
Part Number: DS14001002

VisualWorks

Cookbook

ParcPlace-Digitalk, Inc., 999 E. Arques Avenue, Sunnyvale, CA 94086-4593

Copyright © 1995 by ParcPlace-Digitalk, Inc. All rights reserved.

Part Number: DS14001002

Revision 2.0, October 1995 (Software Release 2.5)

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

ObjectKit, ObjectWorks, ParcBench, ParcPlace, and VisualWorks are
trademarks of ParcPlace Systems, Inc., its subsidiaries, or successors and are
registered in the United States and other countries. DataForms, MethodWorks,
ObjectLens, ObjectSupport, ParcPlace Smalltalk, Visual Data Modeler,
VisualWorks Advanced Tools, VisualWorks Business Graphics, VisualWorks
Database Connect, VisualWorks DLL and C Connect, and VisualWorks
ReportWriter are trademarks of ParcPlace Systems, Inc., its subsidiaries, or
successors. ENVY is a registered trademark of Object Technology International,
Inc. All other products or services mentioned herein are trademarks of their
respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies
this documentation:

VisualWorks is furnished under a license and may not be used, copied,
disclosed, and/or distributed except in accordance with the terms of said
license. No class names, hierarchies, or protocols may be copied for
implementation in other systems.

This manual set and online system documentation copyright © 1995 by
ParcPlace-Digitalk, Inc. All rights reserved. No part of it may be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or
machine-readable form without prior written consent from ParcPlace-Digitalk.

VisualWorks Cookbook, Rev. 2.0 iii

Contents

About This Book xiii
Audience xiii
Organization xiii
Conventions xiv
Additional Sources of Information xviii
Obtaining Technical Support xix

Part I Programming Fundamentals 1

Chapter 1 Smalltalk Basics 3
Constructing a Message 4
Combining Messages 7
Deciding which Type of Variable to Use 10
Declaring a Variable 13
Removing a Variable 16
Creating a Method 18
Returning from a Method 20
Creating an Instance of a Class 22
Initializing an Object 24
Creating a Class (Subclassing) 26
Grouping Related Classes 29
Grouping Related Methods 31
Creating a Branch 33
Creating a Loop 34
Creating Complex True/False Tests 38

Chapter 2 Building Applications 41
Designing the Application 42
Painting the User Interface 43
Creating the Domain Models 45

Contents

iv VisualWorks Cookbook, Rev. 2.0

Connecting the Interface to the Models 47
Connecting the Widgets to Each Other 50

Part II User Interface 51

Chapter 3 Widget Basics 53
Accessing a Widget Programmatically 54
Sizing a Widget 56
Positioning a Widget 60
Aligning a Group of Widgets 65
Spacing a Group of Widgets 66
Bordering a Widget 67
Changing a Widget’s Font 68
Hiding a Widget 70
Disabling a Widget 72
Changing the Tabbing Order 74
Coloring a Widget 75
Adding and Removing Dependencies 78

Chapter 4 Windows 81
Opening a Window 82
Getting a Window from a Builder 85
Sizing a Window 86
Moving a Window 90
Changing a Window’s Label 92
Refreshing a Window’s Display 93
Coloring a Window 94
Adding and Removing Scroll Bars 96
Adding a Menu Bar 98
Getting the Active Window 99
Getting the Window at a Specific Location 100
Closing a Window 101
Expanding and Collapsing a Window 103
Hiding a Window 104
Making a Window a Slave 105
Setting a Window’s Icon 108

Chapter 5 Labels 109
Creating a Textual Label 110
Creating a Graphic Label 111

Contents

VisualWorks Cookbook, Rev. 2.0 v

Supplying the Label at Run Time 113
Changing Font, Emphasis, and Color 116
Building a Registry of Labels 118

Chapter 6 Input Fields 121
Creating an Input Field 122
Restricting the Type of Input 125
Formatting Displayed Data 129
Validating the Input 132
Modifying a Field’s Pop-Up Menu 139
Connecting a Field to Another Field 143
Restricting Entries in a Field (Combo Box) 146
Moving the Insertion Point 150

Chapter 7 Lines, Boxes, and Ovals 153
Separating Widgets with a Line 154
Grouping Widgets with a Box 156
Grouping Widgets with an Ellipse 158

Chapter 8 Buttons 159
Adding a Set of Radio Buttons 160
Adding a Check Box 162
Adding an Action Button 164
Giving a Button a Graphic Label 167
Turning Off Highlighting 168

Chapter 9 Text Editors 171
Adding a Text Editor 172
Accessing the Selected Text 174
Highlighting Text Programmatically 176
Aligning Text 178
Making an Editor Read-Only 180
Modifying an Editor’s Menu 182

Chapter 10 Lists 183
Adding a List 184
Editing the List of Elements 187
Allowing for Multiple Selections 189
Finding Out What Is Selected 191
Adding a Menu to a List 194
Changing the Highlighting Style 196

Contents

vi VisualWorks Cookbook, Rev. 2.0

Connecting Two Lists 198
Connecting a List to a Text Editor 200

Chapter 11 Datasets 203
Adding a Dataset 204
Selecting Columns While Painting 209
Adding a Row 210
Connecting Data to a Dataset 212
Enhancing Column Labels 213

Chapter 12 Tables 215
Using TableInterface 216
Adding a Table 217
Connecting a Table to an Input Field 221
Labeling Columns and Rows 223

Chapter 13 Menus 225
Creating a Menu 226
Creating a Submenu 231
Adding a Menu Bar 233
Adding a Menu Button 236
Adding a Pop-Up Menu 240
Modifying a Menu Dynamically 243
Disabling a Menu Item 248
Adding a Divider to a Menu 250
Adding a Shortcut Key 252
Displaying an Icon in a Menu 254
Changing Menu Colors 257
Using a Menu Editor 259

Chapter 14 Sliders 263
Adding a Slider 264
Connecting a Slider to a Field 267
Changing the Range Dynamically 270
Changing the Length of the Marker 273
Making a Slider Two-Dimensional 274

Chapter 15 Dialogs 277
Displaying a Warning 278
Asking a Yes/No Question 280
Asking a Multiple-Choice Question 282

Contents

VisualWorks Cookbook, Rev. 2.0 vii

Requesting a Textual Response 284
Requesting a Filename 286
Choosing from a List of Items 289
Linking a Dialog to a Master Window 292
Creating a Custom Launcher 294
Creating a Custom Dialog 296

Chapter 16 Subcanvases 301
Inheriting an Application’s Capabilities 302
Nesting One Application in Another 305
Reusing an Interface Only 308
Swapping Interfaces at Run Time 310
Accessing an Embedded Widget 313

Chapter 17 Notebooks 315
Adding a Notebook 316
Determining Which Tab Is Selected 319
Changing the Binding’s Appearance 322
Changing the Size and Axis of the Tabs 324
Setting the Starting Page 326
Adding Secondary Tabs (Minor Keys) 328
Connecting Minor Tabs to Major Tabs 331
Changing the Page Layout (Subcanvas) 334
Connecting a Notebook to a Text Editor 336

Chapter 18 Drag and Drop 339
About Drag and Drop 340
Adding a Drop Source 343
Adding a Drop Target (General) 348
Providing Visual Feedback During a Drag 350
Responding to a Drop 359
Examining the Drag Context 365
Responding to Modifier Keys 366
Defining Custom Effect Symbols 371

Chapter 19 Custom Views 375
Creating a View Class 376
Connecting a View to a Domain Model 378
Defining What a View Displays 380
Updating a View When Its Model Changes 382
Connecting a View to a Controller 385

Contents

viii VisualWorks Cookbook, Rev. 2.0

Redisplaying All or Part of a View 387
Integrating a View into an Interface 389

Chapter 20 Custom Controllers 391
Choosing an Input Architecture 392
Creating a Controller Class 395
Connecting a Controller to a Model 399
Connecting a Controller to a View 400
Defining When a Controller Has Control 402
Defining What a Controller Does 405
Equipping a Controller with a Menu 409
Shifting Control to a Different Controller 411
Sensing Mouse Activity 412
Sensing Keyboard Activity 416
Getting the Cursor’s Location 419

Part III Data Structures 423

Chapter 21 Numbers 425
Creating a Number 426
Adding and Subtracting 431
Multiplying and Dividing 432
Rounding 434
Getting Squares and Roots 436
Comparing Two Numbers 438
Getting the Minimum and Maximum 441
Performing Trigonometric Functions 442
Performing Logarithmic Functions 444
Testing Numberness, Evenness, Zeroness 445
Accessing and Converting the Sign 447
Converting a Number to Another Form 449
Factoring 453
Generating a Random Number 454
Accessing Numeric Constants 458

Chapter 22 Dates 461
Creating a Date 462
Getting Information about a Day 465
Getting Information about a Month 467
Getting Information about a Year 469

Contents

VisualWorks Cookbook, Rev. 2.0 ix

Adding and Subtracting with Dates 471
Comparing Dates 473
Formatting a Date 475

Chapter 23 Times 477
Creating a Time 478
Getting the Seconds, Minutes, and Hours 480
Adding and Subtracting Times 482
Creating a Time Stamp 483
Timing a Block of Code 484
Changing the Time Zone 486

Chapter 24 Collections 489
Choosing the Right Collection 490
Creating a Collection 491
Getting the Size 495
Adding Elements 497
Removing Elements 500
Replacing Elements 505
Copying Elements 508
Combining Two Collections 510
Finding Elements 511
Comparing Collections 517
Sorting a Collection 519
Converting to a Different Type of Collection 522
Looping through the Elements (Iterating) 524

Chapter 25 Characters and Strings 529
Creating a Character 530
Creating a String 532
Distinguishing Types of Characters 534
Changing the Case 537
Getting a String’s Length and Width 539
Comparing 540
Searching 543
Combining Two Strings 545
Extracting a Substring 547
Removing or Replacing a Substring 549
Abbreviating a String 551
Inserting Line-End Characters 553

Contents

x VisualWorks Cookbook, Rev. 2.0

Chapter 26 Text and Fonts 555
Creating a Text Object 556
Displaying a Text Object 558
Setting the Line Length 559
Disabling Word Wrapping 560
Controlling Alignment 561
Setting Indents and Tabs 562
Counting the Characters 564
Printing a Text Object 565
Searching for Strings 566
Replacing a Range of Text 567
Comparing Text Objects 568
Copying a Range of Text 569
Changing Case 571
Applying Boldfacing and Other Emphases 572
Using the Platform’s Default Font 575
Creating a Custom Text Style 576
Changing Font Size 578
Setting Font Family or Name 582
Setting Text Color 585
Changing the Fonts Menu 587
Changing the Default Font 588
Listing Platform Fonts 589

