that is a specified number of seconds past
midnight. For examplelime fromSeconds: 3661 returns a time object
with the valuel:01:01 am.

n readFromsString: takes its input from a string, as in:
Time readFromString: '3:47:26 pm'

The string can include leading zeros ('03:47:26'). The ‘am/pm’ element
can be in uppercase letters.
comparing

Time instances respond to the usual binary comparison messages €,
<=, etc.). Thusthe following expression returtisie (except during the first
hour after midnight):

(Time now) > (Time readFromsString: '1:01:01 am’)

VisualWorks User’s Guide, Rev. 2.1 63

Chapter 5 Numeric Operations

64

arithmetic

A time object can be added to either a time object or a date object, using
addTime:. The argument is converted to seconds past midnight (if it's a time
object) or seconds since the beginning of 1901 (if it's a date object). That
number of seconds is then added to the receiver, and the new instaimee of

is returned in the usual hours-minutes-seconds format. Hours are not returned
modulo 24 —for example, the following expression returns a time of
694035:47:26 pm.

(Time readFromString: '3:47:26 pm")
addTime: (Date readFromsString: ‘March 5, 1980")

Time can be subtracted in the same way, usirigractTime:.

accessing and inquiries

To find out some atomic piece of information about a time, use one of the
methods in Table 5-3.

Table 5-3 Time Methods

Method name Object returned

hours Number of hours

minutes Number of minutes

seconds Number of seconds

totalSeconds Number of seconds from the beginning of 1901 to
the current time

dateAndTimeNow An array containing current date and time

millisecondClockValue Number of milliseconds since the systetnsk

was last reset

The last three methods listed above are class metfiods.also provides
“general inquiries” that report the number of seconds since the beginning of
1901 as a four-elemeBlyteArray (timeWords), and the milliseconds that
transpire during execution of a block provided as its argument
(millisecondsToRun:).

VisualWorks User’s Guide, Rev. 2.1

Time

converting and printing

TheasSeconds method converts a time object into a number representing
the value ofhours * 3600) + (minutes * 60) + seconds.

TheprintString method inherited frorbject returns a string version of the
time object, sd@ime now printString returns a string containing the current
time.

Time also provides methods for printing a time object on a strpant®n:),
and for printing an executable expression on a stretore©On:) such that
the expression will return the original time object.

Time Zone

TheTime class converts Greenwich Mean Time (GMT) to local time with the
help of another clas§jmeZone, on machines that report GMT rather than
local time.TimeZone stores an offset from GMT for local time. In some parts
of the world, this offset is not an integral number of hours, which is supported.

TimeZone provides an algorithm for determining whether DST is in effect.
The algorithm relies on parameters that can be changed to suit local custom—
by default, Daylight Savings Time is in effect from 2 a.m. on the first Sunday
preceding April 7 to 2 a.m. on the first Sunday preceding October 31.

To change the day of the week from the Sunday preceding April 7 and
October 31 to some other day, substitute the desired day of the week for
#Saturday in the following expression:

TimeZone default weekDayToStartDST: #Saturday

To change other parameters in the defa@inteZone, create a new instance
of TimeZone with the desired parameters, then pass that instance as an
argument to theetDefaultTimeZone: method, as follows:

| newTZ |

newTZ := TimeZone "Create instance with parameters..."
timeDifference: -8 "Offset 8 hours from GMT"
DST: 1 "DST is different by 1 hour"
at: 4 "Start/end DST at 4 a.m."
from: 97 "Start DST on 97th day of year"
to: 305 . "End DST on 305th day"

VisualWorks User’s Guide, Rev. 2.1 65

Chapter 5 Numeric Operations

newTZ weekDayToStartDST: #Tuesday. "Day to start/end DST”
TimeZone
setDefaultTimeZone: newTZ "Install new default"

In a few locations, the algorithm for determining the beginning and ending of
Daylight Savings Time is different from the algorithm described above. To
accommodate such a time zone, you will need to alter the code in the
TimeZone instance method callednvertGMT:do:.

Abstract Superclasses

The concrete classes discussed in this chapter allMagaitude as a
common superclass. FBate andTime, it is the direct parent.

The number classes hasethmeticValue as an intermediate superclass,
implementing much of the shared behavior such as arithmetic operations.

Yet another intermediary superclass, caNeanber, implements much of the
behavior specific to scalar quantities.

The following hierarchy illustrates the relationships of the abstract and
concrete classes described in this chapter. It omits classes ecimhat
exist in the hierarchy but are described elsewhere in the documentation.
Abstract classes are underlined.

Object
TimeZone
Magnitude
Date
Time
ArithmeticValue
Number
Fraction
Integer
LargeNegativelnteger
LargePositivelnteger
Smallinteger
LimitedPrecisionReal
Double
Float

66 VisualWorks User’s Guide, Rev. 2.1

Abstract Superclasses

When accessed via the System Browser, all of the classes discussed in this
chapter occur within one of two class categories:

n Magnitude-General (Magnitude, Date, Time, TimeZone)
n Magnitude-Numbers (the remainder)

VisualWorks User’s Guide, Rev. 2.1 67

Chapter 5 Numeric Operations

68 VisualWorks User’s Guide, Rev. 2.1

Chapter 6
Collection Operations

ParcPlace Smalltalk provides a wide variety of classes for operations
involving collections of objects. In addition to the conventional arrays, there
are bags, dictionaries, sets, linked lists, and more. Operations involving these
classes are discussed in this chapter.

The first section presents the distinguishing features of the collection classes,
with the aim of helping you choose the best class for a specific use. A decision
tree (see Figure 6-1) provides a quick reference when making such a choice.

Each of the subsequent sections deals with a specific task, such as adding
elements to a collection. The usual behavior is described first in each section,
followed by notes about specialized behavior.

By way of summary, the final section describes the collection classes in the
context of the class hierarchy, with a discussion of their abstract superclasses.

Iterative operations involving collections are discussed in detail in Chapter 4,
“Control Structures.” A string of characters is also a collection and shares
much of the behavior of other collections. It is discussed as a special case in
Chapter 7, “String Operations.”

Choosing the Appropriate Class

Set

There are nine main kinds of collections. Three of them have specialized vari-
ations. A brief description of each collection class follows, proceeding from
the simplest to the more complex. As a rule of thumb, choose the simplest
class that suits your purpose.

A Set is about as close to a generic collection as you can get. No index. No
sorting. It does discard duplicates, which is often useful. The fact that an
instance ofSet has only one special capability should not distract you from

VisualWorks User’s Guide, Rev. 2.1 69

Chapter 6 Collection Operations

Bag

Array

70

the fact that the generic behavior it inherits, as described in later sections of
this chapter, includes powerful mechanisms for manipulating elements of a
data set.

An ldentitySet is identical in all respects, except that it usefor compar-
isons instead of.

An instance oBag is just like aSet, except that it counts the duplicates as it
discards them. Thus, for each element Bag there is also a tally of the
occurrences of that object. If each character in the word collection were an
element in 8ag, for example, the tally for the eleme$tt would be2.

Another way of looking at Bag is that it is &et that does not discard dupli-
cates. But since the elements are not ordered in any particular way, the most
we can hope to know about an element suckcds how many times it
occurs.Bag does not waste memory by creating a new element for a dupli-
cate, but increments a counter instead.

Array allows you to maintain relative positions of elements, via an integer
index. In our collection exampl®e can be identified by its external key, the
integers. (In aSet or aBag, by contrast, the position 8& is unpredictable.)

As another example, if a customer name were to be stored as a collection of
three elements—first, middle and last names—it would make sense to use an
Array rather than &et because the relative positions of the elements must be
preserved.

A RunArray provides efficient storage for situations in which a value is
repeated consecutively over long stretches of an array. For example, the font
information for a block of text is a likely candidate—a roman font would be
used for many sequences of elements in the array (letters in the text), with
occasional bursts of italic, bold, etc. AlthoughnArray responds to the

same messages Agay, its internal representation avoids waste by storing

an element only if it differs from the preceding element, along with a tally of
that element’s repetitions.

A ByteArray provides space-efficient storage for bytes. Its elements are
restricted to the set &mallintegers from 0 to 255WordArray is for manip-
ulating 16-bit words; its elements can be integers from 0 to 65535.

VisualWorks User’s Guide, Rev. 2.1

Choosing the Appropriate Class

Interval

An Interval is a finite arithmetic progression, such as the s@rie$ 8. It is
typically used to control an iterative loop, as described in Chapter 4, “Control
Structures.”

OrderedCollection

An OrderedCollection, like anArray, has an integer index and accepts any
object as an element. Unlikaray, however, atOrderedCollection permits
elements to be added and removed freely. It is frequently used as a stack (the
last element in is the first one removed) or a queue (first in, first out).
However, its uses extend farther because there are so many situations in
which ordering must be preserved as an arbitrary number of elements are
added.

SortedCollection

When elements are not added in the desired order, sorting is re@ored.
edCollection provides that extra capability. By default, elements are sorted
in ascending order. You can override this default by specifying an alternative
sort algorithm enclosed in a block. For example, the expreSsidadCol-
lection sortBlock: [:x :y | x >=y] creates a new collection whose elements
will be sorted in descending order.

LinkedList

As its name suggestsLinkedList is a collection in which each element
points to the next element. AdrderedCollection can accomplish the same
thing, but is less efficient in circumstances involving large numbers of addi-
tions and deletions. For example, fimcessorScheduler class makes use

of LinkedList to track the highly dynamic list of processiesmkedList

achieves its efficiency in a way that prohibits its elements from belonging to
other collections at the same time.

Dictionary

TheDictionary class, instead of imposing an integer index on each element,
permits any object to be the external key. The result, as in the familiar
Webster’s dictionary, is a collection of key-value pairs. For example, an
element might consist of the wolabject’ with the associated definition
'something solid that can be seen or touched’. Thus, each elemdbicitioa

VisualWorks User’s Guide, Rev. 2.1 71

Chapter 6 Collection Operations

nary is typically an instance &ssociation, which is a key-value pair. The
nil object is specifically excluded as a valid element.

An ldentityDictionary is similar, except that it uses for comparisons

instead of=. That is, the values in ddentityDictionary are expected to be
literals or other unique objects that can be compared with the more efficient
identity operator £=).

Table 6-1 Summary of Collection Classes

Collection class Distinguishing features

Set Discards duplicate elements

Bag Tallies duplicates

Array Integer index (and fastest access)

Interval Integer elements in progression
OrderedCollection Integer index; preserves the order in which ele-

ments are added

SortedCollection Integer index; elements are sorted by user-
defined algorithm (ascending order is default)

LinkedList Each element points to the next element, for
maximum efficiency of dynamic lists

Dictionary noninteger index; each element consists of a key-
value pair for dictionary-like lookups

Creating an Instance

The simplest creation messag@éw, as inSet new. This works for all
collections excepinterval andLinkedList—they have custom creation
messages that require arguments.

To specify a starting size for the collection, nsev: (not applicable to
Interval orLinkedList).

To specify the first element in the collection, wgéh:, as in the expression
Set with: #colorNbr. Up to four elements can be specified in this way, as in

72 VisualWorks User’s Guide, Rev. 2.1

Creating an Instance

OrderedCollection with: $p with: $d with: $q with: $!. (Not applicable to

Interval.)

Table 6-2 Instance Creation

Array

Interval

SortedCollectio
n

To specify a starting size and fill all elements with a default,
use new: withAll:, as irray new: 10 withAll: 99, which
creates arrray with 10 elements each containing the inte-
ger99.

An Interval is normally created indirectly, by sendin¢pa
message to a number, adlito: 10, which creates an inter-
val containing the integers 1 through 10. An increment argu-
ment can also be specified, as in the expression 10 by:

2. (Interval provides d&om:to:by: creation method, which

is sent by th&lumber class when amterval is created indi-
rectly.)

To specify a sorting algorithm in the form of a block of
expressions, usrtBlock:, as in the expression
SortedCollection sortBlock: [:x :y | x >=y] (that is, create
an instance aortedCollection with elements sorted in
descending order). The default sort order emplaced by the
new creation message is ascending order.

VisualWorks User’s Guide, Rev. 2.1

73

Chapter 6 Collection Operations

(Integer key

Y N
Adds a||OWe® Dictionary Bag Set
Y N
Sorted
Array

OrderedCollection
LinkedList

SortedCollection

Figure 6-1 Collection Class Decision Tree

Adding, Removing and Replacing Elements

74

To append a new element to an existing collectionadde as in the expres-
sionaSet add: anObject. (Not applicable t@érray or Interval.)

To append the contents of an entire collectionagill;, as inaCollection
addAll: anotherCollection.

Useremove: to delete a single element. UsenoveAll: to delete all of the
elements in a subcollection, asaiBet removeAll: subSet. (Not applicable

to Array or Interval.) By default, an error notification occurs when the
element to be removed is not found; to specify an alternate action block, use
remove:ifAbsent:.

If the collection has an index, uaeput: to replace the existing value with a
new value. For examplanArray at: 3 put: #Done stores the symbol
#Done as the third element enArray.

VisualWorks User’s Guide, Rev. 2.1

Adding, Removing and Replacing Elements

Bag—Becausd3ag keeps a tally of occurrences for each element, it
provides aradd:withOccurrences: method that lets you specify multiple
occurrences of the element being added.

Array—To replace all elements of an array with a specific object, use
atAllPut:, as in the expressidoxColors atAllPut: #burntOrange. This is

not to be confused witatAll:put: (notice the two colons), which replaces

only those elements with indices in the interval that is passed as the first argu-
ment. For exampldyoxColors atAll: (11 to: 20) put: #darkBlue only

replaces the values of the elements in positions 11 throughrn2. also

provides methods for:

n Replacing all elements that have a specific value with a new value
(replaceAll:with:)

n Replacing all elements of a specific value with a new value, within a
range of indicesréplaceAll:with:from:to:).

n Substituting values from one collection into anothieplace-
From:to:with:), optionally starting at a specific location in the replace-
ment array feplaceFrom:to:with:startingAt:)

n Replacing all occurrences of a subarray with another array
(copyReplaceAll:with:)

n Replacing the elements having a specified series of indices with an array
(copyReplaceFrom:to:with:).

OrderedCollection—As a subclass ddequenceableCollection, from
which Array receives the special behavior described above,
OrderedCollection shares those behaviors.

Additional refinements to the basic adding and removing methods are avail-
able to instances @rderedCollection. Their names describe their functions
adequately, so a list of them will suffice:

n add:after:

n add:before:

n add:beforelndex:

n addFirst:
n addLast:
n addAllFirst:
n addAllLast:

n removeFirst
n removeFirst:

VisualWorks User’s Guide, Rev. 2.1 75

Chapter 6 Collection Operations

n removelLast

n removelast:

n removeAtindex:

n removeAllSuchThat:

SortedCollection—As a subclass ddrderedCollection, SortedCollec-
tion inherits all of the refinements that apply@oderedCollection.

LinkedList—UseaddFirst: to add a link to the beginning of the list, or
addLast: to append it at the end. The complementary mettedsveFirst
andremovelast are also supported.

Dictionary—To append an element from another dictionary, use
declare:from:, as inaDict declare: #manager from: personnelDict. This
example copies the association haviimganager as its key from
personnelDict into aDict.

Comparing Collections

Use the equals sigr=() to test for equivalence. Two collections of unlike
class et andArray, for example) will not compare equal, even when they
have identical elements. The not-equal methed) can also be used.

As with other objects, the= and~~ methods can be used to compare two
collections for identity match and mismatch, respectively.

Counting and Finding Elements

76

To find out how many elements a collection has,size.

To find out whether a collection has a particular value among its elements, use
includes:. UseoccurrencesOf: to count the number of times a value is
repeated in a collection.

To find out whether a collection has zero elementsjaEmapty.

Severakenumeratiormethods are available for repeating a block of expres-
sions for each element in a collection (see “Looping” on page 48). Those
methods can be used to find elements that meet specific criteria, or to create
a transformed copy of a collection.

Bag—Two methods are provided for getting a sorted listing of the values
along with a count of the occurrences of each value. One method sorts the

VisualWorks User’s Guide, Rev. 2.1

Copying a Collection

counts, in descending ordesoftedCounts) and the other method sorts by
value, in ascending ordesdrtedElements).

Array—To find the beginning element, uBest. To find the final element,
uselast.

To get the index number corresponding to a valueingexOf:. To confine
the search to a range of indices, nes&tindexOf:from:to: (searching
forward) orprevindexOf:from:to: (searching backward). A similar method
finds the location of a subcollectioimexOfSubCollection:startingAt:).

OrderedCollection—The refinements noted féwrray also apply to this
class. In additionafter: returns the element that follows the argument and
before: returns the preceding element. For exangnl@C after: #burntOr-
ange finds #burntOrange in anOC and returns the element after it.

SortedCollection—The behavior mentioned fétrray and
OrderedCollection also applies to this class.

Dictionary—Each element of Bictionary is a key-value pair, so this class
provides extensions to tlad: method, which returns only the value. Use
keyAtValue: to return the key, aassociationAt: to return both the key and
its associated value.

To get a collection of all the keys irDactionary, usekeys. Usevalues to
get a collection of the values. By usin@artedCollection in such a
maneuver, you can compile a sorted listing of keys or values.

Copying a Collection

Thecopy method, inherited fror@bject, creates a new collection that shares
the instance variables of the original collection.

Array, OrderedCollection, SortedCollection—UsecopyWith: to create a
copy and append the argument as a hew elementofyVithout: method
creates a copy that omits all occurrences of the argument.

To copy a subset of a collection, usEpyFrom:to:, as in the expression
oneThruThreeArray := (oneThruSixArray copyFrom: 1 to: 3).

Converting and Printing

UseprintString to convert a collection into a printable string of the form
collectionName (elementl element2 ...). PhiatOn: method performs that
conversion and then outputs the string onto the argument stream.

VisualWorks User’s Guide, Rev. 2.1 77

Chapter 6 Collection Operations

ThestoreString method also creates a descriptive string, but in a format that
permits the collection to be reconstructed from the string stégeOn: to
output a collection’storeString to a stream.

Any collection can be converted to one of the simpler types, asiBgg,
asOrderedCollection, orasSortedCollection.

Array, OrderedCollection, SortedCollection—Collections belonging to
one of these classes also responastérray, readStream (which creates a
read-only stream on the collection) amdte Stream.

The Collection Hierarchy

The concrete classes discussed in this chapter all®allection as a
common superclass that provides a great deal of the behavi@efand
Bag, it is the direct parent.

Dictionary is a subclass @et.

The remaining concrete classésr@y, Interval, OrderedCollection and
SortedCollection) all have an intermediate superclass called
SequenceableCollection, which provides the machinery for dealing with a
well-defined ordering of elements.

Array has yet another intermediate superclAssgyedCollection, which
provides behavior associated with an integer index.

The following hierarchy illustrates the relationships of the commonly used
classes described in this chapter. It omits classes siWleasArray that

exist in the hierarchy but are described elsewhere in the documentation.
Abstract classes are underlined.

Object
Collection

Bag

Set
Dictionary

SequenceableCollection
Interval
LinkedList
OrderedCollection

SortedCollection

78 VisualWorks User’s Guide, Rev. 2.1

The Collection Hierarchy

ArrayedCollection
Array

When accessed via the System Browser, all of the classes discussed in this
chapter occur within one of four class categories:

n Collections-Abstract (Collection, SequenceableCollection,
ArrayedCollection)
n Collections-Unordered (Set, Bag, Dictionary)

n Collections-Sequenceable (Interval, OrderedCollection, SortedC-
ollection, LinkedList)

n Collections-Arrayed (Array)

VisualWorks User’s Guide, Rev. 2.1 79

Chapter 6 Collection Operations

80 VisualWorks User’s Guide, Rev. 2.1

Chapter 7

String Operations

As you might expect, characters and strings are primarily manipulated via
two classes calle@haracter andString. This chapter discusses operations
at the character level first, followed by string operations.

The final section placeSharacter andString in the context of their abstract
superclasses and, in the cas&tifng, its concrete subclasses.

As a collection of characters, a string responds to the messages described in
Chapter 6, “Collection Operations.” The more pertinent behavior is reviewed
in this chapter.

Creating a Character

When a character is created as a separate entity (rather than as part of a string
of characters), the usual way to create it is by preceding the letter with a dollar
sign. ThusfirstLetter := $a stores the first letter of the alphabet in variable
firstLetter, while shortString := 'a’ assigns a string containing that letter.

A character can also be created from its numeric equivalent witrathe:
method, so the expressidbM = (Character value: 77) is true.

ParcPlace Smalltalk also supports an extended set of characters, which
provides for international variations on the Roman alphabet (ce, ¥, &, ¢, etc.),
among other things. This extended set of characters, with values from 128 to
65535, conforms to the Xerox Character Code Standard (consult Xerox
Corporation publication XNSS 058710), with the exception that the codes for
the dollar sign §) and the international currency symbol

(=) have been swapped to conform to ASCII. Vhkie: methodcan also

be used to create an instance of one of these characters, though correct
displaying depends on that character being present in the selected font.

Characters with codes between 128 and 255 also coincide with the ISO 6937
standard (with the same exception$oandr). Of these, codes 193-207

VisualWorks User’s Guide, Rev. 2.1 81

Chapter 7 String Operations

represent nonspacing diacritical marks that are not normally used indepen-
dently. Instead, codes in the range 16rF100 to 16rF1FF represent composite
characters consisting of a base character plus a diacritical mark. The methods
basePart anddiacriticalPart provide access to the components of such a
character.

Note: Any application that manipulates characters should be prepared to
encounter any character value from 0 to 65535.

Character Operations

82

Because the extended character set contains so many sisets;ter
provides a variety of tests to help you pigeonhole an instance:

Table 7-1 Character Tests

Method Returns true if the character is...

isLowercase a-z or a lowercase special character

isUppercase A-Z or an uppercase special character

isAlphabetic a-z, A-Z or a special character

isVowel in the set: AEIOUaeiou (with or without diacritical marks)
isDigit 0-9

isAlphaNumeric

a-z, A-Z, 0-9 or a special character

isSeparator space, cr, tab, line feed, form feed or null

isDiacritical a diacritical mark (has a value in the range 16rC1 to 16rCF)

isComposed composed of base and diacritical parts (has a value of
16rF100 or higher)

isLetter English alphabet or extended character

To derive the integer equivalent of a characterasseteger. To change the
case, usasUppercase or asLowercase.

A Character can be compared to another character with the usual binary
comparison methods| >, etc.).

To combine base and diacritical characters to form a composite, use
composeDiacritical:, as inaBaseChar composeDiacritical: aDiacritical.

VisualWorks User’s Guide, Rev. 2.1

Creating a String

Creating a String

A string literal is any sequence of characters enclosed in single quotes (double
guotes are for code comments), so the usual method of creating a string is to
put single quotes around the desired words. A string can also be manufactured
from an array of integers representing character cdaesltegerArray:),

from a streamréadFrom:) or as a string of a specific number of null charac-
ters fiew:).

Substring Manipulations

Usesize to count the characters in a string. Having that information, you can
useat: to retrieve the character at a specific locatiorgtgrut: to replace a
specific character. Udst or last to retrieve the beginning or final character.

To find out whether a specific character exists in a stringinehedes:. To
count the number of times a character occurs in a stringcaeserencesOf:.

To find the index location at which a character first occursjngexOf:, as

in 'Contract 88-36' indexOf: $-. To confine the search to a range of indices,
usenextindexOf:from:to: (searching forward) gurevindexOf:from:to:
(searching backward).

To find a substring, udendString:startingAt:, as in the expressidiast line
of codeEND' findString: 'END' startingAt: 1. To start the search farther
along in the string, use a larger number fordteatingAt: argument.

To combine two strings, use a comma as in the expression:
salutation := 'Dear ', addresseeName.

To copy the beginning characters of a string,amgs/UpTo:, and specify the
number of characters to be copied as the argument. To copy a substring
having a specific set of indices, usgpyFrom:to:, as inlnputString copy-
From: 1 to: 5.

To insert one string inside another, espyReplaceFrom:to:with:, as in
'Steenson’ copyReplaceFrom: 3 to: 2 with: 'ph'. Note that these index
locations are purposely arranged so as to replacbaracters in the original
string, inserting instead. To replace instead of inserting, use an index number
for the to: argument that is equal to or larger than the from: argument.

To collapse a string to a specific size, ukepTo:. This method does not
merely truncate to achieve its goal, it cuts out the middle, leaving near-equal

VisualWorks User’s Guide, Rev. 2.1 83

Chapter 7 String Operations

fragments from the beginning and end of the original string. In some situa-
tions, this may result in a more recognizable remainder than truncation would
yield—a pathname, for example. To replace the deleted characters with an
ellipsis (...), usecontractTo:. To drop all vowels other than a leading vowel,
usedropFinalVowels.

To convert all carriage returns to newlines, cisoNewlines. The comple-
mentary method is callatewlinesToCRs. Embedded backslash characters
(\) in a string can be converted to carriage returns by wsith@CRs.

As a collection of characters, a string also provides looping methods such as
collect: andselect:, which can be used to repeat an algorithm for each char-
acter. See “Looping” on page 48 for more details.

Pattern Matching

To count the number of beginning characters that match in two strings, use
sameCharacters:, asinINV90467' sameCharacters: 'INV90413', which
returnse.

To compare two strings while ignoring case differenceszu3éus,'exit' =
'Exit' evaluates tdrue. To compare using case differences, use
trueCompare:..

Thematch: method does the same thing, and also supports two wildcard
symbols. A pound sign#) can be used in place of any single character; an
asterisk (*) can be used in place of zero or more characters. For example,
'‘Ms. #. * match: 'Ms. D. Gillen' is true.

To control whether case is ignored, use a variant of the preceding method,
match:ignoreCase:, specifyingtrue or false as the second argument.

In contrast to the boolean comparisons discussed abospahAgainst:

method provides a quantitative comparison. It returns a value between 0 and
100 indicating the similarity of the two strings (100 is an exact match). No
case conversion is performed. For example, the expregsaph' spellA-

gainst: 'grape'returns a value &0, because 80 percent of the characters are
identical.

The String Hierarchy

TheCharacter class is a subclass Bfagnitude, the abstract superclass for
numbers, dates, times and other objects that represent a magnitude. The

84 VisualWorks User’s Guide, Rev. 2.1

The String Hierarchy

following hierarchy, with abstract classes underlined, illusti@tesracter’s
place in the system:

Object

Magnitude
Character

The String hierarchy is much more complex. As mentioned befo&triag

is a collection of characters, so it is descended fafiection. It has three
intermediate superclass&equenceableCollection, ArrayedCollection,
andCharacterArray. The first two are discussed in “The Collection Hier-
archy” on page 78—from them, a string inherits the structure and behavior
that facilitates element-level operations.

The CharacterArray superclass provides behavior that is common to both
strings and text. Aext object is a string that has font attributes, and is
discussed in detail in thédsualWorks Cookbook

String is itself an abstract superclass, providing string-like behavior that is
inherited by various string implementatiolgite String, TwoByteString,
andSymbol, among otherByteString, a string of characters with each
character encoded as a byte, is the default string class. That is, the expression
String new will return an instance d@yteString instead ofString. However,

when a character whose value exceeds 255 is storedBiyte &tring, it will
automatically be converted tofavoByteString to accommodate it. Explicit
conversion is achieved via tfimmString method, as iByteString from-

String: aMacString.

The following hierarchy placeString in the context of its superclasses and
subclasses. Abstract classes are underlined.

Object
Collection
SequenceableCollection
ArrayedCollection
CharacterArray
String

ByteEncodedString
ByteString
ISO8859L1String
MacString

Symbol

VisualWorks User’s Guide, Rev. 2.1 85

Chapter 7 String Operations

ByteSymbol
woByteSymbol
TwoByteString

86 VisualWorks User’s Guide, Rev. 2.1

Chapter 8

Processes and Exception Handling

Besides control blocks, ParcPlace Smalltalk provides two other mechanisms
for controlling the flow of execution. One facilitates the control of multiple
independent processes, and the other provides a sophisticated apparatus for
handling errors.

Creating a Process

A Smalltalk process is a light-weight process that is non-preemptive with
respect to other processes of the same or lower priority. It represents a
sequence of actions being performed by the computer. Frequently, two or
more such processes need to be running simultaneously. For example, you
might wish to assemble an index in the background at the same time as your
application user is performing an unrelated activity such as entering data. In
that case, the computer’s attention must be divided between the two
activities—in effect, we want to place a fork in the path so the processor will
progress down both paths at the same time.

To split a new process to run alongside an existing one, send the mfeskage
to a block of expressions, creating a new instan@eadfess. If the indexing
operation mentioned above were capable of being launched from within the
data-entry program, the expression for doing so would look something like
indexingBlock fork, whereindexingBlock is a block containing the

launching instructions for the index program.

Thefork message triggers execution of the block’s contents jusvalsi@
message would. The difference is that the next instruction followiniptke
is executed immediately. The instruction that followske has to wait until
the block has finished, which is undesirable in the case of a background
process such as an indexing operation.

A block’s response tfork is to create a new instanceRybcess, then notify
the Processor to add the new process to its work load. This latter step is
known as scheduling a process.

VisualWorks User’s Guide, Rev. 2.1 87

Chapter 8 Processes and Exception Handling

To create a new process without scheduling it,neseProcess instead of

fork. In effect, the newly created process is immediately suspended, presum-
ably so it can be restarted by another part of your program at the appropriate
moment. In that way, the creation of the process can be separated from the
scheduling.

To pass one or more arguments to a processing blockeudtrocessWith:,
supplying the argument objects inAmay, as inaBlock newProcessWith:
#(2 #NewHire). The number of elements in tAeray must be equal to the
number of block arguments.

Scheduling a Process

Setting the

Processor is the lone, pre-fabricated instance of class

ProcessorScheduler, in the same way th&malltalk is the unique instance

of classSystemDictionary. Both are global variable®rocessor is respon-
sible for deciding which instruction to execute next, choosing among the next
actions in all of the current processes. It has to be made aware of a process
first—the process has to be scheduled.

Thefork message, described above, automatically schedules its newly

created process. To schedule a suspended process (including a process created
with anewProcess message), ugesume, as in the expressi@aProcess

resume.

To temporarily prevent execution of a process’s instructionsswsgend.
Thus,resume andsuspend are complementary methodsrésumed
process starts up where it left off when it veaspended.

To unschedule a process permanently, whether itrissitame or suspend
mode, send it the messamgeminate.

Priority Level

88

TheProcessor has a great deal in common with a juggler who spins plates
on the tops of those long, wobbly poles and then scurries from one to another,
acutely attentive. Like the juggler, who services whichever plate is wobbling
the most and spinning the leaBtpcessor lets its processes set their own
priority levels. Otherwise, it handles them in the order in which they were
scheduled.

There are 100 possible priority levels. Eight of the levels are commonly used
and can be accessed by name in code references. The lowest level is reserved,

VisualWorks User’s Guide, Rev. 2.1

Setting the Priority Level

so it does not have an access method. Table 8-1 describes the purpose of the
remaining priority levels, starting with the most dominant.

Table 8-1 Priority Levels

Priority Method Purpose

number

100 timingPriority Processes that are dependent on
real time

98 highlOPriority Critical 1/0 processes, such as

network input handling

90 lowlOPriority Normal input/output activity,
such as keyboard input

70 userinterruptPriority High-priority user interaction;
such a process pre-empts window
management, so it should be of
limited duration

50 userSchedulingPriority Normal user interaction
30 userBackgroundPriority Background user processes
10 systemBackgroundPriority Background system processes

A newly created process inherits the priority level of the process that created
it.

To assign a new priority to a process, use an expression of thaFPooress
priority: (Processor userlnterruptPriority). Notice that theriority: method
expects an integer argument, but the sender aslirtivessor for the
integer by name.

You can also specify the priority level at process creation time, feikét:
with the requisite priority level integer.

TheProcessor gives control to the process having the highest priority. When

the highest priority is held by multiple processes, the active process can be
moved to the back of the line with the expres$toocessor yield—

otherwise it will run until it is suspended or terminated before giving up the

processor. A process that is yielded will regain control before a process of

lower priority.

VisualWorks User’s Guide, Rev. 2.1 89

Chapter 8 Processes and Exception Handling

Coordinating Processes with a Semaphore

Sometimes one process has to wait for another process to mature before it can
take a particular action. For example, a printer might be tied up for the next
20 minutes printing someone else’s job. Does that mean your printing job
should just tie up thBrocessor and refuse to yield until the printer is avail-
able?

TheSemaphore class provides a simple mechanism for resolving such prob-
lems. In our example, an instanceSe#fmaphore would be created to keep

an eye on the printeprinterSemaphore := Semaphore new. The process

that funnels output to the printer, which we’ll gatinterProcess, sends the
messag@rinterSemaphore signal each time it becomes available for more
input. The waiting process, which has been suspended so it won't lock up the
Processor, is thenresumed.

