%)
'S
S
=
©
5
L
>

Cookbook

Part Number: DS14001002

Copyright © 1995 by ParcPlace-Digitalk, Inc. All rights reserved.
Part Number: DS14001002
Revision 2.0, October 1995 (Software Release 2.5)

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

ObjectKit, ObjectWorks, ParcBench, ParcPlace, and VisualWorks are
trademarks of ParcPlace Systems, Inc., its subsidiaries, or successors and are
registered in the United States and other countries. DataForms, MethodWorks,
ObjectLens, ObjectSupport, ParcPlace Smalltalk, Visual Data Modeler,
VisualWorks Advanced Tools, VisualWorks Business Graphics, VisualWorks
Database Connect, VisualWorks DLL and C Connect, and VisualWorks
ReportWriter are trademarks of ParcPlace Systems, Inc., its subsidiaries, or
successors. ENVY is a registered trademark of Object Technology International,
Inc. All other products or services mentioned herein are trademarks of their
respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies
this documentation:

VisualWorks is furnished under a license and may not be used, copied,
disclosed, and/or distributed except in accordance with the terms of said
license. No class names, hierarchies, or protocols may be copied for
implementation in other systems.

This manual set and online system documentation copyright © 1995 by
ParcPlace-Digitalk, Inc. All rights reserved. No part of it may be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or
machine-readable form without prior written consent from ParcPlace-Digitalk.

ParcPlace-Digitalk, Inc., 999 E. Arques Avenue, Sunnyvale, CA 94086-4593

Contents

About This Book

Audience xiii

Organization xiii

Conventions xiv

Additional Sources of Information xviii
Obtaining Technical Support xix

Part | Programming Fundamentals

Xiii

Chapter 1 Smalltalk Basics
Constructing a Message 4
Combining Messages 7
Deciding which Type of Variable to Use 10
Declaring a Variable 13
Removing a Variable 16
Creating a Method 18
Returning from a Method 20
Creating an Instance of a Class 22
Initializing an Object 24
Creating a Class (Subclassing) 26
Grouping Related Classes 29
Grouping Related Methods 31
Creating a Branch 33
Creating a Loop 34
Creating Complex True/False Tests 38

Chapter 2 Building Applications
Designing the Application 42
Painting the User Interface 43
Creating the Domain Models 45

VisualWorks Cookbook, Rev. 2.0

41

Contents

Part Il

Connecting the Interface to the Models 47
Connecting the Widgets to Each Other 50

User Interface

51

Chapter 3

Chapter 4

Chapter 5

Widget Basics

Accessing a Widget Programmatically 54
Sizing a Widget 56

Positioning a Widget 60

Aligning a Group of Widgets 65
Spacing a Group of Widgets 66
Bordering a Widget 67

Changing a Widget's Font 68

Hiding a Widget 70

Disabling a Widget 72

Changing the Tabbing Order 74
Coloring a Widget 75

Adding and Removing Dependencies 78

Windows

Opening a Window 82

Getting a Window from a Builder 85
Sizing a Window 86

Moving a Window 90

Changing a Window’s Label 92
Refreshing a Window's Display 93
Coloring a Window 94

Adding and Removing Scroll Bars 96
Adding a Menu Bar 98

Getting the Active Window 99

Getting the Window at a Specific Location 100
Closing a Window 101

Expanding and Collapsing a Window 103
Hiding a Window 104

Making a Window a Slave 105

Setting a Window's Icon 108

Labels
Creating a Textual Label 110
Creating a Graphic Label 111

VisualWorks Cookbook,

53

81

109

Rev. 2.0

Contents

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Supplying the Label at Run Time 113
Changing Font, Emphasis, and Color 116
Building a Registry of Labels 118

Input Fields

Creating an Input Field 122

Restricting the Type of Input 125

Formatting Displayed Data 129

Validating the Input 132

Modifying a Field's Pop-Up Menu 139
Connecting a Field to Another Field 143
Restricting Entries in a Field (Combo Box) 146
Moving the Insertion Point 150

Lines, Boxes, and Ovals

Separating Widgets with a Line 154
Grouping Widgets with a Box 156
Grouping Widgets with an Ellipse 158

Buttons

Adding a Set of Radio Buttons 160
Adding a Check Box 162

Adding an Action Button 164

Giving a Button a Graphic Label 167
Turning Off Highlighting 168

Text Editors

Adding a Text Editor 172

Accessing the Selected Text 174
Highlighting Text Programmatically 176
Aligning Text 178

Making an Editor Read-Only 180
Modifying an Editor's Menu 182

Lists

Adding a List 184

Editing the List of Elements 187
Allowing for Multiple Selections 189
Finding Out What Is Selected 191
Adding a Menu to a List 194
Changing the Highlighting Style 196

VisualWorks Cookbook, Rev. 2.0

121

153

159

171

183

Contents

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Vi

Connecting Two Lists 198
Connecting a List to a Text Editor 200

Datasets

Adding a Dataset 204

Selecting Columns While Painting 209
Adding a Row 210

Connecting Data to a Dataset 212
Enhancing Column Labels 213

Tables

Using Tablelnterface 216

Adding a Table 217

Connecting a Table to an Input Field 221
Labeling Columns and Rows 223

Menus

Creating a Menu 226

Creating a Submenu 231

Adding a Menu Bar 233

Adding a Menu Button 236
Adding a Pop-Up Menu 240
Modifying a Menu Dynamically 243
Disabling a Menu Item 248
Adding a Divider to a Menu 250
Adding a Shortcut Key 252
Displaying an Icon in a Menu 254
Changing Menu Colors 257

Using a Menu Editor 259

Sliders

Adding a Slider 264

Connecting a Slider to a Field 267
Changing the Range Dynamically 270
Changing the Length of the Marker 273
Making a Slider Two-Dimensional 274

Dialogs

Displaying a Warning 278

Asking a Yes/No Question 280

Asking a Multiple-Choice Question 282

203

215

225

263

277

VisualWorks Cookbook, Rev. 2.0

Contents

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Requesting a Textual Response 284
Requesting a Filename 286

Choosing from a List of Items 289
Linking a Dialog to a Master Window 292
Creating a Custom Launcher 294
Creating a Custom Dialog 296

Subcanvases

Inheriting an Application’s Capabilities 302
Nesting One Application in Another 305
Reusing an Interface Only 308

Swapping Interfaces at Run Time 310
Accessing an Embedded Widget 313

Notebooks

Adding a Notebook 316

Determining Which Tab Is Selected 319
Changing the Binding's Appearance 322
Changing the Size and Axis of the Tabs 324
Setting the Starting Page 326

Adding Secondary Tabs (Minor Keys) 328
Connecting Minor Tabs to Major Tabs 331
Changing the Page Layout (Subcanvas) 334
Connecting a Notebook to a Text Editor 336

Drag and Drop

About Drag and Drop 340

Adding a Drop Source 343

Adding a Drop Target (General) 348

Providing Visual Feedback During a Drag 350

Responding to a Drop 359
Examining the Drag Context 365
Responding to Modifier Keys 366
Defining Custom Effect Symbols 371

Custom Views

Creating a View Class 376

Connecting a View to a Domain Model 378
Defining What a View Displays 380

Updating a View When Its Model Changes 382

Connecting a View to a Controller 385

VisualWorks Cookbook, Rev. 2.0

301

315

339

375

vii

Contents

Redisplaying All or Part of a View 387
Integrating a View into an Interface 389

Chapter 20 Custom Controllers 391
Choosing an Input Architecture 392
Creating a Controller Class 395
Connecting a Controller to a Model 399
Connecting a Controller to a View 400
Defining When a Controller Has Control 402
Defining What a Controller Does 405
Equipping a Controller with a Menu 409
Shifting Control to a Different Controller 411
Sensing Mouse Activity 412
Sensing Keyboard Activity 416
Getting the Cursor’s Location 419

Part IlI Data Structures 423

Chapter 21 Numbers 425
Creating a Number 426
Adding and Subtracting 431
Multiplying and Dividing 432
Rounding 434
Getting Squares and Roots 436
Comparing Two Numbers 438
Getting the Minimum and Maximum 441
Performing Trigonometric Functions 442
Performing Logarithmic Functions 444
Testing Numberness, Evenness, Zeroness 445
Accessing and Converting the Sign 447
Converting a Number to Another Form 449
Factoring 453
Generating a Random Number 454
Accessing Numeric Constants 458

Chapter 22 Dates 461
Creating a Date 462
Getting Information about a Day 465
Getting Information about a Month 467
Getting Information about a Year 469

viii VisualWorks Cookbook, Rev. 2.0

Contents

Adding and Subtracting with Dates 471
Comparing Dates 473
Formatting a Date 475

Chapter 23 Times
Creating a Time 478
Getting the Seconds, Minutes, and Hours 480
Adding and Subtracting Times 482
Creating a Time Stamp 483
Timing a Block of Code 484
Changing the Time Zone 486

Chapter 24 Collections
Choosing the Right Collection 490
Creating a Collection 491
Getting the Size 495
Adding Elements 497
Removing Elements 500
Replacing Elements 505
Copying Elements 508
Combining Two Collections 510
Finding Elements 511
Comparing Collections 517
Sorting a Collection 519
Converting to a Different Type of Collection 522
Looping through the Elements (Iterating) 524

Chapter 25 Characters and Strings
Creating a Character 530
Creating a String 532
Distinguishing Types of Characters 534
Changing the Case 537
Getting a String’s Length and Width 539
Comparing 540
Searching 543
Combining Two Strings 545
Extracting a Substring 547
Removing or Replacing a Substring 549
Abbreviating a String 551
Inserting Line-End Characters 553

VisualWorks Cookbook, Rev. 2.0

477

489

529

Contents

Chapter 26 Text and Fonts 555
Creating a Text Object 556
Displaying a Text Object 558
Setting the Line Length 559
Disabling Word Wrapping 560
Controlling Alignment 561
Setting Indents and Tabs 562
Counting the Characters 564
Printing a Text Object 565
Searching for Strings 566
Replacing a Range of Text 567
Comparing Text Objects 568
Copying a Range of Text 569
Changing Case 571
Applying Boldfacing and Other Emphases 572
Using the Platform’s Default Font 575
Creating a Custom Text Style 576
Changing Font Size 578
Setting Font Family or Name 582
Setting Text Color 585
Changing the Fonts Menu 587
Changing the Default Font 588
Listing Platform Fonts 589

Chapter 27 Text Files 591
Creating a File or Directory 592
Getting Information about a File 594
Getting File or Directory Contents 597
Storing Text in a File 598
Opening an Editor on a File 601
Deleting a File or Directory 602
Copying or Moving a File 603
Comparing Two Files or Directories 605
Printing a File 607
Scanning Fields in a File (Stream) 609
Setting File Permissions 611

Chapter 28 Obiject Files (BOSS) 613
Storing Objects in a BOSS File 614
Getting Objects from a BOSS File 617
Storing and Getting a Class 621

X VisualWorks Cookbook, Rev. 2.0

Contents

Converting Data After Changing a Class 624
Customizing the Storage Representation 626

Chapter 29 Geometrics
Displaying a Point 630
Displaying a Straight or Jointed Line 631
Displaying a Curved Line 634
Displaying a Polygon 637
Displaying an Arc, Circle, or Ellipse 640
Changing the Line Thickness 644
Changing the Line Cap Style 645
Changing the Line Join Style 647
Coloring a Geometric 649
Integrating a Graphic into an Application 652

Chapter 30 Images, Cursors, and Icons
Creating a Graphic Image 658
Displaying an Image 662
Coloring Pixels in an Image 664
Masking Part of an Image 666
Expanding or Shrinking an Image 668
Flopping an Image 669
Rotating an Image 670
Layering Two Images 672
Caching an Image 674
Animating an Image 675
Creating a Cursor 678
Changing the Current Cursor 681
Creating an Icon 682
Associating an Icon with a Window 683

Chapter 31 Color
Creating a Color 686
Creating a Coverage 690
Creating a Tiled Pattern 692
Applying a Color or Pattern 694
Changing an Image’s Color Palette 696
Changing the Policy for Rendering Colors 698

Chapter 32 Adapting Domain Models to Widgets
Setting up Simple Value Models (ValueHolder) 704

VisualWorks Cookbook, Rev. 2.0

629

657

685

703

Xi

Contents

Adapting Part of a Domain Model (AspectAdaptor) 706
Synchronizing Updates (Buffering) 710

Adapting a Collection (SelectioninList) 713

Adapting a Collection Element 715

Creating a Custom Adaptor (PluggableAdaptor) 717

Index 719

Xii VisualWorks Cookbook, Rev. 2.0

About This Book

Audience

The VisualWorks Cookbook provides step-by-step instructions
for performing hundreds of common tasks with VisualWorks®.
VisualWorks is a fully object-oriented environment for
constructing applications using the ParcPlace Smalltalk™
programming language.

This Cookbook is designed to help both new and experienced
developers find and use the rich capabilities of the VisualWorks
extensive class library.

This Cookbook assumes that you have a beginning familiarity
with VisualWorks tools and Smalltalk syntax. It also assumes
that you are familiar with the VisualWorks graphical user-
interface application architecture. You can obtain that famil-
iarity by using the VisualWorks Tutorial. In addition, ParcPlace-
Digitalk and some of its partners provide VisualWorks training
classes.

Organization

This Cookbook is organized around the set of tasks and
subtasks that await the application developer—creating inter-
faces, storing data, and so on. Cookbook topics normally
contain the following sections:

» Strategy: Explains concepts for understanding a task and
choosing among alternative ways of performing the same
task.

VisualWorks Cookbook, Rev. 2.0 Xiii

About This Book

= Basic Steps: Describes the simplest way to accomplish the
task and then provides example code. In some cases, the
example can be executed by itself in a Workspace.

» Variants: Describes other ways to perform the same task or
ways to perform closely related tasks. The “Variants”
section also provides example code.

= See Also: Refers to related material, most often another
task in the Cookbook.

The Cookbook uses a set of example classes to demonstrate
various techniques. The example classes are contained in a set
of files in the online/examples subdirectory of the product
directory. The Online Documentation tool provides a conve-
nient means of loading (if necessary) and browsing example
classes using the Filed Browse Example Class command. Filing in
the example classes by other means, such as a File List tool, is
not recommended because certain files rely on others.

Conventions

This section describes the notational conventions used to
identify technical terms, computer-language constructs,
mouse buttons, and mouse and keyboard operations.

Typographic Conventions

Xiv

This book uses the following fonts to designate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as
words.

cover.doc Indicates filenames, pathnames, commands,

and other C++, UNIX, or DOS constructs to be
entered outside VisualWorks (for example, at a
command line).

VisualWorks Cookbook, Rev. 2.0

Conventions

Example

Description

filename .xwd

windowSpec

Edit menu

Indicates a variable element for which you
must substitute a value.

Indicates Smalltalk constructs; it also indicates
any other information that you enter through
the VisualWorks graphical user interface.

Indicates VisualWorks user-interface labels for
menu names, dialog-box fields, and buttons; it
also indicates emphasis in Smalltalk code
samples.

Special Symbols

This book uses the following symbols to designate certain items

or relationships:

Examples

Description

FileD New command

<Return> key
<Select> button
<Operate> menu

<Control>-<g>
<Escape> <c>
Integer>>asCharacter
Float class>>pi

Caution:

n Warning:

Indicates the name of an item on a
menu.

Indicates the name of a keyboard key
or mouse button; it also indicates the
pop-up menu that is displayed by
pressing the mouse button of the same
name.

Indicates two keys that must be
pressed simultaneously.

Indicates two keys that must be
pressed sequentially.

Indicates an instance method defined
in a class.

Indicates a class method defined in a
class.

Indicates information that, if ignored,
could cause loss of data.

Indicates information that, if ignored,
could damage the system.

VisualWorks Cookbook, Rev. 2.0

XV

About This Book

Screen Conventions

This book contains a number of sample screens that illustrate
the results of various tasks. The windows in these sample
screens are shown in the default Smalltalk look, rather than
the look of any particular platform. Consequently, the windows
on your screen will differ slightly from those in the sample
screens.

Mouse Buttons

Many hardware configurations supported by VisualWorks have
a three-button mouse, but a one-button mouse is the standard
for Macintosh users, and a two-button mouse is common for
0S/2 and Windows users. To avoid the confusion that would
result from referring to <Left>, <Middle>, and <Right> mouse
buttons, this book instead employs the logical names <Select>,
<Operate>, and <Window>.

The mouse buttons perform the following interactions:

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight
text.

<Operate> button Bring up a menu of operations that are appro-

priate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be per-
formed on any VisualWorks window (except
dialogs), such as move and close. The menu
that is displayed is referred to as the
<Window> menu.

Three-Button Mouse
VisualWorks uses the three-button mouse as the default:

= The left button is the <Select> button.
= The middle button is the <Operate> button.
= The right button is the <Window> button.

XVi VisualWorks Cookbook, Rev. 2.0

Conventions

Two-Button Mouse

On a two-button mouse:

= The left button is the <Select> button.
= The right button is the <Operate> button.

= To access the <Window> menu, you press the <Control>
key and the <Operate> button together.

One-Button Mouse

On a one-button mouse:

= The unmodified button is the <Select> button.

= To access the <Operate> menu, you press the <Option> key
and the <Select> button together.

= To access the <Window> menu, you press the <Command>
key and the <Select> button together.

Mouse Operations

The following table explains the terminology used to describe
actions that you perform with mouse buttons.

When you see:

Do this:

click

double-click

<Shift>-click

<Control>-click

<Meta>-click

Press and release the <Select>
mouse button.

Press and release the <Select>
mouse button twice without
moving the pointer.

While holding down the <Shift>
key, press and release the <Select>
mouse button.

While holding down the <Control>
key, press and release the <Select>
mouse button.

While holding down the <Meta> or
<Alt> key, press and release the
<Select> mouse button.

VisualWorks Cookbook, Rev. 2.0

XVii

About This Book

Additional Sources of Information

Printed Documentation

XViii

In addition to this Cookbook, the core VisualWorks documenta-
tion includes the following documents:

Installation Guide: Provides instructions for the installation
and testing of VisualWorks on your combination of
hardware and operating system.

Release Notes: Describes the new features of the current
release of VisualWorks.

Tutorial: Introduces the VisualWorks tools, class library,
and approach to application design. It also introduces basic
object-oriented concepts and the Smalltalk language.

User’s Guide: Provides an overview of object-oriented
programming, a description of the Smalltalk language, a
VisualWorks tools reference, and a description of various
reusable software modules that are available in Visual-
Works.

International User’s Guide: Describes the VisualWorks facil-
ities that support the creation of nonEnglish and cross-
cultural applications.

Object Reference: Provides detailed information about the
VisualWorks class library.

The documentation for the VisualWorks database tools consists
of the following documents:

VisualWorks’ Database Tools Tutorial and Cookbook: Intro-
duces the process and tools for creating applications that
access relational databases. The “Cookbook” chapter
describes how to programmatically customize various
aspects of a database application.

Database Connect User’s Guide: Provides information about
the external database interface. Versions of it exist for
ORACLE7, SYBASE, and DB2 databases.

VisualWorks Cookbook, Rev. 2.0

Obtaining Technical Support

Online Documentation

To display the online documentation browser, open the Help
pull-down menu from the VisualWorks main menu bar and
select Open Online Documentation. Your choice of online books
includes:

= Database Cookbook: Online version of the “Cookbook” part
of the VisualWorks’ Database Tools Tutorial and Cookbook
described above.

» Database Quick Start Guides: Describes how to build
database applications. It covers such topics as data models,
single- and multiwindow applications, and reusable data
forms.

= International User’s Guide: Online version of the Interna-
tional User’s Guide described above.

= VisualWorks Cookbook: Online version of this book.

= VisualWorks DLL and C Connect Reference: Describes C
data classes, object engine access functions, and user-
primitive functions.

Obtaining Technical Support

If, after reading the documentation, you find that you need
additional help, you can contact ParcPlace-Digitalk Technical
Support. ParcPlace-Digitalk provides all customers with help
on product installation. ParcPlace-Digitalk provides additional
technical support to customers who have purchased the
ObjectSupport package. VisualWorks distributors often provide
similar services.

Before Contacting Technical Support

When you need to contact a technical support representative,
please be prepared to provide the following information:

= The version id, which indicates the version of the product
you are using. Choose Help About VisualWorks in the Visual-
Works main window. The version number can be found in
the resulting dialog under Version Id:.

VisualWorks Cookbook, Rev. 2.0 Xix

About This Book

Any modifications (patch files) distributed by ParcPlace-
Digitalk that you have imported into the standard image.
Choose Help[d About VisualWorks in the VisualWorks main
window. All installed patches can be found in the resulting
dialog under Patches:.

The complete error message and stack trace, if an error
notifier is the symptom of the problem. To do so, select copy
stack in the error notifier window (or in the stack view of the
spawned Debugger). Then paste the text into a file that you
can send to technical support.

How to Contact Technical Support

XX

ParcPlace-Digitalk Technical Support provides assistance by:

Electronic mail

Electronic bulletin boards
World Wide Web
Telephone and fax

Electronic Mail

To get technical assistance on the VisualWorks line of products,
send electronic mail to support-vw@parcplace.com

Electronic Bulletin Boards

Information is available at any time through the electronic
bulletin board CompuServe. If you have a CompuServe
account, enter the ParcPlace-Digitalk forum by typing

go ppdforum at the prompt.

World Wide Web

In addition to product and company information, technical
support information is available via the World Wide Web:

1.

In your Web browser, open this location (URL):
http:/www.parcplace.com

2. Click the link labeled “Tech Support.”

VisualWorks Cookbook, Rev. 2.0

Obtaining Technical Support

Telephone and Fax

Within North America, you can:

= Call ParcPlace-Digitalk Technical Support at 408-773-7474
or 800-727-2555.

= Send questions and information via fax at 408-481-9096.

Operating hours are Monday through Thursday from 6:00
a.m. to 5:00 p.m., and Friday from 6:00 a.m. to 2:00 p.m.,
Pacific time.

Outside North America, you must contact the local authorized
reseller of ParcPlace-Digitalk products to find out the telephone
numbers and hours for technical support.

VisualWorks Cookbook, Rev. 2.0 XXi

Part |

Programming Fundamentals

Chapter 1: Smalltalk Basics
Chapter 2: Building Applications

VisualWorks Cookbook, Rev. 2.0

41

Chapter 1

Smalltalk Basics

This chapter shows how to perform fundamental
programming tasks, including:
Constructing a Message

Combining Messages

Deciding which Type of Variable to Use
Declaring a Variable

Removing a Variable

Creating a Method

Returning from a Method

Creating an Instance of a Class
Initializing an Object

Creating a Class (Subclassing)
Grouping Related Classes

Grouping Related Methods

Creating a Branch

Creating a Loop

Creating Complex True/False Tests

VisualWorks Cookbook, Rev. 2.0

10
13
16
18
20
22
24
26
29
31
33
34
38

Chapter 1 Smalltalk Basics

Constructing a Message

Strategy

Basic Steps

Variants

A message expression is made up of two parts: a receiver and a
message. The receiver is the object from which you desire a
service. The message is the name of the receiver's method that
provides the service, along with any necessary arguments.

0 Name the receiver (1.0) and then supply the message (sin).

"Print it"
1.0sin "Basic Step"

V1. Storing the Result in a Variable

Every time a message is sent, the receiver sends an answer
back. The answer itself is an object, perhaps the result of a
computation. When this answer object is needed, you can
assign it to a variable.

0 Send a message to an object and store the result in a
variable named sine.

"Print it"

| sine |

sine := 1.0 sin. "V1 Step"
Asine

V2. Naming a Variable as the Receiver

In variant 1, the receiver is a literal object, specifically a
floating-point number. You can also send a message to an
object that is stored in a variable, by naming the variable as the
receiver.

VisualWorks Cookbook, Rev. 2.0

Constructing a Message

O Send a message (squared) to the number held by a variable
named sine.

"Print it"

| sine |

sine := 1.0 sin.

sine squared. "V2 Step"

V3. Naming a Class as the Receiver

You can also name a class as the receiver of a message. This is
most often done when you are creating an instance of a class,
as in the following example.

0 Send a message (today) to the Date class.

"Print it"
Date today "V3 Step"

V4. Including One or More Arguments (Keyword
Message)

When the message requires an argument, the message name
ends in a colon. This is called a keyword message. For each
argument, the message contains a separate keyword ending
with a colon. By convention, each keyword and argument are
indented on a new line below the receiver, if this improves read-
ability of the code.

O Send a message that requires two arguments. Specifically,
when copying a substring, you must specify the starting
index and ending index of the desired substring.

"Print it"

'9942-Steering wheel "V4 Step"
copyFrom: 1
to: 4

VisualWorks Cookbook, Rev. 2.0 5

Chapter 1 Smalltalk Basics

V5. Using a Special Symbol (Binary Message)

For convenience, common operations such as addition and
subtraction are invoked using the special symbols that are
widely associated with those operations. These messages are
called binary messages because you must supply one
argument as well as the receiver (as with a one-keyword
message).

O Multiply the receiver (12) by the argument (3.14159).

"Print it"
12 * 3.14150. "V5 Step”

VisualWorks Cookbook, Rev. 2.0

Combining Messages

Combining Messages

Strategy

A simple message expression sends one message to a receiver.
You can combine simple messages in several ways.

= You can create complex message expressions by using
simple messages as the receivers or arguments of other
messages (first three variants).

= You can rewrite a complex expression as a sequence of
simpler ones (fourth variant).

= You can send multiple messages to the same receiver by
cascading them (last variant). Cascaded expressions are
generally used sparingly; they can be harder to read and
debug than sequences of expressions.

Variants

V1. Using the Result of One Message as the Receiver
in a Second Message

0 Send a message (squared) to the result (0.841471) that is
returned by the first message (1.0 sin).

"Print it"
1.0 sin squared. "V1 Step"

V2. Using the Result of One Message as the Argument
in a Second Message

0 Create a random-number generator (Random new) and then
ask it for the next number in the random-number stream
(next). The result is a random number between 0 and 1. Use
that result as the argument in a multiplication.

"Print it"
52 * Random new next. "V2 Step"

VisualWorks Cookbook, Rev. 2.0 7

Chapter 1 Smalltalk Basics

V3. Controlling Parsing Order

In a complex expression, messages are executed from left to
right, starting with no-argument messages, then binary
messages, and then keyword messages. You can use paren-
thesis to specify the parsing sequence. Expressions inside
parentheses are executed before those outside. Expressions
can be nested. Try executing the following expression both with
and without the parentheses.

O Get a random number between 1 and 52 and then convert
it from a floating-point number to the next-higher integer.

"Print it"
(52 * Random new next) ceiling "V3 Step"

V4. Sending a Sequence of Messages

You can rewrite a complex expression as a sequence of simpler
ones, typically by using one or more temporary variables that

capture the result of one message for use in another message.
1. Declare a temporary variable for each result to be captured.

2. Create a random number generator and assign it to a
temporary variable.

3. Get the next random number in the random number
stream and assign it to another temporary variable.

4. Use the random number as the argument in a multiplica-

tion.

"Print it"

| generator random | "V4 Step 1"
generator := Random new. "V4 Step 2"
random := generator next. "V4 Step 3"
52 * random. "V4 Step 4"

8 VisualWorks Cookbook, Rev. 2.0

Combining Messages

V5. Sending Multiple Messages to the Same Receiver
(Cascading)

When a series of messages are sent to the same receiver, you
use a semicolon to separate the messages. Then you have to
name the receiver only once, at the beginning of the series.

1. Create a collection.

2. Add five elements to the collection, using cascaded
messages.

"Print it"
| flavors |
flavors := OrderedCollection new. "V5 Step 1"

flavors "V5 Step 2"
add: 'Vanilla';
add: 'Chocolate’;
add: 'Cookie Crumble’;
add: 'Rocky Road’;
add: 'Raspberry Swirl'.

Mlavors

VisualWorks Cookbook, Rev. 2.0 9

Chapter 1 Smalltalk Basics

Deciding which Type of Variable to Use

Strategy

10

There are six types of variables:

= Temporary variables

» Instance variables

» Class instance variables

» Class variables

= Pool dictionaries

= Global variables

Scope: Each type of variable has a different scope—that is, it

is available to a different range of methods. The list above is
sorted from narrowest to widest scope.

In general, use the narrowest scope that suits your purpose.

Use Temporary Variables Freely

A temporary variable has the narrowest scope (a single method
or Workspace doit). Use temporary variables freely.

Avoid Use of Global Variables

A global variable has the broadest scope—it can be referenced
anywhere. This makes it hazardous to use, mainly because
class names are also global in scope. The danger is that you
may accidentally erase a class that happens to have the same
name as your global, by associating a new value with the name.
For this reason, you must be very careful when naming a global
variable. A carefully named global can be useful in casual
Workspace code, when you want to hold onto the result of one
doit for use in a later doit.

Use an Accessing Method to Boost the Scope

Frequently, you can use an accessing method to give a variable
wider scope. This is especially useful when you need to create
a systemwide default that is accessed by a variety of objects.
For example, the LookPreferences class implements a defaultBorder

VisualWorks Cookbook, Rev. 2.0

Deciding which Type of Variable to Use

method. Clients can ask for this default border by asking the
LookPreferences class for it, instead of relying on a global variable.

Use Instance Variables to Hold Object Data and
Persistent Parameters

An instance variable is the primary means of associating data
with an object, and it can be used freely. It is directly available
to any instance method in the defining class and in any
instance method of a subclass (that is, it is inherited).

A secondary role for the instance variable is as a persistent
parameter. That is, if you are passing the same object as an
argument to several methods within the same receiver, it may
be helpful to create an instance variable as a central holder for
that object.

Use Class Variables to Hold Defaults and Static
Resources

A class variable is available to both class methods and instance
methods, in the defining class and any subclasses. Because its
value can be changed by multiple objects, a class variable is
used mainly to hold a nonchanging or rarely changing value.
For example, the Date class holds a collection of MonthNames as a
class variable and makes that collection available to several of
its methods.

Compared with instance variable: An alternative is to create
an instance variable and initialize its value each time you create
a new instance. The first advantage of a class variable is that
you have to initialize it only once. The second advantage is that
you need to have only one copy of the data, even when many
instances of the class are accessing it.

Use Class Instance Variables within a Class Hierarchy

A class instance variable is rarely used. It is declared once, in
a parent class. Each subclass then has its own copy of the
variable and can assign to it independently.

Compared with class variable: One alternative is to declare a
separate class variable in each subclass. Since each subclass
would have to name its variable differently, each subclass

VisualWorks Cookbook, Rev. 2.0 11

Chapter 1 Smalltalk Basics

12

would need its own versions of the methods that accessed the
variable. Thus, the advantage of the class instance variable is
that all subclasses can use the same name for the variable and
still be able to assign to it independently.

Compared with instance variable: Another alternative is to
declare the variable as a regular instance variable in the parent
class. This requires that you initialize the variable each time a
new instance is created. Thus, the class instance variable is
usually reserved for nonchanging resources whose initializa-
tion is too costly to repeat.

Use Pool Dictionaries to Create a Shared Lexicon
among Classes

A pool dictionary is a lookup table shared by a related set of
classes. The dictionary itself must first be declared as a global
variable and initialized as a Dictionary. Each entry in the dictio-
nary is then available directly to all class and instance methods
in any class that declares the dictionary as its pool.

For example, the classes that manipulate text objects share a
dictionary named TextConstants. This dictionary associates names
such as “Space” and “Tab” with their character equivalents. As
a result, the text classes can use the names for keyboard keys
rather than the more obscure character codes.

Because the dictionary must be declared first as a global vari-
able, pool dictionaries should be used very sparingly. Another
negative for pool dictionaries is that, like globals, they are not
automatically recreated when you file in the code that depends
on them.

Compared with class variable: One alternative is to store a
lookup dictionary in a class variable. The first disadvantage of
this approach is that only instances of that class can access the
dictionary directly. The second disadvantage is that lookups
must be performed explicitly. With a pool dictionary, by
contrast, naming the key is sufficient to summon its associated
value. For example, instead of TextConstants at: Space you can
simply use Space. Neither of these disadvantages is critical in
most situations.

VisualWorks Cookbook, Rev. 2.0

Declaring a Variable

Declaring a Variable

Strategy

Variants

Data type: Any object can be assigned to any type of variable.
In Smalltalk, variables are not declared as having a particular
data type.

Default value: The value of any variable is nil until you assign
a new value to it.

Naming: The name of a variable describes its purpose and
sometimes also its intended data type. By convention, variable
names are quite descriptive and rarely abbreviated except in
casual usage. When multiple words are combined to form a
name, each embedded initial is capitalized. Variable names
may contain letters, numbers, and underscores, and may not
begin with a number. By convention, the first letter is lowercase
for local variables and uppercase for nonlocal variables.

Separating multiple declarations: When you are declaring
two or more variables at the same time, use a space to separate
them.

Undeclared variables: When a variable is referenced without
being declared, it is entered in a system dictionary named Unde-
clared. If it is later declared, the entry in Undeclared remains and
should be removed before you deploy your application. To do
S0, open an inspector on the dictionary by highlighting the word
Undeclared and using the inspect command. You can use the
dictionary inspector to check for references to each entry and
to remove each entry that has no entries.

V1. Declaring a Temporary Variable

A temporary variable must be declared at the beginning of the
method or Workspace do it in which it is used. To do so, place
its name between vertical bars.

Naming. A temporary variable’s name should begin with a
lowercase letter, indicating its local scope.

VisualWorks Cookbook, Rev. 2.0 13

Chapter 1 Smalltalk Basics

14

Automated declarations: In practice, many Smalltalk
programmers postpone declaring temporaries. They freely
insert new variable names and rely on the system to prompt
them when it encounters each undeclared variable name. They
can then indicate its scope as “temporary” and the system will
create the declaration.

O Declare temporary variables by enclosing them within
vertical bars.

| numberOfDays date | "V1 Step"
numberOfDays := 7.

date := Date today addDays: numberOfDays.

Transcript show: date printString.

V2. Declaring an Instance Variable

Naming. An instance variable’s name should begin with a
lowercase letter.
1. In a System Browser, select the class.

2. Choose the definition command in the class view to display
the class definition.

3. Add the desired instance variable name to the list of
instance variables and then accept the new definition.

V3. Declaring a Class Instance Variable

Naming. A class instance variable’s should must begin with an
uppercase letter.

1. In a System Browser, select the class and make sure the
class switch is on.

2. In the pop-up menu provided by the class view, select the
definition command to display the metaclass definition.

3. Add the desired variable name to the list of class instance
variables and then accept the new definition.

V4. Declaring a Class Variable

Naming. A class variable’s name should begin with an upper-
case letter.

VisualWorks Cookbook, Rev. 2.0

Declaring a Variable

1. In a System Browser, select the class.

2. Choose the definition command in the class view to display
the class definition.

3. Add the desired class variable name to the list of class vari-
ables and then accept the new definition.

V5. Declaring a Pool Dictionary

When a group of related constants is to be made available to a
class, a pool dictionary is an alternative to creating a separate
class variable for each constant. Multiple classes can declare
and use the same pool dictionary. For example, the text-related
classes such as Text store constants such as the tab character
in a pool dictionary, so they don’t have to instantiate that char-
acter in their text-handling methods.

Naming: A pool dictionary's name should begin with an upper-
case letter. The key in each element of the dictionary must also
begin with an uppercase letter.

Creating the dictionary: The dictionary itself is a global
variable and must be declared and initialized before you can
declare it as a pool dictionary.

1. In a Workspace, verify that the global name you intend to
give a new pool dictionary is not already in use as a global
variable name by sending an includesKey: message to Smalltalk.
The argument is the global name, expressed as a symbol
(prefixed by a number sign).

2. In a Workspace, create a new dictionary by sending a new
message to the Dictionary class. Add the desired constants
and their lookup keys to the dictionary (now or later).

3. Create a global variable to hold the dictionary by sending
an at:put: message to Smalltalk. The first argument is the global
name, expressed as a symbol. The second argument is the
dictionary.

4. For each class that will use the pool dictionary, display the
class definition in a System Browser and add the global to
the list of pool variables. Note that pool dictionaries are not
inherited, so you must add them to each class that is to use
them, even if they are declared in its superclass.

VisualWorks Cookbook, Rev. 2.0 15

Chapter 1 Smalltalk Basics

Removing a Variable

Strategy

Variants

16

Before you remove a variable, find and delete all references to
that variable. For most types of variables, it's easier to find
references before you remove the variable.

V1. Removing a Temporary Variable and Its

References

Since a temporary variable can be referenced only in a single
method or Workspace do it, you need to scan only that method
for references. For a long method, use the find command to find

each occurrence of that variable in the code. Rewrite the code
as needed to remove each reference.

After you have removed all references, delete the variable
declaration.

V2. Removing an Instance Variable and Its References

1. In a System Browser, select the class in which the variable
is declared.

2. Select the instvar refs command in the class view.

3. In the resulting menu of instance variables, select the
variable that you intend to remove.

4. In the resulting browser of all methods that reference the
variable, edit the methods to remove the references.

5. In the class definition, delete the variable name and then
accept the definition.

V3. Removing a Class Variable and Its References

Do steps 1 through 5 as above, except in step 2 use the class var
refs command.

VisualWorks Cookbook, Rev. 2.0

Removing a Variable

V4. Removing a Class Instance Variable and Its
References

Do steps 1 through 5 as above, except in step 1 also turn on the
System Browser’s class switch.

V5. Removing a Pool Dictionary

1. For each entry in the pool dictionary, open a browser on all
references to that pool variable by sending a browseAllCallsOn:
message to the Browser class. The argument is the dictio-
nary’s entry, which is accessed by sending an associationAt:
message to the global name of the dictionary; the argument
is the lookup key for the dictionary entry.

Browser browseAllCallsOn: (TextConstants associationAt: #Centered). "V3 Step 1"

2. In each browser, edit each method, removing all references
to the pool constants.

3. Use a System Browser to change the class definition of each
class that declares the pool dictionary, removing the global
dictionary from the definition.

4. Open a browser on all references to the global variable that
holds the pool dictionary by sending a browseAllCallsOn:
message to the Browser class. The argument is the Smalltalk
dictionary’s entry for the global, which is accessed by
sending an associationAt: message to Smalltalk; the argument is
the name of the global dictionary.

Browser browseAllCallsOn: (Smalltalk associationAt: #TextConstants). "V3 Step 4"

5. In the resulting browser, edit each method, removing all
references to the global variable.

6. Remove the global variable from the global dictionary
named Smalltalk by sending a removeKey: message to Smalltalk.
The argument is the name of the global dictionary,
expressed as a symbol.

V6. Removing a Global Variable
Do Steps 4 through 6 above.

VisualWorks Cookbook, Rev. 2.0 17

Chapter 1 Smalltalk Basics

Creating a Method

Strategy

Variants

18

The System Browser provides a template to help you create a
new method. You can also use an existing method as your
starting point.

Instance vs. class methods: An instance method is available
to any instance of the defining class, whereas a class method is
available only to the class itself. For that reason, instance
methods outnumber class methods. Class methods are most
often used for creating an instance of the class and for initial-
izing and accessing class variables.

When to subdivide a large method: To promote reusability,
keep Smalltalk methods short. For example, you can usually
break a long method into smaller methods to isolate individual
services that other clients may want to use. Similarly, when a
subset of the code is repeated in a large method with only minor
variations, you can usually make that subset into a separate
method.

Naming. Method names may contain letters, numbers, and
underscores, but may not begin with a number. The first letter
should be lowercase.

V1. Creating an Instance Method

1. In a System Browser, turn on the instance switch.
2. Select the class.

3. Select the message category or add a new one.

4

. Fill in the method template and then use the accept
command in the code view.

V2. Creating a Class Method

In a System Browser, turn on the class switch and then do steps
2 through 4 above.

VisualWorks Cookbook, Rev. 2.0

Creating a Method

V3. Fixing Common Errors at Compile Time

Undeclared temporary variables: This is an “error” that you
can commit on purpose, because the system will prompt you

with a menu of variable types with which you can quickly and
easily declare each of the temporary variables.

Undeclared class and instance variables: When you are
prompted to declare an instance or class variable, it's best to
select abort in the menu and declare the variables before
continuing. To save your uncompiled method while you use the
System Browser to redefine the class, select spawn in the code
view. This opens a new browser on the uncompiled code.

Missing period: When you have omitted a period, the system
treats what should be two statements as though they were a
single message expression. As a result, the error description is
usually “Nothing more expected.”

Missing delimiters: When you have omitted a parenthesis or
bracket, the error description is “Right parenthesis expected” or
“Period or right bracket expected.”

VisualWorks Cookbook, Rev. 2.0 19

Chapter 1 Smalltalk Basics

Returning from a Method

Strategy

Basic Steps

Variants

20

Every method returns a single object, which can be a collection
of other objects.

By default, a method returns the object that received the
message. This return object is simply ignored by clients that
are interested in the effect of the method and not the return
value.

When the return obiject is significant, you can specify that
object by using a caret symbol (*).

Returning from a block—When a return character is enclosed
within a block, it forces a return from the entire method. That
is, it does not act as a return from the block back to the
containing method.

Online example: CustomerlExample

O In a method, place the name of the return object after a
caret.

"

accountiD "Basic Step
AaccountlD

V1. Returning the Result of a Message

A return character that is followed by a message causes the
result of that message to be returned. This approach often
circumvents the need to create a temporary variable for the
message result.

O Place a caret in front of the message receiver.

VisualWorks Cookbook, Rev. 2.0

Returning from a Method

displayString "V1 Step"

NaccountID printString, '--', name

V2. Returning a Conditional Value

Frequently, a method performs a test and returns one value if
the test result is true and a second value if the test result is
false. Relying on the fact that a return character that is followed
by a message returns the result of the message, you can use a
single return caret to serve both forks of the branch, rather
than placing a caret inside each block.