Chapter 27 Text Files 591
Creating a File or Directory 592
Getting Information about a File 594
Getting File or Directory Contents 597
Storing Text in a File 598
Opening an Editor on a File 601
Deleting a File or Directory 602
Copying or Moving a File 603
Comparing Two Files or Directories 605
Printing a File 607
Scanning Fields in a File (Stream) 609
Setting File Permissions 611

Chapter 28 Object Files (BOSS) 613
Storing Objects in a BOSS File 614
Getting Objects from a BOSS File 617
Storing and Getting a Class 621

Contents

VisualWorks Cookbook, Rev. 2.0 xi

Converting Data After Changing a Class 624
Customizing the Storage Representation 626

Chapter 29 Geometrics 629
Displaying a Point 630
Displaying a Straight or Jointed Line 631
Displaying a Curved Line 634
Displaying a Polygon 637
Displaying an Arc, Circle, or Ellipse 640
Changing the Line Thickness 644
Changing the Line Cap Style 645
Changing the Line Join Style 647
Coloring a Geometric 649
Integrating a Graphic into an Application 652

Chapter 30 Images, Cursors, and Icons 657
Creating a Graphic Image 658
Displaying an Image 662
Coloring Pixels in an Image 664
Masking Part of an Image 666
Expanding or Shrinking an Image 668
Flopping an Image 669
Rotating an Image 670
Layering Two Images 672
Caching an Image 674
Animating an Image 675
Creating a Cursor 678
Changing the Current Cursor 681
Creating an Icon 682
Associating an Icon with a Window 683

Chapter 31 Color 685
Creating a Color 686
Creating a Coverage 690
Creating a Tiled Pattern 692
Applying a Color or Pattern 694
Changing an Image’s Color Palette 696
Changing the Policy for Rendering Colors 698

Chapter 32 Adapting Domain Models to Widgets 703
Setting up Simple Value Models (ValueHolder) 704

Contents

xii VisualWorks Cookbook, Rev. 2.0

Adapting Part of a Domain Model (AspectAdaptor) 706
Synchronizing Updates (Buffering) 710
Adapting a Collection (SelectionInList) 713
Adapting a Collection Element 715
Creating a Custom Adaptor (PluggableAdaptor) 717

Index 719

VisualWorks Cookbook, Rev. 2.0 xiii

About This Book

The VisualWorks Cookbook provides step-by-step instructions
for performing hundreds of common tasks with VisualWorks®.
VisualWorks is a fully object-oriented environment for
constructing applications using the ParcPlace Smalltalk™
programming language.

Audience

This Cookbook is designed to help both new and experienced
developers find and use the rich capabilities of the VisualWorks
extensive class library.

This Cookbook assumes that you have a beginning familiarity
with VisualWorks tools and Smalltalk syntax. It also assumes
that you are familiar with the VisualWorks graphical user-
interface application architecture. You can obtain that famil-
iarity by using the VisualWorks Tutorial. In addition, ParcPlace-
Digitalk and some of its partners provide VisualWorks training
classes.

Organization

This Cookbook is organized around the set of tasks and
subtasks that await the application developer—creating inter-
faces, storing data, and so on. Cookbook topics normally
contain the following sections:

■ Strategy: Explains concepts for understanding a task and
choosing among alternative ways of performing the same
task.

About This Book

xiv VisualWorks Cookbook, Rev. 2.0

■ Basic Steps: Describes the simplest way to accomplish the
task and then provides example code. In some cases, the
example can be executed by itself in a Workspace.

■ Variants: Describes other ways to perform the same task or
ways to perform closely related tasks. The “Variants”
section also provides example code.

■ See Also: Refers to related material, most often another
task in the Cookbook.

The Cookbook uses a set of example classes to demonstrate
various techniques. The example classes are contained in a set
of files in the online/examples subdirectory of the product
directory. The Online Documentation tool provides a conve-
nient means of loading (if necessary) and browsing example
classes using the File➞Browse Example Class command. Filing in
the example classes by other means, such as a File List tool, is
not recommended because certain files rely on others.

Conventions

This section describes the notational conventions used to
identify technical terms, computer-language constructs,
mouse buttons, and mouse and keyboard operations.

Typographic Conventions

This book uses the following fonts to designate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as
words.

cover.doc Indicates filenames, pathnames, commands,
and other C++, UNIX, or DOS constructs to be
entered outside VisualWorks (for example, at a
command line).

Conventions

VisualWorks Cookbook, Rev. 2.0 xv

Special Symbols

This book uses the following symbols to designate certain items
or relationships:

filename .xwd Indicates a variable element for which you
must substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates
any other information that you enter through
the VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for
menu names, dialog-box fields, and buttons; it
also indicates emphasis in Smalltalk code
samples.

Examples Description

File➞New command Indicates the name of an item on a
menu.

<Return> key
<Select> button
<Operate> menu

Indicates the name of a keyboard key
or mouse button; it also indicates the
pop-up menu that is displayed by
pressing the mouse button of the same
name.

<Control>-<g> Indicates two keys that must be
pressed simultaneously.

<Escape> <c> Indicates two keys that must be
pressed sequentially.

Integer>>asCharacter Indicates an instance method defined
in a class.

Float class>>pi Indicates a class method defined in a
class.

Caution: Indicates information that, if ignored,
could cause loss of data.

Warning: Indicates information that, if ignored,
could damage the system.

Example Description

About This Book

xvi VisualWorks Cookbook, Rev. 2.0

Screen Conventions

This book contains a number of sample screens that illustrate
the results of various tasks. The windows in these sample
screens are shown in the default Smalltalk look, rather than
the look of any particular platform. Consequently, the windows
on your screen will differ slightly from those in the sample
screens.

Mouse Buttons

Many hardware configurations supported by VisualWorks have
a three-button mouse, but a one-button mouse is the standard
for Macintosh users, and a two-button mouse is common for
OS/2 and Windows users. To avoid the confusion that would
result from referring to <Left>, <Middle>, and <Right> mouse
buttons, this book instead employs the logical names <Select>,
<Operate>, and <Window>.

The mouse buttons perform the following interactions:

Three-Button Mouse

VisualWorks uses the three-button mouse as the default:

■ The left button is the <Select> button.

■ The middle button is the <Operate> button.

■ The right button is the <Window> button.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight
text.

<Operate> button Bring up a menu of operations that are appro-
priate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be per-
formed on any VisualWorks window (except
dialogs), such as move and close. The menu
that is displayed is referred to as the
<Window> menu.

Conventions

VisualWorks Cookbook, Rev. 2.0 xvii

Two-Button Mouse

On a two-button mouse:

■ The left button is the <Select> button.

■ The right button is the <Operate> button.

■ To access the <Window> menu, you press the <Control>
key and the <Operate> button together.

One-Button Mouse

On a one-button mouse:

■ The unmodified button is the <Select> button.

■ To access the <Operate> menu, you press the <Option> key
and the <Select> button together.

■ To access the <Window> menu, you press the <Command>
key and the <Select> button together.

Mouse Operations

The following table explains the terminology used to describe
actions that you perform with mouse buttons.

When you see: Do this:

click Press and release the <Select>
mouse button.

double-click Press and release the <Select>
mouse button twice without
moving the pointer.

<Shift>-click While holding down the <Shift>
key, press and release the <Select>
mouse button.

<Control>-click While holding down the <Control>
key, press and release the <Select>
mouse button.

<Meta>-click While holding down the <Meta> or
<Alt> key, press and release the
<Select> mouse button.

About This Book

xviii VisualWorks Cookbook, Rev. 2.0

Additional Sources of Information

Printed Documentation

In addition to this Cookbook, the core VisualWorks documenta-
tion includes the following documents:

■ Installation Guide: Provides instructions for the installation
and testing of VisualWorks on your combination of
hardware and operating system.

■ Release Notes: Describes the new features of the current
release of VisualWorks.

■ Tutorial: Introduces the VisualWorks tools, class library,
and approach to application design. It also introduces basic
object-oriented concepts and the Smalltalk language.

■ User’s Guide: Provides an overview of object-oriented
programming, a description of the Smalltalk language, a
VisualWorks tools reference, and a description of various
reusable software modules that are available in Visual-
Works.

■ International User’s Guide: Describes the VisualWorks facil-
ities that support the creation of nonEnglish and cross-
cultural applications.

■ Object Reference: Provides detailed information about the
VisualWorks class library.

The documentation for the VisualWorks database tools consists
of the following documents:

■ VisualWorks’ Database Tools Tutorial and Cookbook: Intro-
duces the process and tools for creating applications that
access relational databases. The “Cookbook” chapter
describes how to programmatically customize various
aspects of a database application.

■ Database Connect User’s Guide: Provides information about
the external database interface. Versions of it exist for
ORACLE7, SYBASE, and DB2 databases.

Obtaining Technical Support

VisualWorks Cookbook, Rev. 2.0 xix

Online Documentation

To display the online documentation browser, open the Help
pull-down menu from the VisualWorks main menu bar and
select Open Online Documentation. Your choice of online books
includes:

■ Database Cookbook: Online version of the “Cookbook” part
of the VisualWorks’ Database Tools Tutorial and Cookbook
described above.

■ Database Quick Start Guides: Describes how to build
database applications. It covers such topics as data models,
single- and multiwindow applications, and reusable data
forms.

■ International User’s Guide: Online version of the Interna-
tional User’s Guide described above.

■ VisualWorks Cookbook: Online version of this book.

■ VisualWorks DLL and C Connect Reference: Describes C
data classes, object engine access functions, and user-
primitive functions.

Obtaining Technical Support

If, after reading the documentation, you find that you need
additional help, you can contact ParcPlace-Digitalk Technical
Support. ParcPlace-Digitalk provides all customers with help
on product installation. ParcPlace-Digitalk provides additional
technical support to customers who have purchased the
ObjectSupport package. VisualWorks distributors often provide
similar services.

Before Contacting Technical Support

When you need to contact a technical support representative,
please be prepared to provide the following information:

■ The version id, which indicates the version of the product
you are using. Choose Help➞About VisualWorks in the Visual-
Works main window. The version number can be found in
the resulting dialog under Version Id:.

About This Book

xx VisualWorks Cookbook, Rev. 2.0

■ Any modifications (patch files) distributed by ParcPlace-
Digitalk that you have imported into the standard image.
Choose Help➞About VisualWorks in the VisualWorks main
window. All installed patches can be found in the resulting
dialog under Patches:.