How did the waiting process get suspended in the first place?

Instead of just dumping its contents and assuming they would be caught by
printerProcess, the waiting process sent the messageterSemaphore

wait. Becaus@rinterSemaphore had not yet received signal message

from printerProcess, the waiting process was suspended. IfttieterPro-

cess had already sentsgnal message that was not consumed by another
processprinterSemaphore would have done nothing, permitting the

waiting process to dump its load.

If a Semaphore receives avait from two or more processesfésumes
only one process for easfgnal it receives from the process it is monitoring.
A Semaphore resumes the oldest process of the highest priority.

90 VisualWorks User’s Guide, Rev. 2.1

Passing Data Between Processes

I job2 I job2

jobl job1

resume

signal
print print print
queue queue queue

Figure 8-1 The three steps involved in using a semaphore

A Semaphore is like a guard who permits one person to approach the Queen
at a time. Each time the Queen finishes an audience, she looks up at the guard
and saysignal. The guard then lets the next courtier in. (To add to the indig-
nity, a courtier will not receive a place in line unless he or she gives the
password to the guardiait.)

Thus, a process can be in any of four different stategpendedvaiting,
runnable andrunning The first two are very similar, with the distinction that
explicit suspend andresume messages push a suspended process from or
into runnability, while primitive semaphore methods accomplish the same for
a waiting process. A runnable process is ready to go as soonRedtes-
sorScheduler gives it permission. A running process is the one that the
processor is working on.

Passing Data Between Processes

When an application needs to match the output of one process with the input
for another process, care must be taken to make sure the transfer of data goes

VisualWorks User’s Guide, Rev. 2.1 91

Chapter 8 Processes and Exception Handling

as planned. Th8haredQueue class provides a means of coordinating this
transfer.

To create &haredQueue, usenew or new: with an integer argument spec-
ifying the number of desired slots.

To store an object in tHgharedQueue, send it amextPut: message with the

data structure as argument. If another process has been waiting for an element
to be added to the queue, which it indicated by senakxg to theShared-

Queue, that process will beesumed.

Using a Delay

TheDelay class answers the common need for a means of postponing a
process for a specific amount of time. To creabeky, useforSeconds:,

as inDelay forSeconds: 30. Or useforMilliseconds: if you require a finer
guantification of time.

To create delay that continues until the system’s millisecond counter
reaches a particular value, usilMilliseconds:. To find out the current
value of the counter, use the expresddatay millisecondClockValue.

Merely creating &elay has no impact on the current process. The process
must send thevait message to the instancellay. Thus, the following
expression in a method would suspend the current process for 30 seconds:
(Delay forSeconds: 30) wait.

Using a Signal to Handle an Error

92

Error conditions generally result in creation of a notifier window with a
predefined error message. For example, an attempt to divide an integer by
zero results in a notifier that says, “Can’t create a Fraction with a zero denom-
inator.” Sometimes it is desirable to provide a response that is more mean-
ingful in the context of your application. If a divide-by-zero error occurred in

a calculator application, for example, it would mean that a divisor had been
entered incorrectly, and that's what you would tell the user.

Another reason to intervene is that the remote method, which performs the
division and encounters the error, can only stop the program and proceed on
command. It cannot go back to the data-entry part of the process, giving the
user a chance to correct the error, because that is contained in the calling
method. So it is in the calling method that we must provide an intelligent
handler for the error.

VisualWorks User’s Guide, Rev. 2.1

Using a Signal to Handle an Error

The Signal class provides a mechanism for catching an error that occurs in
some remote method and handling it locally. You can thir&igfal as a
hawk-like observer. When things go along smootbignal just watches. But
when an error surfaces, it swoops down and alters the flow of events as only
a bird of prey can do. (Not just any error will do, though—hawks have
specific appetites.)

Emplacing such an observer involves creating an instansigonél and

telling it what you plan to do and how to handle an error. This is accomplished
with ahandle:do: control structure. In pseudocode form, the resulting
expression for our calculator’s division method is:

aSignal
handle: [error handling code]
do: [the division operation].

The error that triggers thendle: block is an instance &xception. Hence,
dynamic error trapping in Smalltalk is usually called exception handling. An
Exception is created by aaise message sent toignal. In our example,

the method that performs the actual division would send a message such as:

aSignal raise

Thus, exception handling involves two steps: Placijgaal handler to
watch over a block of expressions, and raisingareption when an error
occurs.

Choosing or Creating a Signal

To create a new instance ®ignal, useSignal new. The resulting instance
has a parent dDbject errorSignal—the significance of this ancestry is
discussed below. To create a signal with a different parentiawg8ignal
and address it to the desired parent, dherexpressiodivSignal :=
(Number errorSignal) newSignal.

Many of the classes in the system already contain uS&fnhls as class vari-
ables, so it may be appropriate to choose an existing signal instead of creating
a new one. These global signals are accessed via class methods. We've
already mentioned tHerrorSignal in theObject class, which is accessed via

the expressio®bject errorSignal. (The method nhame does not always

match the signal name; for this reason, we refer to a global signal by the
expression used to access it, rather than by its explicit name.)

VisualWorks User’s Guide, Rev. 2.1 93

Chapter 8 Processes and Exception Handling

Object errorSignal is the parent or grandparent of all other signals, with rare
exceptions. This all-encompassing lineage permits it to catch any error. Natu-
rally, that generality carries over to its response mechanism, reducing its
usefulness in situations demanding a specialized error message or other
response.

UnderObject errorSignal is Number errorSignal, among otherdNumber
errorSignal restricts its attention to numeric errors. It is the parent of several
other signals, includingrithmeticValue divisionByZeroSignal, the
specialized signal that suits our calculator’s purposes. Our pseudocode
example would then look like:

ArithmeticValue divisionByZeroSignal
handle: [error handling code]
do: [the division operation]

Before creating a new signal, consider whether an existing signal will serve
the purpose. The following hierarchy contains the most commonly reused
signals in the system:

Object errorSignal
Object notFoundSignal
Object indexNotFoundSignal
Object subscriptOutOfBoundsSignal
Object nonintegerindexSignal
Dictionary keyNotFoundSignal
Dictionary valueNotFoundSignal
Object messageNotUnderstoodSignal
Object subclassResponsibilitySignal
ArithmeticValue errorSignal
ArithmeticValue divisionByZeroSignal
ArithmeticValue domainErrorSignal
Stream positionOutOfBoundsSignal
Controller badControllerSignal
Object informationSignal
Object notifySignal
Stream endOfStreamSignal
Object controlinterruptedSignal
Object userinterruptSignal

94 VisualWorks User’s Guide, Rev. 2.1

Using a Signal to Handle an Error

For more obscure purposes, you can check the class methods of a relevant
class to see whether it contains a useful signal. The following system classes,
listed in alphabetical order, contain publicly accessible signals:

Table 8-2 Publicly accessible signals

ArithmeticValue GraphicsContext
BinaryStorage KeyboardEvent
ByteCodeStream Metaclass

ByteEncodedString Object

ClassBuilder ObjectMemory
CodeStream OSErrorHolder
ColorVvalue Palette
CompiledCode ParagraphEditor
Context Process
Controller Promise
ControlManager Set

Dictionary Signal
Exception Stream
ExternalStream UninterpretedBytes
FontPolicy WeakArray

A Signal also has a@roceedabilityattribute, which indicates whether the
error is harmless enough to permit the process to proceed from that point
onward. By default, a new signal inherits the proceedability setting of its
parent signal. To establish a specific proceedability in a new signal, use
newSignalMayProceed:, as in the following expression:

divSignal := (Number errorSignal) newSignalMayProceed: false

VisualWorks User’s Guide, Rev. 2.1 95

Chapter 8 Processes and Exception Handling

Creating an Exception

When an error such as zero division is perceived;xa@eption object is

created by sendingraise message to the appropriate signal. Thus, creating
an exception is also called raising an exception. This object then travels back
along the message stack looking for its matching signal (or an ancestor), trig-
gering the intendelandle: block. (In terms of our hawk-signal metaphor,

the prey hunts for the predator.)

In the calculator example, tlk@action method that performs the division
perceives that the denominator is zero. It sendésa message tDivision-
ByZeroSignal, which creates an instancefception. This exception then
traverses the chain of calling objects until it finds either
DivisionByZeroSignal or a more general parent, suctNasnber
errorSignal. (Remember that the error occurred ithoa block being
executed by this signal, so the handler is located in the same place.)

Theraise message effectively transfers control from the method in which the
error was perceived to thandle: block in the calling method. A variant of
raise permits control to proceed from the point of error (usually after the
handle: block warns the user or corrects the cause, or both). To create a
proceedable exception, usdseRequest (the exception requests that

control be returned to it). A proceedable exception can only be successfully
addressed to a proceedable signal; a nonproceedable exception can be
addressed to either type of signal. Thus, the exception largely determines its
own proceedability.

Setting Parameters

96

An exception can carry an argument object back to the handler block, such as
a value that can be used to diagnose the breakdown, an array of such values,
or a block of remedial operations. The defaultiisTo set that value, send a
parameter: message to the exception, with the object as argument.

For situations in which the signal’s notifier string needs to be replaced or
augmented, serafrorString: to the exception, with the replacement string as
argument. If the first character of the argument string is a space, the argument
is appended to the signal’s notifier string. Otherwise, the argument string is
used instead of the signal’s string.

By default, arException begins its search for a handler in the context that
sent theaise message. To substitute a different starting place, seearah-
From: message to thException, with the starting-point context as argu-
ment.

VisualWorks User’s Guide, Rev. 2.1

Using a Signal to Handle an Error

Because more than one instance of the sBigral can exist, as implemented

by different methods (with different handlers, possibly)Eaneption can

get fielded by the wrong handler unless it has a way to identify its originator.
To do so, sendriginator to theException, with the object that originated the
raise message as argument. To equip the handler with the originator, so it can
spot the matchingxception, send ehandle:from:do: message, supplying

the originator as the argument to fhem: keyword.

Passing Control From the Handler Block

A handler block can redirect the flow of control in one of four ways, listed in
order of increasing assertiveness:

n Refuse to handle the exception

n Exit from the handler block and from the method in which it is located
(i.e., a conventional return).

n Proceed from the point at which the error occurred.
n Restart thelo: block and try it again.

To refuse control, useject, as inanException reject. The exception will
then continue its search for a receptive signal.

To exit from the handler block, useturn. Thenil object will be returned. To
pass a value other thail, usereturnWith:.

To return control to the point at which the error occurred puseeed. To
pass an argument to be used as the value of the signal messggecesd-
With:. To proceed by raising a new exception—in effect, to substitute a
different signal in place of the original error creator—psmEceedDoing:
and raise the new exception in the argument block.

To restart thelo: block, usaestart. To substitute another block of expres-
sions for the original block, ugestartDo:, as in the expression
theException restartDo: aBlock.

If a handler does not choose one of the four options described here, it has the
same effect atheException returnWith: the value of the block.

Raising a signal within its own handler does not restart the handler. However,
raising a signal within proceedDoing: orrestartDo: block does invoke the
signal’s handle block again.

Returning to the calculator example, let’s fill in the handler code:

VisualWorks User’s Guide, Rev. 2.1 97

Chapter 8 Processes and Exception Handling

ArithmeticValue divisionByZeroSignal
handle: [:theException |
Transcript cr; show: 'Enter a nonzero divisor'.
theException restart]
do: [the division operation]

Using Nested Signals

In some situations, it will be necessary to have more than one hawk watching
the same process. For example, you might want to catch both numeric errors
and dictionary errors, without using the full generality of a mutual parent such
asObiject errorSignal. To avoid nesting oneandle:do: construct within
another, create an instanceSifjnalCollection. A SignalCollection is

created vimew and an element is appended ad:, as with any
OrderedCollection. Usehandle:do: just as you would with an individual
signal. When an exception is raised, it will try each signal in the collection
until it comes to one that it recognizes.

A SignalCollection works fine when the same handler block is to be used no
matter what kind of error crops up. But if each type of signal is the trigger for
a different handler block, useHandlerList. To create it, useew.

Each element of HandlerList consists of a signal and an associated handler
block. To add such an element, usehandle:, as inaHandlerList on:

aSignal handle: aBlock. To begin execution of thao: block, use

handleDo:, as inanHC handleDo: aBlock.

A HandlerList can be built in advance and reused in various contexts, which
is both more readable than the nesting approach and more efficient than
building even a single handler on the spot. Bear in mind, however, that
handlers in &dandlerList are not peers—they are effectively nested. A
signal that is raised in a nested series will not be fielded by a handler that is
lower in the hierarchy (or later in the collection). For example, the first set of
expressions below is semantically equivalent to the second.

HandlerList new
on: sgl handle: [:ex | "response 1';
on: sg2 handle: [:ex | "response 2';
on: sg3 handle: [:ex | "response 3";
handleDo: ["Any arbitrary action"].

98 VisualWorks User’s Guide, Rev. 2.1

Using a Signal to Handle an Error

sgl handle: [:ex | "response 1"]
do: [sg2 handle: [:ex | "response 2"
do: [sg3 handle: [:ex | "response 3"]
do: ["Any arbitrary action"]]].

Unwind Protection

When a block of expressions contains opportunities for a premature return, a
means of cleaning up the mess may be required.

Providing such a mechanism is a kind of exception handling, though it is
accomplished with a variant of thalue message that initiates a block. Use
valueOnUnwindDo:, with the cleanup expressions as the argument block.
The cleanup block is used if the execution stack is cut back because of a
signal, if areturn is used to exit from the block, or if the process is terminated.

To execute the cleanup block after either a normal or an abnormal exit, use
valueNowOrOnUnwindDo:. Remember that these messages are addressed
to a block, not to a signal.

VisualWorks User’s Guide, Rev. 2.1 99

Chapter 8 Processes and Exception Handling

100 VisualWorks User’s Guide, Rev. 2.1

VisualWorks Tools

101

VisualWorks User’s Guide, Rev. 2.1

Chapter 9
Environment Tools

In the VisualWorks environment, tools are provided that enable you to easily
control your working environment. These tools include:

n

n

VisualWorks main window
Settings

File List

Changes List

File Editor

Project

VisualWorks Main Window

The VisualWorks main window is a convenient device for opening tool

windows. To open a tool, either click once on its icon (if the tool has an icon)
or select it from the menu. This main window is the primary means of saving
and quitting an image. The VisualWorks main window should not be closed.

VisualWorks

File Browse Tools Changes Database Window Help

HEER =

[El

Figure 9-1 VisualWorks Main Window

The two most important items in the VisualWorks main window menu are for
saving an imageHjle ?Save As...) and quitting an imagé-(le ?Exit Visu-
alWorks...). These are described fully on page 3.

VisualWorks User’s Guide, Rev. 2.1 103

Chapter 9 Environment Tools

Settings Tool

The Settings Tool controls a variety of global parameters such as the appear-
ance of window decorations. Each customizable feature of the system is
represented by a page in the Settings Tool. Use the tabs to navigate among the
pages. Online help on each page of the Settings Tool will guide you in the
proper setting of each parameter.

| Settings

System Source File Locations
1 - Sources:

| visual.sou

2 - Changes:

| visual.cha

Figure 9-2 Settings Tool

User preferences include the following:

n System source file locations

n Settings for the VisualWorks palettes
n Settings for painting tools

n Settings that affect the user interface
n Browsing

n Canvas Installation

n User interface look

n Window placement

n Options for message catalogs

n Help options

n Icon label length

104 VisualWorks User’s Guide, Rev. 2.1

File List

n Default Font, printing setup
n Database Tools and user application defaults
n Time zone

To open the Setting Tool, chooBi#e ?Settings in the VisualWorks main
window.

File List

A File List is a special browser that interfaces with your operating system’s
file management facilities. With a File List, you can list the contents of any
directory or file, edit a file, and create a new file.

VisualWorks provides two versions of the File List: the standard File List and

an enhanced File List. The enhanced File List provides:

n A menu bar for display options.

n Support for globalization. See tMgsualWorks International User’s
Guidefor a description of these options.

To use the enhanced File List, turn onlthe® Enhanced Tools switch on
theUl Options page of the Settings Tool. Turn off thee Enhanced
Tools switch to use the standard File List.

To open a File List, chooSols ?File List , or click on the File List icon in
the VisualWorks main window.

VisualWorks User’s Guide, Rev. 2.1 105

Chapter 9 Environment Tools

Figure 9-3 shows both the standard and enhanced File List.

File List on smalltalks* File List on smalltalks*
stmalltalks” [} auto read Options
smalltalk/Datas et Example.st 2| || smalitalks

EL le.st
smalltalk/Table1Example.st
smalltalk/TableZExample.st
smalltalk/Table3Example.st

por smalltalk/TableZExample.st
v lIitalksTahle3Example.st
— Ml — Setect et contents’lo wiew contents. = v

— Ml — Setect et contents’lo wiew contents. =

Size: 2782
Last modified: 8/16/35 21315 pm Size: 2782
Last accessed: 8/16/35 2:19:15 pm Last modified: 8/16/35 2:13:15 pm

Last accessed: §/16/93 21915 pm

Figure 9-3 Standard and Enhanced File List

File List Views
The File List browser is divided into three views:

n The pattern view (the top view) is for entering the pathname of a direc-
tory or file. Use an asterisk as a wildcard character. To create a new file,
enter the full pathname and press <Return> or sata&pt .

n The names view (the middle view) displays the directories and files that
match the path view’s search string.

n The contents view (the bottom view) is a file editor with which you can
modify the contents of the file and save the new version. The contents
view also displays a list of files when a directory is selected in the file list

view. When a file is first selected, the contents view displays the contents
of the file, by default.

Display Options

To display the file characteristics as supplied by the operating system, select
getinfo from the <Operate> menu in the names view. When no file or direc-

tory is selected in the names view, the number of entries in the list appears in
the contents view.

106 VisualWorks User’s Guide, Rev. 2.1

File List

You can control whether file contents or characteristics are displayed by
default. To display the contents:

n On the standard File List, turn thato read switch on; to display file
characteristics by default, turn it off.

n On the enhanced File List, turn on the switch by choosing
Options ?Auto Read.

TheFileBrowser class maintains the maximum size (50 KB, by default) of
an auto-readable file; if a file exceeds that size, you will be given a choice
between reading the contents (subject to a delay if the file is very large) or
getting the file characteristics. To change the maximum size of an auto-
readable file, modify thaitialize method in thé-ileBrowser class.

To change the default pathname in the path input window, execute the
following Smalltalk expression, substituting the desjpathname:

FileBrowser defaultPattern: ‘pathname'.

File List Commands

Most of the menu commands within the File List have the same names and
meanings as defined for the System Browagein, undo, copy, cut,

paste, etc.) The commands listed in Table 9-1, Table 9-2, and Table 9-3 only
includes those that have not been defined previously. Use the <Operate>
menu in each view to display the commands.

Table 9-1 lists the pattern view command.

Table 9-1 Pattern View Command

Command Description

volumes... Display a pop-up menu of disk volumes, so you can select
one as the starting point for the pathname entry.

VisualWorks User’s Guide, Rev. 2.1 107

Chapter 9 Environment Tools

Table 9-2 lists the names view commands.

Table 9-2 Names View Commands

Command

Description

new pattern

add directory...

add file...

get info

get contents

file in

copy name

rename as...

copy file to...

remove...

spawn

Make the currently selected directory the entry in the pattern
view, appending a trailing separator and asterisk, if the selec-
tion is a directory.

Prompt for the name of a subdirectory to be created under the
currently selected directory.

Prompt for the name of a file to be created in the currently
selected directory.

Display the file characteristics as supplied by the operating
system.

Display the contents of the selected file in the contents view.

Compile the contents of the selected file into the current
image—the file is presumed to contain Smalltalk expres-
sions that define classes and/or methods.

Copy the current selection into the VisualWorks paste buffer,
so it can be pasted into the path input view (or elsewhere).

Change the name of the directory or file.

Prompt for a pathname and save a copy of the selected file
under the new name.

Prompt for confirmation, then delete the file or directory.

If a directory is selected, open a new File List with that direc-
tory as the default search string. If a file is selected, open a
new file editor on that file.

108

VisualWorks User’s Guide, Rev. 2.1

Change List

Table 9-3 lists the contents view commands.

Table 9-3 Contents View Commands

Command Description

file it in Execute the selected text, which is assumed to be in the
format created by thile out command, with exclama-
tion points as delimiters.

save Save the (edited) contents of the text view in the file that is
selected in the file list view.

save as... Prompt for the name of a new file and save the contents of
the text view in a file with that name. The file cannot be
saved to a different disk volume.

cancel Replace the current contents of the text editing view with
the contents of the disk file that is selected in the file list
view.
Change List

VisualWorks keeps a running list of changes that are made to the image. The
Change List enables you to view the changes made since the last time the
image was saved, and reload the changes selectively.

The Change List is also useful for browsing a file-in containing Smalltalk
code. See “Managing Projects and Versions,” for more details about using a

VisualWorks User’s Guide, Rev. 2.1 109

Chapter 9 Environment Tools

Change List and thehanges submenu of the VisualWorks main window in

the list view.

mylmage changes

InteractiveCampilerErrarHandler new2] [.ishow file

InteractiveCompilerErrorHandler und

MotifierContraller menu {add)
MotifierContraller class initialize (cha ™
Stripper changeLauncher (change)
ChangeListContraller class initialize

FileBrowser fileListhMenu (change) 'chategﬂry
FileBrowser textMenu (change) [selectar
SyntaxError texthenu (change) [isame

howe category

Inenu
model mayProceed

#(debug)).
model interruptedContext selector ==
#doeshMotUnderstand:
ifTrue:
[*PopUpkdenu labels:
‘proceed
debug...
carrect..” lines: #(2)
values: #(proceed debuy correct)).
~MotifieryellowButtonhenu

iFalse: [*PopUphdenu labels: “debug...” values:

Figure 9-4 Change List

The Change List window has three views. The view at top left is for
displaying a list of the changes. The top right-hand view provides on/off
switches for filtering the contents of the change list.

The Change List's filter switches are described below, as well as the
command menu for the list view. The commands for the code browser view
are defined in Table 10-5, “Code View Commands,” on page 123.

VisualWorks User’s Guide, Rev. 2.1

Change List

The first two switches (above the divider line) affect the format of each entry
in the list. The remaining six switches control which entries are displayed.
Any combination of filter switches can be selected.

Table 9-4 Change List Switches

Command Description

Show file For each entry in the list, precede it by the name of the
file in which it is recorded.

Show category For each entry in the list, precede it by the name of the
class category (for a change to a class) or message cate-
gory (for a change to a method) in which the change
occurred.

file Display only entries that are recorded in the same disk
file as the selected entry.

type Display only entries of the same type as the selected
entry (for example, all do Its, which represent executed
expressions).

class Display only entries that affect the same class as the
selected entry.

category Display only entries that affect a class or message in the
same category as the selected entry.

selector Display only entries that involve the same message selec-
tor as the selected entry.

same Display only entries that have the same type as the
selected entry and affect the same class or method. The
entries in the change list are identical, though the under-
lying code may be different for each entry.

VisualWorks User’s Guide, Rev. 2.1 111

Chapter 9 Environment Tools

112

Use the <Operate> menu to display the commands listed in Table 9-5.

Table 9-5 Change List Commands

Command

Description

file in/out ?read
file/directory

file infout 2write file

file in/out ?recover last
changes

file in/fout ? display
system changes
replay all

remove all

restore all

spawn all...

forget

replay selection
remove selection

restore selection

Prompt for a pathname. Add the Smalltalk expressions
contained in the designated file to the list being dis-
played. If a directory pathname is supplied, add the
contents of all files (presumed to be Smalltalk code) in
the directory to the list.

Prompt for a filename. Store the code indicated by the
displayed change entries in that file. The changes file
thus created can be used to transfer system changes to
another image.

Display all changes made to the system since the last
snapshot was made (i.e., the lsesste operation).

Add the contents of the Change Set to the displayed list
of changes.

Execute every change that is displayed (and not marked
for removal).

Mark all displayed entries for removal. Useget to
delete marked entries.

Unmark all displayed entries so they won't be affected
by aforget operation.

Open a new Change List containing only the displayed
entries (i.e., with all filter switches set to off but retain-
ing the effect of the filters).

Delete every entry that has been marked for removal by
aremove operation.

Execute the selected change entry.
Mark the selected entry for deletion.

Unmark the selected entry.

VisualWorks User’s Guide, Rev. 2.1

File Editor

Table 9-5 Change List Commands

Command Description

spawn selection... If the selected entry involves a change to a method,
open a method browser on the version of that method
that is currently in use. Otherwise, do nothing.

conflicts ?check con- Prompt for an output filename. Find each change entry

flicts, save as... that affects the same class or method as another change
entry, then print all versions of the affected code in the
designated file. This is useful when you are integrating
code from multiple files and you want to check for
overlaps—places where one file changes the same
method as another file.

conflicts 2check with Prompt for an output filename. Find change entries in

system, save as... which the code differs from the system’s current ver-
sion and print both versions of the affected code in the
designated file.

File Editor

The File Editor is a stand-alone version of the file-editing view in the File
List. It provides a rapid, two-step means of opening an editor on a particular
file, as follows:

1. Choos€Tools ?File Editor... in the VisualWorks main window.

A prompter asks for the name of the file to be edited. The name defaults
to the contents of theaste buffer.

2. Enter the name of the file into the input field and c(ik.

The <Operate> menu is identical to that of the File List's file editing view.

Project

You can create a separate Project to contain the views and change set associ-
ated with an aspect of your work. Such Projects can be nested, for a hierar-
chical organization. When you enter a Project, only the windows that you

have opened in that Project are displayed (initially, only the VisualWorks

main window).

To create a new Project, chodSkanges ?Open Project in the Visual-
Works main window. A Project window will appear, consisting oéater

VisualWorks User’s Guide, Rev. 2.1 113

Chapter 9 Environment Tools

button at the top and a text-editing view for recording a description of the
project.

Project

enter

w

<

Figure 9-5 Project

To temporarily erase the current Project’s windows and display the windows
associated with a different Project, selecteheer button in the desired
Project’s window. To exit from a project and redisplay the parent Project’s
windows, choos€hanges ?Exit Project in the VisualWorks main window.

114 VisualWorks User’s Guide, Rev. 2.1

Chapter 10
Smalltalk Programming Tools

This chapter discusses the major programming tools available in the Visual-
Works environment:

n System Browser

n Workspace

n System Transcript

n Debugger

n Inspector

System Browser

Structure

VisualWorks’ principal programming tool is the System Browser. Its capabil-
ities include not only “browsing” the code library, as its name suggests, but
editing, compiling and printing any selected portion of it.

To open a new System Browser window (more than one can be open at a
time), choos®rowse ?All Classes or click on the System Browser icon in
the VisualWorks main window.

The System Browser has four upper views and one lower view, as shown in
Figure 10-1. Each view provides a lower level of detail in the code library,
ending in thecode subview5), which deals with a single method (the
smallest unit of code in a Smalltalk program).

Class Categories

There are more than 700 classes of objects in the system, so they are placed
in functional groups called class categories. In the illustratioriyitgni-
tude-General category is selected.

VisualWorks User’s Guide, Rev. 2.1 115

Chapter 10 Smalltalk Programming Tools

Classes

Protocols

Methods

Code

116

The second view displays all of the classes in the currently selected category.
TheMagnitude-General category has five classes, as shown. Tihee
class is selected.

A single class, such d$me, can respond to any number of messages. For the
sake of convenience and conceptual clarity, they are placed in functional
groups called protocols. In the third view, all of the protocols for the currently
selected class are displayed. Fone, there are three categories of class
messages. Thastance creation category is selected.

The fourth view displays all of the method names in the currently selected
protocol. The instance creation protocol contains three methodsolhe
method name is selected.

The bottom view is not a list view like the other four. It is a special text editor
that enables you to perform the full range of programming operations on the
selected method, from editing to compiling. It is used to define classes as well
as their methods, so it is called@deview.

VisualWorks User’s Guide, Rev. 2.1

System Browser

System Browser

VisualWorks User’s Guide, Rev. 2.1

Fagnitude- General ‘I‘J Character Blinstance creation |+ fromSeconds: 2l
Magnitude-MNumbers ate general inguiries

Collections- Abstract ragnitude private readFrom:
Collections-Unardered h private-rollover

Collections-Sequence| | TimeZone class initialization

Collections-String Sup snapshots

Collections-Text

Collections- Arrayed *

Collections- Streams ﬂo instance @ class " vl

w

now
“&Answer a Time representing the time right nowe--this is a 24 hour clock.”

~self dateandTimeMow at: 2

I

Figure 10-1 System Browser

Notice that only views 2, 4 and 5 deal with actual system objects (classes,
methods, and code). Views 1 and 3 (class categories and protocols) are orga-
nizational constructs provided for your convenience.

The System Browser also has a toggle switch, represented by the two buttons
at the bottom of the class viemgtance andclass). Each class has two

kinds of methods: class methods and instance methods. To see the class proto-
cols and method names in views 3 and 4, selecléiss button. To see the
instance protocols and methods, seiegstance .

Each view has its own scroll bar at the right-hand edge. The <Operate> menu
is different for each of the views, and changes depending on whether an item
is selected in the view.

Each view in the System Browser has a unique menu, offering commands that
are appropriate to its contents. The commands for each view are presented
here, listed in the order in which they appear in the menu. In some views, the
menu has fewer options when no item in the view has been selected.

Table 10-1 lists the class category view commands.

117

Chapter 10 Smalltalk Programming Tools

Table 10-1 Class Category View Commands

Command Description

file out as Prompt for a filename. Store a description of each class in the
selected category, in a form that enables the class (including
all of its methods) to be placed in another VisualWorks
image with thefile in command.

hardcopy Print a hard-copy description of each class in the selected
category.
spawn Open a new browser on just the classes in the selected cate-

gory (a Category Browser).

add Prompt for a category name. Add the new category immedi-
ately above the currently selected category (if one is
selected) or at the bottom of the list.

rename as Prompt for a new name, then replace the currently selected
category name, both in the list and in all class definitions
under that category. An existing category name cannot be
duplicated.

remove Delete the currently selected category. If the category still
contains one or more classes, confirm, then delete the classes
also. References to the classes remain intact.

update Bring the category listing up to date (after filing in a new cat-
egory or adding one in another browser).

edit all Display the entire category/class organization of the system
in the code view (number 5). This permits you to rearrange
the order of the categories, using the code view’s editing
facilities. Use the code view's accept command to place the
changes in the system.

find class Prompt for a class name, then select that class in the class
view (and its category, in the category view). If a wildcard
character is used, display a dialog of all classes with match-
ing names. For example, the pattern C*View displays a list
of all classes beginning with “C” and ending in “View.”

Table 10-2 lists the class view commands.

118 VisualWorks User’s Guide, Rev. 2.1

System Browser

Table 10-2 Class View Commands

Command Description

file out as Prompt for a filename. Store a description of the currently
selected class, in a form that enables the class (including all
of its methods) to be placed in another VisualWorks image
with thefile in command.

hardcopy Print a hard-copy description of the class.

spawn Open a new browser on the class.

spawn hierarchy

hierarchy

definition

comment

inst var refs

class var refs

class refs

Open a new browser on the currently selected class and its
superclasses and subclasses.

In the code view, display the names of the currently
selected class, its superclasses and its subclasses, with
indentations to indicate hierarchic precedence.

In the code view, display the formal definition of the cur-
rently selected class. To change the definition, edit the text
and use the accept command.

In the code view, display the class comment. To change the
comment, edit the text and use the accept command.

Display a dialog that lists all of the instance variables of the
currently selected class and its superclasses. Select a vari-
able name to open a browser on all methods that refer to
that variable.

Open a browser on methods that refer to a selected class
variable.

Open a browser on all methods that refer to the currently
selected class.

VisualWorks User’s Guide, Rev. 2.1

119

Chapter 10 Smalltalk Programming Tools

Table 10-2

Class View Commands

Command

Description

move to

rename as

remove

Prompt for a category name (new or existing). Move the
class to that category and update the System Browser.

Prompt for a new class name. Replace the name in the
system dictionary and update the class view. (Use the class
refs command to find methods that refer to the old class
name—then substitute the new name manually.)

Prompt for confirmation, then delete the selected class and
its methods. (Note: It's much easier to find references to
the class and its methods before you delete, using the class
refs commands.)

Table 10-3 lists the protocol view commands.

Table 10-3

Protocol View Commands

Command

Description

file out as

hardcopy

spawn

add

rename as

Prompt for a filename. Store a description of the methods in the
currently selected message category, in a form that enables the
methods to be placed in another VisualWorks image witfilehe

in command.

