
Part Number: DS10005004

VisualWorks

User’s Guide

ParcPlace-Digitalk, Inc, 999 East Arques Avenue, Sunnyvale, CA 94086-4593

Copyright © 1995 by ParcPlace-Digitalk, Inc. All rights reserved.

Part Number: DS10005004

Revision 2.1, October 1995 (Software Release 2.5)

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Trademark acknowledgments:

ObjectKit, ObjectWorks, ParcBench, ParcPlace, and VisualWorks are trademarks of ParcPlace
Systems, Inc., its subsidiaries, or successors and are registered in the United States and other
countries. DataForms, MethodWorks, ObjectLens, ObjectSupport, ParcPlace Smalltalk, Visual
Data Modeler, VisualWorks Advanced Tools, VisualWorks Business Graphics, VisualWorks
Database Connect, VisualWorks DLL and C Connect, and VisualWorks ReportWriter are
trademarks of ParcPlace Systems, Inc., its subsidiaries, or successors. ENVY is a registered
trademark of Object Technology International, Inc. All other products or services mentioned
herein are trademarks of their respective companies. Specifications subject to change without
notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed and/or
distributed except in accordance with the terms of said license. No class names, hierarchies, or
protocols may be copied for implementation in other systems.

This manual set and online system documentation copyright © 1995 by ParcPlace-Digitalk, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or reduced
to any electronic medium or machine-readable form without prior written consent from
ParcPlace-Digitalk.

Contents

About This Book xvii
Audience xvii
Organization xviii
Conventions xix

Typographic Conventions xix
Special Symbols xx
Screen Conventions xx
Mouse Buttons xx
Mouse Operations xxii

Additional Sources of Information xxii
Printed Documentation xxii
Online Documentation xxiii

Obtaining Technical Support xxiv
Before Contacting Technical Support xxiv
How to Contact Technical Support xxiv

Chapter 1 Introduction 1
About VisualWorks 1

Building Applications 1
Read-and-Apply Tools 2
Visual Reuse 2

Starting VisualWorks 2
Saving Your Image 3
Exiting VisualWorks 4

Part I Smalltalk Language 5

Chapter 2 Object Orientation 7
Procedures vs. Objects 7
Objects and Methods 8
VisualWorks User’s Guide, Rev. 2.1 iii

Contents
Composite Objects 9
Variables and Methods 11
Method Grouping 12
Classes and Instances 13

Class Variables 13
Class Methods vs. Instance Methods 14
Class Grouping 15
Class Inheritance 16

Looking up a Method 17
Overriding an Inherited Method 18

Abstract Classes 19
Nesting Abstract Classes 20

Choosing a Superclass 20

Chapter 3 Syntax 23
Naming Conventions 23

Capitalization Rules and Conventions 24
Literal Constants 24

Numbers 24
Characters 26
Strings 26
Symbols 27
Byte Arrays 27
Arrays 27
Booleans 27

Variables 28
Temporary Variables 29
Instance Variables 31
Class Instance Variables 31
Class Variables 32
Pool Variables 33
Global Variables 34
Special Variables 34
Undeclared Variables 36

Message Expressions 36
Unary Messages 37
Binary Messages 37
Keyword Messages 39
Messages in Sequence 40

Block Expressions 42
Formatting Conventions 44

Syntactic Elements Summary 44
iv VisualWorks User’s Guide, Rev. 2.1

Contents
Chapter 4 Control Structures 47
Branching 47

ifTrue:ifFalse: 47
Looping 48

Conditional Looping 48
Number Iteration 49
Collection Iteration 50

Chapter 5 Numeric Operations 55
Integers 55
Floating Point Numbers 57
Fractions 59
Random Numbers 59
Dates 60
Time 63

Time Zone 66
Abstract Superclasses 67

Chapter 6 Collection Operations 69
Choosing the Appropriate Class 69

Set 70
Bag 70
Array 70
Interval 71
OrderedCollection 71
SortedCollection 71
LinkedList 71
Dictionary 72

Creating an Instance 73
Adding, Removing and Replacing Elements 74
Comparing Collections 76
Counting and Finding Elements 77
Copying a Collection 78
Converting and Printing 78
The Collection Hierarchy 78

Chapter 7 String Operations 81
Creating a Character 81
Character Operations 82
Creating a String 83
Substring Manipulations 83
VisualWorks User’s Guide, Rev. 2.1 v

Contents
Pattern Matching 85
The String Hierarchy 85

Chapter 8 Processes and Exception Handling 87
Creating a Process 87
Scheduling a Process 88
Setting the Priority Level 89
Coordinating Processes with a Semaphore 90
Passing Data Between Processes 92
Using a Delay 92
Using a Signal to Handle an Error 92

Choosing or Creating a Signal 94
Creating an Exception 96
Setting Parameters 97
Passing Control From the Handler Block 98
Using Nested Signals 99
Unwind Protection 100

Part II VisualWorks Tools 101

Chapter 9 Environment Tools 103
VisualWorks Main Window 103
Settings Tool 104
File List 105

File List Views 106
Display Options 106
File List Commands 107

Change List 109
File Editor 113
Project 113

Chapter 10 Smalltalk Programming Tools 115
System Browser 115

Structure 115
Class Categories 116
Classes 116
Protocols 116
Methods 116
Code 116

Workspace 124
vi VisualWorks User’s Guide, Rev. 2.1

Contents
System Transcript 125
Debugger 126
Inspector 130

Chapter 11 Application Building Tools 131
Resource Finder 131
Canvas Tool 132
Palette 133
Image Editor 135
Menu Editor 135

Enhanced Menu Editor 136
Properties Tool 140

Basics Properties 142
Details Properties 143
Validation Properties 144
Notification Properties 146
Color Properties 147
Position Properties for Bounded Widgets 149
Drop Source Properties 150
Drop Target Properties 151

Define Dialog 154

Chapter 12 Database Application Building Tools 157
The Data Modeler 157
Canvas Composer 157
VisualWorks Painting Tools 157
Embedded and Linked Data Forms 158
Mapping Tool 158
The Query Editor 158

Menu Queries 158
Ad Hoc SQL Editor 159

Chapter 13 Application Delivery Tools 161
Parcel List 161

Parcel Menu Commands 162
Utility Menu Commands 163

Parcel Browser 163
Structure 164
Parcel View 165
Category View 166
Class View 166
VisualWorks User’s Guide, Rev. 2.1 vii

Contents
Protocol View 167
Method View 168
Code View 168

Image Maker 169

Chapter 14 Debugging Techniques 171
Reading the Execution Stack 171
Tracing the Flow of Messages 173
Inspecting and Changing Variables 175
Inserting Status Messages 176
Interrupting a Program 177
Restarting a Program 177

Chapter 15 Managing Projects and Versions 179
Entering and Exiting a Project 179
Summarizing Project Changes 180
Reverting to a Prior Version 182
Sharing Code 184
Condensing the Changes File 185

Chapter 16 Accessing Databases 187
Overview 187
Data Interchange 189
Establishing a Connection 190

Securing Passwords 190
Getting the Details Right 191
Setting a Default Environment 191
Default Connections 192
On the Importance of Disconnecting 193

Using Sessions 193
Variables in Queries 194
Named Input Binding 196

Getting Answers 197
Handling Multiple Answer Sets 198
What Happens when you Send an Answer Message 198
Waiting for the Server 199
Did the Query Succeed? 199
How Many Rows were Affected? 199
Describing the Answer Set 200
Buffers and Adaptors 200
Processing an Answer Stream 201
viii VisualWorks User’s Guide, Rev. 2.1

Contents
Using an Output Template 202
Setting a Block Factor to Improve Performance 204
Cancelling an Answer Set 205
Disconnecting the Session 205

Catalog Queries 206
Controlling Transactions 207

Coordinated Transactions 207
Releasing Resources 207
Tracing the Flow of Execution 208

Directing Trace Output 208
Setting the Trace Level 209
Disabling Tracing 209
Adding Your Own Trace Information 209

Error Handling 210
Signals and Error Information 210
Exception Handling 211
The Database Signal Hierarchy 212
Choosing an Exception to Handle 212

Image Save and Restart Considerations 213

Chapter 17 Troubleshooting 215
Recovering from a System Failure 215
Start-up Errors 216
Source Code Unavailable in Browser 217
Low Space 217
No VisualWorks Main Window 217
Can’t Exit from VisualWorks 218

UNIX 218
Macintosh 218
Windows 219

Emergency Exit (all platforms) 219
When You Need Assistance 219

Part III Application Components 221

Chapter 18 Application Framework 223
Overview 224

Domain Model Is Separate From User Interface 224
ApplicationModel Acts as Mediator 225
Value Model Links Widget to Attribute 226
Builder Assembles User Interface 227
VisualWorks User’s Guide, Rev. 2.1 ix

Contents
Widget Has Visual Component and Optional Controller 228
About the Example Application 229

Domain Model 231
Overview 231
Data Storage 232
Data Processing 233

Application Model 234
Overview 234
Storage of Reusable Labels and Images 235
Storage of Interface Specs 236
Storage of Value Models 236
Dependent Notification 237
Application Startup 245
Application Cleanup 247

Builder 248
Overview 248
Storage of UI Bindings 249
Interface Assembly 251
Interface Opening 252
Window Access 253
Named Component Access 253

Window 254
Overview 254
Damage Repair 256

Visual Component 257
Overview 257
Passive vs. Active Components 258
Autonomous vs. Dependent Components 259
Controller Linking 261
Model Linking 261
Redisplaying 261
Composite Visual Component 262
Wrapper 264

Controller 264
Polling vs. Event-Driven Controllers 266
Flow of Control (Polling Controller) 267
Flow of Events (Event-Driven Controller) 270
Selection Tracking 271

Chapter 19 Graphic Operations 273
Background 274

Coordinate System 274
x VisualWorks User’s Guide, Rev. 2.1

Contents
Points 276
Rectangles 277

Display Surfaces 280
VisualWorks Windows 281
Pixmaps 281
Masks 282
Host Residency of Display Surfaces 283
Graphics Context 284

Graphic Objects 289
Texts 289
Lines, Polylines and Polygons 290
Splines and Bezier Curves 291
Arcs, Circles and Wedges 291
Graphical Images 293
Image Processing 296
Bit Processing 297
CachedImage 297
Cursors 298
Icons 299
Animation 299

Integrating Graphics into an Application 300
Integrating a Static Graphic 301
Integrating a Dynamic Graphic 302

Chapter 20 Color 303
Types of Color 303

Pattern 303
Coverage 304
Color 304

Palettes 307
Coverage Palettes 307
Color Palettes 308
Device Color Map 310

Policies for Rendering Color 311
NearestPaint 312
OrderedDither 313
ErrorDiffusion 313

Chapter 21 Weak Arrays and Finalization 315
Weak Arrays 315
Finalization 316
WeakDictionary 319
VisualWorks User’s Guide, Rev. 2.1 xi

Contents
HandleRegistry 319
Finalization Example 320

Chapter 22 Parsing and Compiling 323
Scanner 323
Parser 324
Compiler 325

Chapter 23 Memory Management 327
Memory Layout 327

Fixed-size OE Spaces 328
Smalltalk Object Memory 333

Facilities for Reclaiming Space 335
Generation Scavenger 336
Incremental Garbage Collector 336
Compacting Garbage Collector 338
Global Garbage Collector 338
Data Compactor 339

Memory Policy Classes 339
ObjectMemory 339
MemoryPolicy 340

Part IV Application Delivery 343

Chapter 24 Overview of Application Delivery 345
Different Ways to Deliver an Application 345

Single Image File 345
Parcels 346

Development and Deployment Life-Cycle 346
Method 1: Delivery Combined with Development 346
Method 2: Delivery After Development 347

More Information 347

Chapter 25 Parceling an Application 349
What Are Parcels? 349

Characteristics 350
Contents 350
Restrictions 350
Parcel Files 351

Creating Parcels 351
xii VisualWorks User’s Guide, Rev. 2.1

Contents
Deciding What to Parcel 351
Specifying Parcels and their Contents 352

Loading Parcels 356
At Start Up 356
From within an Application 356
Behavior at Load Time 358
Load Order 358
Load Errors 358

Filing Parcel Contents In and Out 359
Tips for Working with Parcels 359

Keeping Source Code and Parcels in Sync 359
Testing Parcel Files and Source Files for Matches 360

Chapter 26 Creating a Deployment Image 361
Setting Up a Deployment Image 362

Handling Errors 362
The Transcript 362
Undeclared Variables 362

Creating a Deployment Image 363
Operations Performed by Image Maker 366

Removal of Development Facilities 366
Optional Removal of Other Facilities 366
Preservation of Certain Facilities 370
Optimization of Memory Usage 370
Other Changes 371

Saving the State of Image Maker 371
Starting Up a Deployed Image 371
Debugging a Deployed Image 372
Exiting a Deployed Image 373

Chapter 27 Creating Applications without Graphical User Interfaces
375
Key Concepts 375
Setting Up a Headless Image 376
Running an Application in Headless Mode 377

When an Image Starts 377
If an Application Attempts to Access a Display 378

Debugging a Suspended Process 378
Creating a Headful Copy of a Headless Image 379
Tips for Programming a Headless Application 379

Techniques for Starting a Headless Application 379
VisualWorks User’s Guide, Rev. 2.1 xiii

Contents
Techniques for Communicating with a Headless Application 380
Terminating a Headless Application 380
Preventing Access to the Display 380

Delivering a Headless Application 381

Part V Appendixes 383

Appendix A Protocol Reference 385
Common Class Protocols 385
Common Instance Protocols 386

Appendix B Syntax Descriptions 387
Lexical Primitives 387

Character Classes 388
Numbers 389
Other Lexical Constructs 390

Atomic Terms 391
Expressions and Statements 392
Methods 394

Appendix C Special Characters 395
Composed Characters 395
Diacritical Marks 399

Appendix D Implementation Limits 401
Size Limitations 401
Open-coded Blocks 402

Shared Context 403
Browser Visibility 404

Block Optimization 404
The Debugger 406
Performance 406

Non-overridable Methods 407
Special Treatment Only at Compile Time 407
Special Treatment at Compile Time and Translation Time 409

Appendix E Keyboard Shortcuts 411
Editing Text and Components 411
Displaying Tools and Dialogs 411
Selecting Components 411
xiv VisualWorks User’s Guide, Rev. 2.1

Contents
Moving Components 412
Aligning Components 412
Grouping Components 412
Changing Layouts 412
Changing Tool Focus 412

Appendix F User-Defined Primitives 413
Theory of Operation 413
Basic Capabilities 414
Defining a New Primitive 414
Installation and Access 416
Primitive Numbers 417
Arguments 417
Data Types 417
Failure Codes 418
General Advice 419
C Conversion 421

String to String 421
Byte Array to Byte Object 421
Integer Array to Array 421
Float Array to Array 422
Integer to Integer 422
Float to Float 422
Double Float to Double 422
Boolean to Boolean 423
Character to Character 423
Return nil 423

Smalltalk Conversion 423
String to String 423
Byte Array to Byte Array 424
Integer Array to Array 424
Float Array to Array 424
Integer to Integer 425
Float to Float 425
Double Float to Double 425
Character to Character 425
Boolean to Boolean 425

Success Return 426
Any Value 426
Nil 426
True 426
False 426
VisualWorks User’s Guide, Rev. 2.1 xv

Contents
Failure Return 426
Coded Failure 427

Type Checking 427
Character 427
String 427
Integer 428
Float 428
Double 428
Array of Integers 429
Array of Floats 429
Byte Array 429
Byte-like 430
Boolean 430
Immediate 430
Class Check 431

Object Allocation 431
String 431
Byte Array 431
Array 431
Other Object Types 432

Indexed Access 432
Indexed Variable 432
Instance Variable 433
Indexed Byte 433
Indexed Float 434

Sizing 434
Initializing 434
Other Support Routines 435
Registering Long-lived Objects 436
Interrupts and Poll Handlers 437
Unsafe Primitives 439
Example 440

C Code 440
Smalltalk Code 442

Index 443
xvi VisualWorks User’s Guide, Rev. 2.1

as

nt
. We

e,

and

nts,
ry
About This Book

The purpose of the VisualWorks User’s Guide is to show you how to use Visu-
alWorks® to quickly create applications that employ graphical user inter-
faces. It also provides detail about the ParcPlace Smalltalk™ syntax,
programming tools such as the Debugger, and advanced facilities such
exception handling.

Descriptions are also included that tell how to leverage your developme
resources further by implementing embedded interfaces and applications
also show how to build database access into your applications. In the
appendix, you will find keyboard shortcuts, message categories referenc
syntax descriptions, and special characters.

Audience

This guide address two primary audiences:

n developers of user interfaces

n developers of the models that support those interfaces

Both kinds of developers should at least be familiar with Smalltalk syntax
object-oriented programming concepts, as described in the VisualWorks
Tutorial and the first part of the VisualWorks User’s Guide. If you intend to
develop complex application models or customize the standard compone
you will need a more thorough understanding of the Smalltalk class libra
and the basic programming tools, which you can get from the VisualWorks
User’s Guide.

Organization

This VisualWorks User’s Guide provides comprehensive instructions for
using Smalltalk and VisualWorks. It is divided into five parts:
VisualWorks User’s Guide, Rev. 2.1 xvii

About This Book

f

ll-

e
you

ore.

r
rks.
ual
iews

g
y

ons

cal
n Smalltalk Language

n VisualWorks Tools

n Application Components

n Application Delivery

n Appendixes

The first part, Smalltalk Language, provides a detailed discussion of the
Smalltalk language. The language is largely implemented via Smalltalk
classes, as are user-interface components. It begins with an overview o
object-oriented programming, providing a bridge that links conventional
programming concepts to the sometimes unfamiliar terminology of Sma
talk. Subsequent chapters examine Smalltalk syntax, control structures,
fundamental data structures, processes and exception handling.

The second part, VisualWorks Tools, provides detailed descriptions of th
tools that are available in the VisualWorks environment. These tools help
manage projects, edit and compile code, trace bugs, edit text files, and m

The third part, Application Components, provides detailed instructions fo
using the many reusable software modules that are available in VisualWo
While you can reuse any part of the system in your applications, this man
selects the more commonly reused components for inspection, such as v
and dialogs.

The fourth part, Application Delivery, describes the process for extractin
applications from VisualWorks in a form that makes them ready for use b
your intended end users. It includes information about breaking applicati
into separately-loadable units called parcels and creating a deployment
image.

Conventions

This section describes the notational conventions used to identify techni
terms, computer-language constructs, mouse buttons, and mouse and
keyboard operations.
xviii VisualWorks User’s Guide, Rev. 2.1

Conventions

ion-

ed

r

er

; it

sly.

.

Typographic Conventions

This book uses the following fonts to designate special terms:

Special Symbols

This book uses the following symbols to designate certain items or relat
ships:

Example Description

template Indicates new terms where they are defined, emphasiz
words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and othe
C++, UNIX, or DOS constructs to be entered outside
VisualWorks (for example, at a command line).

filename .xwd Indicates a variable element for which you must sub-
stitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any oth
information that you enter through the VisualWorks
graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also indicates
emphasis in Smalltalk code samples.

Examples Description

File ?New command Indicates the name of an item on a menu.

<Return> key
<Select> button
<Operate> menu

Indicates the name of a keyboard key or mouse button
also indicates the pop-up menu that is displayed by
pressing the mouse button of the same name.

<Control>-<g> Indicates two keys that must be pressed simultaneou

<Escape> <c> Indicates two keys that must be pressed sequentially

Integer>>asCharacter Indicates an instance method defined in a class.
VisualWorks User’s Guide, Rev. 2.1 xix

About This Book

lts of
fault

tly,

rs,
oid

of

e

d

n

Screen Conventions

This manual contains a number of sample screens that illustrate the resu
various tasks. The windows in these sample screens are shown in the de
Smalltalk look, rather than the look of any particular platform. Consequen
the windows on your screen will differ slightly from those in the sample
screens.

Mouse Buttons

Many hardware configurations supported by VisualWorks have a three-
button mouse, but a one-button mouse is the standard for Macintosh use
and a two-button mouse is common for OS/2 and Windows users. To av
the confusion that would result from referring to <Left>, <Middle>, and
<Right> mouse buttons, this book instead employs the logical names
<Select>, <Operate>, and <Window>.

The mouse buttons perform the following interactions:

Float class>>pi Indicates a class method defined in a class.

Caution: Indicates information that, if ignored, could cause loss
data.

Warning: Indicates information that, if ignored, could damage th
system.

<Select> button Select (or choose) a window location or a menu item,
position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are appropriate for
the current view or selection. The menu that is displaye
is referred to as the <Operate> menu.

<Window> button Bring up the menu of actions that can be performed o
any VisualWorks window (except dialogs), such as
move and close . The menu that is displayed is referred
to as the <Window> menu.

Examples Description
xx VisualWorks User’s Guide, Rev. 2.1

Conventions

 the

at

ith-
Three-Button Mouse

VisualWorks uses the three-button mouse as the default:

n The left button is the <Select> button.

n The middle button is the <Operate> button.

n The right button is the <Window> button.

Two-Button Mouse

On a two-button mouse:

n The left button is the <Select> button.

n The right button is the <Operate> button.

n To access the <Window> menu, you press the <Control> key and the
<Operate> button together.

One-Button Mouse

On a one-button mouse:

n The unmodified button is the <Select> button.

n To access the <Operate> menu, you press the <Option> key and the
<Select> button together.

n To access the <Window> menu, you press the <Command> key and
<Select> button together.

Mouse Operations

The following table explains the terminology used to describe actions th
you perform with mouse buttons.

When you see: Do this:

click Press and release the <Select> mouse button.

double-click Press and release the <Select> mouse button twice w
out moving the pointer.
VisualWorks User’s Guide, Rev. 2.1 xxi

About This Book

m.

su-

ills

s

s

-

l

d
Additional Sources of Information

Printed Documentation

In addition to this User’s Guide, the core VisualWorks documentation
includes the following documents:

n Installation Guide: Provides instructions for the installation and testing
of VisualWorks on your combination of hardware and operating syste

n Release Notes: Describes the new features of the current release of Vi
alWorks.

n Tutorial: This manual provides an introduction to the concepts and sk
needed by the new VisualWorks tasks.

n Cookbook: Provides step-by-step instructions for performing hundred
of common VisualWorks tasks.

n International User’s Guide: Describes the VisualWorks facilities that
support the creation of nonEnglish and cross-cultural applications.

n Object Reference: Provides detailed information about the VisualWork
class library.

The documentation for the VisualWorks database tools consists of the
following documents:

n VisualWorks’ Database Tools Tutorial and Cookbook: Introduces the
process and tools for creating applications that access relational data
bases. The “Cookbook” chapter describes how to programmatically
customize various aspects of a database application.

n Database Connect User’s Guide: Provides information about the externa
database interface. Versions of it exist for SYBASE, ORACLE7, and
DB2 databases.

<Shift>-click While holding down the <Shift> key, press and release
the <Select> mouse button.

<Control>-click While holding down the <Control> key, press and
release the <Select> mouse button.

<Meta>-click While holding down the <Meta> or <Alt> key, press an
release the <Select> mouse button.

When you see: Do this:
xxii VisualWorks User’s Guide, Rev. 2.1

Obtaining Technical Support

-

lp,
lk
alk
 the

g.

e
Online Documentation

To display the online documentation browser, open the Help pull-down menu
from the VisualWorks main menu bar and select Open Online Documen-
tation . Your choice of online books includes:

n Database Cookbook: Online version of the “Cookbook” part of the Visu-
alWorks’ Database Tools Tutorial and Cookbook described above.

n Database Quick Start Guides: Describes how to build database applica
tions. It covers such topics as data models, single- and multiwindow
applications, and reusable data forms.

n International User’s Guide: Online version of the International User’s
Guide described above.

n VisualWorks Cookbook: Online version of the Cookbook described
above.

n VisualWorks DLL and C Connect Reference: Describes C data classes,
object engine access functions, and user-primitive functions.

Obtaining Technical Support

If, after reading the documentation, you find that you need additional he
you can contact ParcPlace-Digitalk Technical Support. ParcPlace-Digita
provides all customers with help on product installation. ParcPlace-Digit
provides additional technical support to customers who have purchased
ObjectSupport package. VisualWorks distributors often provide similar
services.

Before Contacting Technical Support

When you need to contact a technical support representative, please be
prepared to provide the following information:

n The version id, which indicates the version of the product you are usin
Choose Help?About VisualWorks in the VisualWorks main window.
The version number can be found in the resulting dialog under Version
Id: .

n Any modifications (patch files) distributed by ParcPlace-Digitalk that
you have imported into the standard image. Choose Help?About Visu-
alWorks in the VisualWorks main window. All installed patches can b
found in the resulting dialog under Patches: .
VisualWorks User’s Guide, Rev. 2.1 xxiii

About This Book

ec-

a-

7-
n The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error
notifier window (or in the stack view of the spawned Debugger). Then
paste the text into a file that you can send to technical support.

How to Contact Technical Support

ParcPlace-Digitalk Technical Support provides assistance by:

n Electronic mail

n Electronic bulletin boards

n World Wide Web

n Telephone and fax

Electronic Mail

To get technical assistance on the VisualWorks line of products, send el
tronic mail to support-vw@parcplace.com .

Electronic Bulletin Boards

Information is available at any time through the electronic bulletin board
CompuServe. If you have a CompuServe account, enter the ParcPlace-
Digitalk forum by typing
go ppdforum at the prompt.

World Wide Web

In addition to product and company information, technical support inform
tion is available via the World Wide Web:

1. In your Web browser, open this location (URL):

http://www.parcplace.com

2. Click the link labeled “Tech Support.”

Telephone and Fax

Within North America, you can:

n Call ParcPlace-Digitalk Technical Support at 408-773-7474 or 800-72
2555.

n Send questions and information via fax at 408-481-9096.
xxiv VisualWorks User’s Guide, Rev. 2.1

Obtaining Technical Support

0

s for
Operating hours are Monday through Thursday from 6:00 a.m. to 5:0
p.m., and Friday from 6:00 a.m. to 2:00 p.m., Pacific time.

Outside North America, you must contact the local authorized reseller of
ParcPlace-Digitalk products to find out the telephone numbers and hour
technical support.
VisualWorks User’s Guide, Rev. 2.1 xxv

About This Book
xxvi VisualWorks User’s Guide, Rev. 2.1

a-
vel-

ddi-
es

e
he
ing
.

tion
 one
l.

tion
ich
del.
eral

r
cture
,
Chapter 1

Introduction

About VisualWorks

VisualWorks is a fully object-oriented environment for constructing applic
tions, using Smalltalk as the scripting language. It enables application de
opers to build graphical user interfaces rapidly for both new and existing
applications, augmenting Parcplace Smalltalk development facilities. In a
tion, VisualWorks provides convenient linkages to many popular databas
such as ORACLE and SYBASE.

Building Applications

You begin building an application by using a VisualWorks painter to plac
visual components on a canvas. The characteristics of components on t
canvas are described by a variety of property-setting, menu-building, align
and positioning tools. The VisualWorks painter creates the user interface

A Definer and object script browsers work together to create the applica
logic. This is the “glue” that connects the components on the canvas with
another, and with information obtained from an underlying domain mode
The domain model can reside in an external database.

A Builder connects the specifications for the user interface to the informa
in the domain model. The Builder is embodied in an application model, wh
serves as the coordinator between the user interface and the domain mo
The Builder creates the executable system, applying the look of any of sev
different window managers.

Read-and-Apply Tools

The tools for painting and defining utilize a powerful read-apply metapho
when operating on a user interface canvas. Each tool is linked to the stru
of the canvas so that it can “read” the characteristics of the components
VisualWorks User’s Guide, Rev. 2.1 1

Chapter 1 Introduction

the

ica-
rs at

o

 of

s.

-

an

ilt
se
in
cts

ent
e-

ppli-
 for
nd
which enables you to understand current attributes. You can then refine
properties and “apply” the refinement.

Visual Reuse

A key feature of VisualWorks is that it enables you to organize your appl
tions so as to share with and inherit from one another. This sharing occu
several levels—we use the phrase visual reuse to encompass the varieties of
sharing, including:

n Direct interface reuse—The same user interface can be connected t
different domain models.

n Interface nesting—A “larger” interface can incorporate selected parts
a “smaller” interface, or all of it.

n Interface inheritance—You can arrange a hierarchy of application
models that refine the user interfaces they inherit from their ancestor

n Direct application reuse—One application can invoke another, estab
lishing interdependencies as needed.

This visual reuse augments the traditional benefits of reuse provided by
object-oriented language such as Smalltalk. Every object in the
environment—including the tools and the application frameworks—is bu
up from a hierarchy of classes that has surprisingly simple roots. Becau
VisualWorks is an open environment, you can reuse any class of object
your application. You can think of VisualWorks as a generic family of obje
whose evolution you shape to fit your needs.

Starting VisualWorks

VisualWorks runs on a variety of computer systems, under several differ
window managers. Starting VisualWorks requires a slightly different proc
dure in each windowing system, as detailed in your VisualWorks Installation
Guide.

In general, if your system provides a special mechanism for launching a
cations, such as double-clicking on an application’s icon, use that method
VisualWorks. If you normally launch an application by entering a comma
string, enter a string of the following form:

oe-path image-path
2 VisualWorks User’s Guide, Rev. 2.1

Saving Your Image

dify

 a

e to
uires
ve

-
 will
tate
For oe-path , substitute the pathname of the object engine. For image-
path , substitute the pathname of the standard system image (visual.im)
or of a custom image.

Saving Your Image

From using other applications, you may be accustomed to saving a file that
you have created. As a programming environment that permits you to mo
virtually any aspect of it, however, VisualWorks lets you save the entire
working environment. You accomplish this in a simple step known as saving
an image (also called making a snapshot). To do so, choose File?Save As...
in the VisualWorks main window. The current image name is provided as
default.

If you would like to save the image with another name, enter a new nam
create a new image and leave the existing one as is. (Each image file req
multiple megabytes of disk space, depending on how much code you ha
added to the system—so make sure your disk can accommodate a new
image.)

The system appends the extension .im to the image file, except on a Macin
tosh platform, where no extension is attached. Your image, or snapshot,
contain not only code modifications you have made, but also the current s
of every window you have opened.
VisualWorks User’s Guide, Rev. 2.1 3

Chapter 1 Introduction

-

Exiting VisualWorks

To exit from VisualWorks, choose File?Exit VisualWorks... in the Visual-
Works main window. A dialog will be displayed, offering the following
options:

Exit

Save then Exit

Cancel

For best results, always exit from VisualWorks by using the VisualWorks
main window’s File?Exit VisualWorks... command. If you cannot exit via
the File?Exit VisualWorks... command, refer to “Emergency Exit (all plat
forms)” on page 219.
4 VisualWorks User’s Guide, Rev. 2.1

Part I

Smalltalk Language
VisualWorks User’s Guide, Rev. 2.1 5

t,
s of
bits.

iliar
 of

s
en a
n
e

has
ee

has
ode,

t had

es—
e,
ostal
nge
Chapter 2

Object Orientation

Much of the literature on object-oriented programming (OOP) tends to
emphasize how it differs from procedural programming. And it is differen
in many important respects. Working with objects requires some new way
thinking, just as touch typing requires that you unlearn hunt-and-peck ha

Unfortunately, too often the strangeness of it all is overemphasized. This
chapter attempts to present object-oriented terms and concepts in a fam
context, using your programming expertise as a bridge to the new world
objects.

Procedures vs. Objects

In a conventional programming language, a procedure typically perform
multiple operations and handles several items of data. For example, wh
user inputs a customer record in an accounts receivable system and the
executes a ‘save’ command, a procedure might be invoked to validate th
dozen or more fields of information in a customer record.

What happens when the five-digit field for a postal code in an application
to be changed to accommodate the six-character Canadian format? Thr
sources of inefficiency become apparent immediately.

First, what amounts to a single conceptual change (modify postal code)
to be programmed in two locations (database structure and procedure c
as shown in part A of the illustration). Wouldn’t it be nice if the data were
somehow bound more tightly to the code, so that only one system elemen
to be changed?

Second, there are likely to be multiple procedures that handle postal cod
besides customer data maintenance, there may be supplier maintenanc
distributor maintenance, and so on (part B). In each such procedure, the p
code validation routine has to be modified. In an ideal system, such a cha
would affect all pertinent procedures simultaneously.
VisualWorks User’s Guide, Rev. 2.1 7

Chapter 2 Object Orientation

al
by the

al
entity
am
ow
 turns
dure
t
alid
 the
l.
Third, although only the portion of a procedure’s code pertaining to post
codes is affected by the change, the entire procedure has to be scanned
programmer and recompiled (part C).

Figure 2-1 Modifying zip code in procedural programs

Objects and Methods

There has to be a way to isolate the changes more intelligently. In an ide
programming language, each field in the database would be a separate
for the purpose of changing its attributes. Each atomic routine in a progr
would be a separate entity for the purpose of maintaining the code. So n
we have a set of atomic data elements and a set of atomic procedures. It
out that the procedures cluster very naturally around the data. The proce
for validating a postal code is something that only the postal code objec
needs to know. Likewise, only the address object needs to know what its v
inputs are. So if we can make each data object smart enough to perform
useful operations on itself, we no longer need separate procedures at al

Expand postal code

Database

Procedure

Expand postal code

Customer

Supplier

Distributor

Recompile

I.D. No.

Name

Address

(Etc.)

CCBBAA

validation routines
8 VisualWorks User’s Guide, Rev. 2.1

Composite Objects

ppli-
t a
es

, no
than

 is
t,
 code
s its

 have

Figure 2-2 Modifying postal code in Smalltalk

The simple strategy of making data smart is at the core of Smalltalk. An a
cation is no longer a collection of procedures that act on a database, bu
collection of data objects that interact with one another via built-in routin
called methods. The language is object-oriented rather than procedure-
oriented.

In fact, because Smalltalk variables are not bound to specific data types
change is required for client programs to be able to store a string rather
an integer in a postal code.

To expand the definition of a postal code in Smalltalk, all you need to do
broaden the postal code object’s validation routine. When another objec
such as the customer or supplier object, needs to know whether a postal
is valid, it passes the proposed value to a postal code object, which use
built-in mechanisms to do the testing.

Composite Objects

Some objects, called composite objects, contain several other objects. For
example, a customer object would contain identifying objects such as
customer number, name, address, city, state, postal code and telephone
number. Why have a customer object at all? Because some procedures
to be performed for a customer rather than a postal code or a telephone
number.

Expand postal code

Postal code

Recompile

CCBBAA

object
VisualWorks User’s Guide, Rev. 2.1 9

Chapter 2 Object Orientation

er

st of?
 each

e

ion

nts-

bout

f a

ng

d so

)
 is a
Figure 2-3 Hierarchy of Objects

The ‘create’ command, for example, is best centralized up at the custom
level of abstraction, because it is an operation that affects all of the data
objects that make up a customer. What does that ‘create’ operation consi
In our example, the customer object simply fires off the same message to
member of its collection: ‘Here’s your input—validate it and store it. Let m
know if there’s a problem.’

Theoretically, the customer object would provide the customer-identificat
part of an ‘account’ object that handles requests related to a customer’s
account status. A collection of account objects would make up the accou
receivable system, itself an object that knows how to answer questions a
its collection of accounts. And the accounts-receivable object joins an
accounts-payable application and a general-ledger application as parts o
financial-management package. Hence, programming an application in
Smalltalk consists of building a hierarchy of objects. Another way of looki
at it is that you’re creating a single object (the application) that contains
component objects, each of which may contain smaller components, an
on. Figure 2-3 illustrates a portion of such a hierarchy.

Variables and Methods

An object typically is made up of one or more private variables (the data
combined with a set of methods for manipulating that data. Each method
specialized subroutine.

Financial Management System object

Accounts Receivable Application object

Account object

Customer object

Postal Code object
10 VisualWorks User’s Guide, Rev. 2.1

Method Grouping

ow

 as

, one
n

ode

, a

tor
ame
Figure 2-4 Variables and methods of an object

The two parts of an object are also known as state and behavior. The values
held by an object’s variables define its state. Its methods—what it knows h
to do—define behavior.

For example, a postal code object might have a variable called zip to hold the
postal code string. It needs at least two methods to be a civilized object,
listed in Table 2-1.

:

As you can see, each variable typically generates two accessing methods
for inquiry and one for update. Even a simple postal code object will ofte
have other methods. For example, it might have a method called isValid,
which checks to make sure the string conforms to a recognized postal c
format.

Method Grouping

The method name is used by other objects to select that operation. Thus
method name is known as a method selector. A method selector is sometimes
also called a message, though technically a message consists of the selec
plus any arguments. In this manual set, we frequently use the method n

Table 2-1 Accessing Methods for the Postal Code Object

Method name Description

getZip Return a string containing the postal code

setZipTo: Replace the contents of the zip code variable with the
string that follows the colon

Methods
getZip
setZipTo:
isValid

Vari-
ables

zip

Zip Code Object

An object containing
variables and methods
VisualWorks User’s Guide, Rev. 2.1 11

Chapter 2 Object Orientation

e
-

 not
me,

ari-
. All

 to
 that
, such

ata

lltalk
l

tocol

ject
r and
as an adjective, as in “a getZip message,” which is shorthand for “a messag
involving the getZip method selector.” The fundamental unit of any Small
talk expression is an object reference followed by a message, as in postal-
Code getZip. This expression asks the postalCode object to return the value
stored in its zip code variable.

Method names may contain letters, numbers, and underscores, but may
begin with a number. When two or more words are combined to form a na
as in this case, second and later initials are capitalized to improve
readability—this convention applies to all names in the system: objects, v
ables and methods. For global variables, the first letter is also capitalized
method names begin with a lower-case letter.

It is not uncommon for an object to have dozens of methods. From class
class, methods tend to cluster in recurring groups—for example, objects
have data also have a set of methods for accessing the data. Collectively
methods are known as accessing methods. You may encounter the phrase
“accessing protocol,” which refers to the set of methods for accessing d
within an object.

Figure 2-5 Two message categories in a postal code object

A message category, also called a protocol, is a convenient grouping of
related methods, much as a file folder holds related documents. The Sma
programming community follows informal standards in choosing protoco
names—Appendix A Message categories reference lists the more common
protocol names and describes their usage. The System Browser uses pro
names to help you search the code library.

Classes and Instances

The question arises: How can there possibly be only one postal code ob
that serves both a customer and a supplier when the real-world custome

postal code object

Methods
getZip
setZipTo:
isValid

Vari-
ables

zip
accessing protocol

testing protocol
12 VisualWorks User’s Guide, Rev. 2.1

Classes and Instances

se the
 silly
 must
de

ot
in-

. An
 be
f

s. For

 a
use

lass

an it
er, the
nce

ry
supplier might reside in different zip zones? For that matter, each new
customer might have a different postal code.

Obviously, there is a separate postal code object in each instance becau
values stored in the variables are different. On the other hand, it would be
to duplicate the postal code object’s methods for each instance, so there
be one postal code object that is unique in that it knows how a postal co
ought to behave. The data-only object is known as an instance; the method-
holding object is called a class.

Class names may contain letters, numbers, and underscores, but may n
begin with a number. The first letter of a class name is capitalized to dist
guish it from an instance name. So ZipCode is a class; zipCode, aZipCode
and customerZip are all instances.

A class can be thought of as the object behavior affixed to a data template
instance is created by cloning the template so a new set of variables can
stored. The ZipCode class has a template specifying that each instance o
ZipCode will have one variable named zip. Any given instance of that class
consists of a value for that variable.

Class Variables

A class can also have its own variables, which serve as system constant
example, the built-in class Date has a class variable called MonthNames,
which stores an array containing names for the 12 months. Our ZipCode
class might have a class variable called Formats, to store a collection of
known formats. In either of these examples, it would be wasteful to store
new copy of the class variable in every instance that is cloned from it beca
the value of the variable remains constant for all instances.

Like class names, class variable names begin with a capital letter. The c
variables are not part of the template used to create an instance—only
instance variables belong to the template.

Class Methods vs. Instance Methods

If an instance doesn’t have its own copy of the methods on board, how c
respond to messages? In a manner that is transparent to the programm
system looks for the appropriate method in the class from which the insta
was spawned.

The expression zipCode getZip is equivalent to “ask the ZipCode class to
execute its instance method called getZip using the variables in the instance
called zipCode.” Thus, though each instance does not use up unnecessa
VisualWorks User’s Guide, Rev. 2.1 13

Chapter 2 Object Orientation

the

ss has
en a

sion
of a

nes
al
s, and

 As
 the

h as
memory space by creating a copy of the instance methods, the effect is
same.

A message can also be sent to a class, which is also an object. Each cla
two different sets of methods, one for itself and one for its instances. Wh
class receives a message directly, it looks for the corresponding method
among its class methods.

Thus, the expression zipCode getZip executes an instance method that
returns the value of the instance variable. On the other hand, the expres
ZipCode formats causes a class method to be performed and the value
class variable (i.e., a constant) to be returned.

Figure 2-6 The parts of a class and an instance, and their interconnections

To summarize, the Smalltalk language consists of thousands of subrouti
called methods that are organized as a library of class objects. The typic
class object consists of class variables, class methods, instance method
a template for instance variables.

Class Grouping

VisualWorks contains a library of class objects, more than 1000 of them.
you might expect, they have been herded into categories to help you find
one you need for any given purpose. For example, numeric classes suc

aZipCode (instance)��������������������������������������
�����
�����
�����
�����
�����
��������������������������������������

���
���
���
���
���
���
���

Instance
variables

zip

ZipCode (class)

Class
methods

formats

Class
variables

Formats

Template
for
instance
variables

zip

Instance methods
getZip
setZipTo:
isUSZip
isCanadianZip
14 VisualWorks User’s Guide, Rev. 2.1

Classes and Instances

 are
i-
 all

ew
em
ry. In
ols are

sing
e
ink
ng
ntro-

like
ss
Integer and Fraction belong to a category called Magnitude-Numbers.
Classes Character and String are members of the category called Collec-
tions-Text. Category names typically include a subcategory name—there
two categories of magnitude-like classes: Magnitude-General and Magn
tude-Numbers. Collection-like objects are grouped into eight categories,
of which begin with the word “Collections.”

Category names have no impact on your program’s functionality. The Integer
class could be moved to the Collections-Text category or to an entirely n
category without affecting any program. Try it, if you’ve mastered the Syst
Browser, which uses category names to help you navigate the class libra
the sense that they are group labels, categories are to classes as protoc
to methods.

Programming in Smalltalk amounts to building new class objects and reu
the existing ones. You can examine, use and even modify any class in th
system though, in practice, there are many that you will never need to th
about because they provide low-level support for other classes. (Changi
system classes except by extension is not recommended—it’s easy to i
duce serious system bugs by doing so.)

Class Inheritance

The class library is organized in a hierarchy of specialization, very much
the taxonomy applied to the animal kingdom. At the root of the tree is cla
Object. One kind of Object is a class called Magnitude. If you dig down
through a few more levels of specialization within the Magnitude subhier-
archy, you come to a class called SmallInteger. An instance of class Small-
Integer is an integer such as 3.

If you execute the expression 3 raisedTo: 4, the correct result (81) will be
returned. A raisedTo: message with an argument of 4 is being sent to 3,
which is an instance of SmallInteger. From the prior discussion about
VisualWorks User’s Guide, Rev. 2.1 15

Chapter 2 Object Orientation

r a

mbs
 our

i-

e

e
ple),

instance methods, one would assume that the class SmallInteger has an
instance method called raisedTo:, but that is not the case.

Figure 2-7 Inheritance hierarchy for the SmallInteger class

Looking up a Method

Smalltalk provides a method-lookup mechanism that starts its search fo
given method in the obvious place—the class of the object to which the
message was sent. If no such method exists there, the method finder cli
up through the hierarchy, stopping at each level to look for the method. In
example, the method finder has to go up two levels, past the Integer class to
its parent, Number. There it finds the raisedTo: method.

SmallInteger is a subclass of Number, because it provides specialized var
ables and/or methods. Number is a superclass of SmallInteger, as is the class
that sits between them in the hierarchy, Integer. Class Object is the top-level
superclass of all other objects.

It’s important to remember that the method finder has two ladders at its
disposal, one for finding class methods and the other for locating instanc
methods. As it climbs upward through the superclasses, it uses only one
ladder or the other, but not both. Its choice of ladder is determined by th
message recipient. If the message is sent to an instance (3, in our exam
only instance methods are searched. A message sent to a class such asSmall-
Integer would push the method finder onto the class-method ladder. The

Object
Magnitude
ArithmeticValue
Number
Integer
SmallInteger
16 VisualWorks User’s Guide, Rev. 2.1

Looking up a Method

d
o-
res-

tate.

lass
expression SmallInteger raisedTo: 4 would cause a fruitless search
resulting in an error.

Figure 2-8 The upward search path of the object hierarchy

Overriding an Inherited Method

An instance of any subclass of Number can respond to a raisedTo: message,
but that doesn’t mean they all use Number’s version of it. The subclass Float,
for floating point numbers such as 3847.029, has its own instance metho
called raisedTo: because floating-point numbers require a specialized alg
rithm for exponentiation. When the method finder goes to work on the exp
sion 3847.029 raisedTo: 4, it stops at class Float and never gets as high as
Number.

Inheritance also applies to variables. Thus, each class inherits all of the
methods and variables of its superclasses.

For example, the ApplicationModel class provides variables and methods
that support a mechanism for notifying dependent objects of a change in s
This mechanism is inherited by all subclasses of ApplicationModel. The
Customer class that we mentioned earlier might well be created as a subc
of ApplicationModel. Then, if we create a View that displays the values in
the Customer object, the Customer inherits methods for keeping that View

Object

Magnitude

ArithmeticValue

Number

Integer

SmallInteger

instance class

raisedTo:
VisualWorks User’s Guide, Rev. 2.1 17

Chapter 2 Object Orientation

uilt

 that

 their

called
r
hich
imi-
 loca-

 been
e
uld

ad
ard-

ss.

ed.

it
in sync with the data changes. We don’t have to write any code for such
dependency coordination.

Abstract Classes

The class Object is the ultimate superclass of all other classes, whether b
into the system or newly created by an application developer. But Object has
an empty template for instance variables. This may seem odd considering
instance variables hold the actual data. What would an instance of class
Object hold as its nugget of data? The answer is that Object is not intended
to have instances. Its behavior is inherited and used by its subclasses and
instances.

When a class is not intended to be used to create concrete instances, it is
an abstract class. An abstract class is frequently useful as a repository fo
variables and methods that are useful to two or more classes, none of w
is a logical subclass of the other. Another way of looking at it is that the s
larities shared by a group of objects are squeezed up from their separate
tions and into a common superclass.

The postal code can serve as an example once again. Until now, we have
trying to make a single ZipCode class handle two very different postal cod
formats. Presumably, as the customer base expands, more methods wo
have to be added to handle other postal systems. Eventually, a plain old
United States numeric zip code would have to be stored in a class that h
more irrelevant methods than relevant ones—and that’s the sort of awkw
ness this object-oriented technology is supposed to avoid.

Let’s make ZipCode an abstract superclass, with two new subclasses: USZip
and CanadianZip. They can both inherit the zip variable and the accessing
methods (getZip and setZipTo:) as well as any class variables and class
methods. The isValid method must be re-implemented in each of the
subclasses, to handle their specific formats. The ZipCode class’s version of
isValid can then hand off the validation request to the appropriate subcla
To Customer, Supplier and any other objects that interact with ZipCode,
the mechanism for finding out whether a zip code is valid has not chang

Nesting Abstract Classes

A subclass of an abstract class can be abstract itself. One might make USZip
abstract, for example, and create one subclass representing the five-dig
format (OldUSZip) and another for the hyphenated-nine-digit format (Slow-
ToBeAdoptedUSZip).
18 VisualWorks User’s Guide, Rev. 2.1

Choosing a Superclass

esign
t has

irst
 user

t’s

ds.

rting

or

tal
iated
Choosing a Superclass

When you create a new class, choosing its superclass is an important d
decision. The choice is made easier when you employ an architecture tha
been proven in many diverse applications.

Figure 2-9 The containment hierarchy of the class library

The key to this architecture is to divide your application into two parts. F
develop the data structure and the attendant processing, then invent the
interface. The user interface is further subdivided into input and output
modules. The data-and-processing module is referred to as the model. The
output module usually consists of the screen displaying mechanisms—i
called the view. The input module is called the controller because it enables
the user to control the sequence of events by entering data and comman

Not surprisingly, Smalltalk provides an abstract class as the intended sta
point for each of these three modules: Model, View and Controller. Thus, the
architecture is known as model-view-controller, or MVC, programming. F
detailed information about MVC design, see “Application Framework” on
page 223.

We use the term “application” broadly here—an object as lowly as a pos
code can be regarded as a self-contained model that can have an assoc

Data & processing Display

Copy
Cut
Paste
Save

Menu

Object

Model View Controller
VisualWorks User’s Guide, Rev. 2.1 19

Chapter 2 Object Orientation

oller
is
pli-
bility
 this
t as

erit-
ry,

lves.

f

y.
view (a box on the screen in which the postal code is displayed) and contr
(for accepting keyboard input to the model in the form of data entry). Th
implies that an MVC application can be a component of a larger MVC ap
cation, and so on. That is indeed the case, furthering the cause of reusa
by segmenting any given program into easily separated components. In
sense, a model-view-controller triad is the fundamental unit of design jus
an object is the fundamental unit of implementation.

When you choose a superclass for a new class, you are selecting an inh
ance hierarchy—positioning the method finder’s ladder in the class libra
so to speak. Model, View and Controller head three major subhierarchies
within the library. Your choice of superclass typically resolves to a class
within one of those subhierarchies, and often to the head classes themse

Many of the user-interface components that have been layered on top o
Smalltalk to form VisualWorks are subclassed from Model, View or
Controller. The remaining classes are typically subclassed from Object,
because as linguistic elements they stand apart from the MVC machiner
20 VisualWorks User’s Guide, Rev. 2.1

Choosing a Superclass
VisualWorks User’s Guide, Rev. 2.1 21

Chapter 2 Object Orientation
22 VisualWorks User’s Guide, Rev. 2.1

ects,
ing

nd to
tive
is is

 the
e

w

Chapter 3

Syntax

ParcPlace Smalltalk employs syntactic rules that are unique in some resp
as well as unusual naming conventions. We begin with a discussion of nam
style, then proceed to explore the syntax of literal constants, variables,
message expressions and block expressions.

Naming Conventions

Names of classes, variables, methods and other expression elements te
be lengthy in Smalltalk by comparison with most languages. For descrip
purposes, a name is frequently made up of two or more words. When th
the case, convention dictates that the first letter of each embedded word is
capitalized. This convention is not enforced by the language or by any of
development tools provided with ParcPlace Smalltalk, but it does improv
readability.

In conformance with the draft ANSI standard, VisualWorks does not allo
the use of periods in class names or other identifiers.

Capitalization Rules and Conventions

Table 3-1 provides rules and conventions that apply to the first letter of a
name.

Table 3-1 Capitalization Rules and Conventions

Type of name Initial capital Example

Class category Yes (suggested) Magnitude-General

Class Yes (mandatory) Date

Class variable Yes (mandatory) MonthNames

Global variable Yes (mandatory) MaximumUsers
VisualWorks User’s Guide, Rev. 2.1 23

Chapter 3 Syntax

 and

mal
 as
Literal Constants

Smalltalk provides six types of literal constants:

n number

n character

n string

n symbol

n byte array

n array of literals (including other arrays)

In addition, three special literals are recognized by the compiler: nil, true and
false. These are discussed following the six types listed above.

Numbers

Numbers are represented in the usual way, using a preceding minus sign
embedded decimal point as required.

Integers

Integers are expressed as numeric literals such as 101, or as the result of arith-
metic operations involving one or more integers such as 55 + 46.

Floating Point Numbers

Floating point numbers must have at least one digit to the left of the deci
point, so the compiler can distinguish a decimal point from a period used
an expression delimiter. Thus, 0.005 is legal, but .005 is not. In scientific
notation, the e is replaced by a d in a Double and a q for quad-precision.

Pool variable No (suggested) cr

Instance variable No (suggested) year

Temporary variable No (suggested) aDate

Method protocol No (suggested) accessing

Method No (suggested) monthName

Table 3-1 Capitalization Rules and Conventions

Type of name Initial capital Example
24 VisualWorks User’s Guide, Rev. 2.1

Literal Constants

d by

plicit

 the

sed
the

ix

s;

plied
Fixed-Point Numbers

A fixed-point number is useful for business applications in which a fixed
number of decimal places is required. Fixed-point numbers are expresse
placing the letter s after a literal integer or a floating-point number. The
number of decimal places preceding the s implicitly specifies scale of the
number (the number of decimal places to be preserved). Note that an ex
scale takes precedence over an implicit one, so that 99.95s4 is the same as
99.9500s, while 99.9500s2 is an error.

Nondecimal Numbers

Number literals can also be expressed in a nondecimal base by prefixing
number with the base and the letter r (for radix). For example:

When the base is greater than ten, the capital letters starting with “A” are u
for digits greater than nine. For example, the hexadecimal equivalent of
decimal number 255 is 16rFF.

Numbers in Scientific Notation

Numbers can also be expressed in scientific notation by including a suff
composed of e (for exponent) or d (for double-precision) plus the exponent in
decimal. Note that you can also use the letter q instead of d. The letter q stands
for quad-precision, and is available for portability to other Smalltalk system
however, in VisualWorks, q has the same effect as d.

The base is raised to the power specified by the exponent and then multi
by the number. For example:

Octal Decimal

8r377 255

8r34.1 28.125

8r-37 -31

Scientific Notation Decimal

1.586d5 158600.0
VisualWorks User’s Guide, Rev. 2.1 25

Chapter 3 Syntax

limit
ote

class
ol
tes.

n

mber
re
Characters

A character literal is always prefixed by a dollar sign. For example:

$a
$M
$-
$$
$1

Strings

A string literal is enclosed in single quotes (double quotes are used to de
a comment). Any character can be included in a literal string. If a single qu
is to be included, it must be preceded by a single quote, as in:

'I won''t fail'

Symbols

A symbol is a label that conveys the name of a unique object such as a
name. There is only one instance of each symbol in the system. A symb
literal is preceded by a number sign, and optionally enclosed in single quo
For example, #Float and #'5%' are legal symbols. If a symbol is enclosed i
an array, it must still be preceded by a number sign.

Byte Arrays

A literal byte array is enclosed in square brackets and preceded by a nu
sign. Elements of the array must be integers between 0 and 255. They a

1586e-3 0.001586

8r3e2 192

2r11e6 192

Scientific Notation Decimal
26 VisualWorks User’s Guide, Rev. 2.1

Literal Constants

le, is

gn.
es are
d by

t (a
t

l

es

en
separated by one or more spaces. The result, as in the following examp
an instance of class ByteArray:

#[255 0 0 7]

Arrays

An array literal is enclosed in parentheses and preceded by a number si
Elements of the array are separated by one or more spaces (extra spac
ignored). An array literal embedded in another array must still be precede
a number sign. The following example contains a number, a character, a
string, a symbol and another array (of three characters):

#(1586.01 $a 'sales tax' #January #($x $y $z))

Note: The mutability of arrays and strings is a source of possible error in
using literals. When you change an element in a nonatomic literal constan
String, an Array, or a ByteArray), the change is reflected globally. For tha
reason, experienced Smalltalk programmers rarely pass a mutable litera
constant from one method to another, but pass a copy instead.

Booleans

The boolean constant true is the sole instance of class True, which is a
subclass of Boolean.

The constant false is the sole instance of class False, also a subclass of
Boolean. Unlike most instances, the values of true and false are hard-wired
in the compiler—which qualifies them as constants.

Their behavior, however, is defined in the instance methods of the class
True and False. They implement logical operations such as not.

The nil object is the sole instance of class UndefinedObject. As the class
name implies, nil is the null value given to variable slots that have not yet be
assigned a more interesting value. Like the booleans, nil is hard-wired in the
compiler. Its behavior is defined in UndefinedObject—for example, it over-
rides the isNil method implemented by Object (answering true instead of
false).
VisualWorks User’s Guide, Rev. 2.1 27

Chapter 3 Syntax

ng

s
les).
s

y not
ari-

al

 and
Variables

Six kinds of variable are available in Smalltalk. Listed in order of increasi
scope, they are as follows:

n temporary

n instance

n class instance

n class

n pool

n global

Temporary and instance variables are private variables because their scope i
local to a method (for temporaries) or to an instance (for instance variab
Class, class instance, pool and global variables have wider clienteles, a
described below. In addition, there are three special variables, which are
discussed after the section on global variables.

Variable names may contain letters, numbers, and underscores, and ma
begin with a number. By convention, the first letter is lowercase for local v
ables and uppercase for nonlocal variables.

The default value for any variable is the nil object. To assign a new value to a
variable, use a colon followed by an equal sign (:=, pronounced “gets”), as in
the expression:

prompt := 'Enter your name'

The expression on the right-hand side of the assignment can be any leg
Smalltalk expression. The following examples are all valid assignment
expressions. They have the effect of creating an array of ice cream flavors
selecting one of those flavors at random:

flavors := #('chocolate' 'vanilla' 'mint chip').
index := (Random new next)* 3.
flavorChoice := flavors at: index truncated + 1
28 VisualWorks User’s Guide, Rev. 2.1

Variables

same

s—
e of

time
e

turns

s

e

like:

ues

ver,

ent

hich
Assignments can be chained when two or more variables are to store the
value, as in:

majorLoopCounter := minorLoopCounter := 1

Chained assignments should only be used with literal or read-only value
otherwise, updating one variable has the side effect of changing the valu
the other variable similarly.

Temporary Variables

A temporary variable is most often encountered in a method, where it
provides temporary storage for an argument or a calculated value. Its life
begins when it is declared by the method, or a block expression within th
method, and ends when the block or method finishes processing and re
control to the calling object.

For example, the class Time provides an instance method called
hours:minutes:seconds:. This method declares three temporary variable
to hold its arguments, and names them hourInteger, minInteger and secIn-
teger. The first line of the method consists of the method name with thes
argument names inserted, as follows:

hours: hourInteger minutes: minInteger seconds: secInteger

When a client object sends this message to an instance of Time, appropriate
integers are provided. Here is what the message expression might look

aTime hours: 11 minutes: 42 seconds: 15

The result of this expression is that, for as long as the method continues
processing, hourInteger is equal to 11, minInteger is 42, and secInteger is
15. Argument variables, unlike other temporaries, do not accept new val
by assignment. As a documentation convention, a temporary variable is
usually named so as to indicate the object type it is intended to hold. Howe
any object can be stored in any variable.

A temporary variable can be used for dynamic storage as well as argum
storage. For example, the Dictionary class provides an instance method
called occurrencesOf:, for counting the number of entries in a dictionary
that equal the argument. The method declares a temporary variable in w
VisualWorks User’s Guide, Rev. 2.1 29

Chapter 3 Syntax

n,

s of

rate
rtical

 part

used

lass
n
to store the total. A temporary variable is declared by enclosing its name
between vertical bars. The declaration must follow the message definitio
and usually follows a comment explaining the method. The first three line
the occurrencesOf: method look like this:

occurrencesOf: anObject
“Answer how many of the receiver’s elements are equal to

anObject.”
| count |

One or more white-space characters (space, tab, etc.) are used to sepa
variable names when multiple temporaries are declared between the ve
bars.

Instance Variables

An instance variable is used to store data in an instance. It is declared as
of the class definition. The following definition of the Set class shows the
form of an instance variable declaration (on the second line):

Collection variableSubclass: #Set
instanceVariableNames: 'tally '
classVariableNames: ''
poolDictionaries: ''

category: 'Collections-Unordered'

When an instance of class Set is created, the tally variable is initialized to nil.
Each time an element is added to or removed from the set, its tally is updated
with a new count of the set’s elements.

Thus, an instance variable provides a place to store a value that can be
by multiple methods (whereas a temporary variable is local to a specific
method). Its lifetime is that of the instance itself.

Instance variables are inherited, so an instance has its own copy of the
instance variables declared by all of its superclasses. For example, the c
SystemDictionary is a subclass of Set, so it does not need to declare its ow
tally variable because it can use the tally that is declared in its superclass.
30 VisualWorks User’s Guide, Rev. 2.1

Variables

class

e, the

 it

the
ll
nlike

 host
ultiple
 is

l
Class Instance Variables

A class instance variable is used to store data that varies with each sub
in a hierarchy. It can only be accessed by a class method.

For example, suppose you have an abstract LanguageDictionary class that
has methods for looking up words to verify spelling, etc. You give
LanguageDictionary a class instance variable named wordCollection. Now
you create a series of subclasses corresponding to the English languag
Polish language, and so on. The EnglishLanguage class can initialize
wordCollection to hold English words. The other subclasses can initialize
differently. Then when an instance of any subclass asks for wordCollection,
it gets the appropriate language-specific version.

Figure 3-1 Class instance variable

The advantages of this approach are that you still only have to initialize
wordCollection once for each subclass (unlike instance variables) and a
subclasses can reuse methods that employ a common variable name (u
class variables).

Class Variables

A class variable is used to store data that is useful to all instances of the
class and its subclasses. Because it is a shared variable (accessible by m
objects), the first letter of a class variable name is capitalized. Its lifetime
that of its host class.

The initial value of a class variable is usually assigned in a class method
(normally named initialize) and that method is typically invoked as the fina
act of creating the class.

LanguageDictionary class

wordCollection ()

EnglishDictionary class

wordCollection (‘aardvark’ ...)

PolishDictionary class

wordCollection (‘abak’ ...)
VisualWorks User’s Guide, Rev. 2.1 31

Chapter 3 Syntax

the

p the
e array

s
her-

ific
hat

that

tual

ass
For example, class Date has five class variables, which are declared in
class definition (third and fourth lines) as follows:

Magnitude subclass: #Date
instanceVariableNames: 'day year '
classVariableNames: 'DaysInMonth FirstDayOfMonth
MonthNames SecondsInDay WeekDayNames'

poolDictionaries: ''
category: 'Magnitude-General'

The instance variables change with each instance, so they can only be
accessed directly by the same object. The class variables, however, kee
same values across instances. So when an instance wants to access th
of integers contained in the DaysInMonth variable, for example, it does not
have to send a message to Date. It can use the variable in its methods just a
naturally as it would use an instance variable. Objects that are not in the in
itance chain would have to query Date for the information.

Pool Variables

A pool is a dictionary of global variables that is intended for use by a spec
set of classes. Its purpose is to provide quick access to the contents of t
dictionary (short-cutting the usual dictionary-lookup machinery). Each
element in the dictionary is a pool variable, and is available to any class
declares the pool in its definition. For example, class Text declares a pool
dictionary in its class definition:

CharacterArray subclass: #Text
instanceVariableNames: 'string runs '
classVariableNames: ''
poolDictionaries: 'TextConstants'
category: 'Collections-Text'

The TextConstants dictionary provides keyboard mapping support for
various text-manipulating objects. Each key in its dictionary names a tex
element or characteristic such as Tab and Underline. Each key’s associated
value is the character sequence that invokes that property.

Note: Pool dictionaries are not inherited, so you must add them to each cl
that is to use them, even if they are declared in its superclass.
32 VisualWorks User’s Guide, Rev. 2.1

Variables

l
he

must
e by
t-
n
 pool

les,

n

l
,

the
ved
.
Global Variables

A global variable is accessible by any object. It must begin with a capita
letter. Its lifetime is that of the system, unless it is explicitly removed from t
system dictionary.

All class names are global variables, as obvious examples of objects that
be accessible to all other objects. (Removing a class name from the imag
deleting its entry in the Smalltalk dictionary is not recommended.) Objec
oriented programming style discourages the creation of globals other tha
class names. In fact, only a handful of globals other than class names and
dictionaries exist in the system. Smalltalk, Transcript and Processor are
examples. They could as well be implemented in the form of class variab
with class methods to return the values of those variables.

Special Variables

For three special variables, the value changes according to the executio
context but cannot be changed by assignment: self, super and thisContext.

The most prevalent of these special variables is self, which holds a reference
to the object that is executing the current message.

In the simplest case, self merely allows the programmer to direct a new
message to the specific instance that is executing the current method. In
effect, an object can execute another of its own methods. A hypothetica
doSomething method could use a computeX method to calculate a number
for example, with the expression self computeX.

A more complicated case arises when inheritance is involved. Suppose
doSomething method is located in the superclass of the object that recei
the doSomething message. But computeX is implemented by the subclass
VisualWorks User’s Guide, Rev. 2.1 33

Chapter 3 Syntax

arch

e
self”
n a

ass

How do we send the method finder back to the bottom of the ladder to se
for computeX, rather than just starting from its superclass location?

Figure 3-2 The special variable self is a pointer to the object (in this case, anOb-
ject) that received the message being executed (doSomething)

The surprising but pleasing answer is that the expression self computeX still
works. The new message (computeX) is directed at self, which refers to the
object that received the previous message (doSomething).

It’s important to remember that self does not necessarily point to an instanc
of the class whose method is being executed. In our example, the word “
is used in the parent’s method but it refers to the child. Thus, using self i
method automatically provides for downward growth in the hierarchy.

The super variable is very similar to self, except super tells the method
finder to begin its search one level above the executing method in the cl
hierarchy. This is useful when a subclass wants to add operations to its
parent’s method without having to duplicate the parent’s code. Note that

aSuperclass

anObject

anObject doSomething

doSomething method

self computeX

computeX method
34 VisualWorks User’s Guide, Rev. 2.1

Message Expressions

not

f

 as
ari-
.

to-

m

alk.
more

od
ver.

 just
super is in the nature of a qualifier applied to the method finder, so it can
be assigned to a variable (as self can).

.

Figure 3-3 Special variable super

The third special variable, thisContext, is a reference to the stack context o
the current process. While self and super are commonly used by Smalltalk
programmers, thisContext is rarely needed by application developers. It is
used by the system’s exception handler and debugger.

Note: In some of the literature on Smalltalk, self and super are referred to
pseudovariables. However, other objects have also been called pseudov
ables, so the term is ambiguous—we call them special variables instead

Undeclared Variables

When a variable is deleted while references to it still exist, its name is au
matically entered in a dictionary of Undeclared variables. This dictionary is
maintained by the system and need not concern you under normal
circumstances—but it can provide useful clues to certain kinds of progra
errors.

Message Expressions

A message expression is the fundamental unit of programming in Smallt
It has three kinds of components: a receiver, a method name and zero or
arguments. In 9 raisedTo: 2, the receiver is 9, the method name is raisedTo:,
and the argument is 2. The term message technically refers to the meth
selector and arguments, while a message expression includes the recei

Every message returns an object to the message sender. In the example
given, the raisedTo: method returns an instance of SmallInteger—

aSuperclass

anObject

anObject getX

computeX method

getX method

super computeX
VisualWorks User’s Guide, Rev. 2.1 35

Chapter 3 Syntax

rom

ng

 of

ift-

y after

ns. In
se

. The

ns of

nnot

ns,
id
he
specifically, 81. There are three ways to denote the object to be returned f
a method:

n By default, the message receiver (self) is returned to the sender.

n A return operator (̂, entered as <Shift-6> on most keyboards) precedi
a variable name causes that object to be returned. For example, the
expression ̂anObject causes anObject to be returned.

n A return operator preceding a message expression returns the value
that expression. For example, the expression ^3 + 4 causes the object 7
to be returned.

Note: In prior versions of ParcPlace Smalltalk, an up-arrow symbol was
displayed as the return operator, though it was typed with the same <Sh
6> key used currently.

A period is used to separate message expressions. No period is necessar
the final expression in a series.

There are three types of message: unary, binary and keyword expressio
addition, two or more messages can be joined in sequence. Each of the
constructs is described below.

Unary Messages

A unary expression has a receiver and a method name but no argument
following are all unary expressions:

1.0 sin. "Returns the sine of 1.0."
Random new."Returns a random number generator."
Date today. "Returns today’s date."

Binary Messages

binary expression uses a special character such as a plus sign (+) as its method
name and requires one argument. Some binary selectors are combinatio
two special characters, such as the comparison selector >= (greater than or
equal to). If you create a new binary, the second character of its name ca
be a minus sign (-).

The most common binary messages have to do with arithmetic operatio
comparisons and string concatenation. Table 3-2 describes all of the val
binary selectors. One or more white-space characters before and after t
selector are optional.
36 VisualWorks User’s Guide, Rev. 2.1

Message Expressions
Table 3-2 Binary Method Selectors

Selector Example Description

+ counter + 1 Add

- 100 - 50 Subtract

* index * 3 Multiply

/ 1 / 4 Divide

** 4 ** 3 Raised to

// 13 // -2 Integer divide (round the quotient to
the next lower integer; in the exam-
ple, -7). An instance of Point can
also be rounded via this operator.

\\ 13 \\ -2 Modulo (return the remainder after
division; in the example, -1).

< counter < 10 Less than

<= index <= 10 Less than or equal

> clients > 5000 Greater than

>= files >= 2000 Greater than or equal

= counter = 5 Values are equal

~= length ~= 5 Values are not equal

== x == y Same object (receiver and argument
are the same object or point to the
same object)

~~ x ~~ y Not the same object

& (x>0) & (y>1) Logical AND (return true if both
receiver and argument are true, oth-
erwise false).

| (x>0) | (y<0) Logical OR (return true if either
receiver or argument is false).
VisualWorks User’s Guide, Rev. 2.1 37

Chapter 3 Syntax

ted
ing
r. It
lass

a

ncat-
is

ous

The assignment expression (:=) is not a method selector, so it is not lis
here even though it looks like a binary selector. Also not listed is the link
symbol (>>) used in the debugger, which is also not defined as a selecto
provides a shorthand way of referring to a method and its implementing c
together. Thus, Set>>size refers to the Set class’s instance method called
size.

Keyword Messages

A keyword expression has a receiver, one or more argument descriptors
(keywords) and one argument for each keyword. Each keyword ends in
colon. The following are valid keyword expressions:

aDate addDays: 5 "Add five days to aDate."

anArray copyFrom: startIndex to: stopIndex
"Return a copy of that portion of anArray
that begins at startIndex and ends at
stopIndex."

When there is more than one keyword, the method name is formed by co
enating the keywords. In the second example above, the method name
copyFrom:to: (formally pronounced “copyFrom colon to colon”). There is
no limit on the number of keywords in a method name.

Messages in Sequence

Frequently, the receiver of a message is the object returned by the previ
message expression. To avoid creating a temporary variable to store the

, 'abc','def' Concatenate two collections.

@ 200 @ 300 Return an instance of Point whose x
coordinate is the receiver and
whose y coordinate is the argument.

-> #Three -> 3 Return an instance of Association
whose key is the receiver and
whose value is the argument.

Table 3-2 Binary Method Selectors

Selector Example Description
38 VisualWorks User’s Guide, Rev. 2.1

Message Expressions

e first
d set:

t the
mple,
is

re

ument
sion

d by

ons.
returned object, you can create a caravan of messages. For example, th
set of expressions below can be compressed into the form of the secon

interest := principal * interestRate.
principal := principal + interest.

principal := principal + (principal * interestRate).

This technique reduces the wordiness of the code, though sometimes a
expense of readability. Parentheses can be inserted, as shown in the exa
to improve the readability and to assure that the intended parsing order
followed.

When two messages have the same parsing precedence, parentheses a
sometimes required. For example, 3 + 4 * 5 is very different from 3 + (4 * 5)
because binary selectors are all evaluated from left to right.

Parentheses are also necessary when a keyword expression is in the arg
expression for another keyword expression. For example, the first expres
below is valid but in the second version the method selector is interprete
the compiler as readFrom:on:, which does not exist.

Time readFrom: (ReadStream on: '10:00:00 pm').

Time readFrom: ReadStream on: '10:00:00 pm'. "WRONG"

The following rules summarize the parsing order:

1. Parse parenthesized expressions before nonparenthesized expressi

2. Parse multiple unary expressions left to right.

3. Parse multiple binary expressions left to right.

4. Parse unary expressions before binary expressions.

5. Parse binary expressions before keyword expressions.
VisualWorks User’s Guide, Rev. 2.1 39

Chapter 3 Syntax

e

one
g

olon
me
ple,
sion,
The result of the following code fragment is that a number is printed in th
System Transcript—can you trace the logic using the rules above?

| aSet nbr|
nbr := 207.
Transcript show: (aSet := Set new add: nbr + 3 * 5 sin) printString

In the first line, two temporary variables are declared. In the second line,
of the variables is assigned the number 207. In the third line, the followin
sequence of events takes place:

When two or more messages are to be sent to the same object, a semic
can be used to cascade the messages. This avoids having to repeat the na
of the receiver, though frequently at the expense of readability. For exam
the first set of expressions below has the same effect as the final expres
in which the messages are cascaded:

Transcript show: 'This is line one.'.
Transcript cr. “Carriage return.”
Transcript show: 'This is line two.'.
Transcript cr.

Transcript show: 'This is line one.'; cr; show: 'This is line two.'; cr

Event Description

Set new Create an instance of Set.

5 sin Calculate the sine of 5 (-0.958924).

nbr + 3 Add 3 to nbr (210).

... * Multiply 210 by -0.958924 (-201.374).

.. add: ... Add -210.374 as an element in the set created in Step 1.

aSet := Assign the set to the variable aSet.

... printString Convert the set to a printable string.

Transcript show: Output the printable string to the System Transcript.
40 VisualWorks User’s Guide, Rev. 2.1

Block Expressions

s are
pter
 are

s the

s must

tical

ents
o
Block Expressions

A block expression represents a deferred sequence of operations. Block
used in control structures, so they will be discussed in more depth in Cha
4, “Control Structures.” The syntactic characteristics of block expressions
discussed here.