■ The complete error message and stack trace, if an error
notifier is the symptom of the problem. To do so, select copy
stack in the error notifier window (or in the stack view of the
spawned Debugger). Then paste the text into a file that you
can send to technical support.

How to Contact Technical Support

ParcPlace-Digitalk Technical Support provides assistance by:

■ Electronic mail

■ Electronic bulletin boards

■ World Wide Web

■ Telephone and fax

Electronic Mail

To get technical assistance on the VisualWorks line of products,
send electronic mail to support-vw@parcplace.com .

Electronic Bulletin Boards

Information is available at any time through the electronic
bulletin board CompuServe. If you have a CompuServe
account, enter the ParcPlace-Digitalk forum by typing
go ppdforum at the prompt.

World Wide Web

In addition to product and company information, technical
support information is available via the World Wide Web:

1. In your Web browser, open this location (URL):

http://www.parcplace.com

2. Click the link labeled “Tech Support.”

Obtaining Technical Support

VisualWorks Cookbook, Rev. 2.0 xxi

Telephone and Fax

Within North America, you can:

■ Call ParcPlace-Digitalk Technical Support at 408-773-7474
or 800-727-2555.

■ Send questions and information via fax at 408-481-9096.

Operating hours are Monday through Thursday from 6:00
a.m. to 5:00 p.m., and Friday from 6:00 a.m. to 2:00 p.m.,
Pacific time.

Outside North America, you must contact the local authorized
reseller of ParcPlace-Digitalk products to find out the telephone
numbers and hours for technical support.

VisualWorks Cookbook, Rev. 2.0 1

Part I

Programming Fundamentals

Chapter 1: Smalltalk Basics 3
Chapter 2: Building Applications 41

VisualWorks Cookbook, Rev. 2.0 3

Chapter 1

Smalltalk Basics

This chapter shows how to perform fundamental
programming tasks, including:

Constructing a Message 4
Combining Messages 7
Deciding which Type of Variable to Use 10
Declaring a Variable 13
Removing a Variable 16
Creating a Method 18
Returning from a Method 20
Creating an Instance of a Class 22
Initializing an Object 24
Creating a Class (Subclassing) 26
Grouping Related Classes 29
Grouping Related Methods 31
Creating a Branch 33
Creating a Loop 34
Creating Complex True/False Tests 38

Chapter 1 Smalltalk Basics

4 VisualWorks Cookbook, Rev. 2.0

Constructing a Message

Strategy

A message expression is made up of two parts: a receiver and a
message. The receiver is the object from which you desire a
service. The message is the name of the receiver’s method that
provides the service, along with any necessary arguments.

Basic Steps
➤ Name the receiver (1.0) and then supply the message (sin).

"Print it"
1.0 sin "Basic Step"

Variants

V1. Storing the Result in a Variable

Every time a message is sent, the receiver sends an answer
back. The answer itself is an object, perhaps the result of a
computation. When this answer object is needed, you can
assign it to a variable.

➤ Send a message to an object and store the result in a
variable named sine.

"Print it"
| sine |
sine := 1.0 sin. "V1 Step"
^sine

V2. Naming a Variable as the Receiver

In variant 1, the receiver is a literal object, specifically a
floating-point number. You can also send a message to an
object that is stored in a variable, by naming the variable as the
receiver.

Constructing a Message

VisualWorks Cookbook, Rev. 2.0 5

➤ Send a message (squared) to the number held by a variable
named sine.

"Print it"
| sine |
sine := 1.0 sin.
sine squared. "V2 Step"

V3. Naming a Class as the Receiver

You can also name a class as the receiver of a message. This is
most often done when you are creating an instance of a class,
as in the following example.

➤ Send a message (today) to the Date class.

"Print it"
Date today "V3 Step"

V4. Including One or More Arguments (Keyword
Message)

When the message requires an argument, the message name
ends in a colon. This is called a keyword message. For each
argument, the message contains a separate keyword ending
with a colon. By convention, each keyword and argument are
indented on a new line below the receiver, if this improves read-
ability of the code.

➤ Send a message that requires two arguments. Specifically,
when copying a substring, you must specify the starting
index and ending index of the desired substring.

"Print it"
'9942-Steering wheel' "V4 Step"

copyFrom: 1
to: 4

Chapter 1 Smalltalk Basics

6 VisualWorks Cookbook, Rev. 2.0

V5. Using a Special Symbol (Binary Message)

For convenience, common operations such as addition and
subtraction are invoked using the special symbols that are
widely associated with those operations. These messages are
called binary messages because you must supply one
argument as well as the receiver (as with a one-keyword
message).

➤ Multiply the receiver (12) by the argument (3.14159).

"Print it"
12 * 3.14159. "V5 Step"

Combining Messages

VisualWorks Cookbook, Rev. 2.0 7

Combining Messages

Strategy

A simple message expression sends one message to a receiver.
You can combine simple messages in several ways.

■ You can create complex message expressions by using
simple messages as the receivers or arguments of other
messages (first three variants).

■ You can rewrite a complex expression as a sequence of
simpler ones (fourth variant).

■ You can send multiple messages to the same receiver by
cascading them (last variant). Cascaded expressions are
generally used sparingly; they can be harder to read and
debug than sequences of expressions.

Variants

V1. Using the Result of One Message as the Receiver
in a Second Message
➤ Send a message (squared) to the result (0.841471) that is

returned by the first message (1.0 sin).

"Print it"
1.0 sin squared. "V1 Step"

V2. Using the Result of One Message as the Argument
in a Second Message
➤ Create a random-number generator (Random new) and then

ask it for the next number in the random-number stream
(next). The result is a random number between 0 and 1. Use
that result as the argument in a multiplication.

"Print it"
52 * Random new next. "V2 Step"

Chapter 1 Smalltalk Basics

8 VisualWorks Cookbook, Rev. 2.0

V3. Controlling Parsing Order

In a complex expression, messages are executed from left to
right, starting with no-argument messages, then binary
messages, and then keyword messages. You can use paren-
thesis to specify the parsing sequence. Expressions inside
parentheses are executed before those outside. Expressions
can be nested. Try executing the following expression both with
and without the parentheses.

➤ Get a random number between 1 and 52 and then convert
it from a floating-point number to the next-higher integer.

"Print it"
(52 * Random new next) ceiling "V3 Step"

V4. Sending a Sequence of Messages

You can rewrite a complex expression as a sequence of simpler
ones, typically by using one or more temporary variables that
capture the result of one message for use in another message.

1. Declare a temporary variable for each result to be captured.

2. Create a random number generator and assign it to a
temporary variable.

3. Get the next random number in the random number
stream and assign it to another temporary variable.

4. Use the random number as the argument in a multiplica-
tion.

"Print it"
| generator random | "V4 Step 1"
generator := Random new. "V4 Step 2"
random := generator next. "V4 Step 3"
52 * random. "V4 Step 4"

Combining Messages

VisualWorks Cookbook, Rev. 2.0 9

V5. Sending Multiple Messages to the Same Receiver
(Cascading)

When a series of messages are sent to the same receiver, you
use a semicolon to separate the messages. Then you have to
name the receiver only once, at the beginning of the series.

1. Create a collection.

2. Add five elements to the collection, using cascaded
messages.

"Print it"
| flavors |
flavors := OrderedCollection new. "V5 Step 1"

flavors "V5 Step 2"
add: 'Vanilla';
add: 'Chocolate';
add: 'Cookie Crumble';
add: 'Rocky Road';
add: 'Raspberry Swirl'.

^flavors

Chapter 1 Smalltalk Basics

10 VisualWorks Cookbook, Rev. 2.0

Deciding which Type of Variable to Use

Strategy

There are six types of variables:

■ Temporary variables

■ Instance variables

■ Class instance variables

■ Class variables

■ Pool dictionaries

■ Global variables

Scope: Each type of variable has a different scope—that is, it
is available to a different range of methods. The list above is
sorted from narrowest to widest scope.

In general, use the narrowest scope that suits your purpose.

Use Temporary Variables Freely

A temporary variable has the narrowest scope (a single method
or Workspace do it). Use temporary variables freely.

Avoid Use of Global Variables

A global variable has the broadest scope—it can be referenced
anywhere. This makes it hazardous to use, mainly because
class names are also global in scope. The danger is that you
may accidentally erase a class that happens to have the same
name as your global, by associating a new value with the name.
For this reason, you must be very careful when naming a global
variable. A carefully named global can be useful in casual
Workspace code, when you want to hold onto the result of one
do it for use in a later do it.

Use an Accessing Method to Boost the Scope

Frequently, you can use an accessing method to give a variable
wider scope. This is especially useful when you need to create
a systemwide default that is accessed by a variety of objects.
For example, the LookPreferences class implements a defaultBorder

Deciding which Type of Variable to Use

VisualWorks Cookbook, Rev. 2.0 11

method. Clients can ask for this default border by asking the
LookPreferences class for it, instead of relying on a global variable.

Use Instance Variables to Hold Object Data and
Persistent Parameters

An instance variable is the primary means of associating data
with an object, and it can be used freely. It is directly available
to any instance method in the defining class and in any
instance method of a subclass (that is, it is inherited).

A secondary role for the instance variable is as a persistent
parameter. That is, if you are passing the same object as an
argument to several methods within the same receiver, it may
be helpful to create an instance variable as a central holder for
that object.

Use Class Variables to Hold Defaults and Static
Resources

A class variable is available to both class methods and instance
methods, in the defining class and any subclasses. Because its
value can be changed by multiple objects, a class variable is
used mainly to hold a nonchanging or rarely changing value.
For example, the Date class holds a collection of MonthNames as a
class variable and makes that collection available to several of
its methods.

Compared with instance variable: An alternative is to create
an instance variable and initialize its value each time you create
a new instance. The first advantage of a class variable is that
you have to initialize it only once. The second advantage is that
you need to have only one copy of the data, even when many
instances of the class are accessing it.

Use Class Instance Variables within a Class Hierarchy

A class instance variable is rarely used. It is declared once, in
a parent class. Each subclass then has its own copy of the
variable and can assign to it independently.

Compared with class variable: One alternative is to declare a
separate class variable in each subclass. Since each subclass
would have to name its variable differently, each subclass

Chapter 1 Smalltalk Basics

12 VisualWorks Cookbook, Rev. 2.0

would need its own versions of the methods that accessed the
variable. Thus, the advantage of the class instance variable is
that all subclasses can use the same name for the variable and
still be able to assign to it independently.