Print a hard-copy description of the methods in the currently
selected message category.

Open a new browser (a message category browser) on the meth-
ods in the currently selected message category.

Prompt for the name of a new message category, then add that
name in the message category view. Add the new category
immediately above the currently selected category (if one is
selected) or at the bottom of the list.

Prompt for a new name, then update the message category view.

120

VisualWorks User’s Guide, Rev. 2.1

System Browser

Table 10-3 Protocol View Commands

Command

Description

remove

edit all

find method

Prompt for confirmation, then delete the selected message cate-
gory and its methods. (Note: It's much easier to find references
to the methods before you delete, usingstreders command
listed below.)

In the code view, display a list of all message categories, and
method names in each category. To change the order of the pro-
tocol names in the message category view, or to move methods
from one category to another, edit the text and usadbept
command.

Display a dialog that lists all of the instance methods (if the
instance switch is selected) or class methods of the currently
selected class. Select a method name to display its code in the
code view.

Table 10-4 lists the method view commands.

Table 10-4 Method View Commands

Command Description

file out as Prompt for a filename. Store a description of the currently
selected method, in a form that enables the method to be
placed in another VisualWorks image with ffie in
command.

hardcopy Print a hard-copy description of the method.

spawn Open a new browser (a Method Browser) on the currently
selected method.

senders Open a new browser (a Method Browser) on all methods

implementors

that send the currently selected message.

Open a browser (a Method Browser) on all methods that
implement the currently selected message (i.e., methods
having the same name that exist in other classes as well as
this one).

VisualWorks User’s Guide, Rev. 2.1 121

Chapter 10 Smalltalk Programming Tools

122

Table 10-4

Method View Commands

Command

Description

messages

move to

remove

Display a dialog of all method selectors that exist in the
currently selected method. After one is selected, open a
browser (a Method Browser) on all methods that imple-
ment that message.

Prompt for the name of the message category to which the
currently selected method is to be relocated. If the cate-
gory doesn't exist, it will be created. If the destination is
another class, include both the class name and the message
category, as in “Customer>accessing”. In the latter case,
the method will be copied rather than relocated.

Delete the currently selected method. (Note: It's much
easier to find references to a method before you delete it,
using thesenders command listed above.)

Table 10-5 lists the code view commands.

Table 10-5 Code View Commands

Command Description

undo Reverse the most recent cut or paste.

copy Place a copy of the highlighted text in memory. If <Shift> is held
down while copy is selected, the text is copied to the window
manager’s clipboard.

cut Place a copy of the highlighted text in the paste buffer, then
delete the original.

paste Delete the highlighted text (if any), then place a copy of the most
recently copied or cut selection in that location. If <Shift> is held
down while paste is selected, a dialog presents the most recent
five text segments that have been copied or cut, including the
window manager’s clipboard.

doit Execute the highlighted text as a Smalltalk expression. The
scope of execution is the selected class, so class variables can be
used in the expressions, and self refers to the selected class.

print it Same aslo it, except a description of the resulting object is

inserted in the text. The printed string becomes the current selec-
tion, so it can be deleted easily.

VisualWorks User’s Guide, Rev. 2.1

Workspace

Table 10-5 Code View Commands

Command Description

inspect Same aslo it, except an inspector is opened on the resulting
object.

accept Compile the code and, assuming no errors are found, store it.

cancel Restore the entire text to its condition when it was last compiled
(with accept).

format Impose standard font characteristics and indentation conventions
on the code.

spawn Open a new browser (a Method Browser) on the method. This is

useful when you want to preserve the original and make changes
in the new copy. Whichever version is compiled last, via
accept, takes effect for the entire image.

explain Insert an explanation of the selected literal or variable. The
explanation frequently contains a Smalltalk expression that you
can execute to get more details.

hardcopy Print a copy of the text or code on paper.

Workspace

A Workspace is like a free-floating code view, or a scratch pad with a pipeline
to the compiler. It is a blank window in which you can test Smalltalk code
before building it into the code library. To open a Workspace, choose

Tools AWorkspace or click on the Workspace icon in the VisualWorks main
window.

Workspace

»
< pr——

Figure 10-2 Workspace

VisualWorks User’s Guide, Rev. 2.1 123

Chapter 10 Smalltalk Programming Tools

The Workspace's <Operate> menu gives it much the same functionality as the
code view of the System Browser. Use the Workspace’'s <Operate> menu to
edit text and execute expressions.

More than one Workspace can be open at a time.

124 VisualWorks User’s Guide, Rev. 2.1

System Transcript

System Transcript

The System Transcript, by default, displays in the VisualWorks main window.

It shows a running list of informational messages generated by VisualWorks
or your code. Error messages, on the other hand, are generally displayed in a
pop-up window called a Notifier. To close a System Transcript, SEbeds

in the VisualWorks main window; in the submenu, sefatem Tran-

script .

VisualWorks

File Browse Tools Changes Database Window Help

ElREIS = ERE

julyZ.im created at August §, 1995 4:48:12 pm

Figure 10-3 VisualWorks main window and associated System Transcript

Each time you save your image, the System Transcript records the date, time
and name of the newly created image. When you file out a class category, the
System Transcript records the name of each class as it is processed. You can
also use the System Transcript to display messages, which is especially
helpful during the debugging phase of a project. For example, the following
expression could be inserted in a method to display the value of the variable
namedaccount, followed by a carriage return:

Transcript show: account printString.
Transcript cr.

To avoid an update of the display with each part of a larger messagextise
PutAll: or print:, then usendEntry to output the message, as in:

Transcript
nextPutAll: 'The accountis: ';
print: account;
endEntry.

Transcript is a global variable, and refers to an instance of the class
TextCollector, where you will find other usefdiranscript behavior.

VisualWorks User’s Guide, Rev. 2.1 125

Chapter 10 Smalltalk Programming Tools

Debugger

The System Transcript's <Operate> menu gives it much the same function-
ality as the code view of the System Browser. The menu contains commands
for editing text and executing expressions.

126

When a program error occurs, a notifier window appears. This notifier
displays the last five message-sends in the context stack. The context stack
lists message-sends that were waiting for a return when the breakdown
occurred. Sometimes that listing of the context stack is sufficient for you to
identify the problem and correct it. If so, choa$ese in the <Window>

menu, or click th&@erminate button to close the notifier.

When the error is not so serious as to prevent proceeding with the program
(i.e., itis a warning), you can clidgkroceed in the notifier. The notifier will
be closed and the program will continue.

When you need to examine the conditions that led to the failure more closely,
click Debug in the notifier. The notifier will be replaced by a debugger,

which enables you to trace the program flow leading to the error, proceed with
execution step by step, and examine the operative method and the values of
the variables at each stage of execution.

The debugging window consists of four component views, as shown in
Figure 10-4: a stack view (1), a code view (2), and two inspectors (3 and 4).
The inspectors each have two subviews, so technically the debuggex has
views. It also has two buttonstep andsend, located between views 1 and

2.

The stack view (1) is similar to the error naotifier in that it lists the message-
sends that were waiting for a return at the time of the error. The stack view’s
commands, described below, permit you to proceed with the program’s
execution at the desired pace, and to expand the depth of the listing.

The code view (2) is similar to the System Browser’s code view (see

page 122) and has the same <Operate> menu. When a message-send is high-
lighted in the stack view, the corresponding method is displayed in the code
view. Within the method, the current point of execution is automatically high-
lighted by the debugger.

The instance-variable inspector (3) and the temporary-variable inspector (4)
allow you to examine the values of the variables. The variables and their
values are updated each time you choose a different position in the execution

VisualWorks User’s Guide, Rev. 2.1

Debugger

stack with the stack view. For the operations and commands associated with
an inspector, see page 128.

| Unhandled exception: Message not understood: #sumFrominteger:

w

| Smalllnteger>>+ [
UndefinedChject==unboundtethad
UndefinedObject{Chject)==performiethod:arguments: I
UndefinedObject{Chject)==performiethod:
Compiler{SmalltalkCompiler)==evaluate:in:receivernotifying:ifF ail: by

step g

w

>

+ aNumber
“&nswer the result of adding the receiver to the argument.
Fail if the argument or the result is not a Smallinteger.
Mo Lookup."

<primitive: 1=
~aMumber Gl

A5
| Iv]

Figure 10-4 Debugger

For detailed instructions about using a debugger, see Chapter 14.

Table 10-6 Stack View Commands

Command Description

more stack Double the number of message-sends displayed in the stack
view, effectively reaching twice as far back into the history
preceding the error. When the entire stack is listed already,
this command disappears from the menu.

proceed Close the debugger and continue program execution in the
currently selected context (in the top context, if none is
selected). Execution proceeds as if the interrupted message
had completed.

copy stack Copy the textual contents of the stack view to the paste buffer
(so you can paste the stack text into a file).

VisualWorks User’s Guide, Rev. 2.1 127

Chapter 10 Smalltalk Programming Tools

Table 10-6 (Continued)Stack View Commands

Command Description

restart Close the debugger and restart execution from the beginning
of the currently selected method.

senders Open a browser on all methods that send the selected mes-

implementors

messages

skip to caret

sage.

Open a browser on all methods that implement the selected
method.

Display a dialog containing all message selectors in the
selected method. Choose one to open a browser on all meth-
ods that implement that message.

Continue program execution to the location in the method
marked by the cursor caret.

step Execute the next message-send in the currently selected
method (or in the top context in the stack, if none is selected).
Halt after a value is returned.
send Same as step, but halt in the method that receives the mes-
sage-send.
Inspector
An inspector is a window that is used to examine the values of the variables
of an object. In the simplest inspector, containing two views, the variables are
listed in the left-hand view. When you select one such variable, its value
appears in the right-hand view.
Point
B B v100@200 =
e
| ‘ ‘
Figure 10-5 Inspector
128 VisualWorks User’s Guide, Rev. 2.1

Inspector

If the value is a composite object, such as a collection, you can open a new
inspector that exposes a component object by choasspgct in the list
view.

The right-hand view is a code view, in which you can type and execute Small-
talk expressions. Instance and class variables are within the scope of the code
view. In the example illustrated at left, if you type y in the code view and

then execute it300 is returned

Inspectors are built into the debugger window and other system tools. In a
code view, you can open an inspector on a selected variable or literal by using
inspect in the <Operate> menu.

Specialized inspectors provide extended inspecting capabilities for dictionary
objects, collections, andodel-View-Controller triads. The type of
inspector is automatically matched to the object type.

VisualWorks User’s Guide, Rev. 2.1 129

Chapter 10 Smalltalk Programming Tools

130 VisualWorks User’s Guide, Rev. 2.1

Chapter 11

Application Building Tools

VisualWorks provides a variety of tools for building applications within the
Smalltalk programming environment. In this section, we briefly describe the
following tools:

n

n

n

n

n

Resource Finder

Painting (Canvas and Palette tools)
Properties

Image Editor

Menu Editor

Resource Finder

The Resource Finder is for navigating among resources. Application classes
are listed in the left-hand view. You can filter the list to show tool classes,
example classes, and other categories. To do so, ug&th&All Classes
submenu. When you add or remove an application class by some means other

VisualWorks User’s Guide, Rev. 2.1 131

Chapter 11 Application Building Tools

than the Resource Finder or the canvas$all command, use
View?Update to register the change in all Finders.

Resource Finder

View Class Resources

Erowse E Start E Add... E Remove... E Edit

Class Resources

ActionButtonSpec % categoryBrowserSpec
AdHocGueryTool

e classBrowserSpec
ArhitraryComponentSpec e metaSpec
AN | < cinorEroserSye:

3

Changelist %% protocolBrowserSpec
CheckBoxSpec » Win

CodingAssistant
ColorToolkodel
ComboBoxSpec
CompositeSpec

EeC

<]

Figure 11-1 Resource Finder

An application class can support multiple interfaces, each of which may
involve multiple canvases for the VisualWorks main window, secondary
windows and dialogs. The right-hand view lists all of the resource methods
for the selected class.

The buttons below the menu options of the Resource Finder enable you to
Browse the code for a selected claSsart the main interface (by sending
open to the class)Add a blank resource to a new or existing cl&smove

a resource, angldit a resource.

Note: Double-clicking on a class name brings up a Hierarchy Browser or
Class Browser (depending on your Settings preferences) on that class.

Canvas Tool

132

The Canvas Tool enables you to control the following features of a canvas:

n Whether the alignment grid is on, and its attributes.

n Whether the fence is on, preventing objects from being accidentally
dragged beyond the edges of the canvas.

n Which look to use while editing the canvas.

Additionally, the Canvas Tool combines the most frequently used operations
from the canvas’s menu as well as providing easy access to the Properties
Tool, which is used to customize each type of component.

VisualWorks User’s Guide, Rev. 2.1

Palette

Canvas Tool on:

Edit Tools Layout Arvangs Grd Look Spsodsd

Properties Install... Define... Browse... Open

Figure 11-2 Canvas Tool

The left-most six buttons located directly under the menu control the hori-
zontal and vertical alignment of the selected components. To the right are the
Equalize and Distribute buttons, which operate along the vertical or hori-
zontal dimension.

Palette

The Palette is the main companion tool for a canvas, in that it supplies the
interface components for the canvas. The name “Palette” derives from the
metaphor ofainting canvases that describe your application windows.

By default, a Palette is opened automatically with each canvas, though you
can arrange for manual Palette opening in the Settings tool. To open a Palette
manually, seledbols ?palette in the canvas’ <Operate> menu.

Palette

[] B

=

[Eca]&: | [m[> | [7]

Action Button

Figure 11-3 VisualWorks Palette

VisualWorks User’s Guide, Rev. 2.1 133

Chapter 11 Application Building Tools

134

The Palette has one button for each type of interface component. To add an
input field to your canvas, for example, you simply click onltipait Field
icon in the Palette and then click in the canvas to place the field there.

Therepeat switch (at upper right) is used to place the Palette in repeat
mode—the selected type of component remains selected even after you place
one on the canvas. This is useful, for example, when you want to place
multiple labels on a canvas without having to reselect the label button each
time. A shortcut for putting the Palette in repeat mode is to hold down a
<Shift> key while selecting the type of component.

When you open a Palette from the canvas’s menu, the Palette closes and
collapses with the canvas window. When you open a Palette via the Visual-
Works main window, it remains open unless you explicitly close it. Any
Palette can be used with any canvas—all Palettes are in sync.

VisualWorks User’s Guide, Rev. 2.1

Image Editor

Image Editor

The Image Editor is used to create and modify illustrations, with pixel-level
control. The resulting graphic can be integrated into a variety of components.

To open an Image Editor, chooBeols Zimage Editor from the Visual-
Works main window.

Image Editor

Image Edit Draw

E E Load... E Install...

|

3| e | b Hia

Figure 11-4 Image Editor

>

Menu Editor

The Menu Editor is used to create and edit menus, which can be integrated
into a variety of components. You use the Menu Editor to create textual
entries and specify attributes for desired menu items. The Menu Editor uses
these entries to generate a specification for building an appropriate menu
object. This code is then installed in a method in the application model.

You can use the Menu Editor to create a menu for any widget that provides a
menu, such as a menu button.

VisualWorks provides two versions of the Menu Editor: the standard Menu
Editor and an enhanced Menu Editor.

The standard Menu Editor allows you to build simple menus. To use the
standard Menu Editor, turn off thése Enhanced Tools switch on theJl

VisualWorks User’s Guide, Rev. 2.1 135

Chapter 11 Application Building Tools

Options page of the Settings Tool. Then, cho®sels ?Menu Editor from
the VisualWorks main menu to open the standard Menu Editor.

Menu Editor

File Checks |

Read E Apply E Load... E

E Euild ETest 4|

File nil,
Close closeReqguest

Checks nil
Write... writeMewCheck
Cancel cancelSelectedCheck

Figure 11-5 Standard Menu Editor

Most of the buttons on the standard Menu Editor correspond to a menu
command in the enhanced Menu Editor. See “Menu Commands” on page 137
for explanations of those buttons.

Enhanced Menu Editor

The enhanced Menu Editor provides all the capabilities of the standard Menu
Editor, plus:

n A notebook for displaying and editing Menu properties.

n Support for globalization. See thésualWorks International User’s
Guidefor a description of these options.

To use the enhanced Menu Editor, turn onitbe Enhanced Tools switch
on theUl Options page of the Settings Tool. Then, chod@sels ?Menu

136 VisualWorks User’s Guide, Rev. 2.1

Menu Editor

Editor from the VisualWorks main window to open the enhanced Menu
Editor.

Menu Editor

Menu Edit Move View Test

.,#E =

File A
Label:
Checks
Write... Default | Close
Cancel
Value: | #closeRequest

1D: |

<] E

Figure 11-6 Enhanced Menu Editor

Menu Commands

Table 11-1 lists thdenu commands for the enhanced Menu Editor.

Table 11-1 Menu Editor Menu Commands

Command Description

New Clears the Menu Editor of the current menu and prepares for a
new menu.

Load... Loads a menu from a specified class and selector into the Menu
Editor.

Install... Prompts for the method selector and class name where menu spec-

ifications are stored.

Read Edits a menu that has been applied to a selected widget.
Apply... Applies the menu in the Menu Editor to an associated canvas.
Exit Quits the Menu Editor.

Table 11-2 lists th&dit commands for the enhanced Menu Editor.

VisualWorks User’s Guide, Rev. 2.1 137

Chapter 11 Application Building Tools

Table 11-2 Menu Editor Edit Commands

Command Description

New Item Creates a new top-level menu item. If a sub-level menu item
is selected, the Menu Editor creates a new item at the selected
level.

New Submenu Creates a new submenu item.

Item

Add Line Inserts a divider line between two menu items.

Cut Deletes the selected menu item and places it into the paste
buffer.

Copy Copies the selected menu item into the paste buffer.

Paste Places a cut or copied menu item after the selected menu item.

Delete Deletes the selected menu item.

Table 11-3 lists thd¥love commands for the enhanced Menu Editor.

Table 11-3 Menu Editor Move Commands

Command Description

Up Moves the selected menu item (and all its submenus) one level up
in the hierarchy of the menu.

Down Moves the selected menu item (and all its submenus) one level
down in the hierarchy of the menu.

Right Causes the selected menu item to become a submenu item of the
item above it.
Left Causes the selected menu item to move out one level in a hierach-

ical menu structure.

View ?Sample Menu Bar opens a window that contains a test version of the
menu bar that is currently entered into the Menu Editor.

TheTest menu tests the appearance of the menu currently entered into the
Menu Editor.

138 VisualWorks User’s Guide, Rev. 2.1

Menu Editor

Properties

Table 11-4 lists the Basic properties for the enhanced Menu Editor.

Table 11-4 Basic Properties for Menu Editor

Property

Description

Label
(Default)

Value

Text of the menu item’s label.

Placing a& before a character creates a mnemonic key for that
menu item. Mnemonic keys allow menu actions to be executed by
keyboard keystrokes. To execute a mnemonic, press and hold the
<Alt> key while pressing the mnemonic key.

Name of the method that will perform the menu item’s action.

An identification for programmatic manipulation of the menu
item. It specifies a Smalltalk symbol that you can use to reference
the menu item programmatically

Table 11-5 lists the Details properties for the enhanced Menu Editor.

Table 11-5 Details Properties for Menu Editor

Property

Description

Shortcut char-
acter

Label image

The keyboard shortcut (or accelerator key) for the specified
menu item. Press and hold the <Alt> key while pressing the
shortcut character to execute the menu item command.

The graphic image used in place of, or in combination with a
textual label for the menu item.

Table 11-6 lists the Defaults properties for the enhanced Menu Editor.

Table 11-6 Defaults Properties for Menu Editor

Property

Description

On/Off indi-
cator

Initially
enabled

Initially
hidden

Prefixes a check box as a toggle indicator to the menu itk if
tially on orInitially off is selected.

Enables or disables the menu item.

Visually removes the menu item when this switch is turned on.

VisualWorks User’s Guide, Rev. 2.1 139

Chapter 11 Application Building Tools

Properties Tool

140

The Properties Tool is used to control various attributes of each component
on a canvas. The set of attributes varies with each type of component—for
example, an input field can have a menu while a check box cannot.

After you have painted a component, you can use the Properties Tool to
modify its properties to suit your application’s requirement. You can then use
thedefine dialog to generate some and possibly all of the supporting code.

Properties Tool on: Property Example

Input Field

Basics
Aspect: | #name -

Details
Menu: | #fieldhdenu alidation
1D: | Motification
Type: String ea| |l Color

______ Fosition
Format: | ”l
Drop Target

Figure 11-7 Properties Tool

| Frev | Mext |

The primary attribute for nearly all components isAlspect , which is the

name of the method that the component uses to fetch its value holder from the
application model.

The properties can be edited either with a dialog fvigerties in the
canvas’s <Operate> menu) or with a persistent tool (clicking oRribyeer-
ties button on the Canvas Tool).

UseApply or press <Return> to apply the properties to the component. The
Prev andNext buttons (in the persistent tool) can be used to move the tool’s

focus to another component in the canvas, saving you the trouble of shifting
the focus via the mouse.

VisualWorks User’s Guide, Rev. 2.1

Properties Tool

Basics Properties

The properties listed in Table 11-7 are basic to most widgets.

Table 11-7 Basics Properties

Property

Description

Label

Label Is Image

Specifies either the text that identifies the widget and
forms a part of it, or the name of a method that supplies a
graphic (provided that tHeabel Is Image property is

also selected.

Specifies that the widget is to be identified by a graphic
used in place of a textual label. The method that supplies
the graphic must be specified in thebel property.

Specifies a Smalltalk symbol that you can use to refer-
ence the widget programmatically, e.g., by sending mes-
sages to the builder.

Each running application has an object called a builder
that assembles and opens the live user interface from the
canvas specification. The builder does this by instantiat-
ing and keeping track of appropriate widget objects. You
can use a widget's ID property to specify the symbolic
name that the builder will use to reference the widget
object while the application is running. You can then
access the widget object programmatically by asking the
application model for its builder, and then asking the
builder forcomponentAt: #idSymbol.

VisualWorks User’s Guide, Rev. 2.1

141

Chapter 11 Application Building Tools

Details Properties

142

Details properties listed in Table 11-8 are available on most widgets.

Table 11-8 Details Properties

Property

Description

Font

Bordered

Opaque

Can Tab

Initially Dis-
abled

Initially Invisi-
ble

Specifies the font to be used for text in the widget's label or
for any other text displayed by the widget. You can choose:

n System, which provides the font that matches the current
platform’s system font, if there is one.

n Default, which provides the font that is currently selected
on the Text page of the Settings tool (the default selection
for the Settings tool is a medium-sized font).

n Large, which provides a font that is slightly larger than
the default.

n Small, which provides a font that is slightly smaller than
the defaultfFixed, which provides a fixed-width font
(useful for aligning text in columns).

Specifies whether the widget is to be surrounded by a solid
box.

Specifies that the widget obscures any portion of any other
widget it overlaps. This property is best used with passive
widgets (such as regions, group boxes, dividers, etc.) for artis-
tic effect. If you put an opaque widget on top of an active
widget (such as a text editor, button, list), user interactions
with the active widget may cause it to redraw itself on top of
the opaque widget.

Specifies that the user can transfer focus to the widget by tab-
bing. When a widget has focus, any keyboard input is directed
to it.

Specifies that the widget is disabled when the interface is
opened, overriding the focus policy. You must program the
application model to reenable the widget.

Specifies that the widget is invisible when the interface is
opened. You must program the application model to make the
widget visible.

VisualWorks User’s Guide, Rev. 2.1

Properties Tool

Validation Properties

Validation properties are specified when you want a widget to ask its applica-
tion model for permission to proceed with certain actions, namely, accepting
focus, changing internal state, or giving up focus. Validation properties are
useful for providing input flow control—for example, to prevent the user
from entering invalid data into an input field, or to prevent the user from
entering a field before filling in other prerequisite fields.

Each validation property specifies the symbolic namevaidation call-

back which is the message you want the widget to send while preparing for
the relevant action.For each validation callback specified, you must program
the application model to contain a corresponding method that returns a
boolean value. When the method returns true, the widget proceeds with its
action; otherwise, the widget waits for new user input so it can send the
callback again. You can implement the validation method to redirect input
focus or to disable and enable input widgets.

If you want a validation method to inspect the widget's value, you specify the
callback name with a colosé€lector:). This tells the widget to pass its
controller object as an argument to the method. The method can then ask the
controller for the widget's value. For certain widgets (input fields, text

editors, and combo boxes), you use statements such as the following to get
and set values through the controller:

input ;= aController editValue

Table 11-9 Validation Properties

Property Description

Entry Specifies the symbolic name for the widget's entry validation
callback. The widget sends this message to its application
model when it prepares to take focus (for example, when the
widget is tabbed into or selected with the mouse) If the
method returns true, the widget takes focus; otherwise, focus
is refused.

VisualWorks User’s Guide, Rev. 2.1 143

Chapter 11 Application Building Tools

Table 11-9 Validation Properties

Property

Description

Change

Exit

D. Click

Specifies the symbolic name for the widget's change valida-
tion callback. The widget sends this message to its application
model after the user changes the widget’s value and attempts
to exit the widget (presses return, tabs, clicks on another wid-
get) before the widget writes the input value to its value
model.The corresponding method in the application model
should determine whether the pending input value is accept-
able. If the method returns true, the widget's controller writes
the input value to the value model; otherwise, the value model
remains unchanged.

Specifies the symbolic name for the widget's exit validation
callback. The widget sends this message to its application
model when it prepares to give up focus. The message is sent
when the user attempts to exit the widget (presses return, tabs,
clicks on another widget). The corresponding method in the
application model should determine whether the widget can
actually give up focus. If the method returns true, the widget
gives up focus; otherwise, focus is retained.

Specifies the symbolic name for the widget's double-click
validation callback. The widget sends this message to its

application model when preparing to respond to a double-
click.

This property appears with List and Table widgets only.

Notification Properties

You specify Notification properties when you want a widget to inform its
application model that certain actions have taken place, namely, that the
widget has taken focus, changed internal state, or given up focus. Notification
properties are useful for facilitating complex flow of user input.

Each notification property specifies the symbolic name of a notification call-
back, which is the message you want the widget to immediately send after the
relevant action. For each notification callback you specify, you must program
the application model to contain a corresponding method. You implement this
method to provide the desired response to the widget’s action. you can imple-
ment the notification method to activate other widgets in the interface.

144

VisualWorks User’s Guide, Rev. 2.1

Properties Tool

Table 11-10 Notification properties

Property Description

Entry Specifies the symbolic name for the widget's entry notification
callback. The widget sends this message to its application
model immediately after taking focus. You must implement a
corresponding method in the application model that provides
the desired response to this event.

Change Specifies the symbolic name for the widget's change notifica-
tion callback. The widget sends this message to its application
model immediately after the widget sends its input value to its
value model. You must implement a corresponding method in
the application model to provide the desired response to this
event. Note that specifying a change notification callback is
similar to registering an interest in a value modebvi€hang-
eSend:to:, in that both cause a message to be sent after the
value in the value model has changed.

However, the two techniques also differ in important ways: The
change notification callback is sent only to the application
model. The message specifieddnChangeSend:to: is sent

to the specified receiver, which may, but need not be the appli-
cation model. If both techniques are used together, the message
sent byonChangeSend:to: is sent first, and the change notifi-
cation callback is sent second.

Exit Specifies the symbolic name for the widget's exit notification
callback. The widget sends this message to its application
model immediately after it gives up focus. You must implement
a corresponding method in the application model to provide the
desired response to this event.

D. Click Specifies the symbolic name for the widget's double-click noti-
fication callback. This callback is the message that the widget
sends to its application model in response to a double-click.
You must implement a corresponding method in the application
model to provide the desired response to this event.

This property appears with the List and Table widgets only.

VisualWorks User’s Guide, Rev. 2.1 145

Chapter 11 Application Building Tools

Color Properties

A widget can have up to four color zones:

n Foreground, which is determined by the widget itself, plus the current
look policy. Typically it is a salient characteristic of the widget, such as
its label, if it has one.

n Background, which is determined by the widget itself, plus the current
look policy. Typically, it is a less salient characteristic, such as the
widget'’s interior area “behind” any label.

n Selection foreground, which is the color of the foreground when the
widget is selected.

n Selection background, which is the color of the background when the
widget is selected.

You use the Color page of the Properties Tool to apply color to any of these

zones.

Table 11-11

Color Properties

Property

Description

\Y,

Read

Foregrnd

Allows you to fine-tune the value of the selected color. The
value is the degree of lightness of a color, from light to dark

Allows you to fine-tune the saturation of the selected color.
The saturation is the degree of vividness, from grayish to
vivid. (Only appears when a color other than white or black
is selected)

Allows you to fine-tune the hue of the selected color. The
hue is the gradation of color from red through yellow, green,
cyan, blue, magenta, back to red. (Only appears when a
color other than white or black is selected)

Displays the colors that are currently assigned to the four
color zones for the selected widget on the canvas.

Specifies whether to assign the selected color to the widget's
foreground color zone. Clicking on the Foregrnd button tog-
gles between assigning the selected color and assigning no
color.

146

VisualWorks User’s Guide, Rev. 2.1

Properties Tool

Table 11-11 Color Properties

Property Description

Backgrnd Specifies whether to assign the selected color to the widget'’s
background color zone. Clicking on the Backgrnd button
toggles between assigning the selected color and assigning
no color.

Selection Fore- Specifies whether to assign the selected color to the widget's

grnd selection foreground color zone. Clicking on the Selection
Foregrnd button toggles between assigning the selected
color and assigning no color.

Selection Specifies whether to assign the selected color to the widget's

Backgrnd selection background color zone. Clicking on the Selection
Backgrnd button toggles between assigning the selected
color and assigning no color.

Position Properties for Bounded Widgets

Available for bounded widgets: Action Button, Slider, Input Field, Menu
Button, Combo Box, Text Editor, List, Table, DataSet, Notebook, Subcanvas,
View Holder, Divider, Region, Group Box.

Table 11-12 Position Properties

Property Description

L Identifies the positioning choices (Proportion and Offset) for
the left edge of the selected widget.

T Identifies the positioning choices (Proportion and Offset) for
the top edge of the selected widget.

R Identifies the positioning choices (Proportion and Offset) for
the right edge of the selected widget.

B Identifies the positioning choices (Proportion and Offset) for
the bottom edge of the selected widget.

Proportion Indicates the fraction of the window’s width or height that pre-
cedes the widget's edge. You can specify a value from 0 (the
position of the left or upper window edge) to 1 (the position of
the right or lower window edge). The proportionally-deter-
mined position can be further adjusted by an offset.

VisualWorks User’s Guide, Rev. 2.1 147

Chapter 11 Application Building Tools

Table 11-12 Position Properties

Property Description

Offset Indicates how many pixels to adjust the widget's edge from the
proportionally determined starting position. A positive offset
adjusts the edge rightward or downward from the proportional
setting. A negative offset adjusts leftward or upward from a
nonzero proportion. A 0 offset causes the position of the
widget edge to be determined entirely by the proportion.

Drop Source Properties

Drop Source properties are available for the List widget only.

Table 11-13 Drop Source Properties

Property

Description

Drag Ok

Drag Start

Select On
Down

Specifies the symbolic name for the message that queries whether to initiate a drag
and drop from the widget. The widget sends this message to the application model
when the user starts to drag the mouse pointer within the widget's bounds. The speci-
fied symbol must end with a colon (:)—for exampmlastomerWantToDrag:. This

allows the widget to pass its controller as part of the message.

You must implement a corresponding method in the widget’s application model. Typi-
cally, this method tests whether the widget's data exists and is appropriate for transfer.
This method must returtnue if the operation is to proceed, afadse, otherwise.

Specifies the symbolic name for the message that initiates the drag and drop. The
widget sends this message to the application model only Dithg OK method
returns true. The specified symbol must end with a colon (:)—for exadglys-
tomerDrag:. This allows the widget to pass its controller as part of the message.

You must implement a corresponding method in the widget’s application model. This
method must create initialized instance®ofgDropData, DropSource, andDrag-
DropManager and then sendoDragDrop message to theragDropManager

instance. This method may use the effect symbol returned by the completed operation
to trigger followup actions on the drag source.

Specifies the effect of pressing the mouse button down in a drop source list. When this
property is on (the default), the user can perform drag and drop as a single gesture.
That is, pressing the mouse button causes the list item under the pointer to be selected
immediately, so that the drag can proceed from there.

When this property is off, the user must click on a list item to select it, and then, as a
separate gesture, press the mouse button down again to start the drag.

148

VisualWorks User’s Guide, Rev. 2.1

Properties Tool

Drop Target Properties

Drop Target properties are available for all widgets except linked and
embedded dataforms.