This approach has the advantage of combining two exit points
into a single exit point, which is better programming style. It
also makes the ifTrue: and ifFalse: blocks clean blocks—that is,
blocks that do not contain a hard return character.

O Place a caret in front of the conditional expression. (The
example is a hypothetical method that could be added to
CustomerlExample.)

accountPrefix "V2 Step"
"Answer the first four characters of the accountID,
or an empty string if the accountID is empty."

id |
id := self accountlD.

Nd isEmpty
ifTrue: [String new]
ifFalse: [id
copyFrom: 1
to: 4].

VisualWorks Cookbook, Rev. 2.0 21

Chapter 1 Smalltalk Basics

Creating an Instance of a Class

Strategy

Basic Steps

Variants

22

Every class provides one or more messages for creating an
instance of itself. By convention, these messages can be found
in the instance creation protocol of the class.

The new method: All classes inherit a basic new method from
the Object class. This method creates a raw instance whose
instance variables each have the value nil.

Abstract classes and new: Abstract classes, such as Boolean,
typically provide their own version of new, in which they
announce an error such as “This class is not intended to be
instantiated.”

Other flavors of new: Other classes frequently override new in
order to initialize instance variables.

0 Send a new message to the class.

"Inspect"
SourceFileManager new. "Basic Step"

V1. Using a Class-Specific Creation Message

Other creation messages are specific to the implementing class.
They frequently take arguments that are used to initialize the
instance variables of the new instance. Such parameterized
creation messages are typically a convenience for client objects,
because the same effect usually can be achieved by first
creating a new instance and then sending the parameters via
accessing messages.

VisualWorks Cookbook, Rev. 2.0

Creating an Instance of a Class

O Send a message that is listed in the class’s instance creation
protocol.

"Inspect"
Date newDay:10 "V1 Step"
month:#June
year:1995

V2. Accessing a Distinguished Instance

When a class is intended to provide just one instance of itself,
that instance is referred to as a distinguished instance. Typi-
cally, it is stored in a class variable and accessed using an
accessing message named default.

O Send a default message or other accessing message to the
class. (Use the inspect command to open an Inspector on the
instance, so you can see how the instance variables differ
from those of a new instance.)

"Inspect"
SourceFileManager default. "V2 Step"

See Also
= “Initializing an Object” on page 24

VisualWorks Cookbook, Rev. 2.0 23

Chapter 1 Smalltalk Basics

Initializing an Object

Strategy

When you want a new instance to provide default values other
than nil, create an initialize method in a protocol named initialize-
release. The main advantage in doing so is that you prevent the
errors that result when client methods send messages to the
uninitialized instance variables.

Classes other than ApplicationModel and its subclasses must take
the added step of invoking the initialize method in the instance-
creation methods. (ApplicationModel already does so, because
initialization is routinely used by its subclasses.)

Basic Steps
Online example: CustomerlExample

1. Create an instance method named initialize in an initialize-
release protocol. The method is responsible for assigning
values to some or all of the instance variables.

initialize "Basic Step 1"

accountID := 0.

name := String new.
address := String new.
phoneNumber := String new.

2. Create a class method named new in an instance creation
protocol. The method is responsible for creating a new
instance and then sending initialize to it.

new "Basic Step 2"
Asuper new initialize

24 VisualWorks Cookbook, Rev. 2.0

Initializing an Object

Variants

Including a Parent Class’s Initialization

Online example: PreferredCustomerExample

When implementing an initialize method, be aware that a parent
class may also have an initialize method. If so, invoke the parent
class’s initialize as a first step in the subclass’s initialize.

O In the subclass’s initialize method, send initialize to super, usually
as the first step in the method.

initialize "Variant Step"
super initialize.
yearsOfPatronage := 3.
25

VisualWorks Cookbook, Rev. 2.0

Chapter 1 Smalltalk Basics

Creating a Class (Subclassing)

Strategy

Basic Steps

26

Every new class is a child of an existing class, so creating a new
class consists of sending a subclassing message to the parent
class. The System Browser provides a template for the most
common subclassing message.

Choosing a parent class: Use the Object Reference to find
existing classes that relate to the new class’s behavior. Choose
as a parent the class that you would need to modify the least in
order to convert it to your purposes. Typically, this will be the
Object class or a class in one of your own application-specific
hierarchies.

Naming: A class name can contain letters, numbers and
underscores, but cannot begin with a number. Because class
names are Smalltalk global variables, they should begin with a
capital letter.

Online example: CustomerlExample

1. In a System Browser, select the class category, and make
sure no class is selected.

2. Modify the resulting class-creation template, entering at
least the name of the parent class and the name of the new
subclass.

Object subclass: #CustomerlExample "Basic Step 2"
instanceVariableNames: 'accountID name address phoneNumber '
classVariableNames: "
poolDictionaries: "

category: 'Examples-Cookbook'

3. Select the accept command in the code view.

VisualWorks Cookbook, Rev. 2.0

Creating a Class (Subclassing)

Variants

V1. Creating a Subclass of ApplicationModel or
SimpleDialog

For the convenience of interface programmers, the install
command in a Canvas provides a convenient dialog box for
creating new subclasses of ApplicationModel and SimpleDialog. Choose
SimpleDialog as the parent when instances of the new class will be
used primarily to run one or more dialog windows. Choose Appli-
cationModel as the parent when instances of the new class will be
used to run regular windows as well.

V2. Creating a Collection Class that Holds Pointers to
Its Elements

O To create a class that holds a collection of indexable vari-
ables, each of which is a pointer to an object, use the
following variant of the standard subclassing message.

ArrayedCollection variableSubclass: #ExampleArray "V2 Step"
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'Examples’

V3. Creating a Collection Class that Holds Byte-Sized
Elements

O To create a variable-byte class, which holds a collection of
indexable variables, each of which is a byte-sized object,
use the following variant of the standard subclassing
message. A variable-byte class can have no instance vari-
ables and can have only a variable-byte subclass.

ArrayedCollection variableByteSubclass: #ExampleByteArray "V3 Step"
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'Examples’

VisualWorks Cookbook, Rev. 2.0 27

Chapter 1 Smalltalk Basics

See Also
= “Declaring a Variable” on page 13
= “Grouping Related Classes” on page 29

28 VisualWorks Cookbook, Rev. 2.0

Grouping Related Classes

Grouping Related Classes

Strategy

Basic Steps

It is frequently useful to treat a group of classes as a single
entity, known as a class category. The main advantage is that
you can file out all of the classes in the category at once, for
backing up your work or sharing it with another user. It also
makes browsing the related code easier.

Keeping an application together: A common usage of class
categories is to group all of the classes used by an application
or by a module within a larger application.

Keeping support classes separate: Because a class cannot
belong to multiple categories, support classes used in multiple
applications are usually grouped in separate support catego-
ries. This allows you to easily create a set of files containing just
the code needed for any given application.

B1l. Adding a Class Category

1. In a System Browser, select the add command in the class-
category view.

2. In the resulting dialog, supply the name of the category (no
harm is done if it already exists). Type a blank space to
cancel the operation.

The new class category is inserted in the list above the category
that was previously selected. To insert it at the bottom of the
list, make sure no category is selected when you begin step 1.

B2. Removing a Class Category

If you remove a class category that still has classes in it, the
classes will be removed also.

1. In a System Browser, select the category.

2. Select the remove command in the class-category view.

3. If the category contains classes, you will be asked to
confirm the removal.

VisualWorks Cookbook, Rev. 2.0 29

Chapter 1 Smalltalk Basics

30

B3. Renaming a Class Category

When you rename a class category, the new name appears
automatically in the definition of each class in that category.
1. In a System Browser, select the category.

2. Select the rename as command in the class-category view.

3. In the resulting dialog, supply the new name. Type a blank
space to cancel the operation.

B4. Moving a Class to a Different Category
1. In a System Browser, select the class.
2. Select the move to command in the class view.

3. In the resulting dialog, supply the name of the destination
category. If the category does not exist, it will be created.

B5. Changing the Order of Class Categories

1. In a System Browser, select the editall command in the
class-category view.

2. The categories and their members will be listed in the code
view. Carefully cut and paste the listing to achieve the
desired ordering.

3. Select the accept command in the code view. (To cancel the
operation, select the cancel command in the code view.)

VisualWorks Cookbook, Rev. 2.0

Grouping Related Methods

Grouping Related Methods

Strategy

Placing related methods in a message category, also known as
a protocol, helps to document your code and makes it easier to
find with a System Browser. Your choice of protocol name has
no effect on your code’s operation.

Public vs. private protocols: By convention, methods that are
intended for use only by other methods of the current class are
placed in a protocol named private. Some programmers use a
broader definition of private, choosing to include any method
that has a restricted set of intended clients. Some programmers
also create multiple private protocols, each having a second part
to its name that describes its contents (such as private-accessing).

Standard protocols: Because most methods fit into certain
categories, a set of standard protocol names has come into use.
Appendix A of the VisualWorks User’s Guide lists these
protocols.

Basic Steps

B1. Adding a Protocol
1. In a System Browser, select the class.
2. Select the add command in the protocol view.

3. In the resulting dialog, supply the name of the protocol (no
harm is done if it already exists). Type a blank space to
cancel the operation.

The new protocol is inserted in the list above the protocol that
was previously selected. To insert it at the bottom of the list,
make sure no protocol is selected when you begin step 1.

B2. Removing a Protocol

If you remove a protocol that still has methods in it, the
methods will be removed also.

1. In a System Browser, select the protocol.
2. Select the remove command in the protocol view.

VisualWorks Cookbook, Rev. 2.0 31

Chapter 1 Smalltalk Basics

32

3.

If the protocol contains methods, you will be asked to

confirm the removal.

B3. Renaming a Protocol

1.
2.
3.

In a System Browser, select the protocol.
Select the rename as command in the protocol view.

In the resulting dialog, supply the new name. Type a blank
space to cancel the operation.

B4. Moving a Method to a Different Protocol

1.
2.
3.

In a System Browser, select the method.
Select the move to command in the method view.

In the resulting dialog, supply the name of the destination
protocol. If the protocol does not exist, it will be created.
Type a blank space to cancel the operation.

B5. Copying a Method to a Different Class

1.
2.
3.

In a System Browser, select the method.

Select the move to command in the method view.

In the resulting dialog, enter the name of the destination
class, a greater-than symbol (>), and the name of the desti-
nation protocol. To copy the method to the class side rather
than the instance side, insert “class” after the class name.

B6. Changing the Order of Protocols

1.

2.

In a System Browser, select the edit all command in the
protocol view.

The protocols and their members will be listed in the code
view. Carefully cut and paste the listing to achieve the
desired ordering.

. Select the accept command in the code view. (To cancel the

operation, select the cancel command in the code view.)

VisualWorks Cookbook, Rev. 2.0

Creating a Branch

Creating a Branch

Strategy
Branching, or conditional processing, is accomplished by
sending a variant of the ifTrue; message to the result of a
true/false test. The conditional statements are enclosed in a
block.
Basic Steps
1. Get the width of the screen.
2. Test whether the screen’s width is less than 1280 pixels.
3. If true, ring the bell.
| screenWidth |
screenWidth := Screen default bounds width. "Basic Step 1"
screenWidth < 1280 "Basic Step 2"
ifTrue: [Screen default ringBell] "Basic Step 3"
Variants

The full set of variants is:

ifTrue:
ifFalse:
ifTrue: ifFalse:
ifFalse:ifTrue:

VisualWorks Cookbook, Rev. 2.0 33

Chapter 1 Smalltalk Basics

Creating a Loop

Strategy

Variants

34

Several ways of looping are provided in Smalltalk. They fall into
the following categories:

= Simple repetition

= Conditional looping

= Processing each element in a collection (iteration)

In each case, a block is used to contain the statements that are
repeated.

Use simple repetition when the block is to be repeated a certain
number of times. Use conditional looping when the block is to
be repeated only while a test condition is met. Use collection
iteration when the block is to be repeated for each element in a
collection.

V1. Looping a Fixed Number of Times (timesRepeat:)
0 Send a message to the Transcript 10 times.

10 timesRepeat: [Transcript show: ‘Testing!"; cr.]] "V1 Step"

V2. Looping with an Index Argument (to:do:)

0 Repeat a block using each number in the interval from 65
to 122. This block includes a block argument (:asciiNbr),
which is specified by an identifier preceded by a colon and
separated from the block’s expressions by a vertical bar. In
each loop, a successive number in the interval is passed
into the block and used where the block argument appears.

65 to: 122 do: [:asciiNbr | "V2Step"
Transcript show: asciiNbr asCharacter printString]

VisualWorks Cookbook, Rev. 2.0

Creating a Loop

V3. Looping with an Index and Steps (to:by:do:)

0 Repeat a block using each number in the interval from 10
to 65, counting by 5s.

10 to: 65 by: 5 do: [:marker | "V3 Step"
Transcript
show: marker printString;
show:; '--'].

V4. Looping until the Block EXxits (repeat)
1. For each repetition of the block, increase a counter.

2. Test whether the counter is greater than 10. If so, exit from
the loop.

| counter |
counter :=0.

[counter := counter + 1. "V4 Step 1"
counter > 10 ifTrue: [Mrue] "V4 Step 2"
] repeat.

V5. Looping while a Condition is True or False
(whileTrue: and whileFalse:)
1. Create an instance of Time that is 3 seconds from now.

2. Before each repetition of the block, test whether the endTime
has been reached.

3. For each repetition, show the current time in the transcript.

| endTime |

endTime := Time now addTime: (Time fromSeconds: 3). "V5 Step 1"

[Time now <= endTime] whileTrue: ["V5 Step 2"
Transcript show: Time now printString; cr]. "V5 Step 3"

V6. Processing Each Element of a Collection (do:)
1. Get an array containing the standard color names.
2. Print each color name in the Transcript.

VisualWorks Cookbook, Rev. 2.0 35

Chapter 1 Smalltalk Basics

| colors |
colors := ColorValue constantNames. "V6 Step 1"

colors do: [:colorName |
Transcript show: colorName printString; cr] "V6 Step 2"

V7. Detecting the First Element that Meets a Test
(detect:)

1. Get the color names.

2. Detect the first color that begins with the letter m.
3. Show that color name in the Transcript.

| colors mColor |
colors := ColorValue constantNames. "V7 Step 1"

mColor := colors detect: [:colorName | "V7 Step 2"
colorName first = $m].

Transcript show: mColor printString; cr. "V7 Step 3"

V8. Selecting Elements that Meet a Test (select:)

1. Get the color names.

2. Get the subcollection of names beginning with the letter d.
3. Show each element of the subcollection in the Transcript.

| colors dColors |
colors := ColorValue constantNames. "V8 Step 1"

dColors := colors select: [:colorName | "V8 Step 2"
colorName first = $d].

dColors do: [:dColor | "V8 Step 3"
Transcript show: dColor printString; cr].

V9. Selecting Elements that Fail a Test (reject:)
1. Get the color names.

36 VisualWorks Cookbook, Rev. 2.0

Creating a Loop

2. Get the subcollection of names that do not begin with d.
3. Show each element of the subcollection in the Transcript.

| colors nonDColors |
colors := ColorValue constantNames. "V9 Step 1"

nonDColors := colors reject: [:colorName | "V9 Step 2"
colorName first = $d].

nonDColors do: [:nonDColor | "V9 Step 3"
Transcript show: nonDColor printString; cr].

V10. Operating on Each Element and Collecting the
Results (collect:)
1. Get the color names.

2. For each color name, create a string equivalent and capi-
talize its initial.

3. Show each element of the resulting collection in the
Transcript.

| colors colorsAsStrings string |
colors := ColorValue constantNames. "V10 Step 1"

colorsAsStrings := colors collect: [:colorName | "V10 Step 2"
string := colorName asString.
string at: 1 put: (string first asUppercase).
string].

colorsAsStrings do: [:color | "V10 Step 3"
Transcript show: color; cr].

VisualWorks Cookbook, Rev. 2.0 37

Chapter 1 Smalltalk Basics

Creating Complex True/False Tests

Strategy

Variants

38

When two or more conditions need to be tested, use the logical

and and or messages to combine the tests in a series. These

messages come in two forms:

= & and | (vertical bar, not the letter L)

= and: and or: (the argument is a block containing the second
test)

Use the second pair of messages when the second test depends
on the first test. In a common situation involving such a depen-
dency, the first test checks the data type of a variable and the
second test sends a message that is appropriate only for the
desired data type.

Using the second form, involving block arguments, is also
appropriate when the second test is costly, because the second
test is executed only when needed.

V1. Answering True Only When Both Tests are Met
(Logical And)

1. Ask the user for a password.
2. Test the length of the response and respond appropriately.

| response message |
response := Dialog request: 'What is your password'. "V1 Step 1"

(response size > 0) & (response size <= 8) "V1 Step 2"
ifTrue: [message := 'Thank you. Have a safe journey']
ifFalse: [message := 'Sorry, | cannot let you pass'.

Transcript show: message; cr.

V2. Ignoring the Second Test, When Possible
1. Ask for a password.

VisualWorks Cookbook, Rev. 2.0

Creating Complex True/False Tests

2. Test whether the response has four or more letters. If it
does, test whether the fourth character is a percent sign.

| response message |
response := Dialog request: 'What is your password'. "V2 Step 1"

((response size >= 4) and: [(response at: 4) = $%)]) "V2 Step 2"
ifTrue: [message := 'Thank you. Have a safe journey’]
ifFalse: [message :='Sorry, | cannot let you pass’.

Transcript show: message; cr.

VisualWorks Cookbook, Rev. 2.0 39

Chapter 2

Building Applications

This chapter provides an overview of the major steps
involved in building an application. You can use this
chapter as a checklist as you create your first applica-
tions.

In keeping with its role as a checklist, this chapter
does not go into detail about any given step. Other
sections in the Cookbook supply the detail that is
missing here, and those sections are referred to in the
“See Also” notes. For in-depth explanations of the
various application-building steps outlined here, see
the VisualWorks Tutorial.

Designing the Application 42
Painting the User Interface 43
Creating the Domain Models 45
Connecting the Interface to the Models 47
Connecting the Widgets to Each Other 50

VisualWorks Cookbook, Rev. 2.0 41

Chapter 2 Building Applications

Designing the Application

application
model

domain interface
models

Strategy

For simple applications, you can often “design” by painting the
user interface. Even fairly complex applications that are heavy
on interface and light on processing can be created this way.

For complicated applications, involving a complex information
model and many windows, a formal design phase is usually
helpful. Various methodologies have been proposed for
analyzing and designing object-oriented applications.

ParcPlace-Digitalk offers training and consulting for a method-
ology called Object Behavior Analysis and Design (OBA/D). You
can use this methodology to guide you through the process of:

= Creating an object-oriented requirements specification,
based on the behaviors inherent in the system

= Creating an architectural design

= Defining reusable subsystems

= Creating a detailed design

» Choosing data-structure classes and supporting objects

» Evaluating trade-offs with respect to performance and
understandability

42 VisualWorks Cookbook, Rev. 2.0

Painting the User Interface

Painting the User Interface

Strategy

Basic Steps

Palette

E
el

Creating the user interface helps you understand the high-level
data and processing requirements of your application. Using
the ability of VisualWorks to define placeholder methods for the
interface widgets (described later) you can even use the inter-
face to demonstrate your concept to users and get valuable
early feedback.

1. For each window in your interface, open a blank canvas or
an existing canvas that you want to extend.

2. For each desired widget, select it in the Palette and click to
locate it on the desired canvas.

3. Click the Install button on the Canvas Tool to install each
canvas in an application model (a new or existing subclass
of ApplicationModel).

4. Click the Open button on the Canvas Tool to see the inter-
face in action.

About the Application Model

Step 4 creates a bare-bones application model. This is the
portion of your application that knows how to turn an installed
canvas into an operational interface. It does this invoking an
interface builder, which in turn invokes various windows and
widgets, according to the interface specification provided by the
installed canvas.

An application model is where you define the application-
specific behavior of the widgets in the interface. That is, you

VisualWorks Cookbook, Rev. 2.0 43

Chapter 2 Building Applications

program an application model to establish the connection
between each widget and the data or action it represents (in
some cases, implementing the action, as well). You can also
program an application model to set up interactions among
multiple widgets in the interface. VisualWorks provides a
number of tools that accelerate this level of programming, as
you will see in later sections.

An application model typically binds widgets to data and
actions that are defined in one or more domain models.

See Also
s “Creating the Domain Models” on page 45
= “Connecting the Interface to the Models” on page 47

44 VisualWorks Cookbook, Rev. 2.0

Creating the Domain Models

Creating the Domain Models

Strategy

Basic Steps

system Browser
W | w
Collections- Sequencefs] -----
Collections-5String Supl| Chara
Collections-Text atring

Tallartinnc - Arranan Sk

A domain model is an object that represents an entity in the
application’s domain. In a simple application, the entire appli-
cation domain can often be represented by a single model. For
example, a hypothetical class named RolodexCard could be the
entire domain model for a small address-lookup application.

As the application domain becomes more complex, you will find
that multiple domain models are necessary, each representing
an entity that interacts with other models in the application. In
a banking application, for example, the domain would be
divided among model classes such as Bank, Customer,
FederalReserve, and MonetaryUnit.

Role of the domain model: A domain model is intended to
remain free of user-interface code. Any instance variables or
methods that are necessary purely to support the mechanics of
the user interface belong in the application model. This separa-
tion of responsibilities makes it easier to reuse your domain
models with other interfaces.

1. In a System Browser, define a domain model class (typi-
cally, a subclass of Object).

2. Create an initialize method to set default values for the
instance variables.

3. Create accessing methods for accessing the instance
variables.

4. Create actions methods defining the services that clients can
request.

VisualWorks Cookbook, Rev. 2.0 45

Chapter 2 Building Applications

5. Create private methods, if necessary, to provide supporting
mechanisms for the actions methods.

Variant

Combining Domain and Application Models

For simple applications in which the domain model is unlikely
to be reused with a different interface, it is simpler to merge the
responsibilities of the domain model and the application model
in a single class. This is the approach taken in some of the
sample applications, such as ListlExample. For a merged model,
define it as a subclass of ApplicationModel rather than of Object.

46 VisualWorks Cookbook, Rev. 2.0

Connecting the Interface to the Models

Connecting the Interface to the Models

B

application
model

domain interface
models

Strategy

After you have created a user interface and appropriate domain
models, you program the application model to establish the
connections between them. The interface must be able to
obtain data from the domain models and ask these models to
perform actions. By programming the application model to
establish these connections, you keep the domain models free
of interface concerns.

A typical application model has an action method for each
widget that will invoke an action (for example, a button). The
application model may implement this action itself or forward a
request to the appropriate domain model.

A typical application model has an instance variable (and
accessor method) corresponding to each widget that will
present an item of data (such as an input field). The application
model initializes each such variable with a value model—an
auxiliary object whose job is to manage the widget's access to
the relevant data. In the running application, the widget will
ask its value model for the data to be displayed and will send
input data to the value model for storage. The widget will also
depend on its value model to notify it when the relevant data
changes; in response, the widget will update its display. The
application model initializes the value model with the appro-
priate data, which is typically some aspect of the domain model.

VisualWorks Cookbook, Rev. 2.0 47

Chapter 2 Building Applications

Basic Steps

48

10.

. Open a Properties Tool for the canvas.
. For each data widget, select the widget in the canvas and fill

in its Aspect property with the name of the method that will
return a value model for the widget. Apply the property
settings to the canvas.

. For each action button, select the button in the canvas and

fill in its Action property with the name of the method that
will implement the button’s action. Apply the properties.

. For each widget that is to supply a menu of actions, select

the widget and fill in its Menu property with the name of a
method that will supply the menu. Apply the properties.

. Install the canvas in the application model when all proper-

ties are applied.

. In the application model in which the canvas is installed,

use the canvas’s define command to create an instance
variable for each data aspect that is named by a widget.
Alternatively, you can use a System Browser.

. Use the canvas’s define command or a System Browser to

create aspects methods in the application model. Each aspect
method returns the value of the corresponding aspect vari-
able.

. Use a System Browser to create an initialize method in the

application model. This method creates and assigns a value
model to each aspect variable, initializing each value model
with the appropriate data from a domain model. (Alterna-
tively, you can use the aspect methods to initialize their
respective aspect variables.)

You can choose from among several kinds of value models,

depending on your application’s needs (see the chapter
listed under “See Also”).

. Use the canvas’s define command or a System Browser to

create actions methods in the application model. Each action
method either implements an action itself or requests an
action from the appropriate domain model.

Use the Menu Editor to create and install each menu that
was specified in a widget's properties.

VisualWorks Cookbook, Rev. 2.0

Connecting the Interface to the Models

See Also
= “Adapting Domain Models to Widgets” on page 703

VisualWorks Cookbook, Rev. 2.0 49

Chapter 2 Building Applications

Connecting the Widgets to Each Other

Strategy

Basic Steps

See Also

50

Unlabeled Canvas

Y initialize
/ listSelection

onChangeSend: #changedSel
/ to: self

Interface widgets frequently interact, so that when the user
changes the data in one widget, it triggers a change in another
widget. For example, when the user selects a customer name in
a list, various field widgets might be updated to display details
about the newly selected customer.

Arranging for such interactions is known as defining dependen-
cies. VisualWorks provides a sophisticated dependency mecha-
nism that makes it easy to accomplish this.

1. In a System Browser, create or edit the initialize method of the
application model.

2. For each data aspect whose change is intended to trigger a
secondary effect, register an interest in the corresponding
value model. Registering an interest tells the value model
what message to send, and to which object, when its value
is changed.

3. In a protocol named change messages, create a method for
each message that was named in step 2. These methods
implement the desired side effects that you want to asso-
ciate with changes in the data.

= “Adding and Removing Dependencies” on page 78

VisualWorks Cookbook, Rev. 2.0

Part Il

User Interface

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

© 00 ~NO 01~ W

VisualWorks Cookbook, Rev. 2.0

: Widget Basics

: Windows

: Labels

. Input Fields

: Lines, Boxes, and Ovals
: Buttons

. Text Editors

Chapter 10:
Chapter 11:
Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:
Chapter 16:
Chapter 17:
Chapter 18:
Chapter 19:
Chapter 20:

Lists

Datasets
Tables

Menus

Sliders
Dialogs
Subcanvases
Notebooks
Drag and Drop
Custom Views
Custom Controllers

53

81
109
121
153
159
171
183
203
215
225
263
277
301
315
339
375
391

51

Chapter 3

Widget Basics

Accessing a Widget Programmatically
Sizing a Widget

Positioning a Widget

Aligning a Group of Widgets
Spacing a Group of Widgets
Bordering a Widget

Changing a Widget's Font

Hiding a Widget

Disabling a Widget

Changing the Tabbing Order
Coloring a Widget

Adding and Removing Dependencies

VisualWorks Cookbook, Rev. 2.0

54
56
60
65
66
67
68
70
72
74
75
78

53

Chapter 3 Widget Basics

Accessing a Widget Programmatically

EditorExample
ﬁl ?ﬁl [Read Only
Class Hames Class Comment — These buttons
ActionButton B Applicationtodel is an abstract class that provides
ActionButionSpec framework for applications that use UIBuilders to generate
ActionButtoniew thai intert It has helaful nratocal f ding t
Adaptor Example eir user inte a’ces. as helpful protocol for responding to
AdaptorzExample a UlBuilder’s requests for aspects and other named
AdaptoriExample resources, e.q. the specification for the interface itself, the
AdaptordExample models to be connected to the individual widgets, action

AdaptorSExample

methods for ActionButtons, menus for MenuButtons, images to
AdaptorGExample

he used as lahels, etc. This protocol need not be

AliasTool

alignmentLabel reimplemented when Applicationhodel is subclassed.

AlignmentOrigin Instead, any resource can be provided simply by defining a . .
fmartizer method of the same name as the resource, that produces the . . . cause the application
opicatonDiangy resource as its value del hi
ppplicationModel : < model to access this
ApplicationStandar] widget

ApplicationWindo UlBuilders are used not only to generate functioning user

ApplicationWindowlsy interfaces for running applications, but also by UlPainter to
<| 12| __cunnod tho nracantation of thaca calfeama intorfacas ae thay |

|L<1

Strategy

In a variety of situations, it is useful to program an application
model to send messages to a widget while your application is
running. For example, you can program the application model
to send messages to a text editor to change the alignment of the
displayed text, as shown in the basic steps.

In some cases, the application model must send messages to
the wrapper that surrounds the widget. A wrapper is an
instance of WidgetWrapper, which controls various aspects of the
widget’'s appearance, such as visibility, enablement, and
layout. The variant shows how to access a widget's wrapper to
enable, disable, hide, and redisplay the widget.

Basic Steps
Online example: EditorlExample

1. In a canvas, select the widget to be accessed. In the widget’'s
ID property, enter an identifying name for the widget (in this
case, #comment). Apply the properties and install the canvas.

2. In a System Browser, edit a method in the application
model (in this example, alignCenter) so that it sends a

54 VisualWorks Cookbook, Rev. 2.0

Accessing a Widget Programmatically

componentAt: message to the application model’s builder. The
argument is the ID.

3. Send a widget message to the object returned by step 2.

alignCenter
| widget style |
widget := (self builder componentAt: #comment) widget. "Basic Steps 2, 3"
style := widget textStyle copy.
style alignment: 2.
widget textStyle: style.
widget invalidate.

Variants

V1. Accessing the Widget's Wrapper
Online example: HideExample

1. In a canvas, select the widget to be accessed. In the widget's
ID property, enter an identifying name for the widget. Apply
the properties and install the canvas.

2. In a System Browser, edit a method in the application
model (in this example, changedListVisibility) so that it sends a
componentAt: message to the application model’s builder. The
argument is the ID.

changedListVisibility
| wrapper desiredState |
wrapper := self builder componentAt: #colorList. "V1 Step 2"
desiredState := self listVisibility value.

desiredState == #hidden
ifTrue: [wrapper belnvisible].

desiredState == #disabled
ifTrue: [
wrapper beVisible.
wrapper disable].
desiredState == #normal
ifTrue: [wrapper enable; beVisible].

VisualWorks Cookbook, Rev. 2.0 55

Chapter 3 Widget Basics

Sizing a Widget

SizelExample
Fixed origin Fixed origin Rel. origin Relative origin
Fixed size Relative size Fixed size Relative size)
v v . v 4—}— Theselists ...
123456 123456789 123456759 1 123456 123456789 123
123456 123456789 123456759 1 123456 123456789 123
123456789 123456759 1 123456789 123
Position Tool settings (proportion, offset) ... are sized and
wogw o W o A T thoss setings
op <
Right 0 100 05 0 05 100 1 -50 these .S.ettlngs in
Bottom 0 100 1 -90 0 100 1 -90 a Position Tool

Strategy

56

The basic way to set a widget's size is by dragging the widget's
selection handles when you paint it on the canvas. You can also
use the Canvas Tool's Arrangel] Equalize... command to make a
series of widgets adopt the same width, height, or both.

Widgets appear in their painted size when the window is
opened. When the window size is fixed, nothing more normally
needs to be done. However, when the window’s size is variable,
you may want to arrange for the widget to adjust its size in
relation to that of the window. You can use the Layout[] Relative
command on the Canvas Tool to arrange for automatic resizing
in both the vertical and the horizontal dimensions.

For more complicated situations, or for more precise control,
you can set properties on the Position page of the Properties Tool.
The first two variants show how to set these properties to make
a widget's size fixed or relative to the size of its containing
window.

The third variant shows how to convert an unbounded widget
to a bounded widget so you can control its size. The final
variant shows how to change the size of a widget programmat-
ically.

VisualWorks Cookbook, Rev. 2.0

Sizing a Widget

Variants

V1. Making a Widget's Size Fixed

A widget’s origin is controlled by the Left (L) and Top (T) property
settings; its size is controlled by the Right (R) and Bottom (B)
property settings. A fixed size is commonly used for buttons
and labels.

Online example: SizelExample

1. In a canvas, select the widget whose size is to be fixed.

2. In a Properties Tool (Position page), set the Right Proportion
to be equal to the Left Proportion (in this example, O and 0).
Since proportions control variability, identical left and right
proportions keep the right edge of the widget a fixed
distance from the left edge.

3. Set the Right Offset to the width of the widget added to the
Left Offset.

4. Set the Bottom Proportion equal to the Top Proportion.

5. Set the Bottom Offset to the height of the widget added to
the Top Offset.

6. Apply the properties and install the canvas.

V2. Making a Widget's Size Relative

You can cause a widget to expand or shrink in concert with the
window by setting its Right Proportion to be different from the
Left Proportion, or by setting the Bottom Proportion to be
different from the Top Proportion. This is especially useful for
widgets that can use additional space, such as text editors,
lists, and tables. Input fields are often made relative in the hori-
zontal dimension only.

Online example: SizelExample

1. In a canvas, select the widget whose size is to be relative.

2. In a Properties Tool (Position page), set the Right Proportion
to a value that is larger than the Left Proportion. (A right
proportion of 0.5 keeps the right edge anchored at the
window’s midline while the left edge is anchored to the
window’s left edge.)

VisualWorks Cookbook, Rev. 2.0 57

Chapter 3 Widget Basics

58

3. Set the Right Offset to the distance you want between the
widget’s right edge and the imaginary line identified by the
Right Proportion.

4. Set the Bottom Proportion to a value that is larger than the
Top Proportion.

5. Set the Bottom Offset to the distance between the widget's
bottom edge and the imaginary line representing the
Bottom Proportion.

6. Apply the properties and install the canvas.

V3. Applying Explicit Boundaries
to an Unbounded Widget

Four widgets are inherently variable in size: labels, action
buttons, radio buttons, and check boxes. These widgets change
in size to accommodate their textual labels, which expand and
shrink on different platforms because of font differences.
Unlike most widgets, which have four boundaries, the variable-
size widgets are said to be unbounded.

Sometimes it is preferable to convert an unbounded widget so
it is bounded like other widgets. As shown in Size2Example, the
advantage is that you can make a series of buttons have equal
dimensions, for example. There is a slight hazard in converting
an unbounded widget, however: on a different platform, a font
change in the widget’s label may cause the label to expand
beyond the widget’'s unyielding boundaries.

Online example: Size2Example

1. In a canvas, select an unbounded widget such as a label.

2. In the Canvas Tool, select Layout(] Be Bounded. Alternatively,
select the Bounded button in the Properties Tool (Position
page). The icon on the Bounded button shows a rectangle
with solid lines on all four sides.

3. Apply the properties, if necessary, and install the canvas.

4. To reverse the operation, select Layout] Unbounded, or select
the Unbounded button in the Properties Tool. Apply the
properties, if necessary, and install the canvas.

VisualWorks Cookbook, Rev. 2.0

Sizing a Widget

V4. Changing a Widget's Size Programmatically

In some circumstances, your application may need to resize a
widget while the application is running. In Size3Example, a colored
region is resized in response to Expand and Shrink buttons.

Online example: Size3Example

1. Get the widget's wrapper from the application model’s

builder.

2. Send a bounds message to the wrapper to get the widget's

existing size.

3. Create a rectangle having the desired origin and extent,
using the widget's bounding rectangle to derive the new

values.

4. Send a newBounds: message to the wrapper. The argument is

the new bounding rectangle.

expandBox
| wrapper oldSize newSize |
wrapper := self builder componentAt: #box.
oldSize := wrapper bounds.

"If the box is bigger than the window already, do nothing."
oldSize originx <0
ifTrue: [*nil].

"Expand the bounding rectangle by 10 pixels on each side."
newSize := Rectangle

origin: oldSize origin - 10

corner: oldSize corner + 10.

"Assign the new bounding rectangle to the widget wrapper.”
wrapper newBounds: newSize.

VisualWorks Cookbook, Rev. 2.0

"V4 Step 1"
"V4 Step 2"

"V4 Step 3"

"V4 Step 4"

59

Chapter 3 Widget Basics

Positioning a Widget

Strategy

60

MoveExample
4—1—— Thisbutto n . ..
... moves this
-] iconic label
upward

The basic way to set a widget's position is by dragging it to the
desired position in the canvas. This determines the widget's
initial position relative to the window’s upper left corner.

Widgets appear in their painted position when the window is
opened. When the window size is fixed, nothing more normally
needs to be done. However, when the window’s size is variable,
you may want to arrange for the widget to adjust its position
relative to the size of the window. You can use the Layout[] Rela-
tive command on the Canvas Tool to arrange for automatic repo-
sitioning in both the vertical and the horizontal dimensions.

For more complicated situations, or for more precise control,
you can set properties on the Position page of the Properties Tool.
The first two variants show how to set these properties to make
a widget’s position fixed or relative to the size of its containing
window.

The final variant shows how to change the position of a widget
programmatically.

VisualWorks Cookbook, Rev. 2.0

Positioning a Widget

Variants

V1. Making a Widget’s Origin Fixed

Making a widget fixed is useful when the window'’s size is fixed.
When the window’s size is variable, this approach works best
for a button or other fixed-size widget that is located along the
left or top edges of the window.

Online example: SizelExample (start it and then resize the
window to see the effect)

1. In a canvas, select the widget whose position is to be fixed.

2. In a Properties Tool (Position page), set the Left and Top
Proportions to 0. These proportions control whether a
widget moves relative to the window size. Setting these
properties to 0 causes the widget's origin to remain fixed in
place.

3. Set the Left Offset to the desired distance between the
window’s left edge and the widget's left edge (in the
example, 50 pixels).

4. Set the Top Offset to the desired distance between the
window’s top edge and the widget’s top edge (50).

5. Apply the properties and install the canvas.

V2. Making a Widget’s Origin Relative

A relative origin causes the widget to move farther away from
the left and top edges of the window when the window grows
and closer when the window shrinks. This is useful for keeping
an object centered in the window and for shifting one widget
that is placed below or to the right of another widget that
expands and shrinks in size.

You can also make the origin relative in only one dimension. In
the example, the origin shifts horizontally as the window is
resized, but it maintains a stable offset from the window’s top
edge.

Online example: SizelExample

1. In a canvas, select the widget whose position is to be rela-
tive.

VisualWorks Cookbook, Rev. 2.0 61

Chapter 3 Widget Basics

62

6.

. In a Properties Tool (Position page), set the Left Proportion to

the fraction of the window’s width from which the Left
Offset is to be measured. (In the example, a left proportion
of 0.5 causes the widget to remain anchored at the window’s
midline.)

. Set the Left Offset to the distance you want between the

widget's left edge and the imaginary line identified by the
Left Proportion (50 pixels).

. Set the Top Proportion to the fraction of the window’s

height from which the Top Offset is to be measured. (In the
example, a top proportion of 0 anchors the widget’s top edge
at the top edge of the window, which is the same as keeping
the origin fixed in the vertical dimension.)

. Set the Top Offset to the distance you want between the

widget's top edge and the imaginary line identified by the
Top Proportion (50 pixels).
Apply the properties and install the canvas.

V3. Giving an Unbounded Widget a Fixed Position

An unbounded widget has no left, right, top, and bottom sides
because its boundaries are not fixed. However, it does have a
reference point that can be positioned in either a fixed or
relative location in the window. By default, the reference point
is the origin of the widget (the top-left corner).

1.
2.

3.

4.

In a canvas, select an unbounded widget such as a label.

In the Properties Tool (Position page), set all of the Propor-
tions to 0.

Set the X and Y Offsets to the coordinates of the widget's
top-left corner relative to the top-left corner of the window.

Apply the properties and install the canvas.

V4. Giving an Unbounded Widget a Relative Position

Online example: Size2Example

1.

In a canvas, select an unbounded widget (in the example,
select one of the unbounded buttons on the left to examine
its properties).

VisualWorks Cookbook, Rev. 2.0

Positioning a Widget

7.

. In a Properties Tool (Position page), set the x Proportion to

the fraction of the widget’'s width at which the reference
point is to be positioned (0.5).

. Set the y Proportion to the fraction of the widget’'s height at

which the reference point is to be positioned (0).

. Set the X Proportion to the fraction of the window’s width at

which the widget’s reference point is to be anchored. (In the
example, an X Proportion of 0.25 keeps the widget's reference
point anchored one-fourth of the way across the window.)

. Set the X Offset to the distance you want between the

widget’s reference point and the imaginary line identified by
the X proportion (0).

. Set the Y Offset to the fraction of the window’s height at

which the widget’s reference point is to be anchored. (In the
example, a Y proportion of 0 keeps the widget’s reference
point a fixed distance from the window’s top edge.)

Apply the properties and install the canvas.

V5. Positioning a Widget Programmatically

Although it is unusual for an application to need explicit
control over a widget's location, it is possible to do so. In
MoveExample, a graphic label is repositioned by three buttons,
giving the effect of a pointer on a meter. The Up and Down
buttons shift the position relative to the prior position, while
the Reset button moves the widget to an absolute position.

Online example: MoveExample

1.

2.

Get the widget’'s wrapper from the application model’s
builder.

For a relative shift in position, send a moveBy: message to the
wrapper. The argument is a Point whose x and y values
indicate the number of pixels by which the widget is to be
shifted.

moveArrowUp
| wrapper |

wrapper := (self builder componentAt: #arrow). "V5 Step 1"

"If the arrow is not too high, raise it another notch."

VisualWorks Cookbook, Rev. 2.0 63

Chapter 3 Widget Basics

wrapper bounds origin y > 30
ifTrue: [wrapper moveBy: 0@-5] "V5 Step 2"

3. To apply an absolute position, send a moveTo: message to the
wrapper. The argument is a Point whose coordinates are the
desired position of the widget.

resetArrow
| wrapper |
wrapper := (self builder componentAt: #arrow).
wrapper moveTo: self arrowOrigin "V5 Step 3"

64 VisualWorks Cookbook, Rev. 2.0

Aligning a Group of Widgets

Aligning a Group of Widgets

Strategy

Basic Steps

[

Using

() first selection

(8) on vertical line O merged box

Through
O lettedges (@ centers () right edges

Ok | Cancel |

When painting a canvas, you frequently need to make a group
of widgets align along an imaginary vertical or horizontal line.
Dragging the widgets is sufficient sometimes, but for precise
control you can use the Align dialog, shown above. You can also
use the Properties Tool (Position page), but it is less convenient
unless you need to manipulate the position settings for other
reasons.