A block expression is enclosed in square brackets, as in:

[index := index + 1.
anArray at: index put: 0]

The messages inside the block are not sent until the block object receive
unary message value. The following expressions have the same effect:

index := index + 1.
[index := index + 1] value.

Up to 255 separate arguments can be passed to a block. Argument name
be listed just inside the opening bracket. Each argument name must be
preceded by a colon. The final argument name must be followed by a ver
bar. For example:

[:counter | counter := counter + 1]

The argument variables are private to the block. The values of the argum
are passed by using variants of the value message. There are four variants, t
be used depending on the number of arguments:

value: anObject
value: anObject value: anObject
value: anObject value: anObject value: anObject
valueWithArguments: anArray

Passing an argument to the example above would be arranged thus:

[:counter | counter := counter + 1] value: 3
VisualWorks User’s Guide, Rev. 2.1 41

Chapter 3 Syntax

g

e.

 are
Temporary variables can also be declared within a block. They must be
enclosed in vertical bars and placed after the vertical bar that separates
argument variables. They are local to the block.

The full syntax for a block is as follows:

[:arg1 :arg2 |
|temp1 temp2 |
statement1.
statement2.
...]

Formatting Conventions

The compiler ignores tabs, carriage returns and extra spaces. Formattin
conventions vary but readability favors the following guidelines:

1. Start the message definition at the left margin and indent all other
contents of the method one level.

2. Leave a blank line beneath the method comment and as a separator
between sections of a long method.

3. Follow each period that ends an expression by a carriage return.

4. Indent as needed to visually identify each subordinate section of cod

The code browser provided with ParcPlace Smalltalk provides a format
command for automatically applying these rules.

Syntactic Elements Summary

The following table summarizes the syntactic elements discussed in this
chapter. The ellipsis (...) is used in examples when irrelevant elements
not shown.

.

Table 3-3 Syntactic Elements Summary

Element (punctuation) Example

Character ($) $a

String ('...') 'The address is', clientAddress

Symbol (#) #Time
42 VisualWorks User’s Guide, Rev. 2.1

Syntactic Elements Summary

the
The following example illustrates a typical, fully assembled method. It is
Dictionary class’s instance method called Includes:

includesKey: key
"Answer whether the receiver has a key equal to the
argument, key."

| index |

ByteArray (#[]) #[255 76 0 49]

Array (#()) #('Three' #Three 3)

Comment ("...") "Multiply two numbers."

Nondecimal number 16r3F "Hexadecimal"

Scientific notation 1.586e5

Temp. variable declaration (| |) | index counter |

Assignment (:=) index := 0

Return (^) ^self

Parser grouping (()) 3 + (4 * 5)

Block ([]) [index := index + 1]

Block argument (:... |) [:arg | arg := arg + 1 ...]

Block variable (|...|) [|temp| temp := 0 ...]

Unary message 'J.G. Kilhoon' size

Binary message index < 10

Keyword message (:) currentDate addDays: 3

Cascaded message (;) Transcript; cr; cr; cr

Messages in sequence (.) index := 0. counter := 1

Object-method pairing (>>) Date>>addDays:

Table 3-3 Syntactic Elements Summary

Element (punctuation) Example
VisualWorks User’s Guide, Rev. 2.1 43

Chapter 3 Syntax

her
index := self findKeyOrNil: key.
^(self basicAt: index) ~~ nil

Naturally, the ParcPlace Smalltalk class library contains thousands of ot
examples of methods.
44 VisualWorks User’s Guide, Rev. 2.1

Syntactic Elements Summary
VisualWorks User’s Guide, Rev. 2.1 45

Chapter 3 Syntax
46 VisualWorks User’s Guide, Rev. 2.1

ous

are

new

-

 as
r for

ana-
Chapter 4

Control Structures

Control structures in Smalltalk are invoked by sending messages to vari
objects. The boolean objects true and false provide the if-then-else
machinery, while numbers, collections and blocks provide the looping
methods. These two types of control structure—branching and looping—
described in this chapter.

The BlockClosure class provides the machinery with which these control
structures are implemented. You can use the same machinery to create
control structures. Block syntax is described in “Block Expressions” on
page 41.

Branching

The boolean objects true and false implement methods for performing condi
tional selection (if statements). However, you will rarely see true or false
mentioned explicitly in such an expression. Instead, an expression such
index > 9 returns a boolean value, and that returned value is the receive
the messages described below.

ifTrue:ifFalse:

The Smalltalk version of if-then-else is the ifTrue:ifFalse: method. It takes
two blocks as its arguments, one to be executed if the receiver is true and the
second to be executed if the receiver is false. In the following example, a
prompt string is altered depending on whether the application user is a m
gerial employee:

(userType == #Manager)
ifTrue: [prompt := 'Enter your password']
ifFalse: [prompt := 'Access denied—sorry']
VisualWorks User’s Guide, Rev. 2.1 47

Chapter 4 Control Structures

 so
n

o

be
ets

ver

only
Either of the blocks can be left empty when no action is required. This is
often the case that ifTrue: and ifFalse: are provided as separate methods. I
the example above, if no password were required, the ifTrue: portion of the
expression could be dropped entirely. An ifFalse:ifTrue: method is also
available, when the false condition is more prevalent.

Smalltalk has no equivalent of the case statement provided in many
languages—a case statement tends not to be object-oriented.

Looping

Three types of iterative operation are available: conditional, number and
collection looping. This section discusses the three types of looping.

Conditional Looping

Conditional looping involves a conditional test that determines whether t
repeat the loop.

whileTrue: and whileFalse:

In the previous example, the expression (userType == #Manager) is evalu-
ated just once. By contrast, the condition that drives a while loop has to
evaluated multiple times. In Smalltalk, it is enclosed in the square brack
that identify it as a block (an instance of class BlockClosure). The
whileTrue: message causes that block to receive a value message, which
triggers execution of the block’s contents. If the expressions in the recei
block return a true, the argument block is executed. Then value is again sent
to the receiver block to see if it is still true, repeating the cycle.

The following example might be used in a game that ends when there is
one player (the winner) left in the game:

[players > 1] whileTrue:
[nextPlayer takeTurn.
(nextPlayer outOfGame) ifTrue: [players := players - 1]]

To reverse the logic of the test, use whileFalse:. For example, to process a
stream of objects until the endpoint is encountered:

[self atEnd] whileFalse: [aBlock value: (self next)]
48 VisualWorks User’s Guide, Rev. 2.1

Looping

s

om

 an

ent
d

o the
ed

For situations in which no argument block is needed, the unary message
whileTrue and whileFalse are available.

repeat

When a block of statements contains its own (reliable!) test for returning fr
the loop, the simple message repeat can be sent to the block.

Number Iteration

Number looping corresponds to the traditional for loop, and is implemented
via messages to numbers.

timesRepeat:

To repeat a block of expressions a specific number of times, send a
timesRepeat: message to a number and provide the repeatable block as
argument. For example, to send the string ‘Testing!’ to the Transcript
anInteger times:

anInteger timesRepeat: [Transcript show: 'Testing!']

to:by:do:

A more elaborate sort of for loop comes in the form of the to:by:do: method,
which lets you specify a starting integer, a stopping integer, the step increm
and the block to be repeated. For example, to print something like a wor
processor’s tab-setting ruler on the Transcript:

10 to: 65 by: 5 do: [:marker |
Transcript show: marker printString.
Transcript show: '---'].

Here’s a translation: Count by fives from 10 to 65. Pass each such value t
block, which converts it to a string and outputs it to the Transcript, follow
by three hyphens. The output looks like this:

10---15---20---25---30---35---40---45---50---55---60---65---

Notice that, unlike timesRepeat:, the to:by:do: method automatically passes
the value of the counter to the block (picked up by the argument named
VisualWorks User’s Guide, Rev. 2.1 49

Chapter 4 Control Structures

tch

h

f
-
xclu-

ell.

c-
ecu-

tput

d in

th-
marker in this case). The block must declare an argument variable to ca
the passed value.

to:do:

When the counting increment is 1, you can use the simpler to:do:. The
following example prints the ASCII equivalents of the numbers 65 throug
122 in the Transcript.

65 to: 122 do: [:asciiNbr |
Transcript show: asciiNbr asCharacter printString]

Collection Iteration

Collection looping supports scanning, counting and other operations
involving one repetition for each member of a collection. It is frequently
useful to repeat a series of operations for each element in a collection o
objects (collections are discussed further in Chapter 6, “Collection Opera
tions”). The integer iteration discussed above is a special case, dealing e
sively with numeric intervals—i.e., collections of integers. The iteration
methods discussed in this section apply to other kinds of collections as w
All are implemented by the Collection class, which is the superclass of
dictionaries, arrays, sets, strings, etc.

do:

The simplest method, do:, evaluates the block for each member of the colle
tion. For example, to capture the contents of an array during program ex
tion, we might want to convert each member to a printable string and ou
it to the Transcript:

anArray do: [:anElement |
Transcript show: (anElement printString); cr]

select:

To filter a collection and wind up with a desired subset, use select:. Each
member of the collection that satisfies the conditions in the block is store
a new collection of the same type, which is returned by the method. The
following example counts the number of question marks in a string by ga
50 VisualWorks User’s Guide, Rev. 2.1

Looping

ted
on-

 it
ing

lec-
r

ock

n

this
ering the question marks into a new collection and then finding the size of
that collection:

(aString select: [:eachChar | eachChar == $?]) size

reject:

The reject: method is the opposite of select:. It gathers the members of the
original collection that fail the test rather than those that pass it. Substitu
for select: in the example above, it would create a collection of non-questi
marks, which would then be sized.

detect:

The detect: method, like select:, tests each element of the collection. But
instead of returning a subcollection of those elements that pass the test,
returns the first such instance (and stops testing at that point). The follow
example locates the first instance of the integer 8 in anArray:

anArray detect: [:each | each == 8]

collect:

The collect: method performs a transformation on each element of the col
tion and returns a new collection containing the transformed objects. Fo
example, to get an uppercase version of aString:

aString collect: [:each | each asUppercase]

inject:into:

The inject:into: method enables you to pass an explicit argument to the bl
in addition to the collection’s elements. This explicit argument (the inject:
part of inject:into:) is used to initialize a counter for a cumulative operatio
such as summing. For example, to add the numbers in aSet:

aSet inject: 0 into: [:subtotal :nextNbr | subtotal + nextNbr]

Table 4-1 summarizes the branching and looping methods discussed in
chapter.
VisualWorks User’s Guide, Rev. 2.1 51

Chapter 4 Control Structures

-

.

Table 4-1 Control Structure Methods

Method name Description

ifTrue: If the prior expression is true, execute the argument block.

ifFalse: If the prior expression returns false, execute the argument
block.

ifTrue:ifFalse: If the prior expression is true, execute the first block; other-
wise do the second block.

ifFalse:ifTrue: Checks for a false condition first.

whileTrue: Repeat the argument block until the receiver block is no
longer true.

whileFalse: Repeat the argument block until the receiver block is no
longer false.

whileTrue Repeat the receiver block until it no longer returns true.

whileFalse Repeat the receiver block until it no longer returns false.

repeat Repeat the receiver block until it executes a return or other-
wise breaks the loop.

timesRepeat: Repeat the argument block, using the receiving integer as a
counter

to:by:do Repeat for a specified interval, incrementing the counter by
a specified value. Use the repetition counter as a block argu
ment.

to:do: Same as above, using 1 as the counter increment

do: Repeat a block for each element in the receiver collection.

select: Collect all elements that pass a test.

reject: Collect all elements that fail a test.

detect: Return the first element that passes a test.

collect: Transform each element and return the transformed version
of the collection.

inject: into: Perform a cumulative operation such as summing the ele-
ments.
52 VisualWorks User’s Guide, Rev. 2.1

Looping
VisualWorks User’s Guide, Rev. 2.1 53

Chapter 4 Control Structures
54 VisualWorks User’s Guide, Rev. 2.1

ell

is

sses.

ry
ass

ny
als.

n:

r
Chapter 5

Numeric Operations

ParcPlace Smalltalk provides several classes that represent elements in
various kinds of linear series. They include various kinds of numbers as w
as Date and Time. Operations involving these classes are discussed in th
chapter. At the end of the chapter, the numeric classes are placed in the
context of the class hierarchy with a discussion of their abstract supercla

Integers

The Integer class is an abstract superclass with three subclasses:
SmallInteger, LargePositiveInteger and LargeNegativeInteger. The
boundaries between SmallInteger and its larger neighbors occur at 229-1
(536,870,911) and -229. Large integers have no size limit (other than memo
availability). However, the system coerces integers into the proper subcl
transparently, so you rarely need to pay attention to this issue.

Most of the behavior is defined in Integer, so in this section we will speak of
integers generically.

instance creation and arithmetic

No specific methods are needed to create an instance of an integer (or a
number) because they are typically created by calculations involving liter
Instances take the form of literals such as 101, and are derived via arithmetic
expressions such as 55 + 46.

The usual arithmetic operations are supported, with three types of divisio

n Exact division (/), which returns a fraction if the result is not an intege
(see “Fractions” on page 59)

n Integer division (//), which returns the quotient rounded to the next
lower integer (i.e., rounded toward negative infinity); use \\ to get the
corresponding remainder (modulo)
VisualWorks User’s Guide, Rev. 2.1 55

Chapter 5 Numeric Operations

nd
n Truncated division (quo:), which returns the integer portion of the
quotient; use rem: to get the corresponding remainder

Integers also support the following functions:

n abs (absolute)

n factorial

n gcd:, which returns the greatest common divisor of two integers (the
receiver and the argument)

n lcm:, which returns the least common multiple of two integers (the
receiver and the argument)

n negated (reverse sign)

n raisedTo:, which can also be written as double-asterisk (**); if the
argument is an integer, raisedToInteger: is faster

n reciprocal

n sqrt (square root)

n squared

testing

Integers return a true or false from the following methods:

n even

n odd

n negative

n positive (>=0)

n strictlyPositive (>0)

n isInteger

n isLiteral

n isZero

The sign method returns 1 if the receiver is positive, -1 if it is negative, a
zero if it is zero.

comparing

Integer instances respond to the usual binary comparison messages (=, ==,
<, <=, etc.).
56 VisualWorks User’s Guide, Rev. 2.1

Floating Point Numbers

 so

ers

e

 of
converting and printing

The asCharacter method returns a character whose ASCII value is the
receiving integer. The expression 80 asCharacter returns $P.

The asFloat method returns a floating-point representation of the integer,
80 asFloat returns 80.0.

The printString method returns a string containing the integer. A radix
integer is first converted to base 10, so the expression 16r11 printString
returns ‘17’. To print the integer in any base, use printStringRadix:. Thus,
16r11 printStringRadix: 16 returns ‘11’.

Similarly, the printOn: method for printing an integer on a stream has a
printOn:base: version for specifying a nondecimal base.

Floating Point Numbers

The Float class creates instances of single-precision floating point numb
between 1038 and -1038, with eight to nine digits of precision. The Double
class creates double-precision floating point numbers between plus and
minus 10307, with 14 to 15 digits of precision. Both Float and Double are
subclasses of LimitedPrecisionReal, an abstract superclass that contains th
behavior that is common to single- and double-precision floats.

In this section we will speak of floats generically.

instance creation and arithmetic

Instances take the form of literals such as 327.95, and are derived via arith-
metic expressions such as 301.50 + 26.45. In scientific notation, a Double
displays a d instead of e, as in 3.015d67.

The usual arithmetic operations are supported, including the three types
division described above for integers.

Floats also support the following functions:

n abs (absolute value)

n cos, sin, tan, arcCos, arcSin, arcTan

n fractionPart, which returns the fractional part of the number

n integerPart, which returns the integer part of the number as a float

n ln (natural log)

n negated (reverse sign)
VisualWorks User’s Guide, Rev. 2.1 57

Chapter 5 Numeric Operations

ac-
n raisedTo:, which can also be written as double-asterisk (**); if the
argument is an integer, raisedToInteger: is faster

n reciprocal

n rounded, which rounds to the nearest integer, and roundTo:, which lets
you specify the rounding factor (such as 100)

n sqrt (square root)

n squared

n truncated, which returns the integer part of the number as an integer

testing

Floats return a true or false from the following methods:

n evenNegative

n oddPositve (>=0)

n strictlyPositive (>0)

n isLiteral

n isZero

The sign method returns 1 if the recipient is positive and -1 otherwise.

comparing

Floats respond to the usual binary comparison messages (=, ==, <, <=, etc.)

converting and printing

Use asInteger to remove the fractional portion of the float and return an
integer.

The asRational method converts a float to a rational number (integer or fr
tion). For example, the expression 7.5 asRational returns the fraction 15/2.

Floats also provide methods for converting degreesToRadians and
radiansToDegrees.

The printString method returns a string containing the float.
58 VisualWorks User’s Guide, Rev. 2.1

Fractions

ats—
 Frac-

s-

d to
ch to
 the

n the

end it

d
Fractions

An instance of Fraction is a number with a numerator and a denominator,
separated by a division slash, as in 3/4. Fractions are always reduced to
lowest terms.

Fractions respond to most of the messages described for integers and flo
exceptions are easily accessible to common sense and experimentation.
tions come equipped with additional methods as follows:

n An instance can be created via arithmetic or explicitly, as in the expre
sion Fraction numerator: 3 denominator: 4.

n numerator and denominator, for accessing the components

n asFloat and asDouble, for converting to a floating point number

Random Numbers

An instance of class Random is a random number generator. The easiest
method of generating a random number is with the expression Random new
next.

The Random class comes with seven sets of parameters that correspon
seven generators. Each requires a starting value (called a “seed”) on whi
perform arcane calculations resulting in a series of random floats. Thus,
more explicit means of creating an instance of Random is with the from-
Generator:seededWith: method, as in:

Random
fromGenerator: 1
seededWith: (Time millisecondClockValue)

The example, as it turns out, is what the new method does. It uses the first of
the seven generators, seeded with the number of elapsed milliseconds o
system’s clock. (You can provide a literal seed number for a reproducible
sequence of random numbers.) Once the generator has been created, s
the message next to get the next random number in the series. If multiple
random numbers are needed, assign the generator to a variable and sennext
to the variable, as in the following loop:

| aGenerator |
aGenerator := Random fromGenerator: 7 seededWith: 234.
VisualWorks User’s Guide, Rev. 2.1 59

Chapter 5 Numeric Operations

e it
eed is

 day

g a

th

e of

l

mber
ce,
10 timesRepeat: [
Transcript show: (aGenerator next) printString.
Transcript cr]

This code fragment prints ten random numbers in the Transcript. Each tim
is executed, it prints the same ten numbers unless the generator or the s
changed. That’s why the seed is frequently derived from a near-random
number itself, such as the current time.

Dates

In Smalltalk, a date is defined by a day and a year—so March 5, 1980 is
65 in the year 1980. This is another way of saying that the Date class provides
a template for two instance variables, called day and year. However, a date
object comes equipped with methods for converting itself to and from
standard month-day-year representations. Its public interface, therefore,
makes it appear to be an object having a month, a day and a year.

instance creation

Date provides five class methods for creating a new instance, each usin
different kind of input.

n newDay:month:year: creates a date object from a day number, a mon
name and a year number. The month name must be a symbol, as in
#March—only the unique first letters of the month name need to be
given, so #Mar is sufficient in this example. If the century part of the
year is omitted, the current century is assumed. To create an instanc
Date with the value of March 5, 1980, use the expression Date
newDay: 1 month: #March year: 1980.

n today creates a date object with the current date as its value. The ful
expression is Date today.

n readFromString: (inherited from Object) takes its input from a string,
as in:

Date readFromString: ’March 5, 1980’

The string can begin with either the month or the day, though if both are
integers the first will be assumed to be the month. The month can be a nu
or the (unique first letters of the) name. Any of the usual separators (spa
60 VisualWorks User’s Guide, Rev. 2.1

Dates

ing

g

t a
comma, hyphen, slash or nothing) can be employed. Thus, all of the follow
strings would be converted successfully:

q 'March 5, 1980

q 'MAR 5 80'

q '3/5/80'

q '3-5-1980'

q '5 March 1980'

q '5MAR80'

n Also available are newDay:year, which returns a date object that is a
given number of days after the start of the specified year, and from-
Days:, which is similar except that it uses 1901 as its starting year.

comparing

Date instances respond to the usual binary comparison messages (=, ==, <,
<=, etc.). Thus, the following expression returns true:

(Date today) > (Date readFromString: '4/1/01')

arithmetic

A number of days can be added to or subtracted from a date object, usin
addDays: and subtractDays:, as in currentDate addDays: 7, which
returns a date seven days later than currentDate. The difference in days
between two date objects can be found with subtractDate:.

accessing and inquiries

Table 5-1 lists methods for finding some atomic piece of information abou
date.

.

Table 5-1 Date Methods

Method name Object returned

day Number of days since beginning of year

weekDay Name of the day of the week, as a symbol

dayOfMonth Number of days since beginning of month

previous: Date of previous specified weekday
VisualWorks User’s Guide, Rev. 2.1 61

Chapter 5 Numeric Operations

 array
printing

The printFormat: method returns a string representation of a date object,
using the format specified in the array that is passed as an argument. The
consists of six integers, as shown in Table 5-2.

.

For example, to print the current date in the format of March 5 1980:

(Date today) printFormat: #(2 1 3 32 3 1)

monthIndex Month number

monthName Month name

daysInMonth Number of days in month

firstDayOfMonth Number of days from beginning of year to first day of the
month, inclusive

year Year number

daysInYear 365 or 366 (until the calendar goes metric)

daysLeftInYear Number of days to end of year

leap 1 if the date is in a leap year, otherwise 0

Table 5-2 Parts of a format array for printing date

Array index Purpose

1 Day’s position in output (1, 2 or 3)

2 Month’s position in output (1, 2 or 3)

3 Year’s position in output (1, 2 or 3)

4 ASCII number of the separator character

5 Month format (1 = number, 2 = abbreviation, 3 = name)

6 Year format (1 = full number, 2 = last two digits)

Table 5-1 Date Methods

Method name Object returned
62 VisualWorks User’s Guide, Rev. 2.1

Time

n

ell

ast

nt
For most purposes, the printString method supplied by the Object superclass
suffices. The expression (Date today) printString returns the current date in
the format 5 March 1980, though that format can be altered in the printOn:
instance method supplied by Date.

Date also provides methods for printing a date object on a stream (printOn:,
mentioned above, and printOn:format:), and for printing an executable
expression on a stream (storeOn:) such that the expression will return the
original date object.

Time

A time is defined by an hour, a minute and second relative to midnight. A
instance of Time having 3:47:26 pm as its value contains 15 in its hours
variable, 47 in its minutes variable, and 26 in its seconds variable. Time’s
public interface provides methods appropriate to this representation as w
as a seconds-since-midnight representation.

instance creation

The Time class provides three methods for creating a time object:

n now returns the current time, in the format 3:47:26.

n fromSeconds: returns a time that is a specified number of seconds p
midnight. For example, Time fromSeconds: 3661 returns a time object
with the value 1:01:01 am.

n readFromString: takes its input from a string, as in:

Time readFromString: '3:47:26 pm'

The string can include leading zeros ('03:47:26'). The ‘am/pm’ eleme
can be in uppercase letters.

comparing

Time instances respond to the usual binary comparison messages (=, ==, <,
<=, etc.). Thus, the following expression returns true (except during the first
hour after midnight):

(Time now) > (Time readFromString: '1:01:01 am')
VisualWorks User’s Guide, Rev. 2.1 63

Chapter 5 Numeric Operations

me
t

rned

e

 of

arithmetic

A time object can be added to either a time object or a date object, using
addTime:. The argument is converted to seconds past midnight (if it’s a ti
object) or seconds since the beginning of 1901 (if it’s a date object). Tha
number of seconds is then added to the receiver, and the new instance ofTime
is returned in the usual hours-minutes-seconds format. Hours are not retu
modulo 24—for example, the following expression returns a time of
694035:47:26 pm.

(Time readFromString: '3:47:26 pm')
addTime: (Date readFromString: 'March 5, 1980')

Time can be subtracted in the same way, using subtractTime:.

accessing and inquiries

To find out some atomic piece of information about a time, use one of th
methods in Table 5-3.

.

The last three methods listed above are class methods. Time also provides
“general inquiries” that report the number of seconds since the beginning
1901 as a four-element ByteArray (timeWords), and the milliseconds that
transpire during execution of a block provided as its argument
(millisecondsToRun:).

Table 5-3 Time Methods

Method name Object returned

hours Number of hours

minutes Number of minutes

seconds Number of seconds

totalSeconds Number of seconds from the beginning of 1901 to
the current time

dateAndTimeNow An array containing current date and time

millisecondClockValue Number of milliseconds since the system’s clock
was last reset
64 VisualWorks User’s Guide, Rev. 2.1

Time

g

t

e

ts
ted.

t.
m—
ay

r

converting and printing

The asSeconds method converts a time object into a number representin
the value of (hours * 3600) + (minutes * 60) + seconds.

The printString method inherited from Object returns a string version of the
time object, so Time now printString returns a string containing the curren
time.

Time also provides methods for printing a time object on a stream (printOn:),
and for printing an executable expression on a stream (storeOn:) such that
the expression will return the original time object.

Time Zone

The Time class converts Greenwich Mean Time (GMT) to local time with th
help of another class, TimeZone, on machines that report GMT rather than
local time. TimeZone stores an offset from GMT for local time. In some par
of the world, this offset is not an integral number of hours, which is suppor

TimeZone provides an algorithm for determining whether DST is in effec
The algorithm relies on parameters that can be changed to suit local custo
by default, Daylight Savings Time is in effect from 2 a.m. on the first Sund
preceding April 7 to 2 a.m. on the first Sunday preceding October 31.

To change the day of the week from the Sunday preceding April 7 and
October 31 to some other day, substitute the desired day of the week fo
#Saturday in the following expression:

TimeZone default weekDayToStartDST: #Saturday

To change other parameters in the default TimeZone, create a new instance
of TimeZone with the desired parameters, then pass that instance as an
argument to the setDefaultTimeZone: method, as follows:

| newTZ |
newTZ := TimeZone "Create instance with parameters..."

timeDifference: -8 "Offset 8 hours from GMT"
DST: 1 "DST is different by 1 hour"
at: 4 "Start/end DST at 4 a.m."
from: 97 "Start DST on 97th day of year"
to: 305 . "End DST on 305th day"
VisualWorks User’s Guide, Rev. 2.1 65

Chapter 5 Numeric Operations

 of
o

s.

newTZ weekDayToStartDST: #Tuesday. "Day to start/end DST”
TimeZone
setDefaultTimeZone: newTZ "Install new default"

In a few locations, the algorithm for determining the beginning and ending
Daylight Savings Time is different from the algorithm described above. T
accommodate such a time zone, you will need to alter the code in the
TimeZone instance method called convertGMT:do:.

Abstract Superclasses

The concrete classes discussed in this chapter all have Magnitude as a
common superclass. For Date and Time, it is the direct parent.

The number classes have ArithmeticValue as an intermediate superclass,
implementing much of the shared behavior such as arithmetic operation

Yet another intermediary superclass, called Number, implements much of the
behavior specific to scalar quantities.

The following hierarchy illustrates the relationships of the abstract and
concrete classes described in this chapter. It omits classes such as Point that
exist in the hierarchy but are described elsewhere in the documentation.
Abstract classes are underlined.

Object
TimeZone
Magnitude

Date
Time
ArithmeticValue

Number
Fraction
Integer

LargeNegativeInteger
LargePositiveInteger
SmallInteger

LimitedPrecisionReal
Double
Float
66 VisualWorks User’s Guide, Rev. 2.1

Abstract Superclasses

 this
When accessed via the System Browser, all of the classes discussed in
chapter occur within one of two class categories:

n Magnitude-General (Magnitude, Date, Time, TimeZone)

n Magnitude-Numbers (the remainder)
VisualWorks User’s Guide, Rev. 2.1 67

Chapter 5 Numeric Operations
68 VisualWorks User’s Guide, Rev. 2.1

re
ese

ses,
sion
oice.

ing
tion,

the
sses.

r 4,
s
se in

vari-
m
st

 No

m
Chapter 6

Collection Operations

ParcPlace Smalltalk provides a wide variety of classes for operations
involving collections of objects. In addition to the conventional arrays, the
are bags, dictionaries, sets, linked lists, and more. Operations involving th
classes are discussed in this chapter.

The first section presents the distinguishing features of the collection clas
with the aim of helping you choose the best class for a specific use. A deci
tree (see Figure 6-1) provides a quick reference when making such a ch

Each of the subsequent sections deals with a specific task, such as add
elements to a collection. The usual behavior is described first in each sec
followed by notes about specialized behavior.

By way of summary, the final section describes the collection classes in
context of the class hierarchy, with a discussion of their abstract supercla

Iterative operations involving collections are discussed in detail in Chapte
“Control Structures.” A string of characters is also a collection and share
much of the behavior of other collections. It is discussed as a special ca
Chapter 7, “String Operations.”

Choosing the Appropriate Class

There are nine main kinds of collections. Three of them have specialized
ations. A brief description of each collection class follows, proceeding fro
the simplest to the more complex. As a rule of thumb, choose the simple
class that suits your purpose.

Set

A Set is about as close to a generic collection as you can get. No index.
sorting. It does discard duplicates, which is often useful. The fact that an
instance of Set has only one special capability should not distract you fro
VisualWorks User’s Guide, Rev. 2.1 69

Chapter 6 Collection Operations

s of
f a

it

an

most

li-

r

n of
e an
 be

 font
be
ith

g
 of
the fact that the generic behavior it inherits, as described in later section
this chapter, includes powerful mechanisms for manipulating elements o
data set.

An IdentitySet is identical in all respects, except that it uses == for compar-
isons instead of =.

Bag

An instance of Bag is just like a Set, except that it counts the duplicates as
discards them. Thus, for each element in a Bag there is also a tally of the
occurrences of that object. If each character in the word collection were
element in a Bag, for example, the tally for the element $c would be 2.

Another way of looking at a Bag is that it is a Set that does not discard dupli-
cates. But since the elements are not ordered in any particular way, the
we can hope to know about an element such as $c is how many times it
occurs. Bag does not waste memory by creating a new element for a dup
cate, but increments a counter instead.

Array

Array allows you to maintain relative positions of elements, via an intege
index. In our collection example, $e can be identified by its external key, the
integer 5. (In a Set or a Bag, by contrast, the position of $e is unpredictable.)
As another example, if a customer name were to be stored as a collectio
three elements—first, middle and last names—it would make sense to us
Array rather than a Set because the relative positions of the elements must
preserved.

A RunArray provides efficient storage for situations in which a value is
repeated consecutively over long stretches of an array. For example, the
information for a block of text is a likely candidate—a roman font would
used for many sequences of elements in the array (letters in the text), w
occasional bursts of italic, bold, etc. Although RunArray responds to the
same messages as Array, its internal representation avoids waste by storin
an element only if it differs from the preceding element, along with a tally
that element’s repetitions.

A ByteArray provides space-efficient storage for bytes. Its elements are
restricted to the set of SmallIntegers from 0 to 255. WordArray is for manip-
ulating 16-bit words; its elements can be integers from 0 to 65535.
70 VisualWorks User’s Guide, Rev. 2.1

Choosing the Appropriate Class

trol

y

k (the

n
re

ed
tive

s

di-

 to

nt,
Interval

An Interval is a finite arithmetic progression, such as the series 2 4 6 8. It is
typically used to control an iterative loop, as described in Chapter 4, “Con
Structures.”

OrderedCollection

An OrderedCollection, like an Array, has an integer index and accepts an
object as an element. Unlike Array, however, an OrderedCollection permits
elements to be added and removed freely. It is frequently used as a stac
last element in is the first one removed) or a queue (first in, first out).
However, its uses extend farther because there are so many situations i
which ordering must be preserved as an arbitrary number of elements a
added.

SortedCollection

When elements are not added in the desired order, sorting is required. Sort-
edCollection provides that extra capability. By default, elements are sort
in ascending order. You can override this default by specifying an alterna
sort algorithm enclosed in a block. For example, the expression SortedCol-
lection sortBlock: [:x :y | x >= y] creates a new collection whose element
will be sorted in descending order.

LinkedList

As its name suggests, a LinkedList is a collection in which each element
points to the next element. An OrderedCollection can accomplish the same
thing, but is less efficient in circumstances involving large numbers of ad
tions and deletions. For example, the ProcessorScheduler class makes use
of LinkedList to track the highly dynamic list of processes. LinkedList
achieves its efficiency in a way that prohibits its elements from belonging
other collections at the same time.

Dictionary

The Dictionary class, instead of imposing an integer index on each eleme
permits any object to be the external key. The result, as in the familiar
Webster’s dictionary, is a collection of key-value pairs. For example, an
element might consist of the word ’object’ with the associated definition
’something solid that can be seen or touched’. Thus, each element in a Dictio-
VisualWorks User’s Guide, Rev. 2.1 71

Chapter 6 Collection Operations

ient

 in
nary is typically an instance of Association, which is a key-value pair. The
nil object is specifically excluded as a valid element.

An IdentityDictionary is similar, except that it uses == for comparisons
instead of =. That is, the values in an IdentityDictionary are expected to be
literals or other unique objects that can be compared with the more effic
identity operator (==).

.

Creating an Instance

The simplest creation message is new, as in Set new. This works for all
collections except Interval and LinkedList—they have custom creation
messages that require arguments.

To specify a starting size for the collection, use new: (not applicable to
Interval or LinkedList).

To specify the first element in the collection, use with:, as in the expression
Set with: #colorNbr. Up to four elements can be specified in this way, as

Table 6-1 Summary of Collection Classes

Collection class Distinguishing features

Set Discards duplicate elements

Bag Tallies duplicates

Array Integer index (and fastest access)

Interval Integer elements in progression

OrderedCollection Integer index; preserves the order in which ele-
ments are added

SortedCollection Integer index; elements are sorted by user-
defined algorithm (ascending order is default)

LinkedList Each element points to the next element, for
maximum efficiency of dynamic lists

Dictionary noninteger index; each element consists of a key-
value pair for dictionary-like lookups
72 VisualWorks User’s Guide, Rev. 2.1

Creating an Instance
OrderedCollection with: $p with: $d with: $q with: $!. (Not applicable to
Interval.)

Table 6-2 Instance Creation

Array To specify a starting size and fill all elements with a default,
use new: withAll:, as in Array new: 10 withAll: 99, which
creates an Array with 10 elements each containing the inte-
ger 99.

Interval An Interval is normally created indirectly, by sending a to:
message to a number, as in 1 to: 10, which creates an inter-
val containing the integers 1 through 10. An increment argu-
ment can also be specified, as in the expression 1 to: 10 by:
2. (Interval provides a from:to:by: creation method, which
is sent by the Number class when an Interval is created indi-
rectly.)

SortedCollectio
n

To specify a sorting algorithm in the form of a block of
expressions, use sortBlock:, as in the expression
SortedCollection sortBlock: [:x :y | x >= y] (that is, create
an instance of SortedCollection with elements sorted in
descending order). The default sort order emplaced by the
new creation message is ascending order.
VisualWorks User’s Guide, Rev. 2.1 73

Chapter 6 Collection Operations

 use

Figure 6-1 Collection Class Decision Tree

Adding, Removing and Replacing Elements

To append a new element to an existing collection, use add:, as in the expres-
sion aSet add: anObject. (Not applicable to Array or Interval.)

To append the contents of an entire collection, use addAll:, as in aCollection
addAll: anotherCollection.

Use remove: to delete a single element. Use removeAll: to delete all of the
elements in a subcollection, as in aSet removeAll: subSet. (Not applicable
to Array or Interval.) By default, an error notification occurs when the
element to be removed is not found; to specify an alternate action block,
remove:ifAbsent:.

If the collection has an index, use at:put: to replace the existing value with a
new value. For example, anArray at: 3 put: #Done stores the symbol
#Done as the third element in anArray.

Keyed

Integer key

Adds allowed

Sorted

Duplicates

SortedCollection

Array

OrderedCollection

LinkedList

Dictionary Bag Set

allowed

Y

NY

Y

Y

Y

N

N

N

N

74 VisualWorks User’s Guide, Rev. 2.1

Adding, Removing and Replacing Elements

argu-

rray

ail-

Bag—Because Bag keeps a tally of occurrences for each element, it
provides an add:withOccurrences: method that lets you specify multiple
occurrences of the element being added.

Array—To replace all elements of an array with a specific object, use
atAllPut:, as in the expression boxColors atAllPut: #burntOrange. This is
not to be confused with atAll:put: (notice the two colons), which replaces
only those elements with indices in the interval that is passed as the first
ment. For example, boxColors atAll: (11 to: 20) put: #darkBlue only
replaces the values of the elements in positions 11 through 20. Array also
provides methods for:

n Replacing all elements that have a specific value with a new value
(replaceAll:with:)

n Replacing all elements of a specific value with a new value, within a
range of indices (replaceAll:with:from:to:).

n Substituting values from one collection into another (replace-
From:to:with:), optionally starting at a specific location in the replace-
ment array (replaceFrom:to:with:startingAt:)

n Replacing all occurrences of a subarray with another array
(copyReplaceAll:with:)

n Replacing the elements having a specified series of indices with an a
(copyReplaceFrom:to:with:).

OrderedCollection—As a subclass of SequenceableCollection, from
which Array receives the special behavior described above,
OrderedCollection shares those behaviors.

Additional refinements to the basic adding and removing methods are av
able to instances of OrderedCollection. Their names describe their functions
adequately, so a list of them will suffice:

n add:after:

n add:before:

n add:beforeIndex:

n addFirst:

n addLast:

n addAllFirst:

n addAllLast:

n removeFirst

n removeFirst:
VisualWorks User’s Guide, Rev. 2.1 75

Chapter 6 Collection Operations

y

, use

s-

eate

s
the
n removeLast

n removeLast:

n removeAtIndex:

n removeAllSuchThat:

SortedCollection—As a subclass of OrderedCollection, SortedCollec-
tion inherits all of the refinements that apply to OrderedCollection.

LinkedList—Use addFirst: to add a link to the beginning of the list, or
addLast: to append it at the end. The complementary methods removeFirst
and removeLast are also supported.

Dictionary—To append an element from another dictionary, use
declare:from:, as in aDict declare: #manager from: personnelDict. This
example copies the association having #manager as its key from
personnelDict into aDict.

Comparing Collections

Use the equals sign (=) to test for equivalence. Two collections of unlike
class (Set and Array, for example) will not compare equal, even when the
have identical elements. The not-equal method (~=) can also be used.

As with other objects, the == and ~~ methods can be used to compare two
collections for identity match and mismatch, respectively.

Counting and Finding Elements

To find out how many elements a collection has, use size.

To find out whether a collection has a particular value among its elements
includes:. Use occurrencesOf: to count the number of times a value is
repeated in a collection.

To find out whether a collection has zero elements, use isEmpty.

Several enumeration methods are available for repeating a block of expre
sions for each element in a collection (see “Looping” on page 48). Those
methods can be used to find elements that meet specific criteria, or to cr
a transformed copy of a collection.

Bag—Two methods are provided for getting a sorted listing of the value
along with a count of the occurrences of each value. One method sorts
76 VisualWorks User’s Guide, Rev. 2.1

Copying a Collection

s
counts, in descending order (sortedCounts) and the other method sorts by
value, in ascending order (sortedElements).

Array—To find the beginning element, use first. To find the final element,
use last.

To get the index number corresponding to a value, use indexOf:. To confine
the search to a range of indices, use nextIndexOf:from:to: (searching
forward) or prevIndexOf:from:to: (searching backward). A similar method
finds the location of a subcollection (indexOfSubCollection:startingAt:).

OrderedCollection—The refinements noted for Array also apply to this
class. In addition, after: returns the element that follows the argument and
before: returns the preceding element. For example, anOC after: #burntOr-
ange finds #burntOrange in anOC and returns the element after it.

SortedCollection—The behavior mentioned for Array and
OrderedCollection also applies to this class.

Dictionary—Each element of a Dictionary is a key-value pair, so this class
provides extensions to the at: method, which returns only the value. Use
keyAtValue: to return the key, or associationAt: to return both the key and
its associated value.

To get a collection of all the keys in a Dictionary, use keys. Use values to
get a collection of the values. By using a SortedCollection in such a
maneuver, you can compile a sorted listing of keys or values.

Copying a Collection

The copy method, inherited from Object, creates a new collection that share
the instance variables of the original collection.

Array, OrderedCollection, SortedCollection—Use copyWith: to create a
copy and append the argument as a new element. The copyWithout: method
creates a copy that omits all occurrences of the argument.

To copy a subset of a collection, use copyFrom:to:, as in the expression
oneThruThreeArray := (oneThruSixArray copyFrom: 1 to: 3).

Converting and Printing

Use printString to convert a collection into a printable string of the form
collectionName (element1 element2 ...). The printOn: method performs that
conversion and then outputs the string onto the argument stream.
VisualWorks User’s Guide, Rev. 2.1 77

Chapter 6 Collection Operations

hat

d

The storeString method also creates a descriptive string, but in a format t
permits the collection to be reconstructed from the string. Use storeOn: to
output a collection’s storeString to a stream.

Any collection can be converted to one of the simpler types, using asBag,
asOrderedCollection, or asSortedCollection.

Array, OrderedCollection, SortedCollection—Collections belonging to
one of these classes also respond to asArray, readStream (which creates a
read-only stream on the collection) and writeStream.

The Collection Hierarchy

The concrete classes discussed in this chapter all have Collection as a
common superclass that provides a great deal of the behavior. For Set and
Bag, it is the direct parent.

Dictionary is a subclass of Set.

The remaining concrete classes (Array, Interval, OrderedCollection and
SortedCollection) all have an intermediate superclass called
SequenceableCollection, which provides the machinery for dealing with a
well-defined ordering of elements.

Array has yet another intermediate superclass, ArrayedCollection, which
provides behavior associated with an integer index.

The following hierarchy illustrates the relationships of the commonly use
classes described in this chapter. It omits classes such as WeakArray that
exist in the hierarchy but are described elsewhere in the documentation.
Abstract classes are underlined.

Object
Collection

Bag
Set

Dictionary
SequenceableCollection

Interval
LinkedList
OrderedCollection

SortedCollection
78 VisualWorks User’s Guide, Rev. 2.1

The Collection Hierarchy

 this
ArrayedCollection
Array

When accessed via the System Browser, all of the classes discussed in
chapter occur within one of four class categories:

n Collections-Abstract (Collection, SequenceableCollection,
ArrayedCollection)

n Collections-Unordered (Set, Bag, Dictionary)

n Collections-Sequenceable (Interval, OrderedCollection, SortedC-
ollection, LinkedList)

n Collections-Arrayed (Array)
VisualWorks User’s Guide, Rev. 2.1 79

Chapter 6 Collection Operations
80 VisualWorks User’s Guide, Rev. 2.1

ia

ed in
ed

 string
ollar
e

tc.),
8 to

 for

t

937
Chapter 7

String Operations

As you might expect, characters and strings are primarily manipulated v
two classes called Character and String. This chapter discusses operations
at the character level first, followed by string operations.

The final section places Character and String in the context of their abstract
superclasses and, in the case of String, its concrete subclasses.

As a collection of characters, a string responds to the messages describ
Chapter 6, “Collection Operations.” The more pertinent behavior is review
in this chapter.

Creating a Character

When a character is created as a separate entity (rather than as part of a
of characters), the usual way to create it is by preceding the letter with a d
sign. Thus, firstLetter := $a stores the first letter of the alphabet in variabl
firstLetter, while shortString := 'a' assigns a string containing that letter.

A character can also be created from its numeric equivalent with the value:
method, so the expression $M = (Character value: 77) is true.

ParcPlace Smalltalk also supports an extended set of characters, which
provides for international variations on the Roman alphabet (œ, ¥, ë, ¿, e
among other things. This extended set of characters, with values from 12
65535, conforms to the Xerox Character Code Standard (consult Xerox
Corporation publication XNSS 058710), with the exception that the codes
the dollar sign ($) and the international currency symbol
(¤) have been swapped to conform to ASCII. The value: method can also
be used to create an instance of one of these characters, though correc
displaying depends on that character being present in the selected font.

Characters with codes between 128 and 255 also coincide with the ISO 6
standard (with the same exception for $ and ¤). Of these, codes 193-207
VisualWorks User’s Guide, Rev. 2.1 81

Chapter 7 String Operations

en-
osite
hods

represent nonspacing diacritical marks that are not normally used indep
dently. Instead, codes in the range 16rF100 to 16rF1FF represent comp
characters consisting of a base character plus a diacritical mark. The met
basePart and diacriticalPart provide access to the components of such a
character.

Note: Any application that manipulates characters should be prepared to
encounter any character value from 0 to 65535.

Character Operations

Because the extended character set contains so many subsets, Character
provides a variety of tests to help you pigeonhole an instance:

:

To derive the integer equivalent of a character, use asInteger. To change the
case, use asUppercase or asLowercase.

A Character can be compared to another character with the usual binary
comparison methods (=, >, etc.).

To combine base and diacritical characters to form a composite, use
composeDiacritical:, as in aBaseChar composeDiacritical: aDiacritical.

Table 7-1 Character Tests

Method Returns true if the character is...

isLowercase a-z or a lowercase special character

isUppercase A-Z or an uppercase special character

isAlphabetic a-z, A-Z or a special character

isVowel in the set: AEIOUaeiou (with or without diacritical marks)

isDigit 0-9

isAlphaNumeric a-z, A-Z, 0-9 or a special character

isSeparator space, cr, tab, line feed, form feed or null

isDiacritical a diacritical mark (has a value in the range 16rC1 to 16rCF)

isComposed composed of base and diacritical parts (has a value of
16rF100 or higher)

isLetter English alphabet or extended character
82 VisualWorks User’s Guide, Rev. 2.1

Creating a String

uble
 is to
tured

c-

an

r.

s,

ber

ual
Creating a String

A string literal is any sequence of characters enclosed in single quotes (do
quotes are for code comments), so the usual method of creating a string
put single quotes around the desired words. A string can also be manufac
from an array of integers representing character codes (fromIntegerArray:),
from a stream (readFrom:) or as a string of a specific number of null chara
ters (new:).

Substring Manipulations

Use size to count the characters in a string. Having that information, you c
use at: to retrieve the character at a specific location, or at:put: to replace a
specific character. Use first or last to retrieve the beginning or final characte

To find out whether a specific character exists in a string, use includes:. To
count the number of times a character occurs in a string, use occurrencesOf:.
To find the index location at which a character first occurs, use indexOf:, as
in 'Contract 88-36' indexOf: $-. To confine the search to a range of indice
use nextIndexOf:from:to: (searching forward) or prevIndexOf:from:to:
(searching backward).

To find a substring, use findString:startingAt:, as in the expression 'last line
of codeEND' findString: 'END' startingAt: 1. To start the search farther
along in the string, use a larger number for the startingAt: argument.

To combine two strings, use a comma as in the expression:

salutation := 'Dear ', addresseeName.

To copy the beginning characters of a string, use copyUpTo:, and specify the
number of characters to be copied as the argument. To copy a substring
having a specific set of indices, use copyFrom:to:, as in InputString copy-
From: 1 to: 5.

To insert one string inside another, use copyReplaceFrom:to:with:, as in
'Steenson' copyReplaceFrom: 3 to: 2 with: 'ph'. Note that these index
locations are purposely arranged so as to replace no characters in the original
string, inserting instead. To replace instead of inserting, use an index num
for the to: argument that is equal to or larger than the from: argument.

To collapse a string to a specific size, use chopTo:. This method does not
merely truncate to achieve its goal, it cuts out the middle, leaving near-eq
VisualWorks User’s Guide, Rev. 2.1 83

Chapter 7 String Operations

a-
uld

 an
l,

s

h as
ar-

se

an
le,

d,

 and
o

re

e
fragments from the beginning and end of the original string. In some situ
tions, this may result in a more recognizable remainder than truncation wo
yield—a pathname, for example. To replace the deleted characters with
ellipsis (...), use contractTo:. To drop all vowels other than a leading vowe
use dropFinalVowels.

To convert all carriage returns to newlines, use crsToNewlines. The comple-
mentary method is called newlinesToCRs. Embedded backslash character
(\) in a string can be converted to carriage returns by using withCRs.

As a collection of characters, a string also provides looping methods suc
collect: and select:, which can be used to repeat an algorithm for each ch
acter. See “Looping” on page 48 for more details.

Pattern Matching

To count the number of beginning characters that match in two strings, u
sameCharacters:, as in 'INV90467' sameCharacters: 'INV90413', which
returns 6.

To compare two strings while ignoring case differences, use =. Thus, 'exit' =
'Exit' evaluates to true. To compare using case differences, use
trueCompare:.

The match: method does the same thing, and also supports two wildcard
symbols. A pound sign (#) can be used in place of any single character;
asterisk (*) can be used in place of zero or more characters. For examp
'Ms. #. *' match: 'Ms. D. Gillen' is true.

To control whether case is ignored, use a variant of the preceding metho
match:ignoreCase:, specifying true or false as the second argument.

In contrast to the boolean comparisons discussed above, the spellAgainst:
method provides a quantitative comparison. It returns a value between 0
100 indicating the similarity of the two strings (100 is an exact match). N
case conversion is performed. For example, the expression 'graph' spellA-
gainst: 'grape' returns a value of 80, because 80 percent of the characters a
identical.

The String Hierarchy

The Character class is a subclass of Magnitude, the abstract superclass for
numbers, dates, times and other objects that represent a magnitude. Th
84 VisualWorks User’s Guide, Rev. 2.1

The String Hierarchy

ior

h

is

ssion

following hierarchy, with abstract classes underlined, illustrates Character’s
place in the system:

Object
Magnitude

Character

The String hierarchy is much more complex. As mentioned before, a String
is a collection of characters, so it is descended from Collection. It has three
intermediate superclasses, SequenceableCollection, ArrayedCollection,
and CharacterArray. The first two are discussed in “The Collection Hier-
archy” on page 78—from them, a string inherits the structure and behav
that facilitates element-level operations.

The CharacterArray superclass provides behavior that is common to bot
strings and text. A Text object is a string that has font attributes, and is
discussed in detail in the VisualWorks Cookbook.

String is itself an abstract superclass, providing string-like behavior that
inherited by various string implementations: ByteString, TwoByteString,
and Symbol, among others. ByteString, a string of characters with each
character encoded as a byte, is the default string class. That is, the expre
String new will return an instance of ByteString instead of String. However,
when a character whose value exceeds 255 is stored into a ByteString, it will
automatically be converted to a TwoByteString to accommodate it. Explicit
conversion is achieved via the fromString method, as in ByteString from-
String: aMacString.

The following hierarchy places String in the context of its superclasses and
subclasses. Abstract classes are underlined.

Object
Collection

SequenceableCollection
ArrayedCollection

CharacterArray
String

ByteEncodedString
ByteString
ISO8859L1String
MacString

Symbol
VisualWorks User’s Guide, Rev. 2.1 85

Chapter 7 String Operations
ByteSymbol
woByteSymbol

TwoByteString
86 VisualWorks User’s Guide, Rev. 2.1

sms

s for

r
you
your
. In

will

e

the
ke

Chapter 8

Processes and Exception Handling

Besides control blocks, ParcPlace Smalltalk provides two other mechani
for controlling the flow of execution. One facilitates the control of multiple
independent processes, and the other provides a sophisticated apparatu
handling errors.

Creating a Process

A Smalltalk process is a light-weight process that is non-preemptive with
respect to other processes of the same or lower priority. It represents a
sequence of actions being performed by the computer. Frequently, two o
more such processes need to be running simultaneously. For example,
might wish to assemble an index in the background at the same time as
application user is performing an unrelated activity such as entering data
that case, the computer’s attention must be divided between the two
activities—in effect, we want to place a fork in the path so the processor
progress down both paths at the same time.

To split a new process to run alongside an existing one, send the messagfork
to a block of expressions, creating a new instance of Process. If the indexing
operation mentioned above were capable of being launched from within
data-entry program, the expression for doing so would look something li
indexingBlock fork, where indexingBlock is a block containing the
launching instructions for the index program.

The fork message triggers execution of the block’s contents just as a value
message would. The difference is that the next instruction following the fork
is executed immediately. The instruction that follows a value has to wait until
the block has finished, which is undesirable in the case of a background
process such as an indexing operation.

A block’s response to fork is to create a new instance of Process, then notify
the Processor to add the new process to its work load. This latter step is
known as scheduling a process.
VisualWorks User’s Guide, Rev. 2.1 87

Chapter 8 Processes and Exception Handling

sum-
riate
the

ext
ess

reated

es
ther,
ing

sed
erved,
To create a new process without scheduling it, use newProcess instead of
fork. In effect, the newly created process is immediately suspended, pre
ably so it can be restarted by another part of your program at the approp
moment. In that way, the creation of the process can be separated from
scheduling.

To pass one or more arguments to a processing block, use newProcessWith:,
supplying the argument objects in an Array, as in aBlock newProcessWith:
#(2 #NewHire). The number of elements in the Array must be equal to the
number of block arguments.

Scheduling a Process

Processor is the lone, pre-fabricated instance of class
ProcessorScheduler, in the same way that Smalltalk is the unique instance
of class SystemDictionary. Both are global variables. Processor is respon-
sible for deciding which instruction to execute next, choosing among the n
actions in all of the current processes. It has to be made aware of a proc
first—the process has to be scheduled.

The fork message, described above, automatically schedules its newly
created process. To schedule a suspended process (including a process c
with a newProcess message), use resume, as in the expression aProcess
resume.

To temporarily prevent execution of a process’s instructions, use suspend.
Thus, resume and suspend are complementary methods. A resumed
process starts up where it left off when it was suspended.

To unschedule a process permanently, whether it is in resume or suspend
mode, send it the message terminate.

Setting the Priority Level

The Processor has a great deal in common with a juggler who spins plat
on the tops of those long, wobbly poles and then scurries from one to ano
acutely attentive. Like the juggler, who services whichever plate is wobbl
the most and spinning the least, Processor lets its processes set their own
priority levels. Otherwise, it handles them in the order in which they were
scheduled.

There are 100 possible priority levels. Eight of the levels are commonly u
and can be accessed by name in code references. The lowest level is res
88 VisualWorks User’s Guide, Rev. 2.1

Setting the Priority Level

of the

ated

en
 be

he
of
so it does not have an access method. Table 8-1 describes the purpose
remaining priority levels, starting with the most dominant.

A newly created process inherits the priority level of the process that cre
it.

To assign a new priority to a process, use an expression of the form aProcess
priority: (Processor userInterruptPriority). Notice that the priority: method
expects an integer argument, but the sender asks the Processor for the
integer by name.

You can also specify the priority level at process creation time, using forkAt:
with the requisite priority level integer.

The Processor gives control to the process having the highest priority. Wh
the highest priority is held by multiple processes, the active process can
moved to the back of the line with the expression Processor yield—
otherwise it will run until it is suspended or terminated before giving up t
processor. A process that is yielded will regain control before a process
lower priority.

Table 8-1 Priority Levels

Priority
number

Method Purpose

100 timingPriority Processes that are dependent on
real time

98 highIOPriority Critical I/O processes, such as
network input handling

90 lowIOPriority Normal input/output activity,
such as keyboard input

70 userInterruptPriority High-priority user interaction;
such a process pre-empts window
management, so it should be of
limited duration

50 userSchedulingPriority Normal user interaction

30 userBackgroundPriority Background user processes

10 systemBackgroundPriority Background system processes
VisualWorks User’s Guide, Rev. 2.1 89

Chapter 8 Processes and Exception Handling

 it can
ext
b
-

ob-

e
 the

 by

r

.
Coordinating Processes with a Semaphore

Sometimes one process has to wait for another process to mature before
take a particular action. For example, a printer might be tied up for the n
20 minutes printing someone else’s job. Does that mean your printing jo
should just tie up the Processor and refuse to yield until the printer is avail
able?

The Semaphore class provides a simple mechanism for resolving such pr
lems. In our example, an instance of Semaphore would be created to keep
an eye on the printer: printerSemaphore := Semaphore new. The process
that funnels output to the printer, which we’ll call printerProcess, sends the
message printerSemaphore signal each time it becomes available for mor
input. The waiting process, which has been suspended so it won’t lock up
Processor, is then resumed.

How did the waiting process get suspended in the first place?

Instead of just dumping its contents and assuming they would be caught
printerProcess, the waiting process sent the message printerSemaphore
wait. Because printerSemaphore had not yet received a signal message
from printerProcess, the waiting process was suspended. If the printerPro-
cess had already sent a signal message that was not consumed by anothe
process, printerSemaphore would have done nothing, permitting the
waiting process to dump its load.

If a Semaphore receives a wait from two or more processes, it resumes
only one process for each signal it receives from the process it is monitoring
A Semaphore resumes the oldest process of the highest priority.
90 VisualWorks User’s Guide, Rev. 2.1

Passing Data Between Processes

een
guard
ig-

t
 or
 for

nput
 goes
Figure 8-1 The three steps involved in using a semaphore

A Semaphore is like a guard who permits one person to approach the Qu
at a time. Each time the Queen finishes an audience, she looks up at the
and says signal. The guard then lets the next courtier in. (To add to the ind
nity, a courtier will not receive a place in line unless he or she gives the
password to the guard: wait.)

Thus, a process can be in any of four different states: suspended, waiting,
runnable, and running. The first two are very similar, with the distinction tha
explicit suspend and resume messages push a suspended process from
into runnability, while primitive semaphore methods accomplish the same
a waiting process. A runnable process is ready to go as soon as the Proces-
sorScheduler gives it permission. A running process is the one that the
processor is working on.

Passing Data Between Processes

When an application needs to match the output of one process with the i
for another process, care must be taken to make sure the transfer of data

job3

job2

job1

semaphore semaphore semaphore

job3

job2

job1

job3

job2

job1

print
queue

print
queue

print
queue

wait

signal

resume
VisualWorks User’s Guide, Rev. 2.1 91

Chapter 8 Processes and Exception Handling

s

-

ment

ss

ds:

by
om-
n-

 in
en

the
d on
 the
g

as planned. The SharedQueue class provides a means of coordinating thi
transfer.

To create a SharedQueue, use new or new: with an integer argument spec
ifying the number of desired slots.

To store an object in the SharedQueue, send it a nextPut: message with the
data structure as argument. If another process has been waiting for an ele
to be added to the queue, which it indicated by sending next to the Shared-
Queue, that process will be resumed.

Using a Delay

The Delay class answers the common need for a means of postponing a
process for a specific amount of time. To create a Delay, use forSeconds:,
as in Delay forSeconds: 30. Or use forMilliseconds: if you require a finer
quantification of time.

To create a Delay that continues until the system’s millisecond counter
reaches a particular value, use untilMilliseconds:. To find out the current
value of the counter, use the expression Delay millisecondClockValue.

Merely creating a Delay has no impact on the current process. The proce
must send the wait message to the instance of Delay. Thus, the following
expression in a method would suspend the current process for 30 secon
(Delay forSeconds: 30) wait.

Using a Signal to Handle an Error

Error conditions generally result in creation of a notifier window with a
predefined error message. For example, an attempt to divide an integer
zero results in a notifier that says, “Can’t create a Fraction with a zero den
inator.” Sometimes it is desirable to provide a response that is more mea
ingful in the context of your application. If a divide-by-zero error occurred
a calculator application, for example, it would mean that a divisor had be
entered incorrectly, and that’s what you would tell the user.

Another reason to intervene is that the remote method, which performs
division and encounters the error, can only stop the program and procee
command. It cannot go back to the data-entry part of the process, giving
user a chance to correct the error, because that is contained in the callin
method. So it is in the calling method that we must provide an intelligent
handler for the error.
92 VisualWorks User’s Guide, Rev. 2.1

Using a Signal to Handle an Error

 in

only

hed

An

h as:

ating

The Signal class provides a mechanism for catching an error that occurs
some remote method and handling it locally. You can think of Signal as a
hawk-like observer. When things go along smoothly, Signal just watches. But
when an error surfaces, it swoops down and alters the flow of events as
a bird of prey can do. (Not just any error will do, though—hawks have
specific appetites.)

Emplacing such an observer involves creating an instance of Signal and
telling it what you plan to do and how to handle an error. This is accomplis
with a handle:do: control structure. In pseudocode form, the resulting
expression for our calculator’s division method is:

aSignal
handle: [error handling code]
do: [the division operation].

The error that triggers the handle: block is an instance of Exception. Hence,
dynamic error trapping in Smalltalk is usually called exception handling.
Exception is created by a raise message sent to a Signal. In our example,
the method that performs the actual division would send a message suc

aSignal raise

Thus, exception handling involves two steps: Placing a Signal handler to
watch over a block of expressions, and raising an Exception when an error
occurs.

Choosing or Creating a Signal

To create a new instance of Signal, use Signal new. The resulting instance
has a parent of Object errorSignal—the significance of this ancestry is
discussed below. To create a signal with a different parent, use newSignal
and address it to the desired parent, as in the expression divSignal :=
(Number errorSignal) newSignal.

Many of the classes in the system already contain useful Signals as class vari-
ables, so it may be appropriate to choose an existing signal instead of cre
a new one. These global signals are accessed via class methods. We’ve
already mentioned the ErrorSignal in the Object class, which is accessed via
the expression Object errorSignal. (The method name does not always
match the signal name; for this reason, we refer to a global signal by the
expression used to access it, rather than by its explicit name.)
VisualWorks User’s Guide, Rev. 2.1 93

Chapter 8 Processes and Exception Handling

re
atu-

r

ral

rve
d
Object errorSignal is the parent or grandparent of all other signals, with ra
exceptions. This all-encompassing lineage permits it to catch any error. N
rally, that generality carries over to its response mechanism, reducing its
usefulness in situations demanding a specialized error message or othe
response.

Under Object errorSignal is Number errorSignal, among others. Number
errorSignal restricts its attention to numeric errors. It is the parent of seve
other signals, including ArithmeticValue divisionByZeroSignal, the
specialized signal that suits our calculator’s purposes. Our pseudocode
example would then look like:

ArithmeticValue divisionByZeroSignal
handle: [error handling code]
do: [the division operation]

Before creating a new signal, consider whether an existing signal will se
the purpose. The following hierarchy contains the most commonly reuse
signals in the system:

Object errorSignal
Object notFoundSignal

Object indexNotFoundSignal
Object subscriptOutOfBoundsSignal
Object nonIntegerIndexSignal

Dictionary keyNotFoundSignal
Dictionary valueNotFoundSignal

Object messageNotUnderstoodSignal
Object subclassResponsibilitySignal
ArithmeticValue errorSignal

ArithmeticValue divisionByZeroSignal
ArithmeticValue domainErrorSignal

Stream positionOutOfBoundsSignal
Controller badControllerSignal
Object informationSignal

Object notifySignal
Stream endOfStreamSignal

Object controlInterruptedSignal
Object userInterruptSignal
94 VisualWorks User’s Guide, Rev. 2.1

Using a Signal to Handle an Error

ant
ses,

nt

For more obscure purposes, you can check the class methods of a relev
class to see whether it contains a useful signal. The following system clas
listed in alphabetical order, contain publicly accessible signals:

:

A Signal also has a proceedability attribute, which indicates whether the
error is harmless enough to permit the process to proceed from that poi
onward. By default, a new signal inherits the proceedability setting of its
parent signal. To establish a specific proceedability in a new signal, use
newSignalMayProceed:, as in the following expression:

divSignal := (Number errorSignal) newSignalMayProceed: false

Table 8-2 Publicly accessible signals

ArithmeticValue GraphicsContext

BinaryStorage KeyboardEvent

ByteCodeStream Metaclass

ByteEncodedString Object

ClassBuilder ObjectMemory

CodeStream OSErrorHolder

ColorValue Palette

CompiledCode ParagraphEditor

Context Process

Controller Promise

ControlManager Set

Dictionary Signal

Exception Stream

ExternalStream UninterpretedBytes

FontPolicy WeakArray
VisualWorks User’s Guide, Rev. 2.1 95

Chapter 8 Processes and Exception Handling

ng
back
 trig-

the

ully

s its

h as
lues,

s

ment
 is

t
Creating an Exception

When an error such as zero division is perceived, an Exception object is
created by sending a raise message to the appropriate signal. Thus, creati
an exception is also called raising an exception. This object then travels
along the message stack looking for its matching signal (or an ancestor),
gering the intended handle: block. (In terms of our hawk-signal metaphor,
the prey hunts for the predator.)

In the calculator example, the Fraction method that performs the division
perceives that the denominator is zero. It sends a raise message to Division-
ByZeroSignal, which creates an instance of Exception. This exception then
traverses the chain of calling objects until it finds either
DivisionByZeroSignal or a more general parent, such as Number
errorSignal. (Remember that the error occurred in a do: block being
executed by this signal, so the handler is located in the same place.)

The raise message effectively transfers control from the method in which
error was perceived to the handle: block in the calling method. A variant of
raise permits control to proceed from the point of error (usually after the
handle: block warns the user or corrects the cause, or both). To create a
proceedable exception, use raiseRequest (the exception requests that
control be returned to it). A proceedable exception can only be successf
addressed to a proceedable signal; a nonproceedable exception can be
addressed to either type of signal. Thus, the exception largely determine
own proceedability.

Setting Parameters

An exception can carry an argument object back to the handler block, suc
a value that can be used to diagnose the breakdown, an array of such va
or a block of remedial operations. The default is nil. To set that value, send a
parameter: message to the exception, with the object as argument.

For situations in which the signal’s notifier string needs to be replaced or
augmented, send errorString: to the exception, with the replacement string a
argument. If the first character of the argument string is a space, the argu
is appended to the signal’s notifier string. Otherwise, the argument string
used instead of the signal’s string.

By default, an Exception begins its search for a handler in the context tha
sent the raise message. To substitute a different starting place, send a search-
From: message to the Exception, with the starting-point context as argu-
ment.
96 VisualWorks User’s Guide, Rev. 2.1

Using a Signal to Handle an Error

tor.

 can

 in

s the

ver,
Because more than one instance of the same Signal can exist, as implemented
by different methods (with different handlers, possibly), an Exception can
get fielded by the wrong handler unless it has a way to identify its origina
To do so, send originator to the Exception, with the object that originated the
raise message as argument. To equip the handler with the originator, so it
spot the matching Exception, send a handle:from:do: message, supplying
the originator as the argument to the from: keyword.

Passing Control From the Handler Block

A handler block can redirect the flow of control in one of four ways, listed
order of increasing assertiveness:

n Refuse to handle the exception

n Exit from the handler block and from the method in which it is located
(i.e., a conventional return).

n Proceed from the point at which the error occurred.

n Restart the do: block and try it again.

To refuse control, use reject, as in anException reject. The exception will
then continue its search for a receptive signal.

To exit from the handler block, use return. The nil object will be returned. To
pass a value other than nil, use returnWith:.

To return control to the point at which the error occurred, use proceed. To
pass an argument to be used as the value of the signal message, use proceed-
With:. To proceed by raising a new exception—in effect, to substitute a
different signal in place of the original error creator—use proceedDoing:
and raise the new exception in the argument block.

To restart the do: block, use restart. To substitute another block of expres-
sions for the original block, use restartDo:, as in the expression
theException restartDo: aBlock.

If a handler does not choose one of the four options described here, it ha
same effect as theException returnWith: the value of the block.

Raising a signal within its own handler does not restart the handler. Howe
raising a signal within a proceedDoing: or restartDo: block does invoke the
signal’s handle block again.

Returning to the calculator example, let’s fill in the handler code:
VisualWorks User’s Guide, Rev. 2.1 97

Chapter 8 Processes and Exception Handling

hing
rrors
uch

n

 no
 for

ler

ich

t is
t of
ArithmeticValue divisionByZeroSignal
handle: [:theException |

Transcript cr; show: 'Enter a nonzero divisor'.
theException restart]

do: [the division operation]

Using Nested Signals

In some situations, it will be necessary to have more than one hawk watc
the same process. For example, you might want to catch both numeric e
and dictionary errors, without using the full generality of a mutual parent s
as Object errorSignal. To avoid nesting one handle:do: construct within
another, create an instance of SignalCollection. A SignalCollection is
created via new and an element is appended via add:, as with any
OrderedCollection. Use handle:do: just as you would with an individual
signal. When an exception is raised, it will try each signal in the collectio
until it comes to one that it recognizes.

A SignalCollection works fine when the same handler block is to be used
matter what kind of error crops up. But if each type of signal is the trigger
a different handler block, use a HandlerList. To create it, use new.

Each element of a HandlerList consists of a signal and an associated hand
block. To add such an element, use on:handle:, as in aHandlerList on:
aSignal handle: aBlock. To begin execution of the do: block, use
handleDo:, as in anHC handleDo: aBlock.

A HandlerList can be built in advance and reused in various contexts, wh
is both more readable than the nesting approach and more efficient than
building even a single handler on the spot. Bear in mind, however, that
handlers in a HandlerList are not peers—they are effectively nested. A
signal that is raised in a nested series will not be fielded by a handler tha
lower in the hierarchy (or later in the collection). For example, the first se
expressions below is semantically equivalent to the second.

HandlerList new
on: sg1 handle: [:ex | "response 1"];
on: sg2 handle: [:ex | "response 2"];
on: sg3 handle: [:ex | "response 3"];
 handleDo: ["Any arbitrary action"].
98 VisualWorks User’s Guide, Rev. 2.1

Using a Signal to Handle an Error

rn, a

k.
a
ed.

se
sed
sg1 handle: [:ex | "response 1"]
do: [sg2 handle: [:ex | "response 2"]

do: [sg3 handle: [:ex | "response 3"]
 do: ["Any arbitrary action"]]].

Unwind Protection

When a block of expressions contains opportunities for a premature retu
means of cleaning up the mess may be required.

Providing such a mechanism is a kind of exception handling, though it is
accomplished with a variant of the value message that initiates a block. Use
valueOnUnwindDo:, with the cleanup expressions as the argument bloc
The cleanup block is used if the execution stack is cut back because of
signal, if a return is used to exit from the block, or if the process is terminat

To execute the cleanup block after either a normal or an abnormal exit, u
valueNowOrOnUnwindDo:. Remember that these messages are addres
to a block, not to a signal.
VisualWorks User’s Guide, Rev. 2.1 99

Chapter 8 Processes and Exception Handling
100 VisualWorks User’s Guide, Rev. 2.1

Part II

VisualWorks Tools
VisualWorks User’s Guide, Rev. 2.1 101

sily

on)
ing
ed.

for
Chapter 9

Environment Tools

In the VisualWorks environment, tools are provided that enable you to ea
control your working environment. These tools include:

n VisualWorks main window

n Settings

n File List

n Changes List

n File Editor

n Project

VisualWorks Main Window

The VisualWorks main window is a convenient device for opening tool
windows. To open a tool, either click once on its icon (if the tool has an ic
or select it from the menu. This main window is the primary means of sav
and quitting an image. The VisualWorks main window should not be clos

.

Figure 9-1 VisualWorks Main Window

The two most important items in the VisualWorks main window menu are
saving an image (File ?Save As...) and quitting an image (File?Exit Visu-
alWorks...). These are described fully on page 3.
VisualWorks User’s Guide, Rev. 2.1 103

Chapter 9 Environment Tools

pear-

ng the
e
Settings Tool

The Settings Tool controls a variety of global parameters such as the ap
ance of window decorations. Each customizable feature of the system is
represented by a page in the Settings Tool. Use the tabs to navigate amo
pages. Online help on each page of the Settings Tool will guide you in th
proper setting of each parameter.

Figure 9-2 Settings Tool

User preferences include the following:

n System source file locations

n Settings for the VisualWorks palettes

n Settings for painting tools

n Settings that affect the user interface

n Browsing

n Canvas Installation

n User interface look

n Window placement

n Options for message catalogs

n Help options

n Icon label length
104 VisualWorks User’s Guide, Rev. 2.1

File List

’s
y

nd
n Default Font, printing setup

n Database Tools and user application defaults

n Time zone

To open the Setting Tool, choose File?Settings in the VisualWorks main
window.

File List

A File List is a special browser that interfaces with your operating system
file management facilities. With a File List, you can list the contents of an
directory or file, edit a file, and create a new file.

VisualWorks provides two versions of the File List: the standard File List a
an enhanced File List. The enhanced File List provides:

n A menu bar for display options.

n Support for globalization. See the VisualWorks International User’s
Guide for a description of these options.

To use the enhanced File List, turn on the Use Enhanced Tools switch on
the UI Options page of the Settings Tool. Turn off the Use Enhanced
Tools switch to use the standard File List.

To open a File List, choose Tools ?File List , or click on the File List icon in
the VisualWorks main window.
VisualWorks User’s Guide, Rev. 2.1 105

Chapter 9 Environment Tools

c-
file,

at

n
ts
list
nts

lect
ec-
rs in
Figure 9-3 shows both the standard and enhanced File List.

Figure 9-3 Standard and Enhanced File List

File List Views

The File List browser is divided into three views:

n The pattern view (the top view) is for entering the pathname of a dire
tory or file. Use an asterisk as a wildcard character. To create a new
enter the full pathname and press <Return> or select accept .

n The names view (the middle view) displays the directories and files th
match the path view’s search string.

n The contents view (the bottom view) is a file editor with which you ca
modify the contents of the file and save the new version. The conten
view also displays a list of files when a directory is selected in the file
view. When a file is first selected, the contents view displays the conte
of the file, by default.

Display Options

To display the file characteristics as supplied by the operating system, se
get info from the <Operate> menu in the names view. When no file or dir
tory is selected in the names view, the number of entries in the list appea
the contents view.
106 VisualWorks User’s Guide, Rev. 2.1

File List

f
e
or

nd

nly
>
You can control whether file contents or characteristics are displayed by
default. To display the contents:

n On the standard File List, turn the auto read switch on; to display file
characteristics by default, turn it off.

n On the enhanced File List, turn on the switch by choosing
Options ?Auto Read.