Table 11-14 Drop Target Properties

Properties Description

Entry Specifies the symbolic name for the message to be sent ByagBropManager
when the user drags the mouse pointer into the widget’s bounds. This message is sent
only if the widget'sDrop property is also filled in. The specified symbol must end with
a colon (:)—for examplégrowseDragEnter:. This allows thédragDropManager to
pass information about the object being draggdarégDropContext instance) as part
of the message.

Specifying this property is optional; however, if you do specify it, you must implement
a corresponding method in the application model. Typically, this method uses informa-
tion in the providedragDropContext to determine whether it is appropriate to drop

the dragged data in this widget, and, if so, creates a corresponding visual effect in the
widget. Because this method executes once, it should be used to turn on visual effects
(such as highlighting) that don't track the pointer. By convention, this method should
return a symbol representing the anticipated type of transfer (typicaibpEffect-

Move, #dropEffectCopy, or#dropEffectNone).

Over Specifies the symbolic name for the message sent yrigDropManager while the
user moves the mouse pointer within the widget’s bounds. This message is sent only if
the widget'sDrop property is also filled in. The specified symbol must end with a
colon (:)—for examplebrowseDragOver:. This allows thébragDropManager to
pass information about the object being draggdarégDropContext instance) as part
of the message.

Specifying this property is optional; however, if you do specify it, you must implement

a corresponding method in the application model. Typically, this method uses informa-
tion in the providedragDropContext to determine whether it is appropriate to drop

the dragged data in this widget, and, if so, changes the visual appearance of the widget.
Because this method executes whenever the pointer moves, it can produce visual effects
that track the pointer’'s movement. This method must return a symbol representing the
anticipated type of transfer (typicalfdropEffectMove, #dropEffectCopy, or#drop-
EffectNone). TheDragDropManager responds to this symbol by changing the shape

of the pointer while it is over the widget.

VisualWorks User’s Guide, Rev. 2.1 149

Chapter 11 Application Building Tools

Table 11-14 Drop Target Properties

Properties

Description

Exit

Drop

Specifies the symbolic name for the message that is sent ByabB®ropManager

when the user moves the mouse pointer out of the widget's bounds. This message is sent
only if the widget'sDrop property is also filled in. The specified symbol must end with

a colon (:)—for examplégrowseDragOver:. This allows thédragDropManager to

pass information about the object being draggdarégDropContext instance) as part

of the message.

Specifying this property is optional; however, if you do specify it, you must implement

a corresponding method in the application model. Typically, this method uses informa-
tion in the providedragDropContext to determine whether a drop was valid for this
widget, and, if so, to reverse any changes that were made to the widget’s visual appear-
ance. Because this method executes once, it is appropriate for turning off visual effects
that were turned on by thentry method. By convention, this method should return a
symbol representing the anticipated type of transfer (typiéaltgpEffectMove,
#dropEffectCopy, or#dropEffectNone).

Specifies the symbolic name for the message that is sent Byag®ropManager

when the user releases the mouse button with the pointer inside the widget’s bounds.
The specified symbol must end with a colon (:)—for exaniplewseDragOver:.

This allows théDragDropManager to pass information about the object being dragged
(a DragDropContext instance) as part of the message.

You must implement a corresponding method in the application model. Typically, this
method uses information in the providecagDropContext to determine whether the
dragged data can be dropped in this widget, and, if so, what action to take as a result. In
addition to initiating the desired action, this method reverses any changes that were
made to the widget's visual appearance byRh&y method, if appropriate. This

method returns a symbol representing the type of transfer (typigdipEffectMove,
#dropEffectCopy, or#dropEffectNone); this symbol is returned to ttizrag Start

method, where further processing may occur.

150

VisualWorks User’s Guide, Rev. 2.1

Define Dialog

Define Dialog

The define dialog generates supporting code in a limited fashion:

n It creates an instance variable in the application model when appropriate.
The variable is given the same name as the comporfespé&ct or
Client property.

n It creates an instance method that returns the object held by the instance
variable, or an empty action method for a button. The method also has
the same name as tAspect, Client orAction property.

n Optionally, it adds initialization code to the method that accesses the
instance variable, to initialize it with an appropriate information holder.
You can override the default initialization by creating an instance method
namednitialize, in which you assign to the variable a custom value in a
value holder.

The define dialog can be opened by seleatieghods ?define in the
canvas’'s menu or by clickingefine... from the Canvas Tool. You can limit
the define dialog’s scope by first selecting a single component, a group of
components, or none (which is equivalent to selecting all components).

DEFINE Models

v
+ halance
~ customerMame

< r——

W Add Initialization

Cancel

Figure 11-8 Define Dialog

Thedefine dialog lists all of the information holders and actions referenced
in the selected components. You can instruct the tool to ignore an information
holder or action by deselecting its name in the list (click to remove the check
mark).

By default, initialization code will be created in addition to the instance
variable and accessing method. Turn off Mkl Initialization feature if

VisualWorks User’s Guide, Rev. 2.1 151

Chapter 11 Application Building Tools

you prefer to leave the variable uninitialized or you want to initialize it some
other way.

152 VisualWorks User’s Guide, Rev. 2.1

Define Dialog

VisualWorks User’s Guide, Rev. 2.1 153

Chapter 11 Application Building Tools

154 VisualWorks User’s Guide, Rev. 2.1

Define Dialog

VisualWorks User’s Guide, Rev. 2.1 155

Chapter 11 Application Building Tools

156 VisualWorks User’s Guide, Rev. 2.1

Chapter 12

Database Application Building
Tools

Using the VisualWorks Objectlens to synchronize data objects with relational
data tables, the database tools allow relational data to be accessed and manip-
ulated as objects.

A brief description of the database applications tools is provided below. For
more detailed information, please refer to the VisualWorks Database docu-
mentation (online and hardcopy).

The Data Modeler

The Data Modeler is the central information point for the mapping between
the database tables and Smalltalk classes.

Canvas Composer

The canvas composer creates a canvas, and stores it on a data form and then
opens the VisualWorks painting tools to allow canvas customizing. In order

to maximize reusability, a data form may have multiple canvases and it is
recommended that canvases be constructed to provide application or organi-
zation standard components to use as building blocks.

VisualWorks Painting Tools

The VisualWorks painting tools (Canvas Tool and Palette) can be used to
modify database specific canvases that are automatically created. New fields
or columns can be manually added or deleted.

VisualWorks User’s Guide, Rev. 2.1 157

Chapter 12 Database Application Building Tools

Embedded and Linked Data Forms

Building database applications within VisualWorks can be extended by using
the Embedded and the Linked data forms. Selectable from the VisualWorks
palette, using these specifications provide the following:

n Embedded data formggive the application developer the flexibility to
use a part of a parent’s application canvas for a subordinate application.

n Linked data forms give the application developer the ability to create
additional canvases instead of using a part of the parent’s canvas. The
graphical representation of a linked data form in the parent’'s canvas is
similar to a VisualWorks action button.

Mapping Tool

This graphical tool shows how the instance variables of a specific class are
mapped to the columns of a table. It shows the type associated with each
variable as well as the type and attributes of the mapped column.

The mapping tool provides the mechanism to map variables to different
columns and to change the type or attributes of the columns.

It also provides actions for editing the type and columns. New variables can
be added, they can be removed, their type changed, a table may automatically
be created for a class, etc.

The Query Editor

The Query Editor is a tool used to define a query that is to be associated with
the application, thewnQuery, any Restricted Query defined, a menu query
or and arbitrary query.

Menu Queries

158

The Query editor contains some utilities that make it easy to define a menu in
terms of a query. To do so, the ‘Select’ field must be composed of a string and
another arbitrary object. The strings will be the labels of the menu and the
other objects will be the values.

VisualWorks User’s Guide, Rev. 2.1

The Query Editor

Ad Hoc SQL Editor

The query editor allows you to make ad hoc queries to the target data and
visually specify the data to be displayed with no required form building or
Smalltalk programming.

VisualWorks User’s Guide, Rev. 2.1 159

Chapter 12 Database Application Building Tools

160 VisualWorks User’s Guide, Rev. 2.1

Chapter 13

Application Delivery Tools

This chapter describes the tools available for extracting an application from
VisualWorks and delivering it to its end users:

n Parcel List

n Parcel Browser

n Image Maker

The first two tools enable you to create groups of class and method defini-

tions, calledparcels that can be loaded into a running image without a

compiler. The third tool enables you to create a minimal image for deploy-
ment to end users.

This chapter describes these tools. For more information about parcels and
image-making, see Part IV, “Application Delivery.”

Parcel List

To open the Parcel List, choo§eols ?Parcel List from the VisualWorks
main window.

Parcel List

Parcel LUtility

W

OPEdit
OPLookup
Order Processing

Demo Utilities
IGT Demo
OPBrowser

Figure 13-1 Parcel List

VisualWorks User’s Guide, Rev. 2.1 161

Chapter 13 Application Delivery Tools

The Parcel List shows all of the parcels in the image. From the Parcel List you
can perform operations on entire parcels, such as creating, loading, saving,
and removing them.

The Parcel List has a menu bar with two memRecel andUtility . The
Parcel andUtility menu commands are described in tables 13-1 and 13-2.

The Parcel List also has a pop-up <Operate> menu. The <Operate> menu is
identical to theParcel menu.

Filing in extras/tooldd.st enables drag and drop in the Parcel List.
When enabled, you can add classes and methods to a parcel by dragging them
from the System Browser to a parcel in the Parcel List.

Parcel Menu Commands

Table 13-1 Parcel Menu Commands

Command Description

New... Prompts for a unique parcel name. Creates a new, empty parcel
with that name. A parcel name may be any string. The Parcel List
strips names of leading and trailing blank spaces and compresses
multiple blank spaces into a single space.

Load... Prompts for a filename. Loads the parcel and all the classes and
methods it contains from the specified parcel file. Loading a parcel
will display error messages if an attempt is made to overwrite an
existing class definition or if prerequisite classes are not already
loaded. See Chapter 25 for more information.

Note: Parcel files do not contain source code. Browsing classes
and methods that have been loaded results in decompiled code.

Save As... Prompts for a filename. Writes the selected parcel and all the
classes and methods it contains to a parcel file.

File OutAs... Prompts for a filename. Stores a description of each class and
method in the selected parcel in a form that enables the class
(including all of its methods) and any extension methods to be
placed in another VisualWorks image with fie in command.
Does not file out the parcel itself.

Remove Removes the selected parcel from the system. The definitions
(classes and methods) that the parcel contained remain in the sys-
tem.

162 VisualWorks User’s Guide, Rev. 2.1

Parcel Browser

Table 13-1 Parcel Menu Commands

Rename Prompts for a new name. Replaces the current parcel name, both
As... in the Parcel Browser and in the Parcel Liksthame As has
same restrictions d¢ame.

Browse... Opens a Parcel Browser on the selected parcel.

Empty Removes all of the definitions (classes and methods) from the
selected parcel. The parcel itself remains in the system, as do the
definitions for the classes and methods that were in it.

Utility Menu Commands
Table 13-2 Utility Menu Commands

Command Description

File Into Parcel... Prompts for a filename. Files in code from the specified
source file and places all of the definitions (classes and meth-
ods) into the selected parcel.

Changes Into Adds all of the definitions (classes and methods) from the
Parcel current change set to the selected parcel.

Make Remove Prompts for a filename. Writes a script that will remove from
Script... the system all of the definitions in the selected parcel. The

script will not remove the parcel itself.

Parcel Browser

The Parcel Browser displays the contents—categories, classes, protocols, and
methods—of a single parcel and allows you to add and remove contents.

Open the Parcel Browser from the Parcel List by either:

n Double-clicking on a parcetr
n Selecting a parcel and choosiRide ?Browse .

Structure

The Parcel Browser looks much like the System Browser (described in
Chapter10, “Smalltalk Programming Tools").

VisualWorks User’s Guide, Rev. 2.1 163

Chapter 13 Application Delivery Tools

Demo Launcher Parcel Erowser

parcel view e N[Cerno Launcher <l explain il postBuildWith: =
S actions
. | R fitter aspects
filter check box .
Tools-AR 2] initialize
Tools-DAR changes
Ltils-Doc | accessing
i b (&) instance () class - ol
postBuildWith:aBuilder =

self simulationSetting value:{LaunchPad simulateDE).

Figure 13-2 Parcel Browser

The Parcel Browser has five upper views and one lower view, as shown in
Figure 13-2. Each view provides a lower level of detail in the code library,
beginning with the parcel name and category list and ending with the code
itself.

The Parcel Browser differs from the System Browser in three ways:

n The Parcel Browser contains an additional view above the category view.
Theparcel viewshows the name of the parcel and has its own <Operate>
menu, which contains commands that affect the parcel as a whole.

n The Parcel Browser displays the definitions that are in the current parcel.
It can be made to show all of the definitions that are in the system by
unselecting thélter check box.

g Items that are in the current parcel are in bold.

g Items that are in the system but not in the current parcel are in regular
typeface.

g A class name that is in italics indicates that the class itself is not in the
parcel but that one or more of its methods are.

n The definitions displayed in the Parcel Browser cannot be edited. The
Parcel Browser allows only operations that:

g Change which definitions are in the parcel
g Browse code for possible inclusion in the parcel

164 VisualWorks User’s Guide, Rev. 2.1

Parcel Browser

g Write the parcel’s definitions out of the image

Each view in the Parcel Browser has a unique menu, offering commands that
are appropriate to its contents. The commands for each view are presented
below, listed in the order in which they appear in the menu. In some views,
the menu has fewer options when no item in the view has been selected.

Parcel View
Table 13-3

Protocol View Commands

Command

Description

file out as...

save as...

update

rename as...

remove

empty

version

comment

summary

Prompts for a filename. Stores a description of each class and
method in the selected parcel, in a form that enables the class
(including all of its methods) and any extension methods to be
placed in another VisualWorks image with fie in command.
Does not file out the parcel itself.

Prompts for a filename. Writes the selected parcel and all of the
classes and methods it contains out to a parcel file.

Brings the Parcel Browser listing up to date. Useful after cre-
ating or filing in new categories, classes, protocols, or meth-
ods.

Prompts for a new name. Replaces the current parcel name,
both in the Parcel Browser and in the Parcel List. Same name
restrictions as in the Parcel List.

Removes the current parcel from the system. The definitions
(classes and methods) that the parcel contained remain in the sys-
tem.

Removes all of the definitions (classes and methods) from the
selected parcel. The parcel itself remains in the system, as do the
definitions for the classes and methods that were in it.

Shows the parcel’s version in the code view. You can edit the ver-
sion and accept the change. The version may be any string.

Shows the parcel’s comment in the code view. You can edit the
comment and accept the change.

Shows a summary, in the code view, of the classes and methods
that are defined in the parcel.

VisualWorks User’s Guide, Rev. 2.1

165

Chapter 13 Application Delivery Tools

Category View

Table 13-4 Category View Commands

Command

Description

add to parcel

remove from
parcel

find class...

Adds all of the class and method definitions that are in the
selected category to the current parcel.

Removes all of the class and method definitions that are in the
selected category from the parcel. The category and its contents
remain in the system.

Prompts for a class name. Selects that class in the class view
(and its category, in the category view). If a wildcard character
is used, displays a dialog of all classes with matching names.
For example, the pattern C*View displays a list of all classes
beginning with “C” and ending in “View.”

Class View

Table 13-5 Class View Commands

Command

Description

add to parcel

remove from
parcel

hierarchy

definition

comment

inst var refs...

Adds the selected class and all of the methods that it contains to
the current parcel.

Removes the selected class and all of the methods that it contains
from the current parcel. The class and its contents remain in the
system.

In the code view, displays the names of the currently selected
class, its superclasses, and its subclasses, with indentations to
indicate hierarchic precedence.

In the code view, displays the formal definition of the currently
selected class.

In the code view, displays the class comment.

Displays a dialog that lists all of the instance variables of the cur-
rently selected class and its superclasses. Select a variable name
to open a browser on all methods that refer to that variable.

166

VisualWorks User’s Guide, Rev. 2.1

Parcel Browser

Table 13-5

Class View Commands

class var
refs...

class refs

Opens a browser on methods that refer to a selected class vari-
able.

Opens a browser on all methods that refer to the currently
selected class.

Protocol View
Table 13-6

Protocol View Commands

Command

Description

add to parcel

remove from
parcel

find method...

Adds all of the methods that are in the selected protocol to the
current parcel.

Removes all of the methods that are in the selected protocol from
the current parcel. The protocol and its contents remain in the
system.

Displays a dialog that lists all of the instance methods (if the
instance switch is selected) or class methods of the currently
selected class. Select a method name to display its code in the
code view.

Method View

Table 13-7 Method View Commands

Command

Description

add to parcel

remove from
parcel

senders

implementors

messages...

Adds the selected method to the current parcel.

Removes the selected method from the current parcel. The
method remains in the system.

Opens a new browser on all methods that send the currently
selected message.

Opens a browser on all methods that implement the currently
selected message (i.e., methods having the same name that
exist in other classes as well as this one).

Displays a dialog of all method selectors that exist in the cur-
rently selected method. Select one to open a browser on all
methods that implement that message.

VisualWorks User’s Guide, Rev.

21 167

Chapter 13 Application Delivery Tools

Code View

168

Table 13-8 Code View Commands

Command

Description

find...
replace...

undo

copy

cut

paste

doit

print it

inspect

accept

cancel

hardcopy

Searches for the specified string.
Replaces one specified string with another.
Reverses the most recent cut or paste.

Places a copy of the highlighted text in memory. If <Shift> is
held down while copy is selected, the text is copied to the
window manager’s clipboard.

Places a copy of the highlighted text in the paste buffer and
then deletes the original.

Deletes the highlighted text (if any) and then places a copy of
the most recently copied or cut selection in that location. If
<Shift> is held down while paste is selected, a dialog presents
the five most recent text segments that have been copied or
cut, including the window manager’s clipboard.

Executes the highlighted text as a Smalltalk expression. The
scope of execution is the selected class, so class variables can
be used in the expressions, aetf refers to the selected class.

Same ado it, except a description of the resulting object is
inserted in the text. The printed string becomes the current
selection, so it can be deleted easily.

Same ado it, except an inspector is opened on the resulting
object.

Saves the contents of the code view. Only applicable for a par-
cel's version or comment. You may not change any class or
method definitions using the Parcel Browser. You must the
System Browser or another programming tool to edit classes
and methods.

Restores the entire text to its condition when it was last com-
piled (withaccept).

Print a copy of the text or code on paper.

VisualWorks User’s Guide, Rev. 2.1

Image Maker

Image Maker

To create custom images, you use a tool called Image Maker. Image Maker
enables you to remove development tools and other unwanted classes from an
image. The resulting image is more appropriate for distribution to the end
users of your application. It also occupies less disk space—perhaps signifi-
cantly, depending on the extra classes that you specify for removal.

To use Image Maker:
1. File inimagemkr.st from theutils directory.
2. In a Workspace, execute the following:

ImageMaker open

Image Maker displays a window that allows you to choose what you
want to remove from your development image before saving it as a
deployment image.

Image Maker

File Classes

w

Configuration Options

n
*

Remove Compiler

Remove Object Lens Application Framework

Remove Object Lens

Remove RDBMS Interface Capability

Remove DataSet View

Remove Motebook View

Remove Tahle Wiew

Remove O52/CUA Look & Feel

Remove tacintosh Look & Feel

Remove YWindows Look & Feel

Remove Printing Capabhility

Remove BOSS

Remove additional Classes

Figure 13-3 Image Maker

VisualWorks User’s Guide, Rev. 2.1 169

Chapter 13 Application Delivery Tools

3. Choose the capabilities that you want removed from your development
image and not included in the new deployment image file. (Note that the
capabilities are not removed from your saved development image file.)

4. Choosd-ile ?Make Deployment Image .
5. Follow the instructions presented by Image Maker.

For more information about creating deployment images with Image Maker,
see Part IV, “Application Delivery.”

170 VisualWorks User’s Guide, Rev. 2.1

Chapter 14

Debugging Techniques

The VisualWorks debugger enables you to look at the methods that are
waiting for a return value when a program interrupt occurs, examine the
values of variables in each context, dynamically change a value or a method,
insert breakpoints, and restart execution at a chosen location with the new
values and logic experimentally in place.

This chapter presents a task-oriented perspective, presenting a fuller discus-
sion of how to use the Debugger and supporting tools. The chapter is orga-
nized by debugging techniques, roughly in order of increasing intensity.

Reading the Execution Stack

To diagnose a problem, sometimes it is sufficient to see the last few entries in
the context stack. The Debugger’s top view lists as much of the stack as you
want to see, but you may not even have to launch the Debugger. The error
notifier that results from a program interrupt lists the last five contexts. An
error notifier showing the results of a programmatic elar‘fwo’) is shown

in Figure 14-1.

Exception

@ Unhandled exception: Message not
understood: #sumFrominteger:

§Debug§ Froceed Terminate

Copy stack Correct it...

EyteString(Object)==doesMotUnderstand:
Smallintegers=+

UndefinedOhject==unboundtdethod
UndefinedObject{Object)==performdethod:arguments:
UndefinedObject{Object)==performhdethod:

Figure 14-1 Error Notifier

VisualWorks User’s Guide, Rev. 2.1 171

Chapter 14 Debugging Techniques

The window label tells us thatsamFrominteger: message was sent to an
object that does not implement a method by that name. (This summary is
repeated in the top line of the window, for situations in which the window
label is not wide enough to display all of the message.) Looking at the top line
of the stack, we see that it was an object of §peString. (ByteString

didn’t understand the message, so it invokeditiesNotUnderstand

method implemented by its parent cla3bject). This is puzzling because we
sent a- message to@mallinteger, as recorded in the second line of the stack
transcript. The last three lines of the transcript are not enlightening—they
merely expose some of the execution machinery, which we have no reason to
suspect in this case.

This example illustrates two features of the execution stack worth empha-
sizing. The first line of the execution stack is often only of marginal interest,
because it usually represents the method that handles the error—it doesn’t
necessarily help you understand what caused the error. Also, the execution
machinery is a frequent inhabitant of the execution stack—very quickly you
learn to read around it.

Back to our example: Something odd happened irsthallinteger>>+
method. You can either use the System Browser to look at that method, or you
can open a Debugger, as described in the next section.

Tracing the Flow of Messages

172

As described in the previous section, the error notifier displays the last five
message-sends in the execution stack. When you need to look at one or more
of those methods, the Debugger is the most convenient tool to use. To open a
Debugger, seleatebug in the notifier's <Operate> menu. The notifier will
disappear after the Debugger is opened.

The Debugger’s window label is identical to that of the notifier from which it
was created. The execution stack view, at the top, contains the most recent
message-sends that occurred before the error. To see the associated method,
select a message-send. In the illustrat®malllnteger>>+ has been high-
lighted. The code view, in the center of the Debugger, displays the method.
Within that method, the message-send that was being processed when the
program failed is highlighted automatically.

VisualWorks User’s Guide, Rev. 2.1

Tracing the Flow of Messages

A debugger displaying the results of a programmatic eBrer'two") is
shown in Figure 14-2.

Unhandled exception: Message not understood: #sumFrominteger:

B

Stnn Chbj ect =xfoesMotUnderstand:

UndeﬂnedObJect>>unb0undMeth0d
UndefinedObject{Object)==performdethod:arguments:
UndefinedObject{Object)==performhdethod:
Compiler{SmalltalkCompiler==evaluate:in:receivernotifying:ifF ail:
optimized [in ParagraphEditor==gvaluateselection

<]

step | |
+ aNumber
“&nswer the result of adding the receiver to the argument.
Fail if the argument or the result is not a Smallinteger.
Mo Lookup."

<primitive: 1=

< r——

Figure 14-2 Debugger

Continuing our example from the previous section, in which the expregsion
+ 'two' was executed, we can see that the illegal expression could not be
handled by the primitive method that normally adds two integers together.
The alternative Smalltalk code was then executed.

Here we find the explanation for the mysterisusmFrominteger: message,
which was sent to ByteString. As you can see, themethod calls the
sumFromIinteger: method. But theeceiverof the+ message is thrergument
(self) of thesumFrominteger: message. The message receiver and argument
have traded places. We know that the argument was the 'strgigso the
sumFrominteger: message is being sent to an object of the wrong class, to a
string instead of an integer. In the next section, we’ll show how to verify this
deduction.

VisualWorks User’s Guide, Rev. 2.1 173

Chapter 14 Debugging Techniques

Inspecting and Changing Variables

174

The bottom of the Debugger is devoted to two inspectors that allow you to see
the values of variables as they exist at the chosen point in the execution stack.
Each inspector consists of a pair of views, with a list of variables in the left
view and the value of a selected variable in the right view. The inspector on
the left is for instance variables, while the right-hand inspector displays
temporary variables.

In the example that was introduced above, the expre8sidtwo' has caused

the expressiotiwo' sumFrominteger: 3 to be executed. Now we know
wheresumFrominteger: came from. We can also see why it was “misunder-
stood” as indicated in the error notifier's window label—it was addressed to
a string instead of the expected number. To verify this, seMweinber in the
inspector view. Figure 14-3 shows the resulting inspector.

ByteString
————{al b’ 2
;

2
3

Figure 14-3 An inspector

The Debugger’s inspectors let you change the value of a variable and then
restart the program. Simply edit the value, chantjing to a legal value such

as the intege2. Then selecaccept in the <Operate> menu. A confirmer will
then offer to begin at the top of the current method using the new value. Click
on theyes button. You can then seledstart in the stack view’s menu, trig-
gering execution.

In practice, the valugwo' normally would be supplied by another method
rather than a Workspace expression. Having traced the problem to this value,
you can correct its parent method. To do so, editaedpt the revised

method in any code view such as the one in the Debugger or the one in the
System Browser.

VisualWorks User’s Guide, Rev. 2.1

Inserting Status Messages

Inserting Status Messages

In some situations, it is useful to have your program display status messages
during the debugging phase. For example, you might want a record of the
changing values of a particular variable as it passes through various states. In
such a case, the System Transcript is used to display each message and thus
accumulate the desired record.

To open a System Transcript, seledilities in the VisualWorks main

window, then seledranscript in the submenu. (The system sometimes
displays messages in the System Transcript, so it's a good idea to keep one
open at all times.)

To send output to the System Transcript, insert expressions such as the
following in your code, substituting a pertinent object name for the italicized
word:

Transcript show: anObject printString.
Transcript cr.

Transcript tab.

Transcript show: 'Checkpoint 1'; cr.

To avoid an update of the display with each part of a larger messagextise
PutAll: or print:, then usendEntry to output the message, as in:

Transcript nextPutAll: "'The account is: '; print: account; endEntry.

To clear the System Transcript for a new batch of messages,csieet in
its menu. Alternatively, execute the expressioanscript clear.

The System Transcript is a distinguished instance ofg¢R&Collector class.
For more transcript output messages, see the instance methods of that class.

Interrupting a Program

There are two ways to manually stop a Smalltalk program: by typirsgia
interrupt key sequence or by insertindgialt message in the program.

<Control>-c is the key sequence assigned to the user interrupt function. Enter
this key sequence when you want to freeze a program that is looping
endlessly, or to capture its state at a specific observable stage.

VisualWorks User’s Guide, Rev. 2.1 175

Chapter 14 Debugging Techniques

For more precise control, insert the expressigifihalt in a method at the
location where you want execution to be interrupted, #vespt the revised
method. The next time that method is called, an error notifier will be
displayed at the specified juncture.

Both user interrupts arthlt messages generate the usual error notifier, which
can be used to open a Debugger. The next section describes how to restart an
interrupted program.

Restarting a Program

176

The Debugger provides five ways to restart an interrupted program, allowing
you to control the starting and stopping place for continued execution. The
first two commands described below control the starting point—since they
continue execution as far as possible, the Debugger is closed at the outset. The
last three control the stopping place—the Debugger is left open so you can
inspect the conditions at the new position in the stack.

To close the Debugger and restart at the beginning of the currently selected
method, seleatestart in the stack view's <Operate> menu. This is useful
mainly after you have altered the method'’s code. To restart at a prior position
in the program, select the context in which you want execution to begin, then
selectrestart in the <Operate> menu.

To close the Debugger and continue from the point of interruption in the
currently selected method, selpcbceed in the <Operate> menu. This is
useful when you have changed the values of one or more variables in the
Debugger’s inspector views, or when the current interrupt is of less interest
than one that is still to come. Execution continues as follows:

n If a user interrupt caused the break, execution proceeds from the point of
interruption.

n If anything other than a user interrupt caused the break, execution
proceeds with an assumed value as the return of the interrupted message-
send. That value isil unless you executedw it orprint it command
inside the Debugger, in which case the value returned from that action is
used.

To continue to a specific place in a method, click on that location to put the
insertion point (caret) there, then selgkip to caret in the <Operate>
menu.

VisualWorks User’s Guide, Rev. 2.1

Restarting a Program

To execute the next message-send, selestéipebutton in the Debugger or
selectstep in the <Operate> menu. Execution stops after the value is
returned from the called method.

To send the next message, and “follow” it by displaying the called method,
select thesend button or selectend in the <Operate> menu. This command
provides the finest granularity of message-flow inspection.

VisualWorks User’s Guide, Rev. 2.1 177

Chapter 14 Debugging Techniques

178 VisualWorks User’s Guide, Rev. 2.1

Chapter 15

Managing Projects and Versions

VisualWorks provides tools to help you carve a large task into manageable
projects, to share code with other developers, and to track code versions.
These tools—Project, Change List and Change Set—are described in struc-
tural terms in the chapter “Environment Tools,” which describes how to use
those tools.

We begin with Project, which helps you organize your display into groups of
views and your coding into groups of changes. Then the various ways of
viewing and manipulating those changes are discussed.

Entering and Exiting a Project

Creating a Project involves launching a new Project window, by selecting
Changes ?0Open Project in the VisualWorks main window. The Project
window contains a text view in which you can describe the project. Above
that view is arenter button—use this button to activate the project, clearing
the display of the parent project’s windows.

The Project window with the descriptidiser Interface is shown in
Figure 15-1.

Project
enter

[

User interface,

<

Figure 15-1 Project Window
A new VisualWorks main window will be provided with the new project. Use

the VisualWorks main window to launch tools as usual. When you exit the
project, those windows will be remembered by the system for the next time

VisualWorks User’s Guide, Rev. 2.1 179

Chapter 15 Managing Projects and Versions

you enter the project. To exit the current project, cho@$mnges ?Exit
Project in the VisualWorks main window.

Projects can be nested to create a hierarchy of working contexts. Besides
allowing you to create separate groups of tools for different aspects of your
work, Project also keeps a separate Change Set for each project. The Change
List, however, when used to access the changes file, ignores project bound-
aries. Change Set and Change List are discussed further below.

To close a project permanently, selelgtse in its <Operate> menu. If you

have made changes to the system in that project, a confirmer will verify your
intent to close the project. The image is not affected by this decision—it
reflects changes made in any project. Similarly, the changes file is the same
for all projects. Only the Change Set associated with a project, along with the
window setup, is lost when a project is closed.

Summarizing Project Changes

180

The Change Set is a summary of changes that have been made within a
project. Unlike the Change List, it does not track the evolution of those
changes. Instead, its intent is to list the affected parts of the system so you can
use thefile out as command to store your work in a set of disk files. This
strategy for transporting changes from one image to another is most conve-
nient when the changes are confined to a few classes and categories. For more
involved sets of changes, it may be easier to use the Changewugttfile

with the desired changes.

VisualWorks User’s Guide, Rev. 2.1

Summarizing Project Changes

A ChangeSet inspector, summarizing the changes for the active project is
shown in Figure 15-2.

ChangeSet
E =
dependents Redefined classes:
classChanges ch |
methodChanges ange)
classRemoves Changelist
rearganizeSystem MethodDefinitionChange
specialDolts
Classes with changed comment:
Change
ChangelList

MethodDefinitionChange

ReCrganized classes:
Change class
ChangelList
MethodDefinitionChange
MethodDefinitionChange

class

v| _Method changes:

<]

Figure 15-2 ChangeSet Inspector

To open a Change Set, sel€ttanges ?inspect ChangeSet in the Visu-
alWorks main window. An inspector will be opened on the current Change
Set, with types of changes listed in the left view. Select a type to display the
changes in the right view, or selsetf to see the entire list in formatted form.

The Change Set can contain any of the following types of change:

n Added, deleted and changed classes
n Added, deleted and changed methods

n Changes in class categories (reported as “Reorganized System”) and
message categories (reported as a “Reorganized class”)

n “Special dolts,” rarely encountered, involving a system change such as
renaming a global variable, that is effected via an executed expression (a
dolt). Such a change is only captured in the Change Set when the expres-
sion is executed by passing it as an argumeS8hialltalk evaluate-
AndRemember:.