N

. In a canvas, select the widgets to be aligned.
. In the Canvas Tool, select the Arranged Align command.
. In the Align dialog, select on horizontal line when aligning side-

by-side widgets. When aligning widgets in a column, select
on vertical line.

. In the Align dialog, select first selection when the widgets are

to be aligned with the first widget that was selected. Select
merged box to align the widgets on a line halfway between the
two most extreme positions within the group of widgets.

. In the Align dialog, select the edges, or the centers, to be

aligned.
Install the canvas.

VisualWorks Cookbook, Rev. 2.0 65

Chapter 3 Widget Basics

Spacing a Group of Widgets

DISTRIBUTE

() left to right () top to bottom

@ equal spacing hetween centers

O constant spacing between edges:

O equal spacing hetween edges

Cancel |

Strategy

When painting a canvas, you frequently need to make the
spaces between a group of widgets equal. Dragging the widgets
is sufficient sometimes, but for precise control you can use the
Distribute dialog, shown above. You can also use the Position
Tool (Position page), but it is less convenient unless you need to
manipulate the position settings for other reasons.

Basic Steps
1. In a canvas, select the widgets to be spaced.
. In the Canvas Tool, select the Align[d Distribute command.

3. In the Distribute dialog, select left to right for widgets that are
to be spaced in a horizontal row. Select top to bottom for
columnar distribution.

4. In the Distribute dialog, select the type of spacing. For
constant spacing between edges, you must specify the number of
pixels to place between each pair of widgets.

5. Install the canvas.

N

66 VisualWorks Cookbook, Rev. 2.0

Bordering a Widget

Bordering a Widget

Unlabeled Canvas

*]

bordered unbordered

Strategy

Most widgets have a border by default. The appearance of the
border changes according to the selected UlLook.

Basic Steps

. Select a widget in a canvas.

. To apply a border to the widget, turn on its Border property.
To remove the border, turn off the Border property.

Apply the properties and install the canvas.

PN p

VisualWorks Cookbook, Rev. 2.0 67

Chapter 3 Widget Basics

Changing a Widget's Font

Strategy

Basic Steps

68

FontExample

Large =1| 4——f—— Thismenu . ..

[lets you select the font
Label 4— for this label dynamically

When a widget’'s default font is not suitable, you can use the
Font menu in the widget's properties to choose an alternative
font. The built-in fonts are:

Default

Fixed, for a fixed-width font that is useful when you want to
align text in columns

Large, for a font that is slightly larger than the default
Small, for a font that is slightly smaller than the default

System, for a font that matches the current platform’s
system font, when available

You can add or remove fonts in the menu, as referenced in “See
Also.”

You can also change a widget's font programmatically, as
shown in the basic steps.

Online example: FontlExample

1.

2.

In a method in the application model, get the widget from
the application model’s builder.

Create an instance of TextAttributes corresponding to the new
font. If the font exists in the fonts menu, you can send a
styleNamed: message to the TextAttributes class. The argument is
the name of the font (for example, #large for the system’s
Large font).

. Get the label from the widget by sending a label message; get

the text of the label by sending a text message to it. Then

VisualWorks Cookbook, Rev. 2.0

Changing a Widget's Font

install a blank text temporarily as a means of erasing the
old label if the new font is smaller.

4. Install the new font in the widget by sending a textStyle:
message to the widget. The argument is the TextAttributes you
created in step 2.

5. Reinstate the original label by sending a labelString: message
to the widget.

changedFont
| widget newStyle oldLabel |
widget := (self builder componentAt: #label) widget. "Basic Step 1"
newStyle := TextAttributes styleNamed: (self labelFont value). "Basic Step 2"

"Erase the existing label in case its font is larger than the new one."
oldLabel := widget label text. "Basic Step 3"
widget labelString: ".

"Install the new font."
widget textStyle: newStyle. "Basic Step 4"

"Reinstate the original label.”

widget labelString: oldLabel. "Basic Step 5"

See Also
= “Creating a Custom Text Style” on page 576
s “Changing the Fonts Menu” on page 587

VisualWorks Cookbook, Rev. 2.0 69

Chapter 3 Widget Basics

Hiding a Widget

Strategy

Basic Steps

70

HideExample

[—— This butto n . . .

(C) Disabled

(&) Mormal

B

.. . makes this list
invisible

hlack

hlue

hrowven
charreuse
cyan /
darkCyan
darkGray
darkGreen
darkhagenta
darkRed
olive

gray

<]

Sometimes a widget is useful only under certain conditions and
needs to be hidden at other times to avoid confusing the user of
your application. Action buttons need to be hidden when their
actions are not appropriate.

A widget may also be hidden when two alternative widgets are
layered on top of each other. For example, the Online Documen-
tation window uses a text editor on top of a list editor and hides
the view that is unneeded at any given time.

You can turn on a widget’s Initially Invisible property to cause the
widget to be hidden when the window opens. You can also
program the application model to hide and show the widget
while the application is running (shown in the basic steps).

Online example: HideExample

1. In a method in the application model, get the widget's
wrapper from the application model’s builder.

2. To hide the widget, send a belnvisible message to the wrapper.

3. To make the widget visible again, send a beVisible message to
the wrapper.

VisualWorks Cookbook, Rev. 2.0

Hiding a Widget

changedListVisibility
| wrapper desiredState |

wrapper := self builder componentAt: #colorList.

desiredState := self listVisibility value.

desiredState == #hidden
ifTrue: [wrapper belnvisible].

desiredState == #disabled
ifTrue: [
wrapper beVisible.
wrapper disable].

desiredState == #normal
ifTrue: [
wrapper enable.
wrapper beVisible].

See Also
= “Disabling a Widget” on page 72

VisualWorks Cookbook, Rev. 2.0

"Basic Step 1"

"Basic Step 2"

"Basic Step 3"

71

Chapter 3 Widget Basics

Disabling a Widget

Strategy

Basic Steps

72

HideExample

O

® —— Thisbutto n . . .

() Mormal

. .. makes this list grayed out
and unresponsive to user input

Sometimes a widget is useful only under certain conditions, but
making it invisible would be confusing to the user of your appli-
cation. You can disable a widget, causing it to be displayed in
gray. In addition, its controller is inactivated so the widget does
not respond to user input. Action buttons are frequently
“grayed out” when not needed.

You can turn on a widget'’s Initially Disabled property to cause the
widget to be disabled when the window opens. You can also
program the application model to disable and enable the widget
while the application is running (shown in the basic steps).

Online example: HideExample

1. In a method in the application model, get the widget's
wrapper from the application model’s builder.

2. To disable the widget, send a disable message to the wrapper.

3. To make the widget active again, send an enable message to
the wrapper.

changedListVisibility

| wrapper desiredState |
wrapper := self builder componentAt: #colorList. "Basic Step 1"

VisualWorks Cookbook, Rev. 2.0

Disabling a Widget

desiredState := self listVisibility value.

desiredState == #hidden
ifTrue: [wrapper belnvisible].

desiredState == #disabled
ifTrue: [
wrapper beVisible.
wrapper disable]. "Basic Step 2"

desiredState == #normal
ifTrue: [
wrapper enable. "Basic Step 3"
wrapper beVisible].

See Also
» “Hiding a Widget” on page 70

VisualWorks Cookbook, Rev. 2.0 73

Chapter 3 Widget Basics

Changing the Tabbing Order

Strategy

Basic Steps

74

Unlabeled Canvas
snap to grid
- - group
Field 1] i ungroup
o a -
Field 3 | i bring forward
o : edit # bring to front
Field 2:': é: tools ¢ send backward
o.
Field 4 | layout # send to back
arrange & align...
spanin distribute...
properties equalize...

install...
shafing,,,

ST ..

s

When an application is running, users can use the <Tab> key
to shift the keyboard focus from one widget to the next in a
window, without having to move the mouse.

More specifically, the <Tab> key moves focus to each widget on
the tab chain. You add a widget to the tab chain by turning on
its Can Tab property. Passive widgets such as labels and dividers
do not have a Can Tab property, so they cannot be put on the tab
chain. Note that you should turn off the Can Tab property in a
text editor, if you want the editor to interpret the <Tab> key as
a literal character to be entered into the text.

By default, the order in which the <Tab> key advances the
focus is the order in which the widgets were drawn. The
following steps show how to change the order of widgets in the
tab chain.

1. Hold down a <Shift> key while you select the tabbing
widgets in the desired order.

2. In the Canvas Tool, select the Arrangeld Bring To Front
command. Install the canvas.

VisualWorks Cookbook, Rev. 2.0

Coloring a Widget

Coloring a Widget

ColorExample

Color: "9'1 =
Apply to: ; Background e
' < This butto n . . .

hlack
: hlue
[Check Box hrowven

P.ction

—

Strategy

(O} Radio Button ES::reuse
. darkCyan <
Choicel w
Red _|Cyan_fy applies a new
Green |Magen .- - app
w Elue |vellow color to all of these
sample widgets
Label v
| e |
Box -
| represent a |5
caolor far the
Smalltalk
Fortable
Imaging <
A widget can have up to four color zones:
Foreground
Background

Selection foreground
Selection background

The Properties Tool (Color page) enables you to apply a color to
any of these zones. On a monochrome or gray-scale monitor,

t

he colors are rendered in gray patterns based on the lumi-

nosity of the color.

The variant shows how to change a widget's colors program-
matically.

VisualWorks Cookbook, Rev. 2.0 75

Chapter 3 Widget Basics

Basic Steps

Variant

76

In a canvas, select the widget whose color you want to set.

. In a Properties Tool (Color page), select the desired color

from the color chart. Alternatively, you can access one of
the standard, named color constants from a pull-down
menu in the color box of the Properties Tool. You can also
revert to the widget's default colors through the policy colors
submenu in the same pull-down menu.

. Select the color zone in the Properties Tool.
. Apply the properties and install the canvas.

Changing a Widget's Colors Programmatically

Online example: ColorExample

1.

2.

In a method in the application model, get the widget's
wrapper from the application model’s builder.

Get the LookPreferences from the wrapper and create a copy
with the desired color. The copy is created when a color-
zone message is sent: foregroundColor:, backgroundColor:,
selectionForegroundColor:, or selectionBackgroundColor:.. The argument
is the desired new color.

. Install the new LookPreferences by sending a lookPreferences:

message to the wrapper. The argument is the new
LookPreferences.

foregroundColor: aColor
"For each sample widget, change the indicated color layer."

| wrapper lookPref |
self sampleWidgets do: [:widgetID |

wrapper := (self builder componentAt: widgetID). "Variant Step 1"
lookPref := wrapper

lookPreferences foregroundColor: aColor. "Variant Step 2"
wrapper lookPreferences: lookPref]. "Variant Step 3"

VisualWorks Cookbook, Rev. 2.0

Coloring a Widget

See Also
= “Creating a Color” on page 686

VisualWorks Cookbook, Rev. 2.0 77

Chapter 3 Widget Basics

Adding and Removing Dependencies

Strategy

78

Dependency Example
™ Make field dependent €——— This check box . . .
hlack =
hlue
hrowven
charreuse
darkCyan
darkGray
darkGreen
darkhagenta
darmedg . .. controls whether the
olive list selection is echoed in
ral) .
reen the field below the list
lightellow
lightGray
magenta =i
cyan K

When a widget's value is changed, such as when an item is
selected from a list, the application often needs to react in some
way. A common reaction is to update other widgets based on
the new value. You can arrange for such a reaction, typically as
part of the initialization process. This is known as setting up a
dependency or registering an interest.

You can also bypass the dependency when unusual circum-
stances arise. For example, when two widgets depend on each
other, one of them must bypass the dependency mechanism to
avoid infinite recursion. The variants show two ways of
bypassing a dependency.

The first variant removes the dependency and relies on the
application to reestablish it after the value has been changed.

The second variant bypasses all dependencies, including that of
the widget's view. Thus, you must ask the widget to update its
view programmatically. This variant also bypasses any depen-
dencies that may have been established by objects other than
the application model and the widget, but that is not a common
situation.

VisualWorks Cookbook, Rev. 2.0

Adding and Removing Dependencies

Basic Step

Variants

Adding a Dependency

Online example: DependencyExample

O

In the application model’s initialize method (typically), send an
onChangeSend:to: message to the widget's value holder. The
first argument is a message, which will be sent to the
second argument. The second argument is typically the
application model itself.

initialize
colorNames := SelectionInList with: ColorValue constantNames.
selectedColor := String new asValue.
fieldlsDependent ;= false asValue.

"Arrange for the application model to take action when the
check box is turned on or off."
fieldlsDependent
onChangeSend: #changedDependency to: self. "Basic Step"

V1. Removing a Dependency by Retracting the
Interest

Online example: DependencyExample

1.

Send a retractinterestsFor: message to the widget's value holder.
The argument is the object that registered the interest, typi-
cally the application model itself.

. After the value has been changed, register the interest

again as shown in the basic step.

changedDependency
"Turn on or off the dependency link between the list and
the input field, depending on the value of the check box."

| valueModel |
valueModel := self colorNames selectionindexHolder.

VisualWorks Cookbook, Rev. 2.0 79

Chapter 3 Widget Basics

80

self fieldlsDependent value

ifTrue:

[valueModel onChangeSend: #changedSelection to: self]"V1 Step 2"
ifFalse:

[valueModel retractinterestsFor: self]. "V1 Step 1"

V2. Bypassing All Dependencies
Online example: FieldConnectionExample

1. Send a setValue: message to the widget's value holder instead
of the usual value: message. The argument is the widget's
new value.

2. Get the widget from the application model’s builder and ask
the widget to update itself with the new value.

changedB
"Use setValue: to bypass dependents, thus avoiding circularity."
self bSquared setValue: (self b value raisedTo: 2). "V2 Step 1"

"Since dependents were bypassed when the model was updated,

update the view manually."
(self builder componentAt: #b2) widget update: #value. "V2 Step 2"

VisualWorks Cookbook, Rev. 2.0

Chapter 4

Windows

Opening a Window 82
Getting a Window from a Builder 85
Sizing a Window 86
Moving a Window 90
Changing a Window’s Label 92
Refreshing a Window’s Display 93
Coloring a Window 94
Adding and Removing Scroll Bars 96
Adding a Menu Bar 98
Getting the Active Window 99
Getting the Window at a Specific Location 100
Closing a Window 101
Expanding and Collapsing a Window 103
Hiding a Window 104
Making a Window a Slave 105
Setting a Window's Icon 108

VisualWorks Cookbook, Rev. 2.0 81

Chapter 4 Windows

Opening a Window

Resource Finder

View C(lass Resources

Browse | Start | Add.. | Remove.. | Edit

Classes Resources

CompositeSpec Ay I
DataSetCallbacksSpechodel (1.
DataSetSpec ME
DataSetSpecColumnidodel

Dividerspec

:Editor] Example
EmbeddedDetailSpec
ExamplesBrowser
ExternalDatabaselnstallation
GroupBoxSpec
HelpBrowser F

Strategy

The usual way of opening a running window is to ask an appli-
cation model to open one of its interface specifications (an inter-
face specification is created when you install a painted canvas
in an application model). You can do so programmatically or by
using a Resource Finder.

You can also create an instance of ApplicationWindow and open it
programmatically. This is rarely necessary, but it does offer
more flexibility because you can control the window’s type
(normal, dialog, or pop-up) as well as its contents.

Basic Steps

1. In a Resource Finder, select the application (such as
EditorlExample).

2. Click on the Start button in the Resource Finder.

82 VisualWorks Cookbook, Rev. 2.0

Opening a Window

Variants

V1. Opening a Default Canvas Programmatically
This is the programmatic equivalent of basic steps 1 and 2.

0 Send an open message to the application model.

EditorlExample open "V1 Step"

V2. Opening a Main Canvas by Spec Name

When the spec name is #windowSpec, you can just send open as in
the variant above. When you want to open a different spec on a
new instance of an application, use this variant.

Some specs are meant to be opened only after the application
has reached a certain state—that is, after the variables on
which the widgets depend have been properly initialized. In
those situations, use step 1 in variant 3. This variant is
provided for situations when your main window’s spec has to
be named other than #windowSpec.

O Send openWithSpec: to the application class.

EditorlExample openWithSpec: #windowSpec "V2 Step"

V3. Opening a Secondary Canvas by Spec Name

When the same application model serves one or more
secondary canvases in addition to the main canvas, you can
open a secondary canvas with this variant. The example is the
openFinder method implemented by the class named HelpBrowser.

A “secondary” canvas implies that the application has reached
the proper state—that is, the instance variables required by the
interface have been initialized. In the HelpBrowser, the main
window must be opened before the secondary canvas named
#finderSpec is opened.

This example creates a new UlBuilder the first time it is
invoked, and it stores that builder in an instance variable.
When your application needs to access widgets on the

VisualWorks Cookbook, Rev. 2.0 83

Chapter 4 Windows

secondary canvas later, storing this second builder assures you
will have a means of accessing the widgets.

1. In a method in the application model, create a new UlBuilder.

2. Tell the builder which object will supply its menus, aspects,
and other resources by sending it a source: message. The
argument is typically the application model itself. (Alterna-
tively, you can send a series of aspectAt.put: messages to
install the resources directly.)

3. Create the spec object and add the spec to the builder.
4. Open the window.

openFinder
"Open the Search window. If already open, raise to top."

| bidr |
(self finderBuilder notNil and: [self finderBuilder window isOpen])
ifTrue: [self finderBuilder window raise]
ifFalse: [
self finderBuilder: (bldr := UIBuilder new). "V3 Step 1"
bldr source: self. "V3 Step 2"
bldr add: (self class
interfaceSpecFor: #finderSpec). "V3 Step 3"
bldr window
application: self;
beSlave.
self adjustSearchScope.
self searchStatus value: 0.
(bldr componentAt: #searchStatus) widget
setMarkerLength: 5.

bldr openAt: (self "V3 Step 4"
originFor: bldr window
nextTo: #findButton)].

(self builder componentAt: #listView) takeKeyboardFocus.

See Also
s “Getting a Window from a Builder” on page 85
= “Dialogs” on page 277

84 VisualWorks Cookbook, Rev. 2.0

Getting a Window from a Builder

Getting a Window from a Builder

Capplication model >

builder

N

Editor

Strategy

When you ask an application model to open an interface spec-
ification, the application model creates an interface builder,
which in turn creates the specified window and its contents.
Your application code can manipulate the window programmat-
ically by obtaining the window from the builder and then
sending it messages.

Each application model holds onto the builder for its primary
window. In addition, you can arrange for your application
model to hold onto additional builders created for assembling
any secondary windows.

Basic Step
Online example: Editor2Example
0 Ask the builder for its window.
| bidr win |
bldr := Editor2Example open.

win := bldr window. "Basic Step
win label: 'Editor".

"

VisualWorks Cookbook, Rev. 2.0 85

Chapter 4 Windows

Sizing a Window

“Editor2 Example \

EditorZ Example

Strategy
You can control the initial size of a window as well as the
minimum and maximum sizes. These sizes can be established
either programmatically or by directly sizing a canvas.
Basic Steps
1. While editing a canvas, use the window manager to resize
it.
2. Make sure no widget is selected in the canvas. This selects
the canvas itself.
3. Select the layout - window - pref size command in the canvas'’s
menu to set the initial size of the window.
4. Install the canvas.
Variants

V1. Setting the Initial Size Programmatically
Online example: Editor2Example

1. Build an interface up to the point of opening the window.
2. Get the window from the interface builder.
3. Ask the window to open with a specified size (extent).

86 VisualWorks Cookbook, Rev. 2.0

Sizing a Window

| bldr win |

bldr := Editor2Example new allButOpeninterface: #windowSpec.

win := bldr window.

win openWithExtent: 500@220. "V1 Step 3"

V2. Constraining the Size Using the Canvas

When the interface becomes unusable below a certain
minimum size, or when larger than a certain maximum size,
you can impose limits on the size. Then when the user tries to
make the window larger or smaller than is reasonable, the
window maintains a useful size.

1. While editing the canvas, use the window manager to resize
the canvas to its intended minimum size.
2. Make sure no widget is selected in the canvas.

3. Select the layout - window - min size command in the canvas’s
menu.

4. Install the canvas.

For maximum size, in step 3 use the layout - window - max size
command.

V3. Constraining the Size Programmatically
1. Give the window a minimum size and/or a maximum size.

2. Open the window. Then try to resize the window beyond its
minimum or maximum size.

| bldr win |
bldr := Editor2Example new allButOpeninterface: #windowSpec.
win := bldr window.

win minimumSize: 100@100; "V3 Step 1"
maximumSize: 500@300;
open. "V3 Step 2"

V4. Making the Size Unchangeable (Fixed)

In step 3 of variant 2, use the layout - window - fixed size command.
To accomplish the same thing programmatically, in step 1 of
variant 3 set the minimum size equal to the maximum size.

VisualWorks Cookbook, Rev. 2.0 87

Chapter 4 Windows

88

V5. Changing the Size of an Open Window

O

Give the window a new display box, which is the rectangle
within which it displays itself, using screen coordinates.

| bidr win |

bldr := Editor2Example open.

win := bldr window.

win displayBox: (100@100 extent: 400@220). "V5 Step"

V6. Clearing All Size Constraints on a Canvas

1.
2.

In the window's canvas, make sure no widget is selected.

Select the layout — window - clear all command in the canvas'’s
menu. Install the canvas.

V7. Determining a Window’'s Dimensions

O A~ WN PP

. Ask the window for its minimum size.

. Ask for its maximum size.

. Ask for its display box.

. Ask the display box for its width.

. Ask the display box for its height.

. Display the parameters in the Transcript.

| win min max box width height |
win := (Editor2Example open) window.

min := win minimumsSize. "V7 Step 1"
max := win maximumsSize. "V7 Step 2"
box := win displayBox. "V7 Step 3"
width := box width. "V7 Step 4"
height := box height. "V7 Step 5"
Transcript "V7 Step 6"

show: 'Min: ', min printString; cr;
show: 'Max: ', max printString; cr;
show: 'Box: ', box printString; cr;
show: 'Width: ', width printString; cr;
show: 'Height: ', height printString; cr

VisualWorks Cookbook, Rev. 2.0

Sizing a Window

See Also
= “Moving a Window” on page 90

VisualWorks Cookbook, Rev. 2.0 89

Chapter 4 Windows

Moving a Window

Strategy

Variants

90

EditorZ Example

You can move a window that is already open and you can also
set its location at startup. Both of these operations are
performed programmatically.

Moving a canvas has no effect on the startup location of its
window.

Your prompt-for-open preference also affects the startup
location of a window unless you specify a location programmat-
ically as shown here.

V1. Setting the Startup Location of a Window
1. Build the interface up to the point of opening the window.
2. Get the window from the interface builder.

3. Ask the window to open itself within a specified rectangle,
using screen coordinates, in pixels.

| bldr win |
bldr := Editor2Example new

allButOpeninterface: #windowSpec. "V1 Step 1"
win := bldr window. "V1 Step 2"
win openlin: (50@50 extent: win minimumsSize). "V1 Step 3"

VisualWorks Cookbook, Rev. 2.0

Moving a Window

V2. Moving an Open Window

O Ask the window to relocate its origin (upper-left corner) to a
specified point, using screen coordinates.

| win |

win := (Editor2Example open) window.

(Delay forSeconds: 1) wait.

win moveTo: 300@50. "V2 Step"

VisualWorks Cookbook, Rev. 2.0 91

Chapter 4 Windows

Changing a Window's Label

Strategy

Basic Steps

Variant

92

Editor <« label

You can modify a window’s label using the canvas or, for
dynamic control, by sending a message to the window.

1. In the canvas for the window, make sure no widget is
selected.

2. In the Properties Tool, fill in the window’s Label property
with the desired label.

3. Apply the properties and install the canvas.

Changing the Label Programmatically

O Send a label: message to the window, with the new label as
argument.

| win |
win := (Editor2Example open) window.
win label: 'Editor". "Variant Step"

VisualWorks Cookbook, Rev. 2.0

Refreshing a Window's Display

Refreshing a Window's Display

|

vl

ngy Methods — ample
ul
ite [deper

Define

Strategy

Under normal conditions, a window redisplays its contents
whenever those contents change or whenever an overlapping
window is moved. Sometimes you need to redisplay a window
programmatically, as when you want to display an intermediate
state of the window before a drawing operation has been
completed.

Basic Step
Online example: Editor2Example
0 Send a display message to the window.
| win |
win := (Editor2Example open) window.
5 timesRepeat: |

(Delay forMilliseconds: 400) wait.
win display]. "Basic Step"

VisualWorks Cookbook, Rev. 2.0 93

Chapter 4 Windows

Coloring a Window

Strategy

94

Properties Tool on: EditorZExample

R B

ECOOEEEEEREEEE
ECEEECEEEEE
E Lonnnn -
El Presentation
e

i o o e o o
(B B R]) R R
B ER R D T e e

Application

[L e o o

B
B
&

BEEEEEE B EEE

Position

Selection Selection
Faoregrnd Eackgrnd Faoregrnd Eackgrnd

none none none none

You can use the Properties Tool to change the background color
of a window. Changing the foreground or selection color has no
effect in the case of a window.

You can also change the color of a window programmatically for
run-time control. Doing so enables you to use window color as
avisual cue to indicate a change in some property of your appli-
cation.

Limitation: Under any look policy other than OS/2 or
Windows, widgets inherit the background color of the window
until you explicitly make them opaque and apply a different
color to their backgrounds. Also, make sure you choose a back-
ground color for the window that contrasts sufficiently with
scroll bars.

VisualWorks Cookbook, Rev. 2.0

Coloring a Window

Basic Steps
1. In the canvas for the window, make sure no widget is
selected.
2. In a Properties Tool (Color page), select the color for the
background.
3. Apply the properties and install the canvas.
Variant
Changing the Color Programmatically
Online example: Editor2Example
In the following example, we create a loop that is repeated for
each of the color constants. For each color, the window back-
ground is changed and the window is redisplayed.
O Send a background: message to the window, with the color as
argument.
| win color |
win := (Editor2Example open) window.
ColorValue constantNames do: [:colorName |
(Delay forMilliseconds: 200) wait.
color := ColorValue perform: colorName.
win background: color. "Variant Step"
win display]
See Also

= “Creating a Color” on page 686

VisualWorks Cookbook, Rev. 2.0 95

Chapter 4 Windows

Adding and Removing Scroll Bars

Strategy

Basic Steps

96

Unlabeled Canvas

+

Properties Tool on: Unlabeled Canvas

Window

Scroll Bars
g‘,mz Horizontal # vertical Details

Colar

it Bordered

Famby nped Agamby & Chras Py Had

The Properties Tool enables you to add vertical and/or hori-
zontal scroll bars to a window.

You can also add and remove scroll bars programmatically. You
can do so, however, only in the way shown here when the
window had a scroll bar to start with. Thus, to add a vertical
scroll bar while your application is running (but not before),
you must turn on the vertical scroll bar property before
installing the canvas and then remove the scroll bar program-
matically before opening the window. This equips the window
with a BorderDecorator, which is the object that is empowered to
supply scroll bars.

1. In the window’s canvas, make sure no widget is selected.

2. In a Properties Tool (Details page), turn on the desired scroll
bars.

3. Apply the properties and install the canvas.

VisualWorks Cookbook, Rev. 2.0

Adding and Removing Scroll Bars

Variant

Adding and Removing Scroll Bars Programmatically

1.

2.

After opening the window, remove the scroll bars that are
meant to be displayed later.

Ask the window’'s component to add scroll bars.

| win |
win := ApplicationWindow new.
win component: (BorderDecorator
on: Object comment asComposedText).
win open.

win component "Variant Step 1"
noVerticalScrollBar;
noHorizontalScrollBar.

win display.

Cursor wait showWhile; |
(Delay forSeconds: 2) wait].

win component "Variant Step 2"
useVerticalScrollBar;
useHorizontalScrollBar.

VisualWorks Cookbook, Rev. 2.0 97

Chapter 4 Windows

Adding a Menu Bar

Strategy

Basic Steps

See Also

98

Properties Tool on: Unlabeled Canvas
Window
: Basics
Label: Unlaheled Canvas
Details
“Menu Bar Menu Editor
Enable DataForm Help
Aspect: #menuBar . Read { Apply 1) Load... |Install.. ! Buld Test -
DataForm nil
Mew.. newClass
Existing... existingClass
In Same Category sameCategory
Help Help
Open helpaction
Famby nped by & <}z3<\‘§>' TETEY 1 1R

Adding a menu bar has two parts: turning on a menu bar
property for the window and creating the underlying menu.

1. In the canvas for the window, make sure no widget is
selected.

2. In a Properties Tool, turn on the Enable switch for the Menu
Bar property.

3. In the Menu field, enter the name of the menu-creation
method.

4. Install the canvas.

5. Use the Menu Editor to create the menu. Each first-level
entry in the menu appears in the menu bar, but only when
it has a submenu. That is, a menu bar displays menu
names, not command names.

= “Creating a Menu” on page 226

VisualWorks Cookbook, Rev. 2.0

Getting the Active Window

Getting the Active Window

(ScheduledControllers >

Strategy

The ScheduledControllers object keeps track of all controllers,
including the active controller. You can ask the active controller
for its associated window.

Although this maneuver is rarely needed in application code, it
is often useful in ad hoc experiments when you want to display
an object on a Workspace window.

Basic Step

O Ask the active controller for its associated window (that is,
the topComponent associated with the controller's view).

| win |
win := ScheduledControllers

activeController view topComponent. "Basic Step"
win moveTo: 20@20.

See Also
s “Getting a Window from a Builder” on page 85

VisualWorks Cookbook, Rev. 2.0 99

Chapter 4 Windows

Getting the Window at a Specific Location

| _—— cursor location

Strategy

Basic Steps

100

When your application performs an operation on a window that
is pointed to by the user (using the mouse), you can access the
window as shown in the basic steps. Drag-and-drop operations,
in particular, rely on this technique.

1. Prompt the user to point at a window by sending a waitButton
message to the current controller’s sensor. It's a good idea
to change the cursor while waiting, so the user knows that
input is expected.

2. Get the cursor location in screen coordinates by sending a
globalCursorPoint message to the controller’'s sensor.

3. Get the window at the cursor point by sending a windowAt:
message to the default Screen. The argument is the cursor
location. (In the example, the window’s component flashes
so you can verify that the correct window was accessed.)

| sensor pt window |
sensor := ScheduledControllers activeController sensor.

Cursor bull showWhile: [sensor waitButton]. "Basic Step 1"
pt := sensor globalCursorPoint. "Basic Step 2"
window := Screen default windowAt: pt. "Basic Step 3"
window component flash.

VisualWorks Cookbook, Rev. 2.0

Closing a Window

Closing a Window

window
sensor

Strategy

The window manager provides the user with a means of closing
a window. Closing a window programmatically is useful mainly
when the user exits from the application in some other way,
such as clicking on a Quit button. You might also want to close
a window as a side effect of some conclusive user action.

As with a window-closing event that is initiated using the
window manager, the techniques shown below are safe—that
is, the window’s model is notified in case it wants to take some
precaution such as confirming the action. The variant shows
how to set up such a confirmer.

Basic Step

When an application model is running one or more windows,
you can close it (or all of them at once, if there is more than one)
by sending closeRequest to the application.

O Ask the application model to close its associated windows.

| editor |

editor := Editor2Example new.

editor openlinterface: #windowSpec.

(Delay forSeconds: 1) wait.

editor closeRequest. "Basic Step"

VisualWorks Cookbook, Rev. 2.0 101

Chapter 4 Windows

Variant

See Also

102

Arranging for Final Actions When Closing a Window

When an application window has been asked to close, it first
sends a changeRequest message to its application model. If the
model answers false, the window won't close; if it answers true,
the window proceeds to close itself. Thus, the model has a
chance to verify that no damage will be done if the window is
closed.

For example, as shown below, the Image Editor (UIMaskEditor)
uses a changeRequest method to confirm the user’s intent to
abandon any unsaved changes in the image.

O Implement a changeRequest method in your application model,
which answers true when the window can close and false
otherwise.

changeRequest "Variant Step"
Asuper changeRequest
ifFalse: [false]
ifTrue: [(self modified or: [self magnifiedBitView controller
updateRequest not])
ifTrue:
[Dialog confirm: 'The image has been altered, but not installed.
Do you wish to discard the changes?']
ifFalse: [true]]

Notice also in the example above that the inherited version of
changeRequest is first invoked to preserve any precautions that a
parent class may have implemented.

s “Making a Window a Slave” on page 105

VisualWorks Cookbook, Rev. 2.0

Expanding and Collapsing a Window

Expanding and Collapsing a Window

Strategy

Basic Steps

See Also

Wizual ks

VisualWorks

File Browse Tools Changes Database Window Help

Window managers typically provide a means of collapsing (icon-
ifying) a window and expanding it back to its normal state. You
can also control that behavior programmatically.

. Send a collapse message to the window.
. Send an expand message to the window.

| win |

win := (Editor2Example open) window.

win display.

(Delay forSeconds: 1) wait.

win collapse. "Basic Step 1"
(Delay forSeconds: 1) wait.

win expand. "Basic Step 2"

“Hiding a Window” on page 104
“Making a Window a Slave” on page 105

VisualWorks Cookbook, Rev. 2.0 103

Chapter 4 Windows

Hiding a Window

Strategy

Basic Steps

104

A window is a relatively expensive object, because it holds a
visual component that is often bulky and because it allocates a
display surface using the window manager. When your applica-
tion needs to open and close a window repeatedly, it is not
necessary to reconstruct it each time. Instead, you can unmap it,
which hides the window without disassembling it. Then you
can simply map it to redisplay it.

1. Ask the window to unmap itself.
2. Ask the window to map itself.

| win |

win := (Editor2Example open) window.

win display.

(Delay forSeconds: 1) wait.

win unmap. "Basic Step 1"
(Delay forSeconds: 1) wait.

win map. "Basic Step 2"

VisualWorks Cookbook, Rev. 2.0

Making a Window a Slave

Making a Window a Slave

Master

71 Read Only

Class Names Class Comment
ActionButton
ActionButtonSpecii
ActionButton¥iew; Slave

AdHocQueryTool
AlignmentLahel
AlignmentOrigin
Annotatedidethod
ApplicationDialog
Applicationtadel
ApplicationStands
Application'indoy
Application'indoy
ArhitraryCompane;
Argumentyariable
ArithmeticLoopho
Arithmeticvalue
Array
ArrayedCallection;
AspectAdaptor
AspectEnumeratol
Assignmentiode
Association
AutoscrollingView

Strategy
In a multiwindow application, it is often helpful to close all
secondary windows automatically when the user closes the
main window. In this situation, the main window is called the
master window and the secondary windows are called slave
windows.

Basic Steps

1. Tell the master window which application model to inform
of its events.

2. Tell the master window to be a master.

3. Tell the slave window which application model will relay
events from the master window.

4. Tell the slave window to be a slave.

| app masterWin slaveWin |
app := Editor1Example new.
masterWin := (app openinterface) window.

masterWin
label: 'Master';
application: app; "Basic Step 1"
beMaster. "Basic Step 2"

VisualWorks Cookbook, Rev. 2.0 105

Chapter 4 Windows

Variants

106

slaveWin := (Editor2Example open) window.

slaveWin
label: 'Slave';
application: app; "Basic Step 3"
beSlave. "Basic Step 4"

V1. Make Windows Equal Partners

When you want to be able to close all of your application’s
windows by closing any one of them, make them partners
instead of master and slaves.

0 Tell the windows to be partners.

| app winl win2)|
app:= EditorlExample new.

winl := (app openinterface) window.
winl
label: 'Partner 1';
application: app;
bePartner. "V1 Step"

win2 := (Editor2Example open) window.
win2
label: 'Partner 2';
application: app;
bePartner. "V1 Step"

V2. Choosing the Events That Are Sent

By default, master and partner windows broadcast the
following events: #close, #collapse, and #expand. You can remove any
of those events, and you can add any of the following: #bounds,
#enter, #exit, #hibernate, #reopen, and #release.

O Tell the master or partner window which events to
broadcast.

VisualWorks Cookbook, Rev. 2.0

Making a Window a Slave

| app masterWin slaveWin |
app := Editor1Example new.

masterWin := (app openinterface) window.
masterWwin
label: 'Master';
application: app;
beMaster;
sendWindowEvents: #(#close #collapse
#expand #hibernate #reopen). "V2 Step"

slaveWin := (Editor2Example open) window.
slaveWin

label: 'Slave';

application: app;

beSlave.

V3. Choosing the Events That Are Received

By default, slave and partner windows mimic the following
events: #close, #collapse, and #expand. Controlling the events that
are received lets each slave be selective according to its needs.

O Tell the slave or partner window which events to receive.

| app masterWin slaveWin |
app := Editor1Example new.

masterWin := (app openinterface) window.
masterWin

label: 'Master';

application: app;

beMaster.

slaveWin := (Editor2Example open) window.
slaveWin
label: 'Slave’;
application: app;
beSlave;
receiveWindowEvents: #(#close). "V3 Step"

VisualWorks Cookbook, Rev. 2.0 107

Chapter 4 Windows

Setting a Window’s Icon

WizualWorks Editor2zExample
default icon help icon

Strategy
Under window managers that support iconified windows, the
default icon appears as shown in the illustration above. You
can assign a different icon, perhaps a custom icon that you
have created.
Basic Step
0 Tell the window which icon to use. (If your window manager
supports iconification, try collapsing the window after you
open it.)
| helplcon win |
helplcon := Icon image: VisualLauncher BWHelp24.
win := (Editor2Example open) window.
win icon: helplcon. "Basic Step"
See Also

= “Creating an Icon” on page 682

108 VisualWorks Cookbook, Rev. 2.0

Chapter 5

Labels

Creating a Textual Label

Creating a Graphic Label

Supplying the Label at Run Time
Changing Font, Emphasis, and Color
Building a Registry of Labels

See Also
= “Widget Basics” on page 53

VisualWorks Cookbook, Rev. 2.0

110
111
113
116
118

109

Chapter 5 Labels

Creating a Textual Label

Strategy

Basic Steps

See Also

110

Logo
ko
/
N L
itany Hands Shrimpplckers
* Label
Serving Shrimps For 100 Years Label: | Many Hands Shrimppickers,

1D: | #extlogo
Font: Large 0
[Opague [Lahel I3 Image

Ok | Cancel |

A label is most often used in conjunction with another widget,
such as a field, to describe the purpose of the field. It is also
used by itself as a title for a group of widgets or a window. Since
the text of a label can be changed while the application is
running, a label can also be used for read-only display.

Multiline label: A label accommodates only a single line of text.
For a multiline label, use a separate label for each line or use a
read-only text widget.

Online example: LogoExample

1. Use a Palette to place a label widget on the canvas. Don't
worry about the size—it will expand to accommodate your
text. Leave the label selected.

2. In a Properties Tool, fill in the label’'s Label property with the
text of the label.

3. Apply the properties and install the canvas.

= “Changing the Fonts Menu” on page 587

VisualWorks Cookbook, Rev. 2.0

Creating a Graphic Label

Creating a Graphic Label

Logo

ko
¥ —]
RN L
itany Hands Shrimpplckers

Serving Shrimps For 100 Years

Lahel ‘
Label: | #logo,
1D: | #logo
Font: Helv3o =]

[Opanue W Label Is Image

OK | Cancel |

Strategy

Use a graphic label when you want to add a pictorial element to
an interface. The graphic can be changed while the application
is running, so you can also use a graphic label to represent a
changing aspect of the model pictorially.

Passive vs. active: A graphic label is passive. Use a graphic
button when the graphic is meant to respond to a mouse click.

Scroll bars: For a large graphic that requires scroll bars, insert
the graphic in a view holder instead.

Basic Steps
Online example: LogoExample
1. Use a Palette to place a label widget on the canvas, and
leave the label selected.

2. In a Properties Tool, fill in the label’'s Label property with the
name of the method that you will create to supply the
graphic image (in the example, logo). Do not prefix the name
with the pound sign (#); this will be added automatically.

VisualWorks Cookbook, Rev. 2.0 111

Chapter 5 Labels

3. In Properties Tool, turn on the Label is Image property.
4. Apply the properties and install the canvas.

5. Use the Image Editor or other means to create the graphic
image and install it in the application model, using the
method name from step 2. Put the method in a class
protocol named resources.

Hint: The graphic will appear in the running application. You
can see the graphic in the canvas if you install the image
resource before you fill in and apply the label’s properties.

See Also
= “Giving a Button a Graphic Label” on page 167
= “Integrating a View into an Interface” on page 389
= “Creating a Graphic Image” on page 658

112 VisualWorks Cookbook, Rev. 2.0

Supplying the Label at Run Time

Supplying the Label at Run Time

Logo Logo
G
&
R L L.
tany Hands Shrimppickers idaryy Hands Bhrimppickers

Serving Shrimps For 100 Years Serving Shrimps For 124 Years

. Animate logo

canvas run-time window

Strategy

You can change the content of a label programmatically while
the application is running.

This technique enables you to use a label instead of a field for
read-only display of a text. The advantage is that a label

requires less mechanism than a field (no instance variable, no
accessing method, and no initialization code). The disadvantage
is that updating a label is more awkward than updating a field.

ﬁ Caution: When you supply a longer text or a larger graphic, you
run the risk of overlapping neighboring widgets, if any.

Basic Steps
Online example: LogoExample

1. In a method in the application model (such as postBuildwith:),
get the widget from the application model’s builder and
send a labelString: message to it. The argument is the new
label string.