The FileBrowser class maintains the maximum size (50 KB, by default) o
an auto-readable file; if a file exceeds that size, you will be given a choic
between reading the contents (subject to a delay if the file is very large)
getting the file characteristics. To change the maximum size of an auto-
readable file, modify the initialize method in the FileBrowser class.

To change the default pathname in the path input window, execute the
following Smalltalk expression, substituting the desired pathname:

FileBrowser defaultPattern: 'pathname'.

File List Commands

Most of the menu commands within the File List have the same names a
meanings as defined for the System Browser (again , undo , copy , cut ,
paste , etc.) The commands listed in Table 9-1, Table 9-2, and Table 9-3 o
includes those that have not been defined previously. Use the <Operate
menu in each view to display the commands.

Table 9-1 lists the pattern view command.

.

Table 9-1 Pattern View Command

Command Description

volumes... Display a pop-up menu of disk volumes, so you can select
one as the starting point for the pathname entry.
VisualWorks User’s Guide, Rev. 2.1 107

Chapter 9 Environment Tools

rn
c-

he

w.

r,

c-

Table 9-2 lists the names view commands.

Table 9-2 Names View Commands

Command Description

new pattern Make the currently selected directory the entry in the patte
view, appending a trailing separator and asterisk, if the sele
tion is a directory.

add directory... Prompt for the name of a subdirectory to be created under t
currently selected directory.

add file... Prompt for the name of a file to be created in the currently
selected directory.

get info Display the file characteristics as supplied by the operating
system.

get contents Display the contents of the selected file in the contents vie

file in Compile the contents of the selected file into the current
image—the file is presumed to contain Smalltalk expres-
sions that define classes and/or methods.

copy name Copy the current selection into the VisualWorks paste buffe
so it can be pasted into the path input view (or elsewhere).

rename as... Change the name of the directory or file.

copy file to... Prompt for a pathname and save a copy of the selected file
under the new name.

remove... Prompt for confirmation, then delete the file or directory.

spawn If a directory is selected, open a new File List with that dire
tory as the default search string. If a file is selected, open a
new file editor on that file.
108 VisualWorks User’s Guide, Rev. 2.1

Change List

 The
he

g a
Table 9-3 lists the contents view commands.

Change List

VisualWorks keeps a running list of changes that are made to the image.
Change List enables you to view the changes made since the last time t
image was saved, and reload the changes selectively.

The Change List is also useful for browsing a file-in containing Smalltalk
code. See “Managing Projects and Versions,” for more details about usin

Table 9-3 Contents View Commands

Command Description

file it in Execute the selected text, which is assumed to be in the
format created by the file out command, with exclama-
tion points as delimiters.

save Save the (edited) contents of the text view in the file that is
selected in the file list view.

save as... Prompt for the name of a new file and save the contents of
the text view in a file with that name. The file cannot be
saved to a different disk volume.

cancel Replace the current contents of the text editing view with
the contents of the disk file that is selected in the file list
view.
VisualWorks User’s Guide, Rev. 2.1 109

Chapter 9 Environment Tools

iew
Change List and the Changes submenu of the VisualWorks main window in
the list view.

.

Figure 9-4 Change List

The Change List window has three views. The view at top left is for
displaying a list of the changes. The top right-hand view provides on/off
switches for filtering the contents of the change list.

The Change List’s filter switches are described below, as well as the
command menu for the list view. The commands for the code browser v
are defined in Table 10-5, “Code View Commands,” on page 123.
110 VisualWorks User’s Guide, Rev. 2.1

Change List

try
d.

-

-

The first two switches (above the divider line) affect the format of each en
in the list. The remaining six switches control which entries are displaye
Any combination of filter switches can be selected.

Table 9-4 Change List Switches

Command Description

Show file For each entry in the list, precede it by the name of the
file in which it is recorded.

Show category For each entry in the list, precede it by the name of the
class category (for a change to a class) or message cate
gory (for a change to a method) in which the change
occurred.

file Display only entries that are recorded in the same disk
file as the selected entry.

type Display only entries of the same type as the selected
entry (for example, all do Its, which represent executed
expressions).

class Display only entries that affect the same class as the
selected entry.

category Display only entries that affect a class or message in the
same category as the selected entry.

selector Display only entries that involve the same message selec
tor as the selected entry.

same Display only entries that have the same type as the
selected entry and affect the same class or method. The
entries in the change list are identical, though the under-
lying code may be different for each entry.
VisualWorks User’s Guide, Rev. 2.1 111

Chapter 9 Environment Tools

s

n

e

 to

t

ist

ed

d

d
-

by
Use the <Operate> menu to display the commands listed in Table 9-5.

Table 9-5 Change List Commands

Command Description

file in/out ?read
file/directory

Prompt for a pathname. Add the Smalltalk expression
contained in the designated file to the list being dis-
played. If a directory pathname is supplied, add the
contents of all files (presumed to be Smalltalk code) i
the directory to the list.

file in/out ?write file Prompt for a filename. Store the code indicated by th
displayed change entries in that file. The changes file
thus created can be used to transfer system changes
another image.

file in/out ?recover last
changes

Display all changes made to the system since the las
snapshot was made (i.e., the last save operation).

file in/out ? display
system changes

Add the contents of the Change Set to the displayed l
of changes.

replay all Execute every change that is displayed (and not mark
for removal).

remove all Mark all displayed entries for removal. Use forget to
delete marked entries.

restore all Unmark all displayed entries so they won’t be affecte
by a forget operation.

spawn all... Open a new Change List containing only the displaye
entries (i.e., with all filter switches set to off but retain
ing the effect of the filters).

forget Delete every entry that has been marked for removal
a remove operation.

replay selection Execute the selected change entry.

remove selection Mark the selected entry for deletion.

restore selection Unmark the selected entry.
112 VisualWorks User’s Guide, Rev. 2.1

File Editor

ular

ults

.

ssoci-
rar-

ry
nge
e
g

e
File Editor

The File Editor is a stand-alone version of the file-editing view in the File
List. It provides a rapid, two-step means of opening an editor on a partic
file, as follows:

1. Choose Tools ?File Editor... in the VisualWorks main window.

A prompter asks for the name of the file to be edited. The name defa
to the contents of the paste buffer.

2. Enter the name of the file into the input field and click OK .

The <Operate> menu is identical to that of the File List’s file editing view

Project

You can create a separate Project to contain the views and change set a
ated with an aspect of your work. Such Projects can be nested, for a hie
chical organization. When you enter a Project, only the windows that you
have opened in that Project are displayed (initially, only the VisualWorks
main window).

To create a new Project, choose Changes ?Open Project in the Visual-
Works main window. A Project window will appear, consisting of an enter

spawn selection... If the selected entry involves a change to a method,
open a method browser on the version of that method
that is currently in use. Otherwise, do nothing.

conflicts ?check con-
flicts, save as...

Prompt for an output filename. Find each change ent
that affects the same class or method as another cha
entry, then print all versions of the affected code in th
designated file. This is useful when you are integratin
code from multiple files and you want to check for
overlaps—places where one file changes the same
method as another file.

conflicts ?check with
system, save as...

Prompt for an output filename. Find change entries in
which the code differs from the system’s current ver-
sion and print both versions of the affected code in th
designated file.

Table 9-5 Change List Commands

Command Description
VisualWorks User’s Guide, Rev. 2.1 113

Chapter 9 Environment Tools

ws

’s
button at the top and a text-editing view for recording a description of the
project.

Figure 9-5 Project

To temporarily erase the current Project’s windows and display the windo
associated with a different Project, select the enter button in the desired
Project’s window. To exit from a project and redisplay the parent Project
windows, choose Changes ?Exit Project in the VisualWorks main window.
114 VisualWorks User’s Guide, Rev. 2.1

ual-

bil-
ut

 a

n in
,

laced
Chapter 10

Smalltalk Programming Tools

This chapter discusses the major programming tools available in the Vis
Works environment:

n System Browser

n Workspace

n System Transcript

n Debugger

n Inspector

System Browser

VisualWorks’ principal programming tool is the System Browser. Its capa
ities include not only “browsing” the code library, as its name suggests, b
editing, compiling and printing any selected portion of it.

To open a new System Browser window (more than one can be open at
time), choose Browse ?All Classes or click on the System Browser icon in
the VisualWorks main window.

Structure

The System Browser has four upper views and one lower view, as show
Figure 10-1. Each view provides a lower level of detail in the code library
ending in the code subview (5), which deals with a single method (the
smallest unit of code in a Smalltalk program).

Class Categories

There are more than 700 classes of objects in the system, so they are p
in functional groups called class categories. In the illustration, the Magni-
tude-General category is selected.
VisualWorks User’s Guide, Rev. 2.1 115

Chapter 10 Smalltalk Programming Tools

gory.

the
l
tly

d

tor
 the
 well
Classes

The second view displays all of the classes in the currently selected cate
The Magnitude-General category has five classes, as shown. The Time
class is selected.

Protocols

A single class, such as Time, can respond to any number of messages. For
sake of convenience and conceptual clarity, they are placed in functiona
groups called protocols. In the third view, all of the protocols for the curren
selected class are displayed. For Time, there are three categories of class
messages. The instance creation category is selected.

Methods

The fourth view displays all of the method names in the currently selecte
protocol. The instance creation protocol contains three methods. The now
method name is selected.

Code

The bottom view is not a list view like the other four. It is a special text edi
that enables you to perform the full range of programming operations on
selected method, from editing to compiling. It is used to define classes as
as their methods, so it is called a code view.
116 VisualWorks User’s Guide, Rev. 2.1

System Browser

s,
 orga-

ttons

 proto-

enu
item

 that
ted
, the
Figure 10-1 System Browser

Notice that only views 2, 4 and 5 deal with actual system objects (classe
methods, and code). Views 1 and 3 (class categories and protocols) are
nizational constructs provided for your convenience.

The System Browser also has a toggle switch, represented by the two bu
at the bottom of the class view (instance and class). Each class has two
kinds of methods: class methods and instance methods. To see the class
cols and method names in views 3 and 4, select the class button. To see the
instance protocols and methods, select instance .

Each view has its own scroll bar at the right-hand edge. The <Operate> m
is different for each of the views, and changes depending on whether an
is selected in the view.

Each view in the System Browser has a unique menu, offering commands
are appropriate to its contents. The commands for each view are presen
here, listed in the order in which they appear in the menu. In some views
menu has fewer options when no item in the view has been selected.

Table 10-1 lists the class category view commands.

1 2 3 4

5

VisualWorks User’s Guide, Rev. 2.1 117

Chapter 10 Smalltalk Programming Tools
.

Table 10-2 lists the class view commands.

Table 10-1 Class Category View Commands

Command Description

file out as Prompt for a filename. Store a description of each class in the
selected category, in a form that enables the class (including
all of its methods) to be placed in another VisualWorks
image with the file in command.

hardcopy Print a hard-copy description of each class in the selected
category.

spawn Open a new browser on just the classes in the selected cate-
gory (a Category Browser).

add Prompt for a category name. Add the new category immedi-
ately above the currently selected category (if one is
selected) or at the bottom of the list.

rename as Prompt for a new name, then replace the currently selected
category name, both in the list and in all class definitions
under that category. An existing category name cannot be
duplicated.

remove Delete the currently selected category. If the category still
contains one or more classes, confirm, then delete the classes
also. References to the classes remain intact.

update Bring the category listing up to date (after filing in a new cat-
egory or adding one in another browser).

edit all Display the entire category/class organization of the system
in the code view (number 5). This permits you to rearrange
the order of the categories, using the code view’s editing
facilities. Use the code view’s accept command to place the
changes in the system.

find class Prompt for a class name, then select that class in the class
view (and its category, in the category view). If a wildcard
character is used, display a dialog of all classes with match-
ing names. For example, the pattern C*View displays a list
of all classes beginning with “C” and ending in “View.”
118 VisualWorks User’s Guide, Rev. 2.1

System Browser

ll

s

-

Table 10-2 Class View Commands

Command Description

file out as Prompt for a filename. Store a description of the currently
selected class, in a form that enables the class (including a
of its methods) to be placed in another VisualWorks image
with the file in command.

hardcopy Print a hard-copy description of the class.

spawn Open a new browser on the class.

spawn hierarchy Open a new browser on the currently selected class and it
superclasses and subclasses.

hierarchy In the code view, display the names of the currently
selected class, its superclasses and its subclasses, with
indentations to indicate hierarchic precedence.

definition In the code view, display the formal definition of the cur-
rently selected class. To change the definition, edit the text
and use the accept command.

comment In the code view, display the class comment. To change the
comment, edit the text and use the accept command.

inst var refs Display a dialog that lists all of the instance variables of the
currently selected class and its superclasses. Select a vari
able name to open a browser on all methods that refer to
that variable.

class var refs Open a browser on methods that refer to a selected class
variable.

class refs Open a browser on all methods that refer to the currently
selected class.
VisualWorks User’s Guide, Rev. 2.1 119

Chapter 10 Smalltalk Programming Tools

s

s

-

.
Table 10-3 lists the protocol view commands.

move to Prompt for a category name (new or existing). Move the
class to that category and update the System Browser.

rename as Prompt for a new class name. Replace the name in the
system dictionary and update the class view. (Use the clas
refs command to find methods that refer to the old class
name—then substitute the new name manually.)

remove Prompt for confirmation, then delete the selected class and
its methods. (Note: It’s much easier to find references to
the class and its methods before you delete, using the clas
refs commands.)

Table 10-3 Protocol View Commands

Command Description

file out as Prompt for a filename. Store a description of the methods in the
currently selected message category, in a form that enables the
methods to be placed in another VisualWorks image with the file
in command.

hardcopy Print a hard-copy description of the methods in the currently
selected message category.

spawn Open a new browser (a message category browser) on the meth
ods in the currently selected message category.

add Prompt for the name of a new message category, then add that
name in the message category view. Add the new category
immediately above the currently selected category (if one is
selected) or at the bottom of the list.

rename as Prompt for a new name, then update the message category view

Table 10-2 Class View Commands

Command Description
120 VisualWorks User’s Guide, Rev. 2.1

System Browser

-

Table 10-4 lists the method view commands.

remove Prompt for confirmation, then delete the selected message cate-
gory and its methods. (Note: It’s much easier to find references
to the methods before you delete, using the senders command
listed below.)

edit all In the code view, display a list of all message categories, and
method names in each category. To change the order of the pro
tocol names in the message category view, or to move methods
from one category to another, edit the text and use the accept
command.

find method Display a dialog that lists all of the instance methods (if the
instance switch is selected) or class methods of the currently
selected class. Select a method name to display its code in the
code view.

Table 10-4 Method View Commands

Command Description

file out as Prompt for a filename. Store a description of the currently
selected method, in a form that enables the method to be
placed in another VisualWorks image with the file in
command.

hardcopy Print a hard-copy description of the method.

spawn Open a new browser (a Method Browser) on the currently
selected method.

senders Open a new browser (a Method Browser) on all methods
that send the currently selected message.

implementors Open a browser (a Method Browser) on all methods that
implement the currently selected message (i.e., methods
having the same name that exist in other classes as well as
this one).

Table 10-3 Protocol View Commands

Command Description
VisualWorks User’s Guide, Rev. 2.1 121

Chapter 10 Smalltalk Programming Tools

e

e

-

Table 10-5 lists the code view commands.

messages Display a dialog of all method selectors that exist in the
currently selected method. After one is selected, open a
browser (a Method Browser) on all methods that imple-
ment that message.

move to Prompt for the name of the message category to which the
currently selected method is to be relocated. If the cate-
gory doesn’t exist, it will be created. If the destination is
another class, include both the class name and the messag
category, as in “Customer>accessing”. In the latter case,
the method will be copied rather than relocated.

remove Delete the currently selected method. (Note: It’s much
easier to find references to a method before you delete it,
using the senders command listed above.)

Table 10-5 Code View Commands

Command Description

undo Reverse the most recent cut or paste.

copy Place a copy of the highlighted text in memory. If <Shift> is held
down while copy is selected, the text is copied to the window
manager’s clipboard.

cut Place a copy of the highlighted text in the paste buffer, then
delete the original.

paste Delete the highlighted text (if any), then place a copy of the most
recently copied or cut selection in that location. If <Shift> is held
down while paste is selected, a dialog presents the most recent
five text segments that have been copied or cut, including the
window manager’s clipboard.

do it Execute the highlighted text as a Smalltalk expression. The
scope of execution is the selected class, so class variables can b
used in the expressions, and self refers to the selected class.

print it Same as do it , except a description of the resulting object is
inserted in the text. The printed string becomes the current selec
tion, so it can be deleted easily.

Table 10-4 Method View Commands

Command Description
122 VisualWorks User’s Guide, Rev. 2.1

Workspace

line

n

s

s
Workspace

A Workspace is like a free-floating code view, or a scratch pad with a pipe
to the compiler. It is a blank window in which you can test Smalltalk code
before building it into the code library. To open a Workspace, choose
Tools ?Workspace or click on the Workspace icon in the VisualWorks mai
window.

Figure 10-2 Workspace

inspect Same as do it , except an inspector is opened on the resulting
object.

accept Compile the code and, assuming no errors are found, store it.

cancel Restore the entire text to its condition when it was last compiled
(with accept).

format Impose standard font characteristics and indentation convention
on the code.

spawn Open a new browser (a Method Browser) on the method. This is
useful when you want to preserve the original and make change
in the new copy. Whichever version is compiled last, via
accept , takes effect for the entire image.

explain Insert an explanation of the selected literal or variable. The
explanation frequently contains a Smalltalk expression that you
can execute to get more details.

hardcopy Print a copy of the text or code on paper.

Table 10-5 Code View Commands

Command Description
VisualWorks User’s Guide, Rev. 2.1 123

Chapter 10 Smalltalk Programming Tools

s the
u to
The Workspace’s <Operate> menu gives it much the same functionality a
code view of the System Browser. Use the Workspace’s <Operate> men
edit text and execute expressions.

More than one Workspace can be open at a time.
124 VisualWorks User’s Guide, Rev. 2.1

System Transcript

w.
rks

d in a

 time
, the
u can

ing
able
System Transcript

The System Transcript, by default, displays in the VisualWorks main windo
It shows a running list of informational messages generated by VisualWo
or your code. Error messages, on the other hand, are generally displaye
pop-up window called a Notifier. To close a System Transcript, select Tools
in the VisualWorks main window; in the submenu, select System Tran-
script .

Figure 10-3 VisualWorks main window and associated System Transcript

Each time you save your image, the System Transcript records the date,
and name of the newly created image. When you file out a class category
System Transcript records the name of each class as it is processed. Yo
also use the System Transcript to display messages, which is especially
helpful during the debugging phase of a project. For example, the follow
expression could be inserted in a method to display the value of the vari
named account, followed by a carriage return:

Transcript show: account printString.
Transcript cr.

To avoid an update of the display with each part of a larger message, use next-
PutAll: or print:, then use endEntry to output the message, as in:

Transcript
nextPutAll: 'The account is: ';

print: account;
endEntry.

Transcript is a global variable, and refers to an instance of the class
TextCollector, where you will find other useful Transcript behavior.
VisualWorks User’s Guide, Rev. 2.1 125

Chapter 10 Smalltalk Programming Tools

on-
nds

tack

 to

am

ely,

with
es of

 4).
s

e-
w’s

s high-
ode
gh-

r (4)
r
ution
The System Transcript’s <Operate> menu gives it much the same functi
ality as the code view of the System Browser. The menu contains comma
for editing text and executing expressions.

Debugger

When a program error occurs, a notifier window appears. This notifier
displays the last five message-sends in the context stack. The context s
lists message-sends that were waiting for a return when the breakdown
occurred. Sometimes that listing of the context stack is sufficient for you
identify the problem and correct it. If so, choose close in the <Window>
menu, or click the Terminate button to close the notifier.

When the error is not so serious as to prevent proceeding with the progr
(i.e., it is a warning), you can click Proceed in the notifier. The notifier will
be closed and the program will continue.

When you need to examine the conditions that led to the failure more clos
click Debug in the notifier. The notifier will be replaced by a debugger,
which enables you to trace the program flow leading to the error, proceed
execution step by step, and examine the operative method and the valu
the variables at each stage of execution.

The debugging window consists of four component views, as shown in
Figure 10-4: a stack view (1), a code view (2), and two inspectors (3 and
The inspectors each have two subviews, so technically the debugger hasix
views. It also has two buttons, step and send , located between views 1 and
2.

The stack view (1) is similar to the error notifier in that it lists the messag
sends that were waiting for a return at the time of the error. The stack vie
commands, described below, permit you to proceed with the program’s
execution at the desired pace, and to expand the depth of the listing.

The code view (2) is similar to the System Browser’s code view (see
page 122) and has the same <Operate> menu. When a message-send i
lighted in the stack view, the corresponding method is displayed in the c
view. Within the method, the current point of execution is automatically hi
lighted by the debugger.

The instance-variable inspector (3) and the temporary-variable inspecto
allow you to examine the values of the variables. The variables and thei
values are updated each time you choose a different position in the exec
126 VisualWorks User’s Guide, Rev. 2.1

Debugger

 with

r
stack with the stack view. For the operations and commands associated
an inspector, see page 128.

Figure 10-4 Debugger

For detailed instructions about using a debugger, see Chapter 14.

Table 10-6 Stack View Commands

Command Description

more stack Double the number of message-sends displayed in the stack
view, effectively reaching twice as far back into the history
preceding the error. When the entire stack is listed already,
this command disappears from the menu.

proceed Close the debugger and continue program execution in the
currently selected context (in the top context, if none is
selected). Execution proceeds as if the interrupted message
had completed.

copy stack Copy the textual contents of the stack view to the paste buffe
(so you can paste the stack text into a file).

1

2
3 4
VisualWorks User’s Guide, Rev. 2.1 127

Chapter 10 Smalltalk Programming Tools

bles
 are

-

).
Inspector

An inspector is a window that is used to examine the values of the varia
of an object. In the simplest inspector, containing two views, the variables
listed in the left-hand view. When you select one such variable, its value
appears in the right-hand view.

Figure 10-5 Inspector

restart Close the debugger and restart execution from the beginning
of the currently selected method.

senders Open a browser on all methods that send the selected mes-
sage.

implementors Open a browser on all methods that implement the selected
method.

messages Display a dialog containing all message selectors in the
selected method. Choose one to open a browser on all meth
ods that implement that message.

skip to caret Continue program execution to the location in the method
marked by the cursor caret.

step Execute the next message-send in the currently selected
method (or in the top context in the stack, if none is selected
Halt after a value is returned.

send Same as step, but halt in the method that receives the mes-
sage-send.

Table 10-6 (Continued)Stack View Commands

Command Description
128 VisualWorks User’s Guide, Rev. 2.1

Inspector

ew

all-
 code

 a
sing

ary
If the value is a composite object, such as a collection, you can open a n
inspector that exposes a component object by choosing inspect in the list
view.

The right-hand view is a code view, in which you can type and execute Sm
talk expressions. Instance and class variables are within the scope of the
view. In the example illustrated at left, if you type x + y in the code view and
then execute it, 300 is returned

Inspectors are built into the debugger window and other system tools. In
code view, you can open an inspector on a selected variable or literal by u
inspect in the <Operate> menu.

Specialized inspectors provide extended inspecting capabilities for diction
objects, collections, and Model-View-Controller triads. The type of
inspector is automatically matched to the object type.
VisualWorks User’s Guide, Rev. 2.1 129

Chapter 10 Smalltalk Programming Tools
130 VisualWorks User’s Guide, Rev. 2.1

e
the

sses
,

 other
Chapter 11

Application Building Tools

VisualWorks provides a variety of tools for building applications within th
Smalltalk programming environment. In this section, we briefly describe
following tools:

n Resource Finder

n Painting (Canvas and Palette tools)

n Properties

n Image Editor

n Menu Editor

Resource Finder

The Resource Finder is for navigating among resources. Application cla
are listed in the left-hand view. You can filter the list to show tool classes
example classes, and other categories. To do so, use the View?All Classes
submenu. When you add or remove an application class by some means
VisualWorks User’s Guide, Rev. 2.1 131

Chapter 11 Application Building Tools

ds

 to

r

as:

ons
ies
than the Resource Finder or the canvas’s install command, use
View?Update to register the change in all Finders.

Figure 11-1 Resource Finder

An application class can support multiple interfaces, each of which may
involve multiple canvases for the VisualWorks main window, secondary
windows and dialogs. The right-hand view lists all of the resource metho
for the selected class.

The buttons below the menu options of the Resource Finder enable you
Browse the code for a selected class, Start the main interface (by sending
open to the class), Add a blank resource to a new or existing class, Remove
a resource, and Edit a resource.

Note: Double-clicking on a class name brings up a Hierarchy Browser o
Class Browser (depending on your Settings preferences) on that class.

Canvas Tool

The Canvas Tool enables you to control the following features of a canv

n Whether the alignment grid is on, and its attributes.

n Whether the fence is on, preventing objects from being accidentally
dragged beyond the edges of the canvas.

n Which look to use while editing the canvas.

Additionally, the Canvas Tool combines the most frequently used operati
from the canvas’s menu as well as providing easy access to the Propert
Tool, which is used to customize each type of component.
132 VisualWorks User’s Guide, Rev. 2.1

Palette

i-
 the

-

e
e

ou
lette
Figure 11-2 Canvas Tool

The left-most six buttons located directly under the menu control the hor
zontal and vertical alignment of the selected components. To the right are
Equalize and Distribute buttons, which operate along the vertical or hori
zontal dimension.

Palette

The Palette is the main companion tool for a canvas, in that it supplies th
interface components for the canvas. The name “Palette” derives from th
metaphor of painting canvases that describe your application windows.

By default, a Palette is opened automatically with each canvas, though y
can arrange for manual Palette opening in the Settings tool. To open a Pa
manually, select tools ?palette in the canvas’ <Operate> menu.

.

Figure 11-3 VisualWorks Palette
VisualWorks User’s Guide, Rev. 2.1 133

Chapter 11 Application Building Tools

 an

place

ch

d
al-
The Palette has one button for each type of interface component. To add
input field to your canvas, for example, you simply click on the Input Field
icon in the Palette and then click in the canvas to place the field there.

The repeat switch (at upper right) is used to place the Palette in repeat
mode—the selected type of component remains selected even after you
one on the canvas. This is useful, for example, when you want to place
multiple labels on a canvas without having to reselect the label button ea
time. A shortcut for putting the Palette in repeat mode is to hold down a
<Shift> key while selecting the type of component.

When you open a Palette from the canvas’s menu, the Palette closes an
collapses with the canvas window. When you open a Palette via the Visu
Works main window, it remains open unless you explicitly close it. Any
Palette can be used with any canvas—all Palettes are in sync.
134 VisualWorks User’s Guide, Rev. 2.1

Image Editor

el
nts.

ted

ses
u

es a

u

Image Editor

The Image Editor is used to create and modify illustrations, with pixel-lev
control. The resulting graphic can be integrated into a variety of compone

To open an Image Editor, choose Tools ?Image Editor from the Visual-
Works main window.

Figure 11-4 Image Editor

Menu Editor

The Menu Editor is used to create and edit menus, which can be integra
into a variety of components. You use the Menu Editor to create textual
entries and specify attributes for desired menu items. The Menu Editor u
these entries to generate a specification for building an appropriate men
object. This code is then installed in a method in the application model.

You can use the Menu Editor to create a menu for any widget that provid
menu, such as a menu button.

VisualWorks provides two versions of the Menu Editor: the standard Men
Editor and an enhanced Menu Editor.

The standard Menu Editor allows you to build simple menus. To use the
standard Menu Editor, turn off the Use Enhanced Tools switch on the UI
VisualWorks User’s Guide, Rev. 2.1 135

Chapter 11 Application Building Tools

137

enu
Options page of the Settings Tool. Then, choose Tools ?Menu Editor from
the VisualWorks main menu to open the standard Menu Editor.

.

Figure 11-5 Standard Menu Editor

Most of the buttons on the standard Menu Editor correspond to a menu
command in the enhanced Menu Editor. See “Menu Commands” on page
for explanations of those buttons.

Enhanced Menu Editor

The enhanced Menu Editor provides all the capabilities of the standard M
Editor, plus:

n A notebook for displaying and editing Menu properties.

n Support for globalization. See the VisualWorks International User’s
Guide for a description of these options.

To use the enhanced Menu Editor, turn on the Use Enhanced Tools switch
on the UI Options page of the Settings Tool. Then, choose Tools ?Menu
136 VisualWorks User’s Guide, Rev. 2.1

Menu Editor

u

pec-
Editor from the VisualWorks main window to open the enhanced Menu
Editor.

Figure 11-6 Enhanced Menu Editor

Menu Commands

Table 11-1 lists the Menu commands for the enhanced Menu Editor.

Table 11-2 lists the Edit commands for the enhanced Menu Editor.

Table 11-1 Menu Editor Menu Commands

Command Description

New Clears the Menu Editor of the current menu and prepares for a
new menu.

Load... Loads a menu from a specified class and selector into the Men
Editor.

Install... Prompts for the method selector and class name where menu s
ifications are stored.

Read Edits a menu that has been applied to a selected widget.

Apply... Applies the menu in the Menu Editor to an associated canvas.

Exit Quits the Menu Editor.
VisualWorks User’s Guide, Rev. 2.1 137

Chapter 11 Application Building Tools

he

the

ted

em.

 up

the

ch-
Table 11-3 lists the Move commands for the enhanced Menu Editor.

View?Sample Menu Bar opens a window that contains a test version of t
menu bar that is currently entered into the Menu Editor.

The Test menu tests the appearance of the menu currently entered into
Menu Editor.

Table 11-2 Menu Editor Edit Commands

Command Description

New Item Creates a new top-level menu item. If a sub-level menu item
is selected, the Menu Editor creates a new item at the selec
level.

New Submenu
Item

Creates a new submenu item.

Add Line Inserts a divider line between two menu items.

Cut Deletes the selected menu item and places it into the paste
buffer.

Copy Copies the selected menu item into the paste buffer.

Paste Places a cut or copied menu item after the selected menu it

Delete Deletes the selected menu item.

Table 11-3 Menu Editor Move Commands

Command Description

Up Moves the selected menu item (and all its submenus) one level
in the hierarchy of the menu.

Down Moves the selected menu item (and all its submenus) one level
down in the hierarchy of the menu.

Right Causes the selected menu item to become a submenu item of
item above it.

Left Causes the selected menu item to move out one level in a hiera
ical menu structure.
138 VisualWorks User’s Guide, Rev. 2.1

Menu Editor

by
the

ce

Properties

Table 11-4 lists the Basic properties for the enhanced Menu Editor.

.

Table 11-5 lists the Details properties for the enhanced Menu Editor.

Table 11-6 lists the Defaults properties for the enhanced Menu Editor.

Table 11-4 Basic Properties for Menu Editor

Property Description

Label
(Default)

Text of the menu item’s label.

Placing a & before a character creates a mnemonic key for that
menu item. Mnemonic keys allow menu actions to be executed
keyboard keystrokes. To execute a mnemonic, press and hold
<Alt> key while pressing the mnemonic key.

Value Name of the method that will perform the menu item’s action.

ID An identification for programmatic manipulation of the menu
item. It specifies a Smalltalk symbol that you can use to referen
the menu item programmatically

Table 11-5 Details Properties for Menu Editor

Property Description

Shortcut char-
acter

The keyboard shortcut (or accelerator key) for the specified
menu item. Press and hold the <Alt> key while pressing the
shortcut character to execute the menu item command.

Label image The graphic image used in place of, or in combination with a
textual label for the menu item.

Table 11-6 Defaults Properties for Menu Editor

Property Description

On/Off indi-
cator

Prefixes a check box as a toggle indicator to the menu item if Ini-
tially on or Initially off is selected.

Initially
enabled

Enables or disables the menu item.

Initially
hidden

Visually removes the menu item when this switch is turned on.
VisualWorks User’s Guide, Rev. 2.1 139

Chapter 11 Application Building Tools

ent
for

use
de.

 the

he
ol’s
ting
Properties Tool

The Properties Tool is used to control various attributes of each compon
on a canvas. The set of attributes varies with each type of component—
example, an input field can have a menu while a check box cannot.

After you have painted a component, you can use the Properties Tool to
modify its properties to suit your application’s requirement. You can then
the define dialog to generate some and possibly all of the supporting co

.

Figure 11-7 Properties Tool

The primary attribute for nearly all components is the Aspect , which is the
name of the method that the component uses to fetch its value holder from
application model.

The properties can be edited either with a dialog (via properties in the
canvas’s <Operate> menu) or with a persistent tool (clicking on the Proper-
ties button on the Canvas Tool).

Use Apply or press <Return> to apply the properties to the component. T
Prev and Next buttons (in the persistent tool) can be used to move the to
focus to another component in the canvas, saving you the trouble of shif
the focus via the mouse.
140 VisualWorks User’s Guide, Rev. 2.1

Properties Tool

Basics Properties

The properties listed in Table 11-7 are basic to most widgets.

.

Table 11-7 Basics Properties

Property Description

Label Specifies either the text that identifies the widget and
forms a part of it, or the name of a method that supplies a
graphic (provided that the Label Is Image property is
also selected.

Label Is Image Specifies that the widget is to be identified by a graphic
used in place of a textual label. The method that supplies
the graphic must be specified in the Label property.

ID Specifies a Smalltalk symbol that you can use to refer-
ence the widget programmatically, e.g., by sending mes-
sages to the builder.
Each running application has an object called a builder
that assembles and opens the live user interface from the
canvas specification. The builder does this by instantiat-
ing and keeping track of appropriate widget objects. You
can use a widget’s ID property to specify the symbolic
name that the builder will use to reference the widget
object while the application is running. You can then
access the widget object programmatically by asking the
application model for its builder, and then asking the
builder for componentAt: #idSymbol.
VisualWorks User’s Guide, Rev. 2.1 141

Chapter 11 Application Building Tools
Details Properties

Details properties listed in Table 11-8 are available on most widgets.

Table 11-8 Details Properties

Property Description

Font Specifies the font to be used for text in the widget’s label or
for any other text displayed by the widget. You can choose:

n System , which provides the font that matches the current
platform’s system font, if there is one.

n Default , which provides the font that is currently selected
on the Text page of the Settings tool (the default selection
for the Settings tool is a medium-sized font).

n Large , which provides a font that is slightly larger than
the default.

n Small , which provides a font that is slightly smaller than
the default; Fixed , which provides a fixed-width font
(useful for aligning text in columns).

Bordered Specifies whether the widget is to be surrounded by a solid
box.

Opaque Specifies that the widget obscures any portion of any other
widget it overlaps. This property is best used with passive
widgets (such as regions, group boxes, dividers, etc.) for artis-
tic effect. If you put an opaque widget on top of an active
widget (such as a text editor, button, list), user interactions
with the active widget may cause it to redraw itself on top of
the opaque widget.

Can Tab Specifies that the user can transfer focus to the widget by tab-
bing. When a widget has focus, any keyboard input is directed
to it.

Initially Dis-
abled

Specifies that the widget is disabled when the interface is
opened, overriding the focus policy. You must program the
application model to reenable the widget.

Initially Invisi-
ble

Specifies that the widget is invisible when the interface is
opened. You must program the application model to make the
widget visible.
142 VisualWorks User’s Guide, Rev. 2.1

Properties Tool

lica-
ting
re

 for
ram

 its

t

the

k the

 get
Validation Properties

Validation properties are specified when you want a widget to ask its app
tion model for permission to proceed with certain actions, namely, accep
focus, changing internal state, or giving up focus. Validation properties a
useful for providing input flow control—for example, to prevent the user
from entering invalid data into an input field, or to prevent the user from
entering a field before filling in other prerequisite fields.

Each validation property specifies the symbolic name of a validation call-
back, which is the message you want the widget to send while preparing
the relevant action.For each validation callback specified, you must prog
the application model to contain a corresponding method that returns a
boolean value. When the method returns true, the widget proceeds with
action; otherwise, the widget waits for new user input so it can send the
callback again. You can implement the validation method to redirect inpu
focus or to disable and enable input widgets.

If you want a validation method to inspect the widget’s value, you specify
callback name with a colon (selector:). This tells the widget to pass its
controller object as an argument to the method. The method can then as
controller for the widget’s value. For certain widgets (input fields, text
editors, and combo boxes), you use statements such as the following to
and set values through the controller:

input := aController editValue

Table 11-9 Validation Properties

Property Description

Entry Specifies the symbolic name for the widget’s entry validation
callback. The widget sends this message to its application
model when it prepares to take focus (for example, when the
widget is tabbed into or selected with the mouse) If the
method returns true, the widget takes focus; otherwise, focus
is refused.
VisualWorks User’s Guide, Rev. 2.1 143

Chapter 11 Application Building Tools

tion

all-
r the
am
 this
ple-
Notification Properties

You specify Notification properties when you want a widget to inform its
application model that certain actions have taken place, namely, that the
widget has taken focus, changed internal state, or given up focus. Notifica
properties are useful for facilitating complex flow of user input.

Each notification property specifies the symbolic name of a notification c
back, which is the message you want the widget to immediately send afte
relevant action. For each notification callback you specify, you must progr
the application model to contain a corresponding method. You implement
method to provide the desired response to the widget’s action. you can im
ment the notification method to activate other widgets in the interface.

Change Specifies the symbolic name for the widget’s change valida-
tion callback. The widget sends this message to its application
model after the user changes the widget’s value and attempts
to exit the widget (presses return, tabs, clicks on another wid-
get) before the widget writes the input value to its value
model.The corresponding method in the application model
should determine whether the pending input value is accept-
able. If the method returns true, the widget’s controller writes
the input value to the value model; otherwise, the value model
remains unchanged.

Exit Specifies the symbolic name for the widget’s exit validation
callback. The widget sends this message to its application
model when it prepares to give up focus. The message is sent
when the user attempts to exit the widget (presses return, tabs,
clicks on another widget). The corresponding method in the
application model should determine whether the widget can
actually give up focus. If the method returns true, the widget
gives up focus; otherwise, focus is retained.

D. Click Specifies the symbolic name for the widget’s double-click
validation callback. The widget sends this message to its
application model when preparing to respond to a double-
click.
This property appears with List and Table widgets only.

Table 11-9 Validation Properties

Property Description
144 VisualWorks User’s Guide, Rev. 2.1

Properties Tool

Table 11-10 Notification properties

Property Description

Entry Specifies the symbolic name for the widget’s entry notification
callback. The widget sends this message to its application
model immediately after taking focus. You must implement a
corresponding method in the application model that provides
the desired response to this event.

Change Specifies the symbolic name for the widget’s change notifica-
tion callback. The widget sends this message to its application
model immediately after the widget sends its input value to its
value model. You must implement a corresponding method in
the application model to provide the desired response to this
event. Note that specifying a change notification callback is
similar to registering an interest in a value model via onChang-
eSend:to:, in that both cause a message to be sent after the
value in the value model has changed.

However, the two techniques also differ in important ways: The
change notification callback is sent only to the application
model. The message specified by onChangeSend:to: is sent
to the specified receiver, which may, but need not be the appli-
cation model. If both techniques are used together, the message
sent by onChangeSend:to: is sent first, and the change notifi-
cation callback is sent second.

Exit Specifies the symbolic name for the widget’s exit notification
callback. The widget sends this message to its application
model immediately after it gives up focus. You must implement
a corresponding method in the application model to provide the
desired response to this event.

D. Click Specifies the symbolic name for the widget’s double-click noti-
fication callback. This callback is the message that the widget
sends to its application model in response to a double-click.
You must implement a corresponding method in the application
model to provide the desired response to this event.
This property appears with the List and Table widgets only.
VisualWorks User’s Guide, Rev. 2.1 145

Chapter 11 Application Building Tools

t
s

t

ese

Color Properties

A widget can have up to four color zones:

n Foreground, which is determined by the widget itself, plus the curren
look policy. Typically it is a salient characteristic of the widget, such a
its label, if it has one.

n Background, which is determined by the widget itself, plus the curren
look policy. Typically, it is a less salient characteristic, such as the
widget’s interior area “behind” any label.

n Selection foreground, which is the color of the foreground when the
widget is selected.

n Selection background, which is the color of the background when the
widget is selected.

You use the Color page of the Properties Tool to apply color to any of th
zones.

.

Table 11-11 Color Properties

Property Description

V Allows you to fine-tune the value of the selected color. The
value is the degree of lightness of a color, from light to dark

S Allows you to fine-tune the saturation of the selected color.
The saturation is the degree of vividness, from grayish to
vivid. (Only appears when a color other than white or black
is selected)

H Allows you to fine-tune the hue of the selected color. The
hue is the gradation of color from red through yellow, green,
cyan, blue, magenta, back to red. (Only appears when a
color other than white or black is selected)

Read Displays the colors that are currently assigned to the four
color zones for the selected widget on the canvas.

Foregrnd Specifies whether to assign the selected color to the widget’s
foreground color zone. Clicking on the Foregrnd button tog-
gles between assigning the selected color and assigning no
color.
146 VisualWorks User’s Guide, Rev. 2.1

Properties Tool

as,

Position Properties for Bounded Widgets

Available for bounded widgets: Action Button, Slider, Input Field, Menu
Button, Combo Box, Text Editor, List, Table, DataSet, Notebook, Subcanv
View Holder, Divider, Region, Group Box.

Backgrnd Specifies whether to assign the selected color to the widget’s
background color zone. Clicking on the Backgrnd button
toggles between assigning the selected color and assigning
no color.

Selection Fore-
grnd

Specifies whether to assign the selected color to the widget’s
selection foreground color zone. Clicking on the Selection
Foregrnd button toggles between assigning the selected
color and assigning no color.

Selection
Backgrnd

Specifies whether to assign the selected color to the widget’s
selection background color zone. Clicking on the Selection
Backgrnd button toggles between assigning the selected
color and assigning no color.

Table 11-12 Position Properties

Property Description

L Identifies the positioning choices (Proportion and Offset) for
the left edge of the selected widget.

T Identifies the positioning choices (Proportion and Offset) for
the top edge of the selected widget.

R Identifies the positioning choices (Proportion and Offset) for
the right edge of the selected widget.

B Identifies the positioning choices (Proportion and Offset) for
the bottom edge of the selected widget.

Proportion Indicates the fraction of the window’s width or height that pre-
cedes the widget’s edge. You can specify a value from 0 (the
position of the left or upper window edge) to 1 (the position of
the right or lower window edge). The proportionally-deter-
mined position can be further adjusted by an offset.

Table 11-11 Color Properties

Property Description
VisualWorks User’s Guide, Rev. 2.1 147

Chapter 11 Application Building Tools

ag
l
eci-

ypi-
sfer.

his

ation

 this
re.
ected

s a
Drop Source Properties

Drop Source properties are available for the List widget only.

Offset Indicates how many pixels to adjust the widget’s edge from the
proportionally determined starting position. A positive offset
adjusts the edge rightward or downward from the proportional
setting. A negative offset adjusts leftward or upward from a
nonzero proportion. A 0 offset causes the position of the
widget edge to be determined entirely by the proportion.

Table 11-13 Drop Source Properties

Property Description

Drag Ok Specifies the symbolic name for the message that queries whether to initiate a dr
and drop from the widget. The widget sends this message to the application mode
when the user starts to drag the mouse pointer within the widget’s bounds. The sp
fied symbol must end with a colon (:)—for example, customerWantToDrag:. This
allows the widget to pass its controller as part of the message.

You must implement a corresponding method in the widget’s application model. T
cally, this method tests whether the widget’s data exists and is appropriate for tran
This method must return true if the operation is to proceed, and false, otherwise.

Drag Start Specifies the symbolic name for the message that initiates the drag and drop. The
widget sends this message to the application model only if the Drag OK method
returns true. The specified symbol must end with a colon (:)—for example, doCus-
tomerDrag:. This allows the widget to pass its controller as part of the message.

You must implement a corresponding method in the widget’s application model. T
method must create initialized instances of DragDropData, DropSource, and Drag-
DropManager and then send doDragDrop message to the DragDropManager
instance. This method may use the effect symbol returned by the completed oper
to trigger followup actions on the drag source.

Select On
Down

Specifies the effect of pressing the mouse button down in a drop source list. When
property is on (the default), the user can perform drag and drop as a single gestu
That is, pressing the mouse button causes the list item under the pointer to be sel
immediately, so that the drag can proceed from there.

When this property is off, the user must click on a list item to select it, and then, a
separate gesture, press the mouse button down again to start the drag.

Table 11-12 Position Properties

Property Description
148 VisualWorks User’s Guide, Rev. 2.1

Properties Tool

ent

nt
a-

the
cts

d

ly if

nt
a-

dget.
ffects
the

e
Drop Target Properties

Drop Target properties are available for all widgets except linked and
embedded dataforms.

Table 11-14 Drop Target Properties

Properties Description

Entry Specifies the symbolic name for the message to be sent by the DragDropManager
when the user drags the mouse pointer into the widget’s bounds. This message is s
only if the widget’s Drop property is also filled in. The specified symbol must end with
a colon (:)—for example, browseDragEnter:. This allows the DragDropManager to
pass information about the object being dragged (a DragDropContext instance) as part
of the message.

Specifying this property is optional; however, if you do specify it, you must impleme
a corresponding method in the application model. Typically, this method uses inform
tion in the provided DragDropContext to determine whether it is appropriate to drop
the dragged data in this widget, and, if so, creates a corresponding visual effect in
widget. Because this method executes once, it should be used to turn on visual effe
(such as highlighting) that don’t track the pointer. By convention, this method shoul
return a symbol representing the anticipated type of transfer (typically #dropEffect-
Move, #dropEffectCopy, or #dropEffectNone).

Over Specifies the symbolic name for the message sent by the DragDropManager while the
user moves the mouse pointer within the widget’s bounds. This message is sent on
the widget’s Drop property is also filled in. The specified symbol must end with a
colon (:)—for example, browseDragOver:. This allows the DragDropManager to
pass information about the object being dragged (a DragDropContext instance) as part
of the message.

Specifying this property is optional; however, if you do specify it, you must impleme
a corresponding method in the application model. Typically, this method uses inform
tion in the provided DragDropContext to determine whether it is appropriate to drop
the dragged data in this widget, and, if so, changes the visual appearance of the wi
Because this method executes whenever the pointer moves, it can produce visual e
that track the pointer’s movement. This method must return a symbol representing
anticipated type of transfer (typically #dropEffectMove, #dropEffectCopy, or #drop-
EffectNone). The DragDropManager responds to this symbol by changing the shap
of the pointer while it is over the widget.
VisualWorks User’s Guide, Rev. 2.1 149

Chapter 11 Application Building Tools

 sent

nt
a-

pear-
ects

s.

d

is

lt. In

Exit Specifies the symbolic name for the message that is sent by the DragDropManager
when the user moves the mouse pointer out of the widget’s bounds. This message is
only if the widget’s Drop property is also filled in. The specified symbol must end with
a colon (:)—for example, browseDragOver:. This allows the DragDropManager to
pass information about the object being dragged (a DragDropContext instance) as part
of the message.

Specifying this property is optional; however, if you do specify it, you must impleme
a corresponding method in the application model. Typically, this method uses inform
tion in the provided DragDropContext to determine whether a drop was valid for this
widget, and, if so, to reverse any changes that were made to the widget’s visual ap
ance. Because this method executes once, it is appropriate for turning off visual eff
that were turned on by the Entry method. By convention, this method should return a
symbol representing the anticipated type of transfer (typically #dropEffectMove,
#dropEffectCopy, or #dropEffectNone).

Drop Specifies the symbolic name for the message that is sent by the DragDropManager
when the user releases the mouse button with the pointer inside the widget’s bound
The specified symbol must end with a colon (:)—for example, browseDragOver:.
This allows the DragDropManager to pass information about the object being dragge
(a DragDropContext instance) as part of the message.

You must implement a corresponding method in the application model. Typically, th
method uses information in the provided DragDropContext to determine whether the
dragged data can be dropped in this widget, and, if so, what action to take as a resu
addition to initiating the desired action, this method reverses any changes that were
made to the widget’s visual appearance by the Entry method, if appropriate. This
method returns a symbol representing the type of transfer (typically, #dropEffectMove,
#dropEffectCopy, or #dropEffectNone); this symbol is returned to the Drag Start
method, where further processing may occur.

Table 11-14 Drop Target Properties

Properties Description
150 VisualWorks User’s Guide, Rev. 2.1

Define Dialog

iate.

nce
s

r.
od
 a

f

ed
tion
eck
Define Dialog

The define dialog generates supporting code in a limited fashion:

n It creates an instance variable in the application model when appropr
The variable is given the same name as the component’s Aspect or
Client property.

n It creates an instance method that returns the object held by the insta
variable, or an empty action method for a button. The method also ha
the same name as the Aspect , Client or Action property.

n Optionally, it adds initialization code to the method that accesses the
instance variable, to initialize it with an appropriate information holde
You can override the default initialization by creating an instance meth
named initialize, in which you assign to the variable a custom value in
value holder.

The define dialog can be opened by selecting methods ?define in the
canvas’s menu or by clicking Define... from the Canvas Tool. You can limit
the define dialog’s scope by first selecting a single component, a group o
components, or none (which is equivalent to selecting all components).

.

Figure 11-8 Define Dialog

The define dialog lists all of the information holders and actions referenc
in the selected components. You can instruct the tool to ignore an informa
holder or action by deselecting its name in the list (click to remove the ch
mark).

By default, initialization code will be created in addition to the instance
variable and accessing method. Turn off the Add Initialization feature if
VisualWorks User’s Guide, Rev. 2.1 151

Chapter 11 Application Building Tools

e
you prefer to leave the variable uninitialized or you want to initialize it som
other way.
152 VisualWorks User’s Guide, Rev. 2.1

Define Dialog
VisualWorks User’s Guide, Rev. 2.1 153

Chapter 11 Application Building Tools
154 VisualWorks User’s Guide, Rev. 2.1

Define Dialog
VisualWorks User’s Guide, Rev. 2.1 155

Chapter 11 Application Building Tools
156 VisualWorks User’s Guide, Rev. 2.1

nal
anip-

For
u-

en

d then
er

s
gani-

o
ields
Chapter 12

Database Application Building
Tools

Using the VisualWorks Objectlens to synchronize data objects with relatio
data tables, the database tools allow relational data to be accessed and m
ulated as objects.

A brief description of the database applications tools is provided below.
more detailed information, please refer to the VisualWorks Database doc
mentation (online and hardcopy).

The Data Modeler

The Data Modeler is the central information point for the mapping betwe
the database tables and Smalltalk classes.

Canvas Composer

The canvas composer creates a canvas, and stores it on a data form an
opens the VisualWorks painting tools to allow canvas customizing. In ord
to maximize reusability, a data form may have multiple canvases and it i
recommended that canvases be constructed to provide application or or
zation standard components to use as building blocks.

VisualWorks Painting Tools

The VisualWorks painting tools (Canvas Tool and Palette) can be used t
modify database specific canvases that are automatically created. New f
or columns can be manually added or deleted.
VisualWorks User’s Guide, Rev. 2.1 157

Chapter 12 Database Application Building Tools

ing
rks

ion.

e
is

are
h

can
ically

 with
y

u in
 and
e
Embedded and Linked Data Forms

Building database applications within VisualWorks can be extended by us
the Embedded and the Linked data forms. Selectable from the VisualWo
palette, using these specifications provide the following:

n Embedded data forms - give the application developer the flexibility to
use a part of a parent’s application canvas for a subordinate applicat

n Linked data forms - give the application developer the ability to create
additional canvases instead of using a part of the parent’s canvas. Th
graphical representation of a linked data form in the parent’s canvas
similar to a VisualWorks action button.

Mapping Tool

This graphical tool shows how the instance variables of a specific class
mapped to the columns of a table. It shows the type associated with eac
variable as well as the type and attributes of the mapped column.

The mapping tool provides the mechanism to map variables to different
columns and to change the type or attributes of the columns.

It also provides actions for editing the type and columns. New variables
be added, they can be removed, their type changed, a table may automat
be created for a class, etc.

The Query Editor

The Query Editor is a tool used to define a query that is to be associated
the application, the ownQuery, any Restricted Query defined, a menu quer
or and arbitrary query.

Menu Queries

The Query editor contains some utilities that make it easy to define a men
terms of a query. To do so, the ‘Select’ field must be composed of a string
another arbitrary object. The strings will be the labels of the menu and th
other objects will be the values.
158 VisualWorks User’s Guide, Rev. 2.1

The Query Editor

d
r
Ad Hoc SQL Editor

The query editor allows you to make ad hoc queries to the target data an
visually specify the data to be displayed with no required form building o
Smalltalk programming.
VisualWorks User’s Guide, Rev. 2.1 159

Chapter 12 Database Application Building Tools
160 VisualWorks User’s Guide, Rev. 2.1

om

ni-

y-

nd
Chapter 13

Application Delivery Tools

This chapter describes the tools available for extracting an application fr
VisualWorks and delivering it to its end users:

n Parcel List

n Parcel Browser

n Image Maker

The first two tools enable you to create groups of class and method defi
tions, called parcels, that can be loaded into a running image without a
compiler. The third tool enables you to create a minimal image for deplo
ment to end users.

This chapter describes these tools. For more information about parcels a
image-making, see Part IV, “Application Delivery.”

Parcel List

To open the Parcel List, choose Tools ?Parcel List from the VisualWorks
main window.

Figure 13-1 Parcel List
VisualWorks User’s Guide, Rev. 2.1 161

Chapter 13 Application Delivery Tools

 you
ing,

-2.

nu is

 them

l
ist
es

d
el

n

.

ys-
The Parcel List shows all of the parcels in the image. From the Parcel List
can perform operations on entire parcels, such as creating, loading, sav
and removing them.

The Parcel List has a menu bar with two menus: Parcel and Utility . The
Parcel and Utility menu commands are described in tables 13-1 and 13

The Parcel List also has a pop-up <Operate> menu. The <Operate> me
identical to the Parcel menu.

Filing in extras/tooldd.st enables drag and drop in the Parcel List.
When enabled, you can add classes and methods to a parcel by dragging
from the System Browser to a parcel in the Parcel List.

Parcel Menu Commands
Table 13-1 Parcel Menu Commands

Command Description

New... Prompts for a unique parcel name. Creates a new, empty parce
with that name. A parcel name may be any string. The Parcel L
strips names of leading and trailing blank spaces and compress
multiple blank spaces into a single space.

Load... Prompts for a filename. Loads the parcel and all the classes an
methods it contains from the specified parcel file. Loading a parc
will display error messages if an attempt is made to overwrite a
existing class definition or if prerequisite classes are not already
loaded. See Chapter 25 for more information.

Note: Parcel files do not contain source code. Browsing classes
and methods that have been loaded results in decompiled code

Save As... Prompts for a filename. Writes the selected parcel and all the
classes and methods it contains to a parcel file.

File Out As... Prompts for a filename. Stores a description of each class and
method in the selected parcel in a form that enables the class
(including all of its methods) and any extension methods to be
placed in another VisualWorks image with the file in command.
Does not file out the parcel itself.

Remove Removes the selected parcel from the system. The definitions
(classes and methods) that the parcel contained remain in the s
tem.
162 VisualWorks User’s Guide, Rev. 2.1

Parcel Browser

, and
.

h

he

th-

Utility Menu Commands

Parcel Browser

The Parcel Browser displays the contents—categories, classes, protocols
methods—of a single parcel and allows you to add and remove contents

Open the Parcel Browser from the Parcel List by either:

n Double-clicking on a parcel, or

n Selecting a parcel and choosing File ?Browse .

Structure

The Parcel Browser looks much like the System Browser (described in
Chapter10, “Smalltalk Programming Tools”).

Rename
As...

Prompts for a new name. Replaces the current parcel name, bot
in the Parcel Browser and in the Parcel List. Rename As has
same restrictions as Name.

Browse... Opens a Parcel Browser on the selected parcel.

Empty Removes all of the definitions (classes and methods) from the
selected parcel. The parcel itself remains in the system, as do t
definitions for the classes and methods that were in it.

Table 13-2 Utility Menu Commands

Command Description

File Into Parcel... Prompts for a filename. Files in code from the specified
source file and places all of the definitions (classes and me
ods) into the selected parcel.

Changes Into
Parcel

Adds all of the definitions (classes and methods) from the
current change set to the selected parcel.

Make Remove
Script...

Prompts for a filename. Writes a script that will remove from
the system all of the definitions in the selected parcel. The
script will not remove the parcel itself.

Table 13-1 Parcel Menu Commands
VisualWorks User’s Guide, Rev. 2.1 163

Chapter 13 Application Delivery Tools

 in
,

de

iew.
te>

cel.

ular

 the

Figure 13-2 Parcel Browser

The Parcel Browser has five upper views and one lower view, as shown
Figure 13-2. Each view provides a lower level of detail in the code library
beginning with the parcel name and category list and ending with the co
itself.

The Parcel Browser differs from the System Browser in three ways:

n The Parcel Browser contains an additional view above the category v
The parcel view shows the name of the parcel and has its own <Opera
menu, which contains commands that affect the parcel as a whole.

n The Parcel Browser displays the definitions that are in the current par
It can be made to show all of the definitions that are in the system by
unselecting the filter check box.

q Items that are in the current parcel are in bold.

q Items that are in the system but not in the current parcel are in reg
typeface.

q A class name that is in italics indicates that the class itself is not in
parcel but that one or more of its methods are.

n The definitions displayed in the Parcel Browser cannot be edited. The
Parcel Browser allows only operations that:

q Change which definitions are in the parcel

q Browse code for possible inclusion in the parcel

parcel view

filter check box
164 VisualWorks User’s Guide, Rev. 2.1

Parcel Browser

 that
ted
s,
.

e

 sys-

 the

er-

e

ds
q Write the parcel’s definitions out of the image

Each view in the Parcel Browser has a unique menu, offering commands
are appropriate to its contents. The commands for each view are presen
below, listed in the order in which they appear in the menu. In some view
the menu has fewer options when no item in the view has been selected

Parcel View
Table 13-3 Protocol View Commands

Command Description

file out as... Prompts for a filename. Stores a description of each class and
method in the selected parcel, in a form that enables the class
(including all of its methods) and any extension methods to be
placed in another VisualWorks image with the file in command.
Does not file out the parcel itself.

save as... Prompts for a filename. Writes the selected parcel and all of th
classes and methods it contains out to a parcel file.

update Brings the Parcel Browser listing up to date. Useful after cre-
ating or filing in new categories, classes, protocols, or meth-
ods.

rename as... Prompts for a new name. Replaces the current parcel name,
both in the Parcel Browser and in the Parcel List. Same name
restrictions as in the Parcel List.

remove Removes the current parcel from the system. The definitions
(classes and methods) that the parcel contained remain in the
tem.

empty Removes all of the definitions (classes and methods) from the
selected parcel. The parcel itself remains in the system, as do
definitions for the classes and methods that were in it.

version Shows the parcel’s version in the code view. You can edit the v
sion and accept the change. The version may be any string.

comment Shows the parcel’s comment in the code view. You can edit th
comment and accept the change.

summary Shows a summary, in the code view, of the classes and metho
that are defined in the parcel.
VisualWorks User’s Guide, Rev. 2.1 165

Chapter 13 Application Delivery Tools

nts

 to

ains
he

o

ur-
ame
Category View

Class View

Table 13-4 Category View Commands

Command Description

 add to parcel Adds all of the class and method definitions that are in the
selected category to the current parcel.

remove from
parcel

Removes all of the class and method definitions that are in the
selected category from the parcel. The category and its conte
remain in the system.

find class... Prompts for a class name. Selects that class in the class view
(and its category, in the category view). If a wildcard character
is used, displays a dialog of all classes with matching names.
For example, the pattern C*View displays a list of all classes
beginning with “C” and ending in “View.”

Table 13-5 Class View Commands

Command Description

 add to parcel Adds the selected class and all of the methods that it contains
the current parcel.

remove from
parcel

Removes the selected class and all of the methods that it cont
from the current parcel. The class and its contents remain in t
system.

hierarchy In the code view, displays the names of the currently selected
class, its superclasses, and its subclasses, with indentations t
indicate hierarchic precedence.

definition In the code view, displays the formal definition of the currently
selected class.

comment In the code view, displays the class comment.

inst var refs... Displays a dialog that lists all of the instance variables of the c
rently selected class and its superclasses. Select a variable n
to open a browser on all methods that refer to that variable.
166 VisualWorks User’s Guide, Rev. 2.1

Parcel Browser

ri-

om

e
Protocol View

Method View

class var
refs...

Opens a browser on methods that refer to a selected class va
able.

class refs Opens a browser on all methods that refer to the currently
selected class.

Table 13-6 Protocol View Commands

Command Description

 add to parcel Adds all of the methods that are in the selected protocol to the
current parcel.

remove from
parcel

Removes all of the methods that are in the selected protocol fr
the current parcel. The protocol and its contents remain in the
system.

find method... Displays a dialog that lists all of the instance methods (if the
instance switch is selected) or class methods of the currently
selected class. Select a method name to display its code in th
code view.

Table 13-7 Method View Commands

Command Description

 add to parcel Adds the selected method to the current parcel.

remove from
parcel

Removes the selected method from the current parcel. The
method remains in the system.

senders Opens a new browser on all methods that send the currently
selected message.

implementors Opens a browser on all methods that implement the currently
selected message (i.e., methods having the same name that
exist in other classes as well as this one).

messages... Displays a dialog of all method selectors that exist in the cur-
rently selected method. Select one to open a browser on all
methods that implement that message.

Table 13-5 Class View Commands
VisualWorks User’s Guide, Rev. 2.1 167

Chapter 13 Application Delivery Tools

n

-

Code View
Table 13-8 Code View Commands

Command Description

find... Searches for the specified string.

replace... Replaces one specified string with another.

undo Reverses the most recent cut or paste.

copy Places a copy of the highlighted text in memory. If <Shift> is
held down while copy is selected, the text is copied to the
window manager’s clipboard.

cut Places a copy of the highlighted text in the paste buffer and
then deletes the original.

paste Deletes the highlighted text (if any) and then places a copy of
the most recently copied or cut selection in that location. If
<Shift> is held down while paste is selected, a dialog presents
the five most recent text segments that have been copied or
cut, including the window manager’s clipboard.

do it Executes the highlighted text as a Smalltalk expression. The
scope of execution is the selected class, so class variables ca
be used in the expressions, and self refers to the selected class.

print it Same as do it , except a description of the resulting object is
inserted in the text. The printed string becomes the current
selection, so it can be deleted easily.

inspect Same as do it , except an inspector is opened on the resulting
object.

accept Saves the contents of the code view. Only applicable for a par
cel’s version or comment. You may not change any class or
method definitions using the Parcel Browser. You must the
System Browser or another programming tool to edit classes
and methods.

cancel Restores the entire text to its condition when it was last com-
piled (with accept).

hardcopy Print a copy of the text or code on paper.
168 VisualWorks User’s Guide, Rev. 2.1

Image Maker

ker
m an

d
ifi-
Image Maker

To create custom images, you use a tool called Image Maker. Image Ma
enables you to remove development tools and other unwanted classes fro
image. The resulting image is more appropriate for distribution to the en
users of your application. It also occupies less disk space—perhaps sign
cantly, depending on the extra classes that you specify for removal.

To use Image Maker:

1. File in imagemkr.st from the utils directory.

2. In a Workspace, execute the following:

ImageMaker open

Image Maker displays a window that allows you to choose what you
want to remove from your development image before saving it as a
deployment image.

Figure 13-3 Image Maker
VisualWorks User’s Guide, Rev. 2.1 169

Chapter 13 Application Delivery Tools

nt
the
.)

er,
3. Choose the capabilities that you want removed from your developme
image and not included in the new deployment image file. (Note that
capabilities are not removed from your saved development image file

4. Choose File?Make Deployment Image .

5. Follow the instructions presented by Image Maker.

For more information about creating deployment images with Image Mak
see Part IV, “Application Delivery.”
170 VisualWorks User’s Guide, Rev. 2.1

hod,
w

cus-
ga-

s in
 you
ror
n
Chapter 14

Debugging Techniques

The VisualWorks debugger enables you to look at the methods that are
waiting for a return value when a program interrupt occurs, examine the
values of variables in each context, dynamically change a value or a met
insert breakpoints, and restart execution at a chosen location with the ne
values and logic experimentally in place.

This chapter presents a task-oriented perspective, presenting a fuller dis
sion of how to use the Debugger and supporting tools. The chapter is or
nized by debugging techniques, roughly in order of increasing intensity.

Reading the Execution Stack

To diagnose a problem, sometimes it is sufficient to see the last few entrie
the context stack. The Debugger’s top view lists as much of the stack as
want to see, but you may not even have to launch the Debugger. The er
notifier that results from a program interrupt lists the last five contexts. A
error notifier showing the results of a programmatic error (3 + ‘two’) is shown
in Figure 14-1.

Figure 14-1 Error Notifier
VisualWorks User’s Guide, Rev. 2.1 171

Chapter 14 Debugging Techniques

is

 line

k
y
on to

a-
st,

sn’t
tion
ou

 you

ve
 more
en a

 it
ent
ethod,

od.
the
The window label tells us that a sumFromInteger: message was sent to an
object that does not implement a method by that name. (This summary
repeated in the top line of the window, for situations in which the window
label is not wide enough to display all of the message.) Looking at the top
of the stack, we see that it was an object of type ByteString. (ByteString
didn’t understand the message, so it invoked the doesNotUnderstand
method implemented by its parent class, Object). This is puzzling because we
sent a + message to a SmallInteger, as recorded in the second line of the stac
transcript. The last three lines of the transcript are not enlightening—the
merely expose some of the execution machinery, which we have no reas
suspect in this case.

This example illustrates two features of the execution stack worth emph
sizing. The first line of the execution stack is often only of marginal intere
because it usually represents the method that handles the error—it doe
necessarily help you understand what caused the error. Also, the execu
machinery is a frequent inhabitant of the execution stack—very quickly y
learn to read around it.

Back to our example: Something odd happened in the SmallInteger>>+
method. You can either use the System Browser to look at that method, or
can open a Debugger, as described in the next section.

Tracing the Flow of Messages

As described in the previous section, the error notifier displays the last fi
message-sends in the execution stack. When you need to look at one or
of those methods, the Debugger is the most convenient tool to use. To op
Debugger, select debug in the notifier’s <Operate> menu. The notifier will
disappear after the Debugger is opened.

The Debugger’s window label is identical to that of the notifier from which
was created. The execution stack view, at the top, contains the most rec
message-sends that occurred before the error. To see the associated m
select a message-send. In the illustration, SmallInteger>>+ has been high-
lighted. The code view, in the center of the Debugger, displays the meth
Within that method, the message-send that was being processed when
program failed is highlighted automatically.
172 VisualWorks User’s Guide, Rev. 2.1

Tracing the Flow of Messages

n

r.

ent

to a
his
A debugger displaying the results of a programmatic error (3 + 'two') is
shown in Figure 14-2.

Figure 14-2 Debugger

Continuing our example from the previous section, in which the expressio3
+ 'two' was executed, we can see that the illegal expression could not be
handled by the primitive method that normally adds two integers togethe
The alternative Smalltalk code was then executed.

Here we find the explanation for the mysterious sumFromInteger: message,
which was sent to a ByteString. As you can see, the + method calls the
sumFromInteger: method. But the receiver of the + message is the argument
(self) of the sumFromInteger: message. The message receiver and argum
have traded places. We know that the argument was the string 'two', so the
sumFromInteger: message is being sent to an object of the wrong class,
string instead of an integer. In the next section, we’ll show how to verify t
deduction.
VisualWorks User’s Guide, Rev. 2.1 173

Chapter 14 Debugging Techniques

 see
tack.
ft

 on

r-
 to

en

lick

alue,

the
Inspecting and Changing Variables

The bottom of the Debugger is devoted to two inspectors that allow you to
the values of variables as they exist at the chosen point in the execution s
Each inspector consists of a pair of views, with a list of variables in the le
view and the value of a selected variable in the right view. The inspector
the left is for instance variables, while the right-hand inspector displays
temporary variables.

In the example that was introduced above, the expression 3 + 'two' has caused
the expression 'two' sumFromInteger: 3 to be executed. Now we know
where sumFromInteger: came from. We can also see why it was “misunde
stood” as indicated in the error notifier's window label—it was addressed
a string instead of the expected number. To verify this, select aNumber in the
inspector view. Figure 14-3 shows the resulting inspector.

Figure 14-3 An inspector

The Debugger’s inspectors let you change the value of a variable and th
restart the program. Simply edit the value, changing 'two' to a legal value such
as the integer 2. Then select accept in the <Operate> menu. A confirmer will
then offer to begin at the top of the current method using the new value. C
on the yes button. You can then select restart in the stack view’s menu, trig-
gering execution.

In practice, the value 'two' normally would be supplied by another method
rather than a Workspace expression. Having traced the problem to this v
you can correct its parent method. To do so, edit and accept the revised
method in any code view such as the one in the Debugger or the one in
System Browser.
174 VisualWorks User’s Guide, Rev. 2.1

Inserting Status Messages

ages
e
s. In

d thus

 one

ed

class.

nter
Inserting Status Messages

In some situations, it is useful to have your program display status mess
during the debugging phase. For example, you might want a record of th
changing values of a particular variable as it passes through various state
such a case, the System Transcript is used to display each message an
accumulate the desired record.

To open a System Transcript, select Utilities in the VisualWorks main
window, then select transcript in the submenu. (The system sometimes
displays messages in the System Transcript, so it’s a good idea to keep
open at all times.)

To send output to the System Transcript, insert expressions such as the
following in your code, substituting a pertinent object name for the italiciz
word:

Transcript show: anObject printString.
Transcript cr.
Transcript tab.
Transcript show: 'Checkpoint 1'; cr.

To avoid an update of the display with each part of a larger message, use next-
PutAll: or print:, then use endEntry to output the message, as in:

Transcript nextPutAll: 'The account is: '; print: account; endEntry.

To clear the System Transcript for a new batch of messages, select cancel in
its menu. Alternatively, execute the expression Transcript clear.

The System Transcript is a distinguished instance of the TextCollector class.
For more transcript output messages, see the instance methods of that

Interrupting a Program

There are two ways to manually stop a Smalltalk program: by typing a user
interrupt key sequence or by inserting a halt message in the program.

<Control>-c is the key sequence assigned to the user interrupt function. E
this key sequence when you want to freeze a program that is looping
endlessly, or to capture its state at a specific observable stage.
VisualWorks User’s Guide, Rev. 2.1 175

Chapter 14 Debugging Techniques

ch
art an

ing
he
ey
t. The
can

ted

ition
hen

e
est

t of

sage-

n is

he
For more precise control, insert the expression self halt in a method at the
location where you want execution to be interrupted, then accept the revised
method. The next time that method is called, an error notifier will be
displayed at the specified juncture.

Both user interrupts and halt messages generate the usual error notifier, whi
can be used to open a Debugger. The next section describes how to rest
interrupted program.

Restarting a Program

The Debugger provides five ways to restart an interrupted program, allow
you to control the starting and stopping place for continued execution. T
first two commands described below control the starting point—since th
continue execution as far as possible, the Debugger is closed at the outse
last three control the stopping place—the Debugger is left open so you
inspect the conditions at the new position in the stack.

To close the Debugger and restart at the beginning of the currently selec
method, select restart in the stack view’s <Operate> menu. This is useful
mainly after you have altered the method’s code. To restart at a prior pos
in the program, select the context in which you want execution to begin, t
select restart in the <Operate> menu.

To close the Debugger and continue from the point of interruption in the
currently selected method, select proceed in the <Operate> menu. This is
useful when you have changed the values of one or more variables in th
Debugger’s inspector views, or when the current interrupt is of less inter
than one that is still to come. Execution continues as follows:

n If a user interrupt caused the break, execution proceeds from the poin
interruption.

n If anything other than a user interrupt caused the break, execution
proceeds with an assumed value as the return of the interrupted mes
send. That value is nil unless you execute a do it or print it command
inside the Debugger, in which case the value returned from that actio
used.

To continue to a specific place in a method, click on that location to put t
insertion point (caret) there, then select skip to caret in the <Operate>
menu.
176 VisualWorks User’s Guide, Rev. 2.1

Restarting a Program

d,
d
To execute the next message-send, select the step button in the Debugger or
select step in the <Operate> menu. Execution stops after the value is
returned from the called method.

To send the next message, and “follow” it by displaying the called metho
select the send button or select send in the <Operate> menu. This comman
provides the finest granularity of message-flow inspection.
VisualWorks User’s Guide, Rev. 2.1 177

Chapter 14 Debugging Techniques
178 VisualWorks User’s Guide, Rev. 2.1

le
s.
truc-
se

 of
f

g

e
g

e
e
me
Chapter 15

Managing Projects and Versions

VisualWorks provides tools to help you carve a large task into manageab
projects, to share code with other developers, and to track code version
These tools—Project, Change List and Change Set—are described in s
tural terms in the chapter “Environment Tools,” which describes how to u
those tools.

We begin with Project, which helps you organize your display into groups
views and your coding into groups of changes. Then the various ways o
viewing and manipulating those changes are discussed.

Entering and Exiting a Project

Creating a Project involves launching a new Project window, by selectin
Changes ?Open Project in the VisualWorks main window. The Project
window contains a text view in which you can describe the project. Abov
that view is an enter button—use this button to activate the project, clearin
the display of the parent project’s windows.

The Project window with the description User Interface is shown in
Figure 15-1.

Figure 15-1 Project Window

A new VisualWorks main window will be provided with the new project. Us
the VisualWorks main window to launch tools as usual. When you exit th
project, those windows will be remembered by the system for the next ti
VisualWorks User’s Guide, Rev. 2.1 179

Chapter 15 Managing Projects and Versions

s
our
ange
nd-

our

me
 the

u can

ve-
 more
you enter the project. To exit the current project, choose Changes ?Exit
Project in the VisualWorks main window.