Compared with instance variable: Another alternative is to
declare the variable as a regular instance variable in the parent
class. This requires that you initialize the variable each time a
new instance is created. Thus, the class instance variable is
usually reserved for nonchanging resources whose initializa-
tion is too costly to repeat.

Use Pool Dictionaries to Create a Shared Lexicon
among Classes

A pool dictionary is a lookup table shared by a related set of
classes. The dictionary itself must first be declared as a global
variable and initialized as a Dictionary. Each entry in the dictio-
nary is then available directly to all class and instance methods
in any class that declares the dictionary as its pool.

For example, the classes that manipulate text objects share a
dictionary named TextConstants. This dictionary associates names
such as “Space” and “Tab” with their character equivalents. As
a result, the text classes can use the names for keyboard keys
rather than the more obscure character codes.

Because the dictionary must be declared first as a global vari-
able, pool dictionaries should be used very sparingly. Another
negative for pool dictionaries is that, like globals, they are not
automatically recreated when you file in the code that depends
on them.

Compared with class variable: One alternative is to store a
lookup dictionary in a class variable. The first disadvantage of
this approach is that only instances of that class can access the
dictionary directly. The second disadvantage is that lookups
must be performed explicitly. With a pool dictionary, by
contrast, naming the key is sufficient to summon its associated
value. For example, instead of TextConstants at: Space you can
simply use Space. Neither of these disadvantages is critical in
most situations.

Declaring a Variable

VisualWorks Cookbook, Rev. 2.0 13

Declaring a Variable

Strategy

Data type: Any object can be assigned to any type of variable.
In Smalltalk, variables are not declared as having a particular
data type.

Default value: The value of any variable is nil until you assign
a new value to it.

Naming: The name of a variable describes its purpose and
sometimes also its intended data type. By convention, variable
names are quite descriptive and rarely abbreviated except in
casual usage. When multiple words are combined to form a
name, each embedded initial is capitalized. Variable names
may contain letters, numbers, and underscores, and may not
begin with a number. By convention, the first letter is lowercase
for local variables and uppercase for nonlocal variables.

Separating multiple declarations: When you are declaring
two or more variables at the same time, use a space to separate
them.

Undeclared variables: When a variable is referenced without
being declared, it is entered in a system dictionary named Unde-
clared. If it is later declared, the entry in Undeclared remains and
should be removed before you deploy your application. To do
so, open an inspector on the dictionary by highlighting the word
Undeclared and using the inspect command. You can use the
dictionary inspector to check for references to each entry and
to remove each entry that has no entries.

Variants

V1. Declaring a Temporary Variable

A temporary variable must be declared at the beginning of the
method or Workspace do it in which it is used. To do so, place
its name between vertical bars.

Naming. A temporary variable’s name should begin with a
lowercase letter, indicating its local scope.

Chapter 1 Smalltalk Basics

14 VisualWorks Cookbook, Rev. 2.0

Automated declarations: In practice, many Smalltalk
programmers postpone declaring temporaries. They freely
insert new variable names and rely on the system to prompt
them when it encounters each undeclared variable name. They
can then indicate its scope as “temporary” and the system will
create the declaration.

➤ Declare temporary variables by enclosing them within
vertical bars.

| numberOfDays date | "V1 Step"
numberOfDays := 7.
date := Date today addDays: numberOfDays.
Transcript show: date printString.

V2. Declaring an Instance Variable

Naming. An instance variable’s name should begin with a
lowercase letter.

1. In a System Browser, select the class.

2. Choose the definition command in the class view to display
the class definition.

3. Add the desired instance variable name to the list of
instance variables and then accept the new definition.

V3. Declaring a Class Instance Variable

Naming. A class instance variable’s should must begin with an
uppercase letter.

1. In a System Browser, select the class and make sure the
class switch is on.

2. In the pop-up menu provided by the class view, select the
definition command to display the metaclass definition.

3. Add the desired variable name to the list of class instance
variables and then accept the new definition.

V4. Declaring a Class Variable

Naming. A class variable’s name should begin with an upper-
case letter.

Declaring a Variable

VisualWorks Cookbook, Rev. 2.0 15

1. In a System Browser, select the class.

2. Choose the definition command in the class view to display
the class definition.

3. Add the desired class variable name to the list of class vari-
ables and then accept the new definition.

V5. Declaring a Pool Dictionary

When a group of related constants is to be made available to a
class, a pool dictionary is an alternative to creating a separate
class variable for each constant. Multiple classes can declare
and use the same pool dictionary. For example, the text-related
classes such as Text store constants such as the tab character
in a pool dictionary, so they don’t have to instantiate that char-
acter in their text-handling methods.

Naming: A pool dictionary’s name should begin with an upper-
case letter. The key in each element of the dictionary must also
begin with an uppercase letter.

Creating the dictionary: The dictionary itself is a global
variable and must be declared and initialized before you can
declare it as a pool dictionary.

1. In a Workspace, verify that the global name you intend to
give a new pool dictionary is not already in use as a global
variable name by sending an includesKey: message to Smalltalk.
The argument is the global name, expressed as a symbol
(prefixed by a number sign).

2. In a Workspace, create a new dictionary by sending a new
message to the Dictionary class. Add the desired constants
and their lookup keys to the dictionary (now or later).

3. Create a global variable to hold the dictionary by sending
an at:put: message to Smalltalk. The first argument is the global
name, expressed as a symbol. The second argument is the
dictionary.

4. For each class that will use the pool dictionary, display the
class definition in a System Browser and add the global to
the list of pool variables. Note that pool dictionaries are not
inherited, so you must add them to each class that is to use
them, even if they are declared in its superclass.

Chapter 1 Smalltalk Basics

16 VisualWorks Cookbook, Rev. 2.0

Removing a Variable

Strategy

Before you remove a variable, find and delete all references to
that variable. For most types of variables, it’s easier to find
references before you remove the variable.

Variants

V1. Removing a Temporary Variable and Its
References

Since a temporary variable can be referenced only in a single
method or Workspace do it, you need to scan only that method
for references. For a long method, use the find command to find
each occurrence of that variable in the code. Rewrite the code
as needed to remove each reference.

After you have removed all references, delete the variable
declaration.

V2. Removing an Instance Variable and Its References
1. In a System Browser, select the class in which the variable

is declared.

2. Select the inst var refs command in the class view.

3. In the resulting menu of instance variables, select the
variable that you intend to remove.

4. In the resulting browser of all methods that reference the
variable, edit the methods to remove the references.

5. In the class definition, delete the variable name and then
accept the definition.

V3. Removing a Class Variable and Its References

Do steps 1 through 5 as above, except in step 2 use the class var
refs command.

Removing a Variable

VisualWorks Cookbook, Rev. 2.0 17

V4. Removing a Class Instance Variable and Its
References

Do steps 1 through 5 as above, except in step 1 also turn on the
System Browser’s class switch.

V5. Removing a Pool Dictionary
1. For each entry in the pool dictionary, open a browser on all

references to that pool variable by sending a browseAllCallsOn:
message to the Browser class. The argument is the dictio-
nary’s entry, which is accessed by sending an associationAt:
message to the global name of the dictionary; the argument
is the lookup key for the dictionary entry.

Browser browseAllCallsOn: (TextConstants associationAt: #Centered). "V3 Step 1"

2. In each browser, edit each method, removing all references
to the pool constants.

3. Use a System Browser to change the class definition of each
class that declares the pool dictionary, removing the global
dictionary from the definition.

4. Open a browser on all references to the global variable that
holds the pool dictionary by sending a browseAllCallsOn:
message to the Browser class. The argument is the Smalltalk
dictionary’s entry for the global, which is accessed by
sending an associationAt: message to Smalltalk; the argument is
the name of the global dictionary.

Browser browseAllCallsOn: (Smalltalk associationAt: #TextConstants). "V3 Step 4"

5. In the resulting browser, edit each method, removing all
references to the global variable.

6. Remove the global variable from the global dictionary
named Smalltalk by sending a removeKey: message to Smalltalk.
The argument is the name of the global dictionary,
expressed as a symbol.

V6. Removing a Global Variable

Do Steps 4 through 6 above.

Chapter 1 Smalltalk Basics

18 VisualWorks Cookbook, Rev. 2.0

Creating a Method

Strategy

The System Browser provides a template to help you create a
new method. You can also use an existing method as your
starting point.

Instance vs. class methods: An instance method is available
to any instance of the defining class, whereas a class method is
available only to the class itself. For that reason, instance
methods outnumber class methods. Class methods are most
often used for creating an instance of the class and for initial-
izing and accessing class variables.

When to subdivide a large method: To promote reusability,
keep Smalltalk methods short. For example, you can usually
break a long method into smaller methods to isolate individual
services that other clients may want to use. Similarly, when a
subset of the code is repeated in a large method with only minor
variations, you can usually make that subset into a separate
method.

Naming. Method names may contain letters, numbers, and
underscores, but may not begin with a number. The first letter
should be lowercase.

Variants

V1. Creating an Instance Method
1. In a System Browser, turn on the instance switch.

2. Select the class.

3. Select the message category or add a new one.

4. Fill in the method template and then use the accept
command in the code view.

V2. Creating a Class Method

In a System Browser, turn on the class switch and then do steps
2 through 4 above.

Creating a Method

VisualWorks Cookbook, Rev. 2.0 19

V3. Fixing Common Errors at Compile Time

Undeclared temporary variables: This is an “error” that you
can commit on purpose, because the system will prompt you
with a menu of variable types with which you can quickly and
easily declare each of the temporary variables.

Undeclared class and instance variables: When you are
prompted to declare an instance or class variable, it’s best to
select abort in the menu and declare the variables before
continuing. To save your uncompiled method while you use the
System Browser to redefine the class, select spawn in the code
view. This opens a new browser on the uncompiled code.

Missing period: When you have omitted a period, the system
treats what should be two statements as though they were a
single message expression. As a result, the error description is
usually “Nothing more expected.”

Missing delimiters: When you have omitted a parenthesis or
bracket, the error description is “Right parenthesis expected” or
“Period or right bracket expected.”

Chapter 1 Smalltalk Basics

20 VisualWorks Cookbook, Rev. 2.0

Returning from a Method

Strategy

Every method returns a single object, which can be a collection
of other objects.

By default, a method returns the object that received the
message. This return object is simply ignored by clients that
are interested in the effect of the method and not the return
value.

When the return object is significant, you can specify that
object by using a caret symbol (^).

Returning from a block—When a return character is enclosed
within a block, it forces a return from the entire method. That
is, it does not act as a return from the block back to the
containing method.