2. When the replacement label is in the form of a ComposedText
(which can have boldness, color, etc.), get the widget from

VisualWorks Cookbook, Rev. 2.0 113

Chapter 5 Labels

the builder and send a label: message to it. The argument is
the composed text.

postBuildWith: aBuilder
"Update the slogan's text, and make the company name bold and red."

| slogan txt emph label |

"Insert the years-in-business into the slogan.”
slogan :='Serving Shrimps For '
, (Date today year - 1869) printString, ' Years'.
aBuilder componentAt: #slogan labelString: slogan. "Basic Step 1"

"Make the company name bold and red."
txt := 'Many Hands Shrimppickers' asText
emph := Array
with: #bold
with: #color->ColorValue red.
txt emphasizeFrom: 1 to: 10 with: emph.
label := Label
with: txt
attributes: (TextAttributes styleNamed: #large).

(aBuilder componentAt: #textLogo) label: label. "Basic Step 2"

Hint: The example updates a label before the canvas is opened,
but you can change the label string at any time after the inter-
face has been built.

Variant

Supplying a Graphic Label’'s Image at Run Time

Online example: LogoExample

O Get the widget from the builder and send a label: message to
it, with the new graphic as argument.

animateLogo
"Display the logo in successively larger sizes
(as a way of demonstrating dynamic updating
of a graphic label)."

114 VisualWorks Cookbook, Rev. 2.0

Supplying the Label at Run Time

| logo widget view animationRegion |

logo := self class logo.

widget := self builder componentAt: #logo.
animationRegion := widget bounds.

view := self builder composite.

10 to: 1 by: -1 do: [:factor |
(Delay forMilliseconds: 100) wait.
widget label: (logo shrunkenBy: factor @ factor). "Variant Step
view invalidateRectangle: animationRegion repairNow: true]

"

VisualWorks Cookbook, Rev. 2.0 115

Chapter 5 Labels

Changing Font, Emphasis, and Color

Strategy

Basic Steps

116

Logo

bold, red font

W
]
bt cicore)
itany Hands Shrimpplckers

Serving Shrimps For 124 Years

You specify a label's font by choosing the font in the label’s
properties. The chosen font applies to the entire label. Alterna-
tively, you can change the font programmatically or mix
emphases (bold, italic, etc.) and colors.

The advantage of mixing font emphases within a single label
rather than creating multiple labels is that the spacing between
the parts of the label will be preserved even when you run the
image on a platform that supplies different fonts.

Mixing fonts: Although you can mix font families in the same
label to the limited extent that you can apply or remove serifs
from a portion of the text, generally you must create a separate
label for each font family.

Online example: LogoExample

1. In a method in the application model (such as postBuildWwith:),
create a Text by sending an asText message to the label string.

2. Add the desired emphases to the text.

. Create a Label with the text and the desired font.

4. Get the widget wrapper from the builder (with componentAt:)
and install the new label with label..

w

VisualWorks Cookbook, Rev. 2.0

Changing Font, Emphasis, and Color

postBuildWith: aBuilder
"Update the slogan's text, and make the company name bold and red."

| slogan txt emph label |
"Insert the years-in-business into the slogan."
slogan := 'Serving Shrimps For '
, (Date today year - 1869) printString, ' Years'.
(aBuilder componentAt: #slogan) labelString: slogan.

"Make the company name bold and red."

txt := 'Many Hands Shrimppickers' asText. "Basic Step 1"
emph := Array "Basic Step 2"
with: #bold

with: #color->ColorValue red.
txt emphasizeFrom: 1 to: 10 with: emph.

label := Label

with: txt

attributes: (TextAttributes styleNamed: #large). "Basic Step 3"
(aBuilder componentAt: #textLogo) label: label. "Basic Step 4"

See Also
= “Applying Boldfacing and Other Emphases” on page 572
“Creating a Custom Text Style” on page 576
= “Setting Text Color” on page 585

VisualWorks Cookbook, Rev. 2.0 117

Chapter 5 Labels

Building a Reqistry of Labels

Strategy

Basic Steps

118

Logo

o
N
-]
tany Hands Shrimppickers
Serving Shrimps For 100 Vears v Label
Label: | #trademark,
ID: |
e e

[Opanue W Label Is Image

OK | Cancel |

When you plan to use the same label (such as a company name
or logo) in multiple interfaces, you can store it in a central
registry. The system will look for the label there when it does
not find the usual resource method.

Two separate registries are available, one for graphics and the
other for strings. The basic steps show how to register both
kinds of labels. The variant shows how to remove an entry from
a registry.

Memory usage: Use these registries sparingly, especially when
graphic images are involved rather than strings, because each
entry occupies memory until it is explicitly removed.

Registering a Graphic Label
Online example: LogoExample

1. To register a graphic image, send a visualAt:put: message to
the ApplicationModel class. The first argument is the name of
the label, as defined in the Label property of the widget. This

VisualWorks Cookbook, Rev. 2.0

Building a Registry of Labels

Variant

is usually done in a class-initialization method, so the
registration will occur whenever the class is filed into a new
image.

. To register a string label, send a labelAt:put: message to the

ApplicationModel class. The first argument is the name of the
label as defined in the Label property of the widget.

initialize
"LogoExample initialize"

"Register the graphic image for the trademark symbol."

ApplicationModel "Basic Step 1"
visualAt: #trademark
put: self trademark.

"Register the textual version of the trademark symbol."

ApplicationModel "Basic Step 2"
labelAt: #tm
put: (TM)".

3. Execute the initialization method.

Removing an Entry from a Registry
1. To get the graphic labels registry, send a visuals message to

the ApplicationModel class. To get the string labels registry,
send a labels message.

. The registry is a dictionary, so use the standard message

(removeKey:ifAbsent:) for removing an entry from a dictionary.
The first argument is the name of the label, as identified in
the Label property of the widget. The second argument is a
block containing the action to be taken if the label is not
found, frequently an empty block for no action.

"Visual registry"

| registry |
registry := ApplicationModel visuals. "Variant Step 1"
registry removeKey: #trademark ifAbsent: []. "Variant Step 2"

VisualWorks Cookbook, Rev. 2.0 119

Chapter 5 Labels

"Labels registry"
registry := ApplicationModel labels. "Variant Step 1"
registry removeKey: #tm ifAbsent: []. "Variant Step 2"

120 VisualWorks Cookbook, Rev. 2.0

Chapter 6

Input Fields

Creating an Input Field

Restricting the Type of Input

Formatting Displayed Data

Validating the Input

Modifying a Field's Pop-Up Menu
Connecting a Field to Another Field
Restricting Entries in a Field (Combo Box)
Moving the Insertion Point

See Also
= “Widget Basics” on page 53

VisualWorks Cookbook, Rev. 2.0

122
125
129
132
139
143
146
150

121

Chapter 6 Input Fields

Creating an Input Field

SliderZ Example

Two-Dimensional Slider

| — input field

Month | |

veur

Strategy

122

An input field is used for both entering and displaying data. You
can also use a field in read-only mode when you just want to
display data. When a field has a short list of valid entries,
consider using a menu button or a combo box instead.

A field is designed to use some kind of value model to manage
the data it presents. When the field accepts input from a user,
it sends this data to the value model for storage; when the field
needs to update its display, it asks its value model for the data
to be displayed.

The basic kind of value model for a field is a value holder (an
instance of ValueHolder), which stores the data by holding it in an
instance variable. A value holder is most appropriate for data
that is not held elsewhere in the application. If the relevant data
is to be held in a domain model, you can set up the field with
another kind of value model, namely, an aspect adaptor (an
instance of AspectAdaptor) which stores and retrieves the data
directly from the domain model. Otherwise (if a value holder is
used), the application model must be programmed to copy the
relevant data between the domain model and the value holder.

VisualWorks Cookbook, Rev. 2.0

Creating an Input Field

Basic Steps

Online example: Slider2Example

1.

2.

Use a Palette to add a field to the canvas (such as the Month
field).

Optionally, add a label to the canvas, and fill in the Label
property to describe the field’'s contents.

. Use the widget handles to size and position the field. Leave

the field selected.

. In a Properties Tool, fill in the field’'s Aspect property with the

name of the method (month) that will return a value model for
the field’s data.

. Apply the properties and install the canvas.
. Use the canvas’s define command or a System Browser to

add an instance variable (month) to the application model.
The instance variable will hold the value model for the
field's data.

. Use the canvas’s define command or a System Browser to

create the aspect method that you named in step 3 (month).

month "Basic Step 7"
month

. Use a System Browser to initialize the instance variable you

created in step 6 (month), either in the aspect method or in a
separate initialize method. In this example, you use the latter
to initialize the variable with a value holder that holds the
desired month. (You create the value holder by sending
asValue to the data object.)

initialize
month := (Date nameOfMonth: 1) asValue. "Basic Step 8"
year := 1900 asValue.

dateRange := (0@1) asValue.
dateRange onChangeSend: #changedDate to: self.

VisualWorks Cookbook, Rev. 2.0 123

Chapter 6 Input Fields

Variants

V1. Aligning a Field’s Contents

O Set the field’'s Align property to Left (to start the data at the
left side of the field), Center (to center the data), or Right (to
place the data against the right margin).

V2. Creating a Read-Only Field
O Turn on the field's Read Only property.

V3. Restricting the Size of User Input

O In the field's Size property, enter the number of characters
that you want to allow. (When the user tries to enter char-
acters beyond that limit, they are ignored.)

See Also
= “Adding a Menu Button” on page 236
= “Adapting Domain Models to Widgets” on page 703

124 VisualWorks Cookbook, Rev. 2.0

Restricting the Type of Input

Restricting the Type of Input

FieldTypeExample

Entryis converted

31152 pm 44— .
Time s to time

Money $45,997.21,

Strategy

You specify the type of input that a field is to accept by setting
its Type property. This property tells the field to convert the
user’s input string into an appropriate kind of object before
sending it to the value model. If the conversion cannot be
performed, the field flashes and continues to display the unac-
cepted string without storing it in its value model. When the
field updates its display with data from its value model, it
converts the data object to a display string.

You can choose from the following data types:

String—Input is stored as an instance of ByteString. This is the
default property setting.

Symbol—Input is stored as an instance of Symbol and is
displayed with a prepended pound sign (#). Useful for
programming applications that manipulate method selec-
tors.

Text—Input is stored as an instance of Text, which can have
emphasis (boldness, etc.).

Number—Input is stored as an appropriate subclass of
Number. Acceptable input includes literal expressions for
integers, single or double floating-point numbers, scientific
notation, or radix notation.

Password—Input is stored as a string, with an asterisk (*)
displayed for each character the user enters. (The real char-
acters are sent to the field's value model.)

Date—Input is converted into an instance of Date.
Time—Input is converted into an instance of Time.

Timestamp—Input is converted into an instance of Timestamp,
which combines a date and a time.

VisualWorks Cookbook, Rev. 2.0 125

Chapter 6 Input Fields

Basic Steps

Variant

126

= FixedPoint(2)—Input is converted to an instance of FixedPoint
that represents a fixed point number with two decimal
places. Useful for applications that manipulate monetary
amounts.

= Boolean—Input is stored as an instance of Boolean. Acceptable

values are true and false.
= ByteArray—Input is stored as an instance of ByteArray.
= Object—Input is evaluated as a Smalltalk expression; the

resulting object is stored as the field’'s value. The field redis-

plays this object using the object’s printString method.

The Format property provides predefined formatting alternatives

for some of these types.

You can also add a custom data type to the list, as described in

the variant below.

1. Select the field in the canvas.

2. In the Properties Tool, set the field’'s Type property to the
desired data type.

Hint: Ensure that the field is initialized with the appro-
priate type of data.

3. Apply the properties and install the canvas.

Creating a Custom Data Converter

Online example: FieldTypeExample

This example shows how to create a data converter for handling

an instance of Time. Note this converter, as given below, is
unnecessary, because you can set the Type property to Time.
However, you can use it as a model for building converters for
other kinds of objects.

1. Use a Palette to add a field to the canvas. Leave the field
selected.

VisualWorks Cookbook, Rev. 2.0

Restricting the Type of Input

2. In a Properties Tool, fill in the Aspect property with the name
of the method (time) that will return a value model for the
field. Apply the property and install the canvas.

3. Use a System Browser to create an instance method (timeTo-
Text) in the initialize algorithm protocol of the TypeConverter class.
Use an existing method in that protocol as your template.
The method is responsible for initializing the getBlock and
putBlock of a PluggableAdaptor (ignore the updateBlock).

4. Use a System Browser to create a class method (onTimeValue:)
in the instance creation protocol of TypeConverter. Use an existing
method in that protocol as your template. The method is
responsible for returning a new instance of TypeConverter,
which is initialized using the method from the preceding
step.

5. Ensure that the object responds to the messages sent to it
by the method in step 3 (often printOn: will suffice).

6. Use a System Browser to create the instance variable (time)
that you named in step 2 in the application model (FieldType-
Example).

7. Use a System Browser to create the aspect method (time) for
the instance variable. The method is responsible for initial-
izing the variable with a TypeConverter, using the instance
creation method you defined in step 4.

timeToText "Variant Step 3"
"Initialize the receiver to perform the action
when assigned a value."

self
getBlock: [:m | m value == nil
ifTrue: [String new]
ifFalse: [m value printString]]
putBlock: [:m :v | v iSEmpty
ifTrue: [m value: nil]
ifFalse: [m value: (Time readFrom: v readStream)]]
updateBlock: [:m :a:p | true]

onTimeValue: aValue "Variant Step 4"
N(self on: aValue) timeToText

VisualWorks Cookbook, Rev. 2.0 127

Chapter 6 Input Fields

time "Variant Step 7"
Mime isNil
ifTrue: [time := (TypeConverter onTimeValue: Time now asValue)]
ifFalse: [time]

128 VisualWorks Cookbook, Rev. 2.0

Formatting Displayed Data

Formatting Displayed Data

FieldTypeExample

Time 311:52 pm

Money | $45,99?.21.§47 Entry is formatted as money

Strategy

A field displays a string represention of the data stored by its
value model. For some types of data, the displayed string can
be formatted in various ways. For example, numbers can be
formatted as phone numbers, monetary units, percentages,
and so on.

The basic steps show how to use property settings to choose
among alternative predefined formats for certain types of data.
The first three variants describe some useful predefined
formats. The final variant describes how to create a custom
format programmatically.

For applications that are to be deployed in locations other than
the United States, VisualWorks offers a separate mechanism

(Locale objects) for adapting to local formatting conventions. This
mechanism is described in the International User’s Guide. For
this mechanism to take effect, you must set the Type property to
Number, Time, or Date, and leave the Format property setting blank.

Basic Steps
1. Select the field in the canvas.

2. In the Properties Tool, set the field’s Format property to the
desired data format. Note that the field's Type property
setting determines the kinds of available formats, if any.

3. Apply the properties and install the canvas.

VisualWorks Cookbook, Rev. 2.0 129

Chapter 6

Input Fields

Variants

130

V1. Displaying a U.S. Phone Number

1.
2.

3.

Select the field in the canvas.

In the Properties Tool, set the field's Type property by
selecting either String or Number, as desired.

In the Properties Tool, set the field's Format property by

selecting either (@Q@@) @@@-@@@@ (for type String) or

(000) 000-0000 (for type Number). In a String format, the @ stands
for a single character. In a Number format, the 0 stands for
exactly one digit.

V2. Displaying a U.S. Dollar Amount

1.
2.

3.

Select the field in the canvas.

In the Properties Tool, set the field's Type property by
selecting either Number or FixedPoint(2), as desired.

In the Properties Tool, set the field's Format property by
selecting any of the formats that begin with $—for example,
$#,##0.00;[Red]($#,##0.00)

In formats such as this, the 0 stands for exactly one digit,
and the # stands for zero or one digit. This example also
specifies that negative numbers be displayed in red and
enclosed in parentheses.

V3. Displaying a Date

1.
2.

3.

Select the field in the canvas.

In the Properties Tool, set the field's Type property by
selecting Date.

In the Properties Tool, set the field’s Format property by
selecting a date format such as d-mmm-yy.

In formats such as this, the symbol d stands for the
minimum number of digits representing the day, mmm
stands for a three-letter abbreviation of the month name,
and yy stands for the two-digit year number.

VisualWorks Cookbook, Rev. 2.0

Formatting Displayed Data

V4. Creating a Custom Format
Online example: FieldTypeExample

A TypeConverter enables a field to display a number in a special
format, such as a monetary format. You define the format as a
string that uses the same conventions as the predefined
formats. For more information about format conventions, use a
System Browser to read the class comments for the NumberPrint-
Policy, TimestampPrintPolicy, and StringPrintPolicy classes.

This example shows how to create a format for a monetary
amount. Note this format, as given below, is unnecessary,
because you can set the Format property to a predefined format.
However, you can use it as a model for building other kinds of
formats.

1. Use a Palette to add a field to the canvas.

2. Fill in the Aspect property, naming the method (price) that
returns a value model for the field. Apply the property and
install the canvas.

3. Use a System Browser to create the instance variable (price)
in the application model.

4. Use a System Browser to create the aspect method (price), in
which you initialize the value to a TypeConverter that uses the
desired format string.

price "V4 Step 4"
Mprice isNil
ifTrue: [price := (TypeConverter
onNumberValue: 0 asValue
format: 'Sttt #Ht i AH)]
ifFalse: [price]

VisualWorks Cookbook, Rev. 2.0 131

Chapter 6

Input Fields

Validating the Input

Strategy

132

FieldValid InputExample FieldValidationExample FieldValidation2 Example
Usemame:
HF7o0
Pi4039,

Valid partial entry
is completed for you
(Try S, A, Hor 1)

Punctuation is not accepted

Access Code:

P

Frequently, only certain entries are valid for a particular field.
For example, you might want to restrict input to a numeric
range such as 0 to 999 or check for undesirable characters.

Validating whole entries: You can arrange for a typed entry to
be validated when the user accepts it (that is, when the user
chooses accept from the field’s <Operate> menu, or presses the
<Tab> or <Return> key to move focus out of the field). You
arrange for validation by specifying one or more validation call-
backs (messages for the widget to send when asked to accept
input or change focus). You implement corresponding methods
in the application model to test the input, warn the user if it is
unacceptable, and, if desired, prevent further actions until
valid input is entered. The basic steps implement the following
callbacks for a field that accepts strings:

= A change validation callback, which prevents input from
being passed to the value model unless the it is valid

= An exit validation callback, which prevents the user from
moving focus out of the field until the input is corrected

The first variant implements the same kinds of callbacks for a
field whose Type property is set to Number.

Character-by-character validation: You can arrange for the
user to get immediate feedback after typing an invalid char-
acter. The character might be illegal under any circumstances,
in which case you can simply intercept the keyboard event and
check the character (second variant). Or you might want to
validate the partly completed entry against a list of valid entries
after each keystroke (third variant).

VisualWorks Cookbook, Rev. 2.0

Validating the Input

Basic Steps

Validating String Entries

Online example: FieldValidinputExample

1.

2.

Use the Palette to add a field labeled Username: to the canvas.
Leave the field selected.

In a Properties Tool, fill in the Aspect property with the name
of the method (username) that will return a value model for
the field. Leave the Type property set to String.

. On the Validation page of the Properties Tool, fill in the Change

property with the name (validateUsername:) of the change vali-
dation callback. This specifies the method that will deter-
mine whether to accept input into the field’s value model.

. On the Validation page of the Properties Tool, fill in the Exit

property with the name (validateUsername:) of the exit valida-
tion callback. This specifies the method that will determine
whether the field can give up focus. In this example, the
same method is used for both change and exit validation.

. Apply properties and install the canvas.
. Use the canvas’s define command or a System Browser to

add an instance variable (username) and aspect method
(username) to the application model. Initialize the instance
variable with a value model—for example, in an initialize
method.

. Use a System Browser to create the method (validateUsername:)

corresponding to the callback you named in steps 3 and 4.
Note that, because the name ends in a colon, the method
must accept a Controller as an argument.

. Send an editValue message to the field’s Controller to obtain the

user’s entry. The entry must be obtained from the controller
instead of the value model, because validation occurs
before the entry has been passed to the value model.

. Validate the entry (in this case, check its length).
10.

If the entry is valid, return true. This permits the field to
pass the entry to the value model and, if requested, give up
focus.

VisualWorks Cookbook, Rev. 2.0 133

Chapter 6

Input Fields

Variants

134

11.

If the user’s entry is not valid, warn the user and return
false. This tells the field to wait until the user enters a valid
entry.

validateUsername: aController "Basic Step 7"
"Check the length of the entered username. Warn the user if the entered input
is too long."

| entry lengthLimit |
lengthLimit := 6.
entry := aController editValue. "Basic Step 8"

"I the username is too long, warn the user (and reject the input).”

Nentry size <= lengthLimit "Basic Step 9"
ifTrue: [true] "Basic Step 10"
ifFalse: [Dialog warn: 'Please enter only ', lengthLimit printString ,

" characters.’.
false] "Basic Step 11"

V1. Validating Non-String Entries

Online example: FieldValidinputExample

1.

2.

Use the Palette to add a field labeled Access Code: to the
canvas. Leave the field selected.

In a Properties Tool, fill in the Aspect property (accessCode)
and change the Type property (in this example, to Number).

. On the Validation page of the Properties Tool, set the Change

and Exit properties (in this case, enter validateAccessCode:).

. Apply properties and install the canvas.
. Use the canvas’s define command or a System Browser to

add an instance variable (accessCode) and aspect method
(accessCode) to the application model. Initialize the instance
variable with a value model.

. Use a System Browser to create the method

(validateAccessCode:) corresponding to the callback you named
in steps 3.

VisualWorks Cookbook, Rev. 2.0

Validating the Input

7. Send a hasEditvalue message to the field’s Controller to find out
whether the user’s entry can be converted from a string to
the specified type (in this case, a number).

8. If the input string was successfully converted, send editValue
to the controller to obtain the converted entry.

9. If the input string could not be converted, warn the user
and return false to tell the field to wait for valid input.

10. Validate the successfully converted entry, if any (in this
case, check whether the number is in the correct range).

11. If the entry is valid, return true to pass the entry to the value
model and, if requested, give up focus.

12. If the user’s entry is not valid, warn the user and return false
to wait until the user enters a valid entry.

validateAccessCode: aController "V1 Step 6"
"Check whether the user entered a number. If not, warn the user. If so, check
whether the number is in the right range. If not, warn the user."

| entry lowerLimit upperLimit |
lowerLimit := 50.
upperLimit := 100.

"Test whether the input can be converted to a number.
If not, warn the user and reject the input. If so, get the number."

aController hasEditValue "V1 Step 7"
ifTrue: [entry := aController editValue.] "V1 Step 8"
ifFalse: [Dialog warn: 'Enter a number.’.

Malse]. "V1 Step 9"

"I the access code is in the wrong range, warn the user and

reject the input.”

AlowerLimit < entry) & (entry < upperLimit) "V1 Step 10"
ifTrue: [true] "V1 Step 11"
ifFalse: [Dialog warn: 'Enter a number between’, lowerLimit printString ,

"and ', upperLimit printString, ..
false] "V1 Step 12"

VisualWorks Cookbook, Rev. 2.0 135

Chapter 6

Input Fields

136

V2. Validating Each Keystroke

Online example: FieldValidation1Example

1.

In a Properties Tool, give the field an ID property (in the
example, the ID is codeField). Apply the property and install
the canvas.

. Use a System Browser to add a postBuildwith: instance method

to the application model (FieldValidationlExample), in which the
first task is to get the controller from the field.

. In the postBuildWith: method, send a keyboardHook: message to

the controller. The argument to keyboardHook: is a block that
takes two arguments: the keyboard event and the
controller.

. Inside the block, invoke the method (keyPress:) that you will

create to validate the keystroke. (You can also put the vali-
dation code directly inside the block.)

postBuildWith: aBuilder "V2 Step 2"
| ctrlr |
ctrlr := (aBuilder componentAt: #codeField) widget controller.
ctrlr keyboardHook: [:ev :c | "V2 Step 3"
self keyPress: ev]. "V2 Step 4"

. Use a System Browser to create the keyPress: method, which

takes the keyboard event as its argument, extracts the
character, and validates it.

. As the last step in the keyPress: method, return the event

when you want to forward the keyboard event for normal
processing. Return nil to bypass normal processing.

keyPress: ev "V2 Step 5"
"Validate the character."

| ch ascii |
ch := ev keyValue.

"Allow tab and cr."

ascii := ch aslInteger.

(ascii == 9 or: [ascii == 13])
ifTrue: [*ev].

VisualWorks Cookbook, Rev. 2.0

Validating the Input

ch isAlphaNumeric
ifFalse: [
Dialog warn: 'Please enter only letters and digits'.
Mnill.
Nev "V2 Step 6"

V3. Validating a Partial Entry After Each Keystroke
Online example: FieldValidation2Example

1. Use a System Browser to add a postBuildWith: method to the
application model (FieldValidation2Example) in an interface opening
protocol.

2. In the postBuildWith: method, register an interest in the field’s
value holder (productCode).

3. In the postBuildwith: method, send a continuousAccept: message to
the field’'s controller, with an argument of true.

4. Use a System Browser to add the change method that was
named in step 2 (codeChanged), in a change messages protocol.
This method is responsible for performing the validation.

postBuildWith: aBuilder "V3 Step 1"
"Ask the field's controller to accept continuously -- that is, to
return the entry to the model after each keystroke."

| ctrlr |

self productCode onChangeSend: #codeChanged to: self. "V3 Step 2"

ctrlr := (aBuilder componentAt: #codeField) widget controller.

ctrlr continuousAccept: true. "V3 Step 3"
codeChanged "V3 Step 4"

"The code entry was changed -- if the (partial) entry
uniquely identifies a valid product code, fill in the rest
of the code for the user."

| entry qualifiedCodes holder |
holder ;= self productCode.
entry := holder value.

"If the partial entry uniquely identifies a valid product code,

VisualWorks Cookbook, Rev. 2.0 137

Chapter 6 Input Fields

fill in the rest of the code for the user."
entry ;= entry, ™.
qualifiedCodes := OrderedCollection new.
self validCodes do: [:code |
(entry match: code)
ifTrue: [qualifiedCodes add: code]].

qualifiedCodes size ==
ifTrue: [
holder retractinterestsFor: self.
holder value: qualifiedCodes first.
holder onChangeSend: #codeChanged to: self].

See Also

= “Creating a Custom Adaptor (PluggableAdaptor)” on
page 717

138 VisualWorks Cookbook, Rev. 2.0

Modifying a Field’s Pop-Up Menu

Modifying a Field’'s Pop-Up Menu

again
undo
copy
cut
paste
do it
print it
inspect
accept
cancel
hardcopy

normal
menu

Strategy

capitalize
again again
undo Field MenuExample urgao
copy copy
cut cut
paste E. ded menu Hew "accept’ paste
accept L accept
cancel abcd, abcd cancel
Reduced menu Ho menu

unda | abcd ahcd

copy

cut

paste

accept

cancel

By default, a field has the menu of text-editing commands that
is shown above. You can add or omit commands, override the
action that is associated with a command, or disable the menu

entirely.

A field’s menu is usually oriented toward commands. Although
you can arrange for a field’s menu to contain a list of valid
entries, this is properly the job of a menu button.

Basic Steps

B1. Adding a Command

Online example: FieldMenuExample

1. In a canvas, select the field.

2. In a Properties Tool, fill in the field’s Menu property with the
name of the method that you will create to supply a custom
menu (expandedMenu).

VisualWorks Cookbook, Rev. 2.0

139

Chapter 6 Input Fields

3. Use a System Browser to add the menu-creating method
(expandedMenu) to the application model in a menu messages
protocol.

expandedMenu "Bl Step 3"
"Add a command to the default text-editing menu.”

[mb |

mb := MenuBuilder new.

mb
add: ‘capitalize’->#capitalize;
ling;
addDefaultTextMenu.

mb menu

4. Use a System Browser to add the method (capitalize) that is
invoked by the newly added command. Put the method in
the menu messages protocol.

capitalize "Bl Step 4"
"Capitalize the field's contents."

self field1 value: (self field1 value
collect: [:ch | ch asUppercase]).

B2. Omitting a Command

Do basic steps 1 through 3 above (substituting reducedMenu for

expandedMenu).

O In the menu-creating method, build the default menu from
its parts, omitting the command that you don't want to
include.

reducedMenu
"Omit one of the commands (#again) from the default text-editing menu."

[mb |
mb := MenuBuilder new.
mb "B2 Step"

add: 'undo’->#undo;

140 VisualWorks Cookbook, Rev. 2.0

Modifying a Field’s Pop-Up Menu

line;

addCopyCutPaste;

line;

addAcceptCancel.
“mb menu

Variants

V1. Overriding a Default Command

Do basic steps 1 through 3 above (substituting newAcceptMenu for
expandedMenu).

1. In the menu-creating method, build the default menu from
its parts. For the command that you want to override,
provide the name of your overriding method as the value
(#newAccept).

newAcceptMenu
"Redefine the 'accept' command by invoking a local alternate."

| mb |
mb := MenuBuilder new.
mb
addFindReplaceUndo;
ling;
addCopyCutPaste;
ling;
add: 'accept->#newAccept; "V1 Step 1"
add: ‘cancel'->#cancel.
mb menu

2. Use a System Browser to create the overriding method
(newAccept).

newAccept V1 Step 2"
Transcript show: self field3 value; cr.

VisualWorks Cookbook, Rev. 2.0 141

Chapter 6 Input Fields

V2. Disabling a Field’'s Menu

Do basic steps 1 through 3 (substituting noMenu for expanded-
Menu).

O In the menu-creating method (noMenu), return a block
containing nil. When asked for its menu, the field will
evaluate this block, and no menu is displayed.

noMenu

Afnil] "2 Step"

See Also
= “Creating a Menu” on page 226
= “Adding a Menu Button” on page 236

142 VisualWorks Cookbook, Rev. 2.0

Connecting a Field to Another Field

Connecting a Field to Another Field

FieldConnectionExample

- One -vway connection

e~ Tvro —vray connection

a | 10 b | 44.7214

! i

a2z | 100 bz | 2000

Strategy

When the value in a field depends on the value in another field,
you can link them using the built-in dependency mechanism.

Use a one-way connection when only one of the fields can affect
the other, as when a data field updates a total field.

Use a two-way connection when a change in either field affects
the other field, as when a lookup of a customer record can be
initiated by entering either the customer’s name or the
customer’s ID number.

Basic Step

Creating a One-Way Connection
Online example: FieldConnectionExample

1. Use a System Browser to add a postBuildWith: method to the
application model in an interface opening protocol.

2. In the postBuildWith: method, register an interest in the field
that originates updates, naming a method to be invoked
when that field is changed (changedA).

postBuildWith: aBuilder "Basic Step 1"
self a onChangeSend: #changedA to: self. "Basic Step 2"

VisualWorks Cookbook, Rev. 2.0 143

Chapter 6 Input Fields
3. Use a System Browser to add the change method (changedA)
to the application model in a change messages protocol. That
method updates the dependent field’'s model.
changedA "Basic Step 3"
self aSquared value: (self a value raisedTo: 2).
Variant

144

Creating a Two-Way Connection

Online example: FieldConnectionExample

1.

Use a System Browser to add a postBuildWith: method to the
application model (FieldConnectionExample) in an interface opening
protocol.

. In the postBuildWith: method, register interests in both fields,

naming the method to be invoked when each field is
changed (changedB, changedBSquared).

postBuildWith: aBuilder "Variant Step 1"
self b onChangeSend: #changedB to: self. "Variant Step 2"
self bSquared onChangeSend: #changedBSquared to: self.

. Use a System Browser to add the change methods (changedB,

changedBSquared) to the application model in a change messages
protocol. Those methods update the dependent field’s
model in a way that avoids circularity.

changedB "Variant Step 3"
"Use setValue: to bypass dependents, thus avoiding circularity."
self bSquared setValue: (self b value raisedTo: 2).

"Since dependents were bypassed when the model was updated,
update the view manually."
(self builder componentAt: #b2) widget update: #value.

"

changedBSquared “Variant Step 3
"Use setValue: to bypass dependents, thus avoiding circularity."
self b setValue: (self bSquared value raisedTo: (1/2)).

VisualWorks Cookbook, Rev. 2.0

Connecting a Field to Another Field

"Since dependents were bypassed when the model was updated,
update the view manually."
(self builder componentAt: #b) widget update: #value.

See Also
= “Connecting a Slider to a Field” on page 267

VisualWorks Cookbook, Rev. 2.0 145

Chapter 6 Input Fields

Restricting Entries in a Field (Combo Box)

Strategy

Basic Steps

146

ComboBoxExample Combo ConversionExample

Select an employee:
Menu lists choices for field

N
Caurier -

[Tami Hayes t
Leo Mazon —

Frequently, an input field must be restricted to a group of
standard entries. For example, a field that identifies the
shipping instructions in an order-entry application might use a
standard set of entries because there are a limited number of
ways to ship a package. A combo box is ideally suited to this
situation because it combines a field with a pull-down list of the
standard entries for the field. The basic steps show how to
create a combo box.

A menu button can be used in the same situation, but more
programming effort is required to coordinate it with the field.

Online example: ComboBoxExample

1. Use a Palette to add a combo-box widget to the canvas.
Leave the combo box selected.

2. In a Properties Tool, fill in the combo box’s Aspect property
with the name of the method (in the example, shipper) that
returns a value model for the combo box.

3. In the combo box’s Choices property, enter the name of the
method (shipperChoices) that returns a collection of entry
choices.

4. In the combo box’s Type property, choose the type of input
the widget is to accept (see “Restricting the Type of Input”).
Set the Format property, as appropriate (see “Formatting
Displayed Data”).

VisualWorks Cookbook, Rev. 2.0

Restricting Entries in a Field (Combo Box)

Variant

. Apply the properties and install the canvas.
. Use a System Browser or the Define button to create the

instance variable (shipper) and accessing method (shipper) for
the aspect.

shipper "Basic Step 6"
Ashipper

. Use a System Browser to create the method that you named

in step 3 (shipperChoices). The method returns a value holder
containing the list of valid entries. The value holder can be
held in an instance variable (as in the example).

shipperChoices "Basic Step 7"
shipperChoices

. Initialize the field's aspect variable, typically in an initialize

method. Initialize the variable with a value model
containing data of the type specified in step 4.

. Initialize the choices variable with a value holder containing

the list of valid entries. Initialize this list with data of the
type specified in step 4.

initialize

| list |
shipper :='Courier' asValue. "Basic Step 8"

list := List new.

list add: ‘Courier’; "Basic Step 9"
add: 'FedEX;
add: 'UPS;;
add: 'USPS'.

shipperChoices := list asValue. "Basic Step 9"

You can arrange for a combo box to display a list of choices that
are arbitrary objects (for example, a list of Employee objects). You
do this by supplying a print method and a read method that
translate the relevant objects into displayable elements (for

VisualWorks Cookbook, Rev. 2.0 147

Chapter 6 Input Fields

example, Strings or graphical images) and back. For example, in
ComboCoversionExample, the print method enables the combo box to
display Employee names in the pull-down list and, when an
Employee is selected, to display that Employee’s name in the field.
The read method enables the combo box to interpret the user’s
input as an Employee name, which can be matched with an
existing Employee, or used to create a new one.

Online example: ComboConversionExample

1. In the Properties Tool, set the Type property of the combo
box to Object.

2. Fill in the Print property with the name of a method for
converting the relevant objects to strings (in this example,
employeeToString:). The name must end with a colon.

3. Fill in the Read property with the name of a method for
converting strings to objects of the desired type (in this
example, stringToEmployee:). The name must end with a colon.

4. In the application model, create a print method with the
name you specified in step 2 (employeeToString:). This method
accepts an object from the choices list as an argument (in
this case, an instance of Employee).

5. In the print method, return a String that represents the
object from the choices list. In this example, display the
name of the Employee. The string is displayed in the combo
box’s pull-down list and also in the combo box’s field when
the choice is selected.

employeeToString: anEmployee "Variant Step 4"
"Return a String for representing the Employee in the combo box’s list and field."

AanEmployee name. "Variant Step 5"

6. Create a read method with the name you specified in step 3
(stringToEmployee:). This method accepts a String argument.

7. In the read method, return an object for the given String. In
this example, determine whether the String is the name of an
Employee in the choices list; if so return that Employee. Other-
wise, create a new Employee and add it to the choices list.

148 VisualWorks Cookbook, Rev. 2.0

Restricting Entries in a Field (Combo Box)

stringToEmployee: aString "Variant Step 6"
"Return an Employee corresponding to the given String. If the String
corresponds to the name of an Employee on the choices list, return that
Employee. Otherwise, create a new Employee and add it to the list."

| theEmp |

theEmp := self employeeChoices value "Variant Step 7"
detect: [:each | each name = aString]
ifNone: [nil].

theEmp isNil
ifTrue:
[theEmp := Employee new name: aString.
self employeeChoices value addLast: theEmp].

AtheEmp

See Also
“Restricting the Type of Input” on page 125
= “Formatting Displayed Data” on page 129

VisualWorks Cookbook, Rev. 2.0 149

Chapter 6 Input Fields

Moving the Insertion Point

FieldSelectionExample

[t Y [aw=

Suffix is highlighted Insertion point at end

Strategy

You can control the position of the insertion point in a field
programmatically. For example, the data in a field might have
a prefix that rarely changes—you could highlight the suffix for
convenient editing. In that case, the “insertion point” is actually
a portion of the field’s text, which will be replaced by the user’s
entry.

When the suffix has yet to be filled in, you can simply position
the insertion point at the end of the prefix.

Variants

V1. Highlighting a Portion of a Field
Online example: FieldSelectionExample

1. In a method in the application model, ask the field’s
wrapper to takeKeyboardFocus.

2. Tell the field’s controller the indices (character positions) of
the substring that is to be highlighted.

addPart
"Put a template in the partID field, then highlight the suffix."

| wrapper |
self partlD value: 'MW-0000".

wrapper := self builder componentAt: #part1.

wrapper takeKeyboardFocus. "V1 Step 1"
wrapper widget controller selectFrom: 4 to: 7. "V1 Step 2"

150 VisualWorks Cookbook, Rev. 2.0

Moving the Insertion Point

Hint: When you want to select the entire contents of the field,
just do step 1.

V2. Positioning the Insertion Point

1. In a method in the application model, ask the field’'s
wrapper to takeKeyboardFocus.

2. Tell the field’'s controller the character position at which to
place the insertion point.

addPart2
"Put a template in the partID2 field, then position the insertion point.”

| wrapper |
self partlD2 value: 'MW-'.

wrapper := self builder componentAt: #part2.

wrapper takeKeyboardFocus. "V2 Step 1"
wrapper widget controller selectAt: 4. "V2 Step 2"
151

VisualWorks Cookbook, Rev. 2.0

Chapter 7

Lines, Boxes, and Ovals

Separating Widgets with a Line 154
Grouping Widgets with a Box 156
Grouping Widgets with an Ellipse 158

VisualWorks Cookbook, Rev. 2.0 153

Chapter 7 Lines, Boxes, and Ovals

Separating Widgets with a Line

Strategy

Basic Steps

Variants

154

RoboCanvas

region

divider

Use a divider to provide visual separation between two sets of
interface components. It can be either vertical or horizontal.

A divider’s thickness is one pixel—for a thicker line, use a
region as described below.

Online example: LineExample

1. Use a Palette to add a divider to the canvas.
2. Use the widget handles to size and position the divider.

V1. Adding a Vertical Line

1. Use a Palette to add a divider to the canvas. Leave the
divider selected.

2. In the Properties Tool, turn on the divider’s Vertical orienta-
tion property. Apply the property.
3. Use the widget handles to size and position the divider.

VisualWorks Cookbook, Rev. 2.0

Separating Widgets with a Line

4. Install the canvas.

V2. Simulating a Thicker Line

1. Use a Palette to add a region to the canvas. Leave the region
selected.

2. Turn on the Thick property. Apply the property.

3. Use the widget handles to radically elongate the region,
merging two opposite sides and making it appear to be a
thick line.

4. Install the canvas.

VisualWorks Cookbook, Rev. 2.0 155

Chapter 7 Lines, Boxes, and Ovals

Grouping Widgets with a Box

Strategy

Basic Steps

156

RoboCanvas

box

O

When an interface begins to appear cluttered, the user of your
application may have trouble understanding how the widgets
relate to one another. As a visual aid, cluster the widgets in
logical groups. Spacing is one way to group widgets; another
way is to surround some groups with boxes.

A box can have a label embedded in its top border. Its line thick-
ness is one pixel. For a thicker line, use a region as described
below.

Online example: LineExample

1.

a bk wn

Use a Palette to add a box to the canvas. Leave the box
selected.

Use the widget handles to size and position the box.
Fill in the Label property, if desired.

Choose the label’s font.

Apply the properties and install the canvas.

VisualWorks Cookbook, Rev. 2.0

Grouping Widgets with a Box

Variants

V1. Adding a Box with Thicker Lines

1.

w

5.

Use a Palette to add a region to the canvas. Leave the region
selected.

. Turn on the desired Border thickness property.
. Use the widget handles to size and position the region.
. If you want the region to have a label, use a Palette to add a

label widget. Turn on the label's opaque property, fill in its
Label property, and then position it as desired.

Apply the properties and install the canvas.

V2. Changing a Box’s Colors

A box widget has no interior surface to color, so use a region
when you want a filled box.

To change the label color of a box, use a Properties Tool to
apply foreground color.

To change only the background color of the label, apply
background color.

To change the border color of a region, apply foreground
color.

To change the interior color of a region, apply background
color.

VisualWorks Cookbook, Rev. 2.0 157

Chapter 7 Lines,

Boxes, and Ovals

Grouping Widgets with an Ellipse

RoboCanvas

T regions

™~ colored regions

Strategy

For visual variety, you can make a region circular or elliptical
in shape rather than rectangular.

Basic Steps

Online example: LineExample

1.

w

158

Use a Palette to add a region to the canvas. Leave the region
selected.