Projects can be nested to create a hierarchy of working contexts. Beside
allowing you to create separate groups of tools for different aspects of y
work, Project also keeps a separate Change Set for each project. The Ch
List, however, when used to access the changes file, ignores project bou
aries. Change Set and Change List are discussed further below.

To close a project permanently, select close in its <Operate> menu. If you
have made changes to the system in that project, a confirmer will verify y
intent to close the project. The image is not affected by this decision—it
reflects changes made in any project. Similarly, the changes file is the sa
for all projects. Only the Change Set associated with a project, along with
window setup, is lost when a project is closed.

Summarizing Project Changes

The Change Set is a summary of changes that have been made within a
project. Unlike the Change List, it does not track the evolution of those
changes. Instead, its intent is to list the affected parts of the system so yo
use the file out as command to store your work in a set of disk files. This
strategy for transporting changes from one image to another is most con
nient when the changes are confined to a few classes and categories. For
involved sets of changes, it may be easier to use the Change List to write file
with the desired changes.
180 VisualWorks User’s Guide, Rev. 2.1

Summarizing Project Changes

is

e
 the
.

as
n (a
pres-

rt

A ChangeSet inspector, summarizing the changes for the active project
shown in Figure 15-2.

Figure 15-2 ChangeSet Inspector

To open a Change Set, select Changes ?Inspect ChangeSet in the Visu-
alWorks main window. An inspector will be opened on the current Chang
Set, with types of changes listed in the left view. Select a type to display
changes in the right view, or select self to see the entire list in formatted form

The Change Set can contain any of the following types of change:

n Added, deleted and changed classes

n Added, deleted and changed methods

n Changes in class categories (reported as “Reorganized System”) and
message categories (reported as a “Reorganized class”)

n “Special doIts,” rarely encountered, involving a system change such
renaming a global variable, that is effected via an executed expressio
doIt). Such a change is only captured in the Change Set when the ex
sion is executed by passing it as an argument to Smalltalk evaluate-
AndRemember:.

In the spirit of summarization, the Change Set does not separately repo
changes involving methods in a class that has been added. When you file out
the new class, its methods will be included anyway. To file out the entire
change set, select file out as in the left view’s <Operate> menu.
VisualWorks User’s Guide, Rev. 2.1 181

Chapter 15 Managing Projects and Versions

atch

tem,

 view

d to a
s in
 the

ge.
age,

ral
mine
ly
 back.

play
ct
If

nd-
d
To empty the Change Set for the active project, in readiness for a new b
of work, select empty in the left view’s menu. You can also perform this
operation by choosing Changes ?Empty Changes... in the VisualWorks
main window.

To update an open Change Set window after making a change to the sys
select a different type of change in the left view temporarily. Unlike the
Change List, the Change Set is not affected when you save the image.

The Change Set lists methods that have been changed but it has no code
with which to browse them. To open a method browser on the changed
methods in the Change Set, execute the expression Smalltalk
browseChangedMessages.

Some programmers prefer to have the Change Set remove entries relate
class when that class is filed out via a browser, and similarly for all classe
a category when the category is filed out. To turn on this feature, execute
following expression:

Browser removeChangesOnFileOut: true

Reverting to a Prior Version

The system automatically maintains a list of all changes made to an ima
This Change List is stored in a disk file having the same name as the im
with the .cha extension. To open a specialized browser for use with the
Change List, select Changes ?Open Change List in the VisualWorks
main window.

During the course of development, a class or method may undergo seve
changes. The Change List makes it easy to see the evolution and to exa
the details of the code at any stage in its development. This is particular
useful when you need to see a prior version so you can change the code

The Change List contains two views and a set of toggle switches. To dis
the changes that have occurred since the last snapshot was taken, sele
recover last changes in the <Operate> menu of the list view at the top.
you want to display changes that are in the Change Set, select display
system changes instead. To display all changes, ignoring snapshot bou
aries, select read file and supply the name of the changes file as describe
above.
182 VisualWorks User’s Guide, Rev. 2.1

Reverting to a Prior Version

e

ture

after

t the

n-

ior
A Change List browser, showing the use of the same switch to narrow th
displayed list of changes is shown in Figure 15-3.

Figure 15-3 Change List Browser

Entries in the Change List generally identify the affected object and the na
of the change, as in “NotifierController menu (add).” When you select an
entry, the affected class or method appears in the text view as it existed
the change.

Use the switches in the upper right corner of the Change List to filter the
displayed entries. For example, to display only those changes that affec
same class as the one affected by the selected change entry, click on the class
switch. To further restrict the listing to identical entries, such as “NotifierCo
troller menu,” click on the same switch.

With the same filter turned on, as shown in the illustration, it is easy to
examine the evolution of a class or a method. To revert the code to a pr
version, select the entry representing that version and then select replay
selection in the <Operate> menu. You can also use replay all , when you
want to incorporate all of the listed changes.
VisualWorks User’s Guide, Rev. 2.1 183

Chapter 15 Managing Projects and Versions

ew

et, if
t to

rent
ist to
nge

ates

ges—

s.

on

That

s

hat
nge

 the
y the
Sharing Code

When the code you want to transport to another image is confined to a f
classes, methods or categories, use the System Browser’s file out as capa-
bilities to create a set of disk files containing the code. Use the Change S
necessary, to identify the affected classes and methods. When you wan
save all of the changes in the Change Set, use that tool’s file out as
command.

When the code you want to share consists of fragments from many diffe
classes and categories, it may be more convenient to use the Change L
write file with the desired code. Begin by loading all changes into a Cha
List, as described in the previous section.

Next, remove the irrelevant changes. For example, doIts are likely candid
for removal because they rarely affect the image in a lasting way. Also,
remove duplicate entries, as when a method has undergone several chan
leave only the last entry in each case. Use remove selection and remove
all to mark one or more changes for deletion, then use forget to erase them
from the list. Use the filter switches to control the affected range of entrie

For example, to remove all doIts, begin by selecting any doIt. Then turn
the type switch so all of the doIts are listed. Select remove all in the
<Operate> menu to mark them for deletion, then forget to erase them. Then
turn off the type switch to see the remaining entries.

When the displayed list of changes is the desired set, select write file in the
<Operate> menu and supply the name of a file in which to store the code.
file can then be loaded into another image via the file in command in a File
Editor or File List.

Only the displayed changes are included in a write file operation, so if it is
possible to define the minimum set of changes by using the filter switche
alone, it is not necessary to remove and forget the nondisplayed entries.

Note: When you write selections to a file, be sure to choose a filename t
is different from any file that has been read into the change list. The cha
list maintains pointers to the code in the files that are read in, and these
pointers become invalid when you overwrite a file.

Condensing the Changes File

In a large development effort spanning months or years of programming,
changes file can become very large. To condense it so that it contains onl
184 VisualWorks User’s Guide, Rev. 2.1

Condensing the Changes File

om
ges
most recent change for each method, execute the expression SourceFileM-
anager default condenseChanges. Changes involving anything other than
a method—such as a class addition or redefinition—will also be purged fr
the file permanently. It’s a good idea to make a backup copy of the chan
file before condensing it.
VisualWorks User’s Guide, Rev. 2.1 185

Chapter 15 Managing Projects and Versions
186 VisualWorks User’s Guide, Rev. 2.1

 rela-

ith
ral
base.
ific

red a
 in

e

her
 that

y
Chapter 16

Accessing Databases

To support the needs of information-intensive applications that rely on
database managers, the External Database Interface provides access to
tional databases from within a VisualWorks application.

The External Database Interface provides the framework for interacting w
relational databases, in the form of a set of protocols supported by seve
superclasses, but does not provide direct support for any particular data
Database Connect products are available to provide connectivity to spec
databases, such as ORACLE and SYBASE.

The examples in this chapter assume that you have installed and configu
VisualWorks database connection according to the instructions provided
the Database Connect’s documentation. Using a VisualWorks database
connection also requires that the necessary database vendor software b
installed and correctly configured.

Overview

Interacting with a relational database involves the following activities:

n Establishing a connection to the database server

n Preparing and executing SQL queries

n Obtaining the results of the queries

n Disconnecting from the server

The External Database Interface consists of a set of classes that provide
uniform access protocol for performing these activities, as well as the ot
activities necessary for building robust database applications. The classes
make up the External Database Interface are found in the class categor
Database-Interface. Each of these classes is listed below with a more
detailed explanation to follow later in the chapter.
VisualWorks User’s Guide, Rev. 2.1 187

Chapter 16 Accessing Databases

rma-

h
.

In addition to these three core classes, other classes provide useful info
tion.

Data Interchange

Before going further, it is important to understand how relational data is
moved into and out of the Smalltalk environment. Data in the relational
database environment is stored in tables, which consist of columns, eac

Table 16-1 Core External Database Interface Classes

Database Interface Class Description

ExternalDatabaseConnection Provides the protocol for establishing
a connection to a relational database
server, and for controlling the transac-
tion state of the connection.

ExternalDatabaseSession Provides the protocol for executing
SQL queries, and for obtaining their
results.

ExternalDatabaseAnswerStream Provides the stream protocol for read-
ing the data that might result from a
query.

Table 16-2 Other External Database Interface Classes

Database Interface Class Description

ExternalDatabaseColumnDescription Holds the descriptions of the columns
of data retrieved by queries

ExternalDatabaseError Bundles the error information that
may result if something goes awry.

ExternalDatabaseFramework
ExternalDatabaseBuffer
ExternalDatabaseTransaction

Provide behind-the-scenes support
for the activities above, and are not
accessed directly.

ExternalDatabaseInstallation Provides the VisualWorks applica-
tion used to install the database con-
nections, which are available as
separate products. Its use is described
in the release notes that accompany
each connection product.
188 VisualWorks User’s Guide, Rev. 2.1

Establishing a Connection

s
3.

bed

n
 for
al-

direct
ct
having a distinguished datatype (INT , VARCHAR and so on). When a row of
data from a relational table is fetched into Smalltalk, the relational data i
transformed into an instance of a Smalltalk class, according to Table 16-

NULL values for relational type become the Smalltalk value nil on input, and
nil becomes NULL on output.

The row itself becomes either the Smalltalk class Array or an instance of
some user-defined class. The choice is under your control, and is descri
later in the chapter.

If a particular DBMS supports additional datatypes, the mapping betwee
those datatypes and Smalltalk classes is explained in the documentation
the corresponding VisualWorks database connection. For example, Visu
Works Sybase Connect supports a datatype called MONEY. The VisualWorks
Database Connect User’s Guide for SYBASE describes how that datatype is
mapped to a Smalltalk class.

Establishing a Connection

To establish a connection to a database, you create an instance of External-
DatabaseConnection (or one of its subclasses), supply it with your
database user name, password, and environment (connect) string, then
it to connect. In the following example we connect to (and then disconne
from) an ORACLE server.

| connection |
connection := OracleConnection new.
connection

Table 16-3 Relational Type Conversion

Relational Type Smalltalk Class

CHAR, VARCHAR, LONG String

RAW, LONG RAW ByteArray

INT Integer

REAL Double

NUMBER FixedPoint

TIMESTAMP Timestamp
VisualWorks User’s Guide, Rev. 2.1 189

Chapter 16 Accessing Databases

, and
ect,
 may
ect
tain
s the

be

 be
ith a
on-

s
username: 'scott';
password: 'tiger';
environment: '@T:dbserver:dbname'.

connection connect.
connection disconnect.

Securing Passwords

In the connection example above, references to the username, password
environment string are stored in instance variables of the connection obj
and will be stored in the image when it is saved. For security reasons, you
wish to avoid having a password stored in the image. A variant of the conn
message allows you to specify a password without having the session re
a reference to it. The example below assumes that the class that contain
code fragment responds to the message askUserForPassword. The string it
answers is used to make the connection.

connection
username: 'scott';
environment: '@T:dbserver:test'.

connection connect: self askUserForPassword.

Getting the Details Right

Environment strings (also called connect strings by some vendors) can
tricky things to remember. As a convenience, ExternalDatabaseConnec-
tion keeps a class-side registry of environment strings, allowing them to
referenced by logical keys. This enables applications to provide users w
menu of logical environment names, instead of the less mnemonic envir
ment strings.

ExternalDatabaseConnection supplies the following class-side message
for manipulating the registry:

addLogical: key environment: environment
removeLogical: key
mapLogical: key "Return the actual environment for the given key"
environments "Return the Dictionary of environments"
190 VisualWorks User’s Guide, Rev. 2.1

Establishing a Connection

d

lly
ca-
on-
ged.

ey

t,

ing

s to
 will

o
Executing the following example establishes a logical environment name
'test'.

OracleConnection
addLogical: 'test'
environment: '@T:dbserver:test'.

Thereafter, applications that specify 'test' as their environment will actua
get the longer ORACLE connect string. Actually, any string that an appli
tion provides as an environment is first checked against the logical envir
ment registry. If no match is found, the application’s string is used unchan

Setting a Default Environment

ExternalDatabaseConnection also remembers a default key, allowing
applications to connect without specifying an environment. The default k
is set by sending ExternalDatabaseConnection the message defaultEnvi-
ronment:, passing the default environment string as the argument. The
message defaultEnvironment answers with the current default environmen
which may be nil.

The following code sets 'test' to be the default logical environment, allow
applications to connect without specifying an environment.

ExternalDatabaseConnection
defaultEnvironment: 'test'

Default Connections

In addition to hiding the details of the environment, ExternalDatabaseCon-
nection has the notion of a default connection, allowing some application
be coded without direct references to the type of database to which they
be connected. As an abstract class, ExternalDatabaseConnection does not
create an instance of itself. Instead, it forwards the new message to the
subclass whose name it has remembered as the default. For example, t
register OracleConnection as the default class to use, execute:

ExternalDatabaseConnection defaultConnection:
#OracleConnection.
VisualWorks User’s Guide, Rev. 2.1 191

Chapter 16 Accessing Databases

 the

client,
es are
oon
orks
n if

after
ron-
e

 the
ries

erver

the

This feature, along with the environment registry explained above, allows
connection example to be rewritten as:

| connection |
connection := ExternalDatabaseConnection new.
connection

username: 'scott';
password: 'tiger'.

connection connect.
connection disconnect.

The default is set initially by the ExternalDatabaseInstallation application
when the first database connection is installed.

On the Importance of Disconnecting

Establishing a connection to a database reserves resources on both the
VisualWorks, and the host, database server, side. To ensure that resourc
released in a timely fashion, it is important to disconnect connections as s
as they are no longer needed, as shown in the examples above. VisualW
provides a finalization-based mechanism for cleaning up after a connectio
it is “dropped” without first being disconnecting. Since finalization is trig-
gered by garbage collection, the eventual cleanup could take place long
the connection has been dropped. If your application or application envi
ment is resource-sensitive, we recommend proactively disconnecting th
connections.

Using Sessions

Having established a connection to a database server, you can then ask
connection for a query session, which reserves the “right” to execute que
using the connection.

A session is a concrete subclass of ExternalDatabaseSession, and is
obtained from a connected connection by sending the message getSession.
The connection answers with a session. If the connection is to a Sybase s
(i.e., is a SybaseConnection), the session will be a SybaseSession.

You can ask a session to prepare and execute SQL queries by sending
messages prepare:, execute, and answer, in that order. Depending on the
DBMS, prepare: will either send the query to the server or defer the send
192 VisualWorks User’s Guide, Rev. 2.1

Using Sessions

rors

 an
ing

 the
 a

g

ery
ring a
until the query is actually executed. This is important to note, because er
can be detected (and signals raised) at either prepare: or execute time.

To examine the results of the query execution, send an answer message to
the session. This is important to do even when the query does not return
answer set (e.g., an INSERT or UPDATE query). If an error occurred dur
query execution, it is reported to the application at answer time. More on
answer, and how it is used to retrieve data, below.

We can extend our connection example to execute a simple query. Note
use of two single quotes around the name. These are needed to embed
single-quote within a Smalltalk String.

| connection session |
(connection := ExternalDatabaseConnection new)

username: 'jones';
password: 'secret';
connect.

(session := connection getSession)
prepare: 'INSERT INTO phonelist VALUES(''Smith'', ''x1234'')';
execute;
answer.

connection disconnect.

As a shortcut, the example above can be simplified somewhat by sendin
prepare: to the connection, which will answer with a prepared session.

| session |
session := connection

prepare: 'INSERT INTO phonelist VALUES(''Smith'', ''x1234'')'
;
session

execute;
answer;

disconnect.

We'll explore getting data back from a query later.

Variables in Queries

Repetitive inserts would be very inefficient if each insert required that a qu
be prepared and executed. This overhead can by side-stepped by prepa
VisualWorks User’s Guide, Rev. 2.1 193

Chapter 16 Accessing Databases

n
ers.

a
n a
 and
d of
tial

must
ari-
put
is a
s or

alue
tisfy

 the

 by
ri-

bove
single query, with query variables as placeholders. This prepared query ca
then be repeatedly executed with new values supplied for the placehold

Query variables (also called parameters) are placeholders for values in
query. Some databases (e.g., ORACLE) produce an execution plan whe
query is prepared. Preparing the plan can be expensive. Using variables
binding values to them before each execution can eliminate the overhea
preparing the query for subsequent executions, which can be a substan
performance improvement for some repetitive applications.

To execute a query containing one or more query variables, the session
first be given an input template object, which will be used to satisfy the v
ables in the query. The method by which values are obtained from the in
template depends on the form of the query variable. If the input variable
question mark, then the input template must either have indexed variable
instance variables. The first template variable will be used to satisfy the v
for the first query variable, the second template variable will be used to sa
the second query variable, and so on. Consider the example:

session prepare: 'INSERT INTO phonelist (name, phone) VALUES(?,
?)'.
#(('Curly' 'x47') ('Moe' 'x29') ('Larry' 'x83')) do:

[:phoneEntry |
session

bindInput: phoneEntry;
execute;

answer].

Here the input template is an Array with two elements. The first element, the
name, will be bound to the first query variable, and the second element,
phone number, will be bound to the second.

A closely related form for query variables is a colon followed immediately
a number. Again, the input template must contain indexed or instance va
ables, and the number refers to the position of the variable. The query a
could be rewritten to use this form of query variable as follows:

session prepare: 'INSET INTO phonelist (name, phone) VALUES(:1,
:2)'.
194 VisualWorks User’s Guide, Rev. 2.1

Using Sessions

me.

t
en
ple

. If
 the

,
ex-

e
Named Input Binding

The third form that a query variable can take is a colon followed by a na
Using this form of binding, the query above would be written as:

session prepare: 'INSERT INTO phonelist (name) VALUES(:name)'.

The name in a query variable represents a message to send to the inpu
template. The input template is expected to answer a value, which will th
be bound for the variable. We could use this form of binding in the exam
above if PhoneListEntry included the accessing methods

name
"Answer the receiver’s name"
^name

phone
"Answer the receiver’s phone number"
^phone

This form of binding is very powerful, but should be used with great care
the input template does not respond to the message selector formed from
bind variable name, a “Message Not Understood” notifier will result. Also
there are many messages that all objects respond to that would have un
pected effects if used as bind variables, such as halt.

Binding NULL

To bind a NULL value to a variable, use the “value” nil. This works in
general, but causes problems in a particular scenario with ORACLE. Th
query

SELECT name, phone FROM phonelist WHERE name = ?

will not work as expected if the variable's value is nil. ORACLE requires that
such queries be written as:

SELECT name, phone FROM phonelist WHERE name IS NULL
VisualWorks User’s Guide, Rev. 2.1 195

Chapter 16 Accessing Databases

rmine
so
. Veri-

 are

d
wait.
n will
n
m.

red

he

, we

er
 that
Getting Answers

Once a database server has executed a query, it can be queried to dete
whether the query executed successfully. If all went well, the server is al
ready with an answer set, which is accessed by way of an answer stream
fying that the query executed successfully and obtaining an answer stream
both accomplished by sending a session the message answer.

In responding to answer, the session first verifies that the query has finishe
executing. If the database server has not yet responded, the session will
If the server has completed execution and has reported errors, the sessio
raise an exception. See the “Error Handling” section below for informatio
on the exceptions that might be raised, and details on how to handle the

If no error occurred, answer will respond in one of three ways. If the query
is not one that results in an answer set (that is, an INSERT or UPDATE
query), answer will respond with the symbol #noAnswerStream. If the
query resulted in an answer set (that is, a SELECT query), answer will return
an instance of ExternalDatabaseAnswerStream, which is used to access
the data in the answer set, and is explained below.

The third possible response to answer is the symbol #noMoreAnswers.
When a database supports multiple SQL statements in one query, or sto
procedures that can execute multiple queries, you can send answer repeat-
edly to get the results of each query. It will respond with either #noAnswer-
Stream or an answer stream for each, and will eventually respond with t
symbol #noMoreAnswers to signify that the set of answers has been
exhausted.

Handling Multiple Answer Sets

If your application is intended to be portable and support ad hoc queries
recommend that you send answer repeatedly until you receive #noMoreAn-
swers. For example, Sybase stored procedures can return multiple answ
sets. The following code fragment shows how to retrieve the answer sets
might result from executing a Sybase stored procedure.

session
prepare: 'exec get_all_phonenumbers';
bindOutput: PhoneEntry new;
execute.

connection class externalDatabaseErrorSignal
handle:[:ex | Dialog warn: ex parameter first dbmsErrorString]
196 VisualWorks User’s Guide, Rev. 2.1

Getting Answers

n the

ck-
wer set.
, an
lica-

ng

ts.

execu-

ecu-

le,
do:[| answer |
[numbers := OrderedCollection new,

(answer := session answer) == #noMoreAnswers]
whileFalse: [answer == #noAnswerStream

ifFalse: [numbers := numbers , (answer upToEnd)]]
].

More information on managing Sybase stored procedures can be found i
VisualWorks Database Connect User’s Guide for SYBASE.

What Happens when you Send an Answer Message

When you send answer to a session, a number of things happen in the ba
ground as the session prepares the resources needed to process an ans
Most of these steps are out of the direct view of the application. However
understanding of them may help when you are debugging database app
tions.

To answer a query, the session performs the following steps:

1. Waits for the server to complete execution.

2. Verifies that the query executed without error.

3. Determines whether an answer set is available.

If the query returns an answer set, then the session performs the followi
additional steps:

4. Obtains a description of the answer set.

5. Allocates buffers to hold rows from the answer set.

6. Prepares adaptors to help translate relational data to Smalltalk objec

Waiting for the Server

Some database servers, such as Sybase, support asynchronous query
tion, giving control back to the application after the server has begun
executing the query. To determine whether the server has completed ex
tion, a session sends itself the message isReady, which returns a Boolean
indicating that the server is ready with an answer, until isReady returns true.
If the target DBMS does not support asynchronous execution (for examp
ORACLE), isReady will always return true.
VisualWorks User’s Guide, Rev. 2.1 197

Chapter 16 Accessing Databases

t the

 as a

 of
 to

cu-

 the

ver a

mall-
ion
Did the Query Succeed?

The session next verifies that the query executed without error. Errors tha
server reports are bundled into instances of ExternalDatabaseError (or a
Connection-specific subclass). A collection of these errors is then passed
parameter to an exception. See “Error Handling” on page 208 for more
details.

How Many Rows were Affected?

Some queries, such as UPDATE or DELETE, do not return answer sets. To
determine how many rows the query affected, send the message rowCount to
the session, which will respond with an integer representing the number
rows affected by the query. Because database engines consider a query
have executed successfully even if no rows where matched by a WHERE
clause, testing the row count is an easy way to determine whether an
UPDATE or DELETE query had the desired effect.

Database-specific restrictions on the availability of this information are do
mented in the release notes for your database-connect product.

Describing the Answer Set

If the query has executed without error, the session determines whether
query will return an answer set.

If the session returns an answer set, the session will obtain from the ser
description of the columns in the set. Sending the message columnDescrip-
tions to the session (after sending answer) will return an Array of instances
of ExternalDatabaseColumnDescription (or a connection-specific
subclass), which describes the columns in the answer set.

A column description includes: the name, length, type (expressed as a S
talk class), precision, scale, and nullability of a column. A column descript
will respond to the following accessing protocol messages:

name "Answer the name of the column"
type "Answer the Smalltalk type that will hold data from
the column"
length "Answer the length of the column"
scale "Answer the scale of the column, if known"
precision "Answer the precision of the column, if known"
nullable "Answer the nullability of the column, if known"
198 VisualWorks User’s Guide, Rev. 2.1

Getting Answers

le.

the

old
cts
to
e of

e

 query

 to
ook-
they
Connection-specific subclasses may make additional information availab

Note that the names returned for calculated columns may be different
depending on the target DBMS. For example, the query

SELECT COUNT(*) FROM phonelist

determines the number of rows in the phone list table. ORACLE names
resulting column "COUNT(*)", while Sybase does not provide a name.

Buffers and Adaptors

Finally, the session uses the column descriptions to allocate buffers to h
rows of data from the server, and adaptors to help create Smalltalk obje
from the columns of relational data that will be fetched from the server in
the buffers. This step is invisible to user applications, but can be the sourc
several errors. For example, if insufficient memory is available to allocat
buffers, an unableToBind exception will be raised. An invalidDescriptor-
Count exception will be raised if the output template (explained below)
doesn’t match the column descriptions.

Processing an Answer Stream

After the session has completed the steps above, and assuming that the
results in an answer set, the session creates an ExternalDatabaseAnswer-
Stream and returns it to the application. ExternalDatabaseAnswerStream
is a subclass of Stream, and is used to access the answer set. It responds
much of the standard streaming protocol described in the VisualWorks C
book. There are a few restrictions. Answer streams are not positionable,
cannot be flushed, and they cannot be written.

Answer streams are created by the session; your application should not
attempt to create one for itself.

Answer streams respond to the messages atEnd, for testing whether all rows
of data from an answer set have been fetched, and next for fetching the next
row. Attempting to read past the end of the answer stream results in an
endOfStreamSignal.

In our example, all rows of the phone list could be fetched as follows:

numbers := OrderedCollection new.
answer := session answer.
VisualWorks User’s Guide, Rev. 2.1 199

Chapter 16 Accessing Databases

 of

ory

nswer

s
s of

ed
in
[answer atEnd] whileFalse:
[| row |

row := answer next.
numbers add: row].

Sending upToEnd causes the answer stream to fetch the remaining rows
the answer set and return them in an OrderedCollection. Using upToEnd,
the example above can be simplified as:

answer := session answer.
numbers := answer upToEnd.

While this works well for small answer sets, it can exhaust available mem
for large answer sets.

Unless the session has been told otherwise, data retrieved through the a
set comes packaged as instances of the class Array.

Using an Output Template

Having rows of a table (or columns from a more complex query) arrive
packaged as instances of the class Array might suffice for some applications.
For more complex applications, it is preferable to have the data appear a
instances of some user-defined class. In our example, we would want row
data fetched from the phonelist table to appear as instances of class PhoneL-
istEntry.

To achieve this, ExternalDatabaseSession supports an output template
mechanism. If an output template is supplied to the session, it will be us
instead of the class Array when creating objects to represent rows of data
the answer set. In our example, this would look like:

session
prepare: 'SELECT name, phone FROM phonelist';
bindOutput: PhoneListEntry new;
execute.

answer := session answer.

Rows of data from the table will now appear (by sending answer next) as
instance of PhoneListEntry.
200 VisualWorks User’s Guide, Rev. 2.1

Getting Answers

 can
ent,

 the

,

ly
Columns of data from a row of the answer set are loaded into the output
template's variables by position. Column 1 loads into the first variable,
column 2 loads into the second variable, and so on. The output template
have either instance variables or indexed variables. When both are pres
the indexed variables are used.

Skipping Slots in an Output Template

To skip a variable in the bind template, place an instance of the class Object
in it. There must be exactly as many non-Object variables in the output
template as there are columns in the answer set. For example, consider
scenario of having the additional instance variable unused in an instance of
PhoneListEntry. If this instance variable is not fetched from the database
you could add the method

newForSelect
"Create a new instance of the receiver,
and initialize it to be fetched from the database."

^super new initializeForSelect

to the instance creation protocol on the class side of PhoneListEntry, and

initializeForSelect
"Initialize an instance of the receiver to be fetched from the

database."

unused := Object new.

to the initialize-release protocol on the instance side. This allows us to safe
rework the example above by writing

bindOutput: PhoneListEntry newForSelect;

to specify the output template.

Using Column Names to Bind for Output

As with input binding, a name-based alternative is provided for output
binding. Sending a session the message bindOutputNamed:, with the output
template as an argument, causes the session to create a set of mutator
VisualWorks User’s Guide, Rev. 2.1 201

Chapter 16 Accessing Databases

 data-
olumn
ass

ut
 Not
 not

ta
the

ily

hat
ch.

fic).

ight
messages to send to the output template to store values fetched from the
base. These mutator messages are formed by appending colons to the c
names. Our phone list example could use named output binding if the cl
PhoneListEntry provided the following instance-side accessing methods:

name: aName
"Set the phone entry’s name"

name := aName

phone: aPhoneNumber
"Set the phone entry’s phone number"

phone := aPhone

The same caveats apply to named output binding as apply to named inp
binding. If the output template does not answer the message, a “Message
Understood” notifier will result. Be sure that the needed method names do
override methods that are necessary for the functioning of the object.

Reusing the Output Template

By default, a new copy of the output template is used for each row of da
fetched. If your application processes the answer set one row at a time,
overhead of creating a copy can be eliminated by arranging to reuse the
original output template. Sending allocateForEachRow: false to the
session tells it to reuse the template. Output template reuse is temporar
disabled when sending upToEnd to the answer stream.

Setting a Block Factor to Improve Performance

Some database managers allow client control over the number of rows t
will be physically transferred from the server to the client in one logical fet
Setting this blocking factor appropriately can greatly improve the perfor-
mance of many applications by trading buffer space for time (network traf

If our phone list database resided on an ORACLE server, our example m
be greatly improved by sending the message blockFactor: to the session, as
follows:
202 VisualWorks User’s Guide, Rev. 2.1

Getting Answers

t

be
e

tors

d of
ood

The
ery,
refer-

n the

. The

tion
cting

e
session
prepare: 'SELECT name, phone FROM phonelist';
bindOutput: PhoneListEntry new;
blockFactor: 100;
execute.

Since the phone list entries are small, asking for 100 rows at a time is no
unreasonable.

Note that the block factor does not affect the number of objects that will
returned when you send the message next to the answer stream. Objects ar
read from the stream one at a time.

If a database connection does not support user control over blocking fac
(as with Sybase), the value passed to blockFactor: is ignored, and the value
remains set at 1. Additional restrictions on the use of blockFactor:, if any, are
listed in the release notes for your Database Connect product.

Cancelling an Answer Set

If your application finishes with an answer stream before reaching the en
the stream (perhaps you only care about the first few rows of data), it is g
practice to send the message cancel to the session. This tells the database
server to release any resources that it has allocated for the answer set.
answer set will be automatically canceled the next time you prepare a qu
or when the session is disconnected, but a proactive approach is often p
able.

Disconnecting the Session

Establishing a session reserves resources on the client side, and often o
server side. When you're done with a session, sending the message discon-
nect to the session disconnects it and releases any resources that it held
connection is not affected. A disconnected session will be automatically
reconnected the next time a query is prepared. If you expect your applica
to experience long delays between queries, you might consider disconne
sessions where possible.

Sessions will automatically disconnect when their connection is discon-
nected. Sessions are also protected by a finalization executor, and will b
disconnected, eventually, after all references to them are dropped.
VisualWorks User’s Guide, Rev. 2.1 203

Chapter 16 Accessing Databases

he

sage

ecuted
lates.

Catalog Queries

To simplify access to a database’s catalog, ExternalDatabaseSession
provides a few methods that hide the details of the particular database
vendor’s catalog structure.

To obtain a list of available tables, send a session the message listTables. To
get a subset of the available tables, send listTablesLike:, with a String
argument containing an SQL wildcard, as in:

"Get a list of available tables."
tables := session listTables.

"Get a list of all tables that begin with 'PHONE'
tables := session listTablesLike: 'PHONE%'.

"Get a list of all tables owned by PUB2"
tables := listTablesList: 'PUB2.%'.

Each element in the resulting collection is an instance of the class String.

Note: The availability of a table does not mean that the application has t
necessary permissions to access the table.

To obtain a description of the columns in a table, send a session the mes
describeColumns:, with the table name as an argument.

columns := session describeColumns: 'phonelist';

Each element in the resulting collection is an instance of ExternalData-
baseColumnDescription.

The catalog query messages may cause a query to be prepared and ex
using the session, and might also affect a session's input and output temp
If you reuse the session, you will have to establish new input and output
templates, if desired.
204 VisualWorks User’s Guide, Rev. 2.1

Controlling Transactions

ithin
ithin a
-
l a

sses
T
s-

 one
at is,

g

ns.

ures
ot

d

se,
so,
tions
y
ns
Controlling Transactions

By default, every SQL statement that you prepare and execute is done w
a separate database transaction. To execute several SQL statements w
single transaction, send begin to the connection before executing the state
ments, followed by commit after the statements have executed. To cance
transaction, send rollback to the connection.

The connection keeps track of the transaction state. If an application bypa
the connecting by preparing and executing SQL statements like COMMI
WORK or END TRANSACTION, the connection will lose track of the tran
action state. This might lead to later problems.

Coordinated Transactions

Several connections can participate in a single transaction by appointing
connection as the coordinator. Before the connections are connected (th
sent connect or connect:), send the coordinating connection the message
transactionCoordinatorFor: once for each participating connection, passin
the connection as the argument.

After the coordination has been established, sending begin to the coordinator
begins the coordinated transaction. Sending commit or rollback to the coor-
dinator causes the message to be broadcast to all dependent connectio

If the database system supports two-phase commit, the coordination ass
the atomic behavior of the distributed transaction. If the database does n
support two-phase commit, a serial broadcast is used.

Participants in a coordinated transaction must be supported by a single-
database connection. It is not possible, for example, to mix ORACLE an
Sybase connections in a coordinated transaction.

Releasing Resources

If your application has relatively long delays between uses of the databa
you may want to release external resources during those delays. To do
send a pause message to any active connections. This causes the connec
to disconnect their sessions, if any, and then disconnect themselves. An
pending transaction is rolled back. Both the connections and their sessio
remain intact, and can be reconnected.

To revive a paused connection, send it resume. The connection will then
attempt to re-establish its connection to the database.
VisualWorks User’s Guide, Rev. 2.1 205

Chapter 16 Accessing Databases

der

hen

faces.

d the
tring
ines,
can

he
Note: If the password was not stored in the connection, as discussed un
“Securing Passwords” on page 190, the proceedable exception required-
PasswordSignal will be raised.

Sessions belonging to resumed connections will reconnect themselves w
they are prepared again.

Sending pause or resume to ExternalDatabaseConnection has the same
effect as sending pause or resume to all active connections.

Tracing the Flow of Execution

A tracing facility is built into the VisualWorks database framework, and is
used by database connections to log calls to the database vendors’ inter
Enabling this facility can be quite useful if your application’s use of the
database malfunctions.

A trace entry consists of a time stamp, the name of method that requeste
trace, and an optional information string. Database connections use this s
to record the parameters passed to the database vendor’s interface rout
and the status or error codes that the interfaces return. This information
be invaluable when tracking down database problems.

Directing Trace Output

To direct tracing information to the System Transcript window, execute t
following expression in a workspace (or as part of your application):

ExternalDatabaseConnection traceCollector: Transcript

To direct tracing into a file, execute the following:

ExternalDatabaseConnection traceCollector: 'trace.log' asFilename
writeStream
206 VisualWorks User’s Guide, Rev. 2.1

Tracing the Flow of Execution

ce

te-

race

hat
Setting the Trace Level

The framework supports the following of levels of tracing. The default tra
level is zero.

The trace level is set by executing:

ExternalDatabaseConnection traceLevel: anInteger

Disabling Tracing

Setting the trace level to 0 disables tracing.

Adding Your Own Trace Information

To intermix application trace information into the trace stream, place sta
ments like

ExternalDatabaseConnection trace: aStringOrNil

in your application. An argument of nil is equivalent to an empty string; only
a time stamp and the name of the sending method will be placed in the t
stream.

You can avoid hard-coding the literal name ExternalDatabaseConnection
by asking a connection for its class, and sending the trace message to t
object, as in:

connection class trace: ('Made it this far ' , count printString , ' times').

Table 16-4 Trace Levels

Trace Level Description

0 Disables tracing.

1 Limits the trace to information about connection and query
execution.

2 Adds additional information about parameter binding and
buffer setup.

3 Traces every call to the database.
VisualWorks User’s Guide, Rev. 2.1 207

Chapter 16 Accessing Databases

ls

ht

ppli-
 For
g it.
get

appli-
 fails.

ny
ppli-
.

es

s the
nfor-
-
r, the

string
 error
See the tracing protocol on the class side of ExternalDatabaseConnection
for additional information.

Error Handling

Error handling in the VisualWorks database framework is based on signa
and exception handlers.

For practical purposes, the set of errors that a database application mig
encounter can be divided into two groups.

The first group is state errors, and these errors normally occur when an a
cation omits a required step or tries to perform an operation out of order.
example, an application might attempt to answer a query before executin
If the application is coded correctly, these kind of errors generally do not
generated.

The second group is execution errors, and they get generated when an
cation performs a step in the correct order, but for some reason the step

When either type of error is encountered, an exception is signaled and a
available error information is passed as a parameter of the signal. The a
cation is responsible for providing exception handlers and recovery logic

Signals and Error Information

The database framework provides a family of signals, most of which are
based on the common parent externalDatabaseErrorSignal, which is
defined in the signal constants protocol on the class side of ExternalData-
baseFramework. “The Database Signal Hierarchy” on page 209 describ
signals in more detail.

If a signal is the result of a database error, the connection code that send
signal to an exception handler first collects the available database error i
mation into instances of ExternalDatabaseError, and then passes the infor
mation as a parameter of the signal. If the signal results from a state erro
signal is sent without additional information.

An instance of ExternalDatabaseError, or a connection-specific subclass,
stores a database-specific error code, and, when available, includes the
that describes the error. The error code is retrieved by sending a database
the message dbmsErrorCode, and to get the string the message dbmsError-
String is sent. See the ExternalDatabaseError accessing protocol for addi-
tional information.
208 VisualWorks User’s Guide, Rev. 2.1

Error Handling

e

te-

 uses

y. If
 error
ed by

 the

als

ively.
Exception Handling

The example below shows one way to provide an exception handler. Th
handler is for the general-purpose database exception externalDatabaseEr-
rorSignal. If this exception, or one of its children, is signaled from the sta
ments in the do: block, the handle: block is evaluated. In this example, the
handle: block extracts the error string from the first database error in the
collection that was passed as a parameter to the exception handler, and
this string in a warning dialog.

connection class externalDatabaseErrorSignal
handle: [:ex | "If the query fails, display the error string in an OK

dialog"
Dialog warn: ex parameter first dbmsErrorString]

do: [
session

prepare: 'SELECT name, phone FROM fonelist';
execute.
 answer := session answer].

In this example, the error is caused by the invalid table name in the quer
the connection in this example is to an ORACLE database, the database
in the collection passed to the handler (that is, the database error access
ex parameter first), will be an instance of OracleError, and will hold as its
dbmsErrorCode the number 942, and as its dbmsErrorString the string
ORA_00942: table or view does not exist.

The Database Signal Hierarchy

The hierarchy of signals that the database interface provides is found in
signal constants protocol on the class side of ExternalDatabaseFramework
and its subclasses.

The two parent signals in the hierarchy are externalDatabaseErrorSignal
and externalDatabaseInformationSignal. The error signals generally
represent failures, which prevent continuation, while the information sign
represent errors that a handler can recover from by sending proceed or
proceedWith: to the exception.

A few of the signals are of special interest.

The signals invalidConnectionState and invalidSessionState are raised
when a state violation is encountered in a connection or session, respect
VisualWorks User’s Guide, Rev. 2.1 209

Chapter 16 Accessing Databases

ut of

is
ine
 OS/2

y

rrect
s

 an
ult
ry

he
irst
he
ut the
ion

al as

ase-
t
These signals indicate that the application has performed an operation o
order.

The signal externalDatabaseLibraryInaccessibleSignal, which results in
a “Database API libraries inaccessible” notifier, is a signal that is often
encountered in the early stage of database application development. Th
signal is raised if a connection determines that the Smalltalk Object Eng
cannot access the required database vendor’s libraries. On Windows and
platforms, this is typically caused by not having the required DLLs in the
search path. On UNIX and Macintosh platforms, this is usually caused b
running an Object Engine that was not linked with the required vendor
libraries. If you experience this signal, double check the VisualWorks
database connection documentation to verify that you are running the co
Object Engine, and that any software required by the database vendor i
present and configured.

Choosing an Exception to Handle

With the wealth of exceptions that might be signaled, which ones should
application provide handlers for? The answer, as with many of life’s diffic
questions, is “it depends.” For many applications, it only matters if a que
“works.” In this case, providing a handler for externalDatabaseError-
Signal is usually sufficient. Other applications might be more sensitive to
specific types of errors, and will want to provide more specific handlers.

Unfortunately, the use of exception-specific handlers is complicated by t
fact that the errors that the low-level database interface reports may at f
appear to be unrelated to the operation being performed. For example, t
connection to a remote database server can be interrupted at any time, b
exception signaled will depend on the database activity that the applicat
was performing at the time the problem was detected.

The recommended strategy is to provide a handler for as general a sign
you feel comfortable with (for example, externalDatabaseErrorSignal),
and invest effort, if necessary, in examining and responding to the datab
specific errors that will be passed to the handler. We recommend agains
providing a completely general handler (for example, for Object error-
Signal), especially during development, as this will make nondatabase
problems more difficult to isolate.
210 VisualWorks User’s Guide, Rev. 2.1

Image Save and Restart Considerations

nnec-

rans-
dent

lized,

eps

base

sions
ily
Image Save and Restart Considerations

When an image containing active database connections is exited, the co
tions are first paused, and any partially completed transactions are termi-
nated via rollback.

To arrange for your application to perform some set of steps before the t
action is terminated, your application model must first register as a depen
of the class ExternalDatabaseConnection. For example:

ExternalDatabaseConnection addDependent: self.

The application model then creates an update: (or update:with:) method,
and tests for the update: argument #aboutToQuit. For example:

update: anAspectSymbol with: aValue
anAspectSymbol == #aboutToQuit

ifTrue:["perform desired action."].

Reconnecting When an Image is Restarted

When an image is restarted, all references to external resources are initia
as if a pause message had been sent to the class ExternalDatabaseCon-
nection. To arrange for your application to take further action, take the st
described above, testing for the update: argument #returnFromSnapshot.

Your application can reconnect its connections by sending them connect (or
connect: with a password). This re-establishes the connection to the data
server (subject to the constraints discussed in “Releasing Resources” on
page 205). Any sessions will need to be re-prepared by sending the ses
prepare: with the query to prepare, though your application might as eas
drop the old sessions and get new ones.
VisualWorks User’s Guide, Rev. 2.1 211

Chapter 16 Accessing Databases
212 VisualWorks User’s Guide, Rev. 2.1

Image Save and Restart Considerations
VisualWorks User’s Guide, Rev. 2.1 213

Chapter 16 Accessing Databases
214 VisualWorks User’s Guide, Rev. 2.1

sts
es
gh

oject
 by

 have
are
 and

e

as
ach
t will
Chapter 17

Troubleshooting

This chapter lists exceptional conditions you may encounter, and sugge
remedies. Because Smalltalk lets you modify fundamental system class
such as Object, it is fairly easy to cause errors in system operation—thou
not if you exercise caution when changing a system class. For example,
removing the Object class would not be a good idea.

Recovering from a System Failure

The best defense against the unforeseen is to use the VisualWorks main
window’s File?Save As command to make a snapshot of your image
frequently. The Change List provides a second line of defense.

After a power outage or other system failure, open the image and the pr
in which you were working at the time of the crash. Open a Change List
selecting Changes ?Open Change List in the VisualWorks main window.

Display the changes made since the last snapshot by selecting recover last
changes in the list view’s <Operate> menu. Edit the displayed list, if you
want to cull unnecessary entries such as doIts and any changes that may
contributed to the system failure. For example, to delete all doIts, which
usually unnecessary for recovery purposes, select any doIt in the list view
select the type switch. Choose remove all in the <Operate> menu to mark
all the doIts for deletion, then select forget to erase them. Then deselect th
type switch to display the remaining changes.

When the displayed list contains the desired changes, select replay all in the
<Operate> menu.

If you made changes in more than one project since the last snapshot w
saved, you may want to perform this recovery operation separately for e
project’s changes. That way, the Change Set associated with each projec
be updated correctly. For more information about the Change List, see
“Reverting to a Prior Version” on page 182.
VisualWorks User’s Guide, Rev. 2.1 215

Chapter 17 Troubleshooting

the
en

dard
tion.
Start-up Errors

If the command line that is used to start VisualWorks is incorrect, one of
errors listed in Table 17-1 will result. Fix the problem as described and th
try the start-up again. The errors are listed in alphabetical order.

.

Source Code Unavailable in Browser

If the sources file (named st80.sources by default) is moved to a nonstan
directory, you must make a new snapshot that recognizes its actual loca

Table 17-1 Start-up Errors

Error Message Description

Can’t open file ‘filename.’ The image file named on the command
line doesn’t exist.

Can’t load image. Your image file may not be as long as
its header claims it is (that is, either the
header was damaged or the image file
was truncated).

Your image file is not compatible with
the virtual machine.

You are probably trying to run an
obsolete image or a file that is not an
image.

Insufficient memory to allocate heap. Your machine lacks the necessary
swap space or physical memory to
load the image. If other processes are
tying up memory, try removing some
of them.

No image filename supplied. The command line must include the
name of an image file.

Option ‘x’ (option-name) value should
be between low and high.

An illegal value was supplied for a
command-line option.

OS initialization error, sorry. Some kind of operating system
resource is unavailable.

Unable to read the image file. No read permission for the image file.

usage: virtualMachineFilename
options] imageFilename

Any command-line syntax error.
216 VisualWorks User’s Guide, Rev. 2.1

Low Space

ry
select

ter

 the
isu-

m
sion

ur
 the

ng
To do so, open a Settings Tool to the Sources page and insert the pathname
for the sources file in the appropriate field, and Accept the new setting. Then
make a new snapshot by choosing File?Save As... in the VisualWorks main
window.

Low Space

When a low-space notifier warns that the system is running out of memo
space, close any unneeded windows to free up memory resources. Then
File ?Collect Garbage in the VisualWorks main window. For more infor-
mation about the system’s memory management facilities, see the chap
“Memory Management.”

No VisualWorks Main Window

If you close the VisualWorks main window, you no longer have access to
usual means of opening new tools, saving your image and quitting from V
alWorks.

You can close the VisualWorks main window from a Workspace, a Syste
Browser or a System Transcript. To do this, execute the following expres
to start a new VisualWorks main window:

LauncherView openLauncher

You can then continue working.

Can’t Exit from VisualWorks

If you find that you are unable to exit out of VisualWorks (the File ?Exit
VisualWorks command does not work), use the facilities provided by yo
operating system and window manager. These facilities are explained in
following sections.

UNIX

If you started VisualWorks from a shell, type <Control>-c in that shell.

If you started by selecting a menu item or clicking an icon in your windowi
system, you will have to kill the process as follows:
VisualWorks User’s Guide, Rev. 2.1 217

Chapter 17 Troubleshooting

e

ion

ping
es

 Eval-

ou

pre-
1. In a shell, enter the following to list the active processes:

% ps ax

2. Substitute the PID (process identification number) associated with th
VisualWorks process in the following command:

% kill -term PID

3. If that doesn’t work, use the stronger but less graceful version of the
command:

% kill -kill PID

Macintosh

Select Quit in the Macintosh menu bar at the top of the screen.

Windows

While holding down the <Shift> and <Control> keys, select the Close opt
on the system menu of the VisualWorks main window.

Emergency Exit (all platforms)

If Smalltalk stops responding to inputs such as mouse movements, try ty
the program interrupt, <Control>-c. If that doesn’t work, the system provid
an Emergency Evaluator, which can be used to execute Smalltalk quit even
when much of the system is in an unusable state. To open an Emergency
uator, type <Shift>-<Control>-c. That is, hold down both the <Shift> and
<Control> keys while you press the c key.

An Emergency Evaluator window will appear, with instructions to type a
Smalltalk expression terminated by <Escape>. Enter Smalltalk quit in the
window, then press <Escape>. The system will shut down, after which y
can restart it.

When You Need Assistance

ParcPlace-Digitalk provides technical support to customers who have
purchased the ObjectSupport package. VisualWorks distributors often
provide similar services. When you need to contact a technical support re
sentative, please be prepared to provide the following information:
218 VisualWorks User’s Guide, Rev. 2.1

When You Need Assistance

er

n The version id, which indicates which version of the product you are
using. Choose Help?About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog und
Version Id: .

n Any modifications (patch files) distributed by ParcPlace-Digitalk the you
have imported into the standard image. Choose Help?About Visual-
Works in the VisualWorks main window. All installed patches can be
found in the resulting dialog under Patches: .

n The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error
notifier window (or in the stack view of the spawned Debugger). Then
paste the text into a file that you can send to technical support.
VisualWorks User’s Guide, Rev. 2.1 219

Chapter 17 Troubleshooting
220 VisualWorks User’s Guide, Rev. 2.1

Part III

Application Components
VisualWorks User’s Guide, Rev. 2.1 221

ions
nd

pli-
can

ou

 of
ibes
vice
n

tion
 the

ech-

ion.
Chapter 18

Application Framework

A set of objects that collaborate to solve a problem can be called an applica-
tion, as in “an application of computer technology to the problem.” Most
applications, regardless of what problems they solve, have certain funct
in common. For example, most applications accept input from the user a
respond by performing an action, such as modifying data.

It would be wasteful to duplicate the shared mechanisms in each new ap
cation. VisualWorks provides a set of classes from which your application
inherit these foundation mechanisms. This set of classes is called an applica-
tion framework, because it is much like a framework for a home to which y
fasten your unique choice of siding, wall board, roofing, flooring, doors,
windows, lighting and paints.

As with any object-oriented construct, the application framework consists
objects that provide services to collaborating objects. This chapter descr
the application framework, discussing each kind of object, each major ser
it provides, the clients for that service, and the ways your applications ca
make use of the resulting mechanism.

This chapter concentrates on the operational mechanisms of the applica
framework. For practical instructions in applying these mechanisms, see
VisualWorks Cookbook.

First, a brief overview of the framework classes, as background for the m
anism descriptions.

Overview

Domain Model Is Separate From User Interface

An application typically begins with one or more domain models, which
define the structure and processing of data in the domain of the applicat
VisualWorks User’s Guide, Rev. 2.1 223

Chapter 18 Application Framework

 for
ines

rily

ow

o
 the

nt

 the

ree.
ain
For example, in a sketching application, the domain model is responsible
storing the lines that make up the sketch, and for adding and removing l
upon request.

Instances of a domain model are the objects that the application is prima
concerned with creating, modifying, storing and destroying. The user inter-
face (UI) is the part of the application that enables a user to control this
activity by using mouse and keyboard actions. The UI consists of a wind
containing widgets—user controls such as buttons, input fields and lists.

The first and most fundamental aim of the application framework is this:
Keep the domain model separate from the user interface.

This separation of domain model from UI makes the application easier t
maintain, and also promotes reusability of the application components. If
domain model provides generic services rather than services that rely on
special knowledge about a particular UI, it is easier to substitute a differe
interface later as UI technology and user needs evolve.

This separation also makes it easier to provide multiple UIs that employ
same domain model. For example, a novice user and an expert user can
employ entirely different UIs to interact with the same domain model.

Similarly, keeping the UI components free of special knowledge about a
particular domain model makes it possible to reuse those components in
different applications.

Figure 18-1 Separation of UI from domain model

ApplicationModel Acts as Mediator

Obviously, a user interface has to mirror the domain model to a large deg
So how can windows and widgets that know nothing of a particular dom

User interface

Domain model
224 VisualWorks User’s Guide, Rev. 2.1

Overview

cess-

ests

hen
ta-

 has
ing

ela-

l-

raph-
model, and a domain model that knows nothing of them, collaborate suc
fully to form a unified application?

The answer is a mediating object, which translates the UIs generic requ
for data and operations into specific messages to the domain model.

For example, an input field asks this mediating object for its data value w
it is first displayed, and the mediator is responsible for knowing which da
accessing message to send to the domain model.

Similarly, a menu in the user interface notifies the mediator when the user
selected, say, the third menu item. The mediator is responsible for know
which operation to request from the domain model, or from some other
component of the application.

This mediating object is called an application model, because it defines rela-
tions between parts of an application much as a domain model defines r
tions between items of information.

Besides creating domain models, the primary activity in creating a Visua
Works application is defining a custom subclass of ApplicationModel to act
as mediator. This subclass is typically generated during the Install stage of
user-interface creation. The UI components are typically reused without
modification, though their properties, such as size and color, can be set g
ically.

.

Figure 18-2 Application model as mediator between UI and domain model

User interface

Domain model

Application model
VisualWorks User’s Guide, Rev. 2.1 225

Chapter 18 Application Framework

di-

l is
n

to

cause
d on

such
Value Model Links Widget to Attribute

An application model links a domain model to a user interface by linking in
vidual components of those larger objects.

Each component of a UI is a widget. Each component of a domain mode
an attribute or an operation. Each widget modifies an attribute or starts a
operation. The application model defines what each widget does.

For attribute-setting widgets, the application model employs an adaptor
translate generic value-getting and value-setting messages into specific
messages to the domain model. This adaptor is called a value model, be
it defines the relation between an attribute’s value and widgets that depen
that value.

There are different kinds of value models for different kinds of attribute
values. For example, a ValueHolder is used when the attribute value is a
simple data value such as a string of characters, while an AspectAdaptor is
used when the simple data value is embedded in a composite attribute,
as a BankAccount.

A value model is typically generated during the Define stage of user-inter-
face creation.
226 VisualWorks User’s Guide, Rev. 2.1

Overview

o
li-
.

ese

 a
ppli-
jects

e-

mat-
Figure 18-3 A value model links a widget to an attribute. Classically, the
attributes are components of the domain model, as shown here, but they can als
be components of the application model. Supplying value models is how an app
cation model mediates between UI components and domain model components

Builder Assembles User Interface

The process of defining a user interface involves painting widgets on a
window canvas. Then, various properties for each widget are defined,
including its size, location, label, and value name or operation name. Th
properties are captured in a widget specification object, or spec for short.

When the canvas is installed, the window and widget specs are stored in
class method in the application model, called a spec method. When the a
cation is started, the specifications are used to assemble actual widget ob
in a running ApplicationWindow.

The application model delegates this specification-capturing and interfac
building activity to an instance of UIBuilder. This builder object is a valuable
source of information about the interface. For example, you can program
ically access a specific widget by asking for it by name from the builder.

User interface

Domain model

Application model

widgets

value

attributes

 models
VisualWorks User’s Guide, Rev. 2.1 227

Chapter 18 Application Framework

get
ing
t is

t
il-

ear-
he
an

r it,
A
his

.

Figure 18-4 The application model delegates the task of constructing a window
and its widgets to a UIBuilder. The builder works from a set of specifications
provided by the application model class, in the form of a spec method.

Widget Has Visual Component and Optional Controller

Each widget in a user interface is either passive or active. A passive wid
merely displays something, while an active widget both displays someth
and responds to mouse or keyboard activity. For example, a label widge
passive while an input field is active.

The responsibility for displaying something is performed by a visual compo-
nent, also called a view, while the responsibility for responding to user inpu
is performed by a controller. The motivation for separating these responsib
ities in different objects is reusability.

For example, a radio button and an action button have quite different app
ances but both respond to a mouse click by triggering a response from t
application model. Their visual components must be different, but they c
use the same kind of controller.

Creating a custom widget involves defining a custom visual component fo
and then choosing an existing controller or defining a custom controller.
special containing widget called a view holder enables you to integrate t
custom view-controller pair into a user interface as peers of the standard
widgets on the VisualWorks Palette.

Application model

Builder

User interface
228 VisualWorks User’s Guide, Rev. 2.1

Overview

el,

lica-
to

files
age.

.

.

Figure 18-5 Each widget consists of a view for displaying an aspect of the mod
and an optional controller for responding to mouse and keyboard activity within
that view’s boundaries.

About the Example Application

To demonstrate the principles described in this chapter, an example app
tion is supplied with VisualWorks. The application was primarily created
demonstrate the creation and integration of a custom view and custom
controller, so it is called CustomView1Example.

A second version of the application, called CustomView2Example, appears
and behaves identically but employs a different kind of controller (event-
driven). During the discussion of controllers, the distinctions between
CustomView1Example and CustomView2Example will be explored.

The two versions of the application rely on a set of classes that reside in
(not in the standard VisualWorks image) and must be loaded into your im

Loading the example classes
1. Open an Online Documentation window by clicking on the Help icon in

the icon bar of the main VisualWorks window.

2. In the Online Documentation window, click on the File menu and select
Browse Example Class . A dialog will list the available example
applications. (If none are listed, make sure the Help page of the Settings
Tool shows the correct pathname of the visual/online directory or
folder.)

3. In the dialog, select CustomView1Example in the list and then click on
OK. A dialog will confirm your intention to file in the example classes

User interface

ControllerView
VisualWorks User’s Guide, Rev. 2.1 229

Chapter 18 Application Framework

ou
ong

e for
4. Repeat steps 2 and 3 for the CustomView2Example class.

Components

The example application is a rudimentary sketching utility that enables y
to start a new sketch, draw lines in the sketch, erase lines, and switch am
the sketches you have created. The example application does not provid
storing the sketches after the application is closed.

The example classes include a domain model (Sketch), an application model
(CustomView1Example), a custom view (SketchView1) and a custom
controller (SketchController1). The event-driven classes—
CustomView2Example, SketchView2 and SketchController2—serve
parallel functions.

Figure 18-6 How the example classes fit into the framework.

User interface

SketchController1SketchView1

Application model
CustomView1Example

Domain model
Sketch
230 VisualWorks User’s Guide, Rev. 2.1

Domain Model

ew
y on
.

ing
pli-

ain

g a

ank-
rma-

the
Domain Model

Overview

A domain model is typically the first class you create when developing a n
application, because the application model and user interface rely heavil
the domain model. A System Browser is used to create a domain model

A domain model has two essential responsibilities: storing data and provid
data-processing operations. Because it does not have to supply any com
cated mechanisms, there is no application-framework support for a dom
model. It is typically a subclass of Object, or of an existing domain model
class.

Multiple Domain Models

In all but the simplest of applications, the information is subdivided amon
set of related domain models. For example, in a banking application, a
customer model stores customer information, an account model stores b
account information, a transaction model stores banking-transaction info
tion, and so on.

Deciding how to subdivide information among a set of domain models is
subject of the analysis phase of a development project.
VisualWorks User’s Guide, Rev. 2.1 231

Chapter 18 Application Framework

h

able

ance

t

class.
.

Figure 18-7 Domain information is often divided among multiple classes.

Data Storage

One responsibility of a domain model is to hold the information with whic
an application is concerned. In the example application, a Sketch holds a
collection of sketched lines as well as a name for the sketch.

How Data Is Stored

Typically, each attribute of the object is stored in a separate instance vari
in the domain model. For example, a Sketch has an instance variable called
name for storing the name of the sketch, and an instance variable called
strokes for storing a collection of sketched lines.

Similarly, each relation to another domain model is also stored as an inst
variable. For example, in a banking application, the Customer class would
typically have an instance variable named account, for storing an instance of
BankAccount. If a BankAccount had a reason to know its customer—tha
is, if the relation between Customer and BankAccount were bidirectional—
the BankAccount class would have an instance variable named customer,
for storing an instance of Customer.

A System Browser is used to add instance variables to a domain model

User interface

Application model

Domain models

Customer BankAccount Transaction
232 VisualWorks User’s Guide, Rev. 2.1

Application Model

for

la

d set
t and

 for
era-

po-
is

ulti-

e
How Data Is Accessed

Each attribute and relation variable typically needs to have one method
getting its value, called an accessor method, and one method for setting its
value, called a mutator method. (In some usages, “accessor” is an umbrel
term referring to both accessor and mutator methods.) For example, a Sketch
has a name method for getting the sketch’s name, and a name: method for
setting the name.

A System Browser is used to define accessor and mutator methods for
instance variables, in a protocol named accessing. Most programmers find it
wise to use these methods rigorously throughout an application to get an
variable values, even though other methods in the domain model can ge
set a variable’s value directly.

Data Processing

In addition to storing and accessing data, a domain model is responsible
enabling client objects to modify the data. Each such data-processing op
tion takes the form of an action method.

For example, a Sketch provides action methods for starting a new polyline
(beginStroke), adding a point to a polyline (add:), erasing a polyline
(eraseLine), and erasing the entire sketch (eraseAll).

Application Model

Overview

An application model is the core of an application in that it links the com
nents of the domain model to the components of the user interface. In th
mediating capacity, the application model has intimate knowledge of the
domain model and UI.

Class Hierarchy

Each application requires its own subclass of ApplicationModel, the frame-
work class that supports the mediating responsibilities.

In general, each such subclass drives a single application window, so a m
window application may involve multiple subclasses of ApplicationModel.
For example, the Online Documentation window in VisualWorks uses on
VisualWorks User’s Guide, Rev. 2.1 233

Chapter 18 Application Framework

.

erit

 an

 the

ing

f

ut a

ible
application model (HelpBrowser) while its example-browsing subwindow
uses another model (ExamplesBrowser).

You can, of course, use an existing subclass of ApplicationModel as the
parent of your new class, typically an abstract class of your own devising
Doing so would be useful, for example, when you want to build certain
generic facilities into the abstract class so that all of your applications inh
and reuse those facilities.

Frequently reused subclasses of ApplicationModel include:

n SimpleDialog, for dialog windows

n LensDataManager, for data-form windows

n LensMainApplication, for database applications

Creation

An application model class is typically generated the first time you install
application canvas.

An instance of such a class is typically created by selecting the name of
model in a Resource Finder and then clicking on the Start button. Program-
matically, an application model is typically created as the first step in open
the application interface, by sending a variant of open to the class.

Components

The ApplicationModel class keeps two dictionaries for the convenience o
all applications. One dictionary, called DefaultLabels, is used to register
frequently used label strings, to avoid duplicating those strings througho
set of applications. The second dictionary, DefaultVisuals, provides a similar
service for graphic images that are used as labels.

An application model holds a UIBuilder in its builder variable, which is used
to build the main user interface.

Responsibilities

The ApplicationModel class, its subclasses and its instances are respons
for:

n Storage of reusable labels and images (ApplicationModel class)

n Storage of interface specs (subclass)

n Storage of value models (instance)
234 VisualWorks User’s Guide, Rev. 2.1

Application Model

d

ctio-

lti-
ge

kup

be

me
orks

f
m-

e
e set
n

lt

ou
nd

ing,
n Dependent notification (instance)

n Application startup (instance)

n Application cleanup (instance)

Storage of Reusable Labels and Images

The ApplicationModel class provides a central registry for frequently use
label strings, such as a company name, and a similar registry for graphic
images, such as a company logo. The registries takes the form of two di
naries held in class variables named DefaultLabels and DefaultVisuals.

Note: For a more structured approach to label storage, especially in a mu
cultural context, see the International User’s Guide discussion of messa
catalogs.

The class protocol named resource accessing contains methods for adding an
entry to a registry (labelAt:put: or visualAt:put:), which is typically all that
you need to do. Each label string or graphic image is associated with a loo
key that you provide, corresponding to the Symbol with which you identify
the Label property of the widget. For a label string, the pound sign must
included in the Label property. For an image, the Label Is Image property
must also be turned on for the widget.

This causes VisualWorks to search for an application method with the sa
name as the lookup key. In this case, there is no such method, so VisualW
next searches the appropriate registry.

Each image in the DefaultVisuals registry occupies a significant amount o
memory, depending on its size and color depth, so sparing usage is reco
mended.

Storage of Interface Specs

Each application model is responsible for storing the specifications for th
application’s user interfaces. Each application window requires a separat
of specifications. Each window’s specs are stored in a class method, in a
interface specs protocol. Thus, each concrete subclass of ApplicationModel
usually has at least one such method for the primary window. The defau
name for this primary spec method is windowSpec.

A spec method is generated or regenerated by VisualWorks each time y
Install a canvas. The method contains a literal array identifying window a
widget specifications. When the canvas is opened for running or repaint
VisualWorks User’s Guide, Rev. 2.1 235

Chapter 18 Application Framework

d, be
ain.
e

es a

e

 Visu-
s
an

ap-

lly

e a

o
 each

the contents of the array are used to create a hierarchy of spec objects—
roughly speaking, a WindowSpec containing a set of WidgetSpecs.

While you can edit a spec method as you can any other Smalltalk metho
aware that your edits will be overwritten if the canvas is later installed ag
Also, the format of the literal array is considered private, and may chang
without warning in later releases of VisualWorks.

Storage of Value Models

Each application model is responsible for storing a value model for each
value-displaying widget in each of the application’s interfaces. The value
model extracts the desired item of data from the domain model when the
widget needs it, and updates the domain model when the widget indicat
new value has been accepted by the user.

Each such value model is typically held by an instance variable in your
subclass of ApplicationModel. An accessor method, typically in an instanc
protocol named accessing, is also needed so the interface builder can obtain
the value model and hand it to the widget at startup time.

Both the instance variable and the accessor method can be generated by
alWorks, by using the Define button in the Canvas Tool. The value model i
initialized to a zero or empty value in the accessor method, though you c
override that initialization in the application model’s initialize method.

There are several types of value models, which are described in the “Ad
tors” chapter of the VisualWorks Cookbook.

For example, in a banking application, the application model would typica
have an instance variable named balance. The variable would be initialized
to hold an AspectAdaptor that is capable of accessing the balance variable
in the domain model (a BankAccount). At startup time, the application’s
UIBuilder would supply the value model to a read-only input field for
displaying the current account balance.

Dependent Notification

When Object B is affected by a change in Object A, Object B is said to b
dependent of Object A. Dependencies of this nature occur commonly in
applications, and the application model collaborates with value models t
notify dependents of relevant changes. These indirect messages enable
value model to communicate with its dependent widget without having to
hold onto that widget directly.
236 VisualWorks User’s Guide, Rev. 2.1

Application Model

get
get.
selec-

e.
ies

 list

nd

a-
e

r
n-
For example, in the sketching application, selecting a sketch in the list wid
causes the set of lines for that sketch to be displayed in a sketching wid
The sketching widget is a dependent because it needs to know when the
tion is changed in the list of sketches.

Figure 18-8 A value model can use dependency notifications to cause a
secondary widget to update itself whenever the value model receives a new valu
Here, the value model receives a new selection index for the list widget, and notif
the sketching widget to update its display.

It is important to note that the sketching widget is not a dependent of the
widget. Rather, it is a dependent of the value model that holds the list of
sketches. The list widget is the primary dependent of the value model, a
receives notifications much as its sibling widget does.

VisualWorks provides three layers of support for dependent notification:

n Notifications from a value model to an application model. Many applic
tions rely on this partially automated layer exclusively because it is th
easiest to implement and handles the common cases.

n Notifications from any object to any object. This is the foundation laye
upon which the first layer is built, and which provides broader functio
ality for situations involving arbitrary types of objects.

Value Model
(selection index)

Dependent
(SketchView1)
VisualWorks User’s Guide, Rev. 2.1 237

Chapter 18 Application Framework

ith
s to

ed,

ven-

nce

get

urs:

e

-

n Event-based notifications for objects of any type. This is actually an
alternative to the second-layer architecture, provided for compatibility
with Digitalk Smalltalk.

Notifications From Value Model to Application Model

An application model provides a value model to keep a widget in sync w
its data value in the domain model. When a secondary widget also need
be kept in sync with that data value, the application model employs a Depen-
dencyTransformer.

A DependencyTransformer is like a single-minded robot that is told, in
effect: “Keep your eye on this value model—whenever its value is chang
notify me.”

This robot is told what message to send to the application model. By con
tion, the message begins or ends with the word “Changed,” as in
valueChanged or changedSelection.

The Notification page of the Property Tool enables you to specify this
message, in effect setting up a DependencyTransformer to monitor the
primary widget’s value model.

The application model is expected to implement the corresponding insta
method, in a change messages protocol. That method updates the value
model for the secondary widget, which in turn causes the secondary wid
to update its display, completing the cycle of dependency.

Example

Using the sketching application, here is how the sequence of events occ

1. The user clicks on the name of a sketch in the list widget, causing th
selectionIndexHolder value model to change its value.

2. A DependencyTransformer notices the change and notifies the appli
cation model by sending a changedSketch message to it.

3. The application model, in its changedSketch method, gets the newly
selected sketch and installs it in the sketch widget’s value model.

4. The sketch widget displays the sketch.
238 VisualWorks User’s Guide, Rev. 2.1

Application Model

’s

.
r a
Figure 18-9 A DependencyTransformer is installed as a dependent of the value
model that holds the selection index. The transformer is notified of a selection
change, and in turn sends a changedSketch message to the application model,
which gets the sketch from the first value model and installs it in the sketch view
value model.

Notifications From Any Object to Any Object

While the Notification page of a widget’s property sheet enables you to
arrange for a notification to an application model, you can use a Dependen-
cyTransformer to arrange for a notification from any object to any object
Going even further into the dependency mechanism, you can arrange fo
direct notification without the use of a robotic third party.

DependencyTransformer

When a value model changes its value, it sends a changed: #value message
to itself. The changed: method is inherited from Object, and sends an
update: #value message to all dependents of the value model.

Value Model
(selection index)

Value Model
(SketchView’s model)

DependencyTransformer

Application Model
VisualWorks User’s Guide, Rev. 2.1 239

Chapter 18 Application Framework

, as
ut as

r.

del,

rans-

age
bject

.

get
A DependencyTransformer, when it receives an update: #value message,
sends a specified message to a specified receiver. In the usual situation
discussed above, it sends a specified message to an application model. B
a general technique, it can be used to send any message to any receive

In addition, when the robot is monitoring an object other than a value mo
it can be made to react to a changed: #selection message, for example, or
any other aspect symbol indicating the nature of the change. The aspect
symbol is used by contract between the object being monitored and the t
former.

For example, a BankAccount might send changed: #balance to itself, and
the DependencyTransformer might be configured to pay attention to the
corresponding update: #balance message, while ignoring other update:
messages.

Setting up a notification in this way involves creating a DependencyTrans-
former with the appropriate aspect symbol, message selector and mess
receiver, and then adding that transformer as a dependent of the target o
(using addDependent:). If the target object is not a subclass of ValueModel,
you must also arrange for it to send changed: <aspectSymbol> to itself in
the method that effects that change. Subclasses of ValueModel take care of
that detail, because they are the most common targets.

Subclasses of ValueModel are capable of setting up a transformer for you
Just send onChangeSend: <selector> to: <receiver> to the value model.

Any object can set up a transformer in response to expressInterestIn:
<aspectSymbol> for: <receiver> sendBack: <selector>.

Direct Dependency

You can dispense with the transformer by implementing an update: method
for the dependent object. Then add that object as a dependent of the tar
object (using addDependent:). As a result, when the target object sends
changed: <aspectSymbol> to itself, the dependent object will receive
update: <aspectSymbol>.

Again, the aspect symbol must be agreed upon.
240 VisualWorks User’s Guide, Rev. 2.1

Application Model

ng
 a

sible

ry.

lly,
 of

e vast

tion

d is
ber
Variants of the changed/update: messages are available for situations
requiring a parameter in addition to the aspect symbol (update:with:) and the
target object (update:with:from:).

Figure 18-10 Any object can register dependents and then notify them by sendi
itself a changed: message with a symbol indicating the nature of the change. As
result, each dependent receives an update: message.

Removing Dependents

The Object class provides a central dictionary for keeping track of any
object’s dependents. An application that adds a dependent is also respon
for removing it (using removeDependent:), to avoid having the dictionary
hold onto obsolete dependents and waste increasing amounts of memo

The Model class provides an instance variable for storing dependents loca
avoiding the use of the central dictionary. Thus, instances of subclasses
Model (including the value model hierarchy) automatically release their
dependents when they expire. Because value models are the targets of th
majority of dependencies, this takes care of most situations.

Circular Dependencies

Because dependencies involve indirect communications, the hazard of
circular message-passing becomes more likely. The most common situa
in which circularity arises involves two mutually dependent widgets.

For example, in the Online Documentation window, the page number fiel
mutually dependent with the list widget. That is, changing the page num

Any object

Dependents

self changed: #aspectSymbol

update: #aspectSymbol
VisualWorks User’s Guide, Rev. 2.1 241

Chapter 18 Application Framework

ates

g

lish

as

ed
-

s
 to

es to
ts is

an

her-

,

 A
eters

ight
em
updates the selection in the list, and changing the selection in the list upd
the page number.

You can temporarily remove a transformer in such a situation, by sendin
retractInterestIn: <aspect> for: <dependent> to the target object just
before you change its value. After changing the value, you must reestab
the transformer (using onChangeSend:to:).

You can temporarily remove a direct dependent by sending removeDepen-
dent: <dependent> to the target object, and then adding it (using addDe-
pendent:) after changing the value.

Event-Based Notifications

A similar mechanism for indirect communication with dependent objects w
introduced in Digitalk’s dialect of Smalltalk. For the convenience of users
who are migrating applications from Digitalk Smalltalk/V or Visual Small-
talk to VisualWorks, this event-based mechanism is also available.