Basic Steps

Online example: Customer1Example

➤ In a method, place the name of the return object after a
caret.

accountID "Basic Step"
^accountID

Variants

V1. Returning the Result of a Message

A return character that is followed by a message causes the
result of that message to be returned. This approach often
circumvents the need to create a temporary variable for the
message result.

➤ Place a caret in front of the message receiver.

Returning from a Method

VisualWorks Cookbook, Rev. 2.0 21

displayString "V1 Step"

^accountID printString, '--', name

V2. Returning a Conditional Value

Frequently, a method performs a test and returns one value if
the test result is true and a second value if the test result is
false. Relying on the fact that a return character that is followed
by a message returns the result of the message, you can use a
single return caret to serve both forks of the branch, rather
than placing a caret inside each block.

This approach has the advantage of combining two exit points
into a single exit point, which is better programming style. It
also makes the ifTrue: and ifFalse: blocks clean blocks—that is,
blocks that do not contain a hard return character.

➤ Place a caret in front of the conditional expression. (The
example is a hypothetical method that could be added to
Customer1Example.)

accountPrefix "V2 Step"
"Answer the first four characters of the accountID,
or an empty string if the accountID is empty."

| id |
id := self accountID.

^id isEmpty
ifTrue: [String new]
ifFalse: [id

copyFrom: 1
to: 4].

Chapter 1 Smalltalk Basics

22 VisualWorks Cookbook, Rev. 2.0

Creating an Instance of a Class

Strategy

Every class provides one or more messages for creating an
instance of itself. By convention, these messages can be found
in the instance creation protocol of the class.

The new method: All classes inherit a basic new method from
the Object class. This method creates a raw instance whose
instance variables each have the value nil.

Abstract classes and new: Abstract classes, such as Boolean,
typically provide their own version of new, in which they
announce an error such as “This class is not intended to be
instantiated.”

Other flavors of new: Other classes frequently override new in
order to initialize instance variables.

Basic Steps
➤ Send a new message to the class.

"Inspect"
SourceFileManager new. "Basic Step"

Variants

V1. Using a Class-Specific Creation Message

Other creation messages are specific to the implementing class.
They frequently take arguments that are used to initialize the
instance variables of the new instance. Such parameterized
creation messages are typically a convenience for client objects,
because the same effect usually can be achieved by first
creating a new instance and then sending the parameters via
accessing messages.

Creating an Instance of a Class

VisualWorks Cookbook, Rev. 2.0 23

➤ Send a message that is listed in the class’s instance creation
protocol.

"Inspect"
Date newDay:10 "V1 Step"
month:#June
year:1995

V2. Accessing a Distinguished Instance

When a class is intended to provide just one instance of itself,
that instance is referred to as a distinguished instance. Typi-
cally, it is stored in a class variable and accessed using an
accessing message named default.

➤ Send a default message or other accessing message to the
class. (Use the inspect command to open an Inspector on the
instance, so you can see how the instance variables differ
from those of a new instance.)

"Inspect"
SourceFileManager default. "V2 Step"

See Also
■ “Initializing an Object” on page 24

Chapter 1 Smalltalk Basics

24 VisualWorks Cookbook, Rev. 2.0

Initializing an Object

Strategy

When you want a new instance to provide default values other
than nil, create an initialize method in a protocol named initialize-
release. The main advantage in doing so is that you prevent the
errors that result when client methods send messages to the
uninitialized instance variables.

Classes other than ApplicationModel and its subclasses must take
the added step of invoking the initialize method in the instance-
creation methods. (ApplicationModel already does so, because
initialization is routinely used by its subclasses.)

Basic Steps

Online example: Customer1Example

1. Create an instance method named initialize in an initialize-
release protocol. The method is responsible for assigning
values to some or all of the instance variables.

initialize "Basic Step 1"

accountID := 0.
name := String new.
address := String new.
phoneNumber := String new.

2. Create a class method named new in an instance creation
protocol. The method is responsible for creating a new
instance and then sending initialize to it.

new "Basic Step 2"
^super new initialize

Initializing an Object

VisualWorks Cookbook, Rev. 2.0 25

Variants

Including a Parent Class’s Initialization

Online example: PreferredCustomerExample

When implementing an initialize method, be aware that a parent
class may also have an initialize method. If so, invoke the parent
class’s initialize as a first step in the subclass’s initialize.

➤ In the subclass’s initialize method, send initialize to super, usually
as the first step in the method.

initialize "Variant Step"

super initialize.
yearsOfPatronage := 3.

Chapter 1 Smalltalk Basics

26 VisualWorks Cookbook, Rev. 2.0

Creating a Class (Subclassing)

Strategy

Every new class is a child of an existing class, so creating a new
class consists of sending a subclassing message to the parent
class. The System Browser provides a template for the most
common subclassing message.

Choosing a parent class: Use the Object Reference to find
existing classes that relate to the new class’s behavior. Choose
as a parent the class that you would need to modify the least in
order to convert it to your purposes. Typically, this will be the
Object class or a class in one of your own application-specific
hierarchies.

Naming: A class name can contain letters, numbers and
underscores, but cannot begin with a number. Because class
names are Smalltalk global variables, they should begin with a
capital letter.

Basic Steps

Online example: Customer1Example

1. In a System Browser, select the class category, and make
sure no class is selected.

2. Modify the resulting class-creation template, entering at
least the name of the parent class and the name of the new
subclass.

Object subclass: #Customer1Example "Basic Step 2"
instanceVariableNames: 'accountID name address phoneNumber '
classVariableNames: ''
poolDictionaries: ''
category: 'Examples-Cookbook'

3. Select the accept command in the code view.

Creating a Class (Subclassing)

VisualWorks Cookbook, Rev. 2.0 27

Variants

V1. Creating a Subclass of ApplicationModel or
SimpleDialog

For the convenience of interface programmers, the install
command in a Canvas provides a convenient dialog box for
creating new subclasses of ApplicationModel and SimpleDialog. Choose
SimpleDialog as the parent when instances of the new class will be
used primarily to run one or more dialog windows. Choose Appli-
cationModel as the parent when instances of the new class will be
used to run regular windows as well.

V2. Creating a Collection Class that Holds Pointers to
Its Elements
➤ To create a class that holds a collection of indexable vari-

ables, each of which is a pointer to an object, use the
following variant of the standard subclassing message.

ArrayedCollection variableSubclass: #ExampleArray "V2 Step"
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Examples'

V3. Creating a Collection Class that Holds Byte-Sized
Elements
➤ To create a variable-byte class, which holds a collection of

indexable variables, each of which is a byte-sized object,
use the following variant of the standard subclassing
message. A variable-byte class can have no instance vari-
ables and can have only a variable-byte subclass.

ArrayedCollection variableByteSubclass: #ExampleByteArray "V3 Step"
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Examples'

Chapter 1 Smalltalk Basics

28 VisualWorks Cookbook, Rev. 2.0

See Also
■ “Declaring a Variable” on page 13

■ “Grouping Related Classes” on page 29

Grouping Related Classes

VisualWorks Cookbook, Rev. 2.0 29

Grouping Related Classes

Strategy

It is frequently useful to treat a group of classes as a single
entity, known as a class category. The main advantage is that
you can file out all of the classes in the category at once, for
backing up your work or sharing it with another user. It also
makes browsing the related code easier.

Keeping an application together: A common usage of class
categories is to group all of the classes used by an application
or by a module within a larger application.

Keeping support classes separate: Because a class cannot
belong to multiple categories, support classes used in multiple
applications are usually grouped in separate support catego-
ries. This allows you to easily create a set of files containing just
the code needed for any given application.

Basic Steps

B1. Adding a Class Category
1. In a System Browser, select the add command in the class-

category view.

2. In the resulting dialog, supply the name of the category (no
harm is done if it already exists). Type a blank space to
cancel the operation.

The new class category is inserted in the list above the category
that was previously selected. To insert it at the bottom of the
list, make sure no category is selected when you begin step 1.

B2. Removing a Class Category

If you remove a class category that still has classes in it, the
classes will be removed also.

1. In a System Browser, select the category.

2. Select the remove command in the class-category view.

3. If the category contains classes, you will be asked to
confirm the removal.

Chapter 1 Smalltalk Basics

30 VisualWorks Cookbook, Rev. 2.0

B3. Renaming a Class Category

When you rename a class category, the new name appears
automatically in the definition of each class in that category.

1. In a System Browser, select the category.

2. Select the rename as command in the class-category view.

3. In the resulting dialog, supply the new name. Type a blank
space to cancel the operation.

B4. Moving a Class to a Different Category
1. In a System Browser, select the class.

2. Select the move to command in the class view.

3. In the resulting dialog, supply the name of the destination
category. If the category does not exist, it will be created.

B5. Changing the Order of Class Categories
1. In a System Browser, select the edit all command in the

class-category view.

2. The categories and their members will be listed in the code
view. Carefully cut and paste the listing to achieve the
desired ordering.

3. Select the accept command in the code view. (To cancel the
operation, select the cancel command in the code view.)

Grouping Related Methods

VisualWorks Cookbook, Rev. 2.0 31

Grouping Related Methods

Strategy

Placing related methods in a message category, also known as
a protocol, helps to document your code and makes it easier to
find with a System Browser. Your choice of protocol name has
no effect on your code’s operation.

Public vs. private protocols: By convention, methods that are
intended for use only by other methods of the current class are
placed in a protocol named private. Some programmers use a
broader definition of private, choosing to include any method
that has a restricted set of intended clients. Some programmers
also create multiple private protocols, each having a second part
to its name that describes its contents (such as private-accessing).

Standard protocols: Because most methods fit into certain
categories, a set of standard protocol names has come into use.
Appendix A of the VisualWorks User’s Guide lists these
protocols.

Basic Steps

B1. Adding a Protocol
1. In a System Browser, select the class.

2. Select the add command in the protocol view.

3. In the resulting dialog, supply the name of the protocol (no
harm is done if it already exists). Type a blank space to
cancel the operation.

The new protocol is inserted in the list above the protocol that
was previously selected. To insert it at the bottom of the list,
make sure no protocol is selected when you begin step 1.

B2. Removing a Protocol

If you remove a protocol that still has methods in it, the
methods will be removed also.

1. In a System Browser, select the protocol.

2. Select the remove command in the protocol view.

Chapter 1 Smalltalk Basics

32 VisualWorks Cookbook, Rev. 2.0

3. If the protocol contains methods, you will be asked to
confirm the removal.

B3. Renaming a Protocol
1. In a System Browser, select the protocol.

2. Select the rename as command in the protocol view.

3. In the resulting dialog, supply the new name. Type a blank
space to cancel the operation.

B4. Moving a Method to a Different Protocol
1. In a System Browser, select the method.