. Turn on the region’s Ellipse property.
. Use the widget handles to size and position the region.
. If desired, use the Properties Tool to apply color to the fore-

ground (border) and/or background (interior).

. Apply the properties and install the canvas.

VisualWorks Cookbook, Rev. 2.0

Chapter 8

Buttons

Adding a Set of Radio Buttons
Adding a Check Box

Adding an Action Button

Giving a Button a Graphic Label
Turning Off Highlighting

See Also
= “Widget Basics” on page 53
= “Adding a Menu Button” on page 236

VisualWorks Cookbook, Rev. 2.0

160
162
164
167
168

159

Chapter 8 Buttons

Adding a Set of Radio Buttons

Strategy

Basic Steps

160

ButtonExample

Tell time

W Hours
W Minutes
W Seconds

®

O Transcript

radio buttons

A group of radio buttons enables the user of your application to
select from a limited list of choices. Selecting a radio button
causes any other button in its group to be deselected. This
characteristic makes radio buttons useful only where an exclu-
sive selection is appropriate.

Alternatives to radio buttons. Radio buttons display the full
set of choices at all times. If you need to save space, you can
use a menu or menu button instead.

Radio buttons are typically used only for a very brief and static
set of choices. If you want your application to reconfigure the
list of choices programmatically, you use a list widget, instead.
A listis also scrollable, making it more suitable for a long list of
options.

If you want to allow users to select more than one choice, use
either a group of check boxes or a list widget that has the Multi
Select property turned on.

Online example: ButtonExample
1. Use the Palette to add one radio button to the canvas for
each item in the list of choices.

2. For each button, change the Label property to name the
choice (in the example, “Dialog” and “Transcript”).

3. For all buttons, enter the same Aspect property (outputMode).

4. For each button, enter a different Select property (#dialog and
#transcript). This is the symbol that is stored in the Aspect
value holder whenever the button is selected.

VisualWorks Cookbook, Rev. 2.0

Adding a Set of Radio Buttons

Variant

See Also

. Apply the properties and install the canvas.
. Use the canvas’s define command or a System Browser to

add an instance variable for the aspect that is shared by the
buttons (outputMode).

. Use the canvas’s define command or a System Browser to

create a method for accessing the aspect variable
(outputMode), in an aspects protocol.

. Use a System Browser to create an initialize method, in which

you initialize the aspect variable so it holds a value holder
containing one of the valid Select symbols (#dialog). Your
choice of symbol determines which radio button will be
selected as a default.

outputMode "Basic Step 7"
AoutputMode

initialize
super initialize.
outputMode := #dialog asValue. "Basic Step 8"

showMinutes := true asValue.
showHours := true asValue.
showSeconds := true asValue.

Relocating the Label

A radio button’s built-in label appears to the right of the button
under most window managers. To place the label in a different
location, such as above the button:

1.

2.

Leave the button’s Label property blank, so nothing appears
in the button’s default labeling location.

Use a separate label widget to label the button.

“Adding a List” on page 184
“Adding a Menu Button” on page 236

VisualWorks Cookbook, Rev. 2.0 161

Chapter 8 Buttons

Adding a Che

ck Box

ButtonExample

Tell time |

®
O

W Hours
Transcript W Minutes check boxes
W Seconds

Strategy

A check box is like a toggle button that enables the user of your
application to turn on or turn off an attribute. Check boxes are
often used in a group to represent a set of related attributes.

Selecting one check box has no effect on others in the set, so
users can select as many as they want. When you want only one

att

Basic Steps

ribute to be selected at a time, use radio buttons instead.

Online example: ButtonExample

1.

162

Use a Palette to add a check box to the canvas. (The
example uses three check boxes to control whether hours,
minutes, and/or seconds are displayed.)

. For each check box, enter a descriptive name in its Label

property (for example, “Hours”).

. For each checkbox, fill in its Aspect property with the name

of the method that accesses the check box’s value holder
(showHours). This value holder will contain true when the
check box is selected and false when it is not selected.

Apply the properties and install the canvas.

. Use the canvas’ define command or a System Browser to

create an instance variable in which to store the check
box’s value holder (showHours).

. Use the canvas’ define command or a System Browser to

create the method(s) named in step 3 (showHours) in an aspects
protocol.

VisualWorks Cookbook, Rev. 2.0

Adding a Check Box

showHours "Basic Step 6"
AshowHours

7. In the initialize method, initialize the variable to a value holder
containing true if you want the check box to be selected by
default and false otherwise.

initialize
super initialize.
outputMode := #dialog asValue.
showHours := true asValue. "Basic Step 7"
showMinutes := true asValue.
showSeconds := true asValue.

Variant

Relocating the Label

A check box’s built-in label appears to the right of the check
box. To place the label in a different location, such as above the
check box:

1. Leave the check box’s Label property blank, so nothing
appears in the check box’s default labeling location.

2. Use a separate label widget to label the check box.

See Also
= “Displaying an Icon in a Menu” on page 254

VisualWorks Cookbook, Rev. 2.0 163

Chapter 8 Buttons

Adding an Action Button

Strategy

Basic Steps

164

ButtonExample
Tell time <+ action button
@ W Hours
O Transcript W Minutes
W Seconds
An action button triggers an action, such as opening a dialog

window. If you want to save space in an interface, consider
using a menu instead of multiple buttons.

Online example: ButtonExample

1.

2.

Use a Palette to add an action button to the canvas. Leave
the button selected.

In a Properties Tool, fill in the button’s Label property with a
descriptive label (in the example, “Tell time”).

. Fill in the button’s Action property with the name of the

method that performs the action (#tellTime).

. Apply the properties and install the canvas.
. Use a System Browser to create the method named in step

3 (tellTime) in an actions protocol.

tellTime "Basic Step 5"
| ttString |
t := Time now.
tString := String new.

"Assemble the time string based on the check boxes."
self showHours value
ifTrue: [tString := tString, t hours printString].
self showMinutes value
ifTrue: [tString := tString, "', t minutes printString, "]
ifFalse: [tString := tString, ":.
self showSeconds value

VisualWorks Cookbook, Rev. 2.0

Adding an Action Button

Variants

ifTrue: [tString := tString, t seconds printString].

"Send the time string to the output channel set by the radio buttons."
self outputMode value == #transcript

ifTrue: [Transcript show: tString; cr]

ifFalse: [DialogView warn: tString]

V1. Using a Placeholder Action

Sometimes it is convenient to add a button to a canvas before
you are ready to implement the action method. If you leave the
Action property blank, the button will have no effect in the
running interface, which can be disconcerting. This variant
causes the button to display a dialog reminding you that the
method has not yet been implemented.

O In the button’s Action property, enter unimplemented.

V2. Designating a Default Button

In a canvas that is to be used as a dialog, it is common to enable
the user to signify completion either by clicking on a particular
button (such as OK or Done) or by pressing <Return> on the
keyboard. To arrange for <Return> to activate a particular
button (before the focus is shifted manually):

O Turn on the button’s Be Default property.

V3. Sizing a Button as If It Were the Default Button

With some window managers, such as Windows and OSF Motif,
a default button has a different appearance and the difference
may affect the dimensions of the button’s border. This can
complicate matters when you try to align nondefault buttons
with the default button, even after you have equalized their
heights and widths. To make a nondefault button take on the
sizing characteristics of a default button:

O Turn on the button’s Size as Default property.

VisualWorks Cookbook, Rev. 2.0 165

Chapter 8 Buttons

See Also
= “Adding a Menu Bar” on page 233

166 VisualWorks Cookbook, Rev. 2.0

Giving a Button a Graphic Label

Giving a Button a Graphic Label

Strategy

Basic Steps

See Also

ButtonExample

X 4—H—— graphic label

O Transcript W Minutes

W Hours

W Seconds

Any of the three kinds of buttons—action buttons, radio
buttons, or check boxes—can have a graphic label instead of a
text label. In practice, graphic labels are used most often with
action buttons, if only because the other two types of button
already have a graphic component under most window
managers.

Online example: ButtonExample (You must do steps 1 and 2 first)

1.
2.

N

Select the button in the canvas.

In a Properties Tool, fill in the button’s Label property with
the name of the method that returns a graphic image (in
the example, hourglass).

. Turn on the button’s Label is Image property.
. Apply the properties and install the canvas.
. Use an Image Editor or System Browser to create, in a

resources protocol, the class method that returns the graphic
image (hourglass).

hourglass "Basic Step 5"
ACursor wait asOpaguelmage

“Creating a Graphic Image” on page 658

VisualWorks Cookbook, Rev. 2.0 167

Chapter 8 Buttons

Turning Off Highlighting

Online Documentation

File Bookmark Help

Search History Exanglas Saw alen

Back To: YisualWorks Library

BoMalWorks Cookbook

Chapter 1: Smalltalk basics
Chapter 2: Building applications
Chapter 3: Widget basics

Chapter 4: YWindows

Chapter 5: Lahels

Chapter 6: Input fields

Chapter 7: Lines, hoxes and ovals
Chapter 8: Buttons

Chapter 9: Text editors

Chapter 10: Lists Highlighting has been turned off
Chapter 11: Menus for nonrectangular action buttons
Chapter 12: Sliders

Chapter 13: Dialogs

Chapter 14: Reusing interface modules (subcanvas)
Chapter 15: MNotebhooks

Chapter 16: Custom views

Chapter 17: Custom controllers

Page: 1

Strategy
By default, a button is highlighted when the user clicks on it.
The highlighting is rectangular, like the button’s border, even
when the border is not displayed and the interior graphic is not
rectangular. The basic steps show how to turn off the high-
lighting in such situations.

Basic Steps

Online example: HelpBrowser
1. Select the button in the canvas. In a Properties Tool, turn
off the button’s Bordered property.

2. In a method in the application model (typically postBuildWwith:),
get the widget from the application model’s builder and
send a hiliteSelection: message to it. The argument is false.

postBuildWith: aBuilder
| oddButtons |

168 VisualWorks Cookbook, Rev. 2.0

Turning Off Highlighting

"Make the main window a master window."
aBuilder window

application: self;

beMaster.

"Turn off highlighting for the nonrectangular buttons.”
oddButtons := #(#prevPageButton #nextPageButton).
oddButtons do: [:buttonName |
(aBuilder componentAt: buttonName)
widget hiliteSelection: false]. "Basic Step 2"

"Disable the appropriate buttons."
self adjustButtons.

"Set keyboard hook for special shortcut keys."

aBuilder keyboardProcessor keyboardHook: [:ev :ctrl |
self keyPress: ev].

VisualWorks Cookbook, Rev. 2.0 169

Chapter 9
Text Editors

Adding a Text Editor

Accessing the Selected Text
Highlighting Text Programmatically
Aligning Text

Making an Editor Read-Only
Modifying an Editor's Menu

See Also

s “Characters and Strings” on page 529
» “Text and Fonts” on page 555

VisualWorks Cookbook, Rev. 2.0

172
174
176
178
180
182

171

Chapter 9 Text Editors

Adding a Text Editor

Strategy

172

EditorExample
HAREARET| I Read Only

Class Names Class Comment
ActionButton = 2]l is an abstract class that provides +
ActionBulionSpec |7 famewark for applications that use UlBuilders to generate
ActionButtoniew) -)
aliasTool their user interfaces. It has helpful protocol for responding to
alignmentlabel a UlBuilder’s requests for aspects and other named
AlignmentOrigin resources, e.q. the specification for the interface itself, the
AllocationProfiler models to be connected to the individual widgets, action
Amortizer

methods for ActionButtons, menus for MenuButtons, images to

ApplicationDialogd

A ;;IicationMode.l be used as labels, etc. This protocol need not be
ApplicationStandar| | reimplemented when Applicationtodel is subclassed.
ApplicationWindo Instead, any resource can be provided simply by defining a

jaon text editor
ggphcatlonWlndo method of the same name as the resource, that produces the
ArbitraryCompone resource as its value.

ARBrowser
Argumentyariable UlBuilders are used not only to generate functioning user
ArithmeticLoopNod| | interfaces for running applications, but also by UlPainter to
arithmeticy/alue support the presentation of these selfsame interfaces as they

Eggzedcmlection are being painted. Certain "static’ resources such as labels,

Aspectadaptor images and specifications for SubCanvases are needed
AspectEnumerator | when painting, in order to support the WY SIWYG paradigm of
<= 12~ _the UlPainter. hethods that produce these resources thus [~

A text editor is useful for displaying and editing text that does
not fit comfortably within a field, especially when the text is
expected to have multiple lines. The text editor has built-in
facilities for:

= Line wrapping

= Changing the text style

= Cutting, copying, and pasting

= Undoing and reverting

= Searching and replacing

= Printing

» Executing Smalltalk expressions

VisualWorks Cookbook, Rev. 2.0

Adding a Text Editor

Basic Steps
Online example: EditorlExample

1. Use a Palette to add a text editor to the canvas. Leave the
text editor selected.

2. In a Properties Tool, fill in the editor’s Aspect property with
the name of the method (comment) that will return the value
model for the text editor.

3. Use the define command or a System Browser to add an
instance variable (comment) to the application model for
storing the text editor’s value model.

4. Use a System Browser to add, in an aspects protocol, a
method (comment) that returns the contents of the instance
variable.

comment "Basic Step 4"
Acomment

5. Use a System Browser to create an initialize method that
initializes the aspect variable (comment) with a value holder
containing the initial text to be displayed (an empty string).

initialize
super initialize.
comment ;=" asValue. "Basic Step 5"
classes := SelectionInList with: Smalltalk classNames.
classes selectionindexHolder

onChangeSend: #changedClass to: self.

textStyle ;= #plain asValue.
textStyle onChangeSend: #changedStyle to: self.

readOnly := false asValue.
readOnly onChangeSend: #changedReadOnly to: self

VisualWorks Cookbook, Rev. 2.0 173

Chapter 9 Text Editors

Accessing the Selected Text

EditorExample
g g ’ [} Read Only selected
Flain
Class Hames Class Comment Bald text
v v Italic

ActionButton =
ActionButtonSpec
ActionButtoniew
AliasTool
AlignmentLabel
AlignmentOrigin
AllocationProfiler
Amartizer
ApplicationDialogd
ApplicationStandar
ApplicationWindo
ApplicationWindo
AR
ArbitraryCompone

Applicationtodel is anms that provides /

framework for applications that use UlBuilders to generate
their user interfaces. [l ful p ol fi ing o
and other named
resources, e.q. the specification for the interface itself, the
models to be connected to the individual widgets, action
methods for ActionButtons, menus for MenuButtons, images to
he used as lahels, etc. This protocol need not be
reimplemented when Applicationhodel is subclassed.
Instead, any resource can be provided simply by defining a
method of the same name as the resource, that produces the
resource as its value.

ARBrowser
Argumentyariable
ArithmeticLoophod
AtithmeticYalue
Array
ArrayedCollection
Aspectadaptar

|- |

Strategy

UlBuilders are used not only to generate functioning user
interfaces for running applications, but also by UlPainter to
support the presentation of these selfsame interfaces as they
are being painted. Certain "static’ resources such as labels,
images and specifications for SubCanvases are needed
AspectEnumerator | when painting, in order to support the WY SIWYG paradigm of
the UIPainter. Methods that produce these resources thus

<]

When the user highlights a portion of the text in an editor, your
application can find out what is highlighted. This is useful
when the application needs to use the selected text in some
way—as a parameter in a message send, for example.

Sometimes you need to modify the text in some way (in the
example, we change the font) and then insert the new version
into the main text. The variant shows how to do this.

Basic Steps

Online example: EditorlExample

1. In a method in the application model, get the controller

from the widget.

2. Ask the controller for the selected text.

changedStyle

"A text style was selected -- apply it to the current selection in the

comment."

174

VisualWorks Cookbook, Rev. 2.0

Accessing the Selected Text

| ¢ selectedText style |

"Get the selected text."
¢ := (builder componentAt: #comment) widget controller. "Basic Step 1"
selectedText := ¢ selection. "Basic Step 2"

"If nothing is selected, take no action.”
selectedText iSEmpty ifTrue: [*self].

"If 'Plain* was selected, remove all emphases;
otherwise add the new emphasis.”
style := self textStyle value.
style == #plain
ifTrue: [selectedText emphasizeAllWith: nil]
ifFalse: [
selectedText addEmphasis: (Array with: style)
removeEmphasis: nil
allowDuplicates: false].

"Ask the controller to insert the modified text, then update the view."

c replaceSelectionWith: selectedText. "Variant Step 1"
c view resetSelections. "Variant Step 2"
c view invalidate. "Variant Step 3"

Replacing the Selected Text

(See example method above.)

Variant
1.
2.
3
See Also

Ask the controller to replace the selection with a new text.

Ask the controller’s view to reset its selections (to adjust for
a possible width change in the selection).

. Ask the view to redisplay itself.

“Replacing a Range of Text” on page 567

VisualWorks Cookbook, Rev. 2.0 175

Chapter 9 Text Editors

Highlighting Text Programmatically

EditorExample
il - The name of the class
E]#] GRead Only | s highlighted
programmatically
Class Names Class Comment
ActionButton T RGBT is an abstract class that provides +
ActionBulionSpec |7 famewark for applications that use UlBuilders to generate
ActionButtoniew) -)
aliasTool their user interfaces. It has helpful protocol for responding to
alignmentlabel a UlBuilder’s requests for aspects and other named
AlignmentOrigin resources, e.q. the specification for the interface itself, the
allocationProfiler models to be connected to the individual widgets, action

“mmize.f . methods for ActionButtons, menus for MenuButtons, images to
ApplicationDialogd)

apnlicationtodel he used as lahels, etc. This protocol need not be
ApplicationStandar| | reimplemented when Applicationtodel is subclassed.
Application¥Windo Instead, any resource can be provided simply by defining a
Application¥indo method of the same name as the resource, that produces the

AR ;
ArbitraryCompone resource as its value.

ARBrowser
Argumentyariable UlBuilders are used not only to generate functioning user
ArithmeticLoopNod| | interfaces for running applications, but also by UlPainter to
arithmeticy/alue support the presentation of these selfsame interfaces as they

Eggzedcmlection are being painted. Certain "static’ resources such as labels,
Aspectadaptor images and specifications for SubCanvases are needed
AspectEnumerator | when painting, in order to support the WY SIWYG paradigm of
<= 12~ _the UlPainter. hethods that produce these resources thus [~
Strategy

The user of your application can highlight text in an editor by
dragging the mouse. Sometimes your application may need to
highlight text for the user, perhaps as a way of drawing atten-
tion to a keyword or phrase.

Basic Steps
Online example: EditorlExample
1. In a method in the application model, get the controller
from the widget.

2. Ask the controller to select the text between two endpoints
(and ask it to scroll the selection into view if necessary).

3. Ask the builder's component to take the keyboard focus, so
the highlighting will be displayed.

changedClass
"When the list selection changes, update the comment view."

176 VisualWorks Cookbook, Rev. 2.0

Highlighting Text Programmatically

| selectedClass txt start wrapper |
selectedClass := self classes selection.

selectedClass isNil
ifTrue: [self comment value: " asText]
ifFalse: [
txt ;= (Smalltalk at: selectedClass) comment.

self comment
value: txt.

"Find and highlight the class name in the text."

start := txt
indexOfSubCollection: selectedClass asString
startingAt: 1.

start > 0 ifTrue: |
wrapper := (self builder componentAt: #comment).

wrapper widget controller "Basic Step 1"
selectAndScrollFrom: start "Basic Step 2"
to: start + selectedClass asString size - 1.

wrapper takeKeyboardFocus]]. "Basic Step 3"

VisualWorks Cookbook, Rev. 2.0 177

Chapter 9 Text Editors

Aligning Text

EditorExample

Class Names

w

Class Comment

w

El = El

[Read Only

ActionButtan
ActionButtonSpec
ActionButtoniew
AliasTool
AlignmentLabel
AlignmentOrigin
AllocationProfiler
Amortizer
ApplicationDialogd
ApplicationStandar
ApplicationWindo
ApplicationWindo
AR
ArbitraryCompone
ARBrowser
Argumentyariable
ArithmeticLoophod
AtithmeticYalue
Array
ArrayedCollection
Aspectadaptar

AspectEnumeratar

|- |

the UIPainter. hethods that produce these resources thus

methods for ActionButtons, menus for MenuButtons, images to

Applicationtodel is an abstract class that provides
framework for applications that use UlBuilders to generate
their user interfaces. It has helpful protocol for responding to
a UlBuilder’s requests for aspects and other named
resources, e.q. the specification for the interface itself, the
models to be connected to the individual widgets, action

he used as lahels, etc. This protocol need not be
reimplemented when Applicationhodel is subclassed.
Instead, any resource can be provided simply by defining a
method of the same name as the resource, that produces the
resource as its value.

Text is aligned
& atright margin

UlBuilders are used not only to generate functioning user
interfaces for running applications, but also by UlPainter to
support the presentation of these selfsame interfaces as they
are being painted. Certain "static’ resources such as labels,
images and specifications for SubCanvases are needed
when painting, in order to support the WYSIWYG paradigm of

|L<1

Strategy

Basic Step

178

By default, text in an editor is aligned at the left margin. For
word-processing applications, you may want to center the text
or align it at the right margin. You can change the alignment by
setting the text editor’s Align property.

When you want to enable the user of your application to change
the alignment, you can provide a button or menu item for doing
so. The variant shows how to arrange it.

Limitation: Alignment applies to the entire text—it cannot be
applied selectively to a portion of the text.

Online example: EditorlExample

1. Select the text editor in the canvas.

2. In the Properties Tool, set the editor’s Align property to Left,
Center, or Right.

3. Apply the property and install the canvas.

VisualWorks Cookbook, Rev. 2.0

Aligning Text

Variant

Changing the Alignment Programmatically

1. In a method in the application model, get the widget from
the builder.

2. Get a copy of the widget's text style. (Do not modify the
widget's text style directly, because that object is shared by
many text editors in the system.)

3. Set the alignment of the text style to 0, 1, or 2 (0 is flush left,
1is flush right, and 2 is centered).

4. Install the new text style in the widget.

5. Ask the widget to redisplay itself.
alignRight

| widget style |

widget := (self builder componentAt: #comment) widget. "Variant Step 1"

style := widget textStyle copy. "Variant Step 2"

style alignment: 1. "Variant Step 3"

widget textStyle: style. "Variant Step 4"

widget invalidate. "Variant Step 5"
See Also

= “Controlling Alignment” on page 561

VisualWorks Cookbook, Rev. 2.0 179

Chapter 9 Text Editors

Making an Editor Read-Only

ActionButtoniew
AliasTool
AlignmentLabel
AlignmentOrigin
AllocationProfiler
Amortizer
ApplicationDialogd
ApplicationStandar
ApplicationWindo
ApplicationWindo
AR
ArbitraryCompone
ARBrowser
Argumentyariable
ArithmeticLoophod
AtithmeticYalue
Array
ArrayedCollection
Aspectadaptar
AspectEnumeratar

EditorExample
EEE
Class Names Class Comment
&ctionButton T Applicationkodel is an abstract class that provides B
ActionButtonSpec

|- |

the UIPainter. hethods that produce these resources thus

framework for applications that use UlBuilders to generate
their user interfaces. It has helpful protocol for responding to
a UlBuilder’s requests for aspects and other named
resources, e.q. the specification for the interface itself, the
models to be connected to the individual widgets, action
methods for ActionButtons, menus for MenuButtons, images to
he used as lahels, etc. This protocol need not be
reimplemented when Applicationhodel is subclassed.
Instead, any resource can be provided simply by defining a
method of the same name as the resource, that produces the
resource as its value.

m/ Text cannot be edited

UlBuilders are used not only to generate functioning user
interfaces for running applications, but also by UlPainter to
support the presentation of these selfsame interfaces as they
are being painted. Certain "static’ resources such as labels,
images and specifications for SubCanvases are needed
when painting, in order to support the WYSIWYG paradigm of

<]

Strategy

Basic Step

Variant

180

By default, a text editor is both an output and an input device.
You can turn off the input capability either at canvas-painting
time or while the program is running. For example, you might
want to disable input based on the user’s security level.

1. Select the text editor in the canvas.
2. Turn on the editor’s Read Only property.
3. Apply the property and install the canvas.

Changing the Read-Only Setting Programmatically

1. In a method in the application model, get the controller
from the widget.

2. Ask the controller to change its readOnly setting to true or false.

VisualWorks Cookbook, Rev. 2.0

Making an Editor Read-Only

changedReadOnly
lcl
¢ := (self builder componentAt: #comment) widget controller. "Variant Step 1"
¢ readOnly: (self readOnly value). "Variant Step 2"

VisualWorks Cookbook, Rev. 2.0 181

Chapter 9 Text Editors

Modifying an Editor’s Menu

again
undo

copy
cut normal menu

paste

do it
print it
inspect
accept
cancel
hardcopy

Strategy

By default, a text editor has the same menu of text-editing
commands that the system tools have. You can add or remove
commands, override the action that is associated with a
command, or disable the menu entirely.

Detailed steps for modifying an editor's menu are the same as
those for modifying an input field’s menu.

See Also
» “Modifying a Field's Pop-Up Menu” on page 139

182 VisualWorks Cookbook, Rev. 2.0

Chapter 10

Lists

Adding a List

Editing the List of Elements
Allowing for Multiple Selections
Finding Out What Is Selected
Adding a Menu to a List
Changing the Highlighting Style
Connecting Two Lists

Connecting a List to a Text Editor

See Also
= “Widget Basics” on page 53

VisualWorks Cookbook, Rev. 2.0

184
187
189
191
194
196
198
200

183

Chapter 10 Lists

ListExample

Classes Selectors

ActionButton % hevisual: =

ActionButtonSpec b displayOn:

ActionButtoniew initialize

AliasTool onVisual:offvisual:

AlignmentLabel preferredBounds

AlignmentOrigin sethdodel:

AllocationProfiler

Amortizer U \

ApplicationDialogController

Applicationtodel ¥

ApplicationStandardSystemCo

applicationWindow Instances list widgets

ApplicationWindowSensar > -

AR an ActionButton A/ﬁ

ArbitraryComponentSpec an ActionButtan I

ARBrowser an ActionButton

Argumentyariable an ActionButtan

arithmeticLoopMode an ActionButtan

Arithmeticy/alue an ActionButtan

Array an ActionButton

arrayedCollection an ActionButton < nontextual elements

Aspectadaptor an ActionButtan

AspectEnumerator 5 an ActionButton BT
Strategy

184

A list widget is useful for displaying a collection of objects. As
an input device, the list also enables the user to select one or
more elements in the list as the targets for browsing and other
operations.

A list widget is designed to depend on two value models, unlike
most data widgets, which require only one. In particular, a list
widget uses two value holders—one to hold the collection of
objects to be displayed, and the other to hold the index of the
current selection. Consequently, you program the application
model to supply a SelectioninList, a complex object that contains
both of the required value holders.

The elements in the collection need not be textual in nature,
provided that they can display themselves textually. The
variant shows how to control an object’s textual representation
in a list.

VisualWorks Cookbook, Rev. 2.0

Adding a List

Basic Steps

Variant

Online example: ListlExample

1.

2.

Use a Palette to add a list widget to the canvas. Leave the
list selected.

In the Properties Tool, fill in the list's Aspect property with
the name of the method that will return an instance of
SelectionlnList.

. Use the canvas’s define command or a System Browser to

add an instance variable (classes) to the application model.
This instance variable will hold the SelectioninList.

Use the canvas’s define command or a System Browser to
create the aspect method you named in step 2 (classes).

. Use a System Browser to initialize the instance variable you

created in step 3 (classes), usually in an initialize method. You
initialize the variable with an instance of SelectioninList that is
itself initialized with a list of Smalltalk class names.

classes "Basic Step 4"
Aclasses

initialize
super initialize.
classes := SelectionInList with: Smalltalk classNames. "Basic Step 5"
classes selectionindexHolder onChangeSend: #changedClass to: self.

methodNames := MultiSelectionInList new.

instances := SelectionInList new.

Controlling the Textual Display of List Elements

Online example: ListlExample

A list sends a displayString message to its elements at display time.
Every object responds to this message, because it is inherited
from the Object class. However, the default implementation of

displayString, which simply sends printString to the object, may not

VisualWorks Cookbook, Rev. 2.0 185

Chapter 10 Lists

See Also

186

be appropriate for your application. For example, if you use
ListLIExample to list the instances of classes such as
ApplicationWindow, you will find that most of the listings are unin-
formative because all that is displayed is a generic description
such as “an ApplicationWindow.”

In contrast, if you use ListlExample to list the instances of the Asso-
ciation class, you will find that the listings are more useful.
Underlyingly, each Association instance consists of a key paired
with a value, which would be too complex to display in a list.
Consequently, the Association class has reimplemented the
displayString method, so that each instance represents itself in a
list using just the key displayed as a string.

In general, you can equip an object for its role as a list element
by providing a reimplementation of displayString that returns an
appropriate string.

O In the class whose instances are to be displayed in a list,
create a printing protocol that contains a displayString method
that returns a descriptive string. (The following method is
implemented in the Association class.)

displayString "Variant Step"
"Allows a value to be quietly associated with the key that is
displayed in a SequenceView."

"key displayString

= “Adding a Notebook” on page 316
= “Creating a Collection” on page 491

VisualWorks Cookbook, Rev. 2.0

Editing the List of Elements

Editing the List of Elements

ListExample
Classes Selectors
ActionButton % heVisual: =
ActionButtonSpec L & b displayOn:

ActionButtoniew initialize

AliasTool onvrewal;offvisual:
AlignmentLabel preferredBa
AlignmentOrigin sethdodel:

fllocationProfler ~_ Changing the selection in
applicationDialogController V\ this list . . .

ApplicationModel <
ApplicationStandardSystemCo .
spplicationWindaw Instances ... causes these lists to

igplicaﬁonWindDWSEHSDf get modified collections

an ActionButton

—_—

Arbitrary ComponentSpec an ActionButtan

ARBrowser an ActionButton

Argumenty ariable an ActionButtan /
arithmeticLoopNode an ActionButtan
Arithmeticialue an ActionButtan

Array an ActionButtan
arrayedCollection an ActionButtan

AspectAdaptor an ActionButtan
AspectEnumeratar 5 an ActionButton B

Strategy

The contents of a list often change frequently, depending on
other parts of the interface. In ListlExample, both the Selectors
view and the Instances view change whenever the selection in
the Classes view is changed.

Changing the list is accomplished by giving the SelectioninList a
new collection of elements. Note that this is not the same as
installing an entirely new SelectioninList, which would have the
effect of breaking the link with the list widget.

Basic Step
Online example: ListlExample

O In the method that is responsible for updating the list, get
the SelectioninList from the application model and send a list:
message to it, with the new collection as the argument.

changedClass

| cls|
self classes selection isNil

VisualWorks Cookbook, Rev. 2.0 187

Chapter 10 Lists

"No class is selected -- empty the selector list."

ifTrue: [
self methodNames list: List new. "Basic Step”
self instances list: List new]

"A class is selected"
ifFalse: [
cls := Smalltalk at: self classes selection.

"Update the selectors list."
self methodNames list: cls selectors asSortedCollection.

"Update the instances list."
self instances list: cls allinstances].

See Also
= “Creating a Collection” on page 491

188 VisualWorks Cookbook, Rev. 2.0

Allowing for Multiple Selections

Allowing for Multiple Selections

ListExample
Classes Selectors
bevisual: B
ActionButtonSpec ~ displayOn:
ActionButtoniew initialize . . .
aliasTool onisual-offvisual: More than one item in this
Alignmentlabel ~ preferredBounds < list can be selected at the
AlignmentOrigin sethodel: A
allocatianPrafiler same time
Amortizer
ApplicationDialogController
Applicationtodel v
ApplicationStandardSystemCo
Application'indow Instances
ApplicationWindowSensar > -
AR an ActionButton =
Arbitrary ComponentSpec an ActionButtan I
ARBrowser an ActionButton
Argumentyariable an ActionButton
arithmeticLoopNode an ActionButton
Arithmeticialue an ActionButtan
Array an ActionButton
arrayedCollection an ActionButtan
AspectAdaptor an ActionButtan
&spectEnumerator 5 an ActionButton B

Strategy

Sometimes it is appropriate for the user to select more than one
item in a list as targets for an action. In ListlExample, the Selec-
tors list provides this capability so the user can open a Method
Browser on several methods.

A list allows multiple selections when its Multi Select property is
turned on. A second property, Use Modifier Keys For Multi Select,
determines how selections are to be made. When this property
is turned on (the default), the user:

= Clicks the <Select> mouse button to select a single item on
the list

= <Shift>-clicks to select additional contiguous items

= <Control>-clicks to select additional nonconitiguous items

When the Use Modifier Keys For Multi Select property is turned off, the

user clicks the <Select> mouse button on each item to be

selected. You normally turn this property off only when a multi-

select list is to be compatible with other such lists in an older
VisualWorks interface.

VisualWorks Cookbook, Rev. 2.0 189

Chapter 10 Lists

Basic Steps

190

Online example: ListlExample

1. Select the list widget in the canvas.

2. In a Properties Tool, turn on the list widget's Multi Select
property. (Leave the Use Modifier Keys For Multi Select property
turned on.) Apply properties and install the canvas.

3. In the application model’s initialize method, initialize the list
widget's aspect variable to hold a MultiSelectioninList (instead of
a SelectioninList).

initialize
super initialize.

classes := SelectionInList with: Smalltalk classNames.
classes selectionindexHolder onChangeSend: #changedClass to: self.

methodNames := MultiSelectioninList new. "Basic Step 3"
instances := SelectionInList new.

VisualWorks Cookbook, Rev. 2.0

Finding Out What Is Selected

Finding Out What Is Selected

ListExample You can get the
index of the selection or

Classes M the actual object that is

selected

ActionButton ___________ ECTIETEL B

ActionButtonSpec ~ displayOn:

ActionButtoniew initialize

AliasTool ~ on¥isual:offvisual: -

alighmentlabel + preferredBounds A multilist returns a
AlignmentOrigin sethdodel: < collection of selection
AllocationProfiler . .
Amartizer indexes or selections
ApplicationDialogController

Applicationtodel ¥

ApplicationStandardSystemCo
Application'Window Instances
ApplicationWindowSensar
AR

an ActionButton

—_—

Arbitrary ComponentSpec an ActionButtan
ARBrowser an ActionButton
Argumentyariable an ActionButton
arithmeticLoopNode an ActionButton
Arithmeticialue an ActionButtan
Array an ActionButtan
arrayedCollection an ActionButtan
AspectAdaptor an ActionButtan
AspectEnumeratar 5 an ActionButton B

Strategy

When a list widget serves as an input device, your application
needs to be able to find out which object is selected. You can
ask a SelectioninList for the selected object or for the index of the
selected object in the list. You can also set the selection
programmatically.

For a multiselect list, there may be multiple selections or selec-
tion indexes, so your application model must be prepared to
handle a collection of objects rather than a single selection or
index.

When nothing is selected, a SelectioninList returns a nil object as
the selection and zero as the index; a MultiSelectionInList returns an
empty collection for either the selections or the indexes.

Basic Step

Online example: ListlExample

O In the method that needs to know the current selection in
the list, get the SelectioninList from the application model and
send a selection message to it. (To get the just index, send

VisualWorks Cookbook, Rev. 2.0 191

Chapter 10 Lists

selectionindex. For a MultiSelectionInList, use a selections or selectionin-
dexes message.)

changedClass
|cls|
self classes selection isNil "Basic Step”

"No class is selected -- empty the selector list."
ifTrue: [

self methodNames list: List new.

self instances list: List new]

"A class is selected"
ifFalse: [
cls := Smalltalk at: self classes selection.

"Update the selectors list."
self methodNames list: cls selectors asSortedCollection.

"Update the instances list."
self instances list: cls allinstances].

Variants

V1. Setting the Selection Programmatically
Online example: ListlExample

O In the method that is to change the selection programmati-
cally, get the SelectioninList from the application model and
send it a selectionindex: message with the desired index
number as the argument.

Alternatively, send a selection: message with the desired
object itself as the argument.

postOpenWith: aBuilder
super postOpenWith: aBuilder.

"Uncomment the line below to auto-select the first class."
self classes selectionindex: 1. "V1 Step"

192 VisualWorks Cookbook, Rev. 2.0

Finding Out What Is Selected

"Uncomment the lines below to auto-select the last class.”

"self classes selection: self classes list last.

(aBuilder componentAt: #classes) widget controller
cursorPointWithScrolling.”

"In the classes list, use boxed highlighting instead of reverse-video."
(aBuilder componentAt: #classes) widget strokedSelection.

Note that, for a MultiSelectioninList, send selectionindexes: or selec-
tions:, supplying as argument a collection of indexes or a
collection of objects in the list.

V2. Selecting All Objects in a Multiple-Selection List

O Get the MultiSelectioninList from the application model and send
a selectAll message to it.

selectAll
self methodNames selectAll. "V2 Step"

V3. Clearing All Selections in a Multiple-Selection List

O Get the MultiSelectioninList from the application model and send
a clearAll message to it.

clearAll
self methodNames clearAll. "V3 Step"

VisualWorks Cookbook, Rev. 2.0 193

Chapter 10 Lists

Adding a Menu to a List

Strategy

Basic Steps

194

AlignmentLabel
AlignmentOrigin
AllocationProfiler

Amortizer
ApplicationDialogController
Applicationtodel
ApplicationStandardSystemCo
Application¥indow
ApplicationWindowSensar

AR

ArhitraryComponentSpec
ARBrowser
Argumentyariable
ArithmeticLoopMode
AtithmeticYalue

Array

ArrayedCollection
Aspectadaptar
AspectEnumeratar =

ListExample
Classes Selectors
ActionButton % hevisual:
ActionButtonSpec ~ displayOn:
ActionButtoniew initialize
AliasTool ~ on¥isual:offvisual:

~ preferredBounds
sethodel:

{ ——

Instances

an ActionButton
an ActionButton
an ActionButton
an ActionButton
an ActionButton
an ActionButton
an ActionButton
an ActionButton
an ActionButton
an ActionButton

—_—

A menu with just one
command was added to
this list

By default, a list does not a provide a pop-up menu, but you
can arrange for it to have a custom menu that is available
through the <Operate> mouse button. Typically, a list's menu
contains two kinds of commands:

= Commands that act on the selection(s).

= Commands that act on the list itself, usually by updating or
filtering its contents.

Online example: ListlExample (Instances view)

1. Select the list widget in the canvas.

2. In the Properties Tool, fill in the list widget's Menu property
with the name of the method that will supply the menu

(instancesMenu).

3. Apply the property and install the canvas.

4. Use a Menu Editor or a System Browser to create the menu
method (instancesMenu).

VisualWorks Cookbook, Rev. 2.0

Adding a Menu to a List

5. Use a System Browser to write the methods that are
invoked by the menu (inspectinstance).

inspectinstance "Basic Step 5"
"Open an inspector on the selected instance.”

| inst |

inst := self instances selection.
inst isNil ifFalse: [inst inspect].

See Also
= “Creating a Menu” on page 226

VisualWorks Cookbook, Rev. 2.0 195

Chapter 10 Lists

Changing the Highlighting Style

Strategy

Basic Step

196

AlignmentOrigin

Amortizer
ApplicationDialogController
Applicationtodel
ApplicationStandardSystemCo
Application¥indow
ApplicationWindowSensar

AR

ArhitraryComponentSpec
ARBrowser
Argumentyariable
ArithmeticLoopMode

| stroked selection

ListExample
Classes Selectors
[&ctionButton % hevisual: ld
ActionButtonSpec ~ displayOn:
ActionButtoniew '\\ initialize
Adaptor! Example ~ 0Ny affisual:
AdaptorZExample ~ preferredBoum
AdaptoriExample sethdodel:
AdaptordExample
AdaptorSExample
AdaptorGExample
AliasTool v]
AlignmentLabel

Instances

an ActionButton
an ActionButton
an ActionButton

an ActionButton A/
an ActionButton

an ActionButton
an ActionButton
an ActionButton
an ActionButton
- an ActionButton

normal selection

—r

By default, the selected item in a list is highlighted through
reverse video. You can use the list’s Selection Type property to
cause selected items to be indicated by check marks (basic

step).

You can also arrange for selected items to be surrounded by a
rectangular border (variant).

Online example:

ListLIExample

1. In the canvas, select the list widget whose selection style
you want to change. (In the example, this is the Selectors

list.)

2. In a Properties Tool, set the list’'s Selection Type property to
Check Mark. Apply the property and install the canvas.

VisualWorks Cookbook, Rev. 2.0

Changing the Highlighting Style

Variant
Online example: ListlExample

O In a method in the application model (typically postBuildWith:
or postOpenWith:), get the list widget from the application
model’s builder and send a strokedSelection message to it. (A
normalSelection message causes the list to revert to normal
highlighting.)

postOpenWith: aBuilder
super postOpenWith: aBuilder.

"Uncomment the line below to auto-select the first class."
self classes selectionindex: 1.

"Uncomment the lines below to auto-select the last class."

"self classes selection: self classes list last.

(aBuilder componentAt: #classes) widget controller
cursorPointWithScrolling."

"In the classes list, use boxed highlighting instead of reverse-video."
(aBuilder componentAt: #classes) widget strokedSelection. "Basic Step"

VisualWorks Cookbook, Rev. 2.0 197

Chapter 10 Lists

Connecting Two Lists

ListExample
Classes Selectors
bevisual: B
ActionButtonSpec ~ displayOn:
ActionButtoniew - initialize e
AliasTool ~ ~ onvisualoffvisual: Thislist. ..
AlignmentLabel ~ preferredBounds
AlignmentOrigin sethdodel:
AllocationProfiler
Amortizer
ApplicationDialogController
Applicationtodel v)
applicationStandardSystemCo .. . is connected to
.ﬁ.ppl!cat!onw!ndow Instances these two lists
ApplicationWindowSensar > - |
AR an ActionButton =l
Arbitrary ComponentSpec an ActionButtan
ARBrowser an ActionButton
Argumentyariable an ActionButton
ArithmeticLoopNode an ActionButton
Arithmeticialue an ActionButtan
Array an ActionButton
arrayedCollection an ActionButtan
AspectAdaptor an ActionButtan
&spectEnumerator 5 an ActionButton B

Strategy

A list widget frequently interacts with another list. For example,
in the Resource Finder, selecting a class in the Class list causes
the Resource list to display all resources for that class.