The code that supports event-based notifications is supplied in a file nam
sysdeps.st , in the extras subdirectory under the VisualWorks installa
tion directory. The file can be loaded by filing it in, using a File List. After
you file in the code, the class will have additional protocols whose name
begin with the word “event.” In addition, supporting classes will be added
the system, in a class category named “System-Dependency Events.”

With this mechanism, each object can define certain events that it promis
announce when appropriate. Announcing an event to potential dependen
called triggering an event. A dependent object can register a handler for
event in which it is interested.

Defining Events

Each class is responsible for defining the events that it will trigger. The in
ited class method eventsTriggered must be redefined for each class that
wishes to define a set of valid events. The eventsTriggered method typically
creates an IdentitySet of event names (Symbols), then returns the set. It can,
of course, invoke super eventsTriggered to fetch the parent class’s events
then add to that set before returning it.

Event names, like message selectors, can be unary or keyword names.
unary event has no parameter, while a keyword event has as many param
as it has colons. For example a button class might define a #clicked event,
because the dependent object needs no further information. A list class m
define a #changed: event, because the dependent needs to know which it
242 VisualWorks User’s Guide, Rev. 2.1

Application Model

 the

e the
n

e, and

e

 be

ent
can
in the list was selected—the selection can be passed as an argument to
changed: message.

Triggering Events

An object can trigger any event in its class’s eventsTriggered set. It does so
by sending a variant of triggerEvent: to itself. The argument is the event
name. See the event triggering protocol in Object for the variants. An event
is triggered in the method or methods that effect the described event.

Registering an Event Handler

A dependent object can arrange for a specific action to be taken each tim
triggering object triggers a specific event. This is known as registering a
event handler.

The dependent sends a variant of when:send:to: to the triggering object. The
first argument is the event name, the second argument is a message nam
the third argument is the message receiver. See the event configuring protocol
in Object for the variants.

The dependent object need not do the registering itself, of course. For
example, an application model could use when:send:to: to arrange for a
domain model to send a message to a dependent widget.

Figure 18-11 When using event-based notifications, a button class could defin
an event named #clicked. It would send triggerEvent: clicked to itself in the appro-
priate method. A dependent such as an application model could then arrange to
sent a message such as openSearchWindow whenever the button was clicked.

By default, an error occurs when an event handler is registered for an ev
that has not been defined by the triggering class. The registering object
verify that a particular event is triggered by sending canTriggerEvent:,
either to the triggering object or to its class.

Button
Application Model

when: #clicked send: #openSearchWindow to: self

self triggerEvent: #clicked
VisualWorks User’s Guide, Rev. 2.1 243

Chapter 18 Application Framework

ed

 no

with

 to
eeds

end

-
s

ent
e

ter-
end

ialize
Removing Dependencies

When an event handler is registered, it is stored in a class variable nam
EventHandlers, which is inherited from Object. The application is respon-
sible for removing each handler from this event table when the handler is
longer needed.

The triggering object can remove all handlers that have been registered
it by sending release to itself.

A more specific message, releaseEventTable, can be used when other forms
of dependency are not ready to be released.

Application Startup

The first step in starting an application involves deciding which interface
open. The process of assembling and opening the chosen interface proc
by stages. After each stage, your application model can intervene in the
process to configure the raw interface as needed. The stages are:

n Create an instance of UIBuilder

n Pass the UI specs to the builder and ask it to construct the UI objects

n Open the fully assembled interface window

By default, when an application model class is sent an open or openInter-
face: message, all three stages are performed. You can send allButOpenIn-
terface: to an instance to perform stages one and two, then separately s
finallyOpen to perform stage three.

Selecting an Interface

An application is typically started by sending an open message to the appro
priate subclass of ApplicationModel. This assumes that the primary canva
was saved with the default name, windowSpec.

If the primary canvas has a different name, or if you want to open a differ
canvas, you can send openWithSpec: to the class, with the spec name as th
argument.

The application model class creates a new instance of itself to run the in
face. If you want to use an existing application model instance, you can s
open or openInterface: to that instance. This is useful when you want to
reuse an instance rather than create a new one, or when you want to init
the application specially.
244 VisualWorks User’s Guide, Rev. 2.1

Application Model

en
 a

typi-
an
e of

 a

not

cess
hat

tion
t.

ped

s

tion
 the
ould
Prebuild Intervention

After an instance of UIBuilder has been created, but before it has been giv
a set of specs with which to construct a UI, the application model is sent
preBuildWith: message. The argument is the newly created UIBuilder.

Most applications do not need to intervene at this stage. Those that do,
cally take the opportunity to load the builder with custom bindings that c
only be derived at runtime. For more discussion of bindings, see “Storag
UI Bindings” on page 247.

Postbuild Intervention

The application model creates a hierarchy of spec objects from the spec
method, and hands the root spec to the builder. The builder then creates
window and populates it with the appropriate widgets. The builder does
yet open the window, however.

At this stage, the application model receives a postBuildWith: message, with
the builder as argument. The application model can use the builder to ac
the window and any named widgets within the window—that is, widgets t
were given an ID property.

Applications commonly use postBuildWith: to hide or disable widgets as
needed by the runtime conditions.

Postopen Intervention

The builder opens the fully-assembled interface. At this stage, the applica
model is sent a postOpenWith: message, again with the builder as argumen
As with postBuildWith:, the application can use the builder to access the
window and its widgets. This time, however, those objects have been map
to the screen, which makes a difference for some kinds of configuration.

For example, the FileBrowser model that drives the File List interface use
postOpenWith: to insert the default path in the window’s title bar—
something it could not do until after the window had been opened.

Application Cleanup

An application model often needs to take certain actions when the applica
is closed. For example, a word-processing application might need to ask
user whether edits that have been made to the currently displayed text sh
be saved or discarded.
VisualWorks User’s Guide, Rev. 2.1 245

Chapter 18 Application Framework

ould
ple,

ter-
en

r
and
ain

ow
ion

on-
get

g

d to
er is
tion
le a

der

,
Another common cleanup action is to break circular dependencies that w
otherwise prevent the application from being garbage collected. For exam
if application A holds application B, and vice versa, for the purpose of in
application communications, neither would be removed from memory ev
after both of their windows were closed.

If the application user exits from the application by using a menu or othe
widget in the interface, the application model performs the exit procedure
can insert any required safeguards. But if the user exits by closing the m
window, a special mechanism is needed to notify the application model.

The application model is held by the application window. When the wind
is about to be closed, its controller asks for permission from the applicat
model, by sending a requestForWindowClose. The application model can
redefine this method to perform any cleanup actions and then return true to
grant permission or false to prevent the window from closing.

Builder

Overview

An application builder is a component of an application model that is resp
sible for generating a running user interface from a set of window and wid
specifications. It performs this service either when an application is bein
started or when a canvas is being painted.

Creation

An application typically has a single builder, held by its builder variable. This
primary builder is created by inherited interface opening methods.

Some applications also create one or more secondary builders as neede
construct subwindows and custom dialogs. Frequently, a secondary build
discarded as soon as it has finished opening its window. When the applica
model needs to access widgets in the subwindow—for example, to disab
widget when conditions in the main window change—the secondary buil
is held in a newly created instance variable.

Components

A builder holds the application model in its source variable, because the
application model is the source from which the builder obtains value models
menus and other resources.
246 VisualWorks User’s Guide, Rev. 2.1

Builder

kup
m the

d
nts

 of
ject

class

on-

 the

t

ing
 suit

 such
Each such resource is stored in a dictionary held by the builder. The loo
key in each case is the selector that was used to obtain the resource fro
application model. For a value model, for example, this selector is the
Aspect property of the widget. The dictionary is held in a variable name
bindings, because it holds the resources to which the interface compone
are bound.

When a builder is given a set of specs, it begins traversing the hierarchy
specification objects, constructing a corresponding widget or support ob
for the eventual UI. When the window is created, it is stored in a variable
named window. If a widget has an ID property, it is stored in a namedCom-
ponents dictionary in the builder.

The builder delegates the task of choosing a widget for each spec to a sub
of UILookPolicy. Each platform look-and-feel is enforced by a separate
policy class, such as Win3LookPolicy for Microsoft Windows. This policy
object is held in a variable named policy.

Responsibilities

In terms of its public contract with an application model, a builder is resp
sible for:

n Storage of UI Bindings

n Interface Assembly

n Interface Opening

n Window Access

n Named Component Access

Storage of UI Bindings

For each WidgetSpec that identifies a value model or other resource, the
builder obtains that resource from the application model. First, however,
builder checks its bindings dictionary to see whether that resource has
already been fetched for a previous widget.

Your application can make use of this two-stage lookup process to inser
resources into the bindings dictionary proactively. This is useful mainly
when the application is building an interface directly, rather than employ
a prebuilt canvas. A dialog whose set of widgets must be customized to
the circumstances is the usual situation requiring direct UI building.

To supply a resource proactively, an application model sends a message
as aspectAt: aKey put: aValueModel to the builder. The first argument in
VisualWorks User’s Guide, Rev. 2.1 247

Chapter 18 Application Framework

e

 the
thod
 be

 a
this case is the Aspect property of the widget. The second argument is th
value model that would normally be returned by the application model in
response to the aspect message.

The binding protocol in UIBuilder has variants of aspectAt:put: for other
kinds of resources.

By loading the bindings in this way, your application avoids the builder’s
second-stage resource lookup, in which it sends the aspect message to
application model. The application model need not define a separate me
for supplying the resource, nor an instance variable for storing what may
a very temporarily or infrequently needed resource.

.

Figure 18-12 A builder caches value models and other resources in a bindings
dictionary. An application model can preload this cache to avoid being asked for
resource via message-send.

Interface Assembly

A builder is responsible for converting a set of UISpecification objects into
a window, widgets and supporting objects, using its look policy to select
widgets that have a particular look and feel.

Value Models

Application Model

Builder

bindings

#nameField

#addressField

#phoneField

aspectAt: #nameField
put: aValueModel
248 VisualWorks User’s Guide, Rev. 2.1

Builder

et a

ther

et
is is
ing
c

For example, when a builder’s look policy is an instance of Win3LookPolicy,
it will add a Win3RadioButtonView to the interface as the specific imple-
mentation of a RadioButtonSpec. When a MacLookPolicy is in effect, the
builder will add a MacRadioButtonView to implement that same RadioBut-
tonSpec.

The builder’s default policy is established by using the Settings Tool to s
system-wide default. An application can install a different policy in the
builder, usually in a preBuildWith: method, by sending a policy: message.

When an application is using a builder to construct a custom dialog or o
UI directly, it does so by sending add: aSpec to the builder. The argument is
typically a root-level spec object containing the hierarchy of window, widg
and supporting specs. It can also be an individual spec object, though th
less often attempted. A root-level spec object is typically obtained by send
interfaceSpecFor: to the application model class, with the name of a spe
method as the argument.

.

Figure 18-13 How an abstract specification is turned into a platform-specific
widget. The application model asks its builder to add a spec to the interface. The
builder delegates the task to its look policy. The look policy selects a widget that
suits the platform look, and installs it in the interface window.

Application Model

Builder RadioButtonSpec Win3LookPolicy

add: aRadioButtonSpec Win3RadioButtonView

Window
VisualWorks User’s Guide, Rev. 2.1 249

Chapter 18 Application Framework

ng
his

 a

r-

n
ps to

ny
es

 or

 the
Interface Opening

A builder is responsible for opening the application window after populati
it with widgets. An application can exert control over certain aspects of t
phase by sending an interface opening message to itself. However, for finer
control over the window location, size and type, the application can send
scheduling message directly to the builder.

The application can also use a scheduling message to control the timing of the
window opening. For example, an application might cache a prebuilt inte
face and then open, close and reopen it as needed.

Window Access

An application model holds a builder, and the builder holds the applicatio
window. When the application model needs to access the window, perha
iconify it or change its title, it sends a window message to the builder.

Named Component Access

A builder is responsible for providing its application model with access to a
widget that has an ID property, called a named component. The builder stor
such widgets in its namedComponents dictionary.

The application can obtain a named widget by sending componentAt: aWid-
getID to the builder. The usual motivation for doing so is to hide, disable
restore the widget to suit changing circumstances.

Each widget is contained by a WidgetWrapper, which uses a WidgetState
to apply bordering, visibility and other appearance characteristics to the
widget. It is the wrapper that is stored in namedComponents and returned
from a componentAt: query. The usual operations that an application
performs, such as hiding or disabling a widget, are actually addressed to
250 VisualWorks User’s Guide, Rev. 2.1

Window

ther
wrapper. When the application needs to address the contained widget ra
than the wrapper, it can ask the wrapper for its widget.

Figure 18-14 When a widget is given an ID property, the builder stores it, inside
its wrapper, in a namedComponents dictionary. The application model can ask
the builder for any named component while the application is running.

Window

Overview

A window is a display surface on which a set of widgets display their
contents. While some window managers use the term window to mean both
top-level windows and the subwindows in which individual widgets are
displayed, VisualWorks uses the term exclusively for top-level windows.

Creation

A window is typically created by a UIBuilder, being the top-level interface
object as specified by a WindowSpec.

Windows come in three types:

Widget Wrappers

Application Model

Builder

namedComponents

#nameField

#addressField

#phoneField

componentAt: #nameField
VisualWorks User’s Guide, Rev. 2.1 251

Chapter 18 Application Framework

ol the

h

t

n

ther
n Normal windows, having full decorations

n Dialog windows, having a border but (depending on the window
manager) typically fewer border widgets and no title bar.

n Pop-up windows, having no decorations, such as a menu

Variants of the scheduling protocol in ApplicationWindow and its parent,
ScheduledWindow, enable the application to control which type of window
is used.

Class Hierarchy

A window as used in an application is typically an instance of Application-
Window. The parent class, ScheduledWindow, is used in older applications
that predate the VisualWorks canvas-painting tools. ScheduledWindow
provides much of the state and behavior upon which ApplicationWindow
relies.

Still farther back in the ancestor chain is Window, which is now mostly
treated as an abstract class. Lacking a controller to enable a user to contr
window, it is too passive for the vast majority of uses. However, it does
provide important foundation for ApplicationWindow.

Components

An application window has a controller, usually an ApplicationStandard-
SystemController, that provides a menu of window-controlling actions suc
as refresh and close .

A window also has a component, which can be a single visual component
such as a ComposedText but is almost always a CompositePart that holds
a hierarchy of widgets.

A window has a sensor for providing information to widget controllers abou
mouse activity, and a keyboardProcessor for providing information about
keyboard activity.

A window has a label, which is the string that appears in its title bar, and a
icon, which appears when the window is collapsed.

When a window is supposed to collapse, expand or close whenever ano
window performs one of those actions, it is said to be a slave of that master
window. A window has a masterWindow variable for holding its master, if
any.
252 VisualWorks User’s Guide, Rev. 2.1

Window

i-

me

s

way

ect-
et

 has

ile
such
t that

e

vene
ac-
e
d,
A window has several policy objects that are inherited by the window’s
widgets unless they have been given a policy explicitly. These policies
control color, bordering and similar characteristics.

Responsibilities

Most of the responsibilities of a window involve straightforward commun
cations, as documented in the “Windows” chapter of the VisualWorks Cook-
book. Damage repair is a mechanism worthy of discussion here.

Damage Repair

A window is responsible for redisplaying portions of its surface that beco
damaged in either of two ways:

n Window damage—when an overlapping window is moved, causing a
formerly obscured region to need redisplaying, or when the window i
refreshed.

n Information updates—when the state of the application changes in a
that invalidates something that a widget is displaying

Window damage is communicated by the window manager. A damage r
angle resulting from an information update is communicated by the widg
involved. The visual component of the widget sends a variant of invalidate
to itself, which causes the window to be sent invalidateRect-
angle:repairNow:forComponent:.

In either case, the window is told that a rectangular portion of its surface
become damaged. This damage rectangle is accumulated by the window’s
sensor along with other damage rectangles.

When the application is not busy with a higher-priority process such as f
accessing, the window redisplays all of the damaged portions. For each
rectangle, it restores its own background color and then asks each widge
intersects the rectangle to redisplay its contents.

The window communicates these requests to its component, the Compos-
itePart that handles layout issues for the individual widgets. The Compos-
itePart determines which widgets are affected and passes on to them th
request to redisplay.

Damage repair is automatic, and most applications have no need to inter
in the process. Occasionally an application desires to repair damage pro
tively. For example, suppose an application requests information from th
user by displaying a dialog and then, when the dialog has been dismisse
VisualWorks User’s Guide, Rev. 2.1 253

Chapter 18 Application Framework

og is
he
s is

, an
t of

et—
pect

el.
ter-
hi-
lk.

es of

ter-

w is
t

eives
isual
begins a process that takes several minutes to complete. When the dial
dismissed, the application window has to repair the damaged area that t
dialog overlapped. But that repair is delayed until the application proces
finished, unless the application asks for repair immediately.

The application can force immediate repair by sending invalidate-
Rectangle:repairNow: to a widget, with true as the repairNow argument.

Visual Component

Overview

A window is a container for a visual component. A visual component, or
view, is responsible for displaying some aspect of a model. For example
input field might display an account balance, or a table might display a se
transactions.

When combined with a controller, which is responsible for handling user
input, a visual component takes on the essential characteristics of a widg
an interface component that enables a user to view and modify some as
of a domain model.

A value model typically mediates between the view and the domain mod
So each component of an interface consists of a view and a controller in
acting with a value model. This is known as a model-value-controller arc
tecture, or MVC, which has been refined through generations of Smallta

A visual component can take many forms. This section describes the typ
visual components according to their fundamental characteristics:

n Passive or active

n Autonomous or dependent

n Singular or composite

The “Custom Views” chapter of the VisualWorks Cookbook provides instruc-
tions for creating a custom visual component and integrating it into an in
face.

Passive vs. Active Components

An application window has a visual component, so we say that the windo
the container of that component. The visual component that is put into tha
container can be either passive or active. A passive visual component rec
requests from the container but does not send requests to it. An active v
254 VisualWorks User’s Guide, Rev. 2.1

Visual Component

of its

t

he

l
component receives and also sends requests, so it needs to keep track
container.

Figure 18-15 Window and view as container and component.

The abstract class VisualPart provides this ability to communicate with the
container, so it is the parent of all active visual components, including View
and its subclasses.

Passive visual components include instances of Image, Icon, Composed-
Text and TextList. The geometric objects, such as Circle and Spline, are not
VisualComponents—they must be placed in a GeometricWrapper to
achieve component status. See the chapters on graphic objects and tex
objects in the VisualWorks Cookbook for more information about creating
such objects.

Active visual components (VisualParts) include instances of:

n View and its subclasses

n CompositePart, which holds a collection of other components

n Wrapper, which adds generic functionality such as bordering to a
component

Among the motivations for a VisualPart to talk to its container are:

n Invalidation, because a VisualPart coordinates its redisplaying activities
with the damage-repair mechanism of the window.

n Bounds accessing, because an active component adjusts itself to suit t
size of its window

n Getting a graphics context, because an active component redisplays al
or part of itself depending on the state of the model

Window Container

View Component
VisualWorks User’s Guide, Rev. 2.1 255

Chapter 18 Application Framework

rd

ee
es

of a

w

l
 but
n Getting a sensor and keyboard processor, because the typical controller
gets mouse and keyboard input via the window’s sensor and keyboa
processor

Autonomous vs. Dependent Components

As you might expect, active components come in many shapes. The thr
major kinds of VisualPart are composites, wrappers and views. Composit
and wrappers both support layout and coordination of multiple views in a
single window—they are described in a later section. Composites and
wrappers are autonomous, because they typically operate independent
model.

That leaves views. The distinguishing trait of a View is that it has a controller.
As a subclass of VisualPart, a view also has a container—so far, then, a vie
knows its container and its controller. How does it know its model?

Figure 18-16 Autonomous vs. dependent visual components

Interposed between VisualPart and View in the class hierarchy is the class
DependentPart. A DependentPart has a model. The only direct subclass
of DependentPart that comes with the class library is View, so it may seem
that the two of them could have been combined. However, you may wel
encounter a situation requiring a visual component that knows its model
has no controller.

Autonomous

Composite

Wrapper
View

Dependent
256 VisualWorks User’s Guide, Rev. 2.1

Visual Component

to

ass
f

ne.

 a

odel

.

Figure 18-17 The connections provided by VisualPart, DependentPart and
View as their primary contributions to the view hierarchy.

For example, a file-locating utility might reserve a portion of the window
display the directory in which a file was found. No user input would be
accepted in that portion of the window, so no controller is required, but it
changes in step with the model. Thus, anytime you create a new view cl
that is not intended to have a controller, it really belongs as a subclass o
DependentPart.

Controller Linking

By default, a view creates its own controller the first time it is asked for o
It does so by sending defaultControllerClass to itself and creating a new
instance of the returned class. For example, the View class returns Controller
when asked for its default controller class.

In a custom view class, you can redefine the defaultControllerClass
method. You can also supply a controller instance at runtime by sending
controller: message to a view.

.

Model Linking

A view registers itself as a dependent of its model. Then, whenever the m
sends self changed, the view receives an update: message. Thus, linking a
view to a model has two parts:

VisualPart

DependentPart

View

Container

Model

copy
cut
paste Controller
VisualWorks User’s Guide, Rev. 2.1 257

Chapter 18 Application Framework

’s

 by

 as

ting

rea

itu-

eds
n

is-
d, if

a
ds

n
or,
d the
n Registering the view as a dependent of the model. Subclasses of Depen-
dentPart handle this automatically when a model: message is sent to the
view to set its model.

n Implementing an update: method to display some aspect of the model
information

Redisplaying

A view is responsible for redisplaying its contents whenever it is affected
a damage rectangle being repaired by the window. It does so in a displayOn:
method, which is sent by the window, with the window’s graphics context
the argument.

A view must also register a damage rectangle with the window, represen
all or part of its area, whenever it receives an update: message from the value
model. Registering a damage rectangle is done by declaring the view’s a
invalid, by sending invalidate to itself. Subclasses of DependentPart do this
automatically.

.

.

Thus, by implementing a displayOn: method, and sending self invalidate in
its update: method, a view is assured of responding to any redisplaying s
ation in a unified way.

Selective Redisplaying

By sending self invalidate, the view is adding its entire display box to the
window’s list of damage rectangles. In many situations, the view only ne
to redisplay a portion of its area that contains some dynamic element. A
invalidateRectangle: message can be used to invalidate a portion of the
view.

In a list view, for example, only one or two lines in the list need to be red
played: the line that was selected, if any, and the line that was deselecte
any.

Immediate vs. Lazy Damage Repair

By default, the window accumulates damage rectangles until it receives
checkForEvents message from its controller. The standard controller sen
that message each time it is polled for activity. That is frequent enough i
most situations. However, if a competing process is hogging the process
there can be a significant delay between the time the model changes an
258 VisualWorks User’s Guide, Rev. 2.1

Visual Component

s

nt.
ry

ra-
 the

is
ther
ke a

t the

uiva-
view is updated. In such situations, another variant of invalidate lets you
indicate that the window should repair its damage immediately:

self invalidateRectangle: aRectangle repairNow: true

A value of false for the repairNow: argument is the default, and is sometime
called lazy damage repair.

Composite Visual Component

A window is only prepared to communicate with a single visual compone
To place two or more components in the same window, some intermedia
object is needed to hold the leaf components. The situation is analogous to a
cardboard box filled with wine bottles—without a grid of cardboard sepa
tors, the bottles would bump into one another, with unfortunate results for
wine lover.

Figure 18-18 A CompositePart holds a collection of other visual components.

A CompositePart provides this separation framework. To the window, it
just another visual component, one that happens to hold a collection of o
visual components. To each of its subcomponents, it is a container just li
window. A subcomponent can be another composite object.

When a graphics context is passed down from the window, the Compos-
itePart passes it on to those of its subcomponents that say they intersec
affected area.

CompositePart has two main subclasses:

n DependentComposite, for situations in which the composite object
itself needs to be a dependent of the model. This is the composite eq
lent of DependentPart.

Composite

View1 View2

Window
VisualWorks User’s Guide, Rev. 2.1 259

Chapter 18 Application Framework

n
re its
ites,

ollec-
nt to

uch
nt

e

t
nt

nent

ers.
n CompositeView, a subclass of DependentComposite, which has a
controller that spans all of its subcomponents. This is the composite
equivalent of View.

Lest the analogy of the wine carton’s grid lead you astray, a CompositePart
does not perform translation or clipping for its subcomponents, which ca
overlap one another. The composite does not bother to keep track of whe
subcomponents are located or how big they are. For complicated compos
such an arrangement would require that the composite consult a large c
tion of coordinates each time it needed to determine which subcompone
update.

Instead, the composite leaves it to the subcomponents to keep track of s
details. To spare you from having to equip every kind of visual compone
with this ability, it has been placed in a special kind of VisualComponent
called a wrapper. Thus, a window that has two views would contain a
composite that contains two wrappers, each of which contains one of th
views.

.

Figure 18-19 Each leaf component is contained by a wrapper.

Wrapper

Like a CompositePart, a Wrapper is both a container and a component. I
contains a single visual component, providing a service to that compone
such as translating the origin or clipping the display box.

In other respects it tries to be transparent, forwarding the most common
messages from its container down to its component, and from its compo
up to its container.

Wrappers can be nested inside one another, too, so you can build up a
complex set of behaviors by using several simple, highly reusable wrapp

Composite

Window

Wrapper2

View2View1

Wrapper1
260 VisualWorks User’s Guide, Rev. 2.1

Controller

ve-

ated

mu-
ou
he

nly
,
Controller

A controller is what makes a view seem to respond directly to mouse mo
ments and keyboard activity. By shaping the nature of that response, a
controller defines the feel of an interface, as apart from its look.

Each window and each active component within a window has an associ
controller. The window’s controller typically provides the familiar
<Window> menu (move , resize , close , etc.). A visual component’s
controller has a broader range of typical duties:

n Providing an <Operate> menu

n Notifying the model about selections made with the mouse

n Forwarding keyboard activity to the model

n Changing the cursor

Thus, in an application window such as the System Browser, you are com
nicating with two different controllers depending on which mouse button y
press: The <Window> button is fielded by the window’s controller, while t
<Select> and <Operate> buttons are fielded by the view’s controller.

.

Figure 18-20 The controller with which each mouse button interacts.

Just as models and views are specialized for particular purposes, each
controller class has its unique set of abilities. A button’s controller may o
need to pay attention to clicks of a particular mouse button, for example

Window Controller

Component Controller
VisualWorks User’s Guide, Rev. 2.1 261

Chapter 18 Application Framework

hi-
iven

d a

nts,

the

but

be

ter

 or

h

e
ou
itec-
while a text-editing controller has to pay attention to both mouse and
keyboard actions.

Polling vs. Event-Driven Controllers

VisualWorks supports one type of input controller that uses a polling arc
tecture and another type that uses an event-driven architecture. Within a g
user interface, all views must employ the same input architecture. The
“Custom Controllers” chapter of the VisualWorks Cookbook provides instruc-
tions for creating either type of controller and integrating it with a view an
value model.

One type of input controller uses a loop to repeatedly check for input eve
for as long as the controller retains control. (Typically, a controller retains
control while the mouse cursor is within the boundaries of the associated
view.) Each time the controller asks for events that have occurred since
previous iteration, it is said to be polling for events, hence the name polling
controller.

The second type of input controller does not use a loop to poll for input
events. Instead, it relies on the ControlManager to notify it whenever an
input event occurs. It then decides whether the event is of interest—for
example, a button widget’s controller cares about mouse-button events
ignores most keyboard events. Because this type of controller is inactive
except when there is a relevant input event for it to process, it is said to
driven by events, or event-driven. While the flow of control is dispatched to
a polling controller, individual events are dispatched to an event-driven
controller.

A given controller class can be equipped for both input architectures. Af
you file in the input events code as described in the VisualWorks Cookbook,
standard VisualWorks controllers are capable of servicing either a polling
an event-driven canvas. A custom controller class also inherits from
Controller most of the machinery for fitting into either architecture, thoug
you will typically need to add custom protocol for each architecture.

Thus, for example, you can continue to use a custom controller within th
older polling style while you layer on the event-handling methods. Then y
can switch any canvases that use the controller to the event-driven arch
ture.
262 VisualWorks User’s Guide, Rev. 2.1

Controller

s
ow

g

nts

ents,
s its
Flow of Control (Polling Controller)

Ownership of the user input is commonly referred to as control. The host
operating system hands control to a control manager when a VisualWork
window is activated. The control manager passes control on to the wind
that contains the cursor.

Control Manager

Each ApplicationStandardSystemController, which is associated with a
window rather than a view, is entered in a collection held by the Scheduled-
Controllers object. ScheduledControllers is a global variable that holds an
instance of ControlManager. This control manager is responsible for passin
control to the active window’s controller, and is the reason that a Scheduled-
Window has “scheduled” in its name.

The window’s controller asks the window which of its subcomponents wa
control, if any (subviewWantingControl). In response to this message, the
window requests objectWantingControl from its component. The compo-
nent, if it is a composite, forwards that message to each of its subcompon
and so on. Each leaf-level component, upon receiving this message, ask
controller isControlWanted. The first controller to respond true is sent a
startUp message by the control manager, beginning its basic control
sequence.

.

Figure 18-21 How the flow of control proceeds from the operating system to a
specific component controller in a specific window.

Operating
System

Control
Manager

Window1
Controller

Window2
Controller

Window3
Controller

Component
Controller
VisualWorks User’s Guide, Rev. 2.1 263

Chapter 18 Application Framework

ci-
rs
hich

e?
r

n re-
n

he

he

 of
Controllers rely on sensors to help them make their control-accepting de
sions. Each window maintains a sensor for gathering input, and controlle
bombard this object with questions. Has a mouse button been pressed? W
one? Has it been released yet? Where was the cursor located at the tim
Based on the responses to questions such as these, the controller eithe
accepts or refuses control.

Basic Control Sequence

The basic control sequence consists of three steps:

n Initialize control

n Loop while the conditions for holding control are met

n Terminate control

Initialization is performed in a controlInitialize method. By default, a visual
component’s controller does nothing in response to this message. You ca
implement the method in a controller class to perform some special actio
when the controller starts up. In the sketching application, the cursor is
changed from its normal shape to cross-hairs.

This implies that you change the cursor back to its normal shape when t
controller yields control. That would be done in the control-terminating
method, controlTerminate.

In practice, it is difficult to guarantee that initializing and terminating
methods will be called in matched pairs. For example, if the user were to
interrupt the drawing program, a new controller would take control and t
cursor would never be changed back.

In its controlLoop method, a controller first verifies that the conditions for
maintaining control (isControlActive) are still true. If so, it sends
controlActivity to itself, after which it repeats the isControlActive test.

The controlActivity method is the real meat of the controller. Here, the
controller typically queries its sensor to find out whether a particular type
input event has occurred.
264 VisualWorks User’s Guide, Rev. 2.1

Controller

.

hi-

iven
Figure 18-22 On receiving control, a controller initializes itself, repeats an
activity loop, and then performs finalization actions

When the isControlActive test fails, control reverts to ScheduledControl-
lers, which begins polling its scheduled controllers to find a new control
receiver.

Input Sensing

In the polling architecture, InputState reads events from the Object Engine
For each event, InputState caches mouse button and keyboard states as
needed, then dispatches the event to the WindowSensor of the appropriate
window.

The sensor queues a keyboard event or a meta event in the appropriate
SharedQueue. In the case of a button event, the WindowSensor executes
a Delay, so the UIProcess has time to check the button states.

A widget controller, in its activity loop, polls the sensor for outstanding
mouse and keyboard events, and reacts to each event appropriately

Flow of Events (Event-Driven Controller)

Event Queuing

The event-driven architecture is designed to co-exist with the polling arc
tecture. After the events.st file in the extras directory has been filed
in, each window canvas can be toggled between the polling and event-dr

ScheduledControllers Controller

startUp

self controlInitialize

self controlLoop
self isControlActive
self controlActivity

self controlTerminate
VisualWorks User’s Guide, Rev. 2.1 265

Chapter 18 Application Framework

s

se

lar

n

n
t
ds,

they
sed

architectures, using the Property Tool. The default is polling until
events.st is filed in.

An event-driven window’s sensor is an instance of EventSensor. Event-
Sensor receives events from the InputState and queues button, keyboard
and window events into one EventQueue.

By default, EventSensor collapses MouseMovedEvents. Collapsing
events means that before queuing an event, the EventSensor checks whether
the last item in the EventQueue is of the same type. If it is, it replaces the
last event with the current one.

Event Dispatching

An ApplicationStandardSystemController for an event-driven window
runs an eventLoop instead of controlLoop. In the eventLoop, the controller
waits on its window sensor’s EventQueue for the next event, then processe
it, until its window is no longer active. When the controller dequeues an
event, it passes the event to its EventDispatcher.

An EventDispatcher generally sends window events to the window, mou
events to a widget’s controller and keyboard events to the KeyboardPro-
cessor of the window.

While a polling controller is asked whether it wants control (isControl-
Wanted), an event-driven controller is asked whether it handles a particu
mouse event (handlerForMouseEvent:). While the polling controller typi-
cally uses a viewHasCursor test to accept or reject control, an event-drive
controller typically uses viewHasCursorWithEvent: for the same purpose.

Instead of using a control loop that checks for user input continuously, a
event-driven controller must be prepared to respond to each type of inpu
event individually. To do so, it must be equipped with a set of event metho
such as enterEvent:, exitEvent: and keyPressedEvent:. The Controller
class provides default methods (see the events protocol), which generally do
nothing, so you only need to define methods for events that your custom
controller cares about.

Selection Tracking

Selection tracking is a very common behavior among controllers. Most
controllers need to do some form of selection tracking between the time
receive a button-pressed event and the time they receive a button-relea
event. For example, between the time the user presses and releases the
<Select> button in a text editor, a TextEditorController grabs all Mouse-
266 VisualWorks User’s Guide, Rev. 2.1

Controller

ve-

d.

 for

MovedEvents and performs textual selection tracking for each mouse mo
ment.

A polling controller starts a loop (in selectDownAt: or startDragging) in
which it grabs and processes all events until the mouse button is release

In the event-driven architecture, a hierarchy of classes has been created
performing selection tracking on behalf of different types of controllers. A
SelectionTracker is created by a controller in response to a redButton-
PressedEvent: message. A RedButtonPressedEvent is then dispatched to
the SelectionTracker. At this point, the SelectionTracker generally grabs
all mouse events until the <Select> button is released.
VisualWorks User’s Guide, Rev. 2.1 267

Chapter 18 Application Framework
268 VisualWorks User’s Guide, Rev. 2.1

Controller
VisualWorks User’s Guide, Rev. 2.1 269

Chapter 18 Application Framework
270 VisualWorks User’s Guide, Rev. 2.1

Controller
VisualWorks User’s Guide, Rev. 2.1 271

Chapter 18 Application Framework
272 VisualWorks User’s Guide, Rev. 2.1

iety

four

. The

tail
isu-
n,
Chapter 19

Graphic Operations

The Smalltalk Portable Imaging Model (SPIM) supports the display of
portable, two-dimensional, color graphics. The SPIM classes place a var
of static and animated graphic effects at your command.

This chapter describes the structure and use of the graphics classes, in
sections:

n The fundamentals of SPIM graphics

n The kinds of display surfaces on which a graphic can be drawn

n The graphic objects that can be drawn on a display surface

n How to integrate a graphic object into your application

Three other sections of the documentation describe closely related topics
“Color” chapter of this manual shows how to apply patterns and colors to
graphic objects. The “Application Framework” chapter goes into more de
about the construction of a window (the primary display surface). In the V
alWorks Cookbook, the “Custom Views” chapter covers string manipulatio
fonts and other aspects of text (the primary visual object).
VisualWorks User’s Guide, Rev. 2.1 273

Chapter 19 Graphic Operations

dots
ture

) or
or
e
des a

it is
our

 on

ght
Background

Much like a newspaper photograph, a computer image is made up of tiny
of color. Each dot makes one element of the picture, so it is known as a pic
element—or pixel, for short.

Figure 19-1 Bits in memory represent picture elements on the screen

On a black on white (monochrome) screen, each pixel is either on (black
off (white). Its current state is represented in memory as either one (on)
zero (off). Thus, each bit in memory controls a single pixel, and the entir
screen is represented as a two-dimensional array of bits. The array provi
map of the screen, so it’s called a bitmap.

When the screen is capable of displaying more than two colors, a single b
not sufficient to embody the range of choices. It may take two bits (where f
colors are available) or three bits (for eight colors) or more. Though the
“bitmap” is no longer a one-to-one mapping from bits in memory to pixels
the screen, it is still referred to as a bitmap.

Coordinate System

Each pixel represents one unit of width on the x-axis and one unit of hei
on the y-axis.

bitmap pixels

1 0 1

0 0 0

1 0 1
274 VisualWorks User’s Guide, Rev. 2.1

Background

-

 or
 a
nd
id-

ith x
i-

in-
ther

ut it
ence

Figure 19-2 Relative clarity remains constant regardless of the screen’s resolu
tion

Different kinds of computer monitors vary in the number of pixels per inch
per centimeter, so a window that is 200 pixels wide will appear larger on
screen with lower resolution. However, the relative clarity of the window a
its contents will be the same, which is generally the more important cons
eration.

SPIM graphics use a two-dimensional rectangular coordinate system, w
coordinates increasing from left to right on the graphic plane and y coord
nates increasing from top to bottom.

.

Figure 19-3 Coordinate system

Numbering starts from zero. Some windowing systems (such as the Mac
tosh’s) place pixels between grid points, as shown in Figure 19-3, while o
window systems (X and MS-Windows) place pixels on grid points. SPIM
takes its lead from the window manager. This difference rarely matters, b
can cause a one-pixel misalignment in some circumstances and a “differ

1200 800

400 400

High-resolution Low-resolution

0 1 2 3

1

2

y

x
4

3

VisualWorks User’s Guide, Rev. 2.1 275

Chapter 19 Graphic Operations

 be

tes
ge
as

 be
sed
ow

ions
ting

f

u

nd to
of opinion” about whether the border of an object such as a polygon is to
repainted when that object is filled.

All graphic operations accept nonintegral coordinates, but such coordina
are rounded to the nearest integer. Coordinate values must be in the ran
from -32768 through 32767. These limits apply after translation, if any, h
been applied. Translation is explained later in this chapter, on page 284.

Graphic objects are typically displayed in a window, and the window can
moved around by the user. For that reason, the origin of the window is u
in most graphic operations rather than the origin of the screen. If the wind
has subviews, each subview maintains its own origin, and graphic operat
use that origin. As a result, you rarely need to be concerned with transla
coordinates when a window is moved or resized.

Points

An x-y coordinate pair is normally represented as an instance of Point. The
following message creates a Point having an x-value of 100 and a y-value o
250. The spaces before and after the binary selector (@) are optional.

100 @ 250

You can also specify polar coordinates. The following example creates a
Point whose coordinates lie on a circle of radius 100 at 45 degrees:

Point r: 100 theta: 45 degreesToRadians

Two constants are available, as well: Point zero returns 0@0, and Point
unity returns 1@1.

A Point can perform the usual comparison and arithmetic functions—yo
can even add a scalar number to a Point, increasing both x and y by the
desired amount. Table 19-1 lists some other useful messages you can se
a Point.
276 VisualWorks User’s Guide, Rev. 2.1

Background

size
are

ect-

,
uld
Rectangles

Rectangles are used in a variety of graphic operations, from setting the
of a window to specifying the bounding box of an ellipse. Because they
used so frequently, instances of Rectangle are especially well endowed with
helpful behavior.

The usual way of creating a Rectangle is to send an extent: or corner:
message to the origin point. Both of the following expressions create a r
angle 100 pixels wide, 250 pixels high, with its origin at 50@50:

50@50 extent: 100@250
50@50 corner: 150@300

The extent: message is more flexible because you need not calculate the
bottom-right corner’s absolute coordinates. However, in some situations
those coordinates may already be provided, while the width and height wo
have to be calculated.

Table 19-1 Miscellaneous point functions

Message Description

dist: aPoint Distance from receiver to aPoint.

transpose Answer a new point with x and y trans-
posed.

grid: aPoint Answer point nearest receiver on grid
whose increment is specified by aPoint.

truncatedGrid: aPoint As above, nearest preceding grid point

nearestPointOnLineFrom: point1
to: point2

As above, optimized for integer points.

dotProduct: aPoint Dot product of receiver and aPoint

normal Answer the receiver’s normal vector.

unitVector Answer the receiver scaled to unit length.
VisualWorks User’s Guide, Rev. 2.1 277

Chapter 19 Graphic Operations

nd

g of
.

Figure 19-4 Creating a rectangle

When it is inconvenient to assemble the coordinates into Points, you can also
create a Rectangle from the component x- and y-values:

Rectangle left: 50 right: 300 top: 50 bottom: 150

And when your application prefers not to distinguish between the origin a
the corner point, you can let Rectangle do the comparison and create an
instance:

Rectangle vertex: 300@150 vertex: 50@50

A suite of creation messages supports user-defined placement and sizin
rectangles, with or without grids.

Table 19-2 Rectangle placement and sizing messages

Message Description

fromUser User defines the rectangle via the mouse.

fromUser: gridPoint User defines a rectangle whose size incre-
ment is determined by gridPoint.

originFromUser: extent As above, with grid alignment controlled
by phasePoint.

50@50

150@300

250

100
278 VisualWorks User’s Guide, Rev. 2.1

Background

-

s.
Inquiring about a Rectangle’s Dimensions

Once created, a Rectangle can tell you a number of things about its dimen
sions and its contents:.

Scaling and Transforming Rectangles

Rectangles also handle a variety of scaling, merging and translating task

:

fromUser: gridPoint phase:
phasePoint

User defines the origin via the mouse; the
size is determined by extent.

originFromUser: extent grid:
scalePoint

As above, with the origin constrained to a
grid whose spacing is defined by scale-
Point. A button is assumed to be down

originFromUser: extent grid:
scalePoint whileButton: button
isDown: aBoolean

As above, with a specified button in a
specified position.

Table 19-3 Messages for accessing a Rectangle’s dimensions

origin width area

corner height contains: aRectangle

left leftCenter containsPoint: aPoint

right rightCenter intersects: aRectangle

top topCenter

bottom bottomCenter

Table 19-4 Rectangle scaling, merging, translating messages

scaledBy: aScalarOrPoint

expandedBy: aScalarPointOrRectangle

insetBy: aScalarPointOrRectangle

insetOriginBy: point1 cornerBy: point2

intersect: aRectangle

Table 19-2 Rectangle placement and sizing messages

Message Description
VisualWorks User’s Guide, Rev. 2.1 279

Chapter 19 Graphic Operations

hic

 of

ree

an

 and
In the next section, you’ll see how points and rectangles are used in the
creation of display surfaces.

Display Surfaces

Graphic operations in Smalltalk display graphics on two-dimensional grap
media. All current graphic media are subclasses of the abstract class Display-
Surface, which represents host graphic media related to video display
screens.

There are three types of display surface: Window, Pixmap and Mask. While
a Window is used to display graphic objects on-screen, Pixmaps and Masks
are used for behind-the-scenes manipulation of graphics. All three types
display surface employ a GraphicsContext as an intermediary between the
surface and the objects to be displayed. We will introduce each of the th
types of display surface, and then we will discuss GraphicsContext.

VisualWorks Windows

A VisualWorks Window corresponds to the window supplied by the host
platform’s window manager. It is a Macintosh window on the Macintosh,
X window on machines running X, and so on. For that reason, a Window’s
border decorations and label bar take on the host window manager’s look
feel.

merge: aRectangle

areasOutside: aRectangle

moveBy: aPoint

moveTo: aPoint

translatedBy: aScalarOrPoint

align: point1 with: point2

amountToTranslateWithin: aRectangle

Table 19-4 Rectangle scaling, merging, translating messages
280 VisualWorks User’s Guide, Rev. 2.1

Display Surfaces

s,
w

er-

s a

ws.

.e.

e

of

hree
ScheduledWindow, a subclass of Window, has a controller that permits the
user to move, resize and close the window. To create a ScheduledWindow
and then open it on the screen, execute the following:

ScheduledWindow new open.

By itself, a ScheduledWindow is not very useful. Try opening one and
typing characters into it—as you will see, it does not provide application
capabilities such as text editing. (To close the window, select close in its
<Window> menu.) A ScheduledWindow handles the details of window
resizing, raising and lowering, etc. It holds onto a VisualComponent, which
is frequently a View. The view itself may contain subviews, and so on. Thu
ScheduledWindow is commonly described as being at the top of the vie
hierarchy.

The “Application Framework” chapter describes windows and window op
ations in more detail.

Pixmaps

A Pixmap is the off-screen equivalent of a window. It is a rectangular
surface, capable of storing an encoded color at each pixel location just a
window does. Unlike a window, the graphic contents of a Pixmap are not
affected by damage events such as those caused by overlapping windo
Once you draw something on a Pixmap, you can be sure of retrieving that
same object later. Another way of putting it is that a Pixmap retains its
contents until they are explicitly overwritten. For this reason, a Pixmap is
said to be a retained medium. It is not, however, retained across snapshots (i
quitting and restarting VisualWorks).

Pixmaps and Color

A Pixmap stores a numeric color code for each pixel in its map. This cod
can be converted to an instance of ColorValue with the aid of a palette, which
associates each numeric code with a specific color. Like a window, a Pixmap
shares the display screen’s color palette. To get a Pixmap’s palette, send it the
palette message. (Palettes are described on page 308).

The depth of a Pixmap is the number of bits needed to convey the range
possible colors in its palette. A two-color Pixmap has a depth of one because
the two colors can be numerically conveyed by the state of a single bit. A
four-color palette requires a depth of two, an eight-color palette requires t
VisualWorks User’s Guide, Rev. 2.1 281

Chapter 19 Graphic Operations

u
om
 take
e

cross-
f the

o. A
iate

g
bits, and so on. As with windows, Pixmaps have the same depth as the
display screen.

A Pixmap can also tell you its defaultPaint, its defaultBackgroundPaint
and its defaultPaintPolicy. For more information about color and paint
policy, see “Policies for Rendering Color” on page 311.

Pixmaps and the host clipboard

In windowing environments that support a graphics clipboard, a Pixmap can
be copied from the host clipboard, via fromClipboard, and pasted to it, using
toClipboard.

Masks

A Mask is used most often as a sophisticated clipping device that lets yo
trim unwanted parts of a picture. For example, you can display a detail fr
a complicated image by masking out surrounding regions. The mask can
any shape, such as a circle or even a car’s silhouette, so you can achiev
advanced graphic effects involving merged images.

Figure 19-5 A cursor with and without a mask

For example, Cursor employs a mask to trim away “white” portions of the
rectangular image, leaving only the desired shape (such as an arrow, or
hairs). Without a mask, the cursor would obscure a rectangular region o
display no matter what shape the cursor image was.

The value at each pixel location in a Mask indicates the portion of that pixel
that is covered by the Mask’s graphic object. In a filled-circle mask, for
example, a pixel that lies completely outside the circle has a value of zer
pixel that is completely covered by the circle has a value of one. Intermed
values are not currently supported for masks, so borderline pixels get a
rounded value of either zero or one.

Another way of thinking about a Mask is as a decal—“zero” pixels are the
transparent backing while “one” pixels are the graphic object that is bein
transferred to a new medium. The standard term for this is coverage. Zero
coverage implies no transfer of graphic content, while a CoverageValue of
282 VisualWorks User’s Guide, Rev. 2.1

Display Surfaces

ow

. The
ltalk
ed to

lient.

ppli-

but

is-
, a

pon-
one indicates complete transfer. Thus, each pixel location in a Mask has a
CoverageValue rather than the ColorValue associated with a Pixmap pixel.
The two types of coverage are designated as CoverageValue transparent
(zero) and CoverageValue opaque (one).

Because a Mask is coverage-based rather than color-based, its contents
cannot be directly copied onto a color-based display surface such as a wind
or a Pixmap—though you can display the mask on a color-based surface.

Host Residency of Display Surfaces

Display surfaces are created and destroyed by the host window manager
bulk of a display surface, including its contents, are stored not in the Smal
object representing that display surface but in a host data structure referr
by the Smalltalk object. On a client-server window system such as X
Window, the storage for a display surface resides in the server, not the c

Because of their host residency, display surfaces other than scheduled
windows do not survive snapshots. After a snapshot is restarted, your a
cation must regenerate any required Pixmaps, Masks and unscheduled
windows. (However, the CachedImage class gives you this ability—see
“CachedImage” on page 295.)

Graphics Context

Every display surface uses an instance of GraphicsContext to manage
graphic parameters such as line width, tiling phase and default font.
Displaying operations are performed not by the display surface directly,
by its GraphicsContext.

Similarly, messages for modifying graphic parameters such as line width
must be addressed to the appropriate GraphicsContext. That object applies
the relevant parameters and then displays the object on the surface.

It’s important to understand that changes made to a GraphicsContext are
forgotten immediately unless that GraphicsContext is stored by a variable
in your application. This is because a display surface does not store an
instance of GraphicsContext—an instance that could be altered in a pers
tent and often unintended way by unrelated graphic operations. Instead
display surface manufactures a new instance of GraphicsContext, having
the default parameters, each time it is sent the message graphicsContext.

This mechanism discourages tainting of the GraphicsContext in a way that
ruins it for an unrelated graphic operation. Each graphic operation is res
sible for setting up its own graphic context, and need not worry that the
VisualWorks User’s Guide, Rev. 2.1 283

Chapter 19 Graphic Operations

ou
i-
the

yed

. You

 to
gle

t

u

c
ct-
context it gets from the view may have been modified. For this reason, y
should never store a GraphicsContext in an instance variable or a class var
able. If you must assign it to a variable, put it in a temporary variable so
changes remain local to the method.

Translation

Each GraphicsContext keeps track of an x-offset and a y-offset from the
origin of the display surface. By setting these offsets, you can cause displa
objects to be shifted, or translated. This is useful as an alternative to altering
the display coordinates of the graphic objects themselves.

Applying a translation to the GraphicsContext is sometimes more conve-
nient than transforming the coordinates of individual display objects. For
example, suppose you have two views each showing a portion of a graph
can draw the entire graph on a large Pixmap, and then use translation to
display the desired portion of the graph on each view.

A display surface’s default translation is 0@0. A VisualPart’s Graphics-
Context has a default translation that reflects the object’s position relative
the window’s origin. For example, suppose the window occupies a rectan
400 pixels wide and 500 pixels high. A view that occupies the lower righ
quadrant of the window would have a default translation of 200@250.

Clipping

A GraphicsContext also maintains a clipping region—a rectangular
viewport outside of which display objects are invisible (clipped away). Yo
can control both the size and the location of this region.

Limiting the clipping region to an area that is smaller than the available
display region can be useful when it is not convenient to alter the graphi
object directly. Modifying the clipping region is equivalent to applying a re
angular Mask to the graphic object.

Use clippingRectangle: to set a GraphicsContext’s clipping region to a
new rectangular area. To fetch the existing rectangle, send clippingRectan-
gleOrNil, which returns nil when no clipping is in effect other than to the
bounds of the display surface. If you would rather receive the display
surface’s bounds instead of nil, send clippingBounds to the GraphicsCon-
text.

The clipping rectangle is specified in the coordinate system of the Graphic-
sContext. For a display surface, the default is nil; for a VisualPart such as a
view, the default clipping region is the view’s bounding box.
284 VisualWorks User’s Guide, Rev. 2.1

Display Surfaces

s:

l,
oor-
rdi-
hing

e

eet.

ile

or
Line Characteristics

A GraphicsContext maintains three attributes specifically for lines and arc
width, cap style and join style.

Line Width

Width refers to the thickness of the line, in pixels. The default is one pixe
and there is no practical maximum. The line is centered on the specified c
dinates, so a 20-pixel horizontal line has 10 pixels of width above the coo
nates and 10 pixels of width below the coordinates. The messages for fetc
and setting line width are lineWidth and lineWidth:. The line width setting
applies to lines, polylines, arcs and rectangular borders.

Line Cap Style

Cap style controls the appearance of line ends. Butt style (the default)
provides no cap on the end; it is specified as GraphicsContext capButt.
Rounded caps having a diameter equal to the line width are specified as
GraphicsContext capRound. Rectangular caps that project beyond the lin
end by half of the line width are specified as GraphicsContext
capProjecting. To retrieve and set the cap style, use capStyle and capStyle:
messages.

Line Join Style

Join style refers to the appearance of the outside corner where two lines m
Miter style (the default) features a squared-off joint; it is specified as Graph-
icsContext joinMiter. A rounded joint is specified as GraphicsContext
joinRound, and a beveled joint is specified as GraphicsContext joinBevel.
To retrieve and set the join style, use joinStyle and joinStyle: messages to a
GraphicsContext.

Default Paint (color, opaqueness, and texture)

In SPIM, paint is the generic term for color, opaqueness and texture. Wh
some graphic objects specify their own paint (Image, for example), the
GraphicsContext needs to supply a default paint for uncolored objects. F
a color-based display surface (Window or Pixmap), the default paint is
ColorValue black. For a coverage-based surface (Mask), the default is
CoverageValue opaque. To fetch and set the default paint, use paint and
paint: messages.
VisualWorks User’s Guide, Rev. 2.1 285

Chapter 19 Graphic Operations

 For
ono-
epth

-
e

the
e

also
g

f

ter

jects

le,

e
A GraphicsContext also maintains a paint policy, which controls the
rendering of paints that are not directly supported by the display device.
example, a color such as red is rendered with a suitable gray tone on a m
chrome screen by default. The default on color systems depends on the d
of the screen (the range of colors it can render directly). Use paintPolicy and
paintPolicy: to fetch and set the policy. Paints and paint policies are
discussed in more detail in the “Color” chapter.

Tiling Phase

When a Pattern is used as the paint, the placement of the initial tile deter
mines the location of all other tiles in the pattern. Shifting the origin of th
first tile causes all tiles to be shifted similarly, affecting their alignment
relative to borders and other graphic elements. The default tile phase is
Point 0@0, meaning the origin of the first tile is placed at the origin of th
GraphicsContext’s coordinate system. Use tilePhase and tilePhase:
messages to fetch and set the point.

Patterns and tiling are discussed in more detail on page 303. Tile phase
affects the placement of a halftone when the paint policy uses a ditherin
algorithm—discussed on page 313.

Default Font

The default font in a GraphicsContext is applied to a String, which has no
font characteristics of its own. Text and ComposedText objects override the
default font provided by the GraphicsContext. The default varies by
platform—it can be determined by sending defaultFont to the display
surface. To fetch the ImplementationFont currently in effect in a Graphic-
sContext, send a font message. To reset the default font (to an instance o
FontDescription), send a font: message.

For more detailed information about fonts, see the “Text and Fonts” chap
of the VisualWorks Cookbook.

Displaying Geometrics

A visual object is expected to respond to a displayOn: message by rendering
itself on the graphics context that is passed as an argument. Geometric ob
such as circles and rectangles, however, are a special case. For examp
sending displayOn: to a Rectangle is ambiguous because some situations
require a filled rectangle while others call for a stroked rectangle (only th
outline is displayed). For this reason, geometric objects respond to
286 VisualWorks User’s Guide, Rev. 2.1

Graphic Objects

y
a-

,

ing

e
you
ngle.
 it

tfor-

ause
tes:

on
A
s

ct (a
bject
displayFilledOn: and displayStrokedOn:, but not necessarily to
displayOn:.

This presents a problem for containers, which only know how to say
displayOn:—for example, when a view refreshes its display, it does so b
sending displayOn: to its graphic elements. The solution to this communic
tion problem lies in FillingWrapper and StrokingWrapper. A Filling-
Wrapper translates displayOn: to displayFilledOn: for its component, and
a StrokingWrapper performs the parallel service for its component. Thus
when you place a Rectangle inside a FillingWrapper, sending displayOn:
to the wrapper causes a filled rectangle to be displayed.

In addition, a StrokingWrapper maintains the line width for its component
(so it can accurately compute its bounding rectangle). The accessing
messages are, predictably, lineWidth and lineWidth:.

As a convenience, geometric objects can provide their own stroking or fill
wrapper. The asStroker and asFiller messages, when sent to a geometric,
wrap it in the appropriate wrapper—then you can use displayOn:, as usual.

Graphic Attributes

While you can modify attributes when you display a specific object on th
display surface, sometimes that is cumbersome. For example, suppose
have created a drawing application and your user has created a red recta
Your application must somehow associate redness with that rectangle so
will be rendered correctly each time the window is refreshed. The straigh
ward solution is to create a subclass of Rectangle that has a paint instance
variable. You can see how this approach quickly escalates, however, bec
then all types of graphic objects must remember several possible attribu
color, line width, etc.

The GraphicsAttributes class provides a means of storing several comm
graphic attributes: line width, cap style, join style, phase, font and paint.
GraphicsAttributesWrapper is used to associate a set of graphic attribute
with its graphic component.

Graphic Objects

A graphic object is an object that can be displayed on a display surface.
Graphic objects can be colored or uncolored. An uncolored graphic obje
geometric object) simply describes a region in space; a colored graphic o
(an image) also specifies the colors within the region.
VisualWorks User’s Guide, Rev. 2.1 287

Chapter 19 Graphic Operations

me
 and
ect,
he
e
 a
the

the

m-
sked

si-

n
 of
dd
Displaying a graphic object onto a graphic medium is conceptually the sa
as placing a stencil outlining the associated region on top of the medium
then painting only the area exposed by the stencil. For an uncolored obj
the display operation paints every pixel within the stenciled area, using t
GraphicsContext’s paint. Displaying a colored object paints the pixels of th
exposed area with the colors of the corresponding pixels in the object. If
clipping rectangle is specified, it is intersected with the area covered by
graphic object to form the stencil.

The graphic objects supported by the imaging model are texts, lines,
polylines, splines, Bezier curves, arcs, circles, rectangles and graphical
images. In addition, the display surfaces themselves are also graphic
objects—for example, you can display one window on another.

Texts

There are three types of text object: String, Text and ComposedText. A
String is a collection of characters—it has no font information, so it uses
font provided by the GraphicsContext. Text and ComposedText override
the default font with their own font(s). ComposedText also handles line-
wrapping.

When a text object is drawn on a display surface, only the characters the
selves are displayed. The background implied by the bounding box is ma
out. This provides maximum flexibility when super-imposing text on a
colored surface or on another graphic object.

The ”Text and Fonts” chapter in the VisualWorks Cookbook discusses font
control and other matters relating to the creation of text objects. In this
chapter, we confine ourselves to the displaying of those objects.

The placement of text depends on its class. A String or Text is placed with its
left baseline at the specified position. Because a ComposedText can span
multiple lines, the origin of its bounding box is placed at the specified po
tion.

Lines, Polylines and Polygons

A line segment connects two points, named start and end. A polyline
connects three or more points (its collection of vertices). A polygon is a
polyline that is filled rather than stroked. (A point is inside the polyline if a
infinite ray originating from the point crosses the polyline an odd number
times. If the polyline is not closed, it is implicitly closed before the even/o
rule is applied.) Rectangles are treated specially.
288 VisualWorks User’s Guide, Rev. 2.1

Graphic Objects

y be

 and

its
he
lows

s of

 the

 end.
All of these objects can be drawn by specifying a set of points to a Graphic-
sContext. Lines and polylines are displayed with the lineWidth, capStyle
and joinStyle provided by the GraphicsContext. All three use the default
paint of the GraphicsContext.

When your application draws geometric shapes that do not interact, it ma
satisfactory to render them via the graphics context. But for long-lived or
interacting geometrics, it is usually better to create an instance of LineSeg-
ment or PolyLine.

Rectangles

Rectangles can be created as described earlier, by specifying the origin
the opposite corner, rather than all corner points as with other polygons.
GraphicsContext has specialized protocol for displaying rectangles, both
filled and unfilled.

To display a filled Rectangle, send a displayRectangle: message to the
desired GraphicsContext, first setting lineWidth and joinStyle if necessary.
To display an unfilled rectangle, use a displayRectangularBorder: message.

Translation Protocol

Sometimes it’s convenient to draw a polyline, polygon or rectangle as if
origin point were at 0@0, then position the object elsewhere relative to t
display surface. For that reason, a variant of the displaying messages al
you to specify the point at which the object’s origin is to be positioned.

The variants are as follows:

gc displayPolyline: pointCollection at: aPoint
gc displayRectangle: aRectangle at: aPoint
gc displayRectangularBorder: aRectangle at: aPoint
gc displayPolygon: pointCollection at: aPoint

Splines and Bezier Curves

Besides circular and elliptical arcs, which are discussed below, two kind
curve are provided: Spline and Bezier. A Spline is similar to a polyline in
that it connects a collection of vertices; the difference is that it smoothes
corners. A Bezier curve has a start, an end and two control points—each
control point exerts gravity on the line segment connecting the start and
VisualWorks User’s Guide, Rev. 2.1 289

Chapter 19 Graphic Operations

ss of
ns-

 a

om

ep
ck
k-

s an

se to
s a
Each of these curve classes has a class variable for controlling the flatne
the curve. Both support comparison, intersection testing, scaling and tra
forming. A Spline can also be asked whether it folds back on itself (isCyclic).

Arcs, Circles and Wedges

An arc is a curved line defined by three elements of information:

n The smallest rectangle that can contain the ellipse of which the arc is
segment (adjusted for line width).

n The angle at which the arc begins, measured in degrees clockwise fr
the 3 o’clock position (or counterclockwise for negative values).

n The angle traversed by the arc, known as the sweep angle. The swe
angle is measured from the starting angle (not necessarily the 3 o’clo
position) and proceeds clockwise for positive values and countercloc
wise for negative values.

Figure 19-6 Defining an arc

A complete ellipse is an arc with a sweep angle of 360 degrees. A circle i
arc with a square bounding box and a sweep angle of 360 degrees.

A wedge is a filled arc (or circle or ellipse). If the arc does not describe a
closed ellipse, the ends of the arc are connected to the center of the ellip
define the filled region. The common case of a filled circle is referred to a
dot, and is defined by a diameter.

0

90

180

270

startAngle: 180

sweepAngle: 90
290 VisualWorks User’s Guide, Rev. 2.1

Graphic Objects

e
ided

ordi-

ight
ality

,

. It

As with a straight line, an arc uses the lineWidth and capStyle of the Graph-
icsContext that draws it. When the line width is greater than one pixel, th
arc is centered on the elliptical path. An arc or wedge uses the paint prov
by the GraphicsContext.

Figure 19-7 The skewed coordinate system of a noncircular ellipse

The angles are specified in the coordinate system of the ellipse. That co
nate system is skewed for noncircular ellipses. For example, the angle
between three o’clock and a line from the center of the ellipse to the top r
corner of the bounding rectangle may form an angle of 60 degrees in actu
but it is always specified as 45 degrees.

To make an object of an arc or a circle, use an instance of EllipticalArc or
Circle. A wedge is an EllipticalArc that is filled rather than stroked.

A Circle and an EllipticalArc can perform comparisons, intersection testing
scaling and transformation. Either can provide its center, startAngle and
sweepAngle. In addition, a Circle can provide its radius, diameter and
area.

Graphical Images

An Image is a graphic object composed from a rectangular array of pixels
is similar to a Pixmap and a Mask in many respects. The chief differences
are:

0

90

180

270

60°

sweepAngle: 45
VisualWorks User’s Guide, Rev. 2.1 291

Chapter 19 Graphic Operations

ots.

n

l

sired

s.

ith
ver,
 of

ther
n An Image is stored in Smalltalk memory, so it survives across snapsh
For that reason, it is sometimes used as a storage device for Pixmaps and
Masks, which die when you Quit from the system.

n An Image is not a display surface, so you can’t display other graphic
objects on it as a means of assembling the desired picture.

n An Image can be either color-based or coverage-based, depending o
the nature of its palette.

Representation

Like Pixmaps and Masks, an Image employs a bitmap to represent its pixe
colors or coverages. A very simple Image can be constructed by manipu-
lating the bits in the map directly, but this is unwieldy for complicated
pictures. Frequently, a scanner or a drawing tool is used to create the de
arrangement of pixels—then you can create an Image from the on-screen
representation or from the bitmap.

The Image hierarchy of classes looks like this:

Object
VisualComponent

Image
Depth1Image
Depth2Image
Depth4Image
Depth8Image
Depth16Image
Depth24Image

Figure 19-8 Image hierarchy

Class Image is an abstract class providing the general protocol for image
Its concrete subclasses provide specific representations for images of
different depths. As shown in the hierarchy, Smalltalk supports images w
a packing depth (or bits per pixel) of 1, 2, 4, 8, 16 or 24. Images can, howe
have different logical depths. For example, an image with a logical depth
3 can be stored in a Depth4Image, wasting one bit per stored pixel.

For each pixel (picture element), an Image stores the value of the picture at
that position—the color or coverage value of the pixel, depending on whe
the image is color- or coverage-based.
292 VisualWorks User’s Guide, Rev. 2.1

Graphic Objects

s the

ing
ail-
t
m 0

t

 by

ost-

ant

a

via a

he

all-

d a
he
that
To save space, Images encode each pixel value as a nonnegative integer,
rather than directly storing the color or coverage value. The system store
encoded bitmap as a byte array. Along with the bitmap, an Image carries a
zero-based palette mapping the encoded pixel values to the correspond
color or coverage values. The depth of an image is the number of bits av
able to store each encoded pixel value. An image of depth 1 can suppor
encoded pixel values of 0 and 1, an image of depth 2 supports values fro
to 3, and so on.

Image data is stored in a format that is independent of the native bitmap
format of the host window system. For common operations, you need no
concern yourself with this format, but we present it here for the sake of
completeness:

n Pixels are stored in row-major order. Within a row, pixels are ordered
increasing x-coordinates.

n Rows are stored in top-to-bottom order (increasing y-coordinates).

n Pixels are represented in chunky (Z) format, where bits of a pixel are
stored contiguously.

n For pixels of size greater than eight bits, the pixel bytes are stored m
significant-first.

n For pixels of size less than eight bits, pixels are ordered most-signific
first within each byte.

There are two approaches to creating an instance of Image—build it from
scratch or import a picture that you have scanned in or assembled with
drawing tool.

Importing an image from another application involves copying it off the
display screen. That assumes you have a means of displaying it, either
drawing tool, a bit editor, or similar software.

When you send a fromUser message to the Image class, the cursor changes
to cross-hairs. Drag a selection rectangle around the desired portion of t
display screen, then release the <Select> button. (This only works if the
colors in the captured area are all in the screen palette maintained by Sm
tallk.)

Packed Rows

A row that has been padded to the appropriate multiple of 32 bits is calle
packed row (i.e., packed with extra zeros). Reading and writing a row of t
bitmap is often more convenient using the unpacked version. However,
involves creating an intermediate ByteArray containing one byte for each
VisualWorks User’s Guide, Rev. 2.1 293

Chapter 19 Graphic Operations

. In
lies on

ribed
 the

t is
pixel. In intensive applications, this wastefulness can become noticeable
those situations, you can use an alternate set of bitmap accessors that re
the packed row format:

packedRowAt: rowIndex
packedRowAt: rowIndex into: anArray
packedRowAt: rowIndex into: anArray startingAt: destinationIndex
packedRowAt: rowIndex putAll: anArray
packedRowAt: rowIndex putAll: anArray startingAt: sourceIndex

Compatibility with the Display Surface’s Palette

An Image’s palette can be either color-based or coverage-based, as desc
on page 307. The type of palette determines what kind of display surface
image can be displayed on and copied to. A coverage-based Image can be
displayed on any surface, just as a Mask can, while a color-based Image can
be displayed on a Window or a Pixmap. When copying a region from an
Image to a display surface, however, the two objects must have similar
palettes.

To create a display surface bearing an Image’s contents, send
asRetainedMedium to the Image. A Pixmap is returned when the Image
has a color-based palette, and a Mask is returned when the palette is
coverage-based. This operation is equivalent to creating a new Pixmap or
Mask and then displaying the Image on it.

Image Processing

Images know how to perform the following transformations: growing,
shrinking, flopping, rotating and filling. For each such message, a varian
provided for specifying a scratch Image to hold the return object—this
avoids the creation of a new Image with each transformation.

Growing or Shrinking an Image

To increase the size of an Image in the x-dimension, the y-dimension, or
both, send magnifiedBy: aPoint to the Image. The x and y values of aPoint
are used as multipliers on the width and height of the Image.
294 VisualWorks User’s Guide, Rev. 2.1

Graphic Objects

or

o be

le

per-
tiled

play

le.

sing

.
ur
ile a
Bit Processing

A variety of layering effects can be produced by combining two images (
two ByteArrays) with a filtering algorithm. A set of 16 predefined
algorithms—called combination rules—are available. They are identified by
the integers 0 through 15, though the more commonly used ones can als
accessed via mode constants in the RasterOp class. Thus, the message
RasterOp erase returns the integer 4, which identifies the combination ru
for erasing shared pixels from the destination image. (RasterOp is a graphics
support class that performs raster operations on bitmaps.)

Images also support a tiling operation that is very similar to the copying o
ation in that it makes use of the combination rules. The source image is
onto a region in the destination image with the selected filter.

CachedImage

A specialized class called CachedImage has been created to combine the
displaying speed of a display surface with the longevity of an Image. A
CachedImage holds onto both a real image and a Mask or Pixmap. It
displays from the display surface; after a snapshot has destroyed the dis
surface, CachedImage recreates it automatically from the stored Image.
This eliminates the need for your application to recreate Masks and Pixmaps
explicitly after a snapshot. For example, the system uses CachedImages to
hold commonly used graphic elements such as the insertion-point triang

To create a CachedImage, you must supply the starting Image. From then
on, you must treat it as a display surface (don’t try sending image-proces
messages to it, for example).

Cursors

A Cursor represents the pictorial element that tracks mouse movements
VisualWorks provides a wide variety of built-in cursors, or you can build yo
own. You can change the displayed cursor permanently or change it wh
particular piece of code executes.
VisualWorks User’s Guide, Rev. 2.1 295

Chapter 19 Graphic Operations

ur
ory

9-9
ed

-
.

the

its
t

ion,
t to a

ts
rsor.
Figure 19-9 VisualWorks’ built-in cursors

Several instances of Cursor are predefined for use by the system and in yo
applications. While some of these are highly specialized (such as the mem
management cursors), many will be useful in your applications. Figure 1
illustrates them, along with their names. To access one of these predefin
cursors, send the cursor name as a message to the Cursor class.

A Cursor is composed of two Images: a color image as well as a coverage
based image used to create a mask, each of which is 16 pixels on a side
Where the mask image is transparent, the cursor is transparent. Where
mask image is opaque, the colors of the colored image are visible.

Each Cursor has a hot spot, which is its control point. For example, the
default Cursor is an arrow that points to the top left corner of the display:
hot spot is at the point of the arrow, or 1@1. The cross-hair cursor has its ho
spot at the center, where the two lines cross, or 7@7.

Displaying a Cursor Temporarily During an Operation

When you just want to apply a distinctive cursor during a particular operat
place the affected code inside a block and use that block as the argumen
showWhile: message sent to the desired cursor.

At the end of a showWhile: operation, the cursor automatically returns to i
original state, so your application doesn’t need to keep track of the old cu
296 VisualWorks User’s Guide, Rev. 2.1

Graphic Objects

r-
nce
and

ow.

e
t

ner-

e
n. It

re not
ble

t.
phic

ue

ith

A less courteous approach is to change the cursor with a show message to the
desired instance of Cursor, which leaves the cursor in its new state until ove
ridden by another show. Since the system frequently changes the appeara
of the cursor, as when framing a view, this approach is not very reliable
its use is declining in favor of showWhile:.

Icons

An Icon represents the pictorial element used to identify a collapsed wind
To install the icon in a window is a simple matter—just send an icon:
message to the desired window.

Animation

Animation is an illusion created by drawing a graphic object in successiv
locations and erasing it in the abandoned locations, perhaps modifying i
slightly at the same time.

For each location at which the object is displayed, the basic steps are:

n Store the background to be obscured

n Draw the object

n Restore the background

This direct approach is satisfactory in some limited circumstances but ge
ally results in a side effect known as flashing.

Flashing is caused by the fact that the object is not visible during the tim
between its erasure at the old location and its depiction at the new locatio
looks like a light flashing on and off. Eliminating flashing requires a more
sophisticated technique for erasing, one that erases only the pixels that a
needed to depict the object in its new location. This mechanism is availa
in the form of the follow:while:on: method, defined by VisualComponent
for all of its subclasses—Image, ComposedText, etc.

The follow:while:on: method provides smooth animation for a single objec
It does not handle more complicated effects involving changes in the gra
object (a walking robot, for example) or multiple objects all moving at the
same time. For those situations, it’s generally better to employ a techniq
known as double buffering.

Double buffering involves drawing the next scene (on a Pixmap, typically)
while displaying the current scene on a window. The Pixmap is then
displayed on the window, an operation that is instantaneous compared w
the separate displaying operations required to assemble the scene. The
VisualWorks User’s Guide, Rev. 2.1 297

Chapter 19 Graphic Operations

g.
 way
 this
tion

as
a-

uge,

t by

h a
n

em-

Pixmap acts as a graphic buffer that stands in for the window’s frame
buffer—hence the term “double buffering.”

Integrating Graphics into an Application

Displaying graphic objects directly onto a window is fine for ad hoc testin
However, the window has no knowledge of such contents and so it has no
of repairing damage to the contents when another window overlaps it. In
section, we discuss techniques for integrating graphics into your applica
via the dependency mechanism.

For the purposes of this discussion, we recognize two types of graphic
element. The first type is static because it never varies and therefore only h
to be drawn once and then linked into the window’s damage-repair mech
nism (described below). The second type is dynamic because it changes to
reflect some aspect of the application’s model—a graphic temperature ga
for example. A dynamic graphic object has to be redrawn in response to
changes in the model as well as window damage.