2. Select the move to command in the method view.

3. In the resulting dialog, supply the name of the destination
protocol. If the protocol does not exist, it will be created.
Type a blank space to cancel the operation.

B5. Copying a Method to a Different Class
1. In a System Browser, select the method.

2. Select the move to command in the method view.

3. In the resulting dialog, enter the name of the destination
class, a greater-than symbol (>), and the name of the desti-
nation protocol. To copy the method to the class side rather
than the instance side, insert “class” after the class name.

B6. Changing the Order of Protocols
1. In a System Browser, select the edit all command in the

protocol view.

2. The protocols and their members will be listed in the code
view. Carefully cut and paste the listing to achieve the
desired ordering.

3. Select the accept command in the code view. (To cancel the
operation, select the cancel command in the code view.)

Creating a Branch

VisualWorks Cookbook, Rev. 2.0 33

Creating a Branch

Strategy

Branching, or conditional processing, is accomplished by
sending a variant of the ifTrue: message to the result of a
true/false test. The conditional statements are enclosed in a
block.

Basic Steps
1. Get the width of the screen.

2. Test whether the screen’s width is less than 1280 pixels.

3. If true, ring the bell.

| screenWidth |
screenWidth := Screen default bounds width. "Basic Step 1"

screenWidth < 1280 "Basic Step 2"
ifTrue: [Screen default ringBell] "Basic Step 3"

Variants

The full set of variants is:

ifTrue:
ifFalse:
ifTrue: ifFalse:
ifFalse:ifTrue:

Chapter 1 Smalltalk Basics

34 VisualWorks Cookbook, Rev. 2.0

Creating a Loop

Strategy

Several ways of looping are provided in Smalltalk. They fall into
the following categories:

■ Simple repetition

■ Conditional looping

■ Processing each element in a collection (iteration)

In each case, a block is used to contain the statements that are
repeated.

Use simple repetition when the block is to be repeated a certain
number of times. Use conditional looping when the block is to
be repeated only while a test condition is met. Use collection
iteration when the block is to be repeated for each element in a
collection.

Variants

V1. Looping a Fixed Number of Times (timesRepeat:)
➤ Send a message to the Transcript 10 times.

10 timesRepeat: [Transcript show: 'Testing!'; cr.]] "V1 Step"

V2. Looping with an Index Argument (to:do:)
➤ Repeat a block using each number in the interval from 65

to 122. This block includes a block argument (:asciiNbr),
which is specified by an identifier preceded by a colon and
separated from the block’s expressions by a vertical bar. In
each loop, a successive number in the interval is passed
into the block and used where the block argument appears.

65 to: 122 do: [:asciiNbr | "V2Step"
Transcript show: asciiNbr asCharacter printString]

Creating a Loop

VisualWorks Cookbook, Rev. 2.0 35

V3. Looping with an Index and Steps (to:by:do:)
➤ Repeat a block using each number in the interval from 10

to 65, counting by 5s.

10 to: 65 by: 5 do: [:marker | "V3 Step"
Transcript

show: marker printString;
show: '---'].

V4. Looping until the Block Exits (repeat)
1. For each repetition of the block, increase a counter.

2. Test whether the counter is greater than 10. If so, exit from
the loop.

| counter |
counter := 0.

[counter := counter + 1. "V4 Step 1"
counter > 10 ifTrue: [^true] "V4 Step 2"

] repeat.

V5. Looping while a Condition is True or False
(whileTrue: and whileFalse:)
1. Create an instance of Time that is 3 seconds from now.

2. Before each repetition of the block, test whether the endTime
has been reached.

3. For each repetition, show the current time in the transcript.

| endTime |
endTime := Time now addTime: (Time fromSeconds: 3). "V5 Step 1"

[Time now <= endTime] whileTrue: ["V5 Step 2"
Transcript show: Time now printString; cr]. "V5 Step 3"

V6. Processing Each Element of a Collection (do:)
1. Get an array containing the standard color names.

2. Print each color name in the Transcript.

Chapter 1 Smalltalk Basics

36 VisualWorks Cookbook, Rev. 2.0

| colors |
colors := ColorValue constantNames. "V6 Step 1"

colors do: [:colorName |
Transcript show: colorName printString; cr] "V6 Step 2"

V7. Detecting the First Element that Meets a Test
(detect:)
1. Get the color names.

2. Detect the first color that begins with the letter m.

3. Show that color name in the Transcript.

| colors mColor |
colors := ColorValue constantNames. "V7 Step 1"

mColor := colors detect: [:colorName | "V7 Step 2"
colorName first = $m].

Transcript show: mColor printString; cr. "V7 Step 3"

V8. Selecting Elements that Meet a Test (select:)
1. Get the color names.

2. Get the subcollection of names beginning with the letter d.

3. Show each element of the subcollection in the Transcript.

| colors dColors |
colors := ColorValue constantNames. "V8 Step 1"

dColors := colors select: [:colorName | "V8 Step 2"
colorName first = $d].

dColors do: [:dColor | "V8 Step 3"
Transcript show: dColor printString; cr].

V9. Selecting Elements that Fail a Test (reject:)
1. Get the color names.

Creating a Loop

VisualWorks Cookbook, Rev. 2.0 37

2. Get the subcollection of names that do not begin with d.

3. Show each element of the subcollection in the Transcript.

| colors nonDColors |
colors := ColorValue constantNames. "V9 Step 1"

nonDColors := colors reject: [:colorName | "V9 Step 2"
colorName first = $d].

nonDColors do: [:nonDColor | "V9 Step 3"
Transcript show: nonDColor printString; cr].

V10. Operating on Each Element and Collecting the
Results (collect:)
1. Get the color names.

2. For each color name, create a string equivalent and capi-
talize its initial.

3. Show each element of the resulting collection in the
Transcript.

| colors colorsAsStrings string |
colors := ColorValue constantNames. "V10 Step 1"

colorsAsStrings := colors collect: [:colorName | "V10 Step 2"
string := colorName asString.
string at: 1 put: (string first asUppercase).
string].

colorsAsStrings do: [:color | "V10 Step 3"
Transcript show: color; cr].

Chapter 1 Smalltalk Basics

38 VisualWorks Cookbook, Rev. 2.0

Creating Complex True/False Tests

Strategy

When two or more conditions need to be tested, use the logical
and and or messages to combine the tests in a series. These
messages come in two forms:

■ & and | (vertical bar, not the letter L)

■ and: and or: (the argument is a block containing the second
test)

Use the second pair of messages when the second test depends
on the first test. In a common situation involving such a depen-
dency, the first test checks the data type of a variable and the
second test sends a message that is appropriate only for the
desired data type.

Using the second form, involving block arguments, is also
appropriate when the second test is costly, because the second
test is executed only when needed.

Variants

V1. Answering True Only When Both Tests are Met
(Logical And)
1. Ask the user for a password.

2. Test the length of the response and respond appropriately.

| response message |
response := Dialog request: 'What is your password'. "V1 Step 1"

(response size > 0) & (response size <= 8) "V1 Step 2"
ifTrue: [message := 'Thank you. Have a safe journey']
ifFalse: [message := 'Sorry, I cannot let you pass'].

Transcript show: message; cr.

V2. Ignoring the Second Test, When Possible
1. Ask for a password.

Creating Complex True/False Tests

VisualWorks Cookbook, Rev. 2.0 39

2. Test whether the response has four or more letters. If it
does, test whether the fourth character is a percent sign.

| response message |
response := Dialog request: 'What is your password'. "V2 Step 1"

((response size >= 4) and: [(response at: 4) = $%]) "V2 Step 2"
ifTrue: [message := 'Thank you. Have a safe journey']
ifFalse: [message := 'Sorry, I cannot let you pass'].

Transcript show: message; cr.

VisualWorks Cookbook, Rev. 2.0 41

Chapter 2

Building Applications

This chapter provides an overview of the major steps
involved in building an application. You can use this
chapter as a checklist as you create your first applica-
tions.

In keeping with its role as a checklist, this chapter
does not go into detail about any given step. Other
sections in the Cookbook supply the detail that is
missing here, and those sections are referred to in the
“See Also” notes. For in-depth explanations of the
various application-building steps outlined here, see
the VisualWorks Tutorial.

Designing the Application 42
Painting the User Interface 43
Creating the Domain Models 45
Connecting the Interface to the Models 47
Connecting the Widgets to Each Other 50

Chapter 2 Building Applications

42 VisualWorks Cookbook, Rev. 2.0

Designing the Application

Strategy

For simple applications, you can often “design” by painting the
user interface. Even fairly complex applications that are heavy
on interface and light on processing can be created this way.

For complicated applications, involving a complex information
model and many windows, a formal design phase is usually
helpful. Various methodologies have been proposed for
analyzing and designing object-oriented applications.

ParcPlace-Digitalk offers training and consulting for a method-
ology called Object Behavior Analysis and Design (OBA/D). You
can use this methodology to guide you through the process of:

■ Creating an object-oriented requirements specification,
based on the behaviors inherent in the system

■ Creating an architectural design

■ Defining reusable subsystems

■ Creating a detailed design

■ Choosing data-structure classes and supporting objects

■ Evaluating trade-offs with respect to performance and
understandability

interface

application
model

domain
models

Painting the User Interface

VisualWorks Cookbook, Rev. 2.0 43

Painting the User Interface

Strategy

Creating the user interface helps you understand the high-level
data and processing requirements of your application. Using
the ability of VisualWorks to define placeholder methods for the
interface widgets (described later) you can even use the inter-
face to demonstrate your concept to users and get valuable
early feedback.

Basic Steps
1. For each window in your interface, open a blank canvas or

an existing canvas that you want to extend.

2. For each desired widget, select it in the Palette and click to
locate it on the desired canvas.

3. Click the Install button on the Canvas Tool to install each
canvas in an application model (a new or existing subclass
of ApplicationModel).

4. Click the Open button on the Canvas Tool to see the inter-
face in action.

About the Application Model

Step 4 creates a bare-bones application model. This is the
portion of your application that knows how to turn an installed
canvas into an operational interface. It does this invoking an
interface builder, which in turn invokes various windows and
widgets, according to the interface specification provided by the
installed canvas.

An application model is where you define the application-
specific behavior of the widgets in the interface. That is, you

Chapter 2 Building Applications

44 VisualWorks Cookbook, Rev. 2.0

program an application model to establish the connection
between each widget and the data or action it represents (in
some cases, implementing the action, as well). You can also
program an application model to set up interactions among
multiple widgets in the interface. VisualWorks provides a
number of tools that accelerate this level of programming, as
you will see in later sections.