Basic Steps
Online example: ListlExample (Classes and Selectors lists)

1. In the application model’s initialize method, arrange for a
change message (changedClass) to be sent to the application
model whenever the selection is changed in the first list.

initialize
super initialize.
classes := SelectionlnList with: Smalltalk classNames.
classes selectionindexHolder
onChangeSend: #changedClass to: self. "Basic Step 1"

methodNames := MultiSelectionInList new.
instances := SelectionInList new.

198 VisualWorks Cookbook, Rev. 2.0

Connecting Two Lists

2. Use a System Browser to create the change method
(changedClass) in the application model. This method tests
whether anything is selected in the first list (classes) and
then updates the second list (methodNames) appropriately.

changedClass "Basic Step 2"
|cls|
self classes selection isNil

"No class is selected -- empty the selector list."
ifTrue: [

self methodNames list: List new.

self instances list: List new]

"A class is selected"
ifFalse: [
cls := Smalltalk at: self classes selection.

"Update the selectors list."
self methodNames list: cls selectors asSortedCollection.

"Update the instances list."
self instances list: cls allinstances].

VisualWorks Cookbook, Rev. 2.0 199

Chapter 10 Lists

Connecting a List to a Text Editor

EditorExample

Class Names

ActionButton =
ActionButtonSpec
ActionButtoniew
AliasTool <

El =]

Class Comment

w

[Read Only

GIsbggl=lndy is a subclass of Boolean'WidgetWiew that
displays a VisualComponent centered in the view’s bounds.
The image displayed when the button is "on" may or may not

AlignmentLabel
AlignmentOrigin
AllocationProfiler
Amortizer
ApplicationDialogd
Applicationtodel
ApplicationStandar
ApplicationWindo
ApplicationWindo
AR
ArbitraryCompone
ARBrowser
Argumentyariable
ArithmeticLoophod
AtithmeticYalue
Array
ArrayedCollection
Aspectadaptar
AspectEnumeratar

<=

[E

he the same as when the button is "off".

Instance Variahles:
onlmage <WisualComponent= the picture to be

Thislist. ..

... Is connected

displayed when the button is on
offimage <WisualComponent= the picture to be
displayed when the button is off

N

to this editor

Strategy

Basic Steps

200

A list widget often interacts with a text editor. For example, the
VisualWorks browsers commonly use a list for choosing a class
or method and a text view for displaying information about that

class or method.

Online example: EditorlExample
1.

In the application model’s initialize method, arrange for a

change message (changedClass) to be sent to the application
model whenever the list selection is changed.

initialize
super initialize.

comment ;=" asValue.

classes := SelectionInList with: Smalltalk classNames.

VisualWorks Cookbook, Rev. 2.0

Connecting a List to a Text Editor

classes selectionindexHolder
onChangeSend: #changedClass to: self. "Basic Step 1"

textStyle := #plain asValue.
textStyle onChangeSend: #changedStyle to: self.

readOnly := false asValue.
readOnly onChangeSend: #changedReadOnly to: self.

2. Use a System Browser to create the change method (changed-
Class) in the application model. This method tests whether
anything is selected in the list (classes) and then updates the
text editor’s value holder (comment) appropriately.

changedClass "Basic Step 2"
"When the list selection changes, update the comment view."

| selectedClass txt start wrapper |
selectedClass := self classes selection.

selectedClass isNil
ifTrue: [self comment value: " asText]
ifFalse: [
txt := (Smalltalk at: selectedClass) comment.

self comment
value: txt.

"Find and highlight the class name in the text."
start := txt
indexOfSubCollection: selectedClass asString
startingAt: 1.
start >0
ifTrue: [
wrapper := (self builder componentAt: #comment).
wrapper widget controller
selectAndScrollFrom: start
to: start + selectedClass asString size - 1.
wrapper takeKeyboardFocus]].

VisualWorks Cookbook, Rev. 2.0 201

Chapter 10 Lists

See Also
» “Adding a Text Editor” on page 172

202 VisualWorks Cookbook, Rev. 2.0

Chapter 11

Datasets

Adding a Dataset

Selecting Columns While Painting
Adding a Row

Connecting Data to a Dataset
Enhancing Column Labels

VisualWorks Cookbook, Rev. 2.0

204
209
210
212
213

203

Chapter 11 Datasets

Adding a Dataset

Strategy

204

Dataset] Example

w

Hame Employee Humber | .35. Citizen

row labels

John Doe 123-4 |!

dataset widget

{ ——

A dataset presents a list of similar objects for a user to edit. In
appearance, datasets are similar to tables in that both kinds of
widget presents information in tabular form. However, datasets
present data in cells that can be edited directly, whereas tables
require that changes be entered indirectly through separate
input fields. Furthermore, datasets are best suited for
presenting similar kinds of data, whereas a table can present a
possibly disparate assortment of data in a collection that allows
two-dimensional access.

A dataset uses a SelectioninList to hold the list of objects to be
displayed, along with information about the current selection.
Each object in the list is displayed in its own row, with indi-
vidual aspects of the object displayed in their own columns. As
shown in the basic steps, you use the Properties Tool to specify
the means by which each column presents its data—through
cells that contain read-only fields, editable fields, combo boxes,
or checkboxes.

The variants show you how to resize the dataset’s columns and
change the order of the columns while painting the canvas.

VisualWorks Cookbook, Rev. 2.0

Adding a Dataset

Basic Steps

Online example: DatasetlExample

In this example, you create a dataset that displays instances of
an Employee class. An Employee consists of three objects (name,
empNo, and citizen), which are to be presented in three dataset
columns.

1.

2.

Use the Palette to add the dataset widget to the canvas.
Leave the dataset selected.

In the Properties Tool, fill in the dataset’s Aspect property
with the name of the method (dsvList) that will supply an
instance of SelectioninList. Apply the property.

. Use the define command to add the dsvList instance variable

to the application model and to create the dsvList method in
an aspects protocol.

The dsvList method returns a SelectioninList object that will
eventually hold the list to be displayed. This method also
sets up the SelectioninList so it will cause a user’s selection to
be put in a separate value holder (selectedRow).

. In the dataset’s properties, click the New Column button for

each column you want in the dataset. In this example, click
the button three times to add three columns to the canvas.

. In the canvas, <Control>-click in the leftmost column to

select it.

. In the Properties Tool, display the dataset’s Column property

page. The properties you set on this page will apply to the
currently selected column.

. On the Column page, enter Name as the Label property. This

creates a visual label above the selected column, which is to
display employee names.

. On the Column page, enter selectedRow name in the Aspect field.

selectedRow refers to the value holder that will hold the object
(the Employee) selected by the user. name refers to the aspect
of Employee that is displayed in this column.

. On the Column page, select Input Field as the Type. This causes

each cell in the selected column to display its data in an
editable input field. Note that you can optionally specify
nondefault characteristics for these input fields by filling in
properties on the Column Type page.

VisualWorks Cookbook, Rev. 2.0 205

Chapter 11 Datasets

206

10. <Control>-click on the middle column to select it.

11. On the Column page, enter Employee Number as the Label and
selectedRow empNo as the Aspect. Select Input Field as the Type.

12. <Control>-click on the rightmost column to select it.

13. On the Column page, enter U.S. Citizen as the Label and
selectedRow citizen as the Aspect. Select Check Box as the Type.

14. When the all properties have been applied, install the
canvas.

15. Use the define command to add the selectedRow instance
variable to the application model and to create the
selectedRow method in the aspects protocol.

The selectedRow method returns a value holder for holding
the user-selected Employee object from the SelectioninList.

16. Use a browser to initialize the dataset (in an initialize method
in an initialize-release protocol).

initialize "Basic Step 16"
| aList |
aList := List new.
alist add: Employee new initialize.
self dsvList list: aList.

When you open the application, the dataset contains one empty
row. You can type a name and number in the Name and Employee
Number columns, and select the U.S. Citizen check box.

Note that the first part of the Aspect setting for each column
must be the same as the message sent by the SelectionInList to
obtain a value holder for storing the selected object. You used
selectedRow in steps 8, 11, and 13, because that name is used in
the generated dsvList method that sets up the SelectioninList (step
3). To use a name other than selectedRow, you must replace
selectedRow with the desired name in each Aspect field and in the
code generated for dsvList in step 3. Use the define command (as
in step 15) to generate an instance variable and method with
the new name.

VisualWorks Cookbook, Rev. 2.0

Adding a Dataset

Variants

V1. Changing Column Widths

By default, all columns have a width of 80 pixels. You can set
specific widths in the dataset’s Column properties. You can also
change the column widths by editing the dataset in the canvas.
For example, to resize the Employee Number column:

1. In the canvas, <Control>-click in the Employee Number column
to select it.
2. Place the cursor near the right margin of the column.

3. <Control>-click and hold down the mouse button. If neces-
sary, move the pointer toward the right margin of the
selected column until the cursor changes appearance.

4. Drag the cursor to the right to widen the column; drag the
cursor to the left to make the column narrower.

5. Install the canvas.

V2. Changing the Column Order

You can switch the order of a dataset’s columns by editing it in
the canvas. For example, to switch the order of the Employee
Number and U.S. Citizen columns:

1. In the canvas, <Control>-click in the Employee Number column
to select it.

2. Place the cursor on the drag handle within the selected
column.

3. Click on the handle and drag it toward the U.S. Citizen
column.

4. Install the canvas.

V3. Disabling Column Scrolling

You can set a dataset’s columns so that they cannot be scrolled
horizontally. This is useful if you want to keep one or more
columns displayed on the dataset at all times, while the others
continue to scroll.

VisualWorks Cookbook, Rev. 2.0 207

Chapter 11 Datasets

1. To disable scrolling for a column (and all columns to the left
of it), select that column and click the Fixed check box in the
Column properties.

2. Apply the property and install the canvas.

See Also
“Selecting Columns While Painting” on page 209

208 VisualWorks Cookbook, Rev. 2.0

Selecting Columns While Painting

Selecting Columns While Painting

Datasetl Example

Employee Humber [URSRE®(Fi2]

selected column

Strategy
You must select a column before you can set its properties.
Basic Steps
1. Select the dataset on the canvas.
2. Place the cursor inside one of the columns of the dataset.
3. Hold down the <Control> key while clicking the <Select>
mouse button.
Variant

V1. Moving the Selection to Another Column
1. Select a column in the dataset using the basic steps.

2. Click the <Select> mouse button for subsequent column
selections.

If you then select another widget on the canvas, you must
repeat the basic steps to reselect a dataset column.

V2. Scrolling Dataset Columns

You can scroll the columns in the dataset you are painting:

1. Select a column in the dataset.

2. Press <Control> while using the mouse to move the scroll
bars on the dataset.

VisualWorks Cookbook, Rev. 2.0 209

Chapter 11 Datasets

DatasetZ Example
Hame Employee Number |U.5. Citizen 3
John Doe 123-4 L
Rob Fell 567- =
Kary Binary | 101-1 L
P | Lisa Chou 923-5 ||—
A
< > .
row marker

Strategy
When the number of rows needed for a dataset is not predeter-
mined, you can program your application to add rows while it
is running.

Basic Steps

Online example: Dataset2Example

1. Use the Palette to add an action button to a canvas
containing a dataset. Leave the button selected.

2. In the Properties Tool, enter Add Row as the button’s Label
property and addRow as the button’s Action property. Apply
the properties and install the canvas.

3. Using the define command or a System Browser, add the
instance method addRow in the actions protocol. This method
adds a new object to the list displayed by the dataset. This,
in turn, adds a new row to the dataset.

addRow "Basic Step 3"
(dsvList list) add: Employee new

210 VisualWorks Cookbook, Rev. 2.0

Adding a Row

Variant

Adding a Row Marker

A row marker indicates which row is selected within a dataset.
It is used in place of row highlighting. To add a row marker,
select Row Selector on the dataset’s Details properties. The marker
appears as the first column within the dataset.

VisualWorks Cookbook, Rev. 2.0 211

Chapter 11 Datasets

Connecting Data to a Dataset

Strategy
An initially empty dataset is sufficient if you want users to
input the data after the application is open. However, some
applications require their datasets to display data initially.
Basic Step

Online example: Dataset3Example

O In the application model, create an initialize method that
provides the data for your dataset.

initialize
| aList anEmp |
alist := List new.

"The aspect for the dataset should be a list of Employee instances.
Create an employee to put in the list."

anEmp := Employee new initialize.

anEmp name: 'Tami Hayes'; empNo: '341-2'; citizen: true.

alist add: anEmp.

"Create an employee to put in the list."

anEmp := Employee new initialize.

anEmp name: 'Leo Mazon'; empNo: '786-9'; citizen: false.
alist add: anEmp.

"Set the list for the dataset aspect. This list appears when you start."

self dsvList list; aList.
super initialize.

212 VisualWorks Cookbook, Rev. 2.0

Enhancing Column Labels

Enhancing Column Labels

Dataset4Example
Hame Ersoyes . 5. Citizen Ti
sanher ——
Tami Hayes | 341-2 " [T~ enhanced column label
Lea Mazon | 786-9 [

Strategy
When you specify a column label by entering a string in the
Label property, it appears on one line. If a column label is partic-
ularly long, you can split the label so that it appears on two
lines. You do this by providing a text that contains the appro-
priate carriage returns.

Basic Steps

Online example: Dataset4Example
To split the Employee Number column label:

1. Create a class method (number) in a resources protocol of the
application model. This method returns a composed text
that is to appear as the label.

number "Basic Step 1"
'Employee
Number' asText allBold) asComposedText

2. In the canvas, select the Employee Number column of the
dataset.

3. In the Properties Tool, enter number as the Label in the Column
properties.

VisualWorks Cookbook, Rev. 2.0 213

Chapter 11 Datasets

4. Select the Image check box next to Label. This specifies that
the column label will come from the resource method
named in the Label property.

5. Apply the properties and install the canvas.

Variant

Changing label colors

O To change the color of the column label, follow the basic
steps, and then edit the number method to set the desired
color.

n

number "Variant Step
('Employee
Number' asText emphasizeAllWith: (Array
with: #bold with: #color->ColorValue red)) asComposedText

214 VisualWorks Cookbook, Rev. 2.0

Chapter 12

Tables

Using Tablelnterface

Adding a Table

Connecting a Table to an Input Field
Labeling Columns and Rows

VisualWorks Cookbook, Rev. 2.0

216
217
221
223

215

Chapter 12 Tables

Using Tablelnterface

Strategy

216

Each basic widget, such as a field or label, requires only a
simple value model for managing its data, which is usually just
a single object such as a text, a number, and so on. In contrast,
a table requires a relatively complex auxiliary object. This
object, which is an instance of TableInterface, holds information
about row and column labeling and formatting in addition to
the table data itself.

Within a TableInterface, the table data is held by a composite
object, an instance of SelectioninTable. This object holds the collec-
tion of cell contents and the selection index. The collection is
expected to be a TwoDList (two-dimensional list), which converts
a flat collection such as an array into a matrix of rows and
columns. Alternatively, you can use a TableAdaptor to adapt a
collection.

All of this interface machinery can be held by a single instance
variable in the application model, and you can simply send
messages to that object to fetch the table or the selection or any
other aspect of it. However, you may find it economical to create
instance variables to hold onto various aspects of the table
interface. For example, the SelectioninTable is useful when your
application model will need to access the contents of the table
at run time.

VisualWorks Cookbook, Rev. 2.0

Adding a Table

Adding a Table

Strategy

Table1Example

[Wulcans J1sa |173 |19z

Romulans TR
‘7

table widget

A table is familiar to you if you have used a spreadsheet
program. It is useful for presenting data that fits into a rows-
and-columns structure. In appearance, tables are similar to
dataset widgets. However, tables can present dissimilar kinds
of data, provided that this data is in a collection that allows
two-dimensional access. Furthermore, tables are best suited
for presenting data that is unlikely to be edited. In contrast, a
dataset is best for presenting a list of similar objects that a user
can edit.

By default, a table is bordered and has both vertical and hori-
zontal scroll bars. You can selectively turn off these features in
the properties dialog. You can also set the font to be used with
text that is displayed in the table cells, connect an <Operate>
menu to the table, and turn on vertical and horizontal grid lines
to separate rows and columns.

A table needs a special kind of container in which to store its
collection of cells. Typically, it keeps the container in an
instance variable of the application model. The first step in
connecting the table to a model is to identify the method that
the table must use to get the container from the model. To
identify that method, enter its name in the Aspect field of the
properties dialog. Then install the canvas.

In broad terms, you must create at least the following frame-
work in the application model. Note that the canvas’ define
command creates an Aspect variable and accessing method.

VisualWorks Cookbook, Rev. 2.0 217

Chapter 12 Tables

Basic Steps

218

Add an instance variable for storing descriptive information
about the table (a Tablenterface) and, optionally, a second
variable for storing the table’s contents (a SelectioninTable).

Create an initialize method in which the instance variables are
initialized.

Create the Aspect method, which simply returns the object
held by the table-interface variable.

TablelExample creates a table of UFO sightings for the past three
years. This table will have a separate row for each type of space-
craft.

Online example: TablelExample

1.

2.

Use a Palette to add a table widget to the canvas. Leave the
table selected.

In the Properties Tool, enter tableInterface as the Aspect. Turn
on both horizontal and vertical grid lines. Apply the proper-
ties and install the canvas.

. Use the canvas’ define command or a System Browser to add

the instance variables sightingsTable and tablelnterface.

. Use the canvas’ define command or a System Browser to

create the instance methods sightingsTable and tablelnterface in
an accessing protocol.

sightingsTable "Basic Step 4"
AsightingsTable
tableInterface "Basic Step 4"

Mablelnterface

. Using a System Browser, initialize the SelectioninTable, usually

in an initialize method in the application model (initialize-release
protocol).

initialize "Basic Step 5"
| list |
super initialize.
"Create a collection of sightings data."

VisualWorks Cookbook, Rev. 2.0

Adding a Table

Variants

list := TwoDList
on: #('Vulcans' 188 173 192 'Romulans' 26 26 452) copy
columns: 4
rows: 2.
sightingsTable := SelectionInTable with: list.
"Create a table interface and load it with the sightings."
tablelnterface := TableInterface new
selectioninTable: sightingsTable.

Open the table interface. Although the data in a table cannot be
edited directly, the next topic will describe how to use an input
field to edit the highlighted cell.

Normally, of course, you wouldn't initialize the table with a
hard-coded collection—the table data would be gathered from
a database or some other source.

V1. Controlling Column Widths

By default, all columns have an equal width that is determined
by the space available in the table. If the table expands with the
window, the column widths will also expand. To set specific
widths for the columns, send a columnWidths: message to the table
interface. The argument is an array containing one number for
each column. The number is the width in pixels. Any column
for which no width is specified gets the width of the last entry
in the array.

0 Reset the widths at any time by adding to the initialize
method.

tableinterface columnWidths: #(100 40). "V1 Step"

In the above example, the first column has been changed so
that it is wide enough to show the entire name of the alien race.
These widths will remain in effect even if the window is
expanded.

VisualWorks Cookbook, Rev. 2.0 219

Chapter 12 Tables

220

V2. Selecting by Row or Column

By default, a single cell in the table is highlighted when the user
clicks in it. In some applications, it is more appropriate to high-
light the entire row or column in which the cell is located. To
arrange for this, simply turn on row or column Selection in the
table’s properties.

VisualWorks Cookbook, Rev. 2.0

Connecting a Table to an Input Field

Connecting a Table to an Input Field

TableZ Example

Vulcans 186|173 |19z |4
Romulans 26 |452

| changed cell

input field

Strategy

A read-only table is sufficient for some applications, but in
many situations the user needs a way to change the contents
of a cell in the table. This can be arranged indirectly by placing
an input field near the table and connecting it to the highlighted
cell. This technique relies on a single cell being selected—
although it still works when row or column selection is enabled,
the effect is not very intuitive.

Basic Steps

Online example: Table2Example

1.

2.

In the canvas, add an input field below the table. Leave the
field selected.

In a Properties Tool, enter cellContents as the field’'s Aspect
property.

. Use the canvas’ define command or a System Browser to add

an instance variable named cellContents to the UFOtable class.

. Use the canvas’ define command or a System Browser to

create the instance method named in step 3 (cellContents) in
an aspects protocol.

cellContents "Basic Step 4"
cellContents

. Add the instance method changedCell in a change messages

protocol.

VisualWorks Cookbook, Rev. 2.0 221

Chapter 12 Tables

changedCell "Basic Step 5"
| cellLocation |
"Get the coordinates of the highlighted cell.”
cellLocation := self sightingsTable selectionindex.
"If a cell is selected, update its contents from the input field."
cellLocation = Point zero
ifFalse: [self sightingsTable table
at: cellLocation
put: self cellContents value]

6. In the application model’s initialize method, initialize the
input field (cellContents).

initialize
| list |
super initialize.
"Create a collection of sightings data."
list := TwoDList
on: #('Vulcans' 188 173 192 'Romulans' 26 26 452) copy
columns: 4
rows: 2.
sightingsTable := SelectionInTable with: list.
"Create a table interface and load it with the sightings."
tablenterface := TableInterface new
selectioninTable: sightingsTable.

cellContents := String new asValue. "Basic Step 6"
self cellContents onChangeSend: #changedCell to: self.

When you run the application, you can use the input field to
edit a selected cell. Notice that when you select a new cell, its
contents are not shown in the input field. To make the field
update its contents when the table selection changes, you must
register interest in the table selection with onChangeSend: and
trigger an update in the input field. In effect, the table selection
and the input field would be watching each other for updates.

222 VisualWorks Cookbook, Rev. 2.0

Labeling Columns and Rows

Labeling Columns and Rows

Table3Example
Yisiting Race 1992 1993 1934 €4—— column labels
1 [vulcans | 1sa] 173 19z |4
Z Romulans | 26[26[asg] ‘
£ ,)v
row labels

Strategy
You can label one or more columns by sending an array of
labels to the table interface. For row labels, you need to send an
array of labels and also an indication of the width of those
labels.
Basic Step
Online example: Table3Example
0 Add code to the end of Table2Example’s initialize method that
initializes the row and column labels.
tablelnterface "Basic Step"
columnLabelsArray: #('Visiting Race' '1992' '1993' '1994");
rowLabelsArray: #(1 2);
rowLabelsWidth: 20.
Variant

Aligning Data and Labels

By default, all cells display their contents beginning at the left
margin, and all labels are centered. You can align data and
labels using any of three symbols: #left, #right, #centered, or

VisualWorks Cookbook, Rev. 2.0 223

Chapter 12 Tables

#leftWrapped. Using these symbols, you can control the alignment
of a column’s data, a column’s labels, or a row’s labels.

0O Add code to the initialize method that initializes the label
alignments.

tablelnterface "Variant Step”
columnFormats: #(#left #right #right #right);
columnLabelsFormats: #(#left #right #right #right);
rowLabelsFormat; #right.

As the example shows, you can set row labels to the same align-
ment by passing a single symbol as argument, and the same
applies to the column alignments. For column data and labels,
however, you also have the option of setting each column’s
alignment individually, as we have done, by passing an array of
symbols.

224 VisualWorks Cookbook, Rev. 2.0

Chapter 13

Menus

Creating a Menu 226
Creating a Submenu 231
Adding a Menu Bar 233
Adding a Menu Button 236
Adding a Pop-Up Menu 240
Modifying a Menu Dynamically 243
Disabling a Menu Item 248
Adding a Divider to a Menu 250
Adding a Shortcut Key 252
Displaying an Icon in a Menu 254
Changing Menu Colors 257
Using a Menu Editor 259

See Also
= “Widget Basics” on page 53

VisualWorks Cookbook, Rev. 2.0 225

Chapter 13 Menus

Creating a Menu

Strategy

226

menu of commands menu of values
MenuCommandExample MenuValueExample
..... Help | Templates
Opan A0 3
+ Add <Alt>A First Hotice
Datels AeD i First Hotice
Second Motice
‘ Final Hotice

Dear <names=,

{ ——1

Your account shows a past due bal
| statement. We would appreciate yo

Menu bars, menu buttons, and pop-up menus all rely on an
underlying instance of Menu. The Menu Editor provides a conve-
nient means of creating a menu and generating a resource
method for recreating the menu on demand. Alternatively, you
can assemble a menu programmatically, which is useful when
the items in the menu must change depending on current
conditions in the application. This chapter primarily shows how
to assemble menus programmatically; the last topic provides
an introduction to using the Menu Editor.

In this topic, the basic steps show how to create a menu of
commands in which each command label is paired with the
name of an action method that is to be sent to the application
model.

The first variant shows how to create a menu of values, which
inserts a value in a value holder rather than executing a

command. Such menus are commonly used by menu buttons.
The second variant shows an alternative menu in which each
item uses a block to perform an action rather than a method.

A menu typically is created by a method in a resources protocol
on the class side of an application model. The resource method
can also be an instance method, which is useful when it relies
on data supplied by a running application.

VisualWorks Cookbook, Rev. 2.0

Creating a Menu

Basic Steps

Creating a Menu of Commands

This type of menu is typically used with a menu bar or popup
menu. In such menus, selecting a menu item causes the asso-
ciated symbol to be sent as a message to the application model.

Online example: MenuCommandExample

1. In a resource method that is responsible for creating the
menu (in the example, fileMenu), create a MenuBuilder by
sending a new message to that class.

2. For each item in the menu, send an add: message to the
menu builder. The argument is an association in which the
label string is paired with the name of an action method
defined in the application model.

3. Get the menu by sending a menu message to the menu
builder. Return that menu as the result of the method.

fileMenu
| mb menu submenu |
mb := MenuBuilder new. "Basic Step 1"
mb
beginSubMenuLabeled: 'File';
add: 'Open' -> #openfFile; "Basic Step 2"
line;

add: 'Add' -> #addFile;
add: 'Delete’ -> #deleteFile;
endSubMenu.

mb
beginSubMenuLabeled: 'Help";
add: 'Usage’ -> #explainUsage;
endSubMenu.

"Add shortcut keys."

menu := mb menu. "Basic Step 3
submenu := (menu menultemLabeled: 'File") submenu.

(submenu menultemLabeled: 'Open') shortcutkKeyCharacter: $0.

(submenu menultemLabeled: 'Add") shortcutkKeyCharacter: $A.

"

VisualWorks Cookbook, Rev. 2.0 227

Chapter 13 Menus

(submenu menultemLabeled: 'Delete’) shortcutKeyCharacter: $D.

menu "Basic Step 3"

Variants

V1. Creating a Menu of Values

This type of menu is typically used with a menu button. In such
menus, selecting a menu item causes the associated value to be
sent to a value holder (see “Adding a Menu Button” in this
chapter).

Online example: MenuValueExample

1. In a menu-creating instance method (in this example,
templatesMenuForMenuButton), create a MenuBuilder by sending a new
message to that class.

2. For each menu item, send an add: message to the menu
builder. The argument is an association between the item’s
label string and the value to be sent to a value holder. In
this case, the value is a textual template that the menu
button puts into its value holder.

3. Get the menu from the menu builder by sending a menu
message to the menu builder, and return the menu as the
result of the method.

templatesMenuForMenuButton

| mb |
mb := MenuBuilder new. "V1 Step 1"
mb

add: 'First Notice' -> self class firstNotice; "V1 Step 2"

add: 'Second Notice' -> self class secondNotice;
add: 'Final Notice' -> self class finalNotice.

mb menu "V1 Step 3"

228 VisualWorks Cookbook, Rev. 2.0

Creating a Menu

V2. Creating a Menu of Action Blocks

You can use a menu of action blocks to provide a menu of
values for a menu bar or pop-up menu. Each block causes the
menu item to put a particular value in a value holder in
response to the user’s selection.

Online example: MenuValueExample

1. In a menu-creating instance method (templatesMenuForMenuBar),
create a menu builder by sending a new message to the
MenuBuilder class. An instance method is used here because
information is needed from the application model instance.

2. For each menu item, send an add: message to the menu
builder. The argument is an association between the item’s
label string and the block that is to perform the desired
action. In this case, the block inserts a textual template in
the value holder for a text editor.

3. Get the menu from the menu builder using a menu message
and return it as the result of the menu-creating method.

templatesMenuForMenuBar
| mb menu submenu |

mb := MenuBuilder new. "V2 Step 1"
mb

beginSubMenuLabeled: ‘Templates';

add: "' -> [self letter value: self class firstNotice]; "V2 Step 2"

add: ' -> [self letter value: self class secondNotice];
add: "' -> [self letter value: self class finalNotice];
endSubMenu.

"Add graphic labels."
menu := mb menu. "V2 Step 3"
submenu := (menu menultemLabeled: 'Templates’) submenu.
(Ssubmenu menultemAt: 1)
labelimage: (self class onelmage).
(Ssubmenu menultemAt: 2)
labellmage: (self class twolmage).
(Ssubmenu menultemAt: 3)
labelimage: (self class threelmage).

"Set the background color."

VisualWorks Cookbook, Rev. 2.0 229

Chapter 13 Menus

submenu backgroundColor: ColorValue chartreuse.

Amenu "V2 Step 3"

See Also
= “Adding a Menu Bar” on page 233
= “Adding a Menu Button” on page 236
= “Adding a Pop-Up Menu” on page 240
= “Using a Menu Editor” on page 259

230 VisualWorks Cookbook, Rev. 2.0

Creating a Submenu

Creating a Submenu

MenuCommandExample

File Help

Strategy

A menu can be nested inside another menu, as shown in the
basic steps. This nesting can be repeated, creating a hierar-
chical menu structure. Nesting beyond a second level begins to
decrease the usability of your application, however.

Submenus are used in the construction of menu bars, which
use a submenu for the contents of each menu bar item.

Basic Steps
Online example: MenuCommandExample

1. Send a beginSubMenuLabeled: message to the menu builder that
you have created to assemble the menu. The argument is
the label for the submenu, which appears in the parent
menu.

2. For each submenu item, send an add: message to the menu
builder. The argument is an association in which a label
string is paired with a method name, value, or block.

3. Send an endSubMenu message to the menu builder.

fileMenu
| mb menu submenu |
mb := MenuBuilder new.

mb

beginSubMenuLabeled: 'File’; "Basic Step 1"
add: 'Open' -> #openfFile; "Basic Step 2"

VisualWorks Cookbook, Rev. 2.0 231

Chapter 13 Menus

232

ling;

add: 'Add' -> #addFile;

add: 'Delete’ -> #deleteFile;

endSubMenu. "Basic Step 3"

mb
beginSubMenuLabeled: 'Help’;
add: 'Usage’ -> #explainUsage;
endSubMenu.

"Add shortcut keys."

menu := mb menu.

submenu := (menu menultemLabeled: 'File') submenu.
(submenu menultemLabeled: 'Open') shortcutKeyCharacter: $O.
(submenu menultemLabeled: 'Add") shortcutkKeyCharacter: $A.
(submenu menultemLabeled: 'Delete’) shortcutKeyCharacter: $D.

menu

VisualWorks Cookbook, Rev. 2.0

Adding a Menu Bar

Adding a Menu Bar

Strategy

Basic Steps

MenuCommandExample

File Help | <4— menu bar

Actions e

< e

A menu bar appears to the user as a set of separate menus
across the top edge of a window. The items in these menus typi-
cally give the user access to the commands that are available in
the application window.

A menu bar is actually implemented with a single menu object.
The menu labels displayed across the menu bar are top-level
menu items in the menu object. The contents of the apparently
separate menus are actually submenus associated with the
top-level menu items.

A menu bar is normally a menu of commands, although you
can implement it to behave like a menu of values. As a menu of
commands (basic steps), the menu bar responds to the selec-
tion of a menu item by sending the associated symbol as a
message to the application model. To implement a menu of
values (variant), you program each menu item to put a value
into a value holder.

Online example: MenuCommandExample
1. In the canvas for the window, make sure no widget is
selected.

2. In a Properties Tool, turn on the Enable switch for the Menu
Bar property.

VisualWorks Cookbook, Rev. 2.0 233

Chapter 13 Menus

3. In the Menu field, enter the name of the menu-creation
method (in the example, fileMenu).

4. Create the resource method that you named in step 3
(fileMenu). This method must return an instance of Menu in
which each top-level label is associated with a submenu.

fileMenu "Basic Step 4"
| mb menu submenu |
mb := MenuBuilder new.

mb
beginSubMenuLabeled: 'File';
add: 'Open' -> #openfFile;
ling;
add: 'Add' -> #addFile;
add: 'Delete’ -> #deleteFile;
endSubMenu.

mb
beginSubMenuLabeled: 'Help";
add: 'Usage' -> #explainUsage;
endSubMenu.

"Add shortcut keys."

menu := mb menu.

submenu := (menu menultemLabeled: 'File') submenu.
(submenu menultemLabeled: 'Open') shortcutKeyCharacter: $O.
(submenu menultemLabeled: 'Add’) shortcutkeyCharacter: $A.
(submenu menultemLabeled: 'Delete’) shortcutkKeyCharacter: $D.

menu

5. Create the action methods that are invoked by the menu
items.

234 VisualWorks Cookbook, Rev. 2.0

Adding a Menu Bar

Variant

Creating a Menu Bar That Inserts a Value
Online example: MenuValueExample

0 In the method that is responsible for creating the menu
(templatesMenuForMenuBar), send an add: message to the menu
builder for each item in the menu. The argument is an
association in which a label string is paired with a block.
The block is responsible for inserting the desired value in
the desired value holder.

templatesMenuForMenuBar
| mb menu submenu |
mb := MenuBuilder new.

mb
beginSubMenuLabeled: ‘Templates';
add: ' ' -> [self letter value: self class firstNotice]; "Variant Step"
add: ' ' -> [self letter value: self class secondNotice];
add: ' ' -> [self letter value: self class finalNotice];
endSubMenu.

"Add graphic labels."
menu := mb menu.
submenu := (menu menultemLabeled: Templates') submenu.
(submenu menultemAt: 1)
labellmage: (self class onelmage).
(submenu menultemAt: 2)
labellmage: (self class twolmage).
(submenu menultemAt: 3)
labellmage: (self class threelmage).

"Set the background color."
submenu backgroundColor: ColorValue chartreuse.

menu

VisualWorks Cookbook, Rev. 2.0 235

Chapter 13 Menus

Adding a Menu Button

Strategy

Variants

236

MenuVvalue Example

Templates

w

7 October 1933

Dear <names=,

Yoenr arcannt chmiee 2 nact dna halane

A menu button is a visual representation of a set of menu items.
It is similar to a submenu in a menu bar, but with two advan-
tages: it can be placed anywhere in the canvas, and its label can
change to reflect the current selection. A menu button is more
visible to the user than a pop-up menu, but it uses space in the
canvas.

A menu button can present either a menu of values (first
variant) or a menu of commands (second variant). In either
case, the menu button sends a value to a value model (usually
a value holder) in response to a user’s selection. For a menu of
values, you program the application model to process the
values as desired. For a menu of commands, you program the
application model to treat these values as messages that invoke
action methods.

V1. Adding a Menu Button with a Menu of Values
Online example: MenuValueExample

1. Use the Palette to add a menu button widget to the canvas.

2. In the button’s Label property, enter the desired label, which
will appear on the menu button. Leaving the Label blank
causes the current selection to appear on the menu button
while the application is running.

VisualWorks Cookbook, Rev. 2.0

Adding a Menu Button

3. In the button’s Aspect property, enter the name of the
method that returns the value holder (in the example, letter).

4. In the menu button’s Menu property, enter the name of the
resource method that returns a menu of values (templates-
MenuForMenuButton).

5. Use the define command or a System Browser to add an
instance variable (letter) to the application model
(MenuValueExample).

6. Use a System Browser to add a method (letter), in an aspects
protocol, that returns the contents of the instance variable.

letter "V1 Step 6"
Netter

7. Use a System Browser to create an initialize method, in an
initialize-release protocol, that initializes the aspect variable .

initialize "V1 Step 7"
letter := self class firstNotice asValue.
letter onChangeSend: #setCheckMark to: self.

8. Use a Menu Editor or a System Browser to create a
resource method (templatesMenuForMenuButton) that creates a
menu of values.

templatesMenuForMenuButton "V1 Step 8"
[mb |
mb := MenuBuilder new.
mb
add: 'First Notice' -> self class firstNotice;
add: 'Second Notice' -> self class secondNotice;
add: 'Final Notice' -> self class finalNotice.

mb menu

VisualWorks Cookbook, Rev. 2.0 237

Chapter 13 Menus

238

V2. Adding a Menu Button with a Menu of Commands
Online example: MenuCommandExample

1. Use the Palette to add a menu-button widget to the canvas.

2. In the button’s Label property, enter the desired label, which
will appear on the menu button. Leaving the Label blank
causes the current selection to appear on the menu button
while the application is running.

3. In the button’s Aspect property, enter the name of the
method that returns a value holder (in the example, action).

4. In the menu button’s Menu property, enter the name of the
resource method that returns a menu of commands
(templatesMenuForMenuButton).

5. Use the define command or a System Browser to add an
instance variable (action) to the application model
(MenuCommandExample).

6. Use a System Browser to add a method (action), in an aspects
protocol, that returns the contents of the instance variable .

action "V2 Step 6"
Naction

7. Use a System Browser to create an initialize method, in an
initialize-release protocol, that initializes the aspect variable.
Also in the initialize method, send an onChangeSend:to: message
to the value holder (action); the first argument is the name of
a method that performs the command (performAction), and the
second argument is typically the application model.

initialize "V2 Step 7"
files := SelectionInList new.
files selectionindexHolder onChangeSend: #configureMenu to: self.

action := nil asValue.
action onChangeSend: #performAction to: self.

8. Use a System Browser to add a method that performs the
currently selected action (performAction).

VisualWorks Cookbook, Rev. 2.0

Adding a Menu Button

performAction "V2 Step 8"
self perform: self action value.

9. Use a Menu Editor or a System Browser to create a
resource method (fileMenu) that creates a menu of
commands.

fileMenu "V2 Step 9"
| mb menu submenu |
mb := MenuBuilder new.

mb
beginSubMenuLabeled: 'File';
add: 'Open' -> #openfFile;
ling;
add: 'Add' -> #addFile;
add: 'Delete’ -> #deleteFile;
endSubMenu.

mb
beginSubMenuLabeled: 'Help";
add: 'Usage' -> #explainUsage;
endSubMenu.

"Add shortcut keys."

menu := mb menu.

submenu := (menu menultemLabeled: 'File') submenu.
(submenu menultemLabeled: 'Open') shortcutKeyCharacter: $O.
(submenu menultemLabeled: 'Add’) shortcutkeyCharacter: $A.
(submenu menultemLabeled: 'Delete’) shortcutKeyCharacter: $D.

menu

10. Use a System Browser to create each of the action methods.

VisualWorks Cookbook, Rev. 2.0 239

Chapter 13 Menus

Adding a Pop-Up Menu

MenuCommandExample

File Help |

Actions e

W

0
admin/rolodes

pop-up menu

Delete

<

Strategy
Several widgets, notably lists and text editors, provide a pop-up
menu in response to the <Operate> mouse button.
The underlying menu is typically a menu of commands,
although you can implement it to behave like a menu of values.
As a menu of commands (basic steps), the pop-up menu
responds to the selection of a menu item by sending the asso-
ciated symbol as a message to the application model. To imple-
ment a menu of values (variant), you program each menu item
to put a value into a value holder.

Basic Steps

Online example: MenuCommandExample

1. In the Menu property of the widget, enter the name of the
method that returns a menu of commands (in the example,
fileMenu).

2. Use a Menu Editor or a System Browser to create a method
that returns a menu such as fileMenu.

fileMenu "Basic Step 2"
| mb menu submenu |
mb := MenuBuilder new.

mb

beginSubMenuLabeled: 'File';
add: 'Open’ -> #openFile;

240 VisualWorks Cookbook, Rev. 2.0

Adding a Pop-Up Menu

Variant

ling;

add: 'Add' -> #addFile;
add: 'Delete’ -> #deleteFile;
endSubMenu.

mb
beginSubMenuLabeled: 'Help’;
add: 'Usage’ -> #explainUsage;
endSubMenu.

"Add shortcut keys."

menu := mb menu.

submenu := (menu menultemLabeled: 'File') submenu.
(submenu menultemLabeled: 'Open') shortcutkKeyCharacter: $O.
(submenu menultemLabeled: 'Add") shortcutkKeyCharacter: $A.
(submenu menultemLabeled: 'Delete’) shortcutKeyCharacter: $D.

menu

3. Use a System Browser to create each of the action methods

named in the menu of commands.

Adding a Pop-Up Menu of Values

Online example: MenuValueExample

1. In the Menu property of the widget, enter the name of the

2.

method that returns a menu of values (templatesMenuForPopUp).

Use a Menu Editor or System Browser to create the menu
method (templatesMenuForPopUp). In the menu, each item label
is paired with a block in which the widget's aspect variable
(letter) is updated with the desired value.

templatesMenuForPopUp "Variant Step 2"

| mb |
mb := MenuBuilder new.

mb
add: 'First Notice' -> [self letter value: self class firstNotice];
add: 'Second Notice' -> [self letter value: self class secondNotice];

VisualWorks Cookbook, Rev. 2.0 241

Chapter 13 Menus

add: 'Final Notice' -> [self letter value: self class finalNotice].

mb menu

242 VisualWorks Cookbook, Rev. 2.0

Modifying a Menu Dynamically

Modifying a Menu Dynamically

Strategy

Variants

MenuSwapExample MenuSwapExample

hlack = hlack =
hlue I hlue |
hrown hrown
[charreuse_ Add At Bottom

Add Ahove
Eyan Delete All Eyan
darkCyan darkCyan Delete
darkGray darkGray
darkGreen darkGreen Delete All
darkhagenta darkhagenta i
darkRed > darkRed |

YWhen a list item is selected,
the pop-up menu changes

YWhen a list item is selected,
the pop-up menu changes

Sometimes a menu needs to change depending on conditions

within the application. In the Resource Finder, for example, one
set of menu items is displayed when an application is selected
and another set is displayed when there is no selection.