Integrating a Static Graphic

Each window contains one component, which can be a view, some other
visual component such as an image, or a CompositePart capable of holding
any number of visual components, including other composites. Thus, the
window contains a hierarchy of components. These components interac
sending messages “up the tree” and “down the tree.”

In particular, components send a notice of damage up the tree along wit
rectangle representing the damaged area (typically the component’s ow
bounds). The window responds by sending a copy of its GraphicsContext
down the tree to the affected components with instructions to redisplay th
selves. In practice, a VisualComponent (of which views and graphic objects
are subclasses) that wants to redisplay its contents sends self invalidate.
VisualComponent tacks on the bounding box as the damaged area,
forwarding the following up the tree:

self invalidateRectangle: damagedRectangle
298 VisualWorks User’s Guide, Rev. 2.1

Integrating Graphics into an Application

ed

rms

 see

ier-

ent
l

cs on

nts

he
The invalidateRectangle: method translates the message into the form us
by the dependency-control apparatus:

self changed: #invalidate with: aRectangle

The window’s response is to send displayOn: myGraphicsContext to its
component. If the component is a composite, it forwards the displayOn:
message to each of its subcomponents. If it is a leaf component, it perfo
the appropriate displaying operations.

For a discussion of windows, views and the damage-repair mechanism,
the chapter “Application Framework.”

For a static graphic object, it is sufficient to install it into this component h
archy. To install it directly as the window’s component:

aWindow component: aVisualComponent

To install it in a composite:

aComposite add: aVisualComponent at: aPoint.

Integrating a Dynamic Graphic

For a dynamic graphic object, it isn’t reasonable to install it as a compon
because the original version would be redisplayed by the damage-contro
updates rather than the current version. Instead, we display such graphi
an installed component, usually a view, and we use the view’s displayOn:
method to display the current graphic. Since displayOn: is triggered by the
dependency-control mechanism, this approach covers both damage eve
and model changes:

n A damage event triggers displayOn: as described for static graphic
objects.

n A change in the model can be made to trigger displayOn: by sending a
self changed message.

Thus, dynamic graphic objects need to be integrated into the view, and t
model must notify its dependents when its state is changed:

n The model sends self changed in the method that updates whichever
aspect of the model the graphic object mirrors.
VisualWorks User’s Guide, Rev. 2.1 299

Chapter 19 Graphic Operations
n The view rebuilds the graphic object and displays it, in the displayOn:
method.
300 VisualWorks User’s Guide, Rev. 2.1

Integrating Graphics into an Application
VisualWorks User’s Guide, Rev. 2.1 301

Chapter 19 Graphic Operations
302 VisualWorks User’s Guide, Rev. 2.1

e
cts

s and

lette
ge
e
e

tu-

 The

Chapter 20

Color

In this chapter, we show you how colors and patterns are synthesized. W
begin with the simple application of colors and patterns to uncolored obje
such as lines and rectangles. Next we discuss the use of color with image
other graphic objects that store their own color information.

In the third section, we show how to convert an object created with one pa
of colors to a different palette—for example, displaying a multicolored ima
on a monochrome display. There are various techniques for mapping on
palette to another in such situations, and the final section details the thre
rendering techniques available in the system.

Types of Color

The Paint hierarchy provides three kinds of paint:

Paint
Pattern
SimplePaint

ColorValue
CoverageValue

We’ll start with Pattern and then go on to the solid paints, which lead us na
rally into other aspects of color such as palettes.

Pattern

A Pattern is an arrangement of pixels created by replicating a tile throughout
a painted region much as ceramic tiles are laid out on a kitchen counter.
most familiar example is the “gray” background used by many window
managers—an effect created by employing a four-pixel tile. The tile from
which a pattern is generated can be an Image, a Pixmap or a Mask.
VisualWorks User’s Guide, Rev. 2.1 303

Chapter 20 Color

ical
per

a
d 1

lors

olor
 the

 a
is
ne
Sometimes, as with kitchen tile, the placement of that first tile can be crit
to the success of the pattern. By default, the first tile is placed with its up
left corner at the origin of the display surface’s GraphicsContext. You can
adjust this location—called the tile phase because it controls the location of
all tiles in the pattern—by sending a tilePhase: aPoint message to the
GraphicsContext.

Coverage

A CoverageValue identifies the fraction of a pixel that is covered. Since
pixel, by its nature, must be displayed in its entirety, only the values 0 an
are typically used. (Fractional coverages can be specified, however, as
explained in the discussion of coverage palettes on page 307.)

CoverageValue is the paint basis for Masks, as described in the previous
chapter. An Image can also be coverage-based—such an Image typically is
used as a storage medium for a Mask, which does not survive after the system
is shut down.

A CoverageValue can be created by name or by value:

CoverageValue transparent
CoverageValue coverage: 0
CoverageValue opaque
CoverageValue coverage: 1

Color

A solid color is an instance of ColorValue, which is made up of red, green
and blue components because most color monitors simulate complex co
by combining those primary colors. Since different display devices have
different capabilities, Smalltalk chooses a substitute when the specified c
is not available. The exact mechanism for this substitution is controlled by
paint policy, as described in “Policies for Rendering Color” on page 310.

On a monochrome display, for example, a red rectangle is rendered with
medium gray halftone, yellow appears as a lighter gray, and so on. In th
case, the halftoning occurs on the basis of luminance so that the gray to
simulates the luminosity of the intended color.

There are three ways to create an instance of ColorValue:

n Specify the color by name (for a select group of colors)
304 VisualWorks User’s Guide, Rev. 2.1

Types of Color

tants
ons

hen
ities

ion

ore

g
riate.
, for
an
tion

pec-
ed,
sity

s at
eded
and
 the
n Specify the red, green and blue components

n Specify the hue, saturation and brightness

Predefined Color

The easiest (but least flexible) way to create a ColorValue is to make use of
a color constant provided by the ColorValue class. For example, sending a
blue message to ColorValue returns the color blue.

RGB Color

On machines that support a large number of colors, the set of color cons
is too limited for many applications. You can create more precise gradati
of color by specifying the red, green and blue intensities.

Each intensity value is expressed as a fraction from zero through one. (W
you open an inspector on a color, however, you will notice that the intens
are scaled up to integers for internal purposes.)

This approach also lends itself much more readily to algorithmic generat
of colors, in which numeric values are represented as colors. A familiar
example is the topographic map, which uses different shades of one or m
colors to represent different elevations.

HSB Color

For many applications, such as those involving three-dimensional shadin
effects, neither of the color-creation schemes we’ve discussed is approp
How do you create the illusion of deepening shadows on a round surface
example, if you can only add and subtract red, green and blue (rather th
black)? In such situations, it is more useful to think in terms of hue, satura
and brightness.

In this color-mixing technique, known as HSB color, each component is s
ified as a value from zero to one, as with RGB color. However, the mix of r
green and blue in the color is communicated entirely by the hue. The inten
of that hue is controlled by the remaining parameters.

The hue is determined by a color’s placement on a linear scale that begin
zero and ends at one. Both zero and one represent red, providing the ne
circularity. Green is one-third of the way across the scale (hue = 0.333),
blue is two-thirds of the way (0.667). The secondary colors are in between
primaries: yellow (0.167), cyan (0.5) and magenta (0.833).
VisualWorks User’s Guide, Rev. 2.1 305

Chapter 20 Color

g

mum
lor).
hite

or.
tion

ess
ying

our
Figure 20-1 HSB color components, each value starting at zero and progressin
toward one

Saturation is also a scale from zero to one, on which zero represents mini
vividness (pure white) and one represents maximum vividness (pure co
In other words, the higher the saturation, the more color is sprayed on a w
background. You can also think of it as a way of mixing white into your col
Paleness makes an object appear farther away, so increasing the satura
tends to make an object appear closer.

Brightness is a similar scale, on which zero represents minimum brightn
(pure black) and one represents the pure color. This is tantamount to spra
increasing densities of color on a black background, or mixing black into y
chosen hue. This is useful for representing shadows.

Hue

0 1

red

yellow cyan magenta

green blue red

Saturation

10

white full color

Brightness

10

black full color
306 VisualWorks User’s Guide, Rev. 2.1

Palettes

en
ided
 can
each
those

ue

cted

 A
nd

iated

te.
Palettes

A Palette represents the collection of colors available for coloring any giv
pixel. For uncolored objects such as lines and circles, the palette is prov
by the display surface. For colored objects such as images, however, you
create a custom palette. This is because an image encodes the color of
pixel as a numeric value in a bitmap, so a palette is needed to translate
numeric values to ColorValues or CoverageValues.

The palette class hierarchy is as follows:

Object
Collection

Palette
ColorPalette

FixedPalette
MappedPalette

MonoMappedPalette
CoveragePalette

Coverage Palettes

A CoveragePalette is used by Masks and masking images, and specifies
levels of transparency. It has a maxPixelValue, which determines the
number of levels of transparency. Usually, maxPixelValue is set to 1,
because a pixel can only be fully transparent (pixel value 0) or fully opaq
(1).

However, it is conceivable that you would want to allow for intermediate
levels of translucence. By specifying the maxPixelValue, you can create an
image having any number of coverage levels (currently, masks are restri
to two levels).

Color Palettes

A color palette can have either of two representations: fixed or mapped.
FixedPalette breaks a numeric pixel value into three fields (red, green, a
blue), each of which controls the intensity of that primary color. A Mapped-
Palette stores a table of colors, so each numeric pixel value can be assoc
with an arbitrary color. A MonoMappedPalette is a MappedPalette that is
specialized for the case in which the palette contains only black and whi
VisualWorks User’s Guide, Rev. 2.1 307

Chapter 20 Color

eens
 true-
lor
lette

ble
ere

 one
ing
ans
ting

g bit

bits
 low

r of
Mapped palettes are appropriate for images on color-mapped display scr
and for images that use a small number of colors. Fixed palettes support
color display screens that don’t use a hardware color map. Such true-co
screens typically support a large number of colors, making a mapped-pa
representation impractical because of the size of color table required—a
typical true-color screen has a depth of 24, which would require a color ta
with more than 16 million elements if a mapped-palette representation w
used.

Color Palette Creation

Different types of palettes are created in different ways.

To create a mapped palette, send a withColors: message to MappedPalette,
specifying an array of colors used to initialize the palette.

A fixed palette uses RGB values. Depending on the depth of the image,
set of RGB values might occupy 8 bits, 24 bits or 32 bits (or even someth
in between). When you create a fixed palette, you must arm it with the me
to locate the red bits, the green bits and the blue bits. You do so by indica
the number of the bit that begins each RGB component as well as the
maximum value for that component. In the creation message, the startin
is called the shift value and the maximum value is called the mask value.

Eight-bit Color Palettes

Fixed palettes for 8-bit pixel values are structured in which the high three
specify the red component, the next three bits the green component, and
two bits the blue component.

:

Figure 20-2 8-bit color palette

Performance Note about Palettes and Image Display

The composition of an image’s palette greatly affects the amount of time
required to display the image. An image can be displayed quickly in eithe
two circumstances:

red green blue

1 1010100
308 VisualWorks User’s Guide, Rev. 2.1

Palettes

nd

age
splay
ount

n an
s
such

yed,
he
e to
and

etter

.
ted
he
-

ault
n Its palette is the same as that of the display surface

n Its palette contains only two colors (not necessarily black and white) a
those two colors can be rendered without halftoning.

Otherwise, displaying the image requires the creation of a temporary im
that approximates the appearance of the image using the palette of the di
surface. The creation of such a temporary image can take a substantial am
of time, especially if halftoning is required.

One noteworthy case requiring such automatic image generation is whe
image created for one machine (a Macintosh workstation, for example) i
transported to and displayed on another with a different screen palette (
as a Sun workstation).

To avoid generating a temporary image each time such an image is displa
manually convert the image to the native palette once and then display t
converted image rather than the original. For example, to convert an imag
the color palette of the default screen (and therefore also of all windows
pixmaps on the default screen), perform:

anImage convertToPalette: Screen default colorPalette

By default, the convertToPalette: operation employs a NearestPaint
renderer. In some cases, a different renderer (as described later) gives b
results. A variant of convertToPalette: lets you specify the renderer:

anImage
convertToPalette: Screen default palette
renderedBy: OrderedDither new.

Device Color Map

The window manager’s color map is not accessible from within Smalltalk
The screen’s colorPalette is assembled based on that color map, as indica
in the following table. In the Comment column, “Fully populated” means t
VisualWorks palette is the same as the device color map. “Partially popu
lated” means VisualWorks uses only a portion of the color map, leaving
enough unused cells so neighboring applications will have a chance to
allocate their colors, too. When the platform provides a hint as to the def
set of colors to be shared by applications, we use that set.
VisualWorks User’s Guide, Rev. 2.1 309

Chapter 20 Color

lack-
t a
e in

e of
d in

ppro-

ces.
.

Policies for Rendering Color

When an image makes liberal use of the color turquoise, what should a b
and-white window do when asked to display that alien color? How abou
color window that doesn’t happen to have just the right shade of turquois
its palette?

There are many conceivable techniques for making such decisions. Thre
the most common techniques for rendering unknown colors are embodie
the following Smalltalk classes: NearestPaint, OrderedDither and
ErrorDiffusion.

Any of the three can be used to render an image. Only the first two are a
priate for rendering paints. So a PaintPolicy object holds onto both a paint-
Renderer and an imageRenderer, which may be the same.

You can ask a GraphicsContext for its paintPolicy, but make a copy of it
before changing it unless you want the change to affect all display surfa
This is because the default Screen maintains a policy that is shared by all
GraphicsContexts.

Table 20-1 Screen depth and associated windowing systems

Screen
depth

Window system Palette
type

Comment

1 All Mapped Fully populated

2 All Mapped Fully populated

4 All Mapped Fully populated

8 X Mapped* Partially populated

8 MS-Windows Mapped Partially populated

8 Macintosh Mapped Fully populated

15 MS-Windows Fixed RGB values

16 All Fixed RGB values

24 All Fixed RGB values

32 All Fixed RGB values

* Using X, an 8-bit color map can be made fixed instead of mapped.
310 VisualWorks User’s Guide, Rev. 2.1

Policies for Rendering Color

n’s
sults
me

 these

ition
To examine yours, inspect:

Screen default defaultCoveragePolicy
Screen default defaultColorPolicy

Figure 20-3 The three kinds of color renderers

The default renderers are determined as follows:

:

NearestPaint

A NearestPaint simply chooses the nearest available paint from the scree
palette. When that palette is limited, as on a monochrome screen, the re
can be dramatic but are more often disappointing. To use a not-too-extre
example, imagine a magenta image on a chartreuse background. Both of
colors are luminous enough to be converted to white according to Nearest-
Paint, so you’re left with an empty rectangle of whiteness.

Where the colors in the image are more varied, the result is a stark rend
akin to a photograph printed with lots of contrast.

Table 20-2 Default renderers

NearestPaint Used by Pixmaps and Windows on color systems

Ordered-
Dither

Used by Masks on all types of screens

Ordered-
Dither

Used by Pixmaps and Windows on monochrome or
gray-scale systems

PaintPolicy

paintRenderer (1 or 2)

imageRenderer (1, 2 or 3)

1 NearestPaint

2 OrderedDither

3 ErrorDiffusion
VisualWorks User’s Guide, Rev. 2.1 311

Chapter 20 Color

 the

t
at

. The
eing

r
 red-
tion
, this
On color screens, however, NearestPaint usually produces satisfactory
results and always gives the best performance.

OrderedDither

An OrderedDither employs a threshold array to synthesize unrecognized
colors by blending neighboring colors from the screen’s palette. This has
effect of smoothing the transition from one palette color to the next in a
continuous tone. While the result is often more pleasing than with Nearest-
Paint, you pay a price in performance.

ErrorDiffusion

An ErrorDiffusion uses a more sophisticated blending algorithm. When i
makes a choice from the screen’s palette, it keeps track of how far off th
choice was from the requested color. When this error accumulates suffi-
ciently, the renderer uses the color on the other side of the threshold.

For example, suppose that a region of the image uses a red-brown color
screen’s palette has red and it has brown, but not the in-between color b
requested. An ErrorDiffusion supplies red at first, but keeps track of the
numeric difference between red and the red-brown. When that remainde
accumulates to a breakpoint, a brown pixel is displayed even though the
brown is closer to red. Thus, red and brown pixels are blended in propor
to the redness and brownness of the desired color. As you might expect
technique is even more compute-intensive than the other two.
312 VisualWorks User’s Guide, Rev. 2.1

Policies for Rendering Color
VisualWorks User’s Guide, Rev. 2.1 313

Chapter 20 Color
314 VisualWorks User’s Guide, Rev. 2.1

l-

e’s
e
eing

r all,
enly
,
ded.

stics
ppli-
ly,
nteed
n

a

t

rom
Chapter 21

Weak Arrays and Finalization

Prior to Release 4.0 of Objectworks\Smalltalk (the predecessor to Visua
Works), all object pointers (OOPs) were treated as strong pointers. A strong
pointer is a reference that cannot be broken by any of the virtual machin
garbage collection mechanisms. Thus, if any object is reachable from th
system roots via a chain of strong references, that object is exempt from b
reclaimed as garbage by the object engine (OE).

In most cases, the fact that all references were strong was desirable. Afte
most objects are not prepared to have the objects to which they refer sudd
disappear with the rest of the garbage. In some circumstances, however
strong references caused objects to live longer than their designers inten

Suppose, for example, you wanted to profile the performance characteri
of an application. You might place some of the objects created by that a
cation into an array so you could tabulate statistics on them. Unfortunate
the mere fact that you referenced these objects from such an array guara
that the objects would not be reclaimed as garbage even if the applicatio
code ceased to reference them.

This unintended side effect can now be avoided by using the new class
WeakArray.

Weak Arrays

A WeakArray is similar to an ordinary Array, the prime difference being that
a WeakArray references its elements weakly. Unlike a strong reference,
weak reference is ignored by the garbage collector.

Thus, when an element of a WeakArray is no longer referenced by any objec
other than another WeakArray, then that element is eligible for reclamation
by the OE. During reclamation, the reference to that element is removed f
the WeakArray and replaced by zero.
VisualWorks User’s Guide, Rev. 2.1 315

Chapter 21 Weak Arrays and Finalization

ontain

you

 may
mpli-

set
t to
ve all
that
ion

tifica-

t
e an
nt
olely

Only the indexable variables of the WeakArray class are weak references.
The named instance variable, dependents, is strong. Further, this is the only
class whose references can be weak. Even subclasses of this class can c
only strong references.

It is possible, however, to add named instance variables to this class, if
are willing to redefine the class. As stated above, such variables will be
strong. The fact that this is the only class that can have weak references
seem to be a substantial restriction, but you can easily construct more co
cated objects with a mix of strong and weak references by using a
WeakArray as a subcomponent.

Finalization

WeakArrays also provide the system with a way of performing some final
of actions when an object expires. For example, an application might wan
release some external resource when the objects using that resource ha
been garbage collected. If the system were able to notify the application
the objects using the external resource had all expired, then the applicat
would know that it was safe to loosen its hold on the external resource.

That mechanism involves sending a changed message to any WeakArray
that has had one of its elements zeroed out as described above. This no
tion is then propagated to each of the dependents of that WeakArray,
allowing them to take the actions necessitated by the death of the
WeakArray’s element.

Of course, any such dependent will need to store whatever information i
needs prior to receiving such notification, because the object that was onc
element of the WeakArray will already have been destroyed. The depende
must also ensure that it can subsequently locate that information based s
on the dead element’s index in the WeakArray (the dependent can find the
index of a WeakArray’s dead element by invoking the indexOf:replace-
With:startingAt:stoppingAt: primitive).

To be more exact, the dependents of a given WeakArray are notified that one
or more of its elements have expired as follows:

n When an element of a WeakArray expires, the OE zeros out the slot in
the WeakArray that was previously occupied by the now dead object.

n In addition, the OE places this WeakArray on a finalization queue that is
managed by the OE, and then signals the FinalizationSemaphore.
316 VisualWorks User’s Guide, Rev. 2.1

Finalization

t act
ernal
he
of a

mat-

, the
the

of its

 of

vent

ause
lel
oxy
 the
n Signalling the FinalizationSemaphore causes the Finalization-
Process (which is generally waiting on the FinalizationSemaphore) to
resume, and the FinalizationProcess then sends a changed message to
every WeakArray on the finalization queue (it uses a primitive to fetch
the WeakArrays that are on the finalization queue).

n Eventually, every dependent of each WeakArray that suffered a loss will
receive an update message.

Let’s return to the example of an application that has a set of objects tha
as proxies for external resources. The application wishes to free these ext
resources when the proxies are no longer in use. Further, assume that t
proxies know which external resource they are associated with by virtue
proxy instance variable that contains an external handle.

The application could arrange for the external resources to be freed auto
ically by simply placing the proxy objects in a WeakArray and copying their
associated external handles into the corresponding locations of a strong
Array. Then, when one or more of the proxy objects was no longer in use
memory manager would reclaim the proxy object, zero out its location in
WeakArray, place the WeakArray on the finalization queue, and signal the
FinalizationSemaphore, eventually resulting in an update message being
sent to the application, assuming that the application had registered one
objects as a dependent of the WeakArray. The application could then identify
which proxy objects actually expired and free their associated external
resources as follows:

weakArrayOfProxies
forAllDeadIndicesDo:

[:deadIndex | externalConnection
freeResource: (externalHandleArray at: deadIndex)]

Note that there is also protocol to make nill the value at each dead index
the WeakArray as it is uncovered (nilAllCorpsesAndDo:) as well as for
replacing the value with an arbitrary object
(forAllDeadIndicesDo:replacingCorpsesWith:). Because these methods
use the indexOf:replaceWith:startingAt:stoppingAt: primitive, which
finds a given element and replaces it atomically, they can be used to pre
another process from mistakenly duplicating the finalization actions.

This scheme requires some extra work on the part of the application, bec
it forces the application to save a copy of the external handles in a paral
array. However, it completely avoids the problems that can occur if the pr
object that we are finalizing is resurrected, either by the code performing
VisualWorks User’s Guide, Rev. 2.1 317

Chapter 21 Weak Arrays and Finalization

roxy

-
r
finalization or by some other code that happens to get a handle on the p
object before it is actually destroyed by the OE and after the finalization
action has been completed.

Instance variable for WeakArray:

dependents <nil | Object | DependentsCollection> those objects that
must receive notification when one of the WeakArray’s elements
dies.

Class variables for WeakArray:

FinalizationProcess <Process> that is responsible for sending a
changed message to any WeakArray that has suffered a death

FinalizationSemaphore <Semaphore> that is signalled by the OE
whenever a WeakArray has suffered a death

QueueOverflowSignal <Signal> that indicates that the OE’s
finalization queue has overflowed. It may be appropriate in this event
to send a changed message to every WeakArray

WeakDictionary

A WeakDictionary is a dictionary whose valueArray is a WeakArray. Such
a dictionary is fully protocol-compatible with IdentityDictionary. The
lookup is done using == rather than =.

For finalization, WeakDictionary also stores an array of executors for its
elements. The default executor for each element is a shallow copy of the
element. An element’s executor is responsible for finalization after the
element has been reclaimed. An element with special finalization require
ments should implement the finalize message, which is sent to the executo
to actually perform the finalization. The default implementation of finalize in
the Object class performs no finalization.
318 VisualWorks User’s Guide, Rev. 2.1

Finalization Example

 as
t

ment.
Instance variable for WeakDictionary:

executors<Array> the array in which the shallow copies of the values
are stored

HandleRegistry

A HandleRegistry is a WeakDictionary whose values all respond to a key
message. The elements of a HandleRegistry are registered using their
response to the key message as the dictionary key and using the element
the value. Access functions are all implemented as critical regions so tha
multiple processes can operate on an instance at the same time.

Instance variable for HandleRegistry:

accessLock<Semaphore> Mutex semaphore protecting accesses

The class hierarchy for these two classes is as follows:

Object ()
Collection ()

Set ('tally')
Dictionary ()

IdentityDictionary ('valueArray')
WeakDictionary ('executors' 'accessLock')

HandleRegistry ()

Finalization Example

To illustrate the finalization mechanism outlined above, we provide an
example in the form of code for an Executor class. An Executor is an object
that executes the last will and testament of a familyMember. To try it, enter
the code into the system, then evaluate the expression in the class com

Class definition:

Object subclass: #Executor
instanceVariableNames: 'familyMembers familyWills'
classVariableNames: ''
VisualWorks User’s Guide, Rev. 2.1 319

Chapter 21 Weak Arrays and Finalization
poolDictionaries: ''
category: 'Finalization-Example'

Class comment:

The Executor class is a simple example of how finalization can be
achieved by using WeakArrays. After entering the code into the
system, evaluate the expression: "Executor example inspect".

Instance Variables:
familyMembers

<WeakArray> containing the name string of each family
member.

familyWills
<Array> of blocks that will print the last will and testament of

the corresponding person in the familyMembers array on the
Transcript.

Instance methods for finalization:

readLastWillAndTestamentOfTheDeparted
"Read the will of each family member who has died."

familyMembers nilAllCorpsesAndDo: [:deadIndex |
(familyWills at: deadIndex) value]

Instance methods for updating:

update: anAspectSymbol with: aParameter from: aSender
"Finalize all finalizable entries of aSender."

(aSender == familyMembers and:
[anAspectSymbol = #ElementExpired])
ifTrue: [self readLastWillAndTestamentOfTheDeparted]
ifFalse: [^self]

Instance methods for accessing:

familyMembers: aWeakArray
320 VisualWorks User’s Guide, Rev. 2.1

Finalization Example
familyMembers removeDependent: self.
familyMembers := aWeakArray.
familyMembers addDependent: self

familyWills: anArray
familyWills := anArray

Class methods for example:

example
"Executor example inspect"

| family wills familyLawyer |
family := WeakArray

with: 'cain' copy
with: 'abel' copy
with: 'eve' copy
with: 'adam' copy.

wills := Array
with: [Transcript show:

'Cain has died. Bequeaths his assets to the church.'; cr]
with: [Transcript show:

'Abel has died. Killed by Cain for his assets.'; cr]
with: [Transcript show:

'Eve has died. Bequeaths her assets to Abel.'; cr]
with: [Transcript show:

'Adam has died. Bequeaths his assets to Eve.'; cr].
familyLawyer := Executor new.
familyLawyer familyWills: wills.
familyLawyer familyMembers: family.
^familyLawyer
VisualWorks User’s Guide, Rev. 2.1 321

Chapter 21 Weak Arrays and Finalization
322 VisualWorks User’s Guide, Rev. 2.1

, etc.)

 pure
her

ted
piler.

lled
y is

rue:
Chapter 22

Parsing and Compiling

Although not often used directly, there are three classes that parse and
compile Smalltalk programs: Scanner, Parser and Compiler. The Scanner
parses a string into a sequence of tokens (numbers, names, punctuation
according to the lexical rules of the Smalltalk language. The Parser parses a
string into a complete expression or method definition. The Compiler
compiles a string into a method.

In contrast to many other classes, instances of these classes are nearly
functions. They carry out a single operation and are then abandoned rat
than retained.

These classes provide several more public messages than are documen
here. These other messages serve more specialized uses within the com

Scanner

To create an instance of Scanner, use new. To convert a string to a sequence
of tokens, use scanTokens: as in the expression:

tokenArray := Scanner new scanTokens: aTextOrString

The string is interpreted approximately as though it were an Array, each word
being converted to the equivalent literal (number, symbol, etc.) and insta
as an element. However, the pound sign (#) that introduces a literal arra
incorrectly treated like a binary operator, and the words ‘nil’, ‘true’, and
‘false’ are not treated specially. For example, the following expression is t

(Scanner new scanTokens: '3.5 is: GPA') = #(3.5 #is: #GPA)
VisualWorks User’s Guide, Rev. 2.1 323

Chapter 22 Parsing and Compiling

s

o
Parser

To create an instance of Parser, use new.

To extract the selector from the source string of a method:

selector := Parser new parseSelector: aString

For example, the following expression is true:

(Parser new
parseSelector: 'from: here to: eternity

^eternity - here')
= #from:to:

To parse an entire method or a doIt (just like a method without the initial
pattern), use an expression such as the following:

methodNode := Parser new
parse: sourceStream
class: aClass
noPattern: noPattern
context: nil
notifying: anEditor
ifFail: aBlock

The noPattern argument is true for a doIt, false for a method. If the source
was constructed by a program, or a TextEditor for interactive use, anEditor
should be nil. If the source is not syntactically legal, this expression return
the result of evaluating aBlock; otherwise, it returns an instance of Method-
Node. For more details, see the category ‘System-Compiler-Program
Objects’.

Compiler

Compiler’s class methods provide the most interesting public behavior, s
there is usually no need to create an instance.

To evaluate a string as a Smalltalk expression:
324 VisualWorks User’s Guide, Rev. 2.1

Compiler

had

s
Compiler
evaluate: aString
for: anObject
notifying: anEditor
logged: logFlag

The string will be evaluated as though it were the body of a method that
been invoked with anObject as the receiver. If logFlag is true, the string is
written on the changes log. For example, the following expression return7:

Compiler
evaluate: 'x + y'
for: 3 @ 4
logged: false

As for parsing, anEditor should be nil for noninteractive use, or a TextEditor
for interactive use. To compile a source method into a CompiledMethod
object, use an expression of the following form:

aMethod := Compiler
compileClass: aClass
selector: aSymbol
source: aString

This message will rarely be useful, however. More useful methods in
Behavior (such as compile:notifying:) perform the compilation and also
install the result in the method dictionary of a class.
VisualWorks User’s Guide, Rev. 2.1 325

Chapter 22 Parsing and Compiling
326 VisualWorks User’s Guide, Rev. 2.1

ma-
 in
re

 the
ing
oli-
ssed

can

s (if

 are
ixed-
Chapter 23

Memory Management

This chapter explains how Smalltalk manages object memory. This infor
tion may be helpful in tuning certain memory-intensive applications. Keep
mind, however, that the facilities and policies described in this chapter a
subject to change from release to release.

The chapter is divided into three sections. In the first section, we discuss
layout of memory. The second section describes the facilities for reclaim
unused memory space. These reclamation facilities adhere to specific p
cies, which can be modified to suit your needs. These policies are discu
in the third section.

Memory Layout

Smalltalk makes a number of demands upon the address space that is
provided to it by the operating system. For example, each of the following
consume a fair amount of this address space:

n The code and static data that make up the object engine

n The dynamic allocations made by the “C” run-time libraries (such as
stdio buffers)

n The dynamic allocations made by the window-system libraries

n The dynamic allocations required to accommodate the interrupt stack
any)

n The dynamic allocations made by the OE

In this section, we are only concerned with the last item, allocations that
made by the OE. The OE allocates two types of memory space: a set of f
size OE spaces, and Smalltalk object memory.
VisualWorks User’s Guide, Rev. 2.1 327

Chapter 23 Memory Management

t-up

partic-
tem
Fixed-size OE Spaces

The OE allocates the following fixed-size memory spaces at system star
time:

n CompiledCodeCache

n StackSpace

n NewSpace

n LargeSpace

n PermSpace

Figure 23-1 Memory Layout Map

Each of these spaces is used by the OE to house program elements of a
ular type. The default size of most of these spaces can be altered at sys
start-up (see the class ObjectMemory for details).

Virtual Machine

StackSpace

NewSpace

LargeSpace

PermSpace

OldSpace (segment 1)

OldSpace (segment n)

Compiled code cache

Object memory

Nonobjects

0

∞

328 VisualWorks User’s Guide, Rev. 2.1

Memory Layout

all-
od
de.

s
n the

hod’s
on.

quire
e

he
h
orta-

h
ge

hain
t and
cess
dard

ject

d in
to-
with
CompiledCodeCache

To avoid the overhead of interpretation, the OE does not interpret the Sm
talk bytecode instruction set. Instead, it executes a given Smalltalk meth
only after that method has been compiled into the platform’s machine co

This compilation is performed automatically by the OE (the compilation i
transparent to the user), and the resulting machine code is then placed i
CompiledCodeCache.

For example, when a Smalltalk method is executed for the first time, it is
automatically compiled into machine code by the OE, and the resulting
machine-code version of that method is then placed in the
CompiledCodeCache so that it can be executed. Once executed, this met
machine-code is left in the CompiledCodeCache for subsequent executi

As its name suggests, this space is only used as a cache, since it would re
an excessive amount of memory to permanently house the machine-cod
version of every Smalltalk method. If the cache begins to overflow, those
methods that have not been executed recently are simply flushed from t
cache. This approach gives Smalltalk much of the speed that comes wit
executing compiled code, and most of the space savings and all of the p
bility that come with interpretation.

The size of this cache varies, depending on the density of the platform’s
instruction set. Default sizes range from 512 to 640 KB for platforms wit
CISC-based processors to 1 MB for RISC platforms. These sizes are lar
enough to contain the machine-code working sets of most applications.

StackSpace

Each process that is active in the virtual image (VI) is associated with a c
of contexts. These contexts come in two forms: the standard object forma
the frame format. If a Smalltalk program tries to send a message to or ac
an instance variable of a given context, then that context must be in stan
object form and housed in object memory. If it is not already in standard
object form, then it is converted. The conversion to and from standard ob
format is transparent to the user.

On the other hand, when the method associated with a given context is
actually being executed, that context must be in frame format and house
the StackSpace. Once again, the conversion to and from this form is au
matic. The frame format of the contexts has been designed to mate well
the typical machine’s subroutine-call instructions.
VisualWorks User’s Guide, Rev. 2.1 329

Chapter 23 Memory Management

ere
the
o

 will
ack-

on
, or
e the
re
r

ee
r

 fill
own
.

ever
ran-

are
 the
ytes

rt of
ace

ays

ings,
KB.
Like the CompiledCodeCache, the StackSpace is used as a cache. If th
isn’t enough room in the StackSpace to store all of the contexts of all of
active processes, then the OE simply converts some of these contexts t
standard object form and places them in object memory. Later, when the
system needs to execute the methods associated with these contexts, it
convert the contexts back to frame format and place them back in the St
Space.

The default size of this space varies from 20 KB to 40 KB, depending up
whether a given platform handles interrupts in another region of memory
whether it needs to handle these interrupts in StackSpace. You can reduc
size of StackSpace, at the cost of forcing the OE to convert contexts mo
frequently from frame format to standard object format and back again. O
you can increase its size, at the cost of the additional memory.

NewSpace

NewSpace is used to house newly created objects. It is composed of thr
partitions: an object-creation space, which we call Eden, and two survivo
subspaces.

When an object is first created, it is placed in Eden. When Eden starts to
up (i.e., when the number of used bytes in Eden exceeds a threshold kn
as the scavenge threshold), the system’s scavenging mechanism is invoked
Objects that are still reachable from the system roots are placed in which
SurvivorSpace happens to be unoccupied at the time (one is always gua
teed to be unoccupied). Thereafter, objects that survive each scavenge
shuffled from the occupied SurvivorSpace to the unoccupied one. When
occupied SurvivorSpace begins to fill up (i.e., when the number of used b
in the occupied SurvivorSpace exceeds a threshold known as the tenure
threshold), the oldest objects in SurvivorSpace are moved to a special pa
object memory called OldSpace. When an object is moved from NewSp
to OldSpace, it is said to be tenured. Both the scavenge threshold and the
tenure threshold can be set dynamically (see the class ObjectMemory for
details).

The default size of Eden is 200 KB, and each SurvivorSpace (they are alw
identical in size) is 40 KB.

LargeSpace

LargeSpace is used to house the data of large byte objects (bitmaps, str
byte arrays, uninterpreted bytes, etc.). By “large,” we mean larger than 1
330 VisualWorks User’s Guide, Rev. 2.1

Memory Layout

 data
ject’s
t’s

r to
t.

ll
is no
d in

 scav-
has to
t.)

ved

ld
t
nge,
r, the

allo-
ata

 on
d as

re
eing
e

times.

erm-
nger
 into
s

 a
l be
When a large byte object is created, its header is placed in Eden and its
in LargeSpace. This arrangement permits the scavenger to move the ob
header from Eden to a SurvivorSpace without having to move the objec
data. In fact, the data that is housed in LargeSpace is only moved when
LargeSpace is compacted, as part of a compacting garbage collection o
make room for another large byte object or in preparation for a snapsho

Of course, the data of any object can be housed in LargeSpace, but sma
objects and large pointer objects are only placed in LargeSpace if there
other place to house them. The data of large pointer objects is not house
LargeSpace because it would take up valuable space without saving the
enger much work. (Since such data is composed of oops, the scavenger
scan it anyway, and it’s not expensive to move the data while scanning i

If there are too many large objects to fit in LargeSpace, older ones are mo
to object memory proper.

When the amount of data housed in the LargeSpace exceeds a thresho
known as the LargeSpaceTenureThreshold, the scavenger is informed tha
it should start to tenure the headers of large objects. During the next scave
the headers of the oldest large objects are tenured to OldSpace. Howeve
data of these large objects will not be moved from LargeSpace until the
cator actually runs out of space in LargeSpace. Only at that time will the d
of these older large objects be moved to OldSpace. The LargeSpaceTenure-
Threshold can be set dynamically.

The default size of LargeSpace varies from 200 KB to 500 KB, depending
whether the backing stores for windows on a given platform are allocate
Smalltalk objects or not.

PermSpace

PermSpace is used to hold all semi-permanent objects. Because they a
rarely ready to die, the objects housed in PermSpace are exempt from b
collected by any of the reclamation facilities other than the global garbag
collector. By removing such objects from OldSpace, the time required to
reclaim the garbage that may be present in OldSpace is reduced many

In the delivered image, most of the objects in the system are housed in P
Space. Newly created objects that are placed in OldSpace by the scave
are not automatically promoted to PermSpace. Moving Oldspace objects
PermSpace (and thus improving the efficiency of garbage reclamation) i
done by creating an image by choosing File?Perm Save As... in the Visu-
alWorks main window. Creating an image in this way is similar to making
snapshot except that all of the objects that are currently in OldSpace wil
VisualWorks User’s Guide, Rev. 2.1 331

Chapter 23 Memory Management

ry at
pace

f
other
For

erm-

fore

e,

ose
 a

ay
nap-

hot,
 it is
ce

)

ages
r all
ove.

 of

 has
promoted to PermSpace when the new image is loaded back into memo
startup time. On the other hand, you can cause all of the objects in PermS
to be loaded into OldSpace at startup time if you create an image using
File ?Perm Undo As... in the VisualWorks main window.

Note that the current state of object memory is not changed by the act o
creating a new image using the perm-save or perm-undo commands. In
words, only the newly created image will contain a modified PermSpace.
example, if you use File?Perm Save As... to create an image and later in
that same session you create a normal snapshot on top of that image, P
Space will be unaffected.

To place your application code in PermSpace, do the following steps be
deploying an image containing the application:

1. Create an image using the File ?Perm Save As... command. Then
choose File ?Exit VisualWorks... and start the new image. All of the
objects that were formerly in OldSpace will be loaded into PermSpac
including the application code.

2. A number of transient objects will also inhabit PermSpace, such as th
needed to display windows on the screen—to remove them, perform
global garbage collection.

3. Create a normal snapshot.

4. To make subsequent loads on the same platform even faster, you m
want to load the new image back into memory and perform one last s
shot. This last step is useful because the global garbage collector
compacts the objects in PermSpace, which forces the load code to
relocate these objects at startup time. By performing one extra snaps
these objects will not need to be relocated on subsequent loads when
possible for the OE to load them into their former locations. (To produ
a shareable image on a Sequent computer. this final step is required

Smalltalk Object Memory

In addition to the above fixed-size memory spaces, the system also man
a variable-size space known as OldSpace. OldSpace is a warehouse fo
objects that are not housed in one of the fixed-size spaces described ab

OldSpace

Unlike the above spaces, however, the size of OldSpace is not frozen at
startup time. Instead, it is configured at startup time with a default of 1 MB
free space. When OldSpace begins to run short of free space, the system
332 VisualWorks User’s Guide, Rev. 2.1

Memory Layout

of a
ting
ch

per

 of
ace

ten
ce. In
ent
.

 that
 house
 and
rows
e

ming
tem
nty
 the
e

l-

ies
ector
, and
hese
ble
ntig-

least
stem
the option of increasing its size. This growth is accomplished by means
primitive that attempts to acquire additional address space from the opera
system.The decisions regarding when to grow OldSpace and by how mu
are controlled by an instance of MemoryPolicy. See that class for the default
policy.

Although OldSpace can be thought of as a single contiguous chunk of
memory, it is implemented as a linked list of segments occupying the up
portion of the system’s heap. OldSpace’s growth capability dictates this
approach because, for example, I/O routines frequently allocate portions
the heap for their own use, creating intervening zones that divide OldSp
into separate segments. In a growing system, then, OldSpace may be
composed of multiple segments. When these multiple segments are writ
out at snapshot time, they are stripped of their free space to save file spa
addition, to avoid fragmentation, they are coalesced into one large segm
when the snapshotted image is loaded back into memory at startup time

Each OldSpace segment is composed of two parts: an object table (OT)
is used to house the old objects’ headers, and a data heap that is used to
the objects’ data. The data heap is housed at the bottom of the segment
grows upward; the object table is housed at the top of the segment and g
downward. Both the object table and the data heap are compacted by th
compacting garbage collector.

Since the OT and the data heap grow toward each other (thereby consu
the same block of contiguous free space from different directions), the sys
should never run out of space for new object headers while still having ple
of space for object data, and vice versa. Nor is there any arbitrary limit on
total size of OldSpace, the total size of a given OldSpace segment, or th
number of OldSpace segments that can be acquired. The only memory-
related resource that the system can run out of is address space. On rea
memory machines, this translates to available real memory. On virtual-
memory machines, it corresponds to available swap space.

In addition, the system maintains a threaded list of free object table entr
and a threaded free list of free data chunks. The incremental garbage coll
recycles dead objects by placing their headers and bodies on these lists
the OldSpace allocator tries to allocate objects by utilizing the space on t
lists before dipping into the free contiguous space between the object ta
and the data heap of each segment. Finally, a certain portion of the free co
uous data is reserved for use by the OE to ensure that it can perform at
one scavenge in extreme low-space conditions, thereby providing the sy
with one final opportunity to take the appropriate action.
VisualWorks User’s Guide, Rev. 2.1 333

Chapter 23 Memory Management

each
to an

s not
ive

use,
 and
bse-

ntry

i-
he
e OE
runk
hich
oved.

 that

.
he
Remembered Table

The remembered table (RT) is a special table that contains one entry for
object in OldSpace or PermSpace that is thought to contain a reference
object housed in NewSpace.

The objects in the RT are used as roots by the scavenger—if an object i
transitively reachable from either the RT or the StackSpace, it will not surv
a scavenge. The RT is expanded and shrunk as needed by the OE. It is
expanded if the OE tries to store more entries than the RT can currently ho
and it is shrunk during garbage collections when it has become both large
sparse, which can occur if a large number of entries were added and su
quently removed.

OldRemembered Table

The old remembered table (OldRT) is a special table that contains one e
for each object in PermSpace that is thought to contain a reference to an
object housed in OldSpace or LargeSpace.

The objects in the OldRT are used as roots by the incremental garbage
collector and the compacting garbage collector—if an object is not trans
tively reachable from the OldRT, it will not survive a garbage collection. T
OldRT is expanded and shrunk as needed by the OE. It is expanded if th
tries to store more entries than the OldRT can currently house, and it is sh
during garbage collections when it has become both large and sparse, w
can occur if a large number of entries were added and subsequently rem

Facilities for Reclaiming Space

The OE has several facilities for reclaiming the space occupied by objects
are no longer accessible from the system roots:

n Generation scavenger

n Incremental garbage collector

n Compacting garbage collector

n Global garbage collector

n Data compactor

Except for the scavenger, the OE does not invoke these facilities directly
Policy decisions such as this are controlled at the Smalltalk level—see t
ObjectMemory and MemoryPolicy classes for these default policies.
334 VisualWorks User’s Guide, Rev. 2.1

Facilities for Reclaiming Space

ger

p,
pied
hese
en

re
 the
oots.

is is
them
the

ng
e

ade
at
ned
 is
Generation Scavenger

The primary reclamation system is a generation scavenger. The scaven
flushes objects that expire while residing in NewSpace (which typically
applies to more than 95 percent of objects).

Briefly, the scavenger works as follows. Whenever Eden is about to fill u
the scavenger is invoked. It locates all of the objects in Eden and the occu
SurvivorSpace that are reachable from the system roots. It then copies t
objects to the unoccupied SurvivorSpace. Once this copying is done, Ed
and the formerly occupied SurvivorSpace contain only corpses—they a
effectively empty and can be reused. The scavenger uses the objects in
remembered table and the objects referenced from the StackSpace as r

The scavenger’s operation is imperceptible to the user. To ensure that th
so, the scavenger will start to tenure objects from NewSpace and place
in OldSpace if the number of survivors starts to slow down the speed of
scavenger’s operation.

Incremental Garbage Collector

Unlike the scavenger, which only reclaims objects in NewSpace and
LargeSpace, the incremental garbage collector (IGC) reclaims objects in
OldSpace, NewSpace and LargeSpace. It does so incrementally, recycli
dead objects by placing their headers and their bodies on the appropriat
threaded free list.

The IGC can be made to stop if any kind of interrupt occurs, or it can be m
to ignore all interrupts. In addition, you can specify the amount of work th
you want the IGC to perform, both in terms of the number of objects scan
or the number of bytes scanned—it will stop as soon as either condition
satisfied.
VisualWorks User’s Guide, Rev. 2.1 335

Chapter 23 Memory Management

se
t of
Figure 23-2 VisualWorks’ reclamation facilities

The IGC has five distinct phases of operation:

n Resting — the IGC is idle.

n Marking — the IGC is marking live objects.

n Nilling — the IGC is nilling the slots of WeakArrays whose referents
have expired.

n Sweeping — the IGC is sweeping the OT, placing dead objects on the
threaded free lists.

n Unmarking — the IGC is unmarking objects as a result of the mark pha
being aborted, either at the user’s request or because the IGC ran ou
memory to hold its mark stack.

The typical order of operation is:

1. resting

2. marking

3. nilling

4. sweeping

5. resting

Virtual Machine

StackSpace

NewSpace

LargeSpace

PermSpace

OldSpace (segment 1)

OldSpace (segment n)

Compiled code cache

No reclamation

Reclamation policy in Object Engine

Generation scavenger

Global

Incremental garbage collector

garbage
collector

Garbage collector
336 VisualWorks User’s Guide, Rev. 2.1

Facilities for Reclaiming Space

it
cts.
be
n.

sion
es
s to

ce
ate.

r that
arks

rm-
tor.
tion

t is
eeps
s
 of

that
ize of

 and

 does
bly
The unmarking phase is only entered if the mark phase is aborted, and
leaves the IGC in the resting phase when it is finished unmarking all obje
Each of the above phases is performed incrementally; that is, each can
interrupted without losing any of the work performed prior to the interruptio
The IGC never performs more than one phase per invocation. This provi
permits clients to specify different workloads and different interrupt polici
for the different phases. Consequently, clients will need to wrap their call
the IGC in a loop if they want it to complete all of the phases. There is
protocol for doing this in the ObjectMemory class.

The OE never invokes the IGC directly. Only Smalltalk code can run it. A
typical memory policy might be to run the IGC in the idle loop, in low-spa
conditions, and periodically in order to keep up with the OldSpace death r
See the MemoryPolicy class for the default policy.

Compacting Garbage Collector

The compacting garbage collector is a mark-and-sweep garbage collecto
compacts both object data and object headers. This garbage collector m
and sweeps all of the memory that is managed by the OE except for Pe
Space, whose objects are treated as roots for the purposes of this collec
This garbage collector is never invoked directly by the OE, since the dura
of its operation could be disruptive to the Smalltalk system.

Global Garbage Collector

The global garbage collector is a mark-and-sweep garbage collector tha
identical to the compacting garbage collector except that it marks and sw
all of the memory that is managed by the OE, including PermSpace. Thi
garbage collector is never invoked directly by the OE, since the duration
its operation could be disruptive to the Smalltalk system.

You might want to invoke the global garbage collector when you suspect
there are many garbage objects in PermSpace. This would reduce the s
the image file produced by a subsequent File?Save As... . It would also
reclaim the space occupied by garbage objects in OldSpace, NewSpace
LargeSpace that are only kept alive by references from garbage objects
housed in PermSpace.

Data Compactor

The system also has an OldSpace data compactor. Because this facility
not try to compact the object table, or mark live objects, it runs considera
VisualWorks User’s Guide, Rev. 2.1 337

Chapter 23 Memory Management

en

s up
 in a

 it
is
 (see

nt
ce of
, you

ow
at
 to

dent
t this

ide
n
en-

licy
m-
faster than either of the two garbage collectors. It should be invoked wh
OldSpace data is overly fragmented.

Memory Policy Classes

The system contains two classes that control all reclamation and growth
policy: ObjectMemory and MemoryPolicy. The OE only supplies the base
mechanisms for growing object memory and reclaiming dead objects. It i
to the Smalltalk memory-management code to utilize these mechanisms
judicious manner.

ObjectMemory

An instance of ObjectMemory represents a snapshot of object memory as
existed when that instance was created. The information contained in th
object can be used to guide policy decisions for managing object memory
the class MemoryPolicy for one such policy). This class also contains
protocol for manipulating the state of object memory. In general, if you wa
to access the current state of object memory, you would create an instan
this class and then send messages to that instance. If, on the other hand
want to directly manipulate the state of object memory (for example, to gr
object memory, to compact object memory, or to reclaim dead objects th
exist in object memory), you would do so by sending a message directly
the class itself.

Because the information contained in this class is implementation depen
and because it may vary from release to release, it is recommended tha
information only be accessed directly by the low-level system code that
implements the various memory policies. Such policy objects should prov
an adequate set of public messages that will permit high-level applicatio
code to influence memory policy without resorting to implementation-dep
dent code.

MemoryPolicy

This class implements the system’s standard memory policy. Memory po
objects are given the opportunity to take action during the following circu
stances:

n During the idle loop

n When the system runs low on space
338 VisualWorks User’s Guide, Rev. 2.1

Memory Policy Classes

ely

In addition, memory policy objects are responsible for determining precis
what constitutes a low-space condition.

An instance of MemoryPolicy will take the following actions in these
circumstances.

:

Table 23-1 Actions Taken by MemoryPolicy

Action Description

idle-loop action Runs the incremental GC inside the idle loop, provided
that the system has been moderately active since the last
idle-loop GC. Lets the idle-loop GC run until it is inter-
rupted.

low-space action Responds to true low-space conditions. If the system is
biased toward growth, then it attempts to grow object
memory. If, however, it is not biased toward growth, or if
object memory cannot be grown, then it tries various ways
of reclaiming space. Failing that, it tries one last time to
grow object memory. Failing that, it summons the low-
space notifier.
The most interesting of these steps is the reclamation step.
An instance of this class will perform a full, compacting
GC only if the free entries in the object table are consum-
ing a significant percent of OldSpace. If, on the other
hand, a compacting GC is not needed, the policy object
will try to reclaim space by simply finishing the incremen-
tal GC (if one is currently in progress). If that doesn’t free
up enough space, then the incremental GC is run from start
to finish without interruption. Finally, a data compaction is
performed if OldSpace is sufficiently fragmented.
VisualWorks User’s Guide, Rev. 2.1 339

Chapter 23 Memory Management
340 VisualWorks User’s Guide, Rev. 2.1

Memory Policy Classes
VisualWorks User’s Guide, Rev. 2.1 341

Part IV

Application Delivery
VisualWorks User’s Guide, Rev. 2.1 343

act
d

 one:

om-

nd

that
ls:
Chapter 24

Overview of Application Delivery

When you have finished programming your application, you need to extr
it from the VisualWorks environment in a form that makes it available an
ready for use by your intended end users. This process is called delivering or
deploying an application.

Different Ways to Deliver an Application

There are as many ways to deliver an application as there are to develop

n You can deliver your application as a single image by removing
unwanted code from your development image (known as stripping the
image), saving the image, and then delivering that image to your
customers, or

n You can divide your application into small, separately-loadable units
called parcels and deliver any number of parcels with a minimal base
image, or

n You can deliver part of your application in the image and parts as acc
panying parcel files.

Single Image File

A single image file works well for saving and quickly restarting a system
configuration. A single image file is often too large for easy distribution a
too large-grained to provide adequately for the individual support of
subsystems or sub-applications.

Parcels

Parcels, files that can contain application objects in a non-textual format,
can be rapidly loaded into an image without the use of a compiler. Parce

n Allow you to deliver a very small base image.

n Can be loaded at startup or run time.
VisualWorks User’s Guide, Rev. 2.1 345

Chapter 24 Overview of Application Delivery

ds

y

pli-
nd
e,
s are

an

ing
f

,

ment
y-
rcels

rts
n Allow you to incrementally update your application without supplying
an entire new image.

n Allow you to customize your application at run time based on the nee
to various kinds or users.

n Allow you to tailor the memory footprint of your running application b
providing a wider range of delivery configurations.

Development and Deployment Life-Cycle

There are a variety of processes for writing, parceling, and deploying ap
cations. At one extreme, you can write and test your entire application a
then break it into parcels for delivery. At the other extreme, you can writ
test, and deliver your application one parcel at a time. These two method
outlined below.

In either method, if you forget something in the deployment image, you c
either:

n Rebuild the deployment image.

n Put the missing piece in a parcel.

Method 1: Delivery Combined with Development

If you are just starting development on an application or near the beginn
of the project, you are in a good position to incorporate delivery as part o
your development effort. You can write your application parcel by parcel
beginning with core parcels or ones that must be present at start-up and
working your way through the application:

1. Create a deployment image.

Assess the anticipated needs of your application and create a deploy
image that has the required VisualWorks support classes. This deplo
ment image may be as simple as a shell that is capable of loading pa
for testing.

2. Build some discrete part of your application. It may have stubs for pa
that are not yet built. Keep your delivery goals in mind.

3. Parcel that part of your application.

4. Test the parcel with the deployment image.

5. Repeat steps 2-4 until done.
346 VisualWorks User’s Guide, Rev. 2.1

More Information

the

d

t
m.

,”
ect
Method 2: Delivery After Development

If you have a completed application that you want to deliver or are near
end of a project, you can save application delivery for the final step:

1. Develop your application as you usually do.

2. Divide your application into parcels based on your delivery goals and
save those parcels to parcel files.

3. Create your minimal base image (deployment image) by stripping your
development image.

4. Test your deployment image with your parcels. Fix as needed.

More Information

This part of the VisualWorks User’s Guide is divided into three chapters:

n Chapter 25, “Parceling an Application,” describes parcels in detail an
explains how to create and load them.

n Chapter 26, “Creating a Deployment Image,” describes a deploymen
image in more detail and explains how to create, start, and debug the

n Chapter 27, “Creating Applications without Graphical User Interfaces
explains how to create and deliver applications that do not rely on dir
user interaction, and may run on computers that have no console or
windowing system.
VisualWorks User’s Guide, Rev. 2.1 347

Chapter 24 Overview of Application Delivery
348 VisualWorks User’s Guide, Rev. 2.1

gle
pli-
e
Chapter 25

Parceling an Application

What Are Parcels?

A parcel is a group of implementation objects gathered together into a sin
unit. A parcel is a fragment of your application, usually grouped by sub-ap
cation or deployment needs. They are discrete, loadable units that can b
incrementally updated and changed.

Figure 25-1 Application Divided Into Parcels

an application’s class and methods

parcels
VisualWorks User’s Guide, Rev. 2.1 349

Chapter 25 Parceling an Application

ry

se

ing

me
ition

ith
Characteristics

Parcels are instances of class Parcel. Each parcel has a name and a dictiona
of arbitrary property strings (including a version string and a comment
string).

Contents

A parcel may contain:

n An arbitrary group of one or more class definitions.

n An arbitrary group of one or more method definitions. A method who
class is not defined in the same parcel is called an extension to that class.

n Named object such as data objects.

A single class definition, method definition, or object may appear in any
number of parcels. A parcel may contain a class definition without contain
any of the protocols or method definitions in the class.

Restrictions

A class’s instance and class side definitions must be contained in the sa
parcel; they cannot be broken apart. A parcel cannot change a class defin
that is already in the image.

Named objects have the following restrictions:

n They cannot be instances of the following classes:

n They cannot be block closures that have stack contexts associated w
them.

CDatum Context Controller

Exception ExternalInterface GraphicsContext

GraphicsDevice GraphicsHandle GraphicsMedium

LensContainer LensGlobalDescriptor LensSession

OSHandle Process Semaphore

Signal VisualPart WeakArray
350 VisualWorks User’s Guide, Rev. 2.1

Creating Parcels

 in a
 and

ally

goal
aded
les

els
ays
end
tures
ded?

f:

 your
ss

Parcel Files

Parcels are saved in parcel files. Parcel files contain only compiled code
binary format. They do not contain the source code for the defined classes
methods they contain. As a result, parcel files can be quickly and atomic
loaded into an environment without the use of a compiler.

Creating Parcels

Deciding What to Parcel

Dividing an application into parcels is as much an art as a science. Your
should be to create parcels that are small enough to be distributed and lo
quickly. A guideline is to keep parcel files smaller than 100K, but parcel fi
may be any size that accommodates the needs of your application.

When parceling an application think about how you want to load the parc
into your deployment image or running application. Which parts must alw
be running? Are there parts that should start up together? Are all of the
users going to use all of the application’s features, or are there some fea
that might be used infrequently and thus should be loaded only when nee

Keep in mind dependencies between parts of your code. Be conscious o

n Subcanvases.

n Embedded and linked data forms.

n Inherited behavior.

n Resources such as bitmaps that are used from a central location.

n Class variables that are used by other classes. For example, if one of
classes keeps the name of the application’s working directory in a cla
variable, it should be loaded first.

Specifying Parcels and their Contents

Once you have an idea how you want to divide your application, you can
begin putting your application in parcels:

1. Open the Parcel List by choosing Tools ?Parcel List from the Visual-
Works main window. The Parcel List shows all of the parcels in the
image. Initially, the Parcel List is empty.
VisualWorks User’s Guide, Rev. 2.1 351

Chapter 25 Parceling an Application

ips
ded
ue

el

 in

l
Figure 25-2 Parcel List

(For a complete description of the Parcel List, see page 161.)

2. Create a new parcel by choosing Parcel ?New and proving a parcel
name. A parcel name may be any string; however, the Parcel List str
out blank spaces before and after parcel names and reduces embed
series of blank spaces to a single space. Parcel names must be uniq
within the image.

3. Display the contents of the new parcel by double-clicking on the parc
name. VisualWorks opens the Parcel Browser.

Figure 25-3 Parcel Browser

The Parcel Browser looks like the System Browser, but differs from it
three ways:

n It has an additional parcel view which displays the name of the parce
and provides commands that affect the parcel as a whole.

parcel view

filter check box
352 VisualWorks User’s Guide, Rev. 2.1

Creating Parcels

e

ods

d

at

ded.

rent

e is
od

g
n Its display can be filtered to show only the definitions that are in th
current parcel.

– Items that are in the parcel are in bold.

– Items that are in the system but not in the parcel are in regular
typeface.

– Classes that are in italics are not in the parcel but contain meth
that are.

n The definitions displayed in the Parcel Browser cannot be edited.

(For a complete description of the Parcel Browser, see page 163.)

4. Add class and method definitions to the parcel by selecting items an
choosing add to parcel from the <Operate> menu.

When you:

n Select a category, all of the classes, protocols, and methods in th
category are added.

n Select a class, all of the protocols and methods in that class are ad

n Select a protocol, all of the methods in that protocol are added.

n Select a method, that method is added. Methods that are in a diffe
parcel than their parent class are extensions. The names of classes
that are extended appear in italic font.

Note: If you write new methods for a class after the class has been added
to a parcel, the new methods are not placed in the parcel automatically.
You must explicitly add the class’s new methods to the parcel. The sam
true if you write a class in an already parcelled category or a new meth
in an already parcelled protocol.

5. Remove any class and method definitions you don’t want by selectin
those items and choosing remove from parcel from the <Operate>
menu.

6. (Optional) Add a parcel comment.

a. Choose comment from the parcel view’s <Operate> menu. The
parcel’s comment is shown in the code view.

b. Edit the comment. A comment may be any string.

c. Accept the new comment.

7. (Optional) Add a version string.

a. Choose version from the parcel view’s <Operate> menu. The
parcel’s version is shown in the code view.

b. Edit the version. A version may be any string.
VisualWorks User’s Guide, Rev. 2.1 353

Chapter 25 Parceling an Application

e

u

 it

cel

ist.

ved
c. Accept the new version string.

8. You may view a summary of the classes that are in the parcel and th
classes that are extended by methods in the parcel by choosing
summary from the parcel view’s <Operate> menu. The summary
appears in the code view.

Figure 25-4 Summary of Parcel Contents

9. When you are done assigning classes and methods to the parcel, yo
must save it. Until a parcel is saved, it is considered dirty. A parcel is
dirty when:

n Definitions have been added to or removed from the parcel since
was last saved.

n The parcel’s version or comment has been changed since the par
was last saved.

n Any of the definitions in the parcel have been modified since the
parcel was last saved.

You can save a parcel from either the Parcel Browser or the Parcel L

n In the Parcel Browser, choose save as... from the parcel view’s
<Operate> menu.

n In the Parcel List, select the parcel name and choose Parcel ?Save
As... .

VisualWorks saves the parcel to a parcel file. Each parcel must be sa
to its own parcel file.
354 VisualWorks User’s Guide, Rev. 2.1

Loading Parcels

o
tains
er.

l’s

e at

ur

ms
is
.

els

e
 one

ed at

-

ppli-
ion,
10. Repeat this process until your entire application has been divided int
parcels and saved. To help with this process, the Parcel Browser con
many of the navigation commands you know from the System Brows

Loading Parcels

There are three ways to load parcels:

n In a development image, you can load a parcel by choosing
Parcel ?Load in the Parcel List and specifying the name of the parce
file.

n In a deployment image, you can specify parcels on the command-lin
startup.

n In either image, you can load parcels programmatically from within yo
application.

Parcels can only add to the system. Loading a parcel will not remove ite
from the image or rename items. In contrast, filing in and filing out code
treated as a set of change instructions and can remove or rename items

At Start Up

Deployment images that were created using Image Maker can load parc
during startup.

When a deployed image starts up, it looks in the working directory for a
parcel configuration file with the filename imagename .cnf , where image-
name is the same as the image file’s prefix. If such a file exists, the imag
loads the parcel files named in the file. Parcel file names should be listed
per line and are resolved with respect to the working directory.

You also can use command-line arguments to specify parcels to be load
start-up:

n -pcl filename loads the specified parcel file.

n -cnf filename loads all of the parcels listed in the specified config
uration file.

From within an Application

Your application may load parcels as needed. For example, when your a
cation’s user starts a new tool or opens a new window within your applicat
your application may load the parcel that contains that tool or window.
VisualWorks User’s Guide, Rev. 2.1 355

Chapter 25 Parceling an Application

nd
ate
 to

nds.

els,
 of
ser
lish

s

o its
The following line of code loads a parcel from a parcel file called parcel-
name.bin :

Parcel loadParcelFrom: 'parcelname.bin'

You should decide what you want your application to do if the parcel is
already loaded. You can have your application reuse the already-loaded
parcel or reload the parcel from a file. You should consider how easily a
regularly you need to replace your application’s parcels with new, up-to-d
parcels. You should also consider how quickly you want your application
respond.

Reuse

You probably want to reuse the already-loaded parcel if:

n Your deployed application is well-tested and doesn’t change often.

n Your users routinely restart the application, at which point they would
receive newly loaded parcels.

n You want the quickest possible response from parcel-loading comma
This can be especially important when parcels are loaded across a
distributed network.

If you program your application such that it will reuse already-loaded parc
you may want to create an additional mechanism that will force reloading
parcels on demand. Such a mechanism could reload parcels based on u
request, amount of time since last reload, or any other criteria you estab
in your application.

Reload

You probably want to reload the parcel if:

n You are in the process of testing and debugging your application and
want to ensure that you are always using the most recent version of
parcels.

n Your deployed application is requires frequent updating.

n Your users routinely leave the application running for long periods of
time without restarting and reloading.

Note that loading a parcel will not allow you to overwrite an existing clas
definition. Thus, you must use the Parcel>>unload method to unload parcels
before loading their replacements. Unloading does not return the image t
356 VisualWorks User’s Guide, Rev. 2.1

Filing Parcel Contents In and Out

as
.

e
.

st be

g

 an

u
m. If

cel’s

ling
 file
state before the parcel was loaded. In particular, it does not reconstruct
methods that were overwritten by extension methods when the parcel w
loaded. As with loading parcels, order may be important when unloading

Behavior at Load Time

Loading classes from a parcel causes postLoad to be sent to those classes.
The default behavior for postLoad is to call the class’s initialize method if it
has one. (The superclass’s initialize method is not checked.) You can overrid
that behavior by creating a postLoad method on the class side of your class

The postLoad method can be used in combination with a preSave method
to store named objects in a parcel and retrieve them as load time.

Load Order

It is up to you to ensure that parcels with dependencies are loaded in the
correct order:

n Superclasses must be loaded before their subclasses.

n A class must be loaded before its methods.

n Resources such as subcanvases, embedded data forms, bitmaps mu
loaded before the classes that use them.

Load Errors

Loading of the basic contents of the parcel is uninterruptable as far as
processes executing within the environment are concerned: basic loadin
either succeeds entirely or fails completely.

Loading a parcel will display an error message if you attempt to overwrite
existing class definition.

Note that parcel files do not contain source code. Without source code, yo
can execute the parcel’s contents, but you may not be able to browse the
you try to browse its contents, VisualWorks will notify you that there is a
problem with the source and, if you have a decompiler, decompile the par
contents and display the results in the browser.

Filing Parcel Contents In and Out

The Parcel List and Parcel Browser each allow you to file out a parcel. Fi
out a parcel writes all of the class and method definitions in the parcel to a
VisualWorks User’s Guide, Rev. 2.1 357

Chapter 25 Parceling an Application

e
tents
sms.

 and

s

. If
ini-
,

ou

oth
er.

t

es

ou

rcel
still
 all
as source code. Filing out a parcel does not file out the parcel itself or th
association between the parcel and its classes and methods. Parcel con
that have been filed out can be filed in using the standard file-in mechani

To file in a set of definitions and associate them with a parcel, first create
select the parcel in the Parcel List. Then choose Utilities ?File Into Parcel
to file the definitions into the parcel that you created. All of the definition
within it will be added to the system and also to the parcel.

Tips for Working with Parcels

Keeping Source Code and Parcels in Sync

Always keep in mind that parcels do not contain source code definitions
you load the parcel into an image from which it was not created, the def
tions are not present for editing, browsing, etc. If you have a decompiler
VisualWorks will display decompiled code, but variable names and
comments will not be preserved.

Also keep in mind that source files do not preserve parcel information. Y
can assign sources to a parcel if you file them in using the Parcel List.

If you are using parcels during development, you may want to maintain b
source code and parcel information and keep them in sync with each oth
For example, you might:

n Save parcels to both parcel files and source files.

n Give parcel files and source files corresponding names, with differen
extensions.

n Keep a record of which parcels are in which parcel files. The file nam
do not necessarily match the parcel names.

Warning: If the definitions at not saved in the image or in a source file, y
may not be able to reclaim them.

Testing Parcel Files and Source Files for Matches

One way to test if your parcel file and source files match is to load the pa
file first and then load the source file. If any of the parcel’s methods are
decompiled, then the files do not match. The source file should overwrite
of the parcel’s methods.
358 VisualWorks User’s Guide, Rev. 2.1

Tips for Working with Parcels
VisualWorks User’s Guide, Rev. 2.1 359

Chapter 25 Parceling an Application
360 VisualWorks User’s Guide, Rev. 2.1

s
to

ent
 the
ica-

 as
t run
Chapter 26

Creating a Deployment Image

A deployment image is an image that has been configured to run program
written in whole or in part in ParcPlace Smalltalk and whose purpose is
support the activities of an end user. In a deployment image, the developm
capabilities of the software have been stripped, blocked, or disabled and
remaining portions have been integrated with the VisualWorks user appl
tion into a cohesive whole.

The deployment image can be minimal with almost nothing in it. It serves
a vanilla environment. Your end users can then specify parcels to load a
time or your application can load parcels as they are needed.

Figure 26-1 Development Image and Deployed Application

development image deployed application

parcels

development tools

Smalltalk base
VisualWorks User’s Guide, Rev. 2.1 361

Chapter 26 Creating a Deployment Image

 in a

r for

sses

n-

n

r-

ist).
rly

re
zed
Setting Up a Deployment Image

Before deploying your application, you should consider a few aspects of
image-making and the resulting deployed image.

Handling Errors

Your application is expected to catch most error signals and handle them
way that is consistent with your user interface. The DeploymentNotifier is
provided for errors that are not otherwise handled—and as a placeholde
your own notifier.

For more information about trapping error signals, see the chapter “Proce
and exception handling.”

The Transcript

The Transcript as an object is preserved in a deployment image. The Tra
script as part of the VisualWorks main window, however, is not in the deploy-
ment image. Messages sent to Transcript process without errors but do not
display themselves unless you define something to show the state of the Tran-
script.

Undeclared Variables

The system maintains a dictionary of undeclared variables, which you ca
access via the global name Undeclared. An entry is appended to
Undeclared when:

n A reference to a nonexistent variable is compiled during file-in (or inte
actively, if you override the compiler’s warning).

n A variable is removed while references still exist.

n A class is removed (regardless of whether outside references to it ex
This assures that any outside references that may exist will be prope
reconnected if the class is recreated.

Ideally, the Undeclared dictionary is empty in a deployed image. Entries a
removed automatically when the missing variable is declared. A speciali
Inspector has been created to help you manage the Undeclared dictionary
manually. To open an Inspector on Undeclared:

1. Open a Workspace and type Undeclared.

2. Select Undeclared and choose inspect from the <Operate> menu.
362 VisualWorks User’s Guide, Rev. 2.1

Creating a Deployment Image

 will
e to

 use

e
sses
end
ust
al.

ro-

-

s

Figure 26-2 An Inspector on the Undeclared

The Undeclared Inspector provides a references command for finding
methods that refer to the selected variable. Note that hidden references
not be reported—if you suspect such references may exist, you will hav
track them down using other means.

When you are satisfied that no references to the selected variable exist,
the Inspector’s remove command to delete the entry.

Creating a Deployment Image

To create a deployment image, you use a tool called Image Maker. Imag
Maker enables you to remove development tools and other unwanted cla
from an image. The resulting image is more appropriate for distribution to
users of your application. It also occupies significantly less disk space. J
how much depends on which functions and classes you mark for remov

To use Image Maker:

1. Set up your application as you want it to be delivered:

n To save your entire application as part of the deployment image,
make sure it is in the current development image and that the app
priate windows are open.

n To save only your application’s initial window as part of the deploy
ment image, make sure it is open and in the current development
image. Make sure application code that will be delivered in parcel
(or some other form) is removed from the image. You can remove
classes manually or by specifying them as additional classes for
Image Maker to remove in step 4, below.
VisualWorks User’s Guide, Rev. 2.1 363

Chapter 26 Creating a Deployment Image

pli-

g it

ion

ase
n To save only a bare deployment image that will load your entire
application from parcels at (or after) startup, remove all of your ap
cation code from the image.

2. File in imagemkr.st from the utils directory.

3. In a Workspace, execute the following:

ImageMaker open

Image Maker starts and displays a window that allows you to choose
what you want to remove from your development image before savin
as a deployment image.

Figure 26-3 Image Maker

4. Choose what you want to remove from the image. For more informat
about removal options, see “Optional Removal of Other Facilities” on
page 366.

5. Run Image Maker by choosing File?Make Deployment Image .
Image Maker asks you for the name of the release directory. The rele
directory is the directory in which VisualWorks was installed.

6. Enter the name of the release directory and click OK.
364 VisualWorks User’s Guide, Rev. 2.1

Operations Performed by Image Maker

e

t

wn

e

ch to
vel-

te file.

Visu-
tly
Image Maker then:

a. Removes the specified classes from the image.

b. Closes all of the VisualWorks development tools.

c. Leaves your application in the image and, if it was open, leaves it
open.

d. Asks you for the name of the file to which you want the new imag
saved.

7. Enter the name for the new image and click OK.

8. Image Maker displays a dialog box providing instructions for the nex
step. Click OK to dismiss the dialog box.

Image Maker then:

a. Saves the image.

b. Closes your application, if it was running.

c. Shuts down the VisualWorks object engine and image.

9. Start the new image. To do so, use the same object engine you used
previously and indicate the name of the new image.

The new image appears exactly as it did before Image Maker shut do
in step 8. If your application was running, it is restarted.

10. Image Maker displays a final dialog box indicating that it will now sav
and quit once again. Click OK.

Image Maker again:

a. Saves the image.

b. Closes your application, if it was running.

c. Shuts down the VisualWorks object engine and image.

Your new image is now ready.

Operations Performed by Image Maker

Image Maker uses your current development image as the base from whi
create the deployment image. It does not change the file in which your de
opment image resides. The new deployment image is saved in a separa

Note: Image Maker has been optimized to meet the needs of the current
alWorks release. Image Maker code for one release may not work correc
for another release.
VisualWorks User’s Guide, Rev. 2.1 365

Chapter 26 Creating a Deployment Image

t

ll-
they

e
eck
s of

 is

e
ved.

cess
d

ss

.)

t
Removal of Development Facilities

When Image Maker creates a deployment image, it always removes:

n The VisualWorks main window.

n All of the VisualWorks development tools, including the browsers,
inspectors, debugger, change list, project tools, painting tools, online
documentation tools, and database application-generation tools.

n All of the development tools for add-on products and ObjectKits,
including the Advanced, Business Graphics, and DLL and C Connec
tools.

n System organization (categories and protocols).

n Pool dictionaries that are no longer needed. The pool dictionary
OpcodePool is treated specially. It is emptied and removed from Sma
talk; its keys are hidden, but it keeps its associations around in case
are used.

n All source files.