In the spirit of summarization, the Change Set does not separately report
changes involving methods in a class that has been added. Whide gou

the new class, its methods will be included anyway. To file out the entire
change set, selefite out as in the left view's <Operate> menu.

VisualWorks User’s Guide, Rev. 2.1 181

Chapter 15 Managing Projects and Versions

To empty the Change Set for the active project, in readiness for a new batch
of work, selecempty in the left view's menu. You can also perform this
operation by choosinGhanges ?Empty Changes... in the VisualWorks

main window.

To update an open Change Set window after making a change to the system,
select a different type of change in the left view temporarily. Unlike the
Change List, the Change Set is not affected when you save the image.

The Change Set lists methods that have been changed but it has no code view
with which to browse them. To open a method browser on the changed
methods in the Change Set, execute the expreSsiailtalk
browseChangedMessages.

Some programmers prefer to have the Change Set remove entries related to a
class when that class is filed out via a browser, and similarly for all classes in

a category when the category is filed out. To turn on this feature, execute the
following expression:

Browser removeChangesOnFileOut: true

Reverting to a Prior Version

182

The system automatically maintains a list of all changes made to an image.
This Change List is stored in a disk file having the same name as the image,
with the cha extension. To open a specialized browser for use with the
Change List, sele@hanges ?Open Change List in the VisualWorks

main window.

During the course of development, a class or method may undergo several
changes. The Change List makes it easy to see the evolution and to examine
the details of the code at any stage in its development. This is particularly
useful when you need to see a prior version so you can change the code back.

The Change List contains two views and a set of toggle switches. To display
the changes that have occurred since the last snapshot was taken, select
recover last changes in the <Operate> menu of the list view at the top. If
you want to display changes that are in the Change Set, dislelety

system changes instead. To display all changes, ignoring snapshot bound-
aries, selectead file and supply the name of the changes file as described
above.

VisualWorks User’s Guide, Rev. 2.1

Reverting to a Prior Version

A Change List browser, showing the use of the same switch to narrow the
displayed list of changes is shown in Figure 15-3.

mylmage changes

____________ = [show file
MatifierCantroller menu (add [ishow categary
MatifierCantraller menu (add) [Efile
MotifierController menu {add) Ctype
MotifierController menu {add) Crolass
____________ [Zcategory
[Gselectar
W same
Inenu Al

model mayProceed
iFalse: [*PopUphdenu labels: “debug...” values:
#(debug)).
model interruptedContext selector ==
#doeshMotUnderstand:
ifTrue:
[*PopUpkdenu labels:
‘proceed
debug...
carrect..” lines: #(2)
values: #(proceed debuy correct)).
~MotifieryellowButtonhenu

Figure 15-3 Change List Browser

Entries in the Change List generally identify the affected object and the nature
of the change, as in “NotifierController menu (add).” When you select an
entry, the affected class or method appears in the text view as it existed after
the change.

Use the switches in the upper right corner of the Change List to filter the
displayed entries. For example, to display only those changes that affect the
same class as the one affected by the selected change entry, clicklasghe
switch. To further restrict the listing to identical entries, such as “NotifierCon-
troller menu,” click on th@aame switch.

With thesame filter turned on, as shown in the illustration, it is easy to
examine the evolution of a class or a method. To revert the code to a prior
version, select the entry representing that version and then regkst
selection in the <Operate> menu. You can also reg#ay all , when you
want to incorporate all of the listed changes.

VisualWorks User’s Guide, Rev. 2.1 183

Chapter 15 Managing Projects and Versions

Sharing Code

When the code you want to transport to another image is confined to a few
classes, methods or categories, use the System Brotiteeo'st as capa-
bilities to create a set of disk files containing the code. Use the Change Set, if
necessary, to identify the affected classes and methods. When you want to
save all of the changes in the Change Set, use thatfiteobsit as

command.

When the code you want to share consists of fragments from many different
classes and categories, it may be more convenient to use the Change List to
write file with the desired code. Begin by loading all changes into a Change
List, as described in the previous section.

Next, remove the irrelevant changes. For example, dolts are likely candidates
for removal because they rarely affect the image in a lasting way. Also,
remove duplicate entries, as when a method has undergone several changes—
leave only the last entry in each case. kdsrove selection andremove

all to mark one or more changes for deletion, therfargget to erase them

from the list. Use the filter switches to control the affected range of entries.

For example, to remove all dolts, begin by selecting any dolt. Then turn on
thetype switch so all of the dolts are listed. Selemiove all in the
<Operate> menu to mark them for deletion, tferget to erase them. Then
turn off thetype switch to see the remaining entries.

When the displayed list of changes is the desired set, salieeffile in the
<Operate> menu and supply the name of a file in which to store the code. That
file can then be loaded into another image vigfiteen command in a File
Editor or File List.

Only the displayed changes are included wrige file operation, so if it is
possible to define the minimum set of changes by using the filter switches
alone, it is not necessaryitemove andforget the nondisplayed entries.

Note: When you write selections to a file, be sure to choose a filename that
is different from any file that has been read into the change list. The change
list maintains pointers to the code in the files that are read in, and these
pointers become invalid when you overwrite a file.

Condensing the Changes File

In a large development effort spanning months or years of programming, the
changes file can become very large. To condense it so that it contains only the

184 VisualWorks User’s Guide, Rev. 2.1

Condensing the Changes File

most recent change for each method, execute the expr&ssioceFileM-
anager default condenseChanges. Changes involving anything other than

a method—such as a class addition or redefinition—will also be purged from
the file permanently. It's a good idea to make a backup copy of the changes

file before condensing it.

VisualWorks User’s Guide, Rev. 2.1 185

Chapter 15 Managing Projects and Versions

186 VisualWorks User’s Guide, Rev. 2.1

Chapter 16

Accessing Databases

To support the needs of information-intensive applications that rely on
database managers, the External Database Interface provides access to rela-
tional databases from within a VisualWorks application.

The External Database Interface provides the framework for interacting with
relational databases, in the form of a set of protocols supported by several
superclasses, but does not provide direct support for any particular database.
Database Connect products are available to provide connectivity to specific
databases, such as ORACLE and SYBASE.

The examples in this chapter assume that you have installed and configured a
VisualWorks database connection according to the instructions provided in
the Database Connect’s documentation. Using a VisualWorks database
connection also requires that the necessary database vendor software be
installed and correctly configured.

Overview

Interacting with a relational database involves the following activities:

n Establishing a connection to the database server

n Preparing and executing SQL queries

n Obtaining the results of the queries

n Disconnecting from the server

The External Database Interface consists of a set of classes that provide
uniform access protocol for performing these activities, as well as the other
activities necessary for building robust database applications. The classes that
make up the External Database Interface are found in the class category

Database-Interface. Each of these classes is listed below with a more
detailed explanation to follow later in the chapter.

VisualWorks User’s Guide, Rev. 2.1 187

Chapter 16 Accessing Databases

Table 16-1 Core External Database Interface Classes

Database Interface Class Description

ExternalDatabaseConnection Provides the protocol for establishing
a connection to a relational database
server, and for controlling the transac-
tion state of the connection.

ExternalDatabaseSession Provides the protocol for executing
SQL queries, and for obtaining their
results.

ExternalDatabaseAnswerStream Provides the stream protocol for read-
ing the data that might result from a

query.

In addition to these three core classes, other classes provide useful informa-
tion.

Table 16-2 Other External Database Interface Classes

Database Interface Class Description

ExternalDatabaseColumnDescription Holds the descriptions of the columns
of data retrieved by queries

ExternalDatabaseError Bundles the error information that
may result if something goes awry.

ExternalDatabaseFramework Provide behind-the-scenes support
ExternalDatabaseBuffer for the activities above, and are not
ExternalDatabaseTransaction accessed directly.
ExternalDatabaselnstallation Provides the VisualWorks applica-

tion used to install the database con-
nections, which are available as
separate products. Its use is described
in the release notes that accompany
each connection product.

Data Interchange

Before going further, it is important to understand how relational data is
moved into and out of the Smalltalk environment. Data in the relational
database environment is stored in tables, which consist of columns, each

188 VisualWorks User’s Guide, Rev. 2.1

Establishing a Connection

having a distinguished datatyg&lT, VARCHARnd so on). When a row of
data from a relational table is fetched into Smalltalk, the relational data is
transformed into an instance of a Smalltalk class, according to Table 16-3.

Table 16-3 Relational Type Conversion

Relational Type Smalltalk Class
CHAR, VARCHAR, LONG String

RAW, LONG RAW ByteArray

INT Integer

REAL Double
NUMBER FixedPoint
TIMESTAMP Timestamp

NULL values for relational type become the Smalltalk valilen input, and
nil becomes NULL on output.

The row itself becomes either the Smalltalk classy or an instance of
some user-defined class. The choice is under your control, and is described
later in the chapter.

If a particular DBMS supports additional datatypes, the mapping between
those datatypes and Smalltalk classes is explained in the documentation for
the corresponding VisualWorks database connection. For example, Visual-
Works Sybase Connect supports a datatype called MONE\/iShalWorks
Database Connect User’s Guide for SYBA®Ecribes how that datatype is
mapped to a Smalltalk class.

Establishing a Connection

To establish a connection to a database, you create an instdbderofal-
DatabaseConnection (or one of its subclasses), supply it with your

database user name, password, and environment (connect) string, then direct
it to connect. In the following example we connect to (and then disconnect
from) an ORACLE server.

| connection |
connection := OracleConnection new.
connection

VisualWorks User’s Guide, Rev. 2.1 189

Chapter 16 Accessing Databases

username: 'scott’;

password: 'tiger’;

environment: '@T:dbserver:dbname'.
connection connect.
connection disconnect.

Securing Passwords

In the connection example above, references to the username, password, and
environment string are stored in instance variables of the connection object,
and will be stored in the image when it is saved. For security reasons, you may
wish to avoid having a password stored in the image. A variant of the connect
message allows you to specify a password without having the session retain
a reference to it. The example below assumes that the class that contains the
code fragment responds to the messei)serForPassword. The string it
answers is used to make the connection.

connection

username: 'scott’;

environment: '@T:dbserver:test'.
connection connect: self askUserForPassword.

Getting the Details Right

190

Environment strings (also called connect strings by some vendors) can be
tricky things to remember. As a convenienggternalDatabaseConnec-

tion keeps a class-side registry of environment strings, allowing them to be
referenced by logical keys. This enables applications to provide users with a
menu of logical environment names, instead of the less mnemonic environ-
ment strings.

ExternalDatabaseConnection supplies the following class-side messages
for manipulating the registry:

addLogical: key environment: environment

removelogical: key

mapLogical: key "Return the actual environment for the given key"
environments "Return the Dictionary of environments"

VisualWorks User’s Guide, Rev. 2.1

Establishing a Connection

Executing the following example establishes a logical environment named
'test'.

OracleConnection
addLogical: 'test'
environment: '@T:dbserver:test'.

Thereafter, applications that specify 'test' as their environment will actually
get the longer ORACLE connect string. Actually, any string that an applica-
tion provides as an environment is first checked against the logical environ-
ment registry. If no match is found, the application’s string is used unchanged.

Setting a Default Environment

ExternalDatabaseConnection also remembers a default key, allowing
applications to connect without specifying an environment. The default key
is set by sendingxternalDatabaseConnection the messageefaultEnvi-
ronment:, passing the default environment string as the argument. The
messageefaultEnvironment answers with the current default environment,
which may be nil.

The following code sets 'test' to be the default logical environment, allowing
applications to connect without specifying an environment.

ExternalDatabaseConnection
defaultEnvironment: 'test’

Default Connections

In addition to hiding the details of the environméntternalDatabaseCon-
nection has the notion of a default connection, allowing some applications to
be coded without direct references to the type of database to which they will
be connected. As an abstract cl&sgernalDatabaseConnection does not
create an instance of itself. Instead, it forwards the new message to the
subclass whose name it has remembered as the default. For example, to
registerOracleConnection as the default class to use, execute:

ExternalDatabaseConnection defaultConnection:
#OracleConnection.

VisualWorks User’s Guide, Rev. 2.1 191

Chapter 16 Accessing Databases

This feature, along with the environment registry explained above, allows the
connection example to be rewritten as:

connection |
connection := ExternalDatabaseConnection new.
connection
username: 'scott’;
password: 'tiger'.
connection connect.
connection disconnect.

The default is set initially by tHexternalDatabaselnstallation application
when the first database connection is installed.

On the Importance of Disconnecting

Establishing a connection to a database reserves resources on both the client,
VisualWorks, and the host, database server, side. To ensure that resources are
released in a timely fashion, it is important to disconnect connections as soon
as they are no longer needed, as shown in the examples above. VisualWorks
provides a finalization-based mechanism for cleaning up after a connection if

it is “dropped” without first being disconnecting. Since finalization is trig-
gered by garbage collection, the eventual cleanup could take place long after
the connection has been dropped. If your application or application environ-
ment is resource-sensitive, we recommend proactively disconnecting the
connections.

Using Sessions

192

Having established a connection to a database server, you can then ask the
connection for a query session, which reserves the “right” to execute queries
using the connection.

A session is a concrete subclas&rfernalDatabaseSession, and is

obtained from a connected connection by sending the megst®ggssion.

The connection answers with a session. If the connection is to a Sybase server
(i.e., is aSybaseConnection), the session will be 8ybaseSession.

You can ask a session to prepare and execute SQL queries by sending the
messageprepare:, execute, andanswer, in that order. Depending on the
DBMS, prepare: will either send the query to the server or defer the send

VisualWorks User’s Guide, Rev. 2.1

Using Sessions

until the query is actually executed. This is important to note, because errors
can be detected (and signals raised) at efitegrare: or execute time.

To examine the results of the query execution, serahawer message to

the session. This is important to do even when the query does not return an
answer set (e.g., an INSERT or UPDATE query). If an error occurred during
guery execution, it is reported to the applicatioarswer time. More on
answer, and how it is used to retrieve data, below.

We can extend our connection example to execute a simple query. Note the
use of two single quotes around the name. These are needed to embed a
single-quote within a Smalltalk String.

| connection session |
(connection := ExternalDatabaseConnection new)
username: 'jones";
password: 'secret’;
connect.
(session := connection getSession)
prepare: 'INSERT INTO phonelist VALUES("Smith", "x1234")"
execute;
answer.
connection disconnect.

As a shortcut, the example above can be simplified somewhat by sending
prepare: to the connection, which will answer with a prepared session.

| session |
session := connection
prepare: 'INSERT INTO phonelist VALUES("Smith", "x1234")'
session
execute;
answer;
disconnect.

We'll explore getting data back from a query later.

Variables in Queries

Repetitive inserts would be very inefficient if each insert required that a query
be prepared and executed. This overhead can by side-stepped by preparing a

VisualWorks User’s Guide, Rev. 2.1 193

Chapter 16 Accessing Databases

194

single query, witlquery variablesas placeholders. This prepared query can
then be repeatedly executed with new values supplied for the placeholders.

Query variables (also called parameters) are placeholders for values in a
guery. Some databases (e.g., ORACLE) produce an execution plan when a
query is prepared. Preparing the plan can be expensive. Using variables and
binding values to them before each execution can eliminate the overhead of
preparing the query for subsequent executions, which can be a substantial
performance improvement for some repetitive applications.

To execute a query containing one or more query variables, the session must
first be given an input template object, which will be used to satisfy the vari-
ables in the query. The method by which values are obtained from the input
template depends on the form of the query variable. If the input variable is a
guestion mark, then the input template must either have indexed variables or
instance variables. The first template variable will be used to satisfy the value
for the first query variable, the second template variable will be used to satisfy
the second query variable, and so on. Consider the example:

session prepare: 'INSERT INTO phonelist (name, phone) VALUES(?,
?)".
#(('Curly' 'x47") ('Moe' 'x29") ('Larry' 'x83")) do:

[:phoneEntry |

session

bindInput: phoneEntry;
execute;
answer |.

Here the input template is @aray with two elements. The first element, the
name, will be bound to the first query variable, and the second element, the
phone number, will be bound to the second.

A closely related form for query variables is a colon followed immediately by

a number. Again, the input template must contain indexed or instance vari-
ables, and the number refers to the position of the variable. The query above
could be rewritten to use this form of query variable as follows:

session prepare: 'INSET INTO phonelist (hame, phone) VALUES(:1,
:2)".

VisualWorks User’s Guide, Rev. 2.1

Using Sessions

Named Input Binding

The third form that a query variable can take is a colon followed by a name.
Using this form of binding, the query above would be written as:

session prepare: 'INSERT INTO phonelist (name) VALUES(:name)'.

The name in a query variable represents a message to send to the input
template. The input template is expected to answer a value, which will then
be bound for the variable. We could use this form of binding in the example
above ifPhoneListEntry included theaccessingnethods

name
"Answer the receiver’'s name"
name

phone
"Answer the receiver’s phone number"
Aphone

This form of binding is very powerful, but should be used with great care. If
the input template does not respond to the message selector formed from the
bind variable name, a “Message Not Understood” notifier will result. Also,
there are many messages that all objects respond to that would have unex-
pected effects if used as bind variables, sudina#s

Binding NULL

To bind a NULL value to a variable, use the “valud” This works in
general, but causes problems in a particular scenario with ORACLE. The
query

SELECT name, phone FROM phonelist WHERE name = ?

will not work as expected if the variable's valuailsORACLE requires that
such queries be written as:

SELECT name, phone FROM phonelist WHERE name IS NULL

VisualWorks User’s Guide, Rev. 2.1 195

Chapter 16 Accessing Databases

Getting Answers

Once a database server has executed a query, it can be queried to determine
whether the query executed successfully. If all went well, the server is also
ready with an answer set, which is accessed by way of an answer stream. Veri-
fying that the query executed successfully and obtaining an answer stream are
both accomplished by sending a session the messeayeer.

In responding t@answer, the session first verifies that the query has finished
executing. If the database server has not yet responded, the session will wait.
If the server has completed execution and has reported errors, the session will
raise an exception. See the “Error Handling” section below for information

on the exceptions that might be raised, and details on how to handle them.

If no error occurredanswer will respond in one of three ways. If the query
is not one that results in an answer set (that is, an INSERT or UPDATE
qguery),answer will respond with the symbatnoAnswerStream. If the
query resulted in an answer set (that is, a SELECT quaersyver will return

an instance oExternalDatabaseAnswerStream, which is used to access
the data in the answer set, and is explained below.

The third possible responseanswer is the symbo#noMoreAnswers.

When a database supports multiple SQL statements in one query, or stored
procedures that can execute multiple queries, you canesesweer repeat-

edly to get the results of each query. It will respond with e#herAnswer-
Stream or an answer stream for each, and will eventually respond with the
symbol#noMoreAnswers to signify that the set of answers has been
exhausted.

Handling Multiple Answer Sets

196

If your application is intended to be portable and support ad hoc queries, we
recommend that you seadswer repeatedly until you receidoMoreAn-
swers. For example, Sybase stored procedures can return multiple answer
sets. The following code fragment shows how to retrieve the answer sets that
might result from executing a Sybase stored procedure.

session
prepare: 'exec get_all_phonenumbers’;
bindOutput: PhoneEntry new;
execute.
connection class externalDatabaseErrorSignal
handle:[:ex | Dialog warn: ex parameter first domsErrorString |

VisualWorks User’s Guide, Rev. 2.1

Getting Answers

do:[| answer |
[numbers := OrderedCollection new,
(answer := session answer) == #noMoreAnswers]
whileFalse: [answer == #noAnswerStream
ifFalse: [numbers := numbers , (answer upToEnd)]]

More information on managing Sybase stored procedures can be found in the
VisualWorks Database Connect User’s Guide for SYBASE.

What Happens when you Send an Answer Message

When you sendnswer to a session, a number of things happen in the back-
ground as the session prepares the resources needed to process an answer set.
Most of these steps are out of the direct view of the application. However, an
understanding of them may help when you are debugging database applica-
tions.

To answer a query, the session performs the following steps:

1. Waits for the server to complete execution.

2. Verifies that the query executed without error.

3. Determines whether an answer set is available.

If the query returns an answer set, then the session performs the following
additional steps:

4. Obtains a description of the answer set.

5. Allocates buffers to hold rows from the answer set.

6. Prepares adaptors to help translate relational data to Smalltalk objects.

Waiting for the Server

Some database servers, such as Sybase, support asynchronous query execu-
tion, giving control back to the application after the server has begun
executing the query. To determine whether the server has completed execu-
tion, a session sends itself the messaBeady, which returns a Boolean
indicating that the server is ready with an answer, igRiéady returnstrue.

If the target DBMS does not support asynchronous execution (for example,
ORACLE),isReady will always returrtrue.

VisualWorks User’s Guide, Rev. 2.1 197

Chapter 16 Accessing Databases

Did the Query Succeed?

The session next verifies that the query executed without error. Errors that the
server reports are bundled into instanceSxdérnalDatabaseError (or a
Connection-specific subclass). A collection of these errors is then passed as a
parameter to an exception. See “Error Handling” on page 208 for more
details.

How Many Rows were Affected?

Some queries, such B DATE or DELETE, do not return answer sets. To
determine how many rows the query affected, send the messeg@eunt to

the session, which will respond with an integer representing the number of
rows affected by the query. Because database engines consider a query to
have executed successfully even if no rows where matched\WyERE

clause, testing the row count is an easy way to determine whether an
UPDATE or DELETE query had the desired effect.

Database-specific restrictions on the availability of this information are docu-
mented in the release notes for your database-connect product.

Describing the Answer Set

198

If the query has executed without error, the session determines whether the
query will return an answer set.

If the session returns an answer set, the session will obtain from the server a
description of the columns in the set. Sending the messdgmnDescrip-

tions to the session (after sendiagswer) will return anArray of instances

of ExternalDatabaseColumnDescription (or a connection-specific

subclass), which describes the columns in the answer set.

A column description includes: the name, length, type (expressed as a Small-
talk class), precision, scale, and nullability of a column. A column description
will respond to the followingiccessingprotocol messages:

name "Answer the name of the column"
type "Answer the Smalltalk type that will hold data from
the column"

length "Answer the length of the column"

scale "Answer the scale of the column, if known"

precision "Answer the precision of the column, if known"
nullable "Answer the nullability of the column, if known"

VisualWorks User’s Guide, Rev. 2.1

Getting Answers

Connection-specific subclasses may make additional information available.

Note that the names returned for calculated columns may be different
depending on the target DBMS. For example, the query

SELECT COUNT(*) FROM phonelist

determines the number of rows in the phone list table. ORACLE names the
resulting column "COUNT(*)", while Sybase does not provide a name.

Buffers and Adaptors

Finally, the session uses the column descriptions to allocate buffers to hold
rows of data from the server, and adaptors to help create Smalltalk objects
from the columns of relational data that will be fetched from the server into
the buffers. This step is invisible to user applications, but can be the source of
several errors. For example, if insufficient memory is available to allocate
buffers, arunableToBind exception will be raised. AimvalidDescriptor-

Count exception will be raised if the output template (explained below)
doesn’t match the column descriptions.

Processing an Answer Stream

After the session has completed the steps above, and assuming that the query
results in an answer set, the session createéxt@nnalDatabaseAnswer-

Stream and returns it to the applicatidbxternalDatabaseAnswerStream

is a subclass ddtream, and is used to access the answer set. It responds to
much of the standard streaming protocol described in the VisualWorks Cook-
book. There are a few restrictions. Answer streams are not positionable, they
cannot be flushed, and they cannot be written.

Answer streams are created by the session; your application should not
attempt to create one for itself.

Answer streams respond to the messagfend, for testing whether all rows
of data from an answer set have been fetchednaxifor fetching the next
row. Attempting to read past the end of the answer stream results in an
endOfStreamSignal.

In our example, all rows of the phone list could be fetched as follows:

numbers := OrderedCollection new.
answer := session answer.

VisualWorks User’s Guide, Rev. 2.1 199

Chapter 16 Accessing Databases

[answer atEnd] whileFalse:
[l row|

row := answer next.

numbers add: row].

SendingupToEnd causes the answer stream to fetch the remaining rows of
the answer set and return them inGnaleredCollection. UsingupToEnd,
the example above can be simplified as:

answer := session answer.
numbers := answer upToEnd.

While this works well for small answer sets, it can exhaust available memory
for large answer sets.

Unless the session has been told otherwise, data retrieved through the answer
set comes packaged as instances of the Alaiag.

Using an Output Template

200

Having rows of a table (or columns from a more complex query) arrive
packaged as instances of the clagsly might suffice for some applications.

For more complex applications, it is preferable to have the data appear as
instances of some user-defined class. In our example, we would want rows of
data fetched from the phonelist table to appear as instances d?ltassl -
istEntry.

To achieve thiskExternalDatabaseSession supports an output template
mechanism. If an output template is supplied to the session, it will be used
instead of the clas&rray when creating objects to represent rows of data in
the answer set. In our example, this would look like:

session
prepare: 'SELECT name, phone FROM phonelist’;
bindOutput: PhoneListEntry new;
execute.

answer := session answer.

Rows of data from the table will now appear (by sendimgwer next) as
instance ofPhoneListEntry.

VisualWorks User’s Guide, Rev. 2.1

Getting Answers

Columns of data from a row of the answer set are loaded into the output
template's variables by position. Column 1 loads into the first variable,
column 2 loads into the second variable, and so on. The output template can
have either instance variables or indexed variables. When both are present,
the indexed variables are used.

Skipping Slots in an Output Template

To skip a variable in the bind template, place an instance of theQibgesst

in it. There must be exactly as many non-Object variables in the output
template as there are columns in the answer set. For example, consider the
scenario of having the additional instance variaiplesed in an instance of
PhoneListEntry. If this instance variable is not fetched from the database,
you could add the method

newForSelect
"Create a new instance of the receiver,
and initialize it to be fetched from the database."

Asuper new initializeForSelect
to theinstance creatiomprotocol on the class side BhoneListEntry, and

initializeForSelect
"Initialize an instance of the receiver to be fetched from the
database."

unused := Object new.

to theinitialize-releaseprotocol on the instance side. This allows us to safely
rework the example above by writing

bindOutput: PhoneListEntry newForSelect;

to specify the output template.

Using Column Names to Bind for Output

As with input binding, a name-based alternative is provided for output
binding. Sending a session the mesdagdOutputNamed:, with the output
template as an argument, causes the session to create a set of mutator

VisualWorks User’s Guide, Rev. 2.1 201

Chapter 16 Accessing Databases

messages to send to the output template to store values fetched from the data-
base. These mutator messages are formed by appending colons to the column
names. Our phone list example could use named output binding if the class
PhonelListEntry provided the following instance-siéecessingnethods:

name: aName
"Set the phone entry’s name"

name = aName

phone: aPhoneNumber
"Set the phone entry’s phone number"

phone := aPhone

The same caveats apply to named output binding as apply to named input
binding. If the output template does not answer the message, a “Message Not
Understood” notifier will result. Be sure that the needed method names do not
override methods that are necessary for the functioning of the object.

Reusing the Output Template

By default, a new copy of the output template is used for each row of data
fetched. If your application processes the answer set one row at a time, the
overhead of creating a copy can be eliminated by arranging to reuse the
original output template. SendidjocateForEachRow: false to the

session tells it to reuse the template. Output template reuse is temporarily
disabled when sendingpToEnd to the answer stream.

Setting a Block Factor to Improve Performance

Some database managers allow client control over the number of rows that
will be physically transferred from the server to the client in one logical fetch.
Setting this blocking factor appropriately can greatly improve the perfor-

mance of many applications by trading buffer space for time (network traffic).

If our phone list database resided on an ORACLE server, our example might
be greatly improved by sending the mesdalgekFactor: to the session, as
follows:

202 VisualWorks User’s Guide, Rev. 2.1

Getting Answers

session
prepare: 'SELECT name, phone FROM phonelist’;
bindOutput: PhoneListEntry new;
blockFactor: 100;
execute.

Since the phone list entries are small, asking for 100 rows at a time is not
unreasonable.

Note that the block factor does not affect the number of objects that will be
returned when you send the messagxt to the answer stream. Objects are
read from the stream one at a time.

If a database connection does not support user control over blocking factors
(as with Sybase), the value passebltzkFactor: is ignored, and the value
remains set at 1. Additional restrictions on the uddadkFactor:, if any, are

listed in the release notes for your Database Connect product.

Cancelling an Answer Set

If your application finishes with an answer stream before reaching the end of
the stream (perhaps you only care about the first few rows of data), it is good
practice to send the messagacel to the session. This tells the database
server to release any resources that it has allocated for the answer set. The
answer set will be automatically canceled the next time you prepare a query,
or when the session is disconnected, but a proactive approach is often prefer-
able.

Disconnecting the Session

Establishing a session reserves resources on the client side, and often on the
server side. When you're done with a session, sending the mdgsamge

nect to the session disconnects it and releases any resources that it held. The
connection is not affected. A disconnected session will be automatically
reconnected the next time a query is prepared. If you expect your application
to experience long delays between queries, you might consider disconnecting
sessions where possible.

Sessions will automatically disconnect when their connection is discon-
nected. Sessions are also protected by a finalization executor, and will be
disconnected, eventually, after all references to them are dropped.

VisualWorks User’s Guide, Rev. 2.1 203

Chapter 16 Accessing Databases

Catalog Queries

To simplify access to a database’s catalbgernalDatabaseSession
provides a few methods that hide the details of the particular database
vendor’s catalog structure.

To obtain a list of available tables, send a session the mdisageles. To
get a subset of the available tables, dastdiablesLike:, with a String
argument containing an SQL wildcard, as in:

"Get a list of available tables."
tables := session listTables.

"Get a list of all tables that begin with 'PHONE'
tables := session listTablesLike: 'PHONE%'.

"Get a list of all tables owned by PUB2"
tables := listTablesList: 'PUB2.%'.

Each element in the resulting collection is an instance of the $tang.

Note: The availability of a table does not mean that the application has the
necessary permissions to access the table.

To obtain a description of the columns in a table, send a session the message
describeColumns:, with the table name as an argument.

columns := session describeColumns: 'phonelist’;

Each element in the resulting collection is an instandextdérnalData-
baseColumnDescription.

The catalog query messages may cause a query to be prepared and executed
using the session, and might also affect a session's input and output templates.
If you reuse the session, you will have to establish new input and output
templates, if desired.

204 VisualWorks User’s Guide, Rev. 2.1

Controlling Transactions

Controlling Transactions

By default, every SQL statement that you prepare and execute is done within
a separate database transaction. To execute several SQL statements within a
single transaction, sermbgin to the connection before executing the state-
ments, followed byommit after the statements have executed. To cancel a
transaction, senbllback to the connection.

The connection keeps track of the transaction state. If an application bypasses
the connecting by preparing and executing SQL statements like COMMIT
WORK or END TRANSACTION, the connection will lose track of the trans-
action state. This might lead to later problems.

Coordinated Transactions

Several connections can participate in a single transaction by appointing one
connection as the coordinator. Before the connections are connected (that is,
sentconnect or connect:), send the coordinating connection the message
transactionCoordinatorFor: once for each participating connection, passing
the connection as the argument.

After the coordination has been established, serzbgin to the coordinator
begins the coordinated transaction. Sendimgmit or rollback to the coor-
dinator causes the message to be broadcast to all dependent connections.

If the database system supports two-phase commit, the coordination assures
the atomic behavior of the distributed transaction. If the database does not
support two-phase commit, a serial broadcast is used.

Participants in a coordinated transaction must be supported by a single-
database connection. It is not possible, for example, to mix ORACLE and
Sybase connections in a coordinated transaction.

Releasing Resources

If your application has relatively long delays between uses of the database,
you may want to release external resources during those delays. To do so,
send gause message to any active connections. This causes the connections
to disconnect their sessions, if any, and then disconnect themselves. Any
pending transaction is rolled back. Both the connections and their sessions
remain intact, and can be reconnected.

To revive a paused connection, sengtdume. The connection will then
attempt to re-establish its connection to the database.

VisualWorks User’s Guide, Rev. 2.1 205

Chapter 16 Accessing Databases

Note: If the password was not stored in the connection, as discussed under
“Securing Passwords” on page 190, the proceedable exceptiquired-
PasswordSignal will be raised.

Sessions belonging to resumed connections will reconnect themselves when
they are prepared again.

Sendingpause orresume to ExternalDatabaseConnection has the same
effect as sendingause or resume to all active connections.

Tracing the Flow of Execution

A tracing facility is built into the VisualWorks database framework, and is
used by database connections to log calls to the database vendors’ interfaces.
Enabling this facility can be quite useful if your application’s use of the
database malfunctions.

A trace entry consists of a time stamp, the name of method that requested the
trace, and an optional information string. Database connections use this string
to record the parameters passed to the database vendor’s interface routines,
and the status or error codes that the interfaces return. This information can
be invaluable when tracking down database problems.