An application model typically binds widgets to data and
actions that are defined in one or more domain models.

See Also
■ “Creating the Domain Models” on page 45

■ “Connecting the Interface to the Models” on page 47

Creating the Domain Models

VisualWorks Cookbook, Rev. 2.0 45

Creating the Domain Models

Strategy

A domain model is an object that represents an entity in the
application’s domain. In a simple application, the entire appli-
cation domain can often be represented by a single model. For
example, a hypothetical class named RolodexCard could be the
entire domain model for a small address-lookup application.

As the application domain becomes more complex, you will find
that multiple domain models are necessary, each representing
an entity that interacts with other models in the application. In
a banking application, for example, the domain would be
divided among model classes such as Bank, Customer,
FederalReserve, and MonetaryUnit.

Role of the domain model: A domain model is intended to
remain free of user-interface code. Any instance variables or
methods that are necessary purely to support the mechanics of
the user interface belong in the application model. This separa-
tion of responsibilities makes it easier to reuse your domain
models with other interfaces.

Basic Steps
1. In a System Browser, define a domain model class (typi-

cally, a subclass of Object).

2. Create an initialize method to set default values for the
instance variables.

3. Create accessing methods for accessing the instance
variables.

4. Create actions methods defining the services that clients can
request.

Chapter 2 Building Applications

46 VisualWorks Cookbook, Rev. 2.0

5. Create private methods, if necessary, to provide supporting
mechanisms for the actions methods.

Variant

Combining Domain and Application Models

For simple applications in which the domain model is unlikely
to be reused with a different interface, it is simpler to merge the
responsibilities of the domain model and the application model
in a single class. This is the approach taken in some of the
sample applications, such as List1Example. For a merged model,
define it as a subclass of ApplicationModel rather than of Object.

Connecting the Interface to the Models

VisualWorks Cookbook, Rev. 2.0 47

Connecting the Interface to the Models

Strategy

After you have created a user interface and appropriate domain
models, you program the application model to establish the
connections between them. The interface must be able to
obtain data from the domain models and ask these models to
perform actions. By programming the application model to
establish these connections, you keep the domain models free
of interface concerns.

A typical application model has an action method for each
widget that will invoke an action (for example, a button). The
application model may implement this action itself or forward a
request to the appropriate domain model.

A typical application model has an instance variable (and
accessor method) corresponding to each widget that will
present an item of data (such as an input field). The application
model initializes each such variable with a value model—an
auxiliary object whose job is to manage the widget’s access to
the relevant data. In the running application, the widget will
ask its value model for the data to be displayed and will send
input data to the value model for storage. The widget will also
depend on its value model to notify it when the relevant data
changes; in response, the widget will update its display. The
application model initializes the value model with the appro-
priate data, which is typically some aspect of the domain model.

interface

application
model

domain
models

Chapter 2 Building Applications

48 VisualWorks Cookbook, Rev. 2.0

Basic Steps
1. Open a Properties Tool for the canvas.

2. For each data widget, select the widget in the canvas and fill
in its Aspect property with the name of the method that will
return a value model for the widget. Apply the property
settings to the canvas.

3. For each action button, select the button in the canvas and
fill in its Action property with the name of the method that
will implement the button’s action. Apply the properties.

4. For each widget that is to supply a menu of actions, select
the widget and fill in its Menu property with the name of a
method that will supply the menu. Apply the properties.

5. Install the canvas in the application model when all proper-
ties are applied.

6. In the application model in which the canvas is installed,
use the canvas’s define command to create an instance
variable for each data aspect that is named by a widget.
Alternatively, you can use a System Browser.

7. Use the canvas’s define command or a System Browser to
create aspects methods in the application model. Each aspect
method returns the value of the corresponding aspect vari-
able.

8. Use a System Browser to create an initialize method in the
application model. This method creates and assigns a value
model to each aspect variable, initializing each value model
with the appropriate data from a domain model. (Alterna-
tively, you can use the aspect methods to initialize their
respective aspect variables.)

You can choose from among several kinds of value models,
depending on your application’s needs (see the chapter
listed under “See Also”).

9. Use the canvas’s define command or a System Browser to
create actions methods in the application model. Each action
method either implements an action itself or requests an
action from the appropriate domain model.

10. Use the Menu Editor to create and install each menu that
was specified in a widget’s properties.

Connecting the Interface to the Models

VisualWorks Cookbook, Rev. 2.0 49

See Also
■ “Adapting Domain Models to Widgets” on page 703

Chapter 2 Building Applications

50 VisualWorks Cookbook, Rev. 2.0

Connecting the Widgets to Each Other

Strategy

Interface widgets frequently interact, so that when the user
changes the data in one widget, it triggers a change in another
widget. For example, when the user selects a customer name in
a list, various field widgets might be updated to display details
about the newly selected customer.

Arranging for such interactions is known as defining dependen-
cies. VisualWorks provides a sophisticated dependency mecha-
nism that makes it easy to accomplish this.

Basic Steps
1. In a System Browser, create or edit the initialize method of the

application model.

2. For each data aspect whose change is intended to trigger a
secondary effect, register an interest in the corresponding
value model. Registering an interest tells the value model
what message to send, and to which object, when its value
is changed.

3. In a protocol named change messages, create a method for
each message that was named in step 2. These methods
implement the desired side effects that you want to asso-
ciate with changes in the data.

See Also
■ “Adding and Removing Dependencies” on page 78

initialize
listSelection

onChangeSend: #changedSel
to: self

VisualWorks Cookbook, Rev. 2.0 51

Part II

User Interface

Chapter 3: Widget Basics 53
Chapter 4: Windows 81
Chapter 5: Labels 109
Chapter 6: Input Fields 121
Chapter 7: Lines, Boxes, and Ovals 153
Chapter 8: Buttons 159
Chapter 9: Text Editors 171
Chapter 10: Lists 183
Chapter 11: Datasets 203
Chapter 12: Tables 215
Chapter 13: Menus 225
Chapter 14: Sliders 263
Chapter 15: Dialogs 277
Chapter 16: Subcanvases 301
Chapter 17: Notebooks 315
Chapter 18: Drag and Drop 339
Chapter 19: Custom Views 375
Chapter 20: Custom Controllers 391

VisualWorks Cookbook, Rev. 2.0 53

Chapter 3

Widget Basics

Accessing a Widget Programmatically 54
Sizing a Widget 56
Positioning a Widget 60
Aligning a Group of Widgets 65
Spacing a Group of Widgets 66
Bordering a Widget 67
Changing a Widget’s Font 68
Hiding a Widget 70
Disabling a Widget 72
Changing the Tabbing Order 74
Coloring a Widget 75
Adding and Removing Dependencies 78

Chapter 3 Widget Basics

54 VisualWorks Cookbook, Rev. 2.0

Accessing a Widget Programmatically

Strategy

In a variety of situations, it is useful to program an application
model to send messages to a widget while your application is
running. For example, you can program the application model
to send messages to a text editor to change the alignment of the
displayed text, as shown in the basic steps.

In some cases, the application model must send messages to
the wrapper that surrounds the widget. A wrapper is an
instance of WidgetWrapper, which controls various aspects of the
widget’s appearance, such as visibility, enablement, and
layout. The variant shows how to access a widget’s wrapper to
enable, disable, hide, and redisplay the widget.

Basic Steps

Online example: Editor1Example

1. In a canvas, select the widget to be accessed. In the widget’s
ID property, enter an identifying name for the widget (in this
case, #comment). Apply the properties and install the canvas.

2. In a System Browser, edit a method in the application
model (in this example, alignCenter) so that it sends a

These buttons . . .

. . . cause the application
model to access this
widget

Accessing a Widget Programmatically

VisualWorks Cookbook, Rev. 2.0 55

componentAt: message to the application model’s builder. The
argument is the ID.

3. Send a widget message to the object returned by step 2.

alignCenter
| widget style |
widget := (self builder componentAt: #comment) widget. "Basic Steps 2, 3"
style := widget textStyle copy.
style alignment: 2.
widget textStyle: style.
widget invalidate.

Variants

V1. Accessing the Widget’s Wrapper

Online example: HideExample

1. In a canvas, select the widget to be accessed. In the widget’s
ID property, enter an identifying name for the widget. Apply
the properties and install the canvas.

2. In a System Browser, edit a method in the application
model (in this example, changedListVisibility) so that it sends a
componentAt: message to the application model’s builder. The
argument is the ID.

changedListVisibility
| wrapper desiredState |
wrapper := self builder componentAt: #colorList. "V1 Step 2"
desiredState := self listVisibility value.

desiredState == #hidden
ifTrue: [wrapper beInvisible].

desiredState == #disabled
ifTrue: [

wrapper beVisible.
wrapper disable].

desiredState == #normal
ifTrue: [wrapper enable; beVisible].

Chapter 3 Widget Basics

56 VisualWorks Cookbook, Rev. 2.0

Sizing a Widget

Strategy

The basic way to set a widget’s size is by dragging the widget’s
selection handles when you paint it on the canvas. You can also
use the Canvas Tool’s Arrange➞Equalize... command to make a
series of widgets adopt the same width, height, or both.

Widgets appear in their painted size when the window is
opened. When the window size is fixed, nothing more normally
needs to be done. However, when the window’s size is variable,
you may want to arrange for the widget to adjust its size in
relation to that of the window. You can use the Layout➞Relative
command on the Canvas Tool to arrange for automatic resizing
in both the vertical and the horizontal dimensions.

For more complicated situations, or for more precise control,
you can set properties on the Position page of the Properties Tool.
The first two variants show how to set these properties to make
a widget’s size fixed or relative to the size of its containing
window.

The third variant shows how to convert an unbounded widget
to a bounded widget so you can control its size. The final
variant shows how to change the size of a widget programmat-
ically.

These list s . . .

. . . are sized and
positioned by
these settings in
a Position Tool

Sizing a Widget

VisualWorks Cookbook, Rev. 2.0 57

Variants

V1. Making a Widget’s Size Fixed

A widget’s origin is controlled by the Left (L) and Top (T) property
settings; its size is controlled by the Right (R) and Bottom (B)
property settings. A fixed size is commonly used for buttons
and labels.

Online example: Size1Example

1. In a canvas, select the widget whose size is to be fixed.

2. In a Properties Tool (Position page), set the Right Proportion
to be equal to the Left Proportion (in this example, 0 and 0).
Since proportions control variability, identical left and right
proportions keep the right edge of the widget a fixed
distance from the left edge.