Optional Removal of Other Facilities

Image Maker provides options for removing a variety of facilities from th
deployment image. The Image Maker window presents the options as ch
boxes. Options are expressed in terms of system functionality, not in term
class names or categories.

To find out exactly which classes will be removed when a particular option
chosen, look at the corresponding method in the options protocol on the class
side of ImageMaker and the associated remove script in the
utils/removals subdirectory of the release directory. When a remov
script indicates to remove a class, that class’s subclasses are also remo

Display Capability

If you have filed utils/headless.st into your image, Image Maker
presents an additional option for creating an image that does not have ac
to a display system (console or window system). Such an image is calle
headless. By default, the Generate Headless Image option is chosen,
causing Image Maker to create a deployment image that is in the headle
state. (The intermediate image during processing is headful so it can present
image-making status and instructions; the final saved image is headless

If Generate Headless Image is not chosen, Image Maker creates a
deployment image that operates, by default, in a headful state. Note tha
366 VisualWorks User’s Guide, Rev. 2.1

Operations Performed by Image Maker

; it

e no
ica-

r
ws

ge
r

u
-

Image Maker does not remove the headless capability or supporting code
simply turns the display features on or off based on your selection.

Compiler Classes

When you select the Image Maker option labeled Remove Compiler ,
Image Maker removes all compiler-support classes.

Removing compiler classes produces what is known as a closed system,
because the system is closed to compilation activities. When compiler
support is left in the image, it is called an open system.

A closed system provides a greater degree of protection against user
tampering, and further reduces the space required by the image file. Whil
new code can be evaluated in such an image, all existing tools and appl
tions that do not rely on this capability will continue to function normally.

An open system is appropriate when your application needs to evaluate
Smalltalk code. For example, a development environment for Smalltalk
programmers would need to be open.

Note: If you do not choose to remove the compiler classes, Image Make
displays a notifier reminding you to verify that your license agreement allo
you to deploy systems that include the compiler.

Database Support

If your application does not access a database, you may choose for Ima
Maker to remove RDBMS Interface (EXDI) capability, the ObjectLens, o
the ObjectLens application framework (including LensMainApplication and
LensDataManager).

Note that there are dependencies between these three facilities:

n The RDBMS Interface capability is used by the ObjectLens and the
ObjectLens application framework. You cannot remove it without
removing them.

n The ObjectLens is used by the ObjectLens application framework. Yo
cannot remove the ObjectLens without removing its application frame
work.
VisualWorks User’s Guide, Rev. 2.1 367

Chapter 26 Creating a Deployment Image

hose
ve

a-
t use

d

tif

so
e

tly

ng
d in

ion
Unused User-Interface Widgets

Certain widgets have a great deal of supporting code. If you do not use t
widgets in your application, you should choose for Image Maker to remo
their code. In particular, Image Maker provides the ability to remove the:

n Dataset

n Notebook

n Table

Note: Use caution when removing dataset widgets from database applic
tions. Data forms that were generated by the Canvas Composer and tha
a tabular format generally require the dataset view.

Unused User-Interface Looks

Image Maker provides options to remove user-interface look policies an
supporting code for the following platforms:

n OS2/CUA

n Windows

n Macintosh

Image Maker does not provide options for removing the default look or Mo
user-interface look policies. DefaultLook is required as a last resort of
AutoSelect when no other look policy is appropriate. Default look policy al
provides constants that are used by all the other look policies. In turn, th
Default Look widgets are built on top of and require the Motif look.

Note that Image Maker will not remove a user-interface look that is curren
in use. You may have to change your UI Look settings before creating a
deployment image.

BOSS

Image Maker provides an option for removing the Binary Object Streami
Service (BOSS). If your application does not depend on objects delivere
BOSS files, choose Remove BOSS .

Printing Capability

If your application does not need to write PostScript files or send informat
to a printer, you can remove printing support by choosing Remove Printing
Capability .
368 VisualWorks User’s Guide, Rev. 2.1

Operations Performed by Image Maker

s a

 you

 the

ker

. It
that
 or

e.
Additional Classes

In addition to removing predefined sets of classes, Image Maker provide
way for you to identify other classes you would like to have removed. To
remove additional classes:

1. In the Image Maker window, choose Remove Additional Classes .

2. Choose Classes ?Set Additional Removals from Image Maker’s
menu bar.

Image Maker shows all of the classes in the system, including those
already being removed. From this list, choose additional classes that
want removed. You may want to consider classes such as:

n Classes that support your own development tools or extensions to
VisualWorks development environment

n Operating-system support classes that your application does not
require

The additional classes that you specify are stored in Image Maker’s addition-
alClasses instance variable.

Preservation of Certain Facilities

Unless you specify them as additional classes to be removed, Image Ma
does not remove:

n Frameworks for add-on products or ObjectKits.

n The headless capability. If you have filed in utils/headless.st ,
Image Maker does not remove that code from the deployment image
does, however, allow you the option of creating a deployment image
operates in either headful (with a graphical user interface or console)
headless mode. See “Display Capability” on page 366.

n Any development tools you have created.

n Your application classes.

Optimization of Memory Usage

Image Maker automatically performs a series of operations to optimize
memory usage. In particular, it:

n Performs a perm save as , which moves all of the objects that were
formerly in OldSpace into PermSpace, including your application cod
VisualWorks User’s Guide, Rev. 2.1 369

Chapter 26 Creating a Deployment Image

ts

rm
e

the

ects
 for

ge,

e for

age
ed,

ls
Moving your application code to PermSpace enable the system’s
memory reclamation facilities to run faster.

n Performs a global garbage collection, which removes transient objec
from PermSpace.

n Asks you to load the new image back into memory so that it can perfo
one last snapshot. The image resulting from this snapshot obtains th
benefits of the global garbage collection and is significantly smaller.
Performing a snapshot also makes subsequent loads on the same
platform even faster because the global garbage collector compacts
objects in PermSpace, which forces the load code to relocate these
objects at start-up time. By performing one extra snapshot, these obj
will not need to be relocated on subsequent loads when it is possible
the object engine to load them into their former locations.

For more information about kinds of memory and optimizing memory usa
see Chapter 23, “Memory Management.”

Other Changes

In addition to removing unneeded functionality and optimizing memory
usage, Image Maker performs a variety of operations to set up the imag
deployment. Image Maker:

n Replaces the NotifierView class with DeploymentNotifier. Whenever
an error occurs in the deployed image, DeploymentNotifier writes the
entire stack trace to a file (by default, visual.err).

n Writes a complete account of all patches loaded before and during im
making, including removal scripts, the list of additional classes remov
and all parcel names. The account is written to the file image-
name.rpt , where imagename is the name of the deployment image.

n Sets noWindowBlock on ControlManager to be a block that will shut
down the image whenever the last window is closed by the end user.

n Creates an instance of AutoLoader and sets it to be a dependent of
ObjectMemory. AutoLoader is responsible for loading parcels during
startup (see “Starting Up a Deployed Image,” below). AutoLoader is set
before HeadlessImage in the dependents list so that, if present, parce
will be loaded before source files.
370 VisualWorks User’s Guide, Rev. 2.1

Saving the State of Image Maker

en

e of

age,

e
 one

 be

-

er, a
d

l
pts,
t is
Saving the State of Image Maker

You can save the state of Image Maker, including all of the options chos
and additional classes specified. To do so, choose File?File Out Choices
from the Image Maker menu bar. Image Maker prompts you for the nam
the file in which to save its state.

To load pre-saved state back into Image Maker, choose File?File In
Choices from Image Maker’s menu bar.

Starting Up a Deployed Image

You start a deployment image the same way you start a development im
specifying the object engine and name of the deployment image.

When a deployed image starts up, it looks in the working directory for a
parcel configuration file with the filename imagename .cnf , where image-
name is the same as the image file’s prefix. If such a file exists, the imag
loads the parcel files named in the file. Parcel file names should be listed
per line and are resolved with respect to the working directory.

Additionally, you can use command-line arguments to specify parcels to
loaded at start-up:

n -pcl filename loads the specified parcel file.

n -cnf filename loads all of the parcels listed in the specified config
uration file.

If the image is headless, it then looks for a start-up file.

Debugging a Deployed Image

A deployed image does not contain development tools. There are, howev
few mechanisms to help you obtain information about errors in a deploye
image.

When it creates an image, Image Maker writes a complete account of al
patches loaded before and during image making, including removal scri
the list of additional classes removed, and all parcel names. The accoun
written to the file imagename .rpt , where imagename is the name of the
deployment image. That report can be used to recreate or duplicate the
deployed image.
VisualWorks User’s Guide, Rev. 2.1 371

Chapter 26 Creating a Deployment Image

ease
ppli-

ge
Image Maker replaces the NotifierView class with DeploymentNotifier.
Whenever an error occurs in the deployed image, DeploymentNotifier
displays a dialog in which you can click Write Report and specify a
filename for the report. The report contains a description of the image (rel
number, patches, and so on) and the complete stack trace. Within your a
cation, you can send the message logging: true to the DeploymentNotifier
class to arrange for a stack trace to be appended to the file visual.err
whenever an unhandled exception occurs.

Exiting a Deployed Image

To supplement any shut-down facilities provided by your application, Ima
Maker establishes noWindowBlock on ControlManager. When the last
window is closed, the deployment image shuts down.
372 VisualWorks User’s Guide, Rev. 2.1

Exiting a Deployed Image
VisualWorks User’s Guide, Rev. 2.1 373

Chapter 26 Creating a Deployment Image
374 VisualWorks User’s Guide, Rev. 2.1

l
rite
er
ng

and

lass

play
m).
ess
dless
e

file.
.
pres-
less
ter-

ript
Chapter 27

Creating Applications without
Graphical User Interfaces

Applications that rely on direct user interaction typically provide graphica
user interfaces for collecting input and displaying output. You can also w
batch or server applications that, by their nature, do not rely on direct us
interaction, and may run on computers that have no console or windowi
system. Such applications execute in headless VisualWorks images—that is,
images that run with the display system deactivated (in headless mode).

This chapter describes the general steps for creating a headless image
executing an application in it.

Key Concepts

The headlessness of an image is controlled by the sole instance of the c
HeadlessImage. This instance (HeadlessImage default) enables you to
create new images by saving them either in headless mode (with the dis
system deactivated) or in “headful” mode (with an activated display syste
You typically develop your application in a headful image, test it in a headl
image, and then debug it in a headful image that is created from the hea
image. The HeadlessImage instance records the image’s mode and can b
queried for it.

The basic way to provide input to a headless image is through a startup
A startup file is a file that contains Smalltalk expressions in file-in format
When a headless image is started, it reads the file and evaluates the ex
sions. You typically use a startup file to start your application in the head
image. Applications can also accept input through sockets, file I/O, tty in
action, and so on.

By default, output that would normally be displayed in the System Transc
is saved to disk in a transcript file.
VisualWorks User’s Guide, Rev. 2.1 375

Chapter 27 Creating Applications without Graphical User Interfaces

age

for
pli-

d-

,
ave
ine

and

es-

le,

Setting Up a Headless Image

To prepare to execute an application in headless mode, you start with a
standard VisualWorks image, configure it, and then create a headless im
from it, as described in the following steps:

1. In a standard VisualWorks image, file in headless.st , located in the
utils subdirectory of the release directory. This introduces the Head-
lessImage class plus several other classes in the category Headless-
Support.

2. Write your application so that it can run in headless mode (see “Tips
Programming a Headless Application” on page 379). Note that the ap
cation can send messages to the HeadlessImage instance (for example,
to test whether it is running in a headless or headful image).

3. Decide how you will want to start your application and prepare accor
ingly (see “Techniques for Starting a Headless Application” on
page 379). You may want to file out your application into a startup file
or make certain modifications to the system. A basic technique is to le
the application in the image and create a startup file that contains a l
such as MyApplication open!.

4. Decide whether you want the headless image to file in a startup file,
if so, whether to use the default startup filename (hlstrc.st).

n If you do not want to use a startup file, evaluate the following expr
sion:

HeadlessImage default startupFilename: nil

n If you want to use a startup file with a nondefault name (for examp
myStartUp.st), evaluate an expression such as the following:

HeadlessImage default startupFilename: 'myStartUp.st'

5. Decide whether you want the headless image to append transcript
messages to the file hlst.tr :

n If you do not want to use any transcript file, evaluate the following
expression:

HeadlessImage default transcriptFilename: nil
376 VisualWorks User’s Guide, Rev. 2.1

Running an Application in Headless Mode

e

 has

al-

host

hat
ilable
n If you want to use a transcript file with a nondefault name (for
example, myTranscript.tr), evaluate an expression such as th
following:

HeadlessImage default startupFilename: 'myTranscript.tr'

6. Create a headless image by evaluating an expression such as the
following:

HeadlessImage default saveHeadless: 'headlessImageName'

This creates a new image named headlessImageName.im in which
HeadlessImage’s state is set to headless. Creating a headless image
no effect on the current image.

Running an Application in Headless Mode

To run an application in headless mode:

‰ Start the headless image as you would normally start a standard Visu
Works image.

When an Image Starts

When a standard VisualWorks image starts, ObjectMemory installs objects
that are fundamental to the display, thereby hooking the image up to the
windowing system. ObjectMemory also broadcasts #returnFromSnapshot
to its various dependents, which respond with their own startup actions.

When a headless image starts, the ObjectMemory refrains from hooking it
up to the underlying windowing system and does not install the objects t
are associated with the display. Consequently, those objects are not ava
for referencing later.

The HeadlessImage is registered as a dependent of ObjectMemory. Upon
receiving #returnFromSnapshot, the HeadlessImage instance checks its
state to verify that the image is headless and replaces the normal Transcript
(a display-oriented object of class TextCollector) with a file-based surrogate
of class FileTextCollector or NullTextCollector if a nil transcript filename is
provided. The normal Transcript is retained (so it can be reinstalled in the
image if it is saved as headful), but not accessible while headless.
VisualWorks User’s Guide, Rev. 2.1 377

Chapter 27 Creating Applications without Graphical User Interfaces

en
n it
tion.

the

e tran-
age.

lay
d

e it

sion:

Finally, the HeadlessImage instance checks whether a startup file has be
specified; if so, the start-up file is filed in and the Smalltalk expressions i
are evaluated. Typically, these expressions start up the headless applica

If an Application Attempts to Access a Display

If an application that is running in a headless image attempts to access
non-existent display, the attempt is trapped, and an exception, Head-
lessImage headlessErrorSignal, is raised. If the exception is not caught,
the offending process is suspended and saved by the HeadlessImage
instance for debugging.

More specifically, the message #checkHeadless is sent to the
HeadlessImage instance by methods that attempt to create instances of
DisplaySurface or its subclasses (for example, ScheduledWindow, PopU-
pMenu, NotifierView, and so on). In a standard, headful image, #check-
Headless returns without any side effect. In a headless image, the
HeadlessImage instance responds to #checkHeadless by sending itself
#cannotSend. This, in turn, causes the HeadlessImage instance to raise
the exception, suspend and save the process, write a context trace to th
script file, save the image as a headful image, and then terminate the im

Debugging a Suspended Process

When a process has been suspended as the result of an attempt to disp
something, you can use the saved, headful image to debug a suspende
process:

1. Start the headful image that was saved by the headless image befor
terminated. By default, the image is called hlst_dbg.im .

2. Inspect the suspended processes by evaluating the following expres

HeadlessImage default suspendedProcesses inspect

3. In the Inspector, select a process and then invoke debug from the
<Operate> menu. VisualWorks brings up a debugger on the selected
process.
378 VisualWorks User’s Guide, Rev. 2.1

Creating a Headful Copy of a Headless Image

g an
the

,
dless
ded

 not

ate

e
he

an

age;

ch

Creating a Headful Copy of a Headless Image

In general, you can create a headful copy of a headless image by includin
expression such as the following in your application code or by providing
expression in file-in format in a startup file:

HeadlessImage default saveHeadfull: 'name'

In the resulting image, the HeadlessImage instance’s state is set to headful
which enables the display at startup. Saving a headfull image from a hea
image is useful if you need to debug a failure (see “Debugging a Suspen
Process” on page 378).

When a headful image is created from a headless one, the normal Transcript
is restored.

Tips for Programming a Headless Application

Your headless application may do whatever you wish, as long as it does
access the display. When programming your application, you need to
consider how to start it, how users can communicate with it, how to termin
it, and how to prevent it from accessing the display.

Techniques for Starting a Headless Application

A simple technique for starting an application is to write it in a start-up fil
(in file-in format). The start-up file is read and evaluated (filed in) when t
image starts. By writing your application in the start-up file, you have the
flexibility to make changes and re-execute relatively quickly. That is, you c
change your application without having to start up and save a headful im
you can simply change the startup file and restart the headless image.

Alternatively, you can write your application in the headful image from whi
you will create the headless image. When your application resides in the
headless image, you have three options for starting it:

n Use the start-up file—for example, MyApplication open!.

n Modify HeadlessImage>returnFromSnapshot to fork off a process
with your application—for example, (MyApplication open) fork.

n Register your application as a dependent of ObjectMemory and wait for
#returnFromSnapshot to be broadcast. Look at HeadlessImage for
an example, particularly #initialize and #update: If you do this, make
VisualWorks User’s Guide, Rev. 2.1 379

Chapter 27 Creating Applications without Graphical User Interfaces

n-

 for
kets,

er
uld be
so
en
ng

ter-
that

sure that HeadlessImage appears before your application in the depe
dents collection.

Techniques for Communicating with a Headless Application

Your application must provide some means other than a window system
users to interact with a headless image. This can be addressed with soc
file I/O, or some other manner.

Terminating a Headless Application

Your application should make provisions for shutting down gracefully, und
both normal and exceptional circumstances. The last message send sho
ObjectMemory quit, which causes the image to terminate. Failure to do
will leave the image running, but with nothing to do. Your only recourse th
is to terminate the image from the operating system (for example, by usi
kill in UNIX).

Preventing Access to the Display

If a headless application attempts to access the non-existent display, the
attempt is trapped, and an exception, HeadlessImage headlessError-
Signal, is raised.

Your application can ignore this exception and rely on default behavior. Al
natively your application can handle the exception as appropriate. Note
you can still execute the default behavior if you #proceed rather than
#return in the exception handler. For example:

HeadlessImage headlessErrorSignal
handle: [:exception |

. . . special stuff to do when a headless violation occurs . . .
exception proceed]

do: [. . . whatever your application does normally . . .]

If your application is to have different behavior depending on the kind of
image it is running in, you can use the following expression to determine
whether it is currently running in a headless image:

HeadlessImage default isHeadless
380 VisualWorks User’s Guide, Rev. 2.1

Delivering a Headless Application

ther
ibu-
 that

 a

s

dful
Similarly, you may send #checkHeadless from your application code when
you have code that should be executed only in a headful image:

HeadlessImage default checkHeadless

Note that you may modify the HeadlessImage>>cannotSend method to
tailor it for your specific needs.

Delivering a Headless Application

You deliver a headless application much the same way you delivery any o
application. You can separate your application into parcels for easy distr
tion and you can use Image Maker to create a minimal deployment image
loads your application’s parcels.

When you use Image Maker in a headless image, Image Maker includes
special Generate Headless Image option (shown in Figure 27-1). When
the option is:

n Chosen, Image Maker creates a deployment image that is in headles
mode.

n Not chosen, Image Maker creates a deployment image that is in hea
mode.
VisualWorks User’s Guide, Rev. 2.1 381

Chapter 27 Creating Applications without Graphical User Interfaces

Figure 27-1 Image Maker with Headless Option

Note that in either case, Image Maker does not remove the headless capa-
bility. The classes added by headless.st are included in the deployment
image unless you name them as additional classes to be removed.
382 VisualWorks User’s Guide, Rev. 2.1

Part V

Appendixes
VisualWorks User’s Guide, Rev. 2.1 383

on
em,
r

t
re

Appendix A

Protocol Reference

The following table is provided as an aid in choosing a protocol for a comm
method type. It is by no means a complete listing of protocols in the syst
nor should it have the effect of limiting your invention of new protocols fo
uncommon situations.

Common Class Protocols

Common protocols of methods addressed to classes are listed in the firs
section, followed by instance protocols. Within each section, protocols a
listed in descending order of their frequency within the class library.

Table A-1 Class Protocols

Use this Protocol for Methods that...

instance creation Return an instance of the class

class initialization Set the values of class variables

constants access Return the value of a class variable

private Perform an operation that is only likely to
be needed by another method within the
class or a subclass

examples Provide sample code showing how to use
an instance of the class

documentation Provide comments about some aspect of
the class
VisualWorks User’s Guide, Rev. 2.1 385

Appendix A Protocol Reference

 a

e
Common Instance Protocols

Table A-2 Instance Protocols

Use this Protocol for Methods that...

accessing Set or retrieve the value of an instance variable

private Perform an operation that is only likely to be needed by
another method within the class

initialize-release Set the initial values of the instance’s variables, or release
dependency connection

testing Test whether the object has a particular attribute, such as
aNumber isZero

printing Provide a printable representation

copying Make a copy

converting Transform to another class of object, as when a Dictionary
is converted to a SortedCollection

comparing Compare the receiver with an argument object

displaying Render an object (text or other graphics) on a displayabl
medium

enumerating Perform an element-by-element operation on a collection

updating For a view, receive an update notice from a model

adding Add an element to a collection

menu messages Perform a menu operation

controller access For a view, get or set the controller

error handling Raise an exception

model access Get or set the model on which a view or controller is
dependent
386 VisualWorks User’s Guide, Rev. 2.1

lly

or as
ken

n.
Appendix B

Syntax Descriptions

In the sections that follow, the syntax of the Smalltalk language is forma
defined with the aid of Backus-Naur form. The following characters have
special meanings unless they are enclosed in quotation marks.

:

Lexical Primitives

The lexical syntax is formally ambiguous, in that, for example, the string abc:
can be parsed either as an identifier followed by a non-quote-character,
a keyword. We resolve this ambiguity in all cases in favor of the longest to
that can be formed starting at a given point in the source text. Thus abc: is
always considered to be a keyword, if the ‘a’ is the beginning of the toke

Table B-1 Special Characters

Character Description

= expands to

‘ ‘ terminal (single quotes surround an atomic literal)

“ ” comment (double quotes surround a comment)

| or

+ one or more

* zero or more

[] zero or one

... through

() grouping

< > keyboard key
VisualWorks User’s Guide, Rev. 2.1 387

Appendix B Syntax Descriptions

lied
Character Classes

The definition of token is not used anywhere else in the syntax; it is supp
only for exposition.

token = number | identifier | special-character | keyword |
block-argument | assignment-operator |
binary-selector | character-constant | string

digit = '0' | ... | '9'

letter = 'A' | ... | 'Z' | 'a' | ... | 'z'

binary-character = '+' | '/' | '\' | '*' | '~' | '<' | '>' |
'=' | '@' | '%' | '|' | '&' | '?' | '!' | ','

whitespace-character = <tab> | <space> | <newline>

non-quote-character =
digit | letter | binary-character |
whitespace-character |
'[' | ']' | '{' | '}' | '(' | ')' | '_' | '^' | ';' |
'$' | '#' | ':' | '.' | '-' | ' ` '
388 VisualWorks User’s Guide, Rev. 2.1

Lexical Primitives
Numbers

digits = digit+

big-digits = (digit | letter)+ “as appropriate for radix”

number = digits
('r' ['-'] big-digits optional-big-fraction-and-exponent |
optional-fraction-and-exponent)

optional-fraction-and-exponent =
['.' digits] [('e' | 'E' | 'd' | 'D') ['-'] digits]

optional-big-fraction-and-exponent =
['.' big-digits] [('e' | 'E' | 'd' | 'D') ['-'] digits]
VisualWorks User’s Guide, Rev. 2.1 389

Appendix B Syntax Descriptions

,
Other Lexical Constructs

identifier = letter (letter | digit)*

block-argument = ':' identifier

assignment-operator = '_' | ':' '='

keyword = identifier ':'

binary-selector = ('-' | binary-character) [binary-character]

unary-selector = identifier

character-constant = '$' (non-quote-character | ' ' ' | ' ” ')

symbol = identifier | binary-selector | keyword+

string = ' ' ' (non-quote-character | ' ' ' ' ' ' | ' ” ')* ' ' '

comment = ' ” ' non-quote-character* ' ” '

separators = (whitespace-character | comment)+

Note: Numbers in radixes 14 or 15 and higher can’t specify an exponent
because the 'd’ or ‘e’ respectively will be interpreted as a big-digit.
390 VisualWorks User’s Guide, Rev. 2.1

Atomic Terms

al-
fini-

80
n
Atomic Terms

literal = ['-'] number | named-literal | symbol-literal |
character-literal | string | array-literal |
byte-array-literal

named-literal = 'nil' | 'true' | 'false'

symbol-literal = '#' (symbol | string)

array-literal = '#' array-literal-body

array-literal-body = '(' (literal | symbol | array-literal-body |
byte-array-literal-body)* ')'

byte-array-literal = '#' byte-array-literal-body

byte-array-literal-body =
'[' number* “integer between 0 and 255” ']'

variable-name = identifier
“other than named-literal, pseudo-variable-name or
'super'”

We originally intended that the definition of array-literal be the following:

array-literal = '#' '(' literal* ')'

This would have simplified the syntax, eliminating the need for array-liter
body and byte-array-literal-body as separate constructs. However, this de
tion is not backward-compatible with previous versions of the Smalltalk-
language: Specifically, it requires symbols and arrays appearing within a
array literal to be quoted with #. Because of this, we adopted the more
complex definition.
VisualWorks User’s Guide, Rev. 2.1 391

Appendix B Syntax Descriptions
Expressions and Statements

primary= variable-name | pseudo-variable-name | literal |
block-constructor | '(' expression ')'

pseudo-variable-name = 'self' | 'thisContext'

unary-message = unary-selector

binary-message = binary-selector primary unary-message*

keyword-message =
(keyword primary unary-message* binary-message*)+

cascaded-messages =
(';' (unary-message | binary-message |keyword-message))*

messages =
unary-message+ binary-message* [keyword-message] |
binary-message+ [keyword-message] |
keyword-message

rest-of-expression = [messages cascaded-messages]

expression =
variable-name
(assignment-operator expression | rest-of-expression) |
keyword '=' expression “see below” |
392 VisualWorks User’s Guide, Rev. 2.1

Expressions and Statements

e
primary rest-of-expression |
'super' messages cascaded-messages

expression-list = expression ('.' expression)* ['.']

temporaries = '|' temporary-list '|' | '||'

temporary-list = declared-variable-name*

declared-variable-name = variable-name

statements = ['^' expression ['.'] | expression ['.' statements]]

block-constructor = '[' [block-declarations] statements ']'

block-declarations = temporaries |
block-argument+
 ('|' [temporaries] | '||' temporary-list '|' | '|||')

In order to keep lexical analysis and parsing separate, but still allow
constructs like x:=3 (without a space, making it look like a keyword, x:), w
have had to introduce the alternative

keyword '=' expression

for assignment. This should really be read as though it were

variable-name ':=' assignment
VisualWorks User’s Guide, Rev. 2.1 393

Appendix B Syntax Descriptions
Methods

method = message-pattern [primitive] [temporaries] statements

message-pattern =
unary-selector |
binary-selector declared-variable-name |
(keyword declared-variable-name)+

primitive = '<' 'primitive:' primitive-number '>'

primitive-number = number “an integer between 0 and 65535”
394 VisualWorks User’s Guide, Rev. 2.1

into
 as

s, a
 dollar
er, it

gn.

cute

o
in the

e
Appendix C

Special Characters

A variety of special characters, such as the yen sign (¥), can be typed
VisualWorks text views by using a special key sequence. A prefix known
the compose key is the first element in the key sequence, followed by two
characters that define the desired special character. On some keyboard
single key has been defined to send the required sequence, such as the
sign on American keyboards. If the font in use does not contain a charact
is displayed as a black square.

For example, <Control>-q = Y is the sequence for composing the yen si

The default compose key is <Control>-q. To change the default key, exe
the expression CharacterComposer setComposeKey. The new compose
key will affect newly created views but not existing views.

Composed Characters

The following table lists the special characters in the left column. The tw
characters that make up the body of the compose sequence are shown
second column. The hexadecimal equivalents of these two columns are
displayed in the right-hand columns. A description is shown in the middl
column.

.

Table C-1 Special Characters

Special
char

Compose
chars

Description Special hex
code

Compose hex
codes

+ + number sign 0023 2B 2B

$ | S dollar sign 0024 7C 53

@ A A at 0040 41 41

[((left bracket 005B 28 28
VisualWorks User’s Guide, Rev. 2.1 395

Appendix C Special Characters
\ / / backslash 005C 2F 2F

])) right bracket 005D 29 29

{ (- left brace 007B 28 2D

| / ^ vertical bar 007C 2F 5E

}) - right brace 007D 29 2D

~ ^ ^ tilde 007E 5E 5E

¡ ! ! inverted exclamation 00A1 21 21

¢ | c cent sign 00A2 7C 63

£ = L pound sign 00A3 3D 4C

¤ x o currency 00A4 78 6F

¥ = Y yen sign 00A5 3D 59

§ ! s section 00A7 21 73

© O C copyright 00A9 4F 43

ª _ a ordfeminine 00AA 5F 61

<< < < << 00AB 3C 3C

 - - horizontal bar 00AD 2D 2D

® O R registered 00AE 4F 52

° ^ 0 degree sign 00B0 5E 30

± + - plus or minus 00B1 2B 2D

2 ^ 2 superscript 2 00B2 5E 32

3 ^ 3 superscript 3 00B3 5E 33

µ / u micro, mu 00B5 2F 75

¶ ! p paragraph sign 00B6 21 70

· . ^ middle dot 00B7 2E 5E

Table C-1 Special Characters

Special
char

Compose
chars

Description Special hex
code

Compose hex
codes
396 VisualWorks User’s Guide, Rev. 2.1

Composed Characters
1 ^ 1 superscript 1 00B9 5E 31

º _ o ordmasculine 00BA 5F 6F

>> > > >> 00BB 3E 3E

1 4 one fourth 00BC 31 34

1 2 one half 00BD 31 32

3 4 three fourths 00BE 33 34

¿ ? ? inverted ? 00BF 3F 3F

Æ A E AE diphthong 00C6 41 45

+ D capital eth 00D0 2B 44

× x x cross 00D7 78 78

Ø / O O slash 00D8 2F 4F

| O capital thorn 00DE 7C 4F

ß s s German double-s 00DF 73 73

æ a e ae diphthong 00E6 61 65

+ d small eth 00F0 2B 64

÷ - : divide 00F7 2D 3A

ø / o o slash 00F8 2F 6F

| o small thorn 00FE 7C 6F

- D D with stroke 0110 2D 44

- d d with stroke 0111 2D 64

- H H with stroke 0126 2D 48

- h h with stroke 0127 2D 68

. i dotless i 0131 2E 69

IJ I J IJ ligature 0132 49 4A

Table C-1 Special Characters

Special
char

Compose
chars

Description Special hex
code

Compose hex
codes

d

H

h

i

VisualWorks User’s Guide, Rev. 2.1 397

Appendix C Special Characters
ij i j ij ligature 0133 69 6A

κ k k kra 0138 6B 6B

. L L with dot 013F 2E 4C

. l l with dot 0140 2E 6C

- L L with stroke 0141 2D 4C

- l l with stroke 0142 2D 6C

’n n ’ n apostrophe 0149 6E 27

N) capital eng 014A 4E 29

n) small eng 014B 6E 29

Œ O E OE diphthong 0152 4F 45

œ o e oe diphthong 0153 6F 65

- T T with stroke 0166 2D 54

- t t with stroke 0167 2D 74

‘ ‘ 1 single quote left 2018 60 31

’ ’ 1 single quote right 2019 27 31

“ ‘ ‘ double quote left 201C 60 60

” ’ ’ double quote right 201D 27 27

™ T M trademark 2122 54 4D

Ω o m ohm 2126 6F 6D

1/8 1 8 one eighth 215B 31 38

3/8 3 8 three eighths 215C 33 38

5/8 5 8 five eighths 215D 35 38

7/8 7 8 seven eighths 215E 37 38

← - < arrow left 2190 2D 3C

Table C-1 Special Characters

Special
char

Compose
chars

Description Special hex
code

Compose hex
codes

L.

l.

L

l

T

t

398 VisualWorks User’s Guide, Rev. 2.1

Diacritical Marks

r in
,
low)
Diacritical Marks

A diacritical mark, such as a circumflex (^), is combined with a characte
a similar fashion. The compose key (<Control>-q by default) comes first
then a character representing the diacritical mark (taken from the table be
and finally the base character. For example, to get ñ, you would type
<Control>-q, followed by a tilde (~) and the letter ’n’.

.

↑ | ^ arrow up 2191 7C 5E

→ - > arrow right 2192 2D 3E

↓ | v arrow down 2193 7C 76

n o musical note 266A 6E 6F

. j dotless j FC10 2E 6A

Table C-2 Diacritical Marks

Diacritical
mark

Compose
char

Description Diacritical
hex code

Compose
hex code

` ` grave 0300 60

´ ’ acute 0301 27

ˆ ^ circumflex 0302 5E

˜ ~ tilde 0303 7E

¯ - macron 0304 2D

u breve 0306 75

. dot above 0307 2E

¨ " dieresis 0308 22

° * ring above 030A 2A

´´ : double acute 030B 3A

Table C-1 Special Characters

Special
char

Compose
chars

Description Special hex
code

Compose hex
codes

j

VisualWorks User’s Guide, Rev. 2.1 399

Appendix C Special Characters
v hacek (caron) 030C 76

¸ , cedilla 0327 2C

; ogonek 0328 3B

_ _ underline 0332 5F

Table C-2 (Continued)Diacritical Marks

Diacritical
mark

Compose
char

Description Diacritical
hex code

Compose
hex code

ˆ

400 VisualWorks User’s Guide, Rev. 2.1

ose

le
Appendix D

Implementation Limits

This appendix describes aspects of the system’s inner workings that imp
restrictions on certain implementations.

Size Limitations

The following table gives the size limitations for various aspects of the
system. A limit of “None” implies that no hard limit exists, though availab
address space is an upper bound in every case.

.

Table D-1 Size Limitations

Unit Limit Comment

Number of objects None Object memory grows dynami-
cally

Object size None

Named instance vari-
ables

256 per class Includes inherited instance vari-
ables

Method variables 255 Includes arguments, named tem-
porary variables, unnamed tem-
porary variables (needed to
implement to:do: loops, etc.).
Also includes pushes and pops, so
the effective limit may be a little
less.
VisualWorks User’s Guide, Rev. 2.1 401

Appendix D Implementation Limits

ks,
ed by
ral

-
 do

po-

the
Open-coded Blocks

All control constructs in Smalltalk are defined as operations involving bloc
but, in the interest of performance, certain of these messages are optimiz
the compiler—that is, the blocks are in-lined in the method. Ordinarily, lite
blocks (code inside square brackets) create BlockClosure instances when
compiled. These BlockClosures reference separate methods, and create
separate contexts when invoked. By contrast, in-line optimized or "open
coded" blocks have their code generated inside the defining method and
not have associated BlockClosures; their arguments and temporaries are
merged into the enclosing method’s context as “compiler-generated tem
raries.”

The following constructs are subject to block open-code optimization by
compiler:

Block variables 255 Includes block arguments and
temporaries; in some circum-
stances, it also includes argu-
ments and temporaries from outer
scopes to which the block refers.
Also includes pushes and pops
(see above).

Method literals 256 Includes ordinary literals (strings,
numbers, etc.), message selectors
(other than about 200 of the most
common selectors), static vari-
ables (global, pool and class) that
are referenced, and one for each
block.

Block nesting 256 levels

Method branches 1023 bytes, for-
ward or backward

This does not limit the length of
regular code. In practice, it means
that the body of an open-com-
piled loop or conditional cannot
be longer than 1023 bytes.

Table D-1 Size Limitations

Unit Limit Comment
402 VisualWorks User’s Guide, Rev. 2.1

Open-coded Blocks

ame
d be

e

, the
BlockClosure>>whileTrue
BlockClosure>>whileTrue:
BlockClosure>>whileFalse
BlockClosure>>whileFalse:

Boolean>>and:
Boolean>>or:
Boolean>>ifTrue:
Boolean>>ifFalse:
Boolean>>ifTrue:ifFalse:
Boolean>>ifFalse:ifTrue:

Number>>to:do:
Number>>to:do:by:

For the most part, blocks that are open-coded by the compiler have the s
semantics as ordinary blocks. But there are some distinctions that shoul
noted with respect to context materialization and visibility.

Shared Context

True closed blocks are invoked in a separate Context. Therefore, the
following code evaluates to false:

| outerContext answer |
outerContext := thisContext.
(1 to: 1) do: [:i | answer := thisContext == outerContext].
answer

On the other hand, the following evaluates to true:

| outerContext answer |
outerContext := thisContext.
1 to: 1 do: [:i | answer := thisContext == outerContext].
answer

Of course, one typically doesn’t need to know the current context (and th
compiler could refuse to open-code blocks that referred to thisContext
directly). But code that inspects the context stack (such as the debugger
VisualWorks User’s Guide, Rev. 2.1 403

Appendix D Implementation Limits

ari-

sage.

rs of

ms:

ks

.

lock

 and
ing

r the
profiler or the exception-handling facility) can see the difference. This inv
ably is not a problem in practice.

Browser Visibility

Because the compiler rewrites the methods for open-coded blocks, the
methods that use these messages do not register as senders of the mes
For example, the expression 1 to: 5 do: [:i |] is compiled as if it were:

| t1 |
t1 := 1.
[t1 <= 5] whileTrue: [ti := t1 + 1]

Hence, it isn’t thought to be a sender of to:do: at all, (or even whileTrue:
because that is also open-coded), but it is considered to be a sender of +. All
this means in practice is that you can’t use the browser to find the sende
the 12 messages listed in “Open-coded Blocks.”

Block Optimization

There are three common patterns of usage for blocks in Smalltalk progra

n Arguments to ifTrue:, ifFalse:, or:, etc. These blocks are in-lined by the
Compiler’s open-coded block optimization facility. These are not bloc
as far as the execution machinery is concerned and are not further
discussed here.

n Exception blocks (for example, passed as an argument to ifAbsent:).
These blocks are created fairly frequently and almost never executed

n Iteration blocks (for example, passed as an argument to do:). These
blocks are executed many times.

Because close-coded blocks are so common, both block creation and b
invocation must be supported efficiently.

The [] language construct creates a BlockClosure object (except for open-
coded blocks as mentioned above), which contains only the starting point
a reference to the “home” (the enclosing method); invoking a block (send
a value message to a BlockClosure) creates a BlockContext, which is
almost exactly the same as a MethodContext—it has local arguments and
temporaries of its own, and a receiver which is the BlockClosure. To refer-
ence variables in enclosing scopes (outer blocks, the enclosing method, o
404 VisualWorks User’s Guide, Rev. 2.1

Block Optimization

ack

e,
ome

isp
can
s

he

e

fter

le
s an
 the

es-
 of

n a
method’s receiver or instance variables), the code in a block must chain b
through the outer scope pointers stored in the block objects.

Because chaining through the outer scope pointers is relatively expensiv
and because a straightforward implementation would always cause the h
of a block to be materialized as a Context, we adopt a slightly more sophis-
ticated implementation based on experience from the lexically scoped L
world. If the code in a block refers to variables from outer scopes, but it
be determined at compile time that the variables can’t change their value
after the block has been created, then the values can be copied into the Block-
Closure, and the BlockClosure doesn’t need an outer scope pointer, and t
home doesn’t have to be made hybrid.

Of course, a block with an explicit return needs a reference to its home
whether it refers to outer variables or not. We refer to blocks with a hom
pointer as full blocks, and blocks without a home pointer as clean blocks.
Blocks that refer to outer scope variables whose values do not change a
block creation copy their values into the closure, and are called copying
blocks; they are otherwise identical to clean blocks. If there is only a sing
copied value, it is stored in the closure; otherwise, the closure reference
Array of copied values. The compiler generates different code for creating
block, depending on whether it is to be full, copying or clean. Clean Block-
Closures, in fact, are created at compile-time.

Although Smalltalk’s definition requires that procedure activations be acc
sible as first-class objects, our implementation only incurs the overhead
materializing an activation as a Context if some reference is made to it,
which is not the common case.

Apart from this optimization, Smalltalk supports the semantics of blocks i
straightforward way. It has a BlockClosure class with three instance vari-
ables:

outerScope a MethodContext or BlockContext for dirty blocks, nil for
clean

blocks
method a CompiledBlock
copiedValues nil for full or clean blocks, a single value or an Array for
copying

blocks

Note that creating a full block involves not only allocating a BlockClosure
object, but also materializing the outer activation as a Context. This intro-
VisualWorks User’s Guide, Rev. 2.1 405

Appendix D Implementation Limits

r the

gger

rns

d,

nnot
or
duces a substantial delayed cost, because the outer activation must be
converted to an object when control returns from it, regardless of whethe
block outlives it.

The Debugger

Because only full blocks have a reference to their outer-scope, the Debu
prints clean/copying block contexts as:

[] optimized

...rather than the following, which is used for full blocks:

[] in ReceiverClass>>someMethod

Performance

Try to make clean blocks if you care about performance. Blocks with ̂ retu
are full blocks. Blocks that reference outer-scope variables (even self) will be
at least copying blocks. Some examples:

| t |
[:x | t := x frobnicate] value: 1.
t := t * 2.
^t

The reference to t inside the block makes it at least a copying block, and
worse, the change in t’s value after the block is created makes it full. Instea
you might write the following, which leaves the block clean:

| t |
t := [:x | x frobnicate] value: 1.
t := t * 2.
^t

Non-overridable Methods

Some methods are treated specially by the execution machinery and ca
be overridden. These optimizations are done for performance reasons. F
406 VisualWorks User’s Guide, Rev. 2.1

Non-overridable Methods

pile

hese

age

crip-
nt

be a
al

ni-
ution
:

example, the == method in Object is hard-wired because it cannot be
permitted to fail for obvious reasons. Any == method you create will not take
effect.

Special Treatment Only at Compile Time

The following messages are treated specially by the compiler only at com
time:

anObject and: aBlock0
anObject or: aBlock0
anObject ifTrue: aBlock0
anObject ifFalse: aBlock0
anObject ifTrue: aBlock0 ifFalse: anotherBlock0
anObject ifFalse: aBlock0 ifTrue: anotherBlock0
aBlock0 whileTrue: anotherBlock0
aBlock0 whileTrue
aBlock0 whileFalse: anotherBlock0
aBlock0 whileFalse
aBlock0 repeat
anObject to: anotherObject do: aBlock1
anObject to: anotherObject by: aNumber do: aBlock1

If the receiver and/or argument(s) meet certain syntactic requirements, t
messages are compiled open; otherwise, they are compiled as ordinary
message sends. The following example is compiled as an ordinary mess
(and will cause a messageNotUnderstood error when executed).

1 and: 2

The requirements for open compilation are indicated in the message des
tions above. “aBlock0” or “anotherBlock0” means the receiver or argume
must be a literal 0-argument block. “aBlock1” means the argument must
literal 1-argument block. “aNumber” means the argument must be a liter
number.

The effect of open compilation is that adding, removing or changing defi
tions of these messages in certain classes will have no effect on the exec
of expressions that meet the open compilation requirements, specifically
VisualWorks User’s Guide, Rev. 2.1 407

Appendix D Implementation Limits

 For

ue of
Any class
and:
or:
ifTrue:
ifFalse:
ifTrue:ifFalse:
ifFalse:ifTrue:

BlockClosure
whileTrue:
whileTrue
whileFalse:
whileFalse
repeat

Any class
to:do:
to:by:do:

Note that if the receiver and arguments do not meet the open compilation
requirements, the expression is compiled as an ordinary message send.
example, the user can define a method in Integer for and:, and the method
will be invoked as expected for:

1 and: 2.

Note that the requirements are syntactic, not semantic. For example,

something and: [some other thing]

compiles open, but

something and: someOtherThing

compiles as an ordinary message send, which is executed even if the val
someOtherThing turns out to be a BlockClosure at execution time. This is
why correct definitions for the above-mentioned selectors must exist in
classes True and False (for the first list above), BlockClosure (for the
second list), and Number (for the third).
408 VisualWorks User’s Guide, Rev. 2.1

Non-overridable Methods

y

ch

pies

ine
ding
rs,”
 the

sion

n is
The user can change this state of affairs in a fairly straightforward way b
modifying the compiler. MessageNode class>>initialize constructs the
dictionary that determines what messages should be compiled open; ea
message has a corresponding transformation method defined in class
MessageNode. Note that one must recompile the entire system for the
changes to take full effect. Removing the conditionals (ifTrue/False) from
the list is likely to produce unacceptable system performance.

Note: Senders of these messages cannot be found using the Browse ?Refer-
ences To.. . command.

Special Treatment at Compile Time and Translation Time

Many messages are compiled using “special selector” opcodes. These
opcodes have two different functions: They eliminate the need to store co
of the selector in the sender’s literals, and the translator knows how to
compile some of them specially.

The translator treats the following selectors specially by generating mach
code that performs certain explicit class checks before (or instead of) sen
a message. As long as these selectors are compiled as “special selecto
their definitions for the given classes are fixed and cannot be modified by
user.

(SmallInteger) + (SmallInteger)
(SmallInteger) - (SmallInteger)
(SmallInteger) < (SmallInteger)
(SmallInteger) > (SmallInteger)
(SmallInteger) <= (SmallInteger)
(SmallInteger) >= (SmallInteger)
(SmallInteger) = (SmallInteger) literal
(SmallInteger) ~= (SmallInteger) literal
(Object) == (Object)

Note that = and ~= are only translated specially if the argument is a literal
number. Note also that if an addition or subtraction overflows, the expres
is handled as a normal message send.

If the receiver or argument doesn’t meet the listed criterion, the expressio
executed as a normal message send. Note that this is a semantic check carried
out at runtime, not a syntactic one.
VisualWorks User’s Guide, Rev. 2.1 409

Appendix D Implementation Limits

r
ed at

from

ec-
ded.
The special selectors are defined in DefineOpcodePool class>>initialize-
SpecialSelectors and extendedSpecialSelectors. The user can (care-
fully) modify the set of special selectors, subject to two constraints:

n Either the special selectors that are handled specially by the translato
must remain unchanged, or those indices in the table must not be us
all.

n Changing the set of special selectors requires removing the old ones
the table, recompiling the entire system, adding the new ones, and
recompiling the entire system again. The second recompilation is unn
essary if special selectors are only being removed, not replaced or ad
410 VisualWorks User’s Guide, Rev. 2.1

Appendix E

Keyboard Shortcuts

Table E-1 Canvas-painting Shortcuts

Task Shortcut

Editing Text and Components

Undo previous text edit <L4> (Sun),
<Command>-<z> (Mac)

Copy text or component <L6> (Sun),
<Command>-<x> (Mac)

Paste text or component <L8> (Sun),
<Command>-<v> (Mac)

Cut text or component <Delete>, <L10> (Sun), <Com-
mand>-<c> (Mac)

Displaying Tools and Dialogs

Open Properties Tool <Escape>-<p>

Display alignment dialog <Escape>-<a>

Display distribution dialog <Escape>-<d>

Display constrained layout dialog <Escape>-<l>

Display equalize dialog <Escape>-<e>

Display install dialog <Escape-<i>

Selecting Components

Select next component <Tab>
VisualWorks User’s Guide, Rev. 2.1 411

Appendix E Keyboard Shortcuts
Moving Components

Move component one step toward front <Control>-<f>

Move component one step toward back <Control> -

Move component by one grid unit; if grid
is off, move by one pixel

Arrow keys

Snap to grid <Escape>-<s>

Aligning Components

Align tops of selected components <Escape>-<up-arrow>

Align bottoms <Escape>-<down-arrow>

Align right edges <Escape>-<right-arrow>

Align left edges <Escape>-<left-arrow>

Grouping Components

Group selected components <Escape>-<g>

Ungroup <Escape>-<u>

Changing Layouts

Make component’s position relative <Escape>-<r>

Make position fixed <Escape>-<f>

Changing Tool Focus

In Properties Tool, shift focus to previous
component

<Control>-<p>

Shift focus to next component <Control>-<n>

Table E-1 Canvas-painting Shortcuts

Task Shortcut
412 VisualWorks User’s Guide, Rev. 2.1

ing

 to

C

uage

ur

t by
)

Ps).

at

ble

for

Appendix F

User-Defined Primitives

The user-defined primitive (UDP) interface provides a means for interfac
software written in C or C++ to VisualWorks applications.

Note: The VisualWorks DLL and C Connect interface now supplants the
user-defined capabilities described in this appendix. You are encouraged
migrate to the improved interface supplied by the VisualWorks DLL and
Connect product.

To create and use UDPs, you should be knowledgeable in both the C lang
and your computer’s host operating system. In addition, you may need a
particular compiler to link UDPs to VisualWorks—if this is the case for yo
platform, the VisualWorks Installation Guide has details.

Theory of Operation

VisualWorks allows you to extend the software development environmen
accessing external C and C++ (referred to collectively as C from here on
functions and routines. To do this, you create user-defined primitives (UD
Briefly, the steps to create a UDP are:

1. Compile your C code module with a header file provided in the UDP
interface. The header file includes a set of interface subroutines so th
your C code and Smalltalk can share information. For example, the
header file defines a call that does the equivalent of the basicAt:
message in Smalltalk to get a particular field from an object.

2. Link the resulting object module with the Smalltalk library or object
module. This results in the creation of a functional Smalltalk executa
object engine file.

3. Start VisualWorks, using your new OE. One piece of the interface
between your “C” code and Smalltalk is an entry point into your code
initialization, a routine called UPinstall(). When it starts up, the OE calls
the UPinstall() routine you supply.
VisualWorks User’s Guide, Rev. 2.1 413

Appendix F User-Defined Primitives

st
r-

atic;

en-

 or

ed

or-

r.
e
4. In addition to any particular initialization you may want to do, you mu
register the primitive in a table of UDPs, again through one of the inte
face routines.

5. In Smalltalk, write a method and declare your primitive. When that
method is invoked, the primitive code will be called.

Basic Capabilities

The UDP interface provides your code with a variety of capabilities,
including:

n Access to the receiver and arguments of the message. This is autom
they are the arguments to the primitive procedure.

n An extensive set of routines for accessing these and other objects,
following field references, converting between C and Smalltalk repres
tations, and creating new objects.

n Ability to exit the procedure, returning an object as the method’s value
indicating to Smalltalk that the primitive did not finish successfully. A
set of routines is provided for object return. Also, an interface is provid
for so-called “primitive failure” (some primitive failures are invoked
automatically by some of the interface routines).

Defining a New Primitive

To write a UDP, follow these steps (the rest of this appendix provides inf
mation in greater depth on these procedures):

1. Create a C routine called UPinstall() that adds your primitives by
invoking the UPaddPrimitive() routine. The primNumber parameter is
typically a number between 10,000 and 19,999, primFunc is the name of
a C function, and numArgs is the number of parameters it takes.

UPaddPrimitive(primNumber, primFunc, numArgs);

2. Define your user primitive function in a .c file that includes
userprim.h . The header file userprim.h contains #define macros
and definitions common to all UDPs. A user-primitive handle (dubbed
aUpHandle in examples later in this appendix) is an encoded identifie
The upHandle line in the code sample below declares receiver and th
arguments of the primitive to have a data type of upHandle. This sets up
414 VisualWorks User’s Guide, Rev. 2.1

Defining a New Primitive

sed

uted
les:
the data structure for receiving the encoded identifiers that will be pas
from the UDP interface.

void primFunc(receiver, argument1, argument2,...)
upHandle receiver, argument1, argument2, ...;
{
}

3. UDPs must either succeed (and return a value) or fail. The last exec
line should be a return function such as either of the following examp

UPreturnNil();

or

UPfail (failCode)

All together, this might look like:

#include "userprim.h"
void primFunc();
char *UPinstall()

{
UPaddPrimitive(10003, primFunc, 2);
return “Message to identify primitive(s)”;
}

void primFunc(receiver, arg1, arg2)
upHandle receiver, arg1, arg2;
{
/* your code here */
UPreturnNil();
}

4. Compile and link the new object engine.

5. In VisualWorks, create a method like the following:

prim: arg1 with: arg2
<primitive: 10003>
 "failure code here"
VisualWorks User’s Guide, Rev. 2.1 415

Appendix F User-Defined Primitives

ith

—
ent

ves.
Installation and Access

At startup, the OE calls the routine UPinstall() that was described previously.
You must supply this routine.

1. To install your primitives, invoke the following routine for each primi-
tive.:

UPaddPrimitive(primNumber, primFunc, numArgs);

2. Declare the arguments as follows:

int primNumber, numArgs;
void (*primFunc)();

Calls to UPaddPrimitive() can be in any order.

Access to UDPs is through a Smalltalk method of the following form:

primName: args
"comment"

< primitive: primNumber >
failure code

Here, primNumber is the number that was used to register the primitive w
the UPaddPrimitive() call mentioned above. The “failure code” is a set of
Smalltalk expressions for handling failure situations.

Any primitive that is called before it is installed will return a “primitive has
failed” error.

Primitive Numbers

Each primitive in VisualWorks—whether predefined or defined by a user
is identified with a number. Numbers from 1 to 9,999 are reserved for curr
and future primitives. Numbers 20,000 and above are also reserved.

That leaves numbers from 10,000 to 19,999 open for user-defined primiti
You can create a maximum of 10,000 UDPs.
416 VisualWorks User’s Guide, Rev. 2.1

Arguments

er of

argu-
y
ssed

 to
 to

or a
rchi-
Arguments

Arguments can be passed from VisualWorks to the UDP code. The numb
arguments must agree with the number of arguments supplied to the UPad-
dPrimitive() installation mechanism.

The UDP is always passed the receiver of the message followed by the
ments as they appear in the Smalltalk method (in left-to-right order). The
appear to the C function correctly placed on the stack as if they were pa
from a C calling function.

Data Types

Seven C data types are predefined for the UDP interface. They are used
convert between Smalltalk objects and standard C data types according
Table F-1.

.

Any object can be passed to or received from a user-defined primitive. F
composite object such as a nested array, build a struct with a matching a
tecture.

Table F-1 UDP Data Types

“C” type Convertible to objects of
this type

“C” equivalent Comment

upHandle reference to a
Smalltalk object

upBool true/false TRUE/FALSE convention

upByte byte-type unsigned char

upInt SmallInteger int

upFloat Float float

upDouble Double double

upChar Character char
VisualWorks User’s Guide, Rev. 2.1 417

Appendix F User-Defined Primitives

 it
n a
Failure Codes

If a UDP succeeds, it returns a value to the invoking Smalltalk routine; if
fails, it does not. In case of failure, a system primitive is available to retur
failure code, namely, the argument to UPfail().

The argument to Upfail() must be a C integer, an upInt. The UDP interface
defines the failure codes listed in Table F-2 and in userprim.h . To return
this failure code for examination, send class UserPrimitives the failCode
message defined in userprim.st

.

Table F-2 Failure Codes

Number. Name Description

 0 No failure code available.

-1 UPECrange “C” argument out of range; probably not
large enough data.

-2 UPESrange Smalltalk argument out of range.

-3 UPEnonHandle Handle argument not a handle.

-4 UPEwrongClass Handle argument incorrect type.

-5 UPEargCheckFailed Declared argument wrong type.

-6 UPEintNotSmallInte-
ger

C int not a SmallInteger.

-7 UPEobjectTooSmall C data structure too small.

-8 UPEconversion-
TooSmall

Smalltalk datum too small to be repre-
sented in C.

-9 UPEconversionToo-
Big

Smalltalk datum too big to be repre-
sented in C.

-10 UPEallocationFailed Smalltalk object memory allocation
failed.

-11 UPEargCountMatch Argument count for this primitive
doesn’t match registered count.

-12 UPEprimitiveNotIn-
stalled

The primitive is not installed.
418 VisualWorks User’s Guide, Rev. 2.1

General Advice

e

bject
s
alid

fined

f
 of

.
s

ling

ll
im-
l,
The standard C global error number (errno) is not affected by failure cod
assignments.

General Advice

n The UDP is passed opaque handles to Smalltalk objects, not actual o
pointers (OOPs). The only meaningful role of these handles is to pas
them as object references to the UDP interface. UDPs cannot obtain v
pointers into Smalltalk object memory. Do not try to create direct C
pointers to object memory.

n UDPs are capable of corrupting Smalltalk object space.

n The UDP interface expects the same number of arguments as are de
for each routine.

n The maximum number of arguments that a UDP can have is 32. You
cannot alter this limit.

n Many operating system calls, such as read(), can cause VisualWorks to
block until the call is completed. Your end user may find it annoying i
this system call cannot be satisfied within a reasonably short amount
time.

n There is no way to interrupt a UDP or a system call from VisualWorks
<Control>-c does not cause anything to happen until the UDP return
control to VisualWorks.

n The call stack above the current call frame does not conform to C cal
conventions.

n Since any allocation can fail, perform all allocations before provoking
side effects in any data structure.

n A upHandle (user primitive handle) is only valid during the current ca
to a UDP. If you try to save it across primitive calls you may cause pr
itive failure or a program crash. If an object is needed from call to cal

-13 UPEtooManyArgu-
ments

Too many arguments.

-14 UPEnoReturnValue The primitive returned with no value.

-15 UPEassertFail The primitive invoked an assertion fail-
ure.

Table F-2 (Continued)Failure Codes

Number. Name Description
VisualWorks User’s Guide, Rev. 2.1 419

Appendix F User-Defined Primitives

t on

s.
nc-
ver,
DP

nd

e
he
for-
make it an instance variable of the receiver, or pass it as an argumen
each call, or use the registry discussed in “Registering Long-lived
Objects” on page 435.

n C uses 0-based indexes, while VisualWorks uses 1-based indexes.

n It is poor style to install the same primitive in radically different classe
It’s true that you can pass different types of arguments to the same fu
tion, because a number of type-checking routines are provided. Howe
for each UDP there is a fixed number of arguments, as specified at U
installation.

n If a Smalltalk datum is too big to be represented in C, the routine fails
with either UPEconversionTooSmall or UPEconversionTooBig as
the error message. (See “Data Types” on page 417 for valid source a
destination data types.)

C Conversion

In each of the following routines, the copying begins at the startingAt index
into the 1-based Smalltalk object (aUpHandle). It ends after either the length
of aUpHandle has been reached or aCount elements have been copied. Th
result is not null-terminated. These routines cause the primitive to fail if t
conversion is not possible. (See “Failure Codes” on page 418 for more in
mation about primitive failure.)

String to String

Copy a C string (theString) to the Smalltalk string referenced by
aUpHandle. Return the number of characters copied.

upInt UPcopyCtoSTstring
(aUpHandle, theString, aCount, startingAt)
upHandle aUpHandle;
upChar *theString;
upInt aCount, startingAt;

Byte Array to Byte Object

Copy a C array (theBytes) to the Smalltalk byte object referenced by
aUpHandle. Return the number of elements copied.
420 VisualWorks User’s Guide, Rev. 2.1

C Conversion
upInt UPcopyCtoSTbytes
(aUpHandle, theBytes, aCount, startingAt)
upHandle aUpHandle;
upByte *theBytes;
upInt aCount, startingAt;

Integer Array to Array

Copy a C array (theInts) to the Smalltalk array referenced by aUpHandle.
Return the number of elements copied.

upInt UPcopyCtoSTintArray
(aUpHandle, theInts, aCount, startingAt)
upHandle aUpHandle;
upInt *theInts;
upInt aCount, startingAt;

Float Array to Array

Copy a C array (theFloats) to the Smalltalk array referenced by aUpHandle.
Return the number of elements copied.

upInt UPcopyCtoSTfloatArray
(aUpHandle, theFloats, aCount, startingAt)
upHandle aUpHandle;
upFloat *theFloats;
upInt aCount, startingAt;

Integer to Integer

Copy a C integer (aUpInt) into a Smalltalk integer. Only integers from -
(2

29
) to (2

29
 - 1) can be represented.

upHandle UPCtoSTint(aUpInt)
upInt aUpInt;
VisualWorks User’s Guide, Rev. 2.1 421

Appendix F User-Defined Primitives
Float to Float

Copy aC floating-point number (aUpFloat) to a Smalltalk float.

upHandle UPCtoSTfloat(aUpFloat)
upFloat aUpFloat;

Double Float to Double

Copy a C double-precision floating-point number (aUpDouble) to a Small-
talk double.

upHandle UPCtoSTdouble(aUpDouble)
upDouble aUpDouble;

Boolean to Boolean

Copy a C boolean (aUpBool) to a Smalltalk boolean (true or false).

upHandle UPCtoSTbool(aUpBool)
upBool aUpBool;

Character to Character

Copy a C character (aUpChar) to a Smalltalk character.

upHandle UPCtoSTchar(aUpChar)
upChar aUpChar;

Return nil

Return the Smalltalk upHandle nil.
upHandle UPnil()
422 VisualWorks User’s Guide, Rev. 2.1

Smalltalk Conversion

ero.
e
 not
Smalltalk Conversion

In each of the following routines, the copy begins at the startingAt index into
the one-based Smalltalk object to the C data type beginning with index z
It ends after aCount number of elements or the remaining size object hav
been copied. These routines cause the primitive to fail if the conversion is
possible. (See also the section on Failure Codes.)

String to String

Copy a Smalltalk string (aUpHandle) to a C string (aUpString). Return the
number of characters copied. Note that the resulting C string is not null-termi-
nated.

upInt UPcopySTtoCstring
(aUpHandle, aUpString, aCount, startingAt)
upHandle aUpHandle;
upChar* aUpString;
upInt aCount, startingAt;

Byte Array to Byte Array

Copy a Smalltalk byte object (aUpHandle) to a C byte array (aUpbytes).
Return the number of elements copied.

upInt UPcopySTtoCbytes
(aUpHandle, aUpBytes, aCount, startingAt)
upHandle aUpHandle;
upByte* aUpBytes;
upInt aCount, startingAt;

Integer Array to Array

Copy a Smalltalk integer array (aUpHandle) to a C integer array (aUpInt).
Return the number of elements copied.

upInt UPcopySTtoCintArray
(aUpHandle, aUpInt, aCount, startingAt)
upHandle aUpHandle;
VisualWorks User’s Guide, Rev. 2.1 423

Appendix F User-Defined Primitives

upInt *aUpInt;
upInt aCount, startingAt;

Float Array to Array

Copy a Smalltalk array (aUpHandle) to a C array of floating point numbers
(aUpfloatArray). Return the number of elements copied.

upInt UPcopySTtoCfloatArray
(aUpHandle, aUpfloatArray, aCount, startingAt)
upHandle aUpHandle;
upFloat *aUpfloatArray;
upInt aCount, startingAt;

Integer to Integer

Copy a Smalltalk integer (aUpHandle) to a C integer (upInt).

upInt UPSTtoCint(aUpHandle)
upHandle aUpHandle;

Float to Float

Copy a Smalltalk floating point number (aUpHandle) to a C float (upFloat).

upFloat UPSTtoCfloat(aUpHandle)
upHandle aUpHandle;

Double Float to Double

Copy a Smalltalk double-precision floating-point number (aUpHandle) to a
C double.

upDouble UPSTtoCdouble(aUpHandle)
upHandle aUpHandle;
424 VisualWorks User’s Guide, Rev. 2.1

Success Return

talk
Character to Character

Copy a Smalltalk character (aUpHandle) to a C character (upChar).

upChar UPSTtoCchar(aUpHandle)
upHandle aUpHandle;

Boolean to Boolean

Copy a Smalltalk boolean (aUpHandle)to a C boolean (upBool).

upBool UPSTtoCbool(aUpHandle)
upHandle aUpHandle;

Success Return

Use one of the following constructs to return a value to the invoking Small
routine.

Any Value

Return a value (aUpHandle) to the invoking Smalltalk code.

void UPreturnHandle(aUpHandle)
upHandle aUpHandle;

Nil

Return nil to the invoking Smalltalk code.

void UPreturnNil()

True

Return true to the invoking Smalltalk code.

void UPreturnTrue()
VisualWorks User’s Guide, Rev. 2.1 425

Appendix F User-Defined Primitives

.
n

that
False

Return false to the invoking Smalltalk code.

void UPreturnFalse()

Failure Return

If a UDP fails, and if the invoking method contains Smalltalk expressions
after the <primitive #> statement, the Smalltalk expressions are executed
Common causes for failure include the type checking and type conversio
routines.

Also see “Failure Codes” on page 418.

Coded Failure

Unaffected by UPinstallErrorHandler(); UPfail() always fails. The failcode
is an upInt, and is accessible via primitive 9999. Do not use 0.

void UPfail(failCode)
upInt failCode;

Type Checking

Use one of the following routines to check the data type of an argument
has been passed from a Smalltalk program.

Character

Return TRUE if aUpHandle is a character, otherwise FALSE.

upBool UPisCharacter(aUpHandle)
upHandle aUpHandle;

Fail (that is, abort execution of the primitive) if aUpHandle is not a character.
426 VisualWorks User’s Guide, Rev. 2.1

Type Checking
void UPmustBeCharacter(aUpHandle)
upHandle aUpHandle;

String

Return TRUE if aUpHandle is a string, otherwise FALSE.

upBool UPisString(aUpHandle)

Fail if aUpHandle is not a string.

void UPmustBeString(aUpHandle)
upHandle aUpHandle;

Integer

Return TRUE if aUpHandle is an integer, otherwise FALSE.

upBool UPisInteger(aUpHandle)
upHandle aUpHandle;

Fail if aUpHandle is not an integer.

void UPmustBeInteger(aUpHandle)
upHandle aUpHandle;

Float

Return TRUE if aUpHandle is a floating point number, otherwise FALSE.

upBool UPisFloat(aUpHandle)
upHandle aUpHandle;

Fail if aUpHandle is not a floating point number.
VisualWorks User’s Guide, Rev. 2.1 427

Appendix F User-Defined Primitives

e
void UPmustBeFloat(aUpHandle)
upHandle aUpHandle;

Double

Return TRUE if aUpHandle is a double-precision floating-point number,
otherwise FALSE.

upBool UPisDouble(aUpHandle)
upHandle aUpHandle;

Array of Integers

Return TRUE if aUpHandle is an array of integers, otherwise FALSE.

upBool UPisArrayOfInteger(aUpHandle)
upHandle aUpHandle;

Fail if aUpHandle is not an array of integers.

void UPmustBeArrayOfInteger (aUpHandle)
upHandle aUpHandle;

Array of Floats

Return TRUE if aUpHandle is an array of floating point numbers, otherwis
FALSE.

upBool UPisArrayOfFloat(aUpHandle)
upHandle aUpHandle;

Fail if aUpHandle is not an array of floating point numbers.

void UPmustBeArrayOfFloat (aUpHandle)
upHandle aUpHandle;
428 VisualWorks User’s Guide, Rev. 2.1

Type Checking
Byte Array

Return TRUE if aUpHandle is a byte array, otherwise FALSE.

upBool UPisByteArray(aUpHandle)
upHandle aUpHandle;

Fail if aUpHandle is not a byte array.

void UPmustBeByteArray(aUpHandle)
upHandle aUpHandle;

Byte-like

Return TRUE if obj contains only bytes (that is, no OOPs), otherwise
FALSE.

upBool UPisByteLike(obj)
upHandle obj;

Fail if aUpHandle is not byte-like.

void UPmustBeByteLike(aUpHandle)
upHandle aUpHandle;

Boolean

Return TRUE if aUpHandle is a boolean, otherwise FALSE.

upBool UPisBoolean(aUpHandle)
upHandle aUpHandle;

Fail if aUpHandle is not a boolean.

void UPmustBeBoolean(aUpHandle)
upHandle aUpHandle;
VisualWorks User’s Guide, Rev. 2.1 429

Appendix F User-Defined Primitives

s
Immediate

Return TRUE if aUpHandle is an immediate object, otherwise FALSE.

upBool UPisImmediate(aUpHandle)
upHandle aUpHandle;

Class Check

Given handles for an object and a class, return TRUE if the object belongs to
that class or its superclass, otherwise return FALSE.

upBool UPisKindOf(objUphandle, classUpHandle)
upHandle objUpHandle classUpHandle;

Object Allocation

If an allocation fails, the primitive fails. Aggregate initialization operation
terminate as soon as numElements is reached.

String

Allocate an instance of String, numElements in size, all elements of which
are initialized to cvalue.

upHandle UPallocString (cvalue, numElements)
upChar cvalue;
long numElements;

Byte Array

Allocate an instance of ByteArray, numElements in size, all elements of
which are initialized to bvalue.

upHandle UPallocByteArray (bvalue, numElements)
upByte bvalue;
long numElements;
430 VisualWorks User’s Guide, Rev. 2.1

Indexed Access

r if
Array

Allocate an instance of Array, numElements in size, all elements of which
are initialized to ovalue.

upHandle UPallocArray (ovalue, numElements)
upHandle ovalue;
long numElements;

Other Object Types

Allocate a fixed-size object of the given class (initialized to nil), and return a
handle for the instance.

upHandle UPallocFsObject(aUpHandle)
upHandle aUpHandle;

Allocate a variable-size object of the given class (initialized to nil if it’s a
pointer, otherwise 0), and return a handle for the instance.

upHandle UPallocVsObject(classHandle, size)
upHandle classHandle;
upInt size;

Indexed Access

These routines cause the primitive to fail if the operation is not possible o
index is out of bounds. The lowest legal value for index is 1 (not 0).

Indexed Variable

Return the index’th element in arrayUpHandle.

upHandle UPbasicAt(arrayUpHandle, index)
upHandle arrayUpHandle;
upInt index;
VisualWorks User’s Guide, Rev. 2.1 431

Appendix F User-Defined Primitives
Replace the index’th element of arrayUpHandle with upHandleToBePut.

void UPbasicAtPut(arrayUpHandle, index, upHandleToBePut)
upHandle arrayUpHandle, upHandleToBePut;
upInt index;

Instance Variable

Return the value of the index’th instance variable.

upHandle UPinstVarAt(aUpHandle, index)
upHandle aUpHandle;
upInt index;

Replace the index’th instance variable in aUpHandle with
upHandleToBePut.

void UPinstVarAtPut(aUpHandle, index, upHandleToBePut)
upHandle aUpHandle, upHandleToBePut;
upInt index;

Indexed Byte

Return the index’th byte from aUpHandle, which must be byte-like.

upInt UPbyteAt(aUpHandle, index)
upHandle aUpHandle;
upInt index;

Replace the index’th byte in aUpHandle, which must be byte-like.

void UPbyteAtPut(aUpHandle, index, aUpByte)
upHandle aUpHandle;
upInt index;
upByte aUpByte;
432 VisualWorks User’s Guide, Rev. 2.1

Sizing

er is
Indexed Float

Return the index’th float in aUpHandle, which must be an array.

upFloat UPfloatAt(aUpHandle, index)
upHandle aUpHandle;
upInt index;

Replace the index’th element of the array called aUpHandle with aUpFloat.
This routine does not return any value. It fails if index is out of bounds.

void UPfloatAtPut(aUpHandle, index, aUpFloat)
upHandle aUpHandle;
upInt index;
upFloat aUpFloat;

Sizing

Return the number of named instance variables in obj.

upInt UPinstVarSize(obj)
upHandle obj;

Return the size of the variable portion of this object in number of upHandles
(for pointer objects) or number of bytes (for nonpointer objects).

upInt UPindexVarSize(obj)
upHandle obj;

Initializing

Install an error handler (a user-supplied function returning void), which is
called when a support routine detects an error condition. The error handl
called with one argument, the C int failure code. This error handler can fail
the primitive (using UPfail(), etc.), exit the primitive successfully (using
UPreturnHandle(), for example) or transfer control elsewhere (using
setjmp/longjmp).
VisualWorks User’s Guide, Rev. 2.1 433

Appendix F User-Defined Primitives

 be
void UPinstallErrorHandler (errorHandler)
void (*errorHandler)();

Initialize the user primitive interface and return a herald string. This must
defined in the user primitive code module.

char *UPinstall()

Install primFunc as primitive # primNumber with numArgs number of
arguments. Return TRUE if successful.

upBool UPaddPrimitive (primNumber, primFunc, numArgs)
upHandle (*primFunc)();
upInt primNumber, numArgs;

Other Support Routines

Return a handle for the class of the aUpHandle object.

upHandle UPclass(aUpHandle)
upHandle aUpHandle;

Return a handle from the registry.

upHandle UPregisteredHandleAt(aUpInt)
upInt aUpInt;

Put a handle in the registry at a specified slot.

void UPregisteredHandleAtPut(index, handle)
upInt index;
upHandle handle;

Allocate a slot in the registry and return the slot index.

upInt UPallocRegistrySlot();
434 VisualWorks User’s Guide, Rev. 2.1

Registering Long-lived Objects

 has

 be
cates
bject
ive

t
t the

bject
e a
Given a handle for a class, return an integer indicating whether the class
fixed-size instances, variable-size instances, or is not a class.

#define UPnotAClass 0
#define UPfixedSizeClass 1
#define UPvariableSizeClass 2
upInt UPclassType(aUpHandle)

upHandle aUpHandle;

Given a handle to a semaphore, signal the semaphore.

void UPsignalSemaphore(aUpHandle)
upHandle aUpHandle;

Registering Long-lived Objects

The object engine (OE) maintains a system registry of objects that must
referenced by the object engine code. This is needed because the OE relo
objects during memory management operations, so direct references to o
memory (and upHandles are such references) cannot persist across primit
calls.