Directing Trace Output

To direct tracing information to the System Transcript window, execute the
following expression in a workspace (or as part of your application):

ExternalDatabaseConnection traceCollector: Transcript
To direct tracing into a file, execute the following:

ExternalDatabaseConnection traceCollector: 'trace.log' asFilename
writeStream

206 VisualWorks User’s Guide, Rev. 2.1

Tracing the Flow of Execution

Setting the Trace Level

The framework supports the following of levels of tracing. The default trace
level is zero.

Table 16-4 Trace Levels

Trace Level Description

0 Disables tracing.

1 Limits the trace to information about connection and query
execution.

2 Adds additional information about parameter binding and

buffer setup.

3 Traces every call to the database.

The trace level is set by executing:

ExternalDatabaseConnection traceLevel: aninteger

Disabling Tracing

Setting the trace level to 0 disables tracing.

Adding Your Own Trace Information

To intermix application trace information into the trace stream, place state-
ments like

ExternalDatabaseConnection trace: aStringOrNil

in your application. An argument ofl is equivalent to an empty string; only
a time stamp and the name of the sending method will be placed in the trace
stream.

You can avoid hard-coding the literal naire¢ernalDatabaseConnection
by asking a connection for its class, and sending the trace message to that
object, as in:

connection class trace: ('Made it this far ', count printString , ' times").

VisualWorks User’s Guide, Rev. 2.1 207

Chapter 16 Accessing Databases

See thdracing protocol on the class side BkternalDatabaseConnection
for additional information.

Error Handling

Error handling in the VisualWorks database framework is based on signals
and exception handlers.

For practical purposes, the set of errors that a database application might
encounter can be divided into two groups.

The first group is state errors, and these errors normally occur when an appli-
cation omits a required step or tries to perform an operation out of order. For
example, an application might attempt to answer a query before executing it.
If the application is coded correctly, these kind of errors generally do not get
generated.

The second group is execution errors, and they get generated when an appli-
cation performs a step in the correct order, but for some reason the step fails.

When either type of error is encountered, an exception is signaled and any
available error information is passed as a parameter of the signal. The appli-
cation is responsible for providing exception handlers and recovery logic.

Signals and Error Information

208

The database framework provides a family of signals, most of which are
based on the common parexternalDatabaseErrorSignal, which is

defined in thesignal constantprotocol on the class side BkternalData-
baseFramework. “The Database Signal Hierarchy” on page 209 describes
signals in more detalil.

If a signal is the result of a database error, the connection code that sends the
signal to an exception handler first collects the available database error infor-
mation into instances d&xternalDatabaseError, and then passes the infor-
mation as a parameter of the signal. If the signal results from a state error, the
signal is sent without additional information.

An instance oExternalDatabaseError, or a connection-specific subclass,
stores a database-specific error code, and, when available, includes the string
that describes the error. The error code is retrieved by sending a database error
the messagebmsErrorCode, and to get the string the messdgensError-

String is sent. See thExternalDatabaseError accessingrotocol for addi-

tional information.

VisualWorks User’s Guide, Rev. 2.1

Error Handling

Exception Handling

The example below shows one way to provide an exception handler. The
handler is for the general-purpose database exceptiennalDatabaseEr-
rorSignal. If this exception, or one of its children, is signaled from the state-
ments in thedo: block, thehandle: block is evaluated. In this example, the
handle: block extracts the error string from the first database error in the
collection that was passed as a parameter to the exception handler, and uses
this string in a warning dialog.

connection class externalDatabaseErrorSignal
handle: [:ex | "If the query fails, display the error string in an OK
dialog"
Dialog warn: ex parameter first dbmsErrorString |
do: [
session
prepare: 'SELECT name, phone FROM fonelist';
execute.
answer := session answer].

In this example, the error is caused by the invalid table name in the query. If
the connection in this example is to an ORACLE database, the database error
in the collection passed to the handler (that is, the database error accessed by
ex parameter first), will be an instance dDracleError, and will hold as its
dbmsErrorCode the number 942, and as dbmsErrorString the string
ORA_00942: table or view does not exist.

The Database Signal Hierarchy

The hierarchy of signals that the database interface provides is found in the
signal constantprotocol on the class sideBtternalDatabase Framework
and its subclasses.

The two parent signals in the hierarchy exéernalDatabaseErrorSignal
andexternalDatabaselnformationSignal. The error signals generally
represent failures, which prevent continuation, while the information signals
represent errors that a handler can recover from by septicged or
proceedWith: to the exception.

A few of the signals are of special interest.

The signalsnvalidConnectionState andinvalidSessionState are raised
when a state violation is encountered in a connection or session, respectively.

VisualWorks User’s Guide, Rev. 2.1 209

Chapter 16 Accessing Databases

These signals indicate that the application has performed an operation out of
order.

The signakexternalDatabaseLibrarylnaccessibleSignal, which results in
a“Database API libraries inaccessible” notifier, is a signal that is often
encountered in the early stage of database application development. This
signal is raised if a connection determines that the Smalltalk Object Engine
cannot access the required database vendor’s libraries. On Windows and OS/2
platforms, this is typically caused by not having the required DLLs in the
search path. On UNIX and Macintosh platforms, this is usually caused by
running an Object Engine that was not linked with the required vendor
libraries. If you experience this signal, double check the VisualWorks
database connection documentation to verify that you are running the correct
Object Engine, and that any software required by the database vendor is
present and configured.

Choosing an Exception to Handle

210

With the wealth of exceptions that might be signaled, which ones should an
application provide handlers for? The answer, as with many of life’s difficult
guestions, is “it depends.” For many applications, it only matters if a query
“works.” In this case, providing a handler fexternalDatabaseError-

Signal is usually sufficient. Other applications might be more sensitive to
specific types of errors, and will want to provide more specific handlers.

Unfortunately, the use of exception-specific handlers is complicated by the
fact that the errors that the low-level database interface reports may at first
appear to be unrelated to the operation being performed. For example, the
connection to a remote database server can be interrupted at any time, but the
exception signaled will depend on the database activity that the application
was performing at the time the problem was detected.

The recommended strategy is to provide a handler for as general a signal as
you feel comfortable with (for examplexternalDatabaseErrorSignal),

and invest effort, if necessary, in examining and responding to the database-
specific errors that will be passed to the handler. We recommend against
providing a completely general handler (for exampleCbject error-

Signal), especially during development, as this will make nondatabase
problems more difficult to isolate.

VisualWorks User’s Guide, Rev. 2.1

Image Save and Restart Considerations

Image Save and Restart Considerations

When an image containing active database connections is exited, the connec-
tions are firspaused, and any partially completed transactions are termi-
nated viarollback.

To arrange for your application to perform some set of steps before the trans-
action is terminated, your application model must first register as a dependent
of the clas€xternalDatabaseConnection. For example:

ExternalDatabaseConnection addDependent: self.

The application model then createsumuate: (or update:with:) method,
and tests for thapdate: argumenttaboutToQuit. For example:

update: anAspectSymbol with: aValue
anAspectSymbol == #aboutToQuit
ifTrue:["perform desired action."].

Reconnecting When an Image is Restarted

When an image is restarted, all references to external resources are initialized,
as if apause message had been sent to the diadernalDatabaseCon-

nection. To arrange for your application to take further action, take the steps
described above, testing for thpdate: argumentfreturnFromSnapshot.

Your application can reconnect its connections by sending ¢bemect (or
connect: with a password). This re-establishes the connection to the database
server (subject to the constraints discussed in “Releasing Resources” on
page 205). Any sessions will need to be re-prepared by sending the sessions
prepare: with the query to prepare, though your application might as easily
drop the old sessions and get new ones.

VisualWorks User’s Guide, Rev. 2.1 211

Chapter 16 Accessing Databases

212 VisualWorks User’s Guide, Rev. 2.1

Image Save and Restart Considerations

VisualWorks User’s Guide, Rev. 2.1 213

Chapter 16 Accessing Databases

214 VisualWorks User’s Guide, Rev. 2.1

Chapter 17

Troubleshooting

This chapter lists exceptional conditions you may encounter, and suggests
remedies. Because Smalltalk lets you modify fundamental system classes
such a®bject, it is fairly easy to cause errors in system operation—though
not if you exercise caution when changing a system class. For example,
removing theDbject class would not be a good idea.

Recovering from a System Failure

The best defense against the unforeseen is to use the VisualWorks main
window’s File ?Save As command to make a snapshot of your image
frequently. The Change List provides a second line of defense.

After a power outage or other system failure, open the image and the project
in which you were working at the time of the crash. Open a Change List by
selectingChanges ?0Open Change List in the VisualWorks main window.

Display the changes made since the last snapshot by selectovgr last

changes in the list view’s <Operate> menu. Edit the displayed list, if you
want to cull unnecessary entries such as dolts and any changes that may have
contributed to the system failure. For example, to delete all dolts, which are
usually unnecessary for recovery purposes, select any dolt in the list view and
select theype switch. Chooseemove all in the <Operate> menu to mark

all the dolts for deletion, then seldotget to erase them. Then deselect the
type switch to display the remaining changes.

When the displayed list contains the desired changes, sgtay all in the
<Operate> menu.

If you made changes in more than one project since the last snapshot was
saved, you may want to perform this recovery operation separately for each
project’s changes. That way, the Change Set associated with each project will
be updated correctly. For more information about the Change List, see
“Reverting to a Prior Version” on page 182.

VisualWorks User’s Guide, Rev. 2.1 215

Chapter 17 Troubleshooting

Start-up Errors

If the command line that is used to start VisualWorks is incorrect, one of the
errors listed in Table 17-1 will result. Fix the problem as described and then
try the start-up again. The errors are listed in alphabetical order.

Table 17-1 Start-up Errors

Error Message Description

Can't open file filename.’ The image file named on the command
line doesn't exist.

Can't load image. Your image file may not be as long as
its header claims itis (that is, either the
header was damaged or the image file
was truncated).

Your image file is not compatible with You are probably trying to run an

the virtual machine. obsolete image or a file that is not an
image.
Insufficient memory to allocate heap. Your machine lacks the necessary

swap space or physical memory to
load the image. If other processes are
tying up memory, try removing some
of them.

No image filename supplied. The command line must include the
name of an image file.

Option ‘X’ (option-name) value should An illegal value was supplied for a
be between low and high. command-line option.

OS initialization error, sorry. Some kind of operating system
resource is unavailable.

Unable to read the image file. No read permission for the image file.

usage: virtualMachineFilename Any command-line syntax error.
options] imageFilename

Source Code Unavailable in Browser

216

If the sources file (named st80.sources by default) is moved to a nonstandard
directory, you must make a new snapshot that recognizes its actual location.

VisualWorks User’s Guide, Rev. 2.1

Low Space

To do so, open a Settings Tool to Beurces page and insert the pathname
for the sources file in the appropriate field, &utept the new setting. Then
make a new snapshot by chooskilg ?Save As... in the VisualWorks main
window.

Low Space

When a low-space notifier warns that the system is running out of memory
space, close any unneeded windows to free up memory resources. Then select
File ?Collect Garbage in the VisualWorks main window. For more infor-
mation about the system’s memory management facilities, see the chapter
“Memory Management.”

No VisualWorks Main Window

If you close the VisualWorks main window, you no longer have access to the
usual means of opening new tools, saving your image and quitting from Visu-
alWorks.

You can close the VisualWorks main window from a Workspace, a System
Browser or a System Transcript. To do this, execute the following expression
to start a new VisualWorks main window:

LauncherView openLauncher

You can then continue working.

Can't Exit from VisualWorks

If you find that you are unable to exit out of VisualWorks (#ile ?Exit
VisualWorks command does not work), use the facilities provided by your
operating system and window manager. These facilities are explained in the
following sections.

UNIX
If you started VisualWorks from a shell, type <Control>-c in that shell.

If you started by selecting a menu item or clicking an icon in your windowing
system, you will have to kill the process as follows:

VisualWorks User’s Guide, Rev. 2.1 217

Chapter 17 Troubleshooting

1. In a shell, enter the following to list the active processes:
% ps ax

2. Substitute the PID (process identification number) associated with the
VisualWorks process in the following command:

% kill -term PID
3. If that doesn’t work, use the stronger but less graceful version of the

command:
% kill -kill PID
Macintosh
SelectQuit in the Macintosh menu bar at the top of the screen.
Windows

While holding down the <Shift> and <Control> keys, select the Close option
on the system menu of the VisualWorks main window.

Emergency Exit (all platforms)

If Smalltalk stops responding to inputs such as mouse movements, try typing
the program interrupt, <Control>-c. If that doesn’t work, the system provides
an Emergency Evaluator, which can be used to ex&mtdltalk quit even

when much of the system is in an unusable state. To open an Emergency Eval-
uator, type <Shift>-<Control>-c. That is, hold down both the <Shift> and
<Control> keys while you press the c key.

An Emergency Evaluator window will appear, with instructions to type a
Smalltalk expression terminated by <Escape>. EBiealltalk quit in the
window, then press <Escape>. The system will shut down, after which you
can restart it.

When You Need Assistance

ParcPlace-Digitalk provides technical support to customers who have
purchased the ObjectSupport package. VisualWorks distributors often
provide similar services. When you need to contact a technical support repre-
sentative, please be prepared to provide the following information:

218 VisualWorks User’s Guide, Rev. 2.1

When You Need Assistance

n Theversion id whichindicates which version of the product you are
using. Chooseélelp ?About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog under
Version Id: .

n Any modifications patch file$ distributed by ParcPlace-Digitalk the you
have imported into the standard image. Chadslkp ?About Visual-
Works in the VisualWorks main window. All installed patches can be
found in the resulting dialog undBatches: .

n The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, selespy stack in the error
notifier window (or in the stack view of the spawned Debugger). Then
paste the text into a file that you can send to technical support.

VisualWorks User’s Guide, Rev. 2.1 219

Chapter 17 Troubleshooting

220 VisualWorks User’s Guide, Rev. 2.1

Application Components

221

VisualWorks User’s Guide, Rev. 2.1

Chapter 18
Application Framework

Overview

A set of objects that collaborate to solve a problem can be call@gpéina-

tion, as in “an application of computer technology to the problem.” Most
applications, regardless of what problems they solve, have certain functions
in common. For example, most applications accept input from the user and
respond by performing an action, such as modifying data.

It would be wasteful to duplicate the shared mechanisms in each new appli-
cation. VisualWorks provides a set of classes from which your application can
inherit these foundation mechanisms. This set of classes is cabggplaca-

tion frameworkbecause it is much like a framework for a home to which you
fasten your unique choice of siding, wall board, roofing, flooring, doors,
windows, lighting and paints.

As with any object-oriented construct, the application framework consists of
objects that provide services to collaborating objects. This chapter describes
the application framework, discussing each kind of object, each major service
it provides, the clients for that service, and the ways your applications can
make use of the resulting mechanism.

This chapter concentrates on the operational mechanisms of the application
framework. For practical instructions in applying these mechanisms, see the
VisualWorks Cookbook

First, a brief overview of the framework classes, as background for the mech-
anism descriptions.

Domain Model Is Separate From User Interface

An application typically begins with one or matemain modelswhich
define the structure and processing of data in the domain of the application.

VisualWorks User’s Guide, Rev. 2.1 223

Chapter 18 Application Framework

For example, in a sketching application, the domain model is responsible for
storing the lines that make up the sketch, and for adding and removing lines
upon request.

Instances of a domain model are the objects that the application is primarily
concerned with creating, modifying, storing and destroying.UBee inter-

face (Ul)is the part of the application that enables a user to control this
activity by using mouse and keyboard actions. The Ul consists of a window
containingwidgets—user controls such as buttons, input fields and lists.

The first and most fundamental aim of the application framework is this:
Keep the domain model separate from the user interface.

This separation of domain model from Ul makes the application easier to
maintain, and also promotes reusability of the application components. If the
domain model provides generic services rather than services that rely on
special knowledge about a particular Ul, it is easier to substitute a different
interface later as Ul technology and user needs evolve.

This separation also makes it easier to provide multiple Uls that employ the
same domain model. For example, a novice user and an expert user can
employ entirely different Uls to interact with the same domain model.

Similarly, keeping the Ul components free of special knowledge about a
particular domain model makes it possible to reuse those components in
different applications.

User interface ‘ ’

Domain model ‘ ’

Figure 18-1 Separation of Ul from domain model

ApplicationModel Acts as Mediator

Obviously, a user interface has to mirror the domain model to a large degree.
So how can windows and widgets that know nothing of a particular domain

224 VisualWorks User’s Guide, Rev. 2.1

Overview

model, and a domain model that knows nothing of them, collaborate success-
fully to form a unified application?

The answer is a mediating object, which translates the Uls generic requests
for data and operations into specific messages to the domain model.

For example, an input field asks this mediating object for its data value when
it is first displayed, and the mediator is responsible for knowing which data-
accessing message to send to the domain model.

Similarly, a menu in the user interface notifies the mediator when the user has
selected, say, the third menu item. The mediator is responsible for knowing
which operation to request from the domain model, or from some other
component of the application.

This mediating object is called application modelbecause it defines rela-
tions between parts of an application much as a domain model defines rela-
tions between items of information.

Besides creating domain models, the primary activity in creating a Visual-
Works application is defining a custom subclasAmflicationModel to act

as mediator. This subclass is typically generated durinmstall stage of
user-interface creation. The Ul components are typically reused without
modification, though their properties, such as size and color, can be set graph-
ically.

User interface ‘ '

Application model ‘ ’

Domain model ‘ '

Figure 18-2 Application model as mediator between Ul and domain model

VisualWorks User’s Guide, Rev. 2.1 225

Chapter 18 Application Framework

Value Model Links Widget to Attribute

226

An application model links a domain model to a user interface by linking indi-
vidual components of those larger objects.

Each component of a Ul is a widget. Each component of a domain model is
an attribute or an operation. Each widget modifies an attribute or starts an
operation. The application model defines what each widget does.

For attribute-setting widgets, the application model employs an adaptor to
translate generic value-getting and value-setting messages into specific
messages to the domain model. This adaptor is called a value model, because
it defines the relation between an attribute’s value and widgets that depend on
that value.

There are different kinds of value models for different kinds of attribute
values. For example,\#alueHolder is used when the attribute value is a
simple data value such as a string of characters, whidespactAdaptor is

used when the simple data value is embedded in a composite attribute, such
as aBankAccount.

A value model is typically generated during thefine stage of user-inter-
face creation.

VisualWorks User’s Guide, Rev. 2.1

Overview

User interface ‘ ’ g ‘

A ‘

widgets

Application model ‘ ’ g
Domain model ‘ '<: "

Figure 18-3 A value model links a widget to an attribute. Classically, the
attributes are components of the domain model, as shown here, but they can also
be components of the application model. Supplying value models is how an appli-
cation model mediates between Ul components and domain model components.

Y/

value
models '

attributes

Builder Assembles User Interface

The process of defining a user interface involves painting widgets on a
window canvas. Then, various properties for each widget are defined,
including its size, location, label, and value name or operation name. These
properties are captured in a widget specification objespecfor short.

When the canvas is installed, the window and widget specs are stored in a
class method in the application model, called a spec method. When the appli-
cation is started, the specifications are used to assemble actual widget objects
in a runningApplicationWindow.

The application model delegates this specification-capturing and interface-
building activity to an instance &fiBuilder. Thisbuilderobject is a valuable
source of information about the interface. For example, you can programmat-
ically access a specific widget by asking for it by name from the builder.

VisualWorks User’s Guide, Rev. 2.1 227

Chapter 18 Application Framework

User interface

Builder

Application model ‘ ’

Figure 18-4 The application model delegates the task of constructing a window
and its widgets to a UIBuilder. The builder works from a set of specifications
provided by the application model class, in the form of a spec method.

Widget Has Visual Component and Optional Controller

228

Each widget in a user interface is either passive or active. A passive widget
merely displays something, while an active widget both displays something
and responds to mouse or keyboard activity. For example, a label widget is
passive while an input field is active.

The responsibility for displaying something is performed bisaal compo-
nent, also called aiew while the responsibility for responding to user input
is performed by aontroller. The motivation for separating these responsibil-
ities in different objects is reusability.

For example, a radio button and an action button have quite different appear-
ances but both respond to a mouse click by triggering a response from the
application model. Their visual components must be different, but they can
use the same kind of controller.

Creating a custom widget involves defining a custom visual component for it,
and then choosing an existing controller or defining a custom controller. A
special containing widget called a view holder enables you to integrate this
custom view-controller pair into a user interface as peers of the standard
widgets on the VisualWorks Palette.

VisualWorks User’s Guide, Rev. 2.1

Overview

User interface = =
>

g

View Controller

Figure 18-5 Each widget consists of a view for displaying an aspect of the model,
and an optional controller for responding to mouse and keyboard activity within
that view’s boundaries.

About the Example Application

To demonstrate the principles described in this chapter, an example applica-
tion is supplied with VisualWorks. The application was primarily created to
demonstrate the creation and integration of a custom view and custom
controller, so it is calle€ustomViewlExample.

A second version of the application, calfédstomView2Example, appears
and behaves identically but employs a different kind of controller (event-
driven). During the discussion of controllers, the distinctions between
CustomViewlExample andCustomView2Example will be explored.

The two versions of the application rely on a set of classes that reside in files
(not in the standard VisualWorks image) and must be loaded into your image.

Loading the example classes

1. Open an Online Documentation window by clicking onHile¢p icon in
the icon bar of the main VisualWorks window.

2. In the Online Documentation window, click on fiee menu and select
Browse Example Class . A dialog will list the available example
applications. (If none are listed, make sureliedp page of the Settings
Tool shows the correct pathname of ttigual/online directory or
folder.)

3. In the dialog, sele@ustomViewlExample in the list and then click on
OK. A dialog will confirm your intention to file in the example classes.

VisualWorks User’s Guide, Rev. 2.1 229

Chapter 18 Application Framework

230

4. Repeat steps 2 and 3 for thastomView2Example class.

Components

The example application is a rudimentary sketching utility that enables you
to start a new sketch, draw lines in the sketch, erase lines, and switch among
the sketches you have created. The example application does not provide for
storing the sketches after the application is closed.

The example classes include a domain mdsled{ch), an application model
(CustomViewlExample), a custom view$ketchViewl) and a custom
controller SketchControllerl). The event-driven classes—
CustomView2Example, SketchView2 andSketchController2—serve
parallel functions.

CustomView Example

Add sketch|

w

Fower Flow =
Accountability Fow ‘

User interface

Jalnls

7
| /

ge—0

|- |

SketchViewl SketchControllerl

Application model
CustomViewlExample

A
Domain model ‘
Sketch

Figure 18-6 How the example classes fit into the framework.

VisualWorks User’s Guide, Rev. 2.1

Domain Model

Domain Model

Overview

A domain model is typically the first class you create when developing a new
application, because the application model and user interface rely heavily on
the domain model. A System Browser is used to create a domain model.

A domain model has two essential responsibilities: storing data and providing
data-processing operations. Because it does not have to supply any compli-
cated mechanisms, there is no application-framework support for a domain
model. It is typically a subclass ®bject, or of an existing domain model
class.

Multiple Domain Models

In all but the simplest of applications, the information is subdivided among a
set of related domain models. For example, in a banking application, a
customer model stores customer information, an account model stores bank-
account information, a transaction model stores banking-transaction informa-
tion, and so on.

Deciding how to subdivide information among a set of domain models is the
subject of the analysis phase of a development project.

VisualWorks User’s Guide, Rev. 2.1 231

Chapter 18 Application Framework

Data Storage

232

User interface ‘ ’

Application model ‘ ’

v
Domain models ‘ ’ ‘ ’ ’

Customer BankAccount Transaction

Figure 18-7 Domain information is often divided among multiple classes.

One responsibility of a domain model is to hold the information with which
an application is concerned. In the example applicati®keach holds a
collection of sketched lines as well as a name for the sketch.

How Data Is Stored

Typically, each attribute of the object is stored in a separate instance variable
in the domain model. For exampleSketch has an instance variable called
name for storing the name of the sketch, and an instance variable called
strokes for storing a collection of sketched lines.

Similarly, each relation to another domain model is also stored as an instance
variable. For example, in a banking application,@lustomer class would
typically have an instance variable nana@dount, for storing an instance of
BankAccount. If aBankAccount had a reason to know its customer—that

is, if the relation betwee@ustomer andBankAccount were bidirectional—

the BankAccount class would have an instance variable namedomer,

for storing an instance @ustomer.

A System Browser is used to add instance variables to a domain model class.

VisualWorks User’s Guide, Rev. 2.1

Application Model

How Data Is Accessed

Each attribute and relation variable typically needs to have one method for
getting its value, called aaccessomethod, and one method for setting its
value, called anutatormethod. (In some usages, “accessor” is an umbrella
term referring to both accessor and mutator methods.) For exanjiletcdn

has aname method for getting the sketch’s name, andhene: method for
setting the name.

A System Browser is used to define accessor and mutator methods for
instance variables, in a protocol nanaetessingMost programmers find it

wise to use these methods rigorously throughout an application to get and set
variable values, even though other methods in the domain model can get and
set a variable’s value directly.

Data Processing

In addition to storing and accessing data, a domain model is responsible for
enabling client objects to modify the data. Each such data-processing opera-
tion takes the form of an action method.

For example, &ketch provides action methods for starting a new polyline
(beginStroke), adding a point to a polylin@dd:), erasing a polyline
(eraseLine), and erasing the entire sketangseAll).

Application Model

Overview

An application model is the core of an application in that it links the compo-
nents of the domain model to the components of the user interface. In this
mediating capacity, the application model has intimate knowledge of the
domain model and UlI.

Class Hierarchy

Each application requires its own subclasgpplicationModel, the frame-
work class that supports the mediating responsibilities.

In general, each such subclass drives a single application window, so a multi-
window application may involve multiple subclasseg\pplicationModel.
For example, the Online Documentation window in VisualWorks uses one

VisualWorks User’s Guide, Rev. 2.1 233

Chapter 18 Application Framework

234

application modelHelpBrowser) while its example-browsing subwindow
uses another moddtxamplesBrowser).

You can, of course, use an existing subclagsppiicationModel as the

parent of your new class, typically an abstract class of your own devising.
Doing so would be useful, for example, when you want to build certain
generic facilities into the abstract class so that all of your applications inherit
and reuse those facilities.

Frequently reused subclasse®@gpplicationModel include:

n SimpleDialog, for dialog windows
n LensDataManager, for data-form windows
n LensMainApplication, for database applications

Creation

An application model class is typically generated the first time you install an
application canvas.

An instance of such a class is typically created by selecting the name of the
model in a Resource Finder and then clicking orStfagt button. Program-
matically, an application model is typically created as the first step in opening
the application interface, by sending a varianbdn to the class.

Components

The ApplicationModel class keeps two dictionaries for the convenience of
all applications. One dictionary, call@kfaultLabels, is used to register
frequently used label strings, to avoid duplicating those strings throughout a
set of applications. The second diction®gfaultVisuals, provides a similar
service for graphic images that are used as labels.

An application model holds@iBuilder in its builder variable, which is used
to build the main user interface.
Responsibilities

TheApplicationModel class, its subclasses and its instances are responsible
for:

n Storage of reusable labels and imaggsplicationModel class)
n Storage of interface specs (subclass)
n Storage of value models (instance)

VisualWorks User’s Guide, Rev. 2.1

Application Model

n Dependent notification (instance)
n Application startup (instance)
n Application cleanup (instance)

Storage of Reusable Labels and Images

TheApplicationModel class provides a central registry for frequently used
label strings, such as a company name, and a similar registry for graphic
images, such as a company logo. The registries takes the form of two dictio-
naries held in class variables nani@efaultLabels andDefaultVisuals.

Note: For a more structured approach to label storage, especially in a multi-
cultural context, see the International User’s Guide discussion of message
catalogs.

The class protocol nameesource accessingpntains methods for adding an
entry to a registryl@belAt:put: or visualAt:put:), which is typically all that

you need to do. Each label string or graphic image is associated with a lookup
key that you provide, corresponding to 8ymbol with which you identify
theLabel property of the widget. For a label string, the pound sign must be
included in thd_abel property. For an image, thabel Is Image property

must also be turned on for the widget.

This causes VisualWorks to search for an application method with the same
name as the lookup key. In this case, there is no such method, so VisualWorks
next searches the appropriate registry.

Each image in thBefaultVisuals registry occupies a significant amount of
memory, depending on its size and color depth, so sparing usage is recom-
mended.

Storage of Interface Specs

Each application model is responsible for storing the specifications for the
application’s user interfaces. Each application window requires a separate set
of specifications. Each window’s specs are stored in a class method, in an
interface specprotocol. Thus, each concrete subclas&mdlicationModel

usually has at least one such method for the primary window. The default
name for this primary spec methodrmdowSpec.

A spec method is generated or regenerated by VisualWorks each time you
Install a canvas. The method contains a literal array identifying window and
widget specifications. When the canvas is opened for running or repainting,

VisualWorks User’s Guide, Rev. 2.1 235

Chapter 18 Application Framework

the contents of the array are used to create a hierarchy of spec objects—
roughly speaking, 8indowSpec containing a set oVidgetSpecs.

While you can edit a spec method as you can any other Smalltalk method, be
aware that your edits will be overwritten if the canvas is later installed again.
Also, the format of the literal array is considered private, and may change
without warning in later releases of VisualWorks.

Storage of Value Models

Each application model is responsible for storing a value model for each
value-displaying widget in each of the application’s interfaces. The value
model extracts the desired item of data from the domain model when the
widget needs it, and updates the domain model when the widget indicates a
new value has been accepted by the user.

Each such value model is typically held by an instance variable in your
subclass ofpplicationModel. An accessor method, typically in an instance
protocol name@ccessingis also needed so the interface builckn obtain
the value model and hand it to the widget at startup time.

Both the instance variable and the accessor method can be generated by Visu-
alWorks, by using thBefine button in the Canvas Tool. The value model is
initialized to a zero or empty value in the accessor method, though you can
override that initialization in the application modeh#ialize method.

There are several types of value models, which are described in the “Adap-
tors” chapter of the VisualWorks Cookbook.

For example, in a banking application, the application model would typically
have an instance variable nantsdance. The variable would be initialized

to hold anAspectAdaptor that is capable of accessing thedance variable

in the domain model (BankAccount). At startup time, the application’s
UlBuilder would supply the value model to a read-only input field for
displaying the current account balance.

Dependent Notification

236

When Obiject B is affected by a change in Object A, Object B is said to be a
dependenbf Object A. Dependencies of this nature occur commonly in
applications, and the application model collaborates with value models to
notify dependents of relevant changes. These indirect messages enable each
value model to communicate with its dependent widget without having to

hold onto that widget directly.

VisualWorks User’s Guide, Rev. 2.1

Application Model

For example, in the sketching application, selecting a sketch in the list widget
causes the set of lines for that sketch to be displayed in a sketching widget.
The sketching widget is a dependent because it needs to know when the selec-
tion is changed in the list of sketches.

CustomView Example

Add sketch|

w

Fower Flow =
Accountability Fow ‘

A

L) O

- >
Value Model Dependent
(selection index) (SketchView1l)

Figure 18-8 A value model can use dependency notifications to cause a
secondary widget to update itself whenever the value model receives a new value.
Here, the value model receives a new selection index for the list widget, and notifies
the sketching widget to update its display.

It is important to note that the sketching widget is not a dependent of the list
widget. Rather, it is a dependent of the value model that holds the list of
sketches. The list widget is the primary dependent of the value model, and
receives notifications much as its sibling widget does.

VisualWorks provides three layers of support for dependent notification:

n Notifications from a value model to an application model. Many applica-
tions rely on this partially automated layer exclusively because it is the
easiest to implement and handles the common cases.

n Notifications from any object to any object. This is the foundation layer
upon which the first layer is built, and which provides broader function-
ality for situations involving arbitrary types of objects.

VisualWorks User’s Guide, Rev. 2.1 237

Chapter 18 Application Framework

238

n Event-based notifications for objects of any type. This is actually an
alternative to the second-layer architecture, provided for compatibility
with Digitalk Smalltalk.

Notifications From Value Model to Application Model

An application model provides a value model to keep a widget in sync with
its data value in the domain model. When a secondary widget also needs to
be kept in sync with that data value, the application model empbDgpen-
dencyTransformer.

A DependencyTransformer is like a single-minded robot that is told, in
effect: “Keep your eye on this value model—whenever its value is changed,
notify me.”

This robot is told what message to send to the application model. By conven-
tion, the message begins or ends with the word “Changed,” as in
valueChanged orchangedSelection.

The Notification page of the Property Tool enables you to specify this
message, in effect setting upapendencyTransformer to monitor the
primary widget's value model.

The application model is expected to implement the corresponding instance
method, in a&hange messages protocol. That method updates the value
model for the secondary widget, which in turn causes the secondary widget
to update its display, completing the cycle of dependency.

Example

Using the sketching application, here is how the sequence of events occurs:

1. The user clicks on the name of a sketch in the list widget, causing the
selectionindexHolder value model to change its value.

2. A DependencyTransformer notices the change and notifies the appli-
cation model by sendingchangedSketch message to it.

3. The application model, in ithangedSketch method, gets the newly
selected sketch and installs it in the sketch widget’s value model.

4. The sketch widget displays the sketch.

VisualWorks User’s Guide, Rev. 2.1

Application Model

CustomView Example

Add sketch|

w

Fower Flow =
Accountability Fow ‘

A

Value Model Value Model
(selection index) (SketchView's model)

DependencyTransformer \

Application Model

Figure 18-9 ADependencyTransformeris installed as a dependent of the value
model that holds the selection index. The transformer is notified of a selection
change, and in turn sends ahangedSketch message to the application model,
which gets the sketch from the first value model and installs it in the sketch view's
value model.

Notifications From Any Object to Any Object

While theNotification page of a widget’s property sheet enables you to
arrange for a notification to an application model, you can [BEpanden-
cyTransformer to arrange for a notification from any object to any object.
Going even further into the dependency mechanism, you can arrange for a
direct notification without the use of a robotic third party.

DependencyTransformer

When a value model changes its value, it seratgaged: #value message
to itself. Thechanged: method is inherited fror@bject, and sends an
update: #value message to all dependents of the value model.

VisualWorks User’s Guide, Rev. 2.1 239

Chapter 18 Application Framework

A DependencyTransformer, when it receives anpdate: #value message,

sends a specified message to a specified receiver. In the usual situation, as
discussed above, it sends a specified message to an application model. But as
a general technique, it can be used to send any message to any receiver.

In addition, when the robot is monitoring an object other than a value model,
it can be made to react tachanged: #selection message, for example, or

any otheraspect symbahdicating the nature of the change. The aspect
symbol is used by contract between the object being monitored and the trans-
former.

For example, 8ankAccount might senctchanged: #balance to itself, and
the DependencyTransformer might be configured to pay attention to the
correspondingipdate: #balance message, while ignoring othepdate:
messages.

Setting up a notification in this way involves creatingependencyTrans-

former with the appropriate aspect symbol, message selector and message
receiver, and then adding that transformer as a dependent of the target object
(usingaddDependent:). If the target object is not a subclas¥afueModel,

you must also arrange for it to sertthnged: <aspectSymbol> to itself in

the method that effects that change. SubclasséaloéModel take care of

that detail, because they are the most common targets.

Subclasses ofalueModel are capable of setting up a transformer for you.
Just senednChangeSend: <selector> to: <receiver> to the value model.

Any object can set up a transformer in responsxpoessinterestin:
<aspectSymbol> for: <receiver> sendBack: <selector>.

Direct Dependency

You can dispense with the transformer by implementingpatate: method

for the dependent object. Then add that object as a dependent of the target
object (usingaddDependent:). As a result, when the target object sends
changed: <aspectSymbol> to itself, the dependent object will receive
update: <aspectSymbol>.

Again, the aspect symbol must be agreed upon.

240 VisualWorks User’s Guide, Rev. 2.1

Application Model

Variants of thechanged/update: messages are available for situations
requiring a parameter in addition to the aspect symipmmldte:with:) and the
target objectpdate:with:from:).

Dependents

update: #aspectSymbol

V "R
> self changed: #aspectSymbol
L

Any object

Figure 18-10 Any object can register dependents and then notify them by sending
itself a changed: message with a symbol indicating the nature of the change. As a
result, each dependent receives apdate: message.

Removing Dependents

TheObject class provides a central dictionary for keeping track of any
object’s dependents. An application that adds a dependent is also responsible
for removing it (usingemoveDependent:), to avoid having the dictionary

hold onto obsolete dependents and waste increasing amounts of memory.

TheModel class provides an instance variable for storing dependents locally,
avoiding the use of the central dictionary. Thus, instances of subclasses of
Model (including the value model hierarchy) automatically release their
dependents when they expire. Because value models are the targets of the vast
majority of dependencies, this takes care of most situations.

Circular Dependencies

Because dependencies involve indirect communications, the hazard of
circular message-passing becomes more likely. The most common situation
in which circularity arises involves two mutually dependent widgets.

For example, in the Online Documentation window, the page number field is
mutually dependent with the list widget. That is, changing the page number

VisualWorks User’s Guide, Rev. 2.1 241

Chapter 18 Application Framework

242

updates the selection in the list, and changing the selection in the list updates
the page number.

You can temporarily remove a transformer in such a situation, by sending
retractinterestin: <aspect> for: <dependent> to the target object just

before you change its value. After changing the value, you must reestablish
the transformer (usingnChangeSend:to:).

You can temporarily remove a direct dependent by serrdimgveDepen-
dent: <dependent> to the target object, and then adding it (usidgDe-
pendent:) after changing the value.

Event-Based Notifications

A similar mechanism for indirect communication with dependent objects was
introduced in Digitalk’s dialect of Smalltalk. For the convenience of users
who are migrating applications from Digitalk Smalltalk/V or Visual Small-
talk to VisualWorks, this event-based mechanism is also available.

The code that supports event-based notifications is supplied in a file named
sysdeps.st ,intheextras subdirectory under the VisualWorks installa-
tion directory. The file can be loaded by filing it in, using a File List. After
you file in the code, the class will have additional protocols whose names
begin with the word “event.” In addition, supporting classes will be added to
the system, in a class category named “System-Dependency Events.”

With this mechanism, each object can define certain events that it promises to
announce when appropriate. Announcing an event to potential dependents is
calledtriggering an event. A dependent object can register a handler for an
event in which it is interested.

Defining Events

Each class is responsible for defining the events that it will trigger. The inher-
ited class methodventsTriggered must be redefined for each class that
wishes to define a set of valid events. €kentsTriggered method typically
creates aldentitySet of event namesSymbols), then returns the set. It can,

of course, invoksuper eventsTriggered to fetch the parent class’s events,
then add to that set before returning it.

Event names, like message selectors, can be unary or keyword names. A
unary event has no parameter, while a keyword event has as many parameters
as it has colons. For example a button class might deficécked event,

because the dependent object needs no further information. A list class might
define a#changed: event, because the dependent needs to know which item

VisualWorks User’s Guide, Rev. 2.1

Application Model

in the list was selected—the selection can be passed as an argument to the
changed: message.

Triggering Events

An object can trigger any event in its clas/entsTriggered set. It does so
by sending a variant afiggerEvent: to itself. The argument is the event
name. See thevent triggeringorotocol inObject for the variants. An event
is triggered in the method or methods that effect the described event.

Registering an Event Handler

A dependent object can arrange for a specific action to be taken each time the
triggering object triggers a specific event. This is known as registering an
event handler.

The dependent sends a varianvben:send:to: to the triggering object. The

first argument is the event name, the second argument is a message name, and
the third argument is the message receiver. Sesvtre configuringrotocol

in Object for the variants.

The dependent object need not do the registering itself, of course. For
example, an application model could wggen:send:to: to arrange for a
domain model to send a message to a dependent widget.

self triggerEvent: #clicked
N

()

‘ ’ when: #clicked send: #openSearchWindow to: self > | ’

Button
Application Model

Figure 18-11 When using event-based notifications, a button class could define
an event namedkclicked. It would send triggerEvent: clicked to itself in the appro-
priate method. A dependent such as an application model could then arrange to be
sent a message such apenSearchWindow whenever the button was clicked.

By default, an error occurs when an event handler is registered for an event
that has not been defined by the triggering class. The registering object can
verify that a particular event is triggered by sendiagTriggerEvent:,

either to the triggering object or to its class.

VisualWorks User’s Guide, Rev. 2.1 243

Chapter 18 Application Framework

Removing Dependencies

When an event handler is registered, it is stored in a class variable named
EventHandlers, which is inherited fron©bject. The application is respon-
sible for removing each handler from this event table when the handler is no
longer needed.

The triggering object can remove all handlers that have been registered with
it by sendingelease to itself.

A more specific messageleaseEventTable, can be used when other forms
of dependency are not ready to be released.

Application Startup

244

The first step in starting an application involves deciding which interface to
open. The process of assembling and opening the chosen interface proceeds
by stages. After each stage, your application model can intervene in the
process to configure the raw interface as needed. The stages are:

n Create an instance tfiBuilder
n Pass the Ul specs to the builder and ask it to construct the Ul objects
n Open the fully assembled interface window

By default, when an application model class is sertmen or openinter-

face: message, all three stages are performed. You caraButiOpenin-
terface: to an instance to perform stages one and two, then separately send
finallyOpen to perform stage three.

Selecting an Interface

An application is typically started by sendingapen message to the appro-
priate subclass dkpplicationModel. This assumes that the primary canvas
was saved with the default namandowSpec.

If the primary canvas has a different name, or if you want to open a different
canvas, you can sengenWithSpec: to the class, with the spec name as the
argument.

The application model class creates a new instance of itself to run the inter-
face. If you want to use an existing application model instance, you can send
open oropenlinterface: to that instance. This is useful when you want to
reuse an instance rather than create a new one, or when you want to initialize
the application specially.

VisualWorks User’s Guide, Rev. 2.1

Application Model

Prebuild Intervention

After an instance df/IBuilder has been created, but before it has been given
a set of specs with which to construct a Ul, the application model is sent a
preBuildWith: message. The argument is the newly credi@diilder.

Most applications do not need to intervene at this stage. Those that do, typi-
cally take the opportunity to load the builder with custom bindings that can
only be derived at runtime. For more discussion of bindings, see “Storage of
Ul Bindings” on page 247.

Postbuild Intervention

The application model creates a hierarchy of spec objects from the spec
method, and hands the root spec to the builder. The builder then creates a
window and populates it with the appropriate widgets. The builder does not
yet open the window, however.

At this stage, the application model receive®stBuildWith: message, with

the builder as argument. The application model can use the builder to access
the window and any named widgets within the window—that is, widgets that
were given anD property.

Applications commonly uspostBuildWith: to hide or disable widgets as
needed by the runtime conditions.

Postopen Intervention

The builder opens the fully-assembled interface. At this stage, the application
model is sent postOpenWith: message, again with the builder as argument.
As with postBuildWith:, the application can use the builder to access the
window and its widgets. This time, however, those objects have been mapped
to the screen, which makes a difference for some kinds of configuration.

For example, th&ileBrowser model that drives the File List interface uses
postOpenWith: to insert the default path in the window's title bar—
something it could not do until after the window had been opened.

Application Cleanup

An application model often needs to take certain actions when the application
is closed. For example, a word-processing application might need to ask the
user whether edits that have been made to the currently displayed text should
be saved or discarded.

VisualWorks User’s Guide, Rev. 2.1 245

Chapter 18 Application Framework

Builder

Another common cleanup action is to break circular dependencies that would
otherwise prevent the application from being garbage collected. For example,
if application A holds application B, and vice versa, for the purpose of inter-
application communications, neither would be removed from memory even
after both of their windows were closed.

If the application user exits from the application by using a menu or other
widget in the interface, the application model performs the exit procedure and
can insert any required safeguards. But if the user exits by closing the main
window, a special mechanism is needed to notify the application model.

The application model is held by the application window. When the window
is about to be closed, its controller asks for permission from the application
model, by sending eequestForWindowClose. The application model can
redefine this method to perform any cleanup actions and then teierto

grant permission dialse to prevent the window from closing.

Overview

246

An application builder is a component of an application model that is respon-
sible for generating a running user interface from a set of window and widget
specifications. It performs this service either when an application is being
started or when a canvas is being painted.

Creation

An application typically has a single builder, held byit#der variable. This
primary builder is created by inheritéderface openingnethods.

Some applications also create one or more secondary builders as needed to
construct subwindows and custom dialogs. Frequently, a secondary builder is
discarded as soon as it has finished opening its window. When the application
model needs to access widgets in the subwindow—for example, to disable a
widget when conditions in the main window change—the secondary builder
is held in a newly created instance variable.

Components

A builder holds the application model in its source variable, because the
application model is theource from which the builder obtains value models,
menus and other resources.

VisualWorks User’s Guide, Rev. 2.1

Builder

Each such resource is stored in a dictionary held by the builder. The lookup
key in each case is the selector that was used to obtain the resource from the
application model. For a value model, for example, this selector is the

Aspect property of the widget. The dictionary is held in a variable named
bindings, because it holds the resources to which the interface components
are bound.

When a builder is given a set of specs, it begins traversing the hierarchy of
specification objects, constructing a corresponding widget or support object
for the eventual Ul. When the window is created, it is stored in a variable
namedwindow. If a widget has afD property, it is stored in maamedCom-
ponents dictionary in the builder.

The builder delegates the task of choosing a widget for each spec to a subclass
of UlLookPolicy. Each platform look-and-feel is enforced by a separate

policy class, such a#/in3LookPolicy for Microsoft Windows. This policy

object is held in a variable nampdlicy.

Responsibilities

In terms of its public contract with an application model, a builder is respon-
sible for:

n Storage of Ul Bindings

n Interface Assembly

n Interface Opening

n Window Access

n Named Component Access

Storage of Ul Bindings

For eachWidgetSpec that identifies a value model or other resource, the
builder obtains that resource from the application model. First, however, the
builder checks itbindings dictionary to see whether that resource has
already been fetched for a previous widget.

Your application can make use of this two-stage lookup process to insert
resources into thikindings dictionary proactively. This is useful mainly

when the application is building an interface directly, rather than employing
a prebuilt canvas. A dialog whose set of widgets must be customized to suit
the circumstances is the usual situation requiring direct Ul building.

To supply a resource proactively, an application model sends a message such
asaspectAt: aKey put: aValueModel to the builder. The first argument in

VisualWorks User’s Guide, Rev. 2.1 247

Chapter 18 Application Framework

this case is th@spect property of the widget. The second argument is the
value model that would normally be returned by the application model in
response to the aspect message.

Thebinding protocol inUIBuilder has variants ofspectAt:put: for other
kinds of resources.

By loading the bindings in this way, your application avoids the builder’s
second-stage resource lookup, in which it sends the aspect message to the
application model. The application model need not define a separate method
for supplying the resource, nor an instance variable for storing what may be
a very temporarily or infrequently needed resource.

Value Models

v
Builder

‘ ’ ﬂénameField —» ‘ '

yy #addressField —p | ’

#phoneField —» ‘ '

bindings

aspectAt: #nameField
put: aValueModel

Application Model

Figure 18-12 A builder caches value models and other resources in a bindings
dictionary. An application model can preload this cache to avoid being asked for a
resource via message-send.

Interface Assembly

A builder is responsible for converting a setldpecification objects into
a window, widgets and supporting objects, using its look policy to select
widgets that have a particular look and feel.

248 VisualWorks User’s Guide, Rev. 2.1

Builder

For example, when a builder’s look policy is an instand#'imf3LookPolicy,

it will add aWin3RadioButtonView to the interface as the specific imple-
mentation of &RadioButtonSpec. When aMacLookPalicy is in effect, the
builder will add aviacRadioButtonView to implement that saniRadioBut-
tonSpec.

The builder’s default policy is established by using the Settings Tool to set a
system-wide default. An application can install a different policy in the
builder, usually in reBuildWith: method, by sending@olicy: message.

When an application is using a builder to construct a custom dialog or other
Ul directly, it does so by sendiragld: aSpec to the builder. The argument is
typically a root-level spec object containing the hierarchy of window, widget
and supporting specs. It can also be an individual spec object, though this is
less often attempted. A root-level spec object is typically obtained by sending
interfaceSpecFor: to the application model class, with the name of a spec
method as the argument.

Builder RadioButtonSpec Win3LookPolicy

’ o %'

A

add: aRadioButtonSpec Win3RadioButtonView

v

Application Model Window

Figure 18-13 How an abstract specification is turned into a platform-specific
widget. The application model asks its builder to add a spec to the interface. The
builder delegates the task to its look policy. The look policy selects a widget that
suits the platform look, and installs it in the interface window.

VisualWorks User’s Guide, Rev. 2.1 249

Chapter 18 Application Framework

Interface Opening

A builder is responsible for opening the application window after populating
it with widgets. An application can exert control over certain aspects of this
phase by sending anterface openingnessage to itself. However, for finer
control over the window location, size and type, the application can send a
schedulingmessage directly to the builder.

The application can also use@hedulingnessage to control the timing of the
window opening. For example, an application might cache a prebuilt inter-
face and then open, close and reopen it as needed.

Window Access

An application model holds a builder, and the builder holds the application
window. When the application model needs to access the window, perhaps to
iconify it or change its title, it sendssindow message to the builder.

Named Component Access

A builder is responsible for providing its application model with access to any
widget that has alD property, called a named component. The builder stores
such widgets in itsamedComponents dictionary.

The application can obtain a named widget by senclimgponentAt: awid-
getlID to the builder. The usual motivation for doing so is to hide, disable or
restore the widget to suit changing circumstances.

Each widget is contained bywdidgetWrapper, which uses &VidgetState

to apply bordering, visibility and other appearance characteristics to the
widget. It is the wrapper that is storedniamedComponents and returned

from acomponentAt: query. The usual operations that an application
performs, such as hiding or disabling a widget, are actually addressed to the

250 VisualWorks User’s Guide, Rev. 2.1

Window

Window

wrapper. When the application needs to address the contained widget rather
than the wrapper, it can ask the wrapper fowitdget.

Widget Wrappers

Builder
‘ ’ ﬂnameField - | '

yy #addressField —p | ’

#phoneField —» ‘ '

namedComponents

componentAt: #nameField

Application Model

Figure 18-14 When a widget is given &b property, the builder stores it, inside
its wrapper, in anamedComponents dictionary. The application model can ask
the builder for any named component while the application is running.

Overview

A window is a display surface on which a set of widgets display their
contents. While some window managers use the wéndowto mean both
top-level windows and the subwindows in which individual widgets are
displayed, VisualWorks uses the term exclusively for top-level windows.

Creation

A window is typically created by @IBuilder, being the top-level interface
object as specified byWindowSpec.

Windows come in three types:

VisualWorks User’s Guide, Rev. 2.1 251

Chapter 18 Application Framework

252

n Normal windows, having full decorations

n Dialog windows, having a border but (depending on the window
manager) typically fewer border widgets and no title bar.

n Pop-up windows, having no decorations, such as a menu

Variants of theschedulingprotocol inApplicationWindow and its parent,
ScheduledWindow, enable the application to control which type of window
is used.

Class Hierarchy

A window as used in an application is typically an instanc&ppfication-
Window. The parent clas§cheduledWindow, is used in older applications
that predate the VisualWorks canvas-painting tdatheduledWindow
provides much of the state and behavior upon wAjgblicationWindow
relies.

Still farther back in the ancestor chainNéndow, which is now mostly

treated as an abstract class. Lacking a controller to enable a user to control the
window, it is too passive for the vast majority of uses. However, it does
provide important foundation fakpplicationWindow.

Components

An application window has eontroller, usually ampplicationStandard-
SystemController, that provides a menu of window-controlling actions such
asrefresh andclose .

A window also has aomponent, which can be a single visual component
such as £omposedText but is almost always@ompositePart that holds
a hierarchy of widgets.

A window has &ensor for providing information to widget controllers about
mouse activity, and keyboardProcessor for providing information about
keyboard activity.

A window has dabel, which is the string that appears in its title bar, and an
icon, which appears when the window is collapsed.

When a window is supposed to collapse, expand or close whenever another
window performs one of those actions, it is said to blaaeof thatmaster
window A window has anasterWindow variable for holding its master, if

any.

VisualWorks User’s Guide, Rev. 2.1

Window

A window has several policy objects that are inherited by the window’s
widgets unless they have been given a policy explicitly. These policies
control color, bordering and similar characteristics.

Responsibilities

Most of the responsibilities of a window involve straightforward communi-
cations, as documented in the “Windows” chapter oMkaalWorks Cook-
book Damage repair is a mechanism worthy of discussion here.

Damage Repair

A window is responsible for redisplaying portions of its surface that become
damaged in either of two ways:

n Window damage—when an overlapping window is moved, causing a
formerly obscured region to need redisplaying, or when the window is
refreshed.

n Information updates—when the state of the application changes in a way
that invalidates something that a widget is displaying

Window damage is communicated by the window manager. A damage rect-
angle resulting from an information update is communicated by the widget
involved. The visual component of the widget sends a varianvafidate

to itself, which causes the window to be semtlidateRect-
angle:repairNow:forComponent:.

In either case, the window is told that a rectangular portion of its surface has
become damaged. Thimmage rectangles accumulated by the window’s
sensor along with other damage rectangles.

When the application is not busy with a higher-priority process such as file
accessing, the window redisplays all of the damaged portions. For each such
rectangle, it restores its own background color and then asks each widget that
intersects the rectangle to redisplay its contents.

The window communicates these requests to its compone@@pthpos-
itePart that handles layout issues for the individual widgets. Chmpos-
itePart determines which widgets are affected and passes on to them the
request to redisplay.

Damage repair is automatic, and most applications have no need to intervene
in the process. Occasionally an application desires to repair damage proac-
tively. For example, suppose an application requests information from the
user by displaying a dialog and then, when the dialog has been dismissed,

VisualWorks User’s Guide, Rev. 2.1 253

Chapter 18 Application Framework

begins a process that takes several minutes to complete. When the dialog is
dismissed, the application window has to repair the damaged area that the
dialog overlapped. But that repair is delayed until the application process is
finished, unless the application asks for repair immediately.

The application can force immediate repair by senilinglidate-
Rectangle:repairNow: to a widget, withrue as therepairNow argument.

Visual Component

Overview

A window is a container for a visual component. A visual component, or
view, is responsible for displaying some aspect of a model. For example, an
input field might display an account balance, or a table might display a set of
transactions.

When combined with a controller, which is responsible for handling user
input, a visual component takes on the essential characteristics of a widget—
an interface component that enables a user to view and modify some aspect
of a domain model.

A value model typically mediates between the view and the domain model.
So each component of an interface consists of a view and a controller inter-
acting with a value model. This is known as a model-value-controller archi-
tecture, or MVC, which has been refined through generations of Smalltalk.

A visual component can take many forms. This section describes the types of
visual components according to their fundamental characteristics:

n Passive or active

n Autonomous or dependent

n Singular or composite

The “Custom Views” chapter of thdsualWorks Cookbooprovides instruc-

tions for creating a custom visual component and integrating it into an inter-
face.

Passive vs. Active Components

254

An application window has a visual component, so we say that the window is
the containerof that component. The visual component that is put into that
container can be either passive or active. A passive visual component receives
requests from the container but does not send requests to it. An active visual

VisualWorks User’s Guide, Rev. 2.1

Visual Component

component receives and also sends requests, so it needs to keep track of its

container.
»
Window Container
»
View Component

Figure 18-15 Window and view as container and component.

The abstract clasgisualPart provides this ability to communicate with the
container, so it is the parent of all active visual components, incliiavg
and its subclasses.

Passive visual components include instancdmafe, Icon, Composed-
Text andTextList. The geometric objects, such@iscle andSpline, are not
VisualComponents—they must be placed inGeometricWrapper to
achieve component status. See the chapters on graphic objects and text
objects in the/isualWorks Cookboafor more information about creating
such objects.

Active visual components/{sualParts) include instances of:

n View and its subclasses

n CompositePart, which holds a collection of other components

n Wrapper, which adds generic functionality such as bordering to a
component

Among the motivations for ®isualPart to talk to its container are:

n Invalidation because ¥isualPart coordinates its redisplaying activities
with the damage-repair mechanism of the window.

n Bounds accessingpecause an active component adjusts itself to suit the
size of its window

n Getting a graphics contexbpecause an active component redisplays all
or part of itself depending on the state of the model

VisualWorks User’s Guide, Rev. 2.1 255

Chapter 18 Application Framework

n Getting a sensor and keyboard procesbacause the typical controller
gets mouse and keyboard input via the window’s sensor and keyboard
processor

Autonomous vs. Dependent Components

256

As you might expect, active components come in many shapes. The three
major kinds ofVisualPart are composites, wrappers and views. Composites
and wrappers both support layout and coordination of multiple views in a
single window—they are described in a later section. Composites and
wrappers are autonomous, because they typically operate independent of a
model.

That leaves views. The distinguishing trait &fiaw is that it has a controller.
As a subclass dfisualPart, a view also has a container—so far, then, a view
knows its container and its controller. How does it know its model?

Composite

Wrappe

Figure 18-16 Autonomous vs. dependent visual components

Interposed betweeviisualPart andView in the class hierarchy is the class
DependentPart. A DependentPart has a model. The only direct subclass

of DependentPart that comes with the class libraryMgew, so it may seem

that the two of them could have been combined. However, you may well
encounter a situation requiring a visual component that knows its model but
has no controller.

VisualWorks User’s Guide, Rev. 2.1

Visual Component

VisualPart)
Container

DependentPart
Model
— copy
View cut
pastg§ Controller

Figure 18-17 The connections provided BsualPart, DependentPart and
View as their primary contributions to the view hierarchy.

For example, a file-locating utility might reserve a portion of the window to
display the directory in which a file was found. No user input would be
accepted in that portion of the window, so no controller is required, but it
changes in step with the model. Thus, anytime you create a new view class
that is not intended to have a controller, it really belongs as a subclass of
DependentPart.

Controller Linking

By default, a view creates its own controller the first time it is asked for one.
It does so by sendimdefaultControllerClass to itself and creating a new
instance of the returned class. For exampleytee class return€ontroller
when asked for its default controller class.

In a custom view class, you can redefinedb&ultControllerClass
method. You can also supply a controller instance at runtime by sending a
controller: message to a view.

Model Linking

A view registers itself as a dependent of its model. Then, whenever the model
sendsself changed, the view receives ampdate: message. Thus, linking a
view to a model has two parts:

VisualWorks User’s Guide, Rev. 2.1 257

Chapter 18 Application Framework

Redisplaying

258

n Registering the view as a dependent of the model. SubclasBepeih-
dentPart handle this automatically whemeodel: message is sent to the
view to set its model.

n Implementing arupdate: method to display some aspect of the model's
information

A view is responsible for redisplaying its contents whenever it is affected by
a damage rectangle being repaired by the window. It does stisplayOn:
method, which is sent by the window, with the window’s graphics context as
the argument.

A view must also register a damage rectangle with the window, representing
all or part of its area, whenever it receivesipdate: message from the value
model. Registering a damage rectangle is done by declaring the view'’s area
invalid, by sendingnvalidate to itself. Subclasses BfependentPart do this
automatically.

Thus, by implementingdisplayOn: method, and sendirgglf invalidate in
its update: method, a view is assured of responding to any redisplaying situ-
ation in a unified way.

Selective Redisplaying

By sendingself invalidate, the view is adding its entire display box to the
window'’s list of damage rectangles. In many situations, the view only needs
to redisplay a portion of its area that contains some dynamic element. An
invalidateRectangle: message can be used to invalidate a portion of the
view.

In a list view, for example, only one or two lines in the list need to be redis-
played: the line that was selected, if any, and the line that was deselected, if
any.

Immediate vs. Lazy Damage Repair

By default, the window accumulates damage rectangles until it receives a
checkForEvents message from its controller. The standard controller sends
that message each time it is polled for activity. That is frequent enough in
most situations. However, if a competing process is hogging the processor,
there can be a significant delay between the time the model changes and the

VisualWorks User’s Guide, Rev. 2.1

Visual Component

view is updated. In such situations, another variaimalidate lets you
indicate that the window should repair its damage immediately:

self invalidateRectangle: aRectangle repairNow: true

A value offalse for therepairNow: argument is the default, and is sometimes
calledlazy damage repair

Composite Visual Component

A window is only prepared to communicate with a single visual component.
To place two or more components in the same window, some intermediary
object is needed to hold theaf componentsThe situation is analogous to a
cardboard box filled with wine bottles—without a grid of cardboard separa-
tors, the bottles would bump into one another, with unfortunate results for the
wine lover.

Viewl View?2

Composite

Window

Figure 18-18 A CompositePart holds a collection of other visual components.

A CompositePart provides this separation framework. To the window, it is
just another visual component, one that happens to hold a collection of other
visual components. To each of its subcomponents, it is a container just like a
window. A subcomponent can be another composite object.

When a graphics context is passed down from the windovz; dihepos-
itePart passes it on to those of its subcomponents that say they intersect the
affected area.

CompositePart has two main subclasses:

n DependentComposite, for situations in which the composite object
itself needs to be a dependent of the model. This is the composite equiva-
lent of DependentPart.

VisualWorks User’s Guide, Rev. 2.1 259

Chapter 18 Application Framework

Wrapper

260

n CompositeView, a subclass dbependentComposite, which has a
controller that spans all of its subcomponents. This is the composite
equivalent olView.

Lest the analogy of the wine carton’s grid lead you astr@grapositePart

does not perform translation or clipping for its subcomponents, which can
overlap one another. The composite does not bother to keep track of where its
subcomponents are located or how big they are. For complicated composites,
such an arrangement would require that the composite consult a large collec-
tion of coordinates each time it needed to determine which subcomponent to
update.

Instead, the composite leaves it to the subcomponents to keep track of such
details. To spare you from having to equip every kind of visual component
with this ability, it has been placed in a special kin&/isualComponent

called awrapper Thus, a window that has two views would contain a
composite that contains two wrappers, each of which contains one of the
views.

Viewl View2

Wrapperl Wrapper2

Composite

Window

Figure 18-19 Each leaf component is contained by a wrapper.

Like aCompositePart, aWrapper is both a container and a component. It
contains a single visual component, providing a service to that component
such as translating the origin or clipping the display box.

In other respects it tries to be transparent, forwarding the most common
messages from its container down to its component, and from its component
up to its container.

Wrappers can be nested inside one another, too, so you can build up a
complex set of behaviors by using several simple, highly reusable wrappers.

VisualWorks User’s Guide, Rev. 2.1

Controller

Controller

A controller is what makes a view seem to respond directly to mouse move-
ments and keyboard activity. By shaping the nature of that response, a
controller defines théeel of an interface, as apart from its look.

Each window and each active component within a window has an associated
controller. The window’s controller typically provides the familiar

<Window> menu fhove, resize, close, etc.). A visual component’s

controller has a broader range of typical duties:

n Providing an <Operate> menu

n Notifying the model about selections made with the mouse

n Forwarding keyboard activity to the model

n Changing the cursor

Thus, in an application window such as the System Browser, you are commu-
nicating with two different controllers depending on which mouse button you

press: The <Window> button is fielded by the window’s controller, while the
<Select> and <Operate> buttons are fielded by the view’s controller.

Component Controller

Window Controller/v

rﬂm

Figure 18-20 The controller with which each mouse button interacts.

Just as models and views are specialized for particular purposes, each
controller class has its unique set of abilities. A button’s controller may only
need to pay attention to clicks of a particular mouse button, for example,

VisualWorks User’s Guide, Rev. 2.1 261

Chapter 18 Application Framework

while a text-editing controller has to pay attention to both mouse and
keyboard actions.

Polling vs. Event-Driven Controllers

262

VisualWorks supports one type of input controller that uses a polling archi-
tecture and another type that uses an event-driven architecture. Within a given
user interface, all views must employ the same input architecture. The
“Custom Controllers” chapter of thésualWorks Cookbooprovides instruc-

tions for creating either type of controller and integrating it with a view and a
value model.

One type of input controller uses a loop to repeatedly check for input events,
for as long as the controller retains control. (Typically, a controller retains
control while the mouse cursor is within the boundaries of the associated
view.) Each time the controller asks for events that have occurred since the
previous iteration, it is said to Ipelling for events, hence the namelling
controller.

The second type of input controller does not use a loop to poll for input
events. Instead, it relies on tBentrolManager to notify it whenever an

input event occurs. It then decides whether the event is of interest—for
example, a button widget’s controller cares about mouse-button events but
ignores most keyboard events. Because this type of controller is inactive
except when there is a relevant input event for it to process, it is said to be
driven by events, cevent-drivenWhile the flow of control is dispatched to

a polling controller, individual events are dispatched to an event-driven
controller.

A given controller class can be equipped for both input architectures. After
you file in the input events code as described ilMbaalWorks Cookbogk
standard VisualWorks controllers are capable of servicing either a polling or
an event-driven canvas. A custom controller class also inherits from
Controller most of the machinery for fitting into either architecture, though
you will typically need to add custom protocol for each architecture.

Thus, for example, you can continue to use a custom controller within the
older polling style while you layer on the event-handling methods. Then you
can switch any canvases that use the controller to the event-driven architec-
ture.