3. Set the Right Offset to the width of the widget added to the
Left Offset.

4. Set the Bottom Proportion equal to the Top Proportion.

5. Set the Bottom Offset to the height of the widget added to
the Top Offset.

6. Apply the properties and install the canvas.

V2. Making a Widget’s Size Relative

You can cause a widget to expand or shrink in concert with the
window by setting its Right Proportion to be different from the
Left Proportion, or by setting the Bottom Proportion to be
different from the Top Proportion. This is especially useful for
widgets that can use additional space, such as text editors,
lists, and tables. Input fields are often made relative in the hori-
zontal dimension only.

Online example: Size1Example

1. In a canvas, select the widget whose size is to be relative.

2. In a Properties Tool (Position page), set the Right Proportion
to a value that is larger than the Left Proportion. (A right
proportion of 0.5 keeps the right edge anchored at the
window’s midline while the left edge is anchored to the
window’s left edge.)

Chapter 3 Widget Basics

58 VisualWorks Cookbook, Rev. 2.0

3. Set the Right Offset to the distance you want between the
widget’s right edge and the imaginary line identified by the
Right Proportion.

4. Set the Bottom Proportion to a value that is larger than the
Top Proportion.

5. Set the Bottom Offset to the distance between the widget’s
bottom edge and the imaginary line representing the
Bottom Proportion.

6. Apply the properties and install the canvas.

V3. Applying Explicit Boundaries
to an Unbounded Widget

Four widgets are inherently variable in size: labels, action
buttons, radio buttons, and check boxes. These widgets change
in size to accommodate their textual labels, which expand and
shrink on different platforms because of font differences.
Unlike most widgets, which have four boundaries, the variable-
size widgets are said to be unbounded.

Sometimes it is preferable to convert an unbounded widget so
it is bounded like other widgets. As shown in Size2Example, the
advantage is that you can make a series of buttons have equal
dimensions, for example. There is a slight hazard in converting
an unbounded widget, however: on a different platform, a font
change in the widget’s label may cause the label to expand
beyond the widget’s unyielding boundaries.

Online example: Size2Example

1. In a canvas, select an unbounded widget such as a label.

2. In the Canvas Tool, select Layout➞Be Bounded. Alternatively,
select the Bounded button in the Properties Tool (Position
page). The icon on the Bounded button shows a rectangle
with solid lines on all four sides.

3. Apply the properties, if necessary, and install the canvas.

4. To reverse the operation, select Layout➞Unbounded, or select
the Unbounded button in the Properties Tool. Apply the
properties, if necessary, and install the canvas.

Sizing a Widget

VisualWorks Cookbook, Rev. 2.0 59

V4. Changing a Widget’s Size Programmatically

In some circumstances, your application may need to resize a
widget while the application is running. In Size3Example, a colored
region is resized in response to Expand and Shrink buttons.

Online example: Size3Example

1. Get the widget’s wrapper from the application model’s
builder.

2. Send a bounds message to the wrapper to get the widget’s
existing size.

3. Create a rectangle having the desired origin and extent,
using the widget’s bounding rectangle to derive the new
values.

4. Send a newBounds: message to the wrapper. The argument is
the new bounding rectangle.

expandBox
| wrapper oldSize newSize |
wrapper := self builder componentAt: #box. "V4 Step 1"
oldSize := wrapper bounds. "V4 Step 2"

"If the box is bigger than the window already, do nothing."
oldSize origin x < 0

ifTrue: [^nil].

"Expand the bounding rectangle by 10 pixels on each side."
newSize := Rectangle "V4 Step 3"

origin: oldSize origin - 10
corner: oldSize corner + 10.

"Assign the new bounding rectangle to the widget wrapper."
wrapper newBounds: newSize. "V4 Step 4"

Chapter 3 Widget Basics

60 VisualWorks Cookbook, Rev. 2.0

Positioning a Widget

Strategy

The basic way to set a widget’s position is by dragging it to the
desired position in the canvas. This determines the widget’s
initial position relative to the window’s upper left corner.

Widgets appear in their painted position when the window is
opened. When the window size is fixed, nothing more normally
needs to be done. However, when the window’s size is variable,
you may want to arrange for the widget to adjust its position
relative to the size of the window. You can use the Layout➞Rela-
tive command on the Canvas Tool to arrange for automatic repo-
sitioning in both the vertical and the horizontal dimensions.

For more complicated situations, or for more precise control,
you can set properties on the Position page of the Properties Tool.
The first two variants show how to set these properties to make
a widget’s position fixed or relative to the size of its containing
window.

The final variant shows how to change the position of a widget
programmatically.

This butto n . . .

. . . moves this
iconic label
upward

Positioning a Widget

VisualWorks Cookbook, Rev. 2.0 61

Variants

V1. Making a Widget’s Origin Fixed

Making a widget fixed is useful when the window’s size is fixed.
When the window’s size is variable, this approach works best
for a button or other fixed-size widget that is located along the
left or top edges of the window.

Online example: Size1Example (start it and then resize the
window to see the effect)

1. In a canvas, select the widget whose position is to be fixed.

2. In a Properties Tool (Position page), set the Left and Top
Proportions to 0. These proportions control whether a
widget moves relative to the window size. Setting these
properties to 0 causes the widget’s origin to remain fixed in
place.

3. Set the Left Offset to the desired distance between the
window’s left edge and the widget’s left edge (in the
example, 50 pixels).

4. Set the Top Offset to the desired distance between the
window’s top edge and the widget’s top edge (50).

5. Apply the properties and install the canvas.

V2. Making a Widget’s Origin Relative

A relative origin causes the widget to move farther away from
the left and top edges of the window when the window grows
and closer when the window shrinks. This is useful for keeping
an object centered in the window and for shifting one widget
that is placed below or to the right of another widget that
expands and shrinks in size.

You can also make the origin relative in only one dimension. In
the example, the origin shifts horizontally as the window is
resized, but it maintains a stable offset from the window’s top
edge.

Online example: Size1Example

1. In a canvas, select the widget whose position is to be rela-
tive.

Chapter 3 Widget Basics

62 VisualWorks Cookbook, Rev. 2.0

2. In a Properties Tool (Position page), set the Left Proportion to
the fraction of the window’s width from which the Left
Offset is to be measured. (In the example, a left proportion
of 0.5 causes the widget to remain anchored at the window’s
midline.)

3. Set the Left Offset to the distance you want between the
widget’s left edge and the imaginary line identified by the
Left Proportion (50 pixels).

4. Set the Top Proportion to the fraction of the window’s
height from which the Top Offset is to be measured. (In the
example, a top proportion of 0 anchors the widget’s top edge
at the top edge of the window, which is the same as keeping
the origin fixed in the vertical dimension.)

5. Set the Top Offset to the distance you want between the
widget’s top edge and the imaginary line identified by the
Top Proportion (50 pixels).

6. Apply the properties and install the canvas.

V3. Giving an Unbounded Widget a Fixed Position

An unbounded widget has no left, right, top, and bottom sides
because its boundaries are not fixed. However, it does have a
reference point that can be positioned in either a fixed or
relative location in the window. By default, the reference point
is the origin of the widget (the top-left corner).

1. In a canvas, select an unbounded widget such as a label.

2. In the Properties Tool (Position page), set all of the Propor-
tions to 0.

3. Set the X and Y Offsets to the coordinates of the widget’s
top-left corner relative to the top-left corner of the window.

4. Apply the properties and install the canvas.

V4. Giving an Unbounded Widget a Relative Position

Online example: Size2Example

1. In a canvas, select an unbounded widget (in the example,
select one of the unbounded buttons on the left to examine
its properties).

Positioning a Widget

VisualWorks Cookbook, Rev. 2.0 63

2. In a Properties Tool (Position page), set the x Proportion to
the fraction of the widget’s width at which the reference
point is to be positioned (0.5).

3. Set the y Proportion to the fraction of the widget’s height at
which the reference point is to be positioned (0).

4. Set the X Proportion to the fraction of the window’s width at
which the widget’s reference point is to be anchored. (In the
example, an X Proportion of 0.25 keeps the widget’s reference
point anchored one-fourth of the way across the window.)

5. Set the X Offset to the distance you want between the
widget’s reference point and the imaginary line identified by
the X proportion (0).

6. Set the Y Offset to the fraction of the window’s height at
which the widget’s reference point is to be anchored. (In the
example, a Y proportion of 0 keeps the widget’s reference
point a fixed distance from the window’s top edge.)

7. Apply the properties and install the canvas.

V5. Positioning a Widget Programmatically

Although it is unusual for an application to need explicit
control over a widget’s location, it is possible to do so. In
MoveExample, a graphic label is repositioned by three buttons,
giving the effect of a pointer on a meter. The Up and Down
buttons shift the position relative to the prior position, while
the Reset button moves the widget to an absolute position.

Online example: MoveExample

1. Get the widget’s wrapper from the application model’s
builder.

2. For a relative shift in position, send a moveBy: message to the
wrapper. The argument is a Point whose x and y values
indicate the number of pixels by which the widget is to be
shifted.

moveArrowUp
| wrapper |
wrapper := (self builder componentAt: #arrow). "V5 Step 1"

"If the arrow is not too high, raise it another notch."

Chapter 3 Widget Basics

64 VisualWorks Cookbook, Rev. 2.0

wrapper bounds origin y > 30
ifTrue: [wrapper moveBy: 0@-5] "V5 Step 2"

3. To apply an absolute position, send a moveTo: message to the
wrapper. The argument is a Point whose coordinates are the
desired position of the widget.

resetArrow
| wrapper |
wrapper := (self builder componentAt: #arrow).
wrapper moveTo: self arrowOrigin "V5 Step 3"

Aligning a Group of Widgets

VisualWorks Cookbook, Rev. 2.0 65

Aligning a Group of Widgets

Strategy

When painting a canvas, you frequently need to make a group
of widgets align along an imaginary vertical or horizontal line.
Dragging the widgets is sufficient sometimes, but for precise
control you can use the Align dialog, shown above. You can also
use the Properties Tool (Position page), but it is less convenient
unless you need to manipulate the position settings for other
reasons.

Basic Steps
1. In a canvas, select the widgets to be aligned.

2. In the Canvas Tool, select the Arrange➞Align command.

3. In the Align dialog, select on horizontal line when aligning side-
by-side widgets. When aligning widgets in a column, select
on vertical line.

4. In the Align dialog, select first selection when the widgets are
to be aligned with the first widget that was selected. Select
merged box to align the widgets on a line halfway between the
two most extreme positions within the group of widgets.

5. In the Align dialog, select the edges, or the centers, to be
aligned.

6. Install the canvas