To refer to objects over time, the OE provides a facility to register indirec
references to objects. These indirect references are indices in a table tha
OE memory manager keeps current.

Indices for special objects such as nil, true and false are defined in
userprim.h , so you can call:

UPregisteredHandleAt(nilOopX)

to get a handle on nil, giving the same result as the UPnil() call. More inter-
estingly, you can call:

UPregisteredHandleAt(byteArrayClassX)

to get a handle on class ByteArray.

Another important reason to use the system registry is to reference an o
that was given to a primitive in a prior call. For example, imagine you hav
VisualWorks User’s Guide, Rev. 2.1 435

Appendix F User-Defined Primitives

 the
 slot
 can

E is

ed in
ng
lk
 your

ge-

 that
 or a

ation
at
am-

, but

y
ply
ou

primitive that was passed a Semaphore so it could be signalled later (by
using UPsignalSemaphore()). Your primitive can ask the registry for a
permanent slot (it returns a table index if there is enough room) and store
semaphore into the registry at that slot. You would presumably record the
index in a static variable in the C code. Later, to reference the object, you
read the registry at the slot you recorded.

Registry slots are a finite resource, and cannot be recycled (while the O
running), so use them sparingly. To reserve a registry slot, call:

static upInt slot;
slot = UPallocRegistrySlot();

Any slots you allocate (and the references you store in them) are discard
a snapshot file. So you can not use the registry to keep objects from bei
garbage-collected across snapshots. To do that, use the normal Smallta
techniques (such as keeping the object in a class variable) and re-register
slots when the snapshot starts up.

An object that has a reference in the registry, however, will not be garba
collected while the OE is running—so it’s a good idea to store nil in a registry
slot when you are done with it.

Interrupts and Poll Handlers

In some situations, a Smalltalk program needs to respond to a condition
can only be detected asynchronously (such as in a UNIX signal-handler,
PC interrupt-handler). In such a case, it is not possible to access object
memory, because the event might occur while the OE is doing some oper
that involves relocating objects. You could create a Smalltalk process th
periodically calls a primitive to see whether that event has occurred (by ex
ining a C static variable, perhaps, or by making an operating system call)
this constant polling can be inefficient or inconvenient.

As an alternative, call the support routine UPpostInterrupt() from your asyn-
chronous signal/interrupt-handler. This routine arranges to have a poll-
handler called soon thereafter—before the next backward branch (in an
loop) or frame-building send (all sends build frames except those that sim
return a variable or call a primitive). This is the only UDP support routine y
can call asynchronously.

The poll-handler must be registered prior to the interrupt, by inserting the
following call in a primitive or in your UPinstall() routine:
436 VisualWorks User’s Guide, Rev. 2.1

Unsafe Primitives

 a

am-
ma-

ls.
the

 last
will

de
n
h

 the
upFunct myHandler;
UPinstallPollHandler(myHandler);

Your handler will only be called once, no matter how many times
UPpostInterrupt() is invoked in the interim. Posting an interrupt just sets
flag, which is cleared only when your poll-handler is called.

The handler will usually determine what event has occurred (again, by ex
ining a C static variable or by making an OS call) and possibly signal a se
phore that was stored previously in the registry. The only UDP support
routines that a handler can safely call are:

UPsignalSemaphore()
UPregisteredHandleAt()
UPregisteredHandleAtPut()

On UNIX platforms, the OE requires unimpeded access to certain signa
Specifically, your user primitives should not establish signal handlers for
following signals:

SIGIO or SIGPOLL
SIGALRM
SIGVTALRM
SIGCHLD

In addition, user primitives should not make system calls that generate the
three signals listed above. Operations that generate SIGIO or SIGPOLL
not cause problems.

Unsafe Primitives

The standard UDP interface is very defensive about bugs in primitive co
(and in the Smalltalk code that calls it). Bounds-checking is performed o
indices, class-checking is performed during coercion, etc. However, suc
runtime checks have a negative performance impact.

For situations in which critical performance needs motivate you to bypass
safety mechanisms, you can compile your code defining the symbol
UNSAFE. You can usually just pass the switch -DUNSAFE to the compiler
when you compile your program.
VisualWorks User’s Guide, Rev. 2.1 437

Appendix F User-Defined Primitives

 on
e the

his
t-

ut
se
g.
fe

files

pen-
text.

d
We don’t recommend that you do this in ordinary practice.

Even in “safe” mode, your primitives should perform consistency checks
passed arguments—at least checking for the correct class. When you us
UNSAFE implementation, doing these checks is absolutely essential for
correct operation of the system. Test your primitive code very carefully before
compiling with -DUNSAFE and using the resulting OE on a useful image.

When a primitive is compiled UNSAFE, it must be installed UNSAFE. In other
words, the invocation of UPaddPrimitive that installs a given primitive must
be compiled with the same safety level as the primitive being installed. T
is because the safe and unsafe implementations have different argumen
passing mechanisms.

Warning: If you compile your primitives with -DUNSAFE, you will get an
equivalent user-primitive support interface. It will run somewhat faster, b
bugs in your primitives can crash the resulting OE (rather than fail). Wor
yet, some bugs can silently corrupt the virtual image (VI) without crashin
Finally, because hard-to-trace errors can be introduced so easily in unsa
mode, an OE built with -DUNSAFE and its derived VI’s will not be handled
by ParcPlace-Digitalk technical support.

Specific OE implementation details that are exposed by the code in the
unsafe_oops.h and up_unsafe.h do not represent a supported OE
interface. They will change from release to release, and have hidden de
dencies and restrictions, which may render them useless outside this con
In other words, pretend that you can’t read those files.

Example

The following example illustrates some of the basic elements of the UDP
interface. In this example, the C library regular expression parser is linke
into VisualWorks as UDP # 10000.

C Code

#include "userprim.h"
/* Install user-defined primitives */
char *UPinstall()
 {
 void RegEx();
438 VisualWorks User’s Guide, Rev. 2.1

Example
 UPaddPrimitive(10000, RegEx, 2);
 return “Regular expression parser”;
}

typedef upChar *upString;

/* Match the string against the regular expression string. The
* regular expression language is compatible with the one
* defined for the UNIX ed(1) * editor. Returns TRUE if it
* matches, FALSE otherwise. Fail if the expression is badly
* formed, or we can’t allocate memory for the buffers */

void RegEx(recv, expressionHandle, testStringHandle)
upHandle recv, expressionHandle, testStringHandle;
{
upInt expressionSize, testStringSize, UPindexVarSize();
upString errorMessage, re_comp(), UPtoString(), malloc(),

expressionString, testString;
int result;

expressionSize = UPindexVarSize (expressionHandle);
if ((expressionString = malloc (expressionSize+1)) == NULL)

UPfail(1); /* FAIL “expression too long” */

(void)UPcopySTtoCstring (expressionHandle,
expressionString, expressionSize, 1);

expressionString[expressionSize] = '\0';

testStringSize = UPindexVarSize(testStringHandle);
if ((testString = malloc(testStringSize+1)) == NULL)

{
(void)free(expressionString);

 UPfail(2); /* FAIL “test string too long” */
}

(void)UPcopySTtoCstring(testStringHandle,testString,
testStringSize, 1);

testString[testStringSize] = '\0';

/* Compile the regular expression, re_comp() indicates a bad
* regular expression by returning a C string */
VisualWorks User’s Guide, Rev. 2.1 439

Appendix F User-Defined Primitives
errorMessage = re_comp(expressionString);
if (errorMessage)

(void) free (expressionString);
(void) free (testString);

UPfail(4); /* FAIL*/

/* execute the regular expression */
result = re_exec (testString);

(void) free (expressionString);
(void) free (testString);
switch (result)

{
case -1: UPfail(5); /* FAIL “Badly formed expression” */
case 0: UPreturnFalse(); /* NO MATCH */
case 1: UPreturnTrue(); /* MATCH */
}

/* NOT REACHED */
}

Smalltalk Code

In the testing protocol of a Testing class:

match: this with: that
<primitive:10000>
^self primitiveFailed
440 VisualWorks User’s Guide, Rev. 2.1

Example
VisualWorks User’s Guide, Rev. 2.1 441

Appendix F User-Defined Primitives
442 VisualWorks User’s Guide, Rev. 2.1

Index
Symbols
<Control>-click xxii

<Meta>-click xxii

<Operate> button xxi

<Select> button xxi

<Shift>-click xxii

<Window> button xxi

A
A 96

abstract class, defined 19

abstract superclass 67

animation 299

double buffering 300

flashing 299

answer set 197

cancelling 205

describing 200

handling multiple 198

using an output template 202

answer stream 201

application

building 1

application building tools 131–155

arc, defined 291

arguments

in user-defined primitives 417

ArithmeticValue class 67

array 27
VisualWorks User’s Guide, Rev. 2.1
Array class

creating an instance 73

defined 70

finding elements 77

methods 75

replacing elements 75

See also collection

ArrayedCollection class 79, 85

Aspect property, defined 141

assignment 29

atomic term, syntax 391

B
Bag class

adding elements 75

counting elements 77

defined 70

sorting elements 77

See also collection

behavior, defined 11

bezier curve, defined 291

binary message 37

bitmap, defined 274

block

clean, defined 405

copying, defined 405

full, defined 405

limitations 403–407

optimized 402
443

Index
block expression 42

block optimization 404–410

BlockClosure class 47, 402

boolean 27

boolean objects 47

branching 47–48

brightness, defined 307

buffers and adaptors 200

Builder 1, 142

bulletin boards xxv

buttons, mouse. See mouse buttons

ByteArray class, defined 71

ByteString class, defined 86

C
CachedImage class, defined 297

canvas

alignment grid 132

creating 157

fence 132

UI look-and-feel 132

See also Canvas Tool

Canvas Tool, defined 132

capitalization 23

cascade 42

case statement 48

catalog query 206

category

adding 118

class 15

editing 119

filing a class description 118

opening a browser 118

printing description of each class 118

removing 118

renaming 118

updating 119

Change List 179, 182, 215
444
adding file contents 112

browsing 182

checking for conflicts 113

commands 112–113

condensing 185

defined 109–113

deleting entries 112

displaying entries 111, 112, 183

executing changes 112

filing change entries 112

filter switches 110–111

opening 112

removing entries 112

sharing code between images 184

unmarking entries 112

views 110

See also changes

Change Set 179

clearing 182

defined 180

displaying changes 183

inspector 181

opening 181

sharing code between images 184

types of changes 181

updating 182

See also changes

changes

displaying 183

managing 109–114

moving between images 180

removing during fileout 182

See also Change List, Change Set

character

categorizing an instance 82

comparing 83

creating 81–83

defined 81

extended set 81
VisualWorks User’s Guide, Rev. 2.1

Index
operations 82–83

test messages 82

wildcard symbols 85

working with 83–85

See also string

Character class 81

syntax 388

character literal 26

CharacterArray class 85

defined 86

checkForEvents message 262

circle, defined 292

class

abstract, defined 19

defined 13

displaying hierarchy 119

editing 120

filing a description 119

filtering in Finder 131

listing instance variables 120

mapping to database tables 157

mapping to relational data type 189

method 117

moving to other category 120

name 34

opening a browser 119

printing a description 119

removing 120

renaming 120

searching for 119

updating in Finder 132

variable 32

viewing methods 120

class category 15

class category view 116

commands 118–119, 166

class inheritance 16–17

class library 15

organization 16
VisualWorks User’s Guide, Rev. 2.1
class method 14

class variable, defined 13

class view 116

commands 119–120, 166

clean block, defined 405

click xxii

clipping, using GraphicsContext 285

closed system 367

code

compiling 123

executing 123

formatting 44, 123

inserting explanation 124

organizing 179

parsing and compiling 323–325

printing 124

putting in PermSpace memory 332

reverting to prior version 184

searching for a class 132

sharing between applications 2

sharing between images 184

supporting a component 154

testing 124

code view 116, 127

commands 123–124, 168

defined 115

collection

adding elements 74–76

choosing a class 69

comparing 76

converting 78

copying 78

counting elements 77

creating an instance 73

finding elements 77

hierarchy 78–79

looping methods 50–52

operations 69–79

printing 78
445

Index
removing elements 74–76

replacing elements 74–76

types of classes 69–72

Collection class 78

categories 79

types of 69–72

color 303–313

constants 305

dithering 313

hue-saturation-brightness (HSB) values 305

map 310

red-green-blue (RGB) values 305

types of 303

See also palette, pattern

color properties

defined 147

color rendering

policies 311–313

types of 312

ColorValue class

creating an instance 305

defined 304

combination rules, defined 297

commands

change list 112–113

change list switches 111

class category view 118–119, 166

class view 119–120, 166

code view 123–124, 168

contents view 109

Menu Editor (enhanced) 137–140

method view 122, 168

names view 108

Parcel menu 162

pattern view 107

protocol view 121, 165, 167

stack view 129

Utility menu 163

Compiler class 325
446
defined 323

component

defined 301

generating supporting code 154

component, see visual component

composite object 9

composite views 263

CompositePart, as window component 263

CompositeView 263

conditional looping, defined 48

conditional selection 47

connect string 191

connection coordinator 207

constants 24

container, window as a 258

contents view 106

context stack 171

control structure 47–52

methods 52–53

controlActivity 269

controlInitialize 268

Controller 266, 271

controller

activity loop 269

defined 264

event methods 271

ControlManager 266, 267

conventions

naming 12, 13

screen xx

typographic xix–xx

copying block, defined 405

coverage, in a Mask 283

crash recovery 215

creating

array instance 73

canvas 157

character 81

collection instance 73
VisualWorks User’s Guide, Rev. 2.1

Index
ColorValue instance 305

date instance 60–61

exception 96

file 105

float instance 57

fraction instance 59

illustrations 135

image instance 295

integer instance 55

interval instance 73

menu 135

parser instance 324

point instance 276

process 87

project 179

random instance 59–60

rectangle instance 277

scanner instance 323

signal instance 94

string 83

time instance 64

cursor 298

changing the current 299

creating 298

displaying 299

hot spot 298

Cursor class

defined 298

curves 291

D
data compactor, defined 339

data form

embedded, defined 158

linked, defined 158

data heap 334

Data Modeler 157

data type
VisualWorks User’s Guide, Rev. 2.1
for user-defined primitive 417

database

accessing 187–??

connecting to 188, 190

controlling transactions 207

default connection 192

disconnecting from 193

interaction with Smalltalk 189

mapping data type to Smalltalk class 189

mapping tables to classes 157

modifying canvas 157

reconnecting a restarted image 214

relational data types 189

saving connected image 213

signal hierarchy 212

types of errors 210

See also transaction

database tools 157–159

Canvas Composer 157

data forms 158

Data Modeler 157

Mapping Tool 158

Query Editor 158

Date class 60

creating an instance 60–61

methods 62

dates 60–63

accessing information 62

arithmetic functions supported 61

comparing 61

printing 62–63

Debugger 126–130

continuing program execution 129

copying stack 129

debugging techniques. See debugging
techniques

displaying message selectors 129

displaying more stack elements 129

opening 173
447

Index
opening a browser 129

printing block contexts 406

restarting program execution 129, 175, 177

stepping through the code 129, 178

views 126–129

debugging techniques

inserting status messages 176

inspecting and changing variables 175

interrupting a program 177

reading the execution stack 171–172

restarting a program 177

tracing the flow of messages 173–174

define dialog 140

defined 154

opening 154

Definer 1–2

Delay class, defined 92

DependentComposite 263

DependentPart

role in a view hierarchy 261

diacritical marks 399

Dictionary class

adding element from other dictionary 76

defined 72

finding elements 77–78

See also collection

directory

working with 105–108

See also File List

display surface

and snapshots 283

types of 280

display, organizing 179

DisplaySurface class, defined 280

dithered color 313

documentation. See VisualWorks documentation

double buffering, in animation 300

double-click xxii

drop source properties 150
448
drop target properties 151–153

E
Eden, defined 330

electronic bulletin boards xxv

electronic mail xxv

ellipse, defined 292

Emergency Evaluator 219

Emergency exit 219

enumeration methods 77

environment string 191

environment, setting default 191

error handling. See exception handling

error notifier. See notifier

error, start-up 216

ErrorDiffusion 313

event

methods 271

event-driven controller

See controller

exception

cleaning up 100

creating 96

flow of control 98

handling 92–100, 210–213

setting parameters 97

Exception class 93, 96

execution

error 210

stack 171

tracing the flow 208

executor, defined 319

exiting the system 4

emergency 219

without Launcher 217

expression 36

executing 109, 123

syntax 392
VisualWorks User’s Guide, Rev. 2.1

Index
External Database Interface

classes, defined 188

defined 187

F
failure code, for user-defined primitive 418

false 28

fax support xxv

file

working with 105–108

See also File List

File Editor, defined 113

File List

commands 107–109

contents view commands 109

default pathname 107

defined 105

display options 106

displaying disk volumes 107

names view commands 108

pattern view commands 107

views 106

FileBrowser class 107

FillingWrapper class, defined 288

finalization 316–322

example 320

Finder

adding resource to a class 132

browsing code 132

defined

editing a resource 132

filtering classes 131

removing a resource 132

starting the main interface 132

updating classes 132

flashing, in animation 299

Float class 57

creating an instance 57
VisualWorks User’s Guide, Rev. 2.1
floating point numbers 57–59

arithmetic functions supported 57–58

comparing 58

converting 58

printing 58

test messages 58

fonts xix–xx

for loop. See number looping

formatting conventions 44

Fraction class 59

creating an instance 59

fractions 59

full block, defined 405

G
garbage collectors 335–341

compacting, defined 338

global 338

incremental

defined 336

phases of operation 337

generation scavenger, defined 336

geometrics

arcs, circles, and wedges 291

displaying 288

lines and polygons 290

splines and bezier curves 291

See also graphics

global variable 34

graphic object

defined 289

integrating into application 300–302

static vs. dynamic 300

See also graphics

graphics

animation 299

attributes, storing 288

coordinate system 274
449

Index
display surface, types of 280

displaying geometrics 288

image 293

operations 273–302

GraphicsContext class

as transient entity 284

clipping 285

default font 287

default paint 286

defined 284

line characteristics 286

translating displayed objects 285

H
halt message 177

HandleRegistry class

defined 319

hierarchy 319

hierarchy

collection classes 78–79

displaying 119

numeric classes 67

of images 294

of paints 303

of palettes 307

signals 94–95, 212

string classes 85–86

weak arrays 319

hierarchy of objects 10

HSB color 305

hue, defined 306

I
icon, defined 299

ID property, defined 142

IdentityDictionary class, defined 72

IdentitySet class, defined 70
450
if statements 47

illustrations, creating 135

image

as graphic object 293

bit processing 297

capturing 295

combining with a mask 297

creating 332

magnifying and shrinking 297

packed rows 296

palette 296

palette vs. performance 309

processing 296

restarting and reconnecting to database 214

saving 3, 215

saving when connected to database 213

Image class

creating an instance 295

defined 293

hierarchy 294

Image Editor, defined 135

Image Maker 169–170

implementation limits 401–410

informational message, displaying 125

inheritance 16–17, 18

inherited method, overriding 18

inspector 127, 175, 181

defined 130

opening 123, 130

instance

defined 13

method 117

instance method 14

instance variable 31

mapping to database table 158

Integer class

creating an instance 55

defined 55

integers 55–57
VisualWorks User’s Guide, Rev. 2.1

Index
arithmetic functions supported 55–57

comparing 57

converting 57

printing 57

test messages 56

Interval class 73

creating an instance 73

defined 71

See also collection

isControlActive 269

isControlWanted 267

iterative operations 48

See also looping

K
keyboard shortcuts 411–412

keyword message 39

L
Launcher, restarting 217

lexical constructs, syntax 390

limitations

blocks 403–407

non-overridable methods 407

size 401

line

displaying 290

setting characteristics 286

LinkedList class 73

adding elements 76

defined 71

removing elements 76

See also collection

literal 24

array 27

character 26

number 24
VisualWorks User’s Guide, Rev. 2.1
string 26

symbol 27

lookup 17

looping 47–52, 77

types of 48

low-space notifier 217

M
Magnitude class 67

defined 85

mail

electronic xxv

main interface, starting 132

main window 103

opening 217

Mask class

coverage 283

defined 282

mask value, defined 309

memory layout 327–335

object memory 333

OldSpace, defined 333

OE memory 328–333

CompiledCodeCache, defined 329

LargeSpace, defined 331

NewSpace, defined 330

PermSpace, defined 332

StackSpace, defined 329

old remembered table 335

remembered table 334

memory management 327–341

memory policy 339

memory reclamation

compacting garbage collector 338

data compactor, defined 339

facilities 335–341

generation scavenger, defined 336

global garbage collector 338
451

Index
incremental garbage collector, defined 336

MemoryPolicy class, defined 340

menu

commands 137–140

defining in terms of a query 158

Menu Editor 135

clearing text area 137

defined 135

enhanced 135, 136

commands 137–140

properties 139

exiting 137

standard 135

See also menu

message 12

binary 37

cascade 42

in sequence 40

keyword 39

types 37

unary 37

message category

defined 12

message expression 36

message, defined

See also informational messages, method

method 11–18

class method 14

defined 9, 11–15

displaying method selectors 122

filing description 122

grouping 12

instance method 14

moving 122

non-overridable 407

opening a browser 122, 124

overriding 18

printing description 122

removing 122
452
syntax 394

method lookup 14

defined 17

method view 116

commands 122, 168

defined 116

mouse buttons xx

<Operate> button xxi

<Select> button xxi

<Window> button xxi

one-button mouse xxi

three-button mouse xxi

two-button mouse xxi

mouse operations xxii

<Control>-click xxii

<Meta>-click xxii

<Shift>-click xxii

click xxii

double-click xxii

MVC 20, 257

N
named input binding 196

names view 106

naming conventions 12, 13, 23

nil 28

notational conventions xix–xx

notification properties 146–147

defined 146

notifier 125, 171, 177

defined 126

See also low-space notifier

Number class, defined 67

number literal 24

number looping 49

number syntax 389

numeric classes 55–67

categories 67
VisualWorks User’s Guide, Rev. 2.1

Index
hierarchy 67

O
object

behavior, defined 11

composite 9

examining variable values 130

hierarchy 10

state, defined 11

Object class 19

object table 334

ObjectMemory class, defined 339

object-oriented programming 7

overview 7–21

OE, registering long-lived objects 436

online documentation. See VisualWorks
documentation

open system 367

open-coded block, defined 402

operation

canceling 123

undoing 123

OrderedCollection class

adding elements 75–76

defined 71

finding elements 77

removing elements 75–76

See also collection

OrderedDither 313

output template 202

defined 202

reusing 204

skipping a variable 202

P
packed row, in an image 296

paint

color 304
VisualWorks User’s Guide, Rev. 2.1
coverage 304

defined 286

Paint class 303

hierarchy 303

paint policy

default 312

defined 311–313

painter 1–2

palette

adding multiple components of one type 134

color 308

color, 8-bit 309

conversion 309

coverage 307

creating 308

defined 133, 307

effect on performance 309

fixed, creating 308

mapped, creating 308

opening 133

Palette class

defined 307

hierarchy 307

parameter 195

binding NULL 196

binding to a name 196

defined 194

Parcel Browser 163–169

structure 164

views 164

Parcel List 161–163

Parcel menu

commands 162

Parser class

creating an instance 324

defined 323

password, securing 190

pattern

shifting the tile phase 304
453

Index
view 106

See also tile

Pattern class, defined 303

performance tuning 204, 406–410

PermSpace memory, putting code in 332

pixel, defined 274

Pixmap class

defined 281

depth and palette 282

placeholder. See parameter

Point class

arithmetic functions supported 276

creating an instance 276

specifying polar coordinates 276

pointer 315

polling controller

See controller

polygon, displaying 290

pool variable 33

preferences, setting 104

primitive

arguments 417

C to Smalltalk conversion 421–423

coded failure 427

defining 414

failure code 418

failure return 426

general advice 419

numbering 417

object allocation 431

registering long-lived objects 436

Smalltalk to C conversion 423–425

success return 426

support routines 435

type checking 427

unsafe 439

user-defined 413–442

See also user-defined primitive

primitive numbers 417
454
priority level

defined 89

setting 89–90

proceedability attribute 96

process 87–100

coordinating 90–92

creating 87

postponing 92

running multiple 87–88

scheduling 88

setting the priority level 89–90

sharing data 92

states of 91

terminating 88

Processor, defined 88

project

closing 180

creating 179

entering 179

exiting 179

managing 179–185

moving changes between images 180

nesting 180

summarizing changes 180

See also Change List, Change Set

Project tool 179

defined 113

See also project

properties

applying 141

editing 141

See also widget, Properties Tool

Properties Tool

defined 140

See also widget, properties

protocol

adding 121

defined 12

editing 121
VisualWorks User’s Guide, Rev. 2.1

Index
filing method description 121

finding methods of a class 121

list of 385–386

opening a browser 121

printing description of methods 121

removing 121

renaming 121

protocol view

commands 165, 167

Protocols 116

Q
query

allocating adaptors 200

allocating buffers 200

asynchronous execution 199

cancelling answer set 205

catalog 206

checking execution status 199

defining 158

describing an answer set 200

executing 195

getting an answer 197, 198

handling multiple answer sets 198

parameters 194

processing an answer stream 201

raising an exception 197

testing row count 199

using an output template 202

viewing results 193

Query Editor

menu queries 158

SQL Editor 159

query variable. See parameter

R
raising an exception 96
VisualWorks User’s Guide, Rev. 2.1
Random class 59

creating an instance 59–60

random numbers 59–60

generating 59

RasterOp class, use in image processing 297

rectangle

creating 277–279

displaying 290

inquiries and transformations 279

Rectangle class

creating an instance 277

defined 277

redisplaying a view ??–262

remembered table, defined 334

resource

adding to a class 132

editing 132

removing 132

Resource Finder. See Finder

resource, releasing 207

retained medium, defined 281

reuse methodologies 2

reverting to a prior version 184

RGB color 305

RunArray class, defined 70

S
saturation, defined 307

saving an image 3

Scanner class

creating an instance 323

defined 323

scavenge threshold, defined 330

ScheduledControllers 267

ScheduledWindow class, defined 281

screen conventions xx

seed, defined 59

selector 12
455

Index
self 34

Semaphore class, defined 90–91

SequenceableCollection class 85

defined 79

session

defined 193

disconnecting 205, 208

reconnecting 208

See also query

Set class, defined 70

Settings Tool, defined 104

SharedQueue class, defined 92

shift value, defined 309

signal

choosing 94

creating 94

global 94

hierarchy 94–95

nested 99–100

public 95–96

restricted in primitives 439

Signal class 93

signal constants protocol 210, 212

size limitations 401

snapshot, making 3

SortedCollection class

adding elements 76

creating an instance 73

defined 71

finding elements 77

removing elements 76

See also collection

sources file 217

special characters 395–400

special symbols xix–xx

SPIM graphic model 273

spline, defined 291

SQL Editor 159

SQL query, executing 188, 193, 207
456
stack 171

stack view 127

starting the system 2

start-up errors 216

state error 210

state, defined 11

string

as graphic object 289

creating 83

evaluating as Smalltalk expression 325

operations 81–86

working with 83–85

See also character

String class 81

defined 86

hierarchy 85–86

string literal 26

StrokingWrapper class, defined 288

strong pointer, defined 315

subcategory 15

subviewWantingControl message 267

super 34

superclass 19

support, technical

electronic bulletin boards xxv

electronic mail xxv

fax xxv

telephone xxv

World Wide Web xxv

switches 117

types of 111

symbol 27

symbols used in documentation xix–xx

syntax 23

atomic terms 391

Character class 388

expressions and statements 392

fixed-point numbers 25

floating-point numbers 25
VisualWorks User’s Guide, Rev. 2.1

Index
formal description 387–394

integers 25

lexical constructs 390

methods 394

nondecimal numbers 25

numbers 24, 389

scientific notation 26

special characters 387

System Browser 13, 16, 115–124

class category view 116

class view 116

class-instance switch 117

code view 116

defined 115

method view 116

protocol view 116

structure 115

views 115

system constant, defined 13

system failure, recovering from 215

System Transcript 125–126

clearing 176

displaying debug messages 176

sending output to 176

T
technical support xxiv, 219

electonic mail xxv

electronic bulletin boards xxv

fax support xxv

telephone support xxv

World Wide Web xxv

telephone support xxv

temporary variable 29

tenure threshold, defined 331

text

as graphic object 289

copying 123
VisualWorks User’s Guide, Rev. 2.1
deleting 123

editing 113

pasting 123

replacing 109

restoring previous 123

saving 109

text object, types of 289

thisContext 34

tile phase, defined 304

tile, in a pattern 303

time 63–66

accessing information 65

arithmetic functions supported 64

comparing 64

converting 65

printing 65

Time class 63

creating an instance 64

methods 65

TimeZone class 66

tools

application building 131–155

Canvas Tool 132

Image Editor 135

Menu Editor 135

Palette 133

Resource Finder 131

application delivery

Image Maker 169–170

Parcel Browser 163–??

Parcel List 161–163

database 157–159

Canvas Composer 157

Canvas Tool 157

data forms 158

Data Modeler 157

Mapping Tool 158

Palette 157

Query Editor 158
457

Index
environment 103–114

Change List 109–113, 179

Change Set 179

File Editor 113

File List 105–109

Project 113, 179

Settings Tool 104

programming 115–130

Debugger 126–129

Parcel Browser ??–169

System Browser 115–124

System Transcript 125–126

Workspace 124

tracing 208

adding information 209

defined 208

disabling 209

setting trace level 209

specifying output location 208

using for troubleshooting 219

tracing protocol 210

transaction

controlling 207

coordinated 207

Transcript class 126

translation protocol 291

translation, using GraphicsContext 285

troubleshooting 215–220

true 27

type checking 427

typographic conventions xix–xx

U
UDP 413–442

UDP interface

basic capabilities 414

example 440

unary message 37
458
unwind protection 100

user interrupt 177

user-defined primitive 413–442

C to Smalltalk conversion 421–423

datatypes 417

general advice 419

indexed access 432

initializing 434

installing and accessing 416

interrupts 437

poll handlers 437

signal restrictions 439

sizing 434

Smalltalk to C conversion 423–425

See also primitive

Utility menu

commands 163

V
validation callback, defined 144

validation properties, defined 144–145

variable

assignment 29

class 32

defined 11–14

global 34

instance 31

pool 33

temporary 29

types 28

version control 179–185

VI

and memory manager 329

view

as visual component 259

composite 263

redisplaying ??–262

without a controller 261
VisualWorks User’s Guide, Rev. 2.1

Index
views

Change List window 110

code view 127

Debugger window 126–129

File List browser 106

organizing 179

Parcel Browser 164

stack 127

System Browser 115

visual component

active vs. passive 258

autonomous vs. dependent 259

visual reuse, defined 2

VisualPart

role as window component 259

VisualWorks

application building 1–2, 131–155

connecting to database. See database

exiting 4

exiting problems 217–219

main window 103

starting 2

See also tools

VisualWorks documentation

online xxiii

Database Cookbookxxiii

Database Quick Start Guidesxxiii

International User’s Guidexxiii

VisualWorks Cookbookxxiii

VisualWorks DLL and C Connect
Referencexxiii

printed xxii

Cookbookxxii

Database Connect User’s Guidexxiii

Database Tools Tutorial and
Cookbookxxiii

Installation Guidexxii

International User’s Guidexxiii

Object Referencexxiii
VisualWorks User’s Guide, Rev. 2.1
Release Notesxxii

Tutorial xxii

W
weak array 315–322

finalization 316–322

finalization example 320

WeakArray class, defined 315

WeakDictionary class

defined 319

hierarchy 319

wedge, defined 292

while loop 48

widget

changing focus 143

color properties, defined 147

confirming an action has completed 146

creating a menu 135

details properties 143

disabling 143

hiding 144

position properties 149–150

properties

basic 142

color 147

details 143–144

drop source 150

drop target 151–153

notification 146

position (bounded widgets) 149, 150

validation 144

specifying appearance 143, 147

validating actions 144

wildcard symbols 85

window

as container 258

Window class, defined 280–281

WordArray class, defined 71
459

Index
Workspace, defined 124

World Wide Web xxv

wrapper

defined 264
460
 VisualWorks User’s Guide, Rev. 2.1

	About This Book
	Chapter 1�
	Introduction
	About VisualWorks
	Building Applications
	A Definer and object script browsers work together to create the application logic. This is the “...

	Read-and-Apply Tools
	Visual Reuse

	Starting VisualWorks
	Saving Your Image

	Exiting VisualWorks
	Audience
	Organization
	Conventions
	Typographic Conventions
	This book uses the following fonts to designate special terms:

	Special Symbols
	This book uses the following symbols to designate certain items or relationships:

	Screen Conventions
	Mouse Buttons
	The mouse buttons perform the following interactions:
	Three-Button Mouse
	VisualWorks uses the three-button mouse as the default:

	Two-Button Mouse
	On a two-button mouse:

	One-Button Mouse
	On a one-button mouse:

	Mouse Operations
	The following table explains the terminology used to describe actions that you perform with mouse...

	Additional Sources of Information
	Printed Documentation
	In addition to this User’s Guide, the core VisualWorks documentation includes the following docum...

	Online Documentation
	To display the online documentation browser, open the Help pull-down menu from the VisualWorks ma...

	Obtaining Technical Support
	Before Contacting Technical Support
	How to Contact Technical Support
	Parc�Place-Digi�talk Technical Support provides assistance by:
	Electronic Mail
	Electronic Bulletin Boards
	Information is available at any time through the electronic bulletin board CompuServe. If you hav...

	World Wide Web
	1. In your Web browser, open this location (URL):
	2. Click the link labeled “Tech Support.”

	Telephone and Fax
	Within North America, you can:

	Chapter 2�
	Object Orientation
	Procedures vs. Objects
	Figure 2-1� Modifying zip code in procedural programs

	Objects and Methods
	Figure 2-2� Modifying postal code in Smalltalk

	Composite Objects
	Figure 2-3� Hierarchy of Objects

	Variables and Methods
	Figure 2-4� Variables and methods of an object
	Table 2-1� Accessing Methods for the Postal Code Object

	Method Grouping
	Figure 2-5� Two message categories in a postal code object

	Classes and Instances
	Class Variables
	Class Methods vs. Instance Methods
	Figure 2-6� The parts of a class and an instance, and their interconnections

	Class Grouping
	Class Inheritance
	If you execute the expression 3 raisedTo: 4, the correct result (81) will be returned. A raisedTo...
	Figure 2-7� Inheritance hierarchy for the SmallInteger class

	Looking up a Method
	It’s important to remember that the method finder has two ladders at its disposal, one for findin...
	Figure 2-8� The upward search path of the object hierarchy

	Overriding an Inherited Method

	Abstract Classes
	Nesting Abstract Classes

	Choosing a Superclass
	Figure 2-9� The containment hierarchy of the class library

	Chapter 3�
	Syntax
	Naming Conventions
	Capitalization Rules and Conventions
	Table�3-1 provides rules and conventions that apply to the first letter of a name.
	Table 3-1� Capitalization Rules and Conventions

	Literal Constants
	Numbers
	Integers
	Floating Point Numbers
	Fixed-Point Numbers
	Nondecimal Numbers
	Numbers in Scientific Notation

	Characters
	$a

	Strings
	Symbols
	Byte Arrays
	Arrays
	Booleans

	Variables
	flavors := #('chocolate' 'vanilla' 'mint chip').
	Temporary Variables
	occurrencesOf: anObject

	Instance Variables
	Collection variableSubclass: #Set

	Class Instance Variables
	Figure 3-1� Class instance variable

	Class Variables
	Magnitude subclass: #Date

	Pool Variables
	CharacterArray subclass: #Text

	Global Variables
	Special Variables
	A more complicated case arises when inheritance is involved. Suppose the doSomething method is lo...
	Figure 3-2� The special variable self is a pointer to the object (in this case, anObject) that re...

	The super variable is very similar to self, except super tells the method finder to begin its sea...
	Figure 3-3� Special variable super

	Undeclared Variables

	Message Expressions
	Unary Messages
	1.0 sin. "Returns the sine of 1.0."

	Binary Messages
	Table 3-2� Binary Method Selectors

	Keyword Messages
	anArray copyFrom: startIndex to: stopIndex

	Messages in Sequence
	1. Parse parenthesized expressions before nonparenthesized expressions.
	2. Parse multiple unary expressions left to right.
	3. Parse multiple binary expressions left to right.
	4. Parse unary expressions before binary expressions.
	5. Parse binary expressions before keyword expressions.
	Transcript show: 'This is line one.'. Transcript cr. “Carriage return.” Transcript show: 'This is...

	Block Expressions
	value: anObject
	Formatting Conventions
	1. Start the message definition at the left margin and indent all other contents of the method on...
	2. Leave a blank line beneath the method comment and as a separator between sections of a long me...
	3. Follow each period that ends an expression by a carriage return.
	4. Indent as needed to visually identify each subordinate section of code.

	Syntactic Elements Summary
	Table 3-3� Syntactic Elements Summary
	includesKey: key

	Chapter 4�
	Control Structures
	Branching
	ifTrue:ifFalse:
	(userType == #Manager)

	Looping
	Conditional Looping
	whileTrue: and whileFalse:
	[players > 1] whileTrue:

	repeat

	Number Iteration
	timesRepeat:
	to:by:do:
	to:do:

	Collection Iteration
	do:
	select:
	reject:
	detect:
	collect:
	inject:into:
	Table 4-1� Control Structure Methods

	Chapter 5�
	Numeric Operations
	Integers
	instance creation and arithmetic
	testing
	comparing
	converting and printing

	Floating Point Numbers
	instance creation and arithmetic
	testing
	comparing
	converting and printing

	Fractions
	Random Numbers
	Random
	| aGenerator |

	Dates
	instance creation
	comparing
	arithmetic
	accessing and inquiries
	Table 5-1� Date Methods

	printing
	The printFormat: method returns a string representation of a date object, using the format specif...
	Table 5-2� Parts of a format array for printing date

	Time
	instance creation
	comparing
	arithmetic
	(Time readFromString: '3:47:26 pm')

	accessing and inquiries
	Table 5-3� Time Methods

	converting and printing
	Time Zone
	| newTZ |

	Abstract Superclasses
	Object

	Chapter 6�
	Collection Operations
	Choosing the Appropriate Class
	Set
	Bag
	Array
	Interval
	OrderedCollection
	SortedCollection
	LinkedList
	Dictionary
	Table 6-1� Summary of Collection Classes

	Creating an Instance
	To specify a starting size for the collection, use new: (not applicable to Inte�rval or LinkedList).
	To specify the first element in the collection, use with:, as in the expression Set with: #colorN...
	Table 6-2� Instance Creation
	Figure 6-1� Collection Class Decision Tree

	Adding, Removing and Replacing Elements
	Comparing Collections
	Counting and Finding Elements
	To find out how many elements a collection has, use size.
	To find out whether a collection has a particular value among its elements, use includes:. Use oc...
	To find out whether a collection has zero elements, use isEmpty.
	Several enumeration methods are available for repeating a block of expressions for each element i...
	Bag�—�Two methods are provided for getting a sorted listing of the values along with a count of t...
	Array�—�To find the beginning element, use first. To find the final element, use last.
	To get the index number corresponding to a value, use indexOf:. To confine the search to a range ...

	Copying a Collection
	Converting and Printing
	The Collection Hierarchy

	Chapter 7�
	String Operations
	Creating a Character
	Character Operations
	Table 7-1� �Character Tests

	Creating a String
	Substring Manipulations
	Pattern Matching
	The String Hierarchy
	Object
	Object

	Chapter 8�
	Processes and Exception Handling
	Creating a Process
	Scheduling a Process
	Setting the Priority Level
	Table 8-1� Priority Levels

	Coordinating Processes with a Semaphore
	Figure 8-1� The three steps involved in using a semaphore

	Passing Data Between Processes
	Using a Delay
	Using a Signal to Handle an Error
	aSignal
	Choosing or Creating a Signal
	ArithmeticValue divisionByZeroSignal
	Object errorSignal
	Table 8-2� Publicly accessible signals

	Creating an Exception
	Setting Parameters
	Passing Control From the Handler Block
	A handler block can redirect the flow of control in one of four ways, listed in order of increasi...
	ArithmeticValue divisionByZeroSignal

	Using Nested Signals
	HandlerList new
	sg1 handle: [:ex | "response 1"]
	do: [sg2 handle: [:ex | "response 2"]

	Unwind Protection

	Chapter 9�
	Environment Tools
	VisualWorks Main Window
	Figure 9-1� VisualWorks Main Window

	Settings Tool
	Figure 9-2� Settings Tool

	File List
	Figure�9-3 shows both the standard and enhanced File List.
	Figure 9-3� Standard and Enhanced File List

	File List Views
	Display Options
	File List Commands
	Table 9-1� Pattern View Command
	Table�9-2 lists the names view commands.
	Table 9-2� Names View Commands

	Table�9-3 lists the contents view commands.
	Table 9-3� Contents View Commands

	Change List
	The Change List is also useful for browsing a file-in containing Smalltalk code. See “Managing Pr...
	Figure 9-4� Change List

	The first two switches (above the divider line) affect the format of each entry in the list. The ...
	Table 9-4� Change List Switches

	Use the <Operate> menu to display the commands listed in Table�9-5.
	Table 9-5� Change List Commands

	File Editor
	1. Choose ToolsﬁFile Editor... in the VisualWorks main window.
	2. Enter the name of the file into the input field and click OK.

	Project
	Figure 9-5� Project

	Chapter 10�
	Smalltalk Programming Tools
	System Browser
	Structure
	Class Categories�
	Classes��
	Protocols�
	Methods�
	Code�
	Figure 10-1� System Browser
	Table 10-1� Class Category View Commands
	Table 10-2� Class View Commands
	Table�10-3 lists the protocol view commands.
	Table 10-3� Protocol View Commands

	Table�10-4 lists the method view commands.
	Table 10-4� Method View Commands

	Table�10-5 lists the code view commands.
	Table 10-5� Code View Commands

	Workspace
	Figure 10-2� Workspace

	System Transcript
	Figure 10-3� VisualWorks main window and associated System Transcript
	Transcript show: account printString.
	To avoid an update of the display with each part of a larger message, use nextPutAll: or print:, ...
	Transcript
	nextPutAll: 'The account is: ';

	Debugger
	The instance-variable inspector (3) and the temporary-variable inspector (4) allow you to examine...
	Figure 10-4� Debugger

	For detailed instructions about using a debugger, see Chapter 14.
	Table 10-6� (Continued)Stack View Commands

	Inspector
	Figure 10-5� Inspector

	Chapter 11�
	Application Building Tools
	Resource Finder
	The Resource Finder is for navigating among resources. Application classes are listed in the left...
	Figure 11-1� Resource Finder

	An application class can support multiple interfaces, each of which may involve multiple canvases...

	Canvas Tool
	Figure 11-2� Canvas Tool

	Palette
	By default, a Palette is opened automatically with each canvas, though you can arrange for manual...
	Figure 11-3� VisualWorks Palette

	Image Editor
	Figure 11-4� Image Editor
	Menu Editor
	The standard Menu Editor allows you to build simple menus. To use the standard Menu Editor, turn ...
	Figure 11-5� Standard Menu Editor

	Enhanced Menu Editor
	To use the enhanced Menu Editor, turn on the Use Enhanced Tools switch on the UI Options page of ...
	Figure 11-6� Enhanced Menu Editor

	Menu Commands
	Table 11-1� Menu Editor Menu Commands
	Table 11-2� Menu Editor Edit Commands
	Table 11-3� Menu Editor Move Commands

	Properties
	Table 11-4� Basic Properties for Menu Editor
	Table 11-5� Details Properties for Menu Editor
	Table�11-6 lists the Defaults properties for the enhanced Menu Editor.
	Table 11-6� Defaults Properties for Menu Editor

	Properties Tool
	The Properties Tool is used to control various attributes of each component on a canvas. The set ...
	Figure 11-7� Properties Tool

	The properties can be edited either with a dialog (via properties in the canvas’s <Operate> menu)...
	Basics Properties
	The properties listed in Table�11-7 are basic to most widgets.
	Table 11-7� Basics Properties

	Details Properties
	Details properties listed in Table�11-8 are available on most widgets.
	Table 11-8� Details Properties

	Validation Properties
	Table 11-9� Validation Properties

	Notification Properties
	Table 11-10� Notification properties

	Color Properties
	A widget can have up to four color zones:
	Table 11-11� Color Properties

	Position Properties for Bounded Widgets
	Available for bounded widgets: Action Button, Slider, Input Field, Menu Button, Combo Box, Text E...
	Table 11-12� Position Properties

	Drop Source Properties
	Drop Source properties are available for the List widget only.
	Table 11-13� Drop Source Properties

	Drop Target Properties
	Table 11-14� Drop Target Properties

	Define Dialog
	Figure 11-8� Define Dialog

	Chapter 12�
	Database Application Building Tools
	The Data Modeler
	Canvas Composer
	VisualWorks Painting Tools
	Embedded and Linked Data Forms
	Mapping Tool
	The Query Editor
	Menu Queries
	Ad Hoc SQL Editor

	Chapter 13�
	Application Delivery Tools
	Parcel List
	Figure 13-1� Parcel List
	Parcel Menu Commands
	Table 13-1� Parcel Menu Commands

	Utility Menu Commands
	Table 13-2� Utility Menu Commands

	Parcel Browser
	Open the Parcel Browser from the Parcel List by either:
	Structure
	Figure 13-2� Parcel Browser
	The Parcel Browser differs from the System Browser in three ways:

	Parcel View
	Table 13-3� Protocol View Commands

	Category View
	Table 13-4� Category View Commands

	Class View
	Table 13-5� Class View Commands

	Protocol View
	Table 13-6� Protocol View Commands

	Method View
	Table 13-7� Method View Commands

	Code View
	Table 13-8� Code View Commands

	Image Maker
	To use Image Maker:
	1. File in imagemkr.st from the utils directory.
	2. In a Workspace, execute the following:
	Figure 13-3� Image Maker

	3. Choose the capabilities that you want removed from your development image and not included in ...
	4. Choose FileﬁMake Deployment Image.
	5. Follow the instructions presented by Image Maker.

	Chapter 14�
	Debugging Techniques
	Reading the Execution Stack
	To diagnose a problem, sometimes it is sufficient to see the last few entries in the context stac...
	Figure 14-1� Error Notifier

	Tracing the Flow of Messages
	A debugger displaying the results of a programmatic error (3 + 'two') is shown in Figure�14-2.
	Figure 14-2� Debugger

	Inspecting and Changing Variables
	Figure 14-3� An inspector

	Inserting Status Messages
	Transcript show: anObject printString.

	Interrupting a Program
	Restarting a Program

	Chapter 15�
	Managing Projects and Versions
	Entering and Exiting a Project
	Figure 15-1� Project Window

	Summarizing Project Changes
	A ChangeSet inspector, summarizing the changes for the active project is shown in Figure�15-2.
	Figure 15-2� ChangeSet Inspector

	Reverting to a Prior Version
	Figure 15-3� Change List Browser

	Sharing Code
	Condensing the Changes File

	Chapter 16�
	Accessing Databases
	Overview
	Table 16-1� Core External Database Interface Classes
	Table 16-2� Other External Database Interface Classes

	Data Interchange
	Table 16-3� Relational Type Conversion

	Establishing a Connection
	| connection |
	Securing Passwords
	connection

	Getting the Details Right
	addLogical: key environment: environment
	OracleConnection

	Setting a Default Environment
	ExternalDatabaseConnection

	Default Connections
	| connection |

	On the Importance of Disconnecting

	Using Sessions
	| connection session |
	| session |
	Variables in Queries
	session prepare: 'INSERT INTO phonelist (name, phone) VALUES(?, ?)'.

	Named Input Binding
	Binding NULL

	Getting Answers
	Handling Multiple Answer Sets
	session

	What Happens when you Send an Answer Message
	1. Waits for the server to complete execution.
	2. Verifies that the query executed without error.
	3. Determines whether an answer set is available.
	If the query returns an answer set, then the session performs the following additional steps:
	4. Obtains a description of the answer set.
	5. Allocates buffers to hold rows from the answer set.
	6. Prepares adaptors to help translate relational data to Smalltalk objects.

	Waiting for the Server
	Did the Query Succeed?
	How Many Rows were Affected?
	Describing the Answer Set
	name "Answer the name of the column"

	Buffers and Adaptors
	Processing an Answer Stream
	numbers := OrderedCollection new.
	answer := session answer.

	Using an Output Template
	session
	Skipping Slots in an Output Template
	Using Column Names to Bind for Output
	Reusing the Output Template

	Setting a Block Factor to Improve Performance
	session

	Cancelling an Answer Set
	Disconnecting the Session

	Catalog Queries
	"Get a list of available tables."
	"Get a list of all tables that begin with 'PHONE'
	"Get a list of all tables owned by PUB2"

	Controlling Transactions
	Coordinated Transactions

	Releasing Resources
	Tracing the Flow of Execution
	Directing Trace Output
	Setting the Trace Level
	Table 16-4� Trace Levels

	Disabling Tracing
	Adding Your Own Trace Information

	Error Handling
	Signals and Error Information
	Exception Handling
	connection class externalDatabaseErrorSignal

	The Database Signal Hierarchy
	Choosing an Exception to Handle

	Image Save and Restart Considerations
	Reconnecting When an Image is Restarted

	Chapter 17�
	Troubleshooting
	Recovering from a System Failure
	Start-up Errors
	Table 17-1� Start-up Errors

	Source Code Unavailable in Browser
	Low Space
	No VisualWorks Main Window
	Can’t Exit from VisualWorks
	UNIX
	1. In a shell, enter the following to list the active processes:
	2. Substitute the PID (process identification number) associated with the VisualWorks process in ...
	3. If that doesn’t work, use the stronger but less graceful version of the command:

	Macintosh
	Windows

	Emergency Exit (all platforms)
	When You Need Assistance

	Chapter 18�
	Application Framework
	Overview
	Domain Model Is Separate From User Interface
	Similarly, keeping the UI components free of special knowledge about a particular domain model ma...
	Figure 18-1� Separation of UI from domain model

	ApplicationModel Acts as Mediator
	Figure 18-2� Application model as mediator between UI and domain model

	Value Model Links Widget to Attribute
	Figure 18-3� A value model links a widget to an attribute. Classically, the attributes are compon...

	Builder Assembles User Interface
	Figure 18-4� The application model delegates the task of constructing a window and its widgets to...

	Widget Has Visual Component and Optional Controller
	Figure 18-5� Each widget consists of a view for displaying an aspect of the model, and an optiona...

	About the Example Application
	Loading the example classes
	1. Open an Online Documentation window by clicking on the Help icon in the icon bar of the main V...
	2. In the Online Documentation window, click on the File menu and select Browse Example Class. A ...
	3. In the dialog, select CustomView1Example in the list and then click on OK. A dialog will confi...
	4. Repeat steps 2 and 3 for the CustomView2Example class.

	Components
	The example classes include a domain model (Sketch), an application model (CustomView1Example), a...
	Figure 18-6� How the example classes fit into the framework.

	Domain Model
	Overview
	Multiple Domain Models
	Figure 18-7� Domain information is often divided among multiple classes.

	Data Storage
	How Data Is Stored
	How Data Is Accessed

	Data Processing

	Application Model
	Overview
	Class Hierarchy
	Creation
	Components
	Responsibilities

	Storage of Reusable Labels and Images
	Storage of Interface Specs
	Storage of Value Models
	Dependent Notification
	For example, in the sketching application, selecting a sketch in the list widget causes the set o...
	Figure 18-8� A value model can use dependency notifications to cause a secondary widget to update...

	Notifications From Value Model to Application Model
	Example
	1. The user clicks on the name of a sketch in the list widget, causing the selectionIndexHolder v...
	2. A DependencyTransformer notices the change and notifies the application model by sending a cha...
	3. The application model, in its changedSketch method, gets the newly selected sketch and install...
	4. The sketch widget displays the sketch.
	Figure 18-9� A DependencyTransformer is installed as a dependent of the value model that holds th...

	Notifications From Any Object to Any Object
	DependencyTransformer
	Direct Dependency
	Figure 18-10� Any object can register dependents and then notify them by sending itself a changed...

	Removing Dependents
	Circular Dependencies

	Event-Based Notifications
	Defining Events
	Triggering Events
	Registering an Event Handler
	Figure 18-11� When using event-based notifications, a button class could define an event named #c...

	Removing Dependencies

	Application Startup
	Selecting an Interface
	Prebuild Intervention
	Postbuild Intervention
	Postopen Intervention

	Application Cleanup

	Builder
	Overview
	Creation
	Components
	Responsibilities

	Storage of UI Bindings
	Figure 18-12� A builder caches value models and other resources in a bindings dictionary. An appl...

	Interface Assembly
	When an application is using a builder to construct a custom dialog or other UI directly, it does...
	Figure 18-13� How an abstract specification is turned into a platform-specific widget. The applic...

	Interface Opening
	Window Access
	Named Component Access
	Each widget is contained by a WidgetWrapper, which uses a WidgetState to apply bordering, visibil...
	Figure 18-14� When a widget is given an ID property, the builder stores it, inside its wrapper, i...

	Window
	Overview
	Creation
	Class Hierarchy
	Components
	Responsibilities

	Damage Repair

	Visual Component
	Overview
	Passive vs. Active Components
	Figure 18-15� Window and view as container and component.

	Autonomous vs. Dependent Components
	Figure 18-16� Autonomous vs. dependent visual components
	Figure 18-17� The connections provided by VisualPart, DependentPart and View as their primary con...

	Controller Linking
	Model Linking
	Redisplaying
	Selective Redisplaying
	Immediate vs. Lazy Damage Repair

	Composite Visual Component
	A window is only prepared to communicate with a single visual component. To place two or more com...
	Figure 18-18� A CompositePart holds a collection of other visual components.
	Figure 18-19� Each leaf component is contained by a wrapper.

	Wrapper

	Controller
	Figure 18-20� The controller with which each mouse button interacts.
	Polling vs. Event-Driven Controllers
	Flow of Control (Polling Controller)
	Control Manager
	The window’s controller asks the window which of its subcomponents wants control, if any (subview...
	Figure 18-21� How the flow of control proceeds from the operating system to a specific component ...

	Basic Control Sequence
	Figure 18-22� On receiving control, a controller initializes itself, repeats an activity loop, an...

	Input Sensing

	Flow of Events (Event-Driven Controller)
	Event Queuing
	Event Dispatching

	Selection Tracking

	Chapter 19�
	Graphic Operations
	Background
	Much like a newspaper photograph, a computer image is made up of tiny dots of color. Each dot mak...
	Figure 19-1� Bits in memory represent picture elements on the screen

	Coordinate System
	Figure 19-2� Relative clarity remains constant regardless of the screen’s resolution
	Figure 19-3� Coordinate system

	Points
	Table 19-1� Miscellaneous point functions

	Rectangles
	50@50 extent: 100@250
	Figure 19-4� Creating a rectangle
	Table 19-2� Rectangle placement and sizing messages

	Inquiring about a Rectangle’s Dimensions
	Table 19-3� Messages for accessing a Rectangle’s dimensions

	Scaling and Transforming Rectangles
	Table 19-4� Rectangle scaling, merging, translating messages

	Display Surfaces
	VisualWorks Windows
	Pixmaps
	Pixmaps and Color
	Pixmaps and the host clipboard

	Masks
	Figure 19-5� A cursor with and without a mask

	Host Residency of Display Surfaces
	Graphics Context
	Translation
	Clipping
	Line Characteristics
	Line Width
	Line Cap Style
	Line Join Style

	Default Paint (color, opaqueness, and texture)
	Tiling Phase
	Default Font
	Displaying Geometrics
	Graphic Attributes

	Graphic Objects
	Texts
	Lines, Polylines and Polygons
	Rectangles
	Translation Protocol
	gc displayPolyline: pointCollection at: aPoint

	Splines and Bezier Curves
	Arcs, Circles and Wedges
	Figure 19-6� Defining an arc
	Figure 19-7� The skewed coordinate system of a noncircular ellipse

	Graphical Images
	Representation
	Object
	Figure 19-8� Image hierarchy

	Packed Rows
	packedRowAt: rowIndex

	Compatibility with the Display Surface’s Palette

	Image Processing
	Growing or Shrinking an Image

	Bit Processing
	CachedImage
	Cursors
	Figure 19-9� VisualWorks’ built-in cursors
	Displaying a Cursor Temporarily During an Operation

	Icons
	Animation

	Integrating Graphics into an Application
	Integrating a Static Graphic
	Integrating a Dynamic Graphic

	Chapter 20�
	Color
	Types of Color
	Paint
	Pattern
	Coverage
	CoverageValue transparent CoverageValue coverage: 0

	Color
	Predefined Color
	RGB Color
	HSB Color
	Figure 20-1� HSB color components, each value starting at zero and progressing toward one

	Palettes
	Coverage Palettes
	Color Palettes
	Color Palette Creation
	Eight-bit Color Palettes
	Figure 20-2� 8-bit color palette

	Performance Note about Palettes and Image Display
	anImage

	Device Color Map
	Table 20-1� Screen depth and associated windowing systems

	Policies for Rendering Color
	Screen default defaultCoveragePolicy
	Figure 20-3� The three kinds of color renderers
	Table 20-2� Default renderers

	NearestPaint
	OrderedDither
	ErrorDiffusion

	Chapter 21�
	Weak Arrays and Finalization
	Weak Arrays
	Finalization
	WeakDictionary
	HandleRegistry

	Finalization Example
	The Executor class is a simple example of how finalization can be achieved by using WeakArrays. A...
	readLastWillAndTestamentOfTheDeparted
	update: anAspectSymbol with: aParameter from: aSender
	familyMembers: aWeakArray
	familyWills: anArray
	example
	'Adam has died. Bequeaths his assets to Eve.'; cr].

	Chapter 22�
	Parsing and Compiling
	Scanner
	Parser
	(Parser new
	methodNode := Parser new

	Compiler
	Compiler
	Compiler
	aMethod := Compiler

	Chapter 23�
	Memory Management
	Memory Layout
	Fixed-size OE Spaces
	Figure 23-1� Memory Layout Map
	CompiledCodeCache
	StackSpace
	NewSpace
	LargeSpace
	PermSpace
	1. Create an image using the FileﬁPerm Save As... command. Then choose FileﬁExit VisualWorks... a...
	2. A number of transient objects will also inhabit PermSpace, such as those needed to display win...
	3. Create a normal snapshot.
	4. To make subsequent loads on the same platform even faster, you may want to load the new image ...

	Smalltalk Object Memory
	OldSpace
	Remembered Table
	OldRemembered Table

	Facilities for Reclaiming Space
	Generation Scavenger
	Incremental Garbage Collector
	Figure 23-2� VisualWorks’ reclamation facilities
	1. resting
	2. marking
	3. nilling
	4. sweeping
	5. resting

	Compacting Garbage Collector
	Global Garbage Collector
	Data Compactor

	Memory Policy Classes
	ObjectMemory
	MemoryPolicy
	An instance of MemoryPolicy will take the following actions in these circumstances.
	Table 23-1� Actions Taken by MemoryPolicy

	Chapter 24�
	Overview of Application Delivery
	Different Ways to Deliver an Application
	Single Image File
	Parcels

	Development and Deployment Life-Cycle
	Method 1: Delivery Combined with Development
	1. Create a deployment image.
	2. Build some discrete part of your application. It may have stubs for parts that are not yet bui...
	3. Parcel that part of your application.
	4. Test the parcel with the deployment image.
	5. Repeat steps 2-4 until done.

	Method 2: Delivery After Development
	1. Develop your application as you usually do.
	2. Divide your application into parcels based on your delivery goals and save those parcels to pa...
	3. Create your minimal base image (deployment image) by stripping your development image.
	4. Test your deployment image with your parcels. Fix as needed.

	More Information

	Chapter 25�
	Parceling an Application
	What Are Parcels?
	Figure 25-1� Application Divided Into Parcels
	Characteristics
	Contents
	Restrictions
	Parcel Files

	Creating Parcels
	Deciding What to Parcel
	Specifying Parcels and their Contents
	Once you have an idea how you want to divide your application, you can begin putting your applica...
	1. Open the Parcel List by choosing ToolsﬁParcel List from the VisualWorks main window. The Parce...
	Figure 25-2� Parcel List

	2. Create a new parcel by choosing ParcelﬁNew and proving a parcel name. A parcel name may be any...
	3. Display the contents of the new parcel by double-clicking on the parcel name. VisualWorks open...
	Figure 25-3� Parcel Browser

	The Parcel Browser looks like the System Browser, but differs from it in three ways:
	4. Add class and method definitions to the parcel by selecting items and choosing add to parcel f...

	When you:
	5. Remove any class and method definitions you don’t want by selecting those items and choosing r...
	6. (Optional) Add a parcel comment.
	a. Choose comment from the parcel view’s <Operate> menu. The parcel’s comment is shown in the cod...
	b. Edit the comment. A comment may be any string.
	c. Accept the new comment.

	7. (Optional) Add a version string.
	a. Choose version from the parcel view’s <Operate> menu. The parcel’s version is shown in the cod...
	b. Edit the version. A version may be any string.
	c. Accept the new version string.

	8. You may view a summary of the classes that are in the parcel and the classes that are extended...
	Figure 25-4� Summary of Parcel Contents

	9. When you are done assigning classes and methods to the parcel, you must save it. Until a parce...
	10. Repeat this process until your entire application has been divided into parcels and saved. To...

	Loading Parcels
	At Start Up
	From within an Application
	Reuse
	You probably want to reuse the already-loaded parcel if:

	Reload
	You probably want to reload the parcel if:

	Behavior at Load Time
	Load Order
	Load Errors

	Filing Parcel Contents In and Out
	Tips for Working with Parcels
	Keeping Source Code and Parcels in Sync
	Testing Parcel Files and Source Files for Matches
	One way to test if your parcel file and source files match is to load the parcel file first and t...

	Chapter 26�
	Creating a Deployment Image
	parcels
	development tools
	Smalltalk base
	Figure 26-1� Development Image and Deployed Application
	Setting Up a Deployment Image
	Before deploying your application, you should consider a few aspects of image-making and the resu...
	Handling Errors
	The Transcript
	Undeclared Variables
	1. Open a Workspace and type Undeclared.
	2. Select Undeclared and choose inspect from the <Operate> menu.
	Figure 26-2� An Inspector on the Undeclared

	Creating a Deployment Image
	To use Image Maker:
	1. Set up your application as you want it to be delivered:
	2. File in imagemkr.st from the utils directory.
	3. In a Workspace, execute the following:
	Figure 26-3� Image Maker

	4. Choose what you want to remove from the image. For more information about removal options, see...
	5. Run Image Maker by choosing FileﬁMake Deployment Image. Image Maker asks you for the name of t...
	6. Enter the name of the release directory and click OK.
	a. Removes the specified classes from the image.
	b. Closes all of the VisualWorks development tools.
	c. Leaves your application in the image and, if it was open, leaves it open.
	d. Asks you for the name of the file to which you want the new image saved.

	7. Enter the name for the new image and click OK.
	8. Image Maker displays a dialog box providing instructions for the next step. Click OK to dismis...
	Image Maker then:
	a. Saves the image.
	b. Closes your application, if it was running.
	c. Shuts down the VisualWorks object engine and image.
	9. Start the new image. To do so, use the same object engine you used previously and indicate the...
	10. Image Maker displays a final dialog box indicating that it will now save and quit once again....
	a. Saves the image.
	b. Closes your application, if it was running.
	c. Shuts down the VisualWorks object engine and image.

	Operations Performed by Image Maker
	Removal of Development Facilities
	Optional Removal of Other Facilities
	Display Capability
	Compiler Classes
	Database Support
	Unused User-Interface Widgets
	Unused User-Interface Looks
	BOSS
	Printing Capability
	Additional Classes
	1. In the Image Maker window, choose Remove Additional Classes.
	2. Choose ClassesﬁSet Additional Removals from Image Maker’s menu bar.

	Preservation of Certain Facilities
	Optimization of Memory Usage
	Other Changes

	Saving the State of Image Maker
	Starting Up a Deployed Image
	Debugging a Deployed Image
	Exiting a Deployed Image

	Chapter 27�
	Creating Applications without Graphical User Interfaces
	Key Concepts
	Setting Up a Headless Image
	1. In a standard VisualWorks image, file in headless.st, located in the utils subdirectory of the...
	2. Write your application so that it can run in headless mode (see “Tips for Programming a Headle...
	3. Decide how you will want to start your application and prepare accordingly (see “Techniques fo...
	4. Decide whether you want the headless image to file in a startup file, and if so, whether to us...
	5. Decide whether you want the headless image to append transcript messages to the file hlst.tr:
	6. Create a headless image by evaluating an expression such as the following:

	Running an Application in Headless Mode
	When an Image Starts
	If an Application Attempts to Access a Display

	Debugging a Suspended Process
	1. Start the headful image that was saved by the headless image before it terminated. By default,...
	2. Inspect the suspended processes by evaluating the following expression:
	3. In the Inspector, select a process and then invoke debug from the <Operate> menu. VisualWorks ...

	Creating a Headful Copy of a Headless Image
	Tips for Programming a Headless Application
	Techniques for Starting a Headless Application
	Techniques for Communicating with a Headless Application
	Terminating a Headless Application
	Preventing Access to the Display
	HeadlessImage headlessErrorSignal

	Delivering a Headless Application
	Figure 27-1� Image Maker with Headless Option

	Appendix A�
	Protocol Reference
	Common Class Protocols
	Table A-1� Class Protocols

	Common Instance Protocols
	Table A-2� Instance Protocols

	Appendix B�
	Syntax Descriptions
	Table B-1� Special Characters
	Lexical Primitives
	Character Classes
	Numbers
	Other Lexical Constructs

	Atomic Terms
	Expressions and Statements
	Methods

	Appendix C�
	Special Characters
	Composed Characters
	Table C-1� Special Characters

	Diacritical Marks
	Table C-2� (Continued)Diacritical Marks

	Appendix D�
	Implementation Limits
	Size Limitations
	Table D-1� Size Limitations

	Open-coded Blocks
	BlockClosure>>whileTrue
	Shared Context
	| outerContext answer |
	| outerContext answer |

	Browser Visibility
	| t1 |

	Block Optimization
	outerScope a MethodContext or BlockContext for dirty blocks, nil for clean blocks
	The Debugger
	Performance
	| t |
	| t |

	Non-overridable Methods
	Special Treatment Only at Compile Time
	anObject and: aBlock0
	Any class and: or: ifTrue: ifFalse: ifTrue:ifFalse: ifFalse:ifTrue:

	Special Treatment at Compile Time and Translation Time
	(SmallInteger) + (SmallInteger)

	Appendix E�
	Keyboard Shortcuts
	Table E-1� Canvas-painting Shortcuts
	Editing Text and Components
	Displaying Tools and Dialogs
	Selecting Components
	Moving Components
	Aligning Components
	Grouping Components
	Changing Layouts
	Changing Tool Focus

	Appendix F�
	User-Defined Primitives
	Theory of Operation
	1. Compile your C code module with a header file provided in the UDP interface. The header file i...
	2. Link the resulting object module with the Smalltalk library or object module. This results in ...
	3. Start VisualWorks, using your new OE. One piece of the interface between your “C” code and Sma...
	4. In addition to any particular initialization you may want to do, you must register the primiti...
	5. In Smalltalk, write a method and declare your primitive. When that method is invoked, the prim...

	Basic Capabilities
	Defining a New Primitive
	1. Create a C routine called UPinstall() that adds your primitives by invoking the UPaddPrimitive...
	2. Define your user primitive function in a .c file that includes userprim.h. The header file use...
	void primFunc(receiver, argument1, argument2,...)
	3. UDPs must either succeed (and return a value) or fail. The last executed line should be a retu...

	#include "userprim.h"
	4. Compile and link the new object engine.
	5. In VisualWorks, create a method like the following:

	prim: arg1 with: arg2

	Installation and Access
	1. To install your primitives, invoke the following routine for each primitive.:
	2. Declare the arguments as follows:
	int primNumber, numArgs;
	primName: args

	Primitive Numbers
	Arguments
	Data Types
	Table F-1� UDP Data Types�

	Failure Codes
	Table F-2� (Continued)Failure Codes

	General Advice
	C Conversion
	String to String
	upInt UPcopyCtoSTstring

	Byte Array to Byte Object
	upInt UPcopyCtoSTbytes

	Integer Array to Array
	upInt UPcopyCtoSTintArray

	Float Array to Array
	upInt UPcopyCtoSTfloatArray

	Integer to Integer
	upHandle UPCtoSTint(aUpInt)

	Float to Float
	upHandle UPCtoSTfloat(aUpFloat)

	Double Float to Double
	Copy a C double-precision floating-point number (aUpDouble) to a Smalltalk double.
	upHandle UPCtoSTdouble(aUpDouble)

	Boolean to Boolean
	upHandle UPCtoSTbool(aUpBool)

	Character to Character
	upHandle UPCtoSTchar(aUpChar)

	Return nil
	Return the Smalltalk upHandle nil.

	Smalltalk Conversion
	String to String
	upInt UPcopySTtoCstring

	Byte Array to Byte Array
	upInt UPcopySTtoCbytes

	Integer Array to Array
	upInt UPcopySTtoCintArray

	Float Array to Array
	upInt UPcopySTtoCfloatArray

	Integer to Integer
	Copy a Smalltalk integer (aUpHandle) to a C integer (upInt).
	upInt UPSTtoCint(aUpHandle)

	Float to Float
	upFloat UPSTtoCfloat(aUpHandle)

	Double Float to Double
	upDouble UPSTtoCdouble(aUpHandle)

	Character to Character
	upChar UPSTtoCchar(aUpHandle)

	Boolean to Boolean
	upBool UPSTtoCbool(aUpHandle)

	Success Return
	Any Value
	void UPreturnHandle(aUpHandle)

	Nil
	True
	False

	Failure Return
	Coded Failure
	void UPfail(failCode)

	Type Checking
	Character
	upBool UPisCharacter(aUpHandle)
	void UPmustBeCharacter(aUpHandle)

	String
	void UPmustBeString(aUpHandle)

	Integer
	upBool UPisInteger(aUpHandle)
	void UPmustBeInteger(aUpHandle)

	Float
	upBool UPisFloat(aUpHandle)
	void UPmustBeFloat(aUpHandle)

	Double
	upBool UPisDouble(aUpHandle)

	Array of Integers
	Return TRUE if aUpHandle is an array of integers, otherwise FALSE.
	upBool UPisArrayOfInteger(aUpHandle)
	void UPmustBeArrayOfInteger (aUpHandle)

	Array of Floats
	upBool UPisArrayOfFloat(aUpHandle)
	void UPmustBeArrayOfFloat (aUpHandle)

	Byte Array
	Return TRUE if aUpHandle is a byte array, otherwise FALSE.
	upBool UPisByteArray(aUpHandle)
	void UPmustBeByteArray(aUpHandle)

	Byte-like
	upBool UPisByteLike(obj)
	void UPmustBeByteLike(aUpHandle)

	Boolean
	upBool UPisBoolean(aUpHandle)
	void UPmustBeBoolean(aUpHandle)

	Immediate
	upBool UPisImmediate(aUpHandle)

	Class Check
	Given handles for an object and a class, return TRUE if the object belongs to that class or its s...
	upBool UPisKindOf(objUphandle, classUpHandle)

	Object Allocation
	String
	upHandle UPallocString (cvalue, numElements)

	Byte Array
	upHandle UPallocByteArray (bvalue, numElements)

	Array
	upHandle UPallocArray (ovalue, numElements)

	Other Object Types
	upHandle UPallocFsObject(aUpHandle)
	upHandle UPallocVsObject(classHandle, size)

	Indexed Access
	Indexed Variable
	upHandle UPbasicAt(arrayUpHandle, index)
	Replace the index’th element of arrayUpHandle with u�pHandleToBePut.
	void UPbasicAtPut(arrayUpHandle, index, upHandleToBePut)

	Instance Variable
	upHandle UPinstVarAt(aUpHandle, index)
	void UPinstVarAtPut(aUpHandle, index, upHandleToBePut)

	Indexed Byte
	upInt UPbyteAt(aUpHandle, index)
	void UPbyteAtPut(aUpHandle, index, aUpByte)

	Indexed Float
	upFloat UPfloatAt(aUpHandle, index)
	Replace the index’th element of the array called aUpHandle with aUpFlo�at. This routine does not ...
	void UPfloatAtPut(aUpHandle, index, aUpFloat)

	Sizing
	upInt UPinstVarSize(obj)
	Return the size of the variable portion of this object in number of upHa�ndles (for pointer objec...
	upInt UPindexVarSize(obj)

	Initializing
	void UPinstallErrorHandler (errorHandler)
	Initialize the user primitive interface and return a herald string. This must be defined in the u...
	upBool UPaddPrimitive (primNumber, primFunc, numArgs)

	Other Support Routines
	Return a handle for the class of the aUpHandle object.
	upHandle UPclass(aUpHandle)
	upHandle UPregisteredHandleAt(aUpInt)
	void UPregisteredHandleAtPut(index, handle)
	#define UPnotAClass 0
	void UPsignalSemaphore(aUpHandle)

	Registering Long-lived Objects
	To refer to objects over time, the OE provides a facility to register indirect references to obje...
	static upInt slot;

	Interrupts and Poll Handlers
	upFunct myHandler;
	U�PsignalSemaphore()
	On UNIX platforms, the OE requires unimpeded access to certain signals. Specifically, your user p...
	SIGIO or SIGPOLL

	Unsafe Primitives
	Example
	C Code
	#include "userprim.h"

	Smalltalk Code

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