VisualWorks User’s Guide, Rev. 2.1

Controller

Flow of Control (Polling Controller)

Ownership of the user input is commonly referred tocagrol. The host
operating system hands control to a control manager when a VisualWorks
window is activated. The control manager passes control on to the window
that contains the cursor.

Control Manager

EachApplicationStandardSystemController, which is associated with a
window rather than a view, is entered in a collection held bgtheduled-
Controllers object.ScheduledControllers is a global variable that holds an
instance ofControlManager. This control manager is responsible for passing
control to the active window's controller, and is the reason t8ahaduled-
Window has “scheduled” in its name.

The window’s controller asks the window which of its subcomponents wants
control, if any éubviewWantingControl). In response to this message, the
window requestsbjectWantingControl from its component. The compo-

nent, if it is a composite, forwards that message to each of its subcomponents,
and so on. Each leaf-level component, upon receiving this message, asks its
controllerisControlWanted. The first controller to resportdue is sent a

startUp message by the control manager, beginningatsc control

sequence.

O R e

Window1l
Operating Control Controller
System Manager

Window2

Controller

o

Window3 Component
Controller Controller

Figure 18-21 How the flow of control proceeds from the operating system to a
specific component controller in a specific window.

VisualWorks User’s Guide, Rev. 2.1 263

Chapter 18 Application Framework

Controllers rely on sensors to help them make their control-accepting deci-
sions. Each window maintains a sensor for gathering input, and controllers
bombard this object with questions. Has a mouse button been pressed? Which
one? Has it been released yet? Where was the cursor located at the time?
Based on the responses to questions such as these, the controller either
accepts or refuses control.

Basic Control Sequence
The basic control sequence consists of three steps:

n Initialize control
n Loop while the conditions for holding control are met
n Terminate control

Initialization is performed in aontrolinitialize method. By default, a visual
component’s controller does nothing in response to this message. You can re-
implement the method in a controller class to perform some special action
when the controller starts up. In the sketching application, the cursor is
changed from its normal shape to cross-hairs.

This implies that you change the cursor back to its normal shape when the
controller yields control. That would be done in the control-terminating
method,controlTerminate.

In practice, it is difficult to guarantee that initializing and terminating
methods will be called in matched pairs. For example, if the user were to
interrupt the drawing program, a new controller would take control and the
cursor would never be changed back.

In its controlLoop method, a controller first verifies that the conditions for
maintaining controli6ControlActive) are still true. If so, it sends
controlActivity to itself, after which it repeats tligControlActive test.

ThecontrolActivity method is the real meat of the controller. Here, the
controller typically queries its sensor to find out whether a particular type of
input event has occurred.

264 VisualWorks User’s Guide, Rev. 2.1

Controller

ScheduledControllers Controller

’ startUp ’
‘ >

self controllinitialize

self controlLoop
self isControlActive
self controlActivity

self controlTerminate

Figure 18-22 On receiving control, a controller initializes itself, repeats an
activity loop, and then performs finalization actions

When theisControlActive test fails, control reverts t8cheduledControl-
lers, which begins polling its scheduled controllers to find a new control
receiver.

Input Sensing

In the polling architecturdnputState reads events from the Object Engine.
For each eventnputState caches mouse button and keyboard states as
needed, then dispatches the event toAtredowSensor of the appropriate
window.

The sensogueues a keyboard event or a meta event in the appropriate
SharedQueue. In the case of a button event, IMndowSensor executes
aDelay, so theUlProcess has time to check the button states.

A widget controller, in its activity loop, polls the sensor for outstanding
mouse and keyboard events, and reacts to each event appropriately

Flow of Events (Event-Driven Controller)

Event Queuing

The event-driven architecture is designed to co-exist with the polling archi-
tecture. After theevents.st file in theextras directory has been filed
in, each window canvas can be toggled between the polling and event-driven

VisualWorks User’s Guide, Rev. 2.1 265

Chapter 18 Application Framework

architectures, using the Property Tool. The default is polling until
events.st s filed in.

An event-driven window’s sensor is an instanc&weéntSensor. Event-
Sensor receives events from theputState and queues button, keyboard
and window events into orieventQueue.

By default,EventSensor collapsedMouseMovedEvents. Collapsing
events means that before queuing an evenEgvbatSensor checks whether
the last item in th&ventQueue is of the same type. If it is, it replaces the
last event with the current one.

Event Dispatching

An ApplicationStandardSystemController for an event-driven window
runs areventLoop instead otontrolLoop. In theeventLoop, the controller
waits on its window sensorBventQueue for the next event, then processes
it, until its window is no longer active. When the controller dequeues an
event, it passes the event toktgentDispatcher.

An EventDispatcher generally sends window events to the window, mouse
events to a widget's controller and keyboard events t&éyboardPro-
cessor of the window.

While a polling controller is asked whether it wants contsg¢ntrol-

Wanted), an event-driven controller is asked whether it handles a particular
mouse eventhandlerForMouseEvent:). While the polling controller typi-
cally uses aiewHasCursor test to accept or reject control, an event-driven
controller typically usesiewHasCursorWithEvent: for the same purpose.

Instead of using a control loop that checks for user input continuously, an
event-driven controller must be prepared to respond to each type of input
event individually. To do so, it must be equipped with a set of event methods,
such aenterEvent:, exitEvent: andkeyPressedEvent:. TheController

class provides default methods (seedhentsprotocol), which generally do
nothing, so you only need to define methods for events that your custom
controller cares about.

Selection Tracking

266

Selection tracking is a very common behavior among controllers. Most
controllers need to do some form of selection tracking between the time they
receive a button-pressed event and the time they receive a button-released
event. For example, between the time the user presses and releases the
<Select> button in a text editor,;TaxtEditorController grabs allMouse-

VisualWorks User’s Guide, Rev. 2.1

Controller

MovedEvents and performs textual selection tracking for each mouse move-
ment.

A polling controller starts a loop (iselectDownAt: or startDragging) in
which it grabs and processes all events until the mouse button is released.

In the event-driven architecture, a hierarchy of classes has been created for
performing selection tracking on behalf of different types of controllers. A
SelectionTracker is created by a controller in response tedButton-
PressedEvent: message. RedButtonPressedEvent is then dispatched to

the SelectionTracker. At this point, theSelectionTracker generally grabs

all mouse events until the <Select> button is released.

VisualWorks User’s Guide, Rev. 2.1 267

Chapter 18 Application Framework

268 VisualWorks User’s Guide, Rev. 2.1

Controller

VisualWorks User’s Guide, Rev. 2.1 269

Chapter 18 Application Framework

270 VisualWorks User’s Guide, Rev. 2.1

Controller

VisualWorks User’s Guide, Rev. 2.1 271

Chapter 18 Application Framework

272 VisualWorks User’s Guide, Rev. 2.1

Chapter 19

Graphic Operations

The Smalltalk Portable Imaging Model (SPIM) supports the display of
portable, two-dimensional, color graphics. The SPIM classes place a variety
of static and animated graphic effects at your command.

This chapter describes the structure and use of the graphics classes, in four
sections:

n The fundamentals of SPIM graphics

n The kinds of display surfaces on which a graphic can be drawn

n The graphic objects that can be drawn on a display surface

n How to integrate a graphic object into your application

Three other sections of the documentation describe closely related topics. The
“Color” chapter of this manual shows how to apply patterns and colors to
graphic objects. The “Application Framework” chapter goes into more detail
about the construction of a window (the primary display surface). In the Visu-

alWorks Cookbook, the “Custom Views” chapter covers string manipulation,
fonts and other aspects of text (the primary visual object).

VisualWorks User’s Guide, Rev. 2.1 273

Chapter 19 Graphic Operations

Background

Much like a newspaper photograph, a computer image is made up of tiny dots
of color. Each dot makes one element of the picture, so it is known as a picture
element—oipixel, for short.

101

000

101 H
bitmap pixels

Figure 19-1 Bits in memory represent picture elements on the screen

On a black on white (monochrome) screen, each pixel is either on (black) or
off (white). Its current state is represented in memory as either one (on) or
zero (off). Thus, each bit in memory controls a single pixel, and the entire
screen is represented as a two-dimensional array of bits. The array provides a
map of the screen, so it's calledhitmap

When the screen is capable of displaying more than two colors, a single bitis
not sufficient to embody the range of choices. It may take two bits (where four
colors are available) or three bits (for eight colors) or more. Though the
“bitmap” is no longer a one-to-one mapping from bits in memory to pixels on
the screen, it is still referred to as a bitmap.

Coordinate System

Each pixel represents one unit of width on the x-axis and one unit of height
on the y-axis.

274 VisualWorks User’s Guide, Rev. 2.1

Background

’4*1200—7 ’4* SOO—P‘

| 400| | 400 |

High-resolution Low-resolution

Figure 19-2 Relative clarity remains constant regardless of the screen’s resolu-
tion

Different kinds of computer monitors vary in the number of pixels per inch or
per centimeter, so a window that is 200 pixels wide will appear larger on a
screen with lower resolution. However, the relative clarity of the window and
its contents will be the same, which is generally the more important consid-
eration.

SPIM graphics use a two-dimensional rectangular coordinate system, with x
coordinates increasing from left to right on the graphic plane and y coordi-
nates increasing from top to bottom.

Figure 19-3 Coordinate system

Numbering starts from zero. Some windowing systems (such as the Macin-
tosh’s) place pixels between grid points, as shown in Figure 19-3, while other
window systems (X and MS-Windows) place pixels on grid points. SPIM
takes its lead from the window manager. This difference rarely matters, but it
can cause a one-pixel misalignment in some circumstances and a “difference

VisualWorks User’s Guide, Rev. 2.1 275

Chapter 19 Graphic Operations

Points

276

of opinion” about whether the border of an object such as a polygon is to be
repainted when that object is filled.

All graphic operations accept nonintegral coordinates, but such coordinates
are rounded to the nearest integer. Coordinate values must be in the range
from -32768 through 32767. These limits apply after translation, if any, has
been applied. Translation is explained later in this chapter, on page 284.

Graphic objects are typically displayed in a window, and the window can be
moved around by the user. For that reason, the origin of the window is used
in most graphic operations rather than the origin of the screen. If the window
has subviews, each subview maintains its own origin, and graphic operations
use that origin. As a result, you rarely need to be concerned with translating
coordinates when a window is moved or resized.

An x-y coordinate pair is normally represented as an instaneiof. The
following message creates?aint having an x-value of 100 and a y-value of
250. The spaces before and after the binary selector (@) are optional.

100 @ 250

You can also specify polar coordinates. The following example creates a
Point whose coordinates lie on a circle of radius 100 at 45 degrees:

Point r: 100 theta: 45 degreesToRadians

Two constants are available, as wBlint zero returnsO@0, andPoint
unity returnsl@1.

A Point can perform the usual comparison and arithmetic functions—you

can even add a scalar number @ant, increasing both x and y by the

desired amount. Table 19-1 lists some other useful messages you can send to
aPoint.

VisualWorks User’s Guide, Rev. 2.1

Background

Table 19-1 Miscellaneous point functions

Message Description

dist: aPoint Distance from receiver to aPoint.

transpose Answer a new point with x and y trans-
posed.

grid: aPoint Answer point nearest receiver on grid

whose increment is specified by aPoint.
truncatedGrid: aPoint As above, nearest preceding grid point

nearestPointOnLineFrom: pointl As above, optimized for integer points.

to: point2

dotProduct: aPoint Dot product of receiver and aPoint
normal Answer the receiver’s normal vector.
unitVector Answer the receiver scaled to unit length.

Rectangles

Rectangles are used in a variety of graphic operations, from setting the size
of a window to specifying the bounding box of an ellipse. Because they are
used so frequently, instancesRdctangle are especially well endowed with
helpful behavior.

The usual way of creatingRectangle is to send aextent: or corner:
message to the origin point. Both of the following expressions create a rect-
angle 100 pixels wide, 250 pixels high, with its origin at 50@50:

50@50 extent: 100@250
50@50 corner: 150@300

Theextent: message is more flexible because you need not calculate the
bottom-right corner’s absolute coordinates. However, in some situations,
those coordinates may already be provided, while the width and height would
have to be calculated.

VisualWorks User’s Guide, Rev. 2.1 277

Chapter 19 Graphic Operations

278

50@50

i 3

150@300
Figure 19-4 Creating a rectangle

When it is inconvenient to assemble the coordinatedHiniots, you can also
create &Rectangle from the component x- and y-values:

Rectangle left: 50 right: 300 top: 50 bottom: 150

And when your application prefers not to distinguish between the origin and
the corner point, you can IRectangle do the comparison and create an
instance:

Rectangle vertex: 300@150 vertex: 50@50

A suite of creation messages supports user-defined placement and sizing of
rectangles, with or without grids.

Table 19-2 Rectangle placement and sizing messages

Message Description
fromUser User defines the rectangle via the mouse.
fromUser: gridPoint User defines a rectangle whose size incre-

ment is determined by gridPoint.

originFromUser: extent As above, with grid alignment controlled
by phasePoint.

VisualWorks User’s Guide, Rev. 2.1

Background

Table 19-2 Rectangle placement and sizing messages

Message Description

fromUser: gridPoint phase: User defines the origin via the mouse; the
phasePoint size is determined by extent.
originFromUser: extent grid: As above, with the origin constrained to a
scalePoint grid whose spacing is defined by scale-

Point. A button is assumed to be down

originFromUser: extent grid: As above, with a specified button in a
scalePoint whileButton: button specified position.
isDown: aBoolean

Inquiring about a Rectangle’s Dimensions

Once created, Rectangle can tell you a number of things about its dimen-
sions and its contents:.

Table 19-3 Messages for accessing a Rectangle’s dimensions

origin width area

corner height contains: aRectangle

left leftCenter containsPoint: aPoint

right rightCenter intersects: aRectangle
top topCenter

bottom bottomCenter

Scaling and Transforming Rectangles

Rectangles also handle a variety of scaling, merging and translating tasks.

Table 19-4 Rectangle scaling, merging, translating messages

scaledBy: aScalarOrPoint
expandedBy: aScalarPointOrRectangle
insetBy: aScalarPointOrRectangle
insetOriginBy: pointl cornerBy: point2

intersect: aRectangle

VisualWorks User’s Guide, Rev. 2.1 279

Chapter 19 Graphic Operations

Table 19-4 Rectangle scaling, merging, translating messages

merge: aRectangle
areasOutside: aRectangle
moveBy: aPoint

moveTo: aPoint
translatedBy: aScalarOrPoint
align: pointl with: point2

amountToTranslateWithin: aRectangle

In the next section, you'll see how points and rectangles are used in the
creation of display surfaces.

Display Surfaces

Graphic operations in Smalltalk display graphics on two-dimensional graphic
media. All current graphic media are subclasses of the abstradDcdassy-
Surface, which represents host graphic media related to video display
screens.

There are three types of display surfaséndow, Pixmap andMask. While
aWindow is used to display graphic objects on-scr@xmaps andMasks

are used for behind-the-scenes manipulation of graphics. All three types of
display surface employ@raphicsContext as an intermediary between the
surface and the objects to be displayed. We will introduce each of the three
types of display surface, and then we will disdBsaphicsContext.

VisualWorks Windows

280

A VisualWorksWindow corresponds to the window supplied by the host
platform’s window manager. It is a Macintosh window on the Macintosh, an
X window on machines running X, and so on. For that reasdfindow’s

border decorations and label bar take on the host window manager’s look and
feel.

VisualWorks User’s Guide, Rev. 2.1

Display Surfaces

ScheduledWindow, a subclass dindow, has a controller that permits the
user to move, resize and close the window. To creSthaduledWindow
and then open it on the screen, execute the following:

ScheduledWindow new open.

By itself, aScheduledWindow is not very useful. Try opening one and
typing characters into it—as you will see, it does not provide application
capabilities such as text editing. (To close the window, selesé in its
<Window> menu.) AScheduledWindow handles the details of window
resizing, raising and lowering, etc. It holds ondisualComponent, which

is frequently a&/iew. The view itself may contain subviews, and so on. Thus,
ScheduledWindow is commonly described as being at the top of the view
hierarchy.

The “Application Framework” chapter describes windows and window oper-
ations in more detail.

Pixmaps

A Pixmap is the off-screen equivalent of a window. It is a rectangular
surface, capable of storing an encoded color at each pixel location just as a
window does. Unlike a window, the graphic contents Bixanap are not
affected by damage events such as those caused by overlapping windows.
Once you draw something orP&map, you can be sure of retrieving that
same object later. Another way of putting it is th&iamap retains its

contents until they are explicitly overwritten. For this reasdPixenap is

said to be setained mediumit is not, however, retained across snapshots (i.e.
quitting and restarting VisualWorks).

Pixmaps and Color

A Pixmap stores a numeric color code for each pixel in its map. This code
can be converted to an instanc€olorValue with the aid of a palette, which
associates each numeric code with a specific color. Like a wind®wsreap
shares the display screen’s color palette. To Bétmap’s palette, send it the
palette message. (Palettes are described on page 308).

Thedepthof aPixmap is the number of bits needed to convey the range of
possible colors in its palette. A two-coRixmap has a depth of one because
the two colors can be numerically conveyed by the state of a single bit. A
four-color palette requires a depth of two, an eight-color palette requires three

VisualWorks User’s Guide, Rev. 2.1 281

Chapter 19 Graphic Operations

Masks

282

bits, and so on. As with windowBjxmaps have the same depth as the
display screen.

A Pixmap can also tell you itdefaultPaint, its defaultBackgroundPaint
and itsdefaultPaintPolicy. For more information about color and paint
policy, see “Policies for Rendering Color” on page 311.

Pixmaps and the host clipboard

In windowing environments that support a graphics clipboarixmap can
be copied from the host clipboard, fiamClipboard, and pasted to it, using
toClipboard.

A Mask is used most often as a sophisticated clipping device that lets you
trim unwanted parts of a picture. For example, you can display a detail from
a complicated image by masking out surrounding regions. The mask can take
any shape, such as a circle or even a car’s silhouette, so you can achieve
advanced graphic effects involving merged images.

Figure 19-5 A cursor with and without a mask

For exampleCursor employs a mask to trim away “white” portions of the
rectangular image, leaving only the desired shape (such as an arrow, or cross-
hairs). Without a mask, the cursor would obscure a rectangular region of the
display no matter what shape the cursor image was.

The value at each pixel location iMeask indicates the portion of that pixel
that is covered by thiglask’s graphic object. In a filled-circle mask, for
example, a pixel that lies completely outside the circle has a value of zero. A
pixel that is completely covered by the circle has a value of one. Intermediate
values are not currently supported for masks, so borderline pixels get a
rounded value of either zero or one.

Another way of thinking aboutldlask is as a decal—"“zero” pixels are the
transparent backing while “one” pixels are the graphic object that is being
transferred to a new medium. The standard term for tligvisrage Zero
coverage implies no transfer of graphic content, whilmaerageValue of

VisualWorks User’s Guide, Rev. 2.1

Display Surfaces

one indicates complete transfer. Thus, each pixel locatioiMiask has a

CoverageValue rather than th€olorValue associated with Rixmap pixel.
The two types of coverage are designate@@gerageValue transparent

(zero) andCoverageValue opaque (one).

Because #Mask is coverage-based rather than color-based, its contents
cannot be directlgopiedonto a color-based display surface such as a window
or aPixmap—though you cawlisplaythe mask on a color-based surface.

Host Residency of Display Surfaces

Display surfaces are created and destroyed by the host window manager. The
bulk of a display surface, including its contents, are stored not in the Smalltalk
object representing that display surface but in a host data structure referred to
by the Smalltalk object. On a client-server window system such as X
Window, the storage for a display surface resides in the server, not the client.

Because of their host residency, display surfaces other than scheduled
windows do not survive snapshots. After a snapshot is restarted, your appli-
cation must regenerate any requiRigmaps, Masks and unscheduled
windows. (However, th€achedlmage class gives you this ability—see
“Cachedlmage” on page 295.)

Graphics Context

Every display surface uses an instanc&phicsContext to manage

graphic parameters such as line width, tiling phase and default font.
Displaying operations are performed not by the display surface directly, but
by its GraphicsContext.

Similarly, messages for modifying graphic parameters such as line width
must be addressed to the appropriataphicsContext. That object applies
the relevant parameters and then displays the object on the surface.

It's important to understand that changes madeGoagphicsContext are
forgotten immediately unless th@raphicsContext is stored by a variable

in your application. This is because a display surface does not store an
instance ofcraphicsContext—an instance that could be altered in a persis-
tent and often unintended way by unrelated graphic operations. Instead, a
display surface manufactures a new instandaraphicsContext, having

the default parameters, each time it is sent the meggagkicsContext.

This mechanism discourages tainting of @r@phicsContext in a way that
ruins it for an unrelated graphic operation. Each graphic operation is respon-
sible for setting up its own graphic context, and need not worry that the

VisualWorks User’s Guide, Rev. 2.1 283

Chapter 19 Graphic Operations

284

context it gets from the view may have been modified. For this reason, you
should never store@raphicsContext in an instance variable or a class vari-
able. If you must assign it to a variable, put it in a temporary variable so the
changes remain local to the method.

Translation

EachGraphicsContext keeps track of an x-offset and a y-offset from the
origin of the display surface. By setting these offsets, you can cause displayed
objects to be shifted, oranslated This is useful as an alternative to altering
the display coordinates of the graphic objects themselves.

Applying a translation to th&raphicsContext is sometimes more conve-

nient than transforming the coordinates of individual display objects. For
example, suppose you have two views each showing a portion of a graph. You
can draw the entire graph on a laRjemap, and then use translation to

display the desired portion of the graph on each view.

A display surface’s default translation0&0. A VisualPart's Graphics-
Context has a default translation that reflects the object’s position relative to
the window’s origin. For example, suppose the window occupies a rectangle
400 pixels wide and 500 pixels high. A view that occupies the lower right
guadrant of the window would have a default translation of 200@250.

Clipping

A GraphicsContext also maintains elipping region—a rectangular
viewport outside of which display objects are invisible (clipped away). You
can control both the size and the location of this region.

Limiting the clipping region to an area that is smaller than the available
display region can be useful when it is not convenient to alter the graphic
object directly. Modifying the clipping region is equivalent to applying a rect-
angularMask to the graphic object.

UseclippingRectangle: to set aGraphicsContext’s clipping region to a
new rectangular area. To fetch the existing rectangle, dgpingRectan-
gleOrNil, which returnsiil when no clipping is in effect other than to the
bounds of the display surface. If you would rather receive the display
surface’s bounds instead mif, sendclippingBounds to theGraphicsCon-
text.

The clipping rectangle is specified in the coordinate system d&taphic-
sContext. For a display surface, the defaulhik for aVisualPart such as a
view, the default clipping region is the view’s bounding box.

VisualWorks User’s Guide, Rev. 2.1

Display Surfaces

Line Characteristics

A GraphicsContext maintains three attributes specifically for lines and arcs:
width, cap style and join style.

Line Width

Width refers to the thickness of the line, in pixels. The default is one pixel,
and there is no practical maximum. The line is centered on the specified coor-
dinates, so a 20-pixel horizontal line has 10 pixels of width above the coordi-
nates and 10 pixels of width below the coordinates. The messages for fetching
and setting line width adleneWidth andlineWidth:. The line width setting
applies to lines, polylines, arcs and rectangular borders.

Line Cap Style

Cap style controls the appearance of line ends. Butt style (the default)
provides no cap on the end; it is specifiedsaaphicsContext capButt.
Rounded caps having a diameter equal to the line width are specified as
GraphicsContext capRound. Rectangular caps that project beyond the line
end by half of the line width are specified@saphicsContext

capProjecting. To retrieve and set the cap style, capStyle andcapStyle:
messages.

Line Join Style

Join style refers to the appearance of the outside corner where two lines meet.
Miter style (the default) features a squared-off joint; it is specifiggraph-
icsContext joinMiter. A rounded joint is specified &raphicsContext
joinRound, and a beveled joint is specified@sphicsContext joinBevel.

To retrieve and set the join style, ysmStyle andjoinStyle: messages to a
GraphicsContext.

Default Paint (color, opaqueness, and texture)

In SPIM, paintis the generic term for color, opaqueness and texture. While
some graphic objects specify their own palmdgge, for example), the
GraphicsContext needs to supply a default paint for uncolored objects. For
a color-based display surfad&/ihdow or Pixmap), the default paint is
ColorValue black. For a coverage-based surfabtagk), the default is
CoverageValue opaque. To fetch and set the default paint, psént and
paint: messages.

VisualWorks User’s Guide, Rev. 2.1 285

Chapter 19 Graphic Operations

286

A GraphicsContext also maintains a paint policy, which controls the
rendering of paints that are not directly supported by the display device. For
example, a color such as red is rendered with a suitable gray tone on a mono-
chrome screen by default. The default on color systems depends on the depth
of the screen (the range of colors it can render directly) pdisgPolicy and
paintPolicy: to fetch and set the policy. Paints and paint policies are
discussed in more detail in the “Color” chapter.

Tiling Phase

When aPattern is used as the paint, the placement of the initial tile deter-
mines the location of all other tiles in the pattern. Shifting the origin of the
first tile causes all tiles to be shifted similarly, affecting their alignment
relative to borders and other graphic elements. The default tile phase is the
Point 0@0, meaning the origin of the first tile is placed at the origin of the
GraphicsContext’'s coordinate system. Usi#ePhase andtilePhase:
messages to fetch and set the point.

Patterns and tiling are discussed in more detail on page 303. Tile phase also
affects the placement of a halftone when the paint policy uses a dithering
algorithm—discussed on page 313.

Default Font

The default font in &raphicsContext is applied to &tring, which has no
font characteristics of its owmext andComposedText objects override the
default font provided by th&raphicsContext. The default varies by
platform—it can be determined by senditefaultFont to the display
surface. To fetch thenplementationFont currently in effect in &raphic-
sContext, send dont message. To reset the default font (to an instance of
FontDescription), send dont: message.

For more detailed information about fonts, see the “Text and Fonts” chapter
of the VisualWorks Cookbook.

Displaying Geometrics

A visual object is expected to respond ttisplayOn: message by rendering

itself on the graphics context that is passed as an argument. Geometric objects
such as circles and rectangles, however, are a special case. For example,
sendingdisplayOn: to aRectangle is ambiguous because some situations
require a filled rectangle while others call for a stroked rectangle (only the
outline is displayed). For this reason, geometric objects respond to

VisualWorks User’s Guide, Rev. 2.1

Graphic Objects

displayFilledOn: anddisplayStrokedOn:, but not necessarily to
displayOn:.

This presents a problem for containers, which only know how to say
displayOn:—for example, when a view refreshes its display, it does so by
sendingdisplayOn: to its graphic elements. The solution to this communica-
tion problem lies irFillingWrapper andStrokingWrapper. A Filling-

Wrapper translateslisplayOn: to displayFilledOn: for its component, and

a StrokingWrapper performs the parallel service for its component. Thus,
when you place Rectangle inside aFillingWrapper, sendingdisplayOn:

to the wrapper causes a filled rectangle to be displayed.

In addition, aStrokingWrapper maintains the line width for its component
(so it can accurately compute its bounding rectangle). The accessing
messages are, predictaldlgeWidth andlineWidth:.

As a convenience, geometric objects can provide their own stroking or filling
wrapper. TheasStroker andasFiller messages, when sent to a geometric,
wrap it in the appropriate wrapper—then you candisplayOn:, as usual.

Graphic Attributes

While you can modify attributes when you display a specific object on the
display surface, sometimes that is cumbersome. For example, suppose you
have created a drawing application and your user has created a red rectangle.
Your application must somehow associate redness with that rectangle so it
will be rendered correctly each time the window is refreshed. The straightfor-
ward solution is to create a subclasfkettangle that has gaint instance
variable. You can see how this approach quickly escalates, however, because
then all types of graphic objects must remember several possible attributes:
color, line width, etc.

The GraphicsAttributes class provides a means of storing several common
graphic attributes: line width, cap style, join style, phase, font and paint. A
GraphicsAttributesWrapper is used to associate a set of graphic attributes
with its graphic component.

Graphic Objects

A graphic object is an object that can be displayed on a display surface.
Graphic objects can be colored or uncolored. An uncolored graphic object (a
geometric object) simply describes a region in space; a colored graphic object
(an image) also specifies the colors within the region.

VisualWorks User’s Guide, Rev. 2.1 287

Chapter 19 Graphic Operations

Texts

Displaying a graphic object onto a graphic medium is conceptually the same
as placing a stencil outlining the associated region on top of the medium and
then painting only the area exposed by the stencil. For an uncolored object,
the display operation paints every pixel within the stenciled area, using the
GraphicsContext’s paint. Displaying a colored object paints the pixels of the
exposed area with the colors of the corresponding pixels in the object. If a
clipping rectangle is specified, it is intersected with the area covered by the
graphic object to form the stencil.

The graphic objects supported by the imaging model are texts, lines,
polylines, splines, Bezier curves, arcs, circles, rectangles and graphical
images. In addition, the display surfaces themselves are also graphic
objects—for example, you can display one window on another.

There are three types of text objeBtring, Text andComposedText. A

String is a collection of characters—it has no font information, so it uses the
font provided by th&raphicsContext. Text andComposedText override

the default font with their own font(SEomposedText also handles line-
wrapping.

When a text object is drawn on a display surface, only the characters them-
selves are displayed. The background implied by the bounding box is masked
out. This provides maximum flexibility when super-imposing text on a
colored surface or on another graphic object.

The "Text and Fonts” chapter in tMisualWorks Cookboatliscusses font
control and other matters relating to the creation of text objects. In this
chapter, we confine ourselves to the displaying of those objects.

The placement of text depends on its clasStifag or Text is placed with its

left baseline at the specified position. BecauS®mposedText can span
multiple lines, the origin of its bounding box is placed at the specified posi-
tion.

Lines, Polylines and Polygons

288

A line segment connects two points, narsttit andend. A polyline

connects three or more points (its collectiovertices). A polygon is a
polyline that is filled rather than stroked. (A point is inside the polyline if an
infinite ray originating from the point crosses the polyline an odd number of
times. If the polyline is not closed, it is implicitly closed before the even/odd
rule is applied.) Rectangles are treated specially.

VisualWorks User’s Guide, Rev. 2.1

Graphic Objects

All of these objects can be drawn by specifying a set of point&taphic-
sContext. Lines and polylines are displayed with tmeeWidth, capStyle
andjoinStyle provided by the&sraphicsContext. All three use the default
paint of theGraphicsContext.

When your application draws geometric shapes that do not interact, it may be
satisfactory to render them via the graphics context. But for long-lived or
interacting geometrics, it is usually better to create an instaridaefeg-

ment or PolyLine.

Rectangles

Rectangles can be created as described earlier, by specifying the origin and
the opposite corner, rather than all corner points as with other polygons.
GraphicsContext has specialized protocol for displaying rectangles, both
filled and unfilled.

To display a filledRectangle, send aisplayRectangle: message to the
desiredGraphicsContext, first settingineWidth andjoinStyle if necessary.
To display an unfilled rectangle, usdiaplayRectangularBorder: message.

Translation Protocol

Sometimes it's convenient to draw a polyline, polygon or rectangle as if its
origin point were at 0@0, then position the object elsewhere relative to the
display surface. For that reason, a variant of the displaying messages allows
you to specify the point at which the object’s origin is to be positioned.

The variants are as follows:

gc displayPolyline: pointCollection at: aPoint

gc displayRectangle: aRectangle at: aPoint

gc displayRectangularBorder: aRectangle at: aPoint
gc displayPolygon: pointCollection at: aPoint

Splines and Bezier Curves

Besides circular and elliptical arcs, which are discussed below, two kinds of
curve are providedSpline andBezier. A Spline is similar to a polyline in

that it connects a collection of vertices; the difference is that it smoothes the
corners. ABezier curve has atart, anend and two control points—each
control point exerts gravity on the line segment connecting the start and end.

VisualWorks User’s Guide, Rev. 2.1 289

Chapter 19 Graphic Operations

Each of these curve classes has a class variable for controlling the flatness of
the curve. Both support comparison, intersection testing, scaling and trans-
forming. ASpline can also be asked whether it folds back on it&gIfy(clic).

Arcs, Circles and Wedges
An arc is a curved line defined by three elements of information:

n The smallest rectangle that can contain the ellipse of which the arc is a
segment (adjusted for line width).

n The angle at which the arc begins, measured in degrees clockwise from
the 3 o’clock position (or counterclockwise for negative values).

n The angle traversed by the arc, known as the sweep angle. The sweep
angle is measured from the starting angle (not necessarily the 3 o’clock
position) and proceeds clockwise for positive values and counterclock-
wise for negative values.

270
180 0
startAngle: 180
90 sweepAngle: 90

Figure 19-6 Defining an arc

A complete ellipse is an arc with a sweep angle of 360 degrees. A circle is an
arc with a square bounding box and a sweep