The first variant shows how to substitute one menu for another.
This is useful when the changes in a menu are major.

The second and third variants show how to add and remove
menu items individually. This is useful when the changes are
minor; however, this approach has the limitation that items are
appended to the end of the menu.

The fourth variant shows how to temporarily hide and later
reveal a menu item, preserving its position in the menu. This is
useful when an item is to be repeatedly removed and
reinstated.

V1. Substituting a Different Menu
Online example: MenuSwapExample

1. In the Menu property of the widget, enter the name of a
method that returns a value holder containing a menu (in
the example, menuHolder).

VisualWorks Cookbook, Rev. 2.0 243

Chapter 13 Menus

2.

3.

244

In the application model, create an instance variable to hold
the menu in a value holder (menuHolder).

Use a System Browser to create a method (menuHolder) that
returns the value of the instance variable.

menuHolder "V1 Step3"
menuHolder

. Use a Menu Editor or System Browser to create the starting

menu (nothingSelectedMenu) and the alternate menu
(colorSelectedMenu).

nothingSelectedMenu "V1 Step 4"
| mb |
mb := MenuBuilder new.
mb add: 'Add At Bottom' -> #unimplemented;
ling;
add: 'Delete All' -> #unimplemented.
mb menu

colorSelectedMenu "V1 Step 4"
| mb |
mb := MenuBuilder new.
mb add: 'Add Above' -> #unimplemented;
line;
add: 'Delete’ -> #unimplemented;
add: 'Delete All' -> #unimplemented.
“mb menu

. Use a System Browser to create an initialize method that gets

the starting menu, puts it in a value holder, and assigns the
holder to the instance variable.

initialize
colors := SelectioninList with: ColorValue constantNames.
colors selectionindexHolder onChangeSend: #selectionChanged to: self.

menuHolder := self nothingSelectedMenu asValue. "V1 Step 5"

VisualWorks Cookbook, Rev. 2.0

Modifying a Menu Dynamically

6. Create a method (selectionChanged) that tests to see which
menu should be used and then puts the correct menu in
the menu holder.

selectionChanged "V1 Step 6"
self colors selection isNil
ifTrue: [self menuHolder value: self nothingSelectedMenu]
ifFalse: [self menuHolder value: self colorSelectedMenu]

7. Arrange for the menu-changing method to be invoked when
the relevant condition changes in the application. (In the
example, an onChangeSend:to: message in the initialize method
accomplishes this.)

V2. Adding an Item to a Menu
Online example: MenuModifyExample

1. Get the menu by sending a menuAt: message to the applica-
tion model’s builder. The argument is the name of the menu
as identified in the Menu property.

2. Send an addltemLabel:value: message to the menu. The first
argument is the label string and the second argument is a
command, a value, or an action block.

addTitle
"Prompt for a new job title and add it to the list."

| newTitle jMenu |
newTitle ;= Dialog request: ‘New title?".
newTitle isEmpty ifTrue: ["self].

iMenu := self builder menuAt: #jobTitlesMenu. "V2 Step 1"
jMenu addltemLabel; newTitle value: newTitle asSymbol. "V2 Step 2"

self jobTitle value: newTitle asSymbol.

VisualWorks Cookbook, Rev. 2.0 245

Chapter 13 Menus

246

V3. Removing an Item from a Menu

Online example: MenuModifyExample

1.

Get the menu by sending a menuAt: message to the applica-
tion model’s builder. The argument is the name of the menu
as specified in the Menu property.

. Get the item to be deleted by sending a menultemLabeled:

message to the menu. The argument is the label string of
the menu item. (If the item is in a submenu, you must first
access the submenu and get the item from it.)

. Send aremoveltem: message to the menu. The argument is the

menu item from the previous step.

. In the case of a menu button in which the current selection

is displayed (that is, a menu button whose Label property is
blank), make sure the button’s value holder has a valid
value. If necessary, choose a new value to displace the
deleted menu item’s value.

deleteTitle
"Prompt for a title and remove it from the list."

| IMenu removableTitles title item |
iMenu := self builder menuAt: #jobTitlesMenu. "V3 Step 1"

"Don't permit the president to be overthrown."
removableTitles ;= jMenu labels
reject: [:nextTitle | nextTitle = 'President]].

title ;= Dialog
choose: 'Delete Title'
fromList: removableTitles
values: removableTitles
lines: 8
cancel: [™nil]
for: ScheduledControllers activeController view.

item := jMenu menultemLabeled: title. "V3 Step 2"
jMenu removeltem: item. "V3 Step 3"

"If the deleted title is showing, pick the first title."

VisualWorks Cookbook, Rev. 2.0

Modifying a Menu Dynamically

See Also

self jobTitle value == title asSymbol
ifTrue: [self jobTitle value: #President]. "V3 Step 4"

V4. Hiding a Menu Item

Online example: MenuModifyExample

1.

Get the menu by sending a menuAt: message to the applica-
tion model’s builder. The argument is the name of the menu
as specified in the Menu property.

. Get the item to be deleted by sending a menultemLabeled:

message to the menu. The argument is the label string of
the menu item. (If the item is in a submenu, you must first
access the submenu and get the item from it.)

. To hide the item, send a hideltem: message to the menu. The

argument is the menu item from the previous step. If the
item is already hidden, no error occurs.

. To reveal an item, send an unhideltem: message to the menu.

The argument is the menu item from the previous step. If
the item is already revealed, no error occurs.

adjustBenefitList
"Hide benefit items that are not available to the currently
selected job title."

| bMenu item |
bMenu := self builder menuAt: #benefitsMenu. "V4 Step 1"
item := bMenu menultemLabeled: 'Golden Parachute'. "V4 Step 2"

"Only the President gets the Golden Parachute.”

self jobTitle value == #President
ifTrue: [bMenu unhideltem: item] "V4 Step 4"
ifFalse: [bMenu hideltem: item]. "V4 Step 3"

“Disabling a Menu Item” on page 248

VisualWorks Cookbook, Rev. 2.0 247

Chapter 13 Menus

Disabling a Menu Item

Strategy

Basic Steps

248

MenuCommandExample

File Help

disabled item

< —— 5|

Rather than removing a menu item when it is not appropriate
for the user to select it, you can disable it. When disabled, it
appears in a different color in the menu as a visual cue to the
user, and it does nothing when the user tries to select it.
Disabling a menu item is usually preferable to removing it,
especially when the item is likely to be reinstated later.

In MenuCommandExample, menu items are enabled and disabled
depending on whether a file name in a list is selected. The
method that performs this service (configureMenu) is invoked at
two different times: by a postBuildWith: method (to configure the
menu at startup) and whenever the selection changes in the list
(as arranged in the initialize method).

Online example: MenuCommandExample

1. To disable a menu item, send a disable message to it. This is
typically done after testing some condition in the applica-
tion (in the example, after testing whether anything is
selected in the list).

2. To enable a menu item, send an enable message to it.
configureMenu

"Disable or enable the menu items depending on whether
afile is selected.”

VisualWorks Cookbook, Rev. 2.0

Disabling a Menu Item

| menu submenu |
menu := self builder menuAt: #fileMenu.
submenu := (menu menultemLabeled: 'File') submenu.

self files selection isNil

ifTrue: [
(submenu menultemLabeled: 'Open’) disable. "Basic Step 1"
(submenu menultemLabeled: 'Delete’) disable]

ifFalse: [
(submenu menultemLabeled: 'Open’) enable. "Basic Step 2"

(submenu menultemLabeled: 'Delete’) enable]

See Also
= “Modifying a Menu Dynamically” on page 243
s “Using a Menu Editor” on page 259

VisualWorks Cookbook, Rev. 2.0 249

Chapter 13 Menus

Adding a Divider to a Menu

MenuCommandExample

File Help |

divider

Strategy
When a menu contains several items, it is often helpful to the
user to group the items into functional sets. A submenu is one
way of subdividing a large menu, but a divider line that
provides visual separation is often adequate.

Basic Step

Online example: MenuCommandExample

0 When creating a menu using a menu builder, send a line
message to the menu builder before adding each new group
of items.

fileMenu
| mb menu submenu |
mb := MenuBuilder new.

mb
beginSubMenuLabeled: 'File’;
add: 'Open' -> #openfFile;
line; "Basic Step"
add: 'Add' -> #addFile;
add: 'Delete’ -> #deleteFile;
endSubMenu.

mb

beginSubMenuLabeled: 'Help";
add: 'Usage’ -> #explainUsage;

250 VisualWorks Cookbook, Rev. 2.0

Adding a Divider to a Menu

endSubMenu.

"Add shortcut keys."

menu := mb menu.

submenu := (menu menultemLabeled: 'File') submenu.
(submenu menultemLabeled: 'Open') shortcutkKeyCharacter: $O.
(submenu menultemLabeled: 'Add") shortcutkKeyCharacter: $A.
(submenu menultemLabeled: 'Delete’) shortcutKeyCharacter: $D.

Amenu

See Also
= “Using a Menu Editor” on page 259

VisualWorks Cookbook, Rev. 2.0 251

Chapter 13 Menus

Adding a Shortcut Key

Strategy

Basic Step

252

MenuCommandExample

om0 j
.....
Add

<Alt=4
Dofele (AlLeD

B

shortcut key

For frequently used commands, it is helpful to provide a
keyboard shortcut or keyboard accelerator—that is, a key
sequence that invokes the command just as if the user had
selected it from the menu. In some operating environments,
every menu command is expected to have a keyboard equiva-
lent. The basic steps show how to add a shortcut key to a menu
bar.

Only a menu bar displays shortcut keys—not a menu button
or a pop-up menu. This is true because only the menu bar is
capable of responding to a keypress no matter where the cursor
is located.

Online example: MenuCommandExample

0 Send a shortcutKeyCharacter; message to a menu item. The
argument is a character. The uppercase form of the char-
acter will appear in the menu, prefixed by <Alt>, indicating
that the user must press the <Alt> key and the letter key
simultaneously. (The <Alt> key has a different name on
some keyboards.)

fileMenu

| mb menu submenu |
mb := MenuBuilder new.

VisualWorks Cookbook, Rev. 2.0

Adding a Shortcut Key

mb
beginSubMenuLabeled: 'File’;
add: 'Open’ -> #openfFile;
line;
add: 'Add' -> #addFile;
add: 'Delete’ -> #deleteFile;
endSubMenu.

mb
beginSubMenuLabeled: 'Help’;
add: 'Usage’ -> #explainUsage;
endSubMenu.

"Add shortcut keys."
menu := mb menu.
submenu := (menu menultemLabeled: 'File') submenu.
(submenu menultemLabeled: ‘Open’)
shortcutKeyCharacter: $O. "Basic Step”
(submenu menultemLabeled: 'Add’)
shortcutkeyCharacter: $A.
(submenu menultemLabeled: 'Delete’)
shortcutkeyCharacter: $D.

menu

See Also
s “Sensing Keyboard Activity” on page 416

VisualWorks Cookbook, Rev. 2.0 253

Chapter 13 Menus

Displaying an Icon in a Menu

Strategy

Basic Step

254

MenuVvalue Example

MenuValueExample
graphic labels Templates

7 Octd First Notice

7 October 1993 /v Second Notice
Final Notice
Dear « >,

Dear <names, on/off indicator

Your account shows a past du

Menu items can have a textual or graphical label.

The basic step shows how to substitute a graphic label for a
textual label or combine the two.

The variant shows a special case in which a check mark or
check box is prefixed to the textual label as a toggle indicator.
This technique is frequently used with a menu item that repre-
sents a setting to indicate whether the condition is on or off.
You can also use it to simulate a set of radio buttons in a menu,
as MenuValueExample does.

Online example: MenuValueExample

0 Send a labellmage: message to the menu item. The argument
is any visual component, but typically it is a graphic image.
The label string will be displaced to the right to make room
for the image. The label string must have at least one char-
acter (even just a space).

templatesMenuForMenuBar
| mb menu submenu |
mb := MenuBuilder new.

mb

beginSubMenuLabeled: ‘Templates';
add: ' -> [self letter value: self class firstNotice];

VisualWorks Cookbook, Rev. 2.0

Displaying an Icon in a Menu

add: ' ' -> [self letter value: self class secondNotice];
add: ' ' -> [self letter value: self class finalNotice];
endSubMenu.

"Add graphic labels."

menu := mb menu.

submenu := (menu menultemLabeled: Templates'’) submenu.

(submenu menultemAt: 1) "Basic Step”
labellmage: (self class onelmage).

(submenu menultemAt: 2)
labellmage: (self class twolmage).

(submenu menultemAt: 3)
labellmage: (self class threelmage).

"Set the background color."
submenu backgroundColor: ColorValue chartreuse.

menu

Variant

Displaying an On/Off Indicator
Online example: MenuValueExample

1. To display an “on” indicator, send a beOn message to the
menu item. The indicator is a check mark in some looks
and a box in others.

2. To display an “off” indicator, send a beOff message. In some
looks, beOff simply removes the “on” indicator; in others it
displays a different image.

setCheckMark
"In the pop-up menu, set the check box to indicate the currently
displayed template."

| menu item |
menu := self builder menuAt: #templatesMenuForPopUp.

item := menu menultemAt: 1.
self letter value = self class firstNotice

VisualWorks Cookbook, Rev. 2.0 255

Chapter 13 Menus

ifTrue: [item beOn] "Variant Step 1"
ifFalse: [item beOff]. "Variant Step 2"

item := menu menultemAt: 2.

self letter value = self class secondNotice
ifTrue: [item beOn]
ifFalse: [item beOff].

item := menu menultemAt: 3.

self letter value = self class finalNotice
ifTrue: [item beOn]
ifFalse: [item beOff].

See Also
= “Creating a Graphic Image” on page 658
= “Using a Menu Editor” on page 259

256 VisualWorks Cookbook, Rev. 2.0

Changing Menu Colors

Changing Menu Colors

Strategy

You can modify the background color of a menu, as shown in
the basic steps. This technique can be used to make all menus
of a particular type appear similar. For example, you might
make the Help menu a distinctive color wherever it occurs.

You can also group related items in a menu by applying a color
to their labels, as shown in the basic steps. This approach is
especially effective when you want to bring attention to the rela-
tionship among items that are not adjacent to one another.

Basic Steps
Online example: MenuModifyExample

1. To color a menu’s background, send a backgroundColor:
message to the menu. The argument is a paint, typically an
instance of ColorValue.

2. To color a menu item’s label, send a color; message to the
menu item. The argument is a paint, typically a ColorValue.

benefitsMenu

| mb menu |

mb := MenuBuilder new.

mb add: ‘Health Insurance’ -> #health;
add: 'Retirement Fund' -> #retirement;
add: 'Life Insurance' -> #life;
add: 'Stock Options' -> #stock;
add: 'Golden Parachute' -> #parachute.

menu := mb menu.

menu backgroundColor: ColorValue chartreuse. "Basic Step 1"
(menu menultemLabeled: 'Golden Parachute")

color: ColorValue red. "Basic Step 2"
Amenu

VisualWorks Cookbook, Rev. 2.0 257

Chapter 13 Menus

See Also
= “Creating a Color” on page 686

258 VisualWorks Cookbook, Rev. 2.0

Using a Menu Editor

Using a Menu Editor

Strategy

Menu Editor

Menu Edit Move View Test
SHE

white =

hlack Label:
colors Default | red
green
hlue
Fns;%r;nta Value: | #red
ellow
4 1D: | #red
=Basic

You can use a Menu Editor to create menus for menu bars,
menu buttons, and pop-up menus. With a Menu Editor, you
can create menus of commands and values (you cannot create
menus of action blocks).

This topic assumes you are using the enhanced Menu Editor.
To use the enhanced menu editor, turn on Use Enhanced Tools on
the Ul Options page of the Settings Tool. The enhanced Menu
Editor provides a display in which the menu items appear as
you create them, plus a notebook in which you can specify
various properties for each menu item (label, value, identifier
for programmatic use, shortcut character, graphical image for
use in a label, on/off indicator, and initial states such as
hiddenness).

The basic steps build a menu of values for a menu button. This
menu includes a submenu and has a divider. To display a Menu
Editor for the provided example, make sure that MenuEditorExample
is filed in, then locate it in a Resource Finder, select the colorMenu
resource and click Edit.

The variant shows how to access a menu, a submenu, and their
menu items programmatically.

VisualWorks Cookbook, Rev. 2.0 259

Chapter 13 Menus

Basic Steps

260

Online example: MenuEditorExample

1.

2.

Open an enhanced Menu Editor (for example, from a
Canvas Tool, choose Tools[] Menu Editor).

Create the top-level menu. For each item that is to appear

in it, choose Edit(] New Item to create an empty item labeled
<new item>.

. Select each top-level <new item> and enter its string label in

the Label Default property. Each label appears in the text area
as soon as you accept input in the field (for example, by
tabbing to the next field or pressing the <Return> key). In
the example, create items labeled white, black, and colors.

. Select each top-level item and enter its value in the Value

property. Each value is turned into a symbol (with a
prepended pound sign #) when you accept input in the field.
In the example, enter values white and black for the first two
items (colors does not need a value because it is the label for
a submenu).

. Create the submenu. Select the label for the submenu

(colors) and choose Edit[] New Submenu Item to create the first
item in the submenu. Then, choose Edit[] New Item once for
each subsequent submenu item. In this example, create six
items labeled <new item>, all at the same indentation level
under the submenu label.

. Select each indented <new item> and enter its string label in

the Label property. In this example, create items labeled red,
green, blue, cyan, magenta, and yellow.

. Select each labeled submenu item and enter its value in the

Value property. In this sample, enter values red, green, blue,
cyan, magenta, and yellow.

. Add a divider line below an item by selecting that item and

choosing Edit[] Add Line. In the example, add a divider line
below the item labeled black.

. Pull down the Test menu in the menu bar of the Menu

Editor to test the menu you have created. Adjust any menu
items as needed—for example, use Movel Left and Moveld Right
to change the level of indentation of the items; use Move Up
and Movel Down to change the order of items.

VisualWorks Cookbook, Rev. 2.0

Using a Menu Editor

10.

11.

12.

Variant

Choose Menul Install... to install a specification for the menu
in a resource method of the application model. In this
example, install the menu specification in a colorMenu class
method in MenuEditorExample.

In the canvas, select the menu button to which you want to
apply the menu.

In a Properties tool, fill in the menu button’s Menu property
with the name of the menu resource (colorMenu). Apply prop-
erties and install the canvas.

Accessing Menus Programmatically

Online example: MenuEditorExample

1.

In an enhanced Menu Editor, select the menu item to be
accessed and fill in its ID: property with an identifying name
key. In the example, use the corresponding color name as
the name key for each item. Install the menu.

. In a System Browser, create the method that is to access

the menu programmatically (in this example,
disableDarkColors). Get the menu by sending a menuAt: message
to the builder. The argument is the name of the menu’s
resource method (#colorMenu).

. Get the menu'’s collection of menu items by sending a

menultems message to the menu.

. Send a nameKey message to each menu item to obtain its

name key. In this example, disable each menu item whose
name key is in the darkColors array.

. Get the menu item that serves as the label for the submenu

(in this example, get the menu item whose name key is
#colors). To do this, send an atNameKey: message to the menu,
specifying the desired name key (#colors) as the argument.

. Get the submenu by sending a submenu message to the menu

item returned in step 5.

. Get the submenu’s menu items by sending a menultems

message to the submenu. In this example, disable each
submenu item whose name key is in the darkColors array.

VisualWorks Cookbook, Rev. 2.0 261

Chapter 13 Menus

disableDarkColors

| menu submenu darkColors |
darkColors := #(#black #red #blue #magenta).

menu := self builder menuAt: #colorMenu. "Variant Step 2"
menu menultems do: [:menultem | “Variant Step 3"
(darkColors includes: menultem nameKey) "Variant Step 4"

ifTrue: [menultem disable]].

submenu := (menu atNameKey: #colors) submenu. "Variant Step 5, 6"
submenu menultems do: [:menultem | "Variant Step 7"
(darkColors includes: menultem nameKey)
ifTrue: [menultem disable]].

262 VisualWorks Cookbook, Rev. 2.0

Chapter 14
Sliders

Adding a Slider

Connecting a Slider to a Field
Changing the Range Dynamically
Changing the Length of the Marker
Making a Slider Two-Dimensional

See Also
= “Widget Basics” on page 53

VisualWorks Cookbook, Rev. 2.0

264
267
270
273
274

263

Chapter 14 Sliders

Adding a Slider

SliderExample

Destination 2az4 i .
. A/ slider
DAD 4000 A.D.
Trip Meter “You are here 1333 i
Warp Engine

P read-only slider

Strategy

Basic Steps

264

A slider widget simulates the sliding switch that some elec-
tronic devices use for controlling volume, bass level, and other
properties. A slider enables you as the designer of an applica-
tion to define a specific range of legal values, and it enables the
user to conveniently select a value within that range.

Online example: SliderlExample (the Destination slider)

1.

2.

Use a Palette to add a slider widget to the canvas. Leave the
slider selected.

In the Properties Tool, fill in the slider’'s Aspect property with
the name of the method (destination) that will supply a value
model for the slider.

. Optionally change the Start (0), Stop (4000), and Step (10) prop-

erties, which control the endpoints of the range and the
increment by which the marker will move. The default Start
is 0 and the default Stop is 1. The default Step is nil, giving
the effect of continuous marker motion.

. Apply the properties and install the canvas.

VisualWorks Cookbook, Rev. 2.0

Adding a Slider

5. Use the canvas’s define command or a System Browser to
create an instance variable to hold the slider’'s value model
(destination).

6. Use the canvas’s define command or a System Browser to
create a method, in an aspects protocol, for accessing the
instance variable (destination).

destination "Basic Step 6"
Adestination

7. Use a System Browser to initialize the variable, usually in
an initialize method, in an initialize release protocol. Initialize the
variable with a value holder whose initial value is the
current year.

initialize
"Destination”
destination := Date today year asValue. "Basic Step 7"

"Current year"
currentYear := Date today year asValue.

"Trip meter"

tripRange := RangeAdaptor
on: currentYear
stop: 4000
grid: 1.

Variants

V1. Making a Slider Vertical

By default, a slider is horizontal in shape, and the marker
moves horizontally as well.

1. To alter the shape of a slider, drag the selection handles of
the widget.

2. To alter the marker’s direction of movement, select the
slider’s Vertical or Horizontal property.

3. Apply the properties and install the canvas.

VisualWorks Cookbook, Rev. 2.0 265

Chapter 14 Sliders

266

Note that it is possible to have a slider that is horizontal in
shape but vertical in operation.

V2. Making a Slider Read-Only

Although it is normally an input device, a slider can be used
purely as an output device. In SliderlExample, we use a read-only
slider as a meter to display the progress of the user’s time-trav-
eling adventure.

1. Select the slider in the canvas.

2. In a Properties Tool, fill in the slider’s ID property with an
identifying name (tripRange).

3. In a method in the application model (typically postBuildwith:),
get the slider component from the builder and disable it.

postBuildWith: aBuilder
"Disable the trip meter, making it read-only."
(aBuilder componentAt: #tripRange) disable. "V2 Step 3"

VisualWorks Cookbook, Rev. 2.0

Connecting a Slider to a Field

Connecting a Slider to a Field

SliderExample

P .
Destination 2az4 - field
. 4— slider
0AD 4000 A.D.
Trip Meter “You are here 1333 i
Warp Engine

Strategy

Basic Steps

Although a slider is both an input and an output device, it typi-
cally gives the user only a rough idea of the current value.
Frequently, a field is used to display the same value precisely.

For example, the SliderlExample uses a field to display the desti-
nation year, because the slider covers such a large range (zero
to 4000) that the user can only guess at its current value.

Unless you make the field read-only, the user has the option of
changing the value by using either the slider or the field.

Nonnumeric slider: By its nature, a slider always manipulates
a numeric value. You can make it appear to manipulate a
nonnumeric value, however, by using a field to display the
transformed value. The variant shows how to do so.

Online example: SliderlExample (the Destination slider and field)

1. Use a Palette to add a field to the canvas. Leave the field
selected.

VisualWorks Cookbook, Rev. 2.0 267

Chapter 14 Sliders

Variant

268

2.

3.

In the Properties Tool, fill in the field's Aspect property with
the same name that the slider uses for its Aspect (destination).

In the field’'s Type property, select Number.

4. Apply the properties and install the canvas.

Displaying a Transformed Value in the Field

Online example: Slider2Example (the Month field)

1.

In the field’s Aspect property, enter a different method name
than the slider’s Aspect (in the example, the slider’s Aspect is
dateRange while the field’s Aspect is month).

. In the field’s Type property, select the type that corresponds

to the transformed value (in the example, a month name
will be displayed, so we use a String type field).

. Use the canvas’ define command or a System Browser to

create the field's instance variable (month) and accessing
method (month).

month "Variant Step 3"
“month

. In a method in the application model (typically initialize),

initialize the field’s variable.

. In the initialize method, arrange for a change message

(changedDate) to be sent to the application model when the
slider’s value changes.

initialize
month :=(Date nameOfMonth: 1) asValue. "Variant Step 4"
year := 1900 asValue.

dateRange := (0@1) asValue.
dateRange onChangeSend: #changedDate to: self. "Variant Step 5"

. Use a System Browser to create the change method

(changedDate) in the application model. This method is
responsible for changing the field’'s value based on the
slider’s new value.

VisualWorks Cookbook, Rev. 2.0

Connecting a Slider to a Field

changedDate
"Convert the y-axis value to a month." "Variant Step 6"
lyx|
y := self dateRange value y.
y = (12 - (y * 12) asInteger) max: 1. "(12 months)"

self month value: (Date nameOfMonth: y).

"Convert the x-axis value to a year."

x = self dateRange value x.

X :=1900 + (x * 100) asInteger. "(100 years)"
self year value: x.

See Also
= “Creating an Input Field” on page 122

VisualWorks Cookbook, Rev. 2.0 269

Chapter 14 Sliders

Changing the Range Dynamically

SliderExample

Destination

0AD.

Trip Meter

4000 A.D.

Range is reset
when trip begins.

Warp Engine

Vou are here / New range is the

years to be traversed

Strategy

Basic Steps

270

When the slider’s range is unchanging, you can use the slider’s
Start, Stop, and Step properties to set the range and the step
value. When the range or step varies, however, this approach is
not sufficient.

A RangeAdaptor provides the required flexibility. It is a specialized
value model that also keeps track of the range and step values.
You can change those values by sending messages to the
adaptor. This can be done anytime—in the SliderlExample, the trip
meter’'s range is modified every time the Engage button is
pressed.

Online example: SliderlExample (the Trip Meter slider)

1. In a method in the application model (typically in an initialize
method), initialize the slider’s aspect variable with a
RangeAdaptor by sending the instance creation message
(on:start:stop:grid:). The first argument (currentYear) is a value
holder containing the number that the slider manipulates.
(When a field is connected to the slider, as in the example,

VisualWorks Cookbook, Rev. 2.0

Changing the Range Dynamically

this argument is the field’s aspect variable.) The grid
argument is the step value.

initialize
"Destination”
destination := Date today year asValue.

"Current year"
currentYear ;= Date today year asValue.

"Trip meter”
tripRange := RangeAdaptor "Basic Step 1"
on: currentYear
start: 0
stop: 4000
grid: 1.

2. Whenever the range or step must change, send a rangeStart:,
rangeStop:, or grid: message to the adaptor. (In the example,
this is done in the engage method.)

engage
"Start the time trip."

| startingYear destinationYear direction |
startingYear := self currentYear value.
destinationYear := self destination value.

destinationYear == startingYear
ifTrue: [*Dialog warn: 'Please select a new destination.’].

"Set the endpoints on the trip meter.”

self tripRange "Basic Step 2"
rangeStart: startingYear;
rangeStop: destinationYear;
grid: 1.

"Reset the meter to the starting position."
currentYear value; startingYear.

"Set up a step value for the loop that follows (-1 = backward in time)."
destinationYear > startingYear

VisualWorks Cookbook, Rev. 2.0 271

Chapter 14 Sliders

ifTrue: [direction := 1]
ifFalse: [direction := -1].

"For each year of time travel, update the current year."

startingYear to: destinationYear by: direction do: [:yr |
currentYear value: yr].

272 VisualWorks Cookbook, Rev. 2.0

Changing the Length of the Marker

Changing the Length of the Marker

SliderZ Example

Two-Dimensional Slider

Month

vour

Strategy

Marker in a
2D slider is
a box

By default, a slider’'s marker is 29 pixels long. This length is
suitable for most purposes. For a very short slider, however, a

shorter marker may be more pleasing.

Before you change the marker width, be aware that the
marker’s appearance changes under different window-manager
looks. In particular, the beveled appearance used by some
window managers makes a marker that is less than 3 pixels
wide display incorrectly.

Basic Step

Online example: Slider2Example

O Inamessage in the application model (typically postBuildwith:),
get the slider widget from the builder and send a
setMarkerLength: message to it, with the length in pixels as

argument.

postBuildWith: aBuilder

(aBuilder componentAt: #dateRange) widget

beTwoDimensional;
setMarkerLength: 10.

VisualWorks Cookbook, Rev. 2.0

"Basic Step"

273

Chapter 14 Sliders

Making a Slider Two-Dimensional

Strategy

Basic Steps

274

SliderZ Example
2D marker

controls
two aspects of
the model

Two-Dimensional Slider

Month |

|1969 "¢

Year

By default, a slider operates in one dimension, changing a value
along a linear scale. You can arrange for a slider to manipulate
a point in two dimensions and then use the x-axis and y-axis
components of that point to control two separate parameters.

In Slider2Example, a two-dimensional slider is used to alter two
fields simultaneously. The first field, which uses the y-axis
component of the slider’s value, displays one of the 12 months.
The second field uses the x-axis component of the slider’s value
to arrive at a year between 1900 and 2000.

Online example: Slider2Example

1. In a method in the application model (typically initialize),
initialize the slider’s variable to an instance of Point that is
held by a value holder.

initialize
month := (Date nameOfMonth: 1) asValue.
year := 1900 asValue.
dateRange := (0@1) asValue. "Basic Step 1"
dateRange onChangeSend: #changedDate to: self.

2. In a postBuildwith: method, get the slider from the builder and
ask it to beTwoDimensional.

VisualWorks Cookbook, Rev. 2.0

Making a Slider Two-Dimensional

Variant

postBuildWith: aBuilder

(aBuilder componentAt: #dateRange) widget
beTwoDimensional; "Basic Step 2"
setMarkerLength: 10.

Connecting a Two-Dimensional Slider to Two Fields

1.

In a method in the application model (typically initialize),
arrange for a change message (changedDate) to be sent to the
application model when the slider’s value changes.

initialize
month :=(Date nameOfMonth: 1) asValue.
year := 1900 asValue.

dateRange := (0@1) asValue.
dateRange onChangeSend: #changedDate to: self. "Variant Step 1"

. Use a System Browser to create the change method

(changedDate) in the application model. This method splits the
slider’s value into its x-axis and y-axis components. Each
component is a value between 0 and 1 and is transformed
as needed to produce a suitable value for the related field.

changedDate “Variant Step 2"
"Convert the y-axis value to a month."
lyx|
y := self dateRange value y.
y = (12 - (y * 12) aslnteger) max: 1."12 months"
self month value: (Date nameOfMonth: y).

"Convert the x-axis value to a year."

x = self dateRange value x.

X :=1900 + (x * 100) asInteger. "(100 years)"
self year value: x.

VisualWorks Cookbook, Rev. 2.0 275

Chapter 14 Sliders

See Also
= “Creating an Input Field” on page 122

276 VisualWorks Cookbook, Rev. 2.0

Chapter 15

Dialogs

Displaying a Warning

Asking a Yes/No Question

Asking a Multiple-Choice Question
Requesting a Textual Response
Requesting a Filename

Choosing from a List of Items
Linking a Dialog to a Master Window
Creating a Custom Launcher
Creating a Custom Dialog

See Also
= “Widget Basics” on page 53

VisualWorks Cookbook, Rev. 2.0

278
280
282
284
286
289
292
294
296

277

Chapter 15 Dialogs

Displaying a Warning

Dialog Example

This butto n . . . Memory Browser

. . \i Multiple —choice dialogs Fill-in-the -blank dialogs Custom dialogs
. . . displays this

warning dialog

|

Get text I Open dialog canvas I
Confinm intention | Get file name I Open dialog, store its builder

Ask multiple —choice guesti | Open dialog with temp model

The memory named Create custom Launcher

'ArstKiss’
was not found.

Lawncher

Value retumed by dialog

Strategy

Basic Step

278

A warning dialog is frequently used when an action cannot be
completed. For example, when a search command cannot find
a user-specified string, the command normally reports this in
a warning dialog. In general, a warning dialog can be used to
display any simple textual message. The message can have
embedded carriage returns and multiple text styles.

The dialog provides an OK button with which the user can
dismiss the dialog. For this reason, a warning dialog is often
referred to as an OK dialog.

A warning dialog is displayed by sending a warn: message to the
Dialog class. When the user clicks OK, the message returns the
value nil.

Online example: DialogExample

O In the method responsible for bringing up the dialog, send a
warn: message to the Dialog class. The argument is the
dialog’s label string. Note that the backslash characters in
this string are converted to carriage returns by the withCRs
message.

VisualWorks Cookbook, Rev. 2.0

Displaying a Warning

warn
| returnVal |
returnVal := Dialog
warn: 'The memory named\"FirstKiss”\was not found.\’
withCRs. "Basic Step"

"Update the text field in the main window."
self returnedValue value: returnVal printString.

VisualWorks Cookbook, Rev. 2.0 279

Chapter 15 Dialogs

Asking a Yes/No Question

This butto n . . .

Multiple —choice dialogs Fill-in-the -blank dialogs Custom dialogs
. . Wam or notify Get text I Open dialog canvas I
.. . displays this \ { -

confirmer dialog

|

Dialog Example

tdemory Browser

Get file name I Open dialog, store its builder
Ask multiple —choice guesti I Open dialog with temp model

Lawncher

Create custom Launcher
Really erase all memories

of adolescent period?

Value retumed by dialog

true

Strategy

Basic Step

280

Frequently an application needs to ask the user a yes/no ques-
tion. A common situation for using such a dialog is when the
user is initiating an action that may have unintended side
effects, such as closing a file editor before saving edits. Because
a yes/no dialog is so often used to confirm a dangerous action,
it is often referred to as a confirmer.

By convention, the question is phrased in such a way that a Yes
answer causes the action to proceed. Except in the most
hazardous situations, Yes is also the default answer.

A confirmer dialog is displayed by sending a confirm: message to
the Dialog class. When the user clicks Yes, the message returns
the value true. When the user clicks No, the message returns the
value false.

The basic steps show how to use a confirm: message. The first
variant shows how to specify the default answer. The second
variant specifies a master window from which the dialog adopts
certain look-specific features such as its colors.

0 Send a confirm: message to the Dialog class. The argument is
the question to be asked.

VisualWorks Cookbook, Rev. 2.0

Asking a Yes/No Question

Dialog confirm: 'Really erase all memories\of adolescent period?\
withCRs. "Basic Step"

Variants

V1. Supplying a Default Answer

0 Send a confirm:initialAnswer: message to Dialog. The second
argument is either true or false.

Dialog "V1 Step"
confirm: 'Really erase all memories\of adolescent period?' withCRs
initialAnswer: false

V2. Adopting the Look of a Master Window
Online example: DialogExample

O Send a confirm:initialAnswer:for: message to Dialog. The third
argument is the master window, typically the currently
active window.

confirm
| returnVal |
returnVal := Dialog "V2 Step"
confirm: 'Really erase all memories\of adolescent period?' withCRs
initialAnswer: false
for: ScheduledControllers activeController view.

"Update the text field in the main window."
self returnedValue value: returnVal printString.

VisualWorks Cookbook, Rev. 2.0 281

Chapter 15 Dialogs

Asking a Multiple-Choice Question

Thisbutton.. . — —————p

.. . displays this dialog Value retumed by dialoy

i

Dialog Example

tdemory Browser

Multiple —choice dialogs Fill-in-the -blank dialogs Custom dialogs

Wam or notify I Get text I Open dialog canvas I
Confinm intention | Get file name I Open dialog, store its builder

Open dialog with temp model

Lawncher

Create custom Launcher

#triumph

Which memory would you like to review first?

Swimming the Channel Triumph at the Coliseumn Love & War 47

Strategy

Basic Step

282

Frequently an application requires a means of offering the user
a small set of choices. The Dialog class provides a dialog that
accommodates any number of choices. In practice, because the
choices are arrayed as a horizontal row of buttons, this dialog
is useful only for a very few choices.

In the message that creates a multiple-choice dialog, you assign
a symbol to each choice (basic steps). When the user clicks a
choice, the message returns the corresponding symbol to the
application. You can use a multiple-choice dialog to simulate a
yes/no dialog when you want the dialog to return values other
than true and false.

The variant indicates a master window from which the dialog
adopts certain look-specific features such as its colors.

0 Send a choose:labels:values:default: message to the Dialog class.
The choose argument is the question. The labels argument is
an array of strings to be displayed on the answer buttons.
The values argument is an array of Symbols to be used as

VisualWorks Cookbook, Rev. 2.0

Asking a Multiple-Choice Question

return values by the answer buttons. The default argument is
the Symbol that is associated with the desired default
answer.

Dialog "Basic Step”
choose: "'Which memory would you like to review first?'
labels: #('Swimming the Channel’
‘Triumph at the Coliseum'’
‘Love & War #47')
values: #(#swim #triumph #love47)
default: #triumph

Variant

Adopting the Look of a Master Window
Online example: DialogExample

0 Send a choose:labels:values:default:for: message to Dialog. The first
four arguments are as described above. The for: argument is
typically the active window.

askMultiChoice
| returnVal |
returnVal := Dialog “"Variant Step"
choose: 'Which memory would you like to review first?"
labels: #('Swimming the Channel
‘Triumph at the Coliseum’
'Love & War #47')
values: #(#swim #triumph #love47)
default: #triumph
for: ScheduledControllers activeController view.

self returnedValue value: returnVal printString.

See Also
= “Choosing from a List of Items” on page 289

VisualWorks Cookbook, Rev. 2.0 283

Chapter 15 Dialogs

Requesting a Textual Response

Dialog Example
tdemory Browser
This butto n . . . —_
W Fill-in-the -blank dialogs Custom dialogs
. . . Wam or notify I Open dialog canvas I
.. . displays this dialog : .
Confinm intention | Open dialog, store its builder
Ask multiple —choice guesti | Open dialog with temp model
Lawncher
Find all memories associated with... .
Value retumed by dialog
oK | Cancel | #triumph
Strategy

A fill-in-the-blank dialog contains an input field and a label. It
is commonly used to prompt for a string, such as a search
string. By default, an empty string appears in the input field
(basic steps). The first variant shows how to supply a different
default.

When the user fills in a string and clicks OK, the message that
creates the dialog returns the user-specified string. When the
user clicks Cancel, an empty string is returned by default. The
second variant shows how to arrange for a different value to be
returned for canceling. The block that is used to return a
canceling value can also be used to take other action, such as
prompting the user for a nonblank response.

Basic Step

0 Send a request: message to the Dialog class, with the question
as the argument.

Dialog request: 'Find all memories associated with...' "Basic Step"

284 VisualWorks Cookbook, Rev. 2.0

Requesting a Textual Response

Variants

V1. Supplying a Default Answer

O Send a requestinitiallAnswer: message to Dialog. The second
argument is the default answer string.

Dialog
request: 'Find all memories associated with..."
initialAnswer: ‘friend’ "V1 Step"

V2. Supplying a Cancel Block
Online example: DialogExample

O Send a requestinitialAnswer:onCancel: message to Dialog. The third
argument is a block containing the action to be taken, the
value to be returned, or both.

getText
| returnVal |
returnVal := Dialog
request: 'Find all memories associated with..."
initialAnswer: 'friend"
onCancel: [self defaultRuminationTopic]. "V2 Step"

"Update the text field in the main window."
self returnedValue value: returnVal printString.

VisualWorks Cookbook, Rev. 2.0 285

Chapter 15 Dialogs

Requesting a Filename

This butto n . . .
\ Multiple —choice dialogs Fill-in-the -blank dialogs Custom dialogs
.. . displays this dialog : N
l Confirm intention |

Dialog Example

tdemory Browser

Wam or nniﬁ Open dialog canvas I

Open dialog, store its builder

Open dialog with temp model

Ask multiple —choice guesti |

Lawncher

heraismOl .mem|

Open memory file named... Create custom Launcher

Value retumed by dialog

oK |

Cancel | #triumph

Strategy

Basic Step

286

Afilename is a special case for afill-in-the-blank dialog because
it is frequently desirable to test for the existence of the named
file. The built-in dialog performs this service automatically and
reprompts as needed. In addition, it responds to wildcard char-
acters (* and #) by displaying a list of all files that match the

pattern.

By default, the dialog accepts any filename that is accepted by
the operating system. The variants show how to arrange for the
dialog to take various actions depending on whether the file is
supposed to exist already.

When the user clicks Cancel, an empty string is returned by
default. The final variant shows how to arrange for a different
value to be returned, an action to be taken, or both.

O Send a requestFileName: message to the Dialog class. The
argument is a label string for the dialog.

Dialog requestFileName: '‘Open memory file named..." "Basic Step"

VisualWorks Cookbook, Rev. 2.0

Requesting a Filename

Variants

V1. Supplying a Default Filename

0 Send a requestFileName:default: message to Dialog. The second
argument is a string containing the name of the default file.

Dialog
requestFileName: '‘Open memory file named...'
default: 'hero01.mem'’ "V1 Step"

V2. Confirming When the File Already Exists

0 Send a requestFileName:default:version: message to Dialog. The third
argument is the #new symbol, which indicates that you
expect the file to be a new one.

Dialog
requestFileName: '‘Open memory file named...'
default: 'nero01.mem'
version: #new "V2 Step"

V3. Confirming When the File Does Not Exist

O Send a requestFileName:default:version: message to Dialog. The third
argument is the #old symbol, which indicates that you
expect the file to exist.

Dialog
requestFileName: 'Open memory file named...'
default: 'hero01.mem'
version; #old "V3 Step"

V4. Canceling When the File Already Exists

O Send a requestFileName:default:version: message to Dialog. The third
argument is the #mustBeNew symbol, which indicates that
you require the file to be a new one.

Dialog
requestFileName: '‘Open memory file named...'

VisualWorks Cookbook, Rev. 2.0 287

Chapter 15 Dialogs

default: ‘hero01.mem'
version: #mustBeNew "V4 Step"

V5. Canceling When the File Does Not Exist

0 Send a requestFileName:default:version: message to Dialog. The third
argument is the #mustBeOld symbol, which indicates that you
require the file to be an existing one.

Dialog
requestFileName: 'Open memory file named...'
default: 'hero01.mem'
version: #mustBeOld "V5 Step"

V6. Supplying a Cancel Block
Online example: DialogExample

O Send a requestFileName:default:version:ifFail: message to Dialog. The
final argument is a block containing the action to be taken,
the value to be returned, or both.

getFilename
| returnVal |
returnVal := Dialog
requestFileName: 'Open memory file named...'
default: 'nero01.mem'
version: #mustBeOld
ifFail: [Transcript show: '"Memory file access canceled'. "]. "V6 Step"
"Update the text field in the main window."
self returnedValue value: returnVal printString.

See Also
= “Creating a File or Directory” on page 592

288 VisualWorks Cookbook, Rev. 2.0

Choosing from a List of Items

Choosing from a List of Items

basic dialog dialog with custom button
Edit which file? Edit which file?

Iapr94.rpt ld Iapr94.rpt ld

augad.rpt augad.rpt

dec3d.rpt dec3d.rpt

feh34.rpt feh34.rpt

jan34.rpt jan34.rpt

julad.rpt julad.rpt

jun3d.rpt B jun3d.rpt B

.Cancel .Cancel

Strategy
You can display a dialog with a built-in list of commands or
data values. This dialog is used as a kind of stand-alone menu.
Each item in the list is associated with a value, just as a menu
item is, and your application can either insert the selected
value in a value holder or trigger an action.
By default, the dialog contains a list of items, an OK button, and
a Cancel button (basic step). The variant shows how to add
custom buttons to the dialog, for situations when neither
selecting an item in the list nor canceling the dialog is accept-
able. For example, when you enter a wildcard pattern in a file-
pathname dialog, a list dialog shows the files that match your
pattern and offers a Try again button in case you want to try a
different pattern.
Basic Step

0 Send a choose:fromList:values:lines:cancel: message to the Dialog
class. The choose: argument is a prompt string. The fromList;
argument is a collection of strings—either command names
or value descriptions (in the example, filenames). The values:
argument is a collection of the same size as the fromList:
collection, containing the values to be associated with the
list items. The lines: argument is an integer indicating the
maximum number of list items to display (for a long list).
The cancel: argument is a block containing the action to be

VisualWorks Cookbook, Rev. 2.0 289

Chapter 15 Dialogs

Variant

290

taken or the value to be supplied when the Cancel button is
selected by the user.

| files response |
files := Filename defaultDirectory directoryContents
reject: [:name | name asFilename isDirectory].

response := Dialog "Basic Step”
choose: 'Edit which file?"
fromList: files
values: files
lines: 8
cancel: ["nil].

response asFilename edit.

Supplying Extra Action Buttons Below the List
O Send a choose:fromList:values:buttons:values:lines:cancel: message to

the Dialog class. The arguments are the same as in the basic
step, with the addition of buttons: and values:. The buttons:
argument is a collection of strings to be used as button
labels. The values: argument is a collection of values to be
associated with the button labels.

| files response |
files := Filename defaultDirectory directoryContents
reject: [:name | name asFilename isDirectory].

response := Dialog
choose: 'Edit which file?"
fromList: files
values: files
buttons: #('Count Files') "Variant Step"
values: #(#count)
lines: 12
cancel: ["nil].

VisualWorks Cookbook, Rev. 2.0

Choosing from a List of Items

response == #count
ifTrue: [Dialog warn: files size printString]
ifFalse: [response asFilename edit]

See Also
s “Asking a Multiple-Choice Question” on page 282

VisualWorks Cookbook, Rev. 2.0 291

Chapter 15 Dialogs

Linking a Dialog to a Master Window

Strategy

Basic Steps

292

By default, the built-in dialogs use system defaults for their
colors and Ul Look. When your application employs a special
set of colors or a nondefault Ul Look, you can arrange for
dialogs to mimic the colors and Ul Look of a master window. In
addition, some window systems create a visual connection
between a dialog and its master window.

The basic steps shows how to link a warning dialog to the
currently active window with a warn:for: message. A master
window with a yellow background color is opened. You can add
a for; argument to other dialog-creation messages. The master
window is typically the main application window, which an
application model can access through self builder window.

1. Send a useColorOveridesFromParent: message to the SimpleDialog
class. The argument true causes subsequently opened
dialogs to adopt the colors of their master window, in
addition to the Ul look. By default, instances of SimpleDialog
and its subclasses adopt only the Ul look of the master
window. (Note that ‘Overides’ is misspelled in the method
name and must therefore be misspelled here.)

2. Send a warn:for. message to the Dialog class. The first
argument is the message string, and the second argument
is the master window.

| masterWindow |

SimpleDialog useColorOveridesFromParent: true. "Basic Step 1"
masterWindow := ScheduledWindow new.

masterWindow background: ColorValue yellow.

masterWindow open.

Dialog "Basic Step 2"

warn: 'This dialog has a yellow background, too."
for: masterWindow.

VisualWorks Cookbook, Rev. 2.0

Linking a Dialog to a Master Window

masterWindow sensor eventQuit: nil.

Note that you may want to reset the SimpleDialog class to its
default behavior by sending it the useColorOveridesFromParent:
message with the argument false.

VisualWorks Cookbook, Rev. 2.0 293

Chapter 15 Dialogs

Creating a Custom Launcher

Thisbutto n . . .

. . . displays this launcher

i

Dialog Example

tdemory Browser

Fill-in-the -blank dialogs

Custom dialogs

Open dialog canvas I

Open dialog, store its builder

Multiple —choice dialogs

Wam or notify

Conl intention

Launcher

Open dialog with temp model

Ask multiple —choice ,u{linn |

| Launcher

Multiple choice

Custom
Launcher

Example Dialogs

Fill in the hlank

>
>

> Value retumed by dialog

#triumph

Strategy

Basic Step

Variants

294

A Launcher is a window whose widgets provide access to other
parts of an application. Launchers offer similar functionality to
dialogs. You can create a custom Launcher for each of your
applications or a single custom Launcher for all of them.

By default, the Launcher’s window label is “Launcher.” The
second variant shows how to arrange for an alternative window
label.

You can also arrange for a heading within the Launcher
window, as shown in the second variant. (The second variant
presents the fullest form of the message for creating a
Launcher, so only that variant has example code.)

0 Send an openOnMenu: message to the LauncherView class. The
argument is an instance of Menu.

V1. Supplying an Alternative Window Label

0 Send an openOnMenu:withLabel: message to LauncherView. The
second argument is the window’s label string.

VisualWorks Cookbook, Rev. 2.0

Creating a Custom Launcher

V2. Supplying a Heading
Online example: DialogExample

O Send an openOnMenu:withLabel:andHeader: message to LauncherView.
The third argument is a string containing the desired
header. The string can contain embedded carriage returns,
which cause the header to be displayed on multiple lines.

createLauncher
LauncherView "V2 Step"
openOnMenu: self dialogMenu
withLabel: 'Launcher'
andHeader: 'Example Dialogs'.

See Also
= “Creating a Menu” on page 226

VisualWorks Cookbook, Rev. 2.0 295

Chapter 15 Dialogs

Creating a Custom Dialog

Dialog Example

tdemory Browser

Multiple —choice dialogs

Fill-in-the -blank dialogs

Custom dialogs

Wam or notify

tdemory Preferences

Confirm intention

Choose preferred topic areas

Open dialog, store its builder These button s . . .

Ask multiple —choi; *

Adventures =

Eooks & Films

~ Current Events
Fundamental Flaws

~ Gossip

Love & War

Open dialog with temp model

awncher I

M Money

by dialog

Fersonal Triumphs
Relatives
Waork

I

A

. . . display this dialog

Strategy

296

When a built-in dialog is not sufficient, you can paint a canvas
that has the desired widgets on it. You can then open the
resulting interface specification in a dialog window—that is, in
a window whose controller yields control only after the dialog
has been closed.

The basic technique is to ask the application model to open a
dialog window from an installed interface specification (basic
steps). The dialog is created as an instance of SimpleDialog, which
provides its own interface builder for setting up the dialog’s
widgets. This builder obtains any needed value models, actions,
and resources for the widgets from the application model. Note,
however, that buttons whose Action properties are #accept or
#cancel obtain their actions from the SimpleDialog instance instead.
These predefined actions are useful for OK and Cancel buttons on
the dialog (first variant).

By default, the dialog’s builder is discarded after the interface
is constructed. If your application will need to access any
widgets in the dialog (for disabling, etc.), you should save the
builder in an instance variable of the application model for later
use in any method (second variant).

VisualWorks Cookbook, Rev. 2.0

Creating a Custom Dialog

A second technique for creating a custom dialog (not illustrated
here) is to create a separate model for the dialog (typically, a
subclass of SimpleDialog). You install the dialog’s canvas in this
subclass and then program the subclass to provide the value
models, actions, and resources needed by the dialog’s widgets.
A method in the main application model asks the dialog’s model
to open itself and use itself as the source of value models,
actions, and resources. This technique enables you to reuse the
dialog more easily in further applications.

A third technique for creating a custom dialog is to program the
application model to create an instance of SimpleDialog and
configure its interface builder dynamically (third variant). This
has the effect of creating a temporary model for the dialog,
which is useful when the value models for the dialog’s widgets
are not needed beyond the lifetime of the dialog. For example, a
file-finding dialog might employ several widgets, each requiring
a value model, but only the ultimate filename is of interest to
the application.

Basic Step
Online example: DialogExample

O In the method that is to open the dialog, send an
openDialoglnterface: message to the application model. The
argument is the symbol that identifies the dialog’s interface
specification.

openDialogCanvas
| returnval |
returnVal ;= self openDialoginterface: #memoryZonesDialog. "Basic Step”
"Update the text field in the main window."
self returnedValue value: returnVal printString.

VisualWorks Cookbook, Rev. 2.0 297

Chapter 15 Dialogs

Variants

298

V1. Requesting Actions for OK and Cancel Buttons
Online example: DialogExample

When a custom dialog has OK and Cancel buttons, you can
arrange for them to invoke predefined methods that close the
dialog and return the appropriate value (true or false).

1. In the canvas for the dialog, select the action button that is
to accept the dialog (typically labeled OK).

2. In the Properties Tool, enter accept in the button’s Action
property.

3. In the canvas, select the button that is to cancel the dialog
(typically labeled Cancel).

4. In the Properties Tool, enter cancel in the button’s Action
property.
5. Apply the properties and install the canvas.

These Action settings cause the buttons to send accept and cancel
messages to the SimpleDialog instance. Consequently, if you
define methods named accept or cancel in the application model,
they will be ignored. (Other dialog buttons with other Action
settings do rely on the application model for their action
methods, however.)

V2. Storing the Dialog’s Builder for Later Use
Online example: DialogExample

1. In the method that is to open the dialog, create an instance
of SimpleDialog.

2. Get the builder from the SimpleDialog and store it, typically in
an instance variable of the application model (dialogBuilder).

3. Send an openFor:interface: message to the SimpleDialog. The first
argument is the application model so that the dialog’s
widgets can obtain their value models, actions, and
resources from it. The second argument is the name of the
dialog’s interface specification.

VisualWorks Cookbook, Rev. 2.0

Creating a Custom Dialog

openDialogStoreBuilder
| returnVal dialogModel |

dialogModel := SimpleDialog new. "V2 Step 1"
self dialogBuilder: dialogModel builder. "V2 Step 2"
returnVal := dialogModel "V2 Step 3"

openFor: self
interface: #memoryZonesDialog.

"Update the text field in the main window."
self returnedValue value: returnVal printString.

V3. Providing a Temporary Model for the Dialog
Online example: DialogExample

In the example, the properties you set for the dialog’s list widget
tell the dialog’s builder that the list widget needs a
MultiSelectioninList to supply its value holders. In the other vari-
ants, the builder obtains the required MultiSelectioninList by
sending the memoryZones aspect message to the application
model. In this variant, the builder does not need to send this
message, because it has been preconfigured with the required
MultiSelectioninList through an aspectAt:put: message.

1. In the method that is to open the dialog, create an instance
of SimpleDialog.

2. Get the builder from the SimpleModel and preload it with one
binding for each active widget. The aspectAt: argument is the
symbol you specified in the widget's Aspect property. The put;
argument is an appropriate value model.

3. Ask the SimpleDialog to open the interface.

openTempModelDialog
| returnVal dialogModel list |
dialogModel := SimpleDialog new. "V3 Step 1"
dialogBuilder := dialogModel builder.

"Since the simple model does not respond to a #memoryZones message,

its builder must be preloaded with a multilist."
list := MultiSelectionInList new

VisualWorks Cookbook, Rev. 2.0 299

Chapter 15 Dialogs

list: self memoryZones list copy.
dialogBuilder aspectAt: #memoryZones put: list. "V3 Step 2"

"Open the interface."
returnVal := dialogModel
openFor: self
interface: #memoryZonesDialog. "V3 Step 3"

"Update the text field in the main window."
self returnedValue value: returnVal printString.

300 VisualWorks Cookbook, Rev. 2.0

Chapter 16

Subcanvases

Inheriting an Application’s Capabilities 302
Nesting One Application in Another 305
Reusing an Interface Only 308
Swapping Interfaces at Run Time 310
Accessing an Embedded Widget 313

See Also
= “Widget Basics” on page 53

VisualWorks Cookbook, Rev. 2.0 301

Chapter 16 Subcanvases

Inheriting an Application’s Capabilities

Strategy

302

ListZ Example Subcanvas1Example
black = . o Selective Reuse
blue <4—This application mode |. .. _
hrown Local application inherits
everything, then overrides
cyan list or actions as needed
darkCyan ; :
darkGray R |'s the parent of this .
darkiGreen application model —»| ‘hiank <]
darkhagenta hottomLeft
darkRed Bull
olive
gray compacttemary
green corner
light''ellow crossHair
lightGray dowen
magenta | exacute

¥ garbage

The ApplicationModel class provides a wealth of functionality that is
inherited by any subclass, which is why you must make any
new application model a subclass of ApplicationModel. In the same
way, you can use your own subclass as a parent class, so that
its children will inherit standard interface modules, value
holders, and action methods. For example, SubcanvaslExample is a
subclass of List2Example, so it can reuse the List2Example interface,
value holders, and actions.

Overriding actions is possible: Although a subclass need not
reimplement anything that the parent class has implemented,
it can override an inherited action. (That is not always possible
when you nest one application inside another without the aid
of inheritance.)

No multiples: A limitation of the inheritance approach is that
you cannot reuse an inherited interface more than once on the
same canvas. For example, SubcanvaslExample could not use two
subcanvases that each contained the same inherited List2Example
interface, because both would reference the same value holder
(selectioninList). (More precisely, you can use the same inherited
interface twice, but both will display the same thing.)

VisualWorks Cookbook, Rev. 2.0

Inheriting an Application’s Capabilities

Basic Steps

Variants

Online example: List2Example (parent) and SubcanvaslExample

1.

Use a System Browser to create a new application model
(SubcanvaslExample) as a subclass of the application model
from which it is to inherit (List2Example).

. Use a Palette to place a subcanvas widget on the inheriting

canvas (the canvas for SubcanvaslExample). Leave the
subcanvas widget selected.

. In the subcanvas’s Canvas property, enter the name of the

inherited interface specification to be used by the
subcanvas (listSpec). This name must be unique within the
inheritance chain—for example, you could not embed an
inherited canvas named windowSpec in a local canvas named
windowSpec.

. Apply the property and install the inheriting canvas in its

application model (SubcanvaslExample).

V1. Installing a Different Value in an Inherited Widget

The power of reuse is fully realized when you provide local
values for the inherited widgets. For example, List2Example initial-
izes its list to display a collection of color names. Now the inher-
iting application, SubcanvaslExample, provides its own collection,
causing the reused list to display cursor names instead.

1.

2.
3.

Use a System Browser to create an initialize method in the
inheriting application model (SubcanvaslExample).

In the initialize method, invoke the inherited initialize method.

In the initialize method, use the inherited aspect message
(selectioninList) to access the desired valued model. Then send
an accessing message (in this case, list:)) to the value model
to install the desired value (cursorNames).

initialize
"Install a different list (cursor names) than
the inherited default (color names)."
| cursorNames |
super initialize. "V1 Step 2"

VisualWorks Cookbook, Rev. 2.0 303

Chapter 16 Subcanvases

cursorNames ;= Cursor class organization
listAtCategoryNamed: #constants.
self selectioninList list: cursorNames. "V1 Step 3"

V2. Overriding an Inherited Action Method

O In the inheriting application model (SubcanvaslExample), create
a method with the same name as the inherited method that
you want to override (add).

add "V2Step"
"Override the inherited implementation of this method,
refining the prompt in the dialog."

| entry newList |

"Prompt for the name to add."
entry := Dialog request: 'Add cursor name'.

"If the entry is blank, exit."
entry isEmpty
ifTrue: [*nil].

"Update the list."

newList := SortedCollection withAll: self selectionlnList list.
newList add: entry.

self selectioninList list: newList.

See Also
= “Creating a Class (Subclassing)” on page 26

304 VisualWorks Cookbook, Rev. 2.0

Nesting One Application in Another

Nesting One Application in Another

ListZ Example

hlack
hlue
hrown
cyan
darkCyan
darkGray
darkGreen
darkhagenta
darkRed
olive

gray

green
lightellow
lightGray
magenta

B

SubcanvasZExample

This entire Interface Reuse Application Reuse
appllcatlo n... Local application supplies Local application supplies
list holder and actions instance of List2Example
{which supplies list holder
and actions)
ActionButton 2 ActionButtan !
. di ActionButtonSpec ActionButtonspec
... Isreusedin ActionButtoniew ActionButtoniew
this subcanvas AliasTool &liasTool

AlignmentLabel
AlignmentOrigin
AllocationProfiler
Amortizer
ApplicationDialogContr
Applicationtodel
ApplicationStandard Sy

AlignmentLabel
AlignmentOrigin
AllocationProfiler
Amortizer
ApplicationDialogContr
Applicationtodel
ApplicationStandard Sy

Strategy

Add Delete Add Delete

With a subcanvas, you can embed one application in another.
In this way, you can create a set of application modules that
can be plugged into larger applications as needed. This
approach avoids wasteful duplication of effort for generic
modules, enforces interface-design uniformity, and makes
changes much easier to implement, because you have to
change only the embedded application to effect a change in all
reusing applications.

Overriding actions is not possible: The embedded application
supplies all of its own value models and action methods. This
feature makes it simple to implement but slightly more difficult
to customize than an application with inherited capabilities. In
particular, you cannot override an embedded application’s
action methods. In truly generic modules, however, this is not
a serious limitation.

Multiples are possible: You can embed the same application
any number of times in the same canvas. For example, you
could reuse List2Example four times in creating a System
Browser’s four list views.

VisualWorks Cookbook, Rev. 2.0 305

Chapter 16 Subcanvases

Basic Steps

306

Online example: List2Example embedded in Subcanvas2Example

1.

Use a Palette to place a subcanvas in the reusing canvas
(the canvas for Subcanvas2Example). Leave the subcanvas
selected.

. In the subcanvas’s Name property, enter the name of the

method (classNames) that will supply an instance of the
embedded application.

. In the subcanvas’s Class property, enter the name of the

application (List2Example) that you are embedding.

. In the subcanvas’s Canvas property, enter the name of the

interface specification (listSpec) that you are using from the
embedded application (List2Example).

. Apply the properties and install the reusing canvas in its

application model (Subcanvas2Example).

. Use a System Browser to create an instance variable

(classNames) in the reusing application model
(Subcanvas2Example), for holding onto the embedded applica-
tion.

. Use a System Browser to create an initialize method in the

reusing application model, in which the embedded applica-
tion is created and assigned to the variable that you created
in step 6.

initialize
"Reusing List2Example's interface only -- initialize the list holder."
selectionlnList := SelectionlnList with: Smalltalk classNames.

"Reusing List2Example application -- initialize the application instance."
classNames := List2Example new. "Basic Step 7"
classNames list: Smalltalk classNames.

VisualWorks Cookbook, Rev. 2.0

Nesting One Application in Another

Variant

Installing a Different Value in an Embedded Widget

An embedded widget uses the value with which its host appli-
cation initializes it.

1. In the initialize method of basic step 7, send a message (list:) to
the embedded application, installing the desired value.

initialize
"Reusing List2Example's interface only -- initialize the list holder."
selectionlnList := SelectionlInList with: Smalltalk classNames.

"Reusing List2Example application -- initialize the application instance."
classNames := List2Example new.
classNames list; Smalltalk classNames. "Variant Step 1"

2. In some situations, as in the example, you will have to
create a method (list:) in the embedded application model
that enables an outside application to supply a new value.
list: aCollection "Variant Step 2"

"Install aCollection in the list. This message is provided so reusers

can install a list that is different than the default list (color names)."

self selectioninList list: aCollection.

VisualWorks Cookbook, Rev. 2.0 307

Chapter 16 Subcanvases

Reusing an Interface Only

List2Example This interface Subcanvas2Example
r— = (but not the intorface R ication R
e underlying value nterface Reuse Application Reuse
4] Local licati li Local licati li
holders and ten soston swles | Lot sopeaton uwples
cyan methods) . . . (which supplies list holder
darkCyan and actions}
darkGray v »
darkGreen ActionButton = ActionButtan 2
gartgﬂadgenta ActionButtonSpec ActionButtonspec
arehe . . ActionButtonfiew ActionButtonfiew
alive .. . isreused in AliasTool AliasTool
qray this subcanvas ——p alignmentLabel alighmentlabel
green AlignmentCrigin AlignmentOrigin
lightellow AllocationProfiler AllocationProfiler
lightGray Amartizer Amortizer
magenta _| ApplicationDialogCantr ApplicationDialogContr
¥ Applicationtodel Applicationtodel
ApplicationStandardSyq | ApplicationStandardSyq |
Add Delete Add Delete
Strategy
You can use a subcanvas to embed one canvas inside another.
This is similar to embedding an entire subapplication, but the
difference is that all value models and methods must be
supplied by the reusing application. This is duplicative, but it
is sometimes necessary, especially when you need to override
action methods.
Overriding actions is possible: Because you are reusing only
the interface and have to reimplement all of the supporting
value holders and methods, you also have to supply actions for
any buttons in the embedded interface.
Multiples are not possible: Because you are forced to use the
aspect names that the embedded interface expects, you can
have only one set of those names. So you cannot reuse an inter-
face more than once on the same canvas.
Basic Steps
Online example: Subcanvas2Example (which reuses List2Example’s
listSpec)
1. Use a Palette to place a subcanvas in the reusing canvas
(the canvas for Subcanvas2Example).
308 VisualWorks Cookbook, Rev. 2.0

Reusing an Interface Only

2. In the subcanvas’s Class property, enter the name of the
application (List2Example) that defines the interface to be
embedded.

3. In the subcanvas’s Canvas property, enter the name of the
interface specification (listSpec) to be embedded.

4. Apply the properties and install the reusing canvas in its
application model (Subcanvas2Example).

5. Use a System Browser to edit the reusing application model
(Subcanvas2Example), creating instance variables (selectioninList)
and methods (selectioninList, initialize, add, and delete) to support
the embedded interface. These instance variables and
methods must have the same names as the corresponding
ones in the reused class (List2Example). Modify values and
action methods as desired.

VisualWorks Cookbook, Rev. 2.0 309

Chapter 16 Subcanvases

Swapping Interfaces at Run Time

Subcanvas3Example

ApplicationDialogContral
ApplicationStandard Sy st
Application¥indow
ApplicationWindowSens
AR

Arhitrary ComponentSped
ARBrowser
Argumentyariable
ArithmeticLoopMode
AtithmeticYalue

<]

This subcanvas holds

Classes (O tiierarchy () Class comment
ActionButton 4 actionFor: =
ActionButtonSpec allButOpeninterface:
ActionButtoniew application
AliasTool aspectFor: <
AlignmentLabel huilder
AlignmentOrigin huilder:
AllocationProfiler huildinSubCanyas:withBuilder:
Amartizer clientFor:

closeReqguest
compaonentFor:
initialize

lahelFar:

menuFor:

open
openDialoginterface:
openinterface

<]

Strategy

a List2Editor when the
Methods button is chosen

and an Editor2Example when
another button is chosen

A subcanvas makes it easy to change the widgets that appear
in a larger canvas, depending on the circumstances. In
Subcanvas3Example, a subcanvas is used to hold either a text editor
or a list view, depending on whether the user wants to see
textual or listed material related to a selected class.

An alternative approach is to layer the multiple sets of widgets
in the main canvas (without using subcanvases at all) and then
make the desired widgets visible as needed.

Basic Steps

Online example: Subcanvas3Example (which swaps Editor2Example
and List2Example)

1. Use a Palette to place a subcanvas in the reusing canvas
(the canvas for Subcanvas3Example).

2.

In the subcanvas’s Name property, enter the name of the

method (embeddedApplication) that supplies the embedded

application at startup time.

3. Apply the properties and install the reusing canvas in its
application model (Subcanvas3Example).

310

VisualWorks Cookbook, Rev. 2.0

Swapping Interfaces at Run Time

4. Use a System Browser to create the method
(embeddedApplication) that you named in step 2. You create this
method in the reusing application model (Subcanvas3Example).
This method can supply either a nil value (for a blank
subcanvas) or one of the subapplications.

embeddedApplication "Basic Step 4"
“nil asValue

5. In a change message (presumably triggered by a change in
some other widget such as a button), create an instance of
the desired application model (Editor2Example) and initialize it.
(Or you can create and initialize the application model once
at startup and store it in an instance variable.)

6. Continuing in the change message, get the spec object for
the interface you want to use by sending an interfaceSpecFor:
message to the embedded application model’s class
(Editor2Example). The argument is the name of the interface
specification (#windowSpec).

7. Continuing in the change message, get the subcanvas from
the builder and send a client:spec: message to it. The first
argument is the application you created in step 5. The
second argument is the spec object you obtained in step 6.

showComment
| selectedClass subcanvas spec application |
selectedClass := Smalltalk at: self classNames selection.

"Create the subapplication and initialize it." "Basic Step 5"
application := Editor2Example new.
application text value: selectedClass comment.

"Get the spec object for the embedded canvas.”
spec := Editor2Example interfaceSpecFor: #windowSpec. "Basic Step 6"

"Get the subcanvas and install the editing application.” "Basic Step 7"

subcanvas := (self builder componentAt: #subcanvas) widget.
subcanvas client: application spec: spec.

VisualWorks Cookbook, Rev. 2.0 311

Chapter 16 Subcanvases

Variants
Blanking the Subcanvas
In Subcanvas3Example, the subcanvas goes blank when no class is
selected. You may encounter a similar situation that requires
you to empty a subcanvas at run time.
0 Get the subcanvas from the builder and send a client:
message to it. The argument is nil.
showNothing
| subcanvas |
subcanvas := (self builder componentAt: #subcanvas) widget. "Variant Step"
subcanvas client: nil.
See Also

= “Hiding a Widget” on page 70

312 VisualWorks Cookbook, Rev. 2.0

Accessing an Embedded Widget

Accessing an Embedded Widget

Subcanvas3Example

Classes (O tierarchy () Class comment {8}
&ctionButton 4 actionFor: B
ActionButtonSpec allButOpeninterface:

ActionButtoniew application

AliasTool aspectFor:

AlignmentLabel huilder

AlignmentOrigin huilder:

AllocationProfiler huildinsubCanvas:withBuilder:

Amortizer clientFor:

ApplicationDialogControll | closeRequest

componeniFor

ApplicationStandardSyst| | initialize

Application¥indow labelFor:

ApplicationWindowSensd | menuFor:

AR open

ArbitraryComponentSped | openDialoginterface:

ARBrowser openinterface _
Argumentyariable >
Arhmetcvate <« Thesebutions are disabled

Strategy

Basic Steps

Frequently an embedded or inherited interface contains more
than you need. For example, when an embedded action button
is not appropriate in the local application, you could make it
invisible or disable it. Before you can manipulate embedded
widgets, however, you need to access them.

Online example: Subcanvas3Example

1. Before installing the new subapplication using client:spec:,
initialize the subapplication’s builder to nil. (Otherwise, the
subapplication will continue to hold the old builder even
after a new builder is created to assemble the new
interface.)

2. Ask the subapplication for its builder and then send
componentAt: to that builder. The argument is the ID of the
desired widget.

showMethods
| selectedClass subcanvas spec |
selectedClass := Smalltalk at: self classNames selection.
spec = List2Example interfaceSpecFor: #listSpec.

VisualWorks Cookbook, Rev. 2.0 313

Chapter 16 Subcanvases

314

"Install the method names as the collection in the list application."
self listApplication list: selectedClass selectors asSortedCollection.

"Set the subbuilder to nil to discard the old builder. This is only
necessary when the application uses the builder later to access widgets.”
listApplication builder: nil. "Basic Step 1"

"Get the subcanvas and install the list application.”
subcanvas := (self builder componentAt: #subcanvas) widget.
subcanvas client: listApplication spec: spec.

"Disable the embedded buttons (just to show that we can)."
(listApplication builder componentAt: #addButton) disable.

"Basic Step 2"
(listApplication builder componentAt: #deleteButton) disable.

VisualWorks Cookbook, Rev. 2.0

Chapter 17
Notebooks

Adding a Notebook

Determining Which Tab Is Selected
Changing the Binding's Appearance
Changing the Size and Axis of the Tabs
Setting the Starting Page

Adding Secondary Tabs (Minor Keys)
Connecting Minor Tabs to Major Tabs
Changing the Page Layout (Subcanvas)
Connecting a Notebook to a Text Editor

See Also
= “Widget Basics” on page 53

VisualWorks Cookbook, Rev. 2.0

316
319
322
324
326
328
331
334
336

315

Chapter 17 Notebooks

Adding a Notebook

Strategy

Basic Steps

316

Hotebookl1 Example

A notebook of class names

EmulationBorderDecorationPolicy
EmulationFixedThumbScrollBar
EmulationtdenuTracker i

EmulationScrollBar Selectlng a,tab
EmulationScrallBarContraller causes a different page

ErrarDiffusion
EtchedBorder of the notebook to be

ExampleButtons displayed
Exampletanager
ExampleRecordType

ExternalConnection
ExternalDatabasesnswerStream

A notebook is a powerful navigational widget. At its simplest, as
shown here, it provides a list in the form of index tabs. When
the user selects an index tab, the effect is the same as selecting
an item in a conventional list—in fact, both a list and a note-
book’s tabs use a SelectioninList to provide their value models. A
notebook can be used in many of the same situations in which
a list or a menu might be used, though its richer set of capabil-
ities (such as minor keys) extend its range of uses.

A notebook also contains a subcanvas. This subcanvas can be
used to display a different interface for each index tab or, as in
this simple example, the same interface. In NotebooklExample, the
subcanvas contains a list widget, and the list is changed each
time an index tab is selected.

Online example: NotebooklExample

1. Use a Palette to paint a notebook widget on your canvas.
Leave the notebook selected.

VisualWorks Cookbook, Rev. 2.0

Adding a Notebook

2. In a Properties Tool (Basics page), fill in the notebook’s Major
property with the name of the method (majorKeys) that
returns a SelectioninList containing the labels for the index
tabs.

3. In the notebook’s ID property, enter an identifying name
(pageHolder).

4. Apply the properties and install the canvas.

5. Create a second canvas for the interface that is to be
displayed inside the notebook. Install this canvas in its own
resource method (listSpec).

6. Use a System Browser or the canvas’s define command to
create the instance variable (majorKeys) and accessing
method (majorKeys) for the notebook’s list of index labels.
Initialize the variable, either in the accessing method or in
an initialize method (as in the example), with a SelectionInList
containing either strings or associations.

majorkKeys "Basic Step 6"
~majorKeys

7. Use a System Browser or the canvas’s define command to
create any variables and methods needed by the
subcanvas. (In the example, these are the classNames vari-
able, the classNames method, and the initialize method.)

classNames "Basic Step 7"
AclassNames

8. In the initialize method, use an onChangeSend:to: message to
arrange for the notebook to send a message (changedLetter) to
the application model when the user selects an index tab.

initialize
| letters |
letters :=#('A"'B"'C"'D'"E"F'G'H'I'"J'K'L'"'M
‘N'O'PUQURS'T'UVIWIXTY Z').

majorKeys := SelectioninList with: letters. "Basic Step 6"
majorKeys selectionindexHolder

onChangeSend: #changedLetter to: self. "Basic Step 8"
classNames := SelectioninList new. "Basic Step 7"

VisualWorks Cookbook, Rev. 2.0 317

Chapter 17 Notebooks

10.

See Also

318

. Create the change message (changedLetter) in which the

subcanvas is updated based on the index tab that has been
selected. (In the example, the classNames list is updated with
classes beginning with the letter on the index tab.)

changedLetter "Basic Step 9"
| chosenLetter list |
chosenLetter := self majorKeys selection last.
list := Smalltalk classNames select: [:name | name first == chosenLetter].
self classNames list: list.

Create a postOpenWith: method. In this method, first get the
notebook from the application model’s builder, using the
notebook’s ID (pageHolder). Then install the subcanvas by
sending a client:spec: message to the notebook. The first
argument is the subapplication’s application model (in the
example, self). The second argument is the name of the spec
method (listSpec) that defines the desired canvas.

postOpenWith: aBuilder "Basic Step 10"
(aBuilder componentAt: #pageHolder) widget
client: self
spec: #listSpec.
majorKeys selectionindex: 1.

“Adding a List” on page 184
“Creating a Collection” on page 491

VisualWorks Cookbook, Rev. 2.0

Determining Which Tab Is Selected

Determining Which Tab Is Selected

Hotebookl1 Example

A notebook of class names

mulationBorderDecorationPolicy
mulationFixedThumbScrollBar
mulationtdenuTracker
mulationscrollBar
mulationscrollBarController
rrorDiffusion A SelectionInList holds the

tchedBEorder
xampleButions tab labels and responds

to a selection message

wternalConnection
wternalDatabasesnswerstream

Strategy

When the user selects an index tab on a notebook widget, the
selection changes in the underlying SelectioninList. Accessing that
selection is a fundamental operation because the application
model must know which tab is selected before it can take the
appropriate action.

The basic step shows how to access the label on the index tab.

The first variant shows how to access an object that has been
associated with the selected index tab. This assumes that you
have associated an object with each label, much as a menu
does. The associated object is typically a Symbol that identifies a
method to be performed, a canvas to be installed, or an appli-
cation-specific attribute.

The second variant shows how to access the relative position of
the index tab. The resulting index number can be used to find
the appropriate object in a separate collection. Because the
separate collection can be changing dynamically, this approach
is one way to vary the action associated with each index tab.

VisualWorks Cookbook, Rev. 2.0 319

Chapter 17 Notebooks

Basic Step
Online example: Notebook1Example
O In a method in the application model, get the selected index
tab’s string or association by sending a selection message to
the notebook’s major SelectioninList. (In the example, the
resulting string contains a leading space, so a last message
is sent to get the index letter that follows the space).
changedLetter
| chosenLetter list |
chosenLetter := self majorKeys selection last. "Basic Step"
list := Smalltalk classNames
select: [:name | name first == chosenLetter].
self classNames list: list.
Variants

V1. Getting a Value Associated with an Index Tab
Online example: Notebook2Example

1. In a method in the application model, get the selected tab’s
association by sending a selection message to the SelectioninList
(in the example, minorKeys, to which the initialize method
assigned a SelectioninList with a collection of associations.)

2. Send a value message to the resulting association. (In the
example, the value is a Symbol—#all or #examples—which is
used to filter the list of class names.)

changedPage
| chosenLetter list filter filteredList |
chosenLetter := self majorKeys selection last.
filter := self minorKeys selection value. "V1 Step 2"

list := Smalltalk classNames
select: [:name | name first == chosenLetter].

filter == #all

ifTrue: [filteredList := list]
ifFalse: [filteredList := list

320 VisualWorks Cookbook, Rev. 2.0

Determining Which Tab Is Selected

select: [:name | *Example" match: name]].

self classNames list: filteredList.

V2. Getting the Index Number of the Tab

0 Send selectionindex to the SelectioninList (instead of a selection
message).

VisualWorks Cookbook, Rev. 2.0 321

Chapter 17 Notebooks

Changing the Binding’s Appearance

Hotebook3Example

A color strip simulates

A notebook with interdependent‘tabs// a book binding
| —

Ti|Purchasing

Walter &ver

Russ Boucher
Fhillip Dellinger
Marcel Heacock
Kristina kubalski
Gordon Middleton

Debra Pencin
Chris Schelvis
Ann Yee

=JOPERATIONS

Strategy

A solid color strip at the left or top edge of a notebook is used
to simulate the appearance of a book binding. By default, the
binding is along the left edge—the first variant shows how to
move it to the top edge.

By default, the binding strip is 18 pixels wide. The variant
shows how to change the width of the binding. A width of zero
can be used to eliminate the binding strip altogether.

Basic Step

Changing the Location
Online example: Notebook3Example

1. Select the notebook in the canvas.

2. In Properties Tool, go to the notebook’s Binding property and

select top. This moves the binding to the top edge. (To move
it back, select left.)

3. Apply properties and install the canvas.

322 VisualWorks Cookbook, Rev. 2.0

Changing the Binding’'s Appearance

Variant

Changing the Width
Online example: Notebook3Example

O In the Width field of the notebook’s Binding property, enter the
desired number of pixels of width (in the example, 30). A
zero setting makes the binding disappear.

VisualWorks Cookbook, Rev. 2.0 323

Chapter 17 Notebooks

Changing the Size and Axis of the Tabs

Hotebook3Example

A notebook with interdependent tabs

The width of the right-hand

Timothy Bay
Ron Bruzas
Patricia Dym
Lynn Irao
kenny Lee
Frank kohr
Debarah Ranuio
Cheryl Smith
Adele Yokota

OFERATIONS

ol lRocket Scientists | € tabs must accommodate the

longest label

HACCOUNTING BsaLes The major tabs have been

moved to the bottom edge

Strategy

Basic Step

324

By default, the major index tabs are aligned along the right-
hand edge of the notebook, and the minor tabs are along the
bottom. The basic step shows how to reverse that orientation.

By default, the right-hand tabs are 60 pixels wide and the
bottom tabs are 24 pixels high. These values are called insets,
because the notebook page is inset by those amounts from the
widget’s allotted area. When a label does not fit in those insets,
the user cannot see the end of the label. The second variant
shows how to adjust the insets to allow for the longest label on
the right. (Allowing for the highest label on the bottom is less
often a concern, unless you are using a nonstandard font.)

Changing the Axis
Online example: Notebook3Example

1. Select the notebook in the canvas.

VisualWorks Cookbook, Rev. 2.0

Changing the Size and Axis of the Tabs

2. In the Properties Tool, go to the notebook’s Major Tabs
property and select bottom. (The minor tabs, if any, will move
to the right-hand edge.)

3. Apply the property and install the canvas.

Variant

Setting the Size
Online example: Notebook3Example

1. In Right field of the notebook’s Insets property, enter the
number of pixels of width for the right-hand index tabs.
(The height adjusts automatically to fit the label font).

2. In Bottom field of the notebook’s Insets property, enter the
number of pixels of height for the bottom tabs. (The width
adjusts to fit each tab’s label.)

VisualWorks Cookbook, Rev. 2.0 325

Chapter 17 Notebooks

Setting the Starting Page

Strategy

Basic Steps

326

Hotebookl1 Example

A notebook of class names

By default,
the notebook shows an
empty page at startup

By default, a notebook opens with a blank page showing. This
can be regarded as the cover of the notebook, and it is properly
left blank if choosing a particular page to display at startup
would be arbitrary and therefore confusing. However,
displaying a nonblank page often provides better visual clues to
the user as to the nature of the notebook. The basic steps show
how to choose a default page by setting the selection indexes of
the major and minor SelectioninLists.

The variant shows how to set the selection by specifying the list
element itself (rather than the index number of that element).

This approach is more convenient when your application has

held onto the list element from an earlier operation.

Online example: Notebook1Example

1. In a method in the application model (such as postOpenWith:),
send a selectionindex: message to the SelectioninList that holds the
major keys (in the example, majorkeys). The argument is the
index number of the desired tab in the list.

VisualWorks Cookbook, Rev. 2.0

Setting the Starting Page

postOpenWith: aBuilder
(aBuilder componentAt: #pageHolder) widget
client: self
spec: #listSpec.
majorKeys selectionindex: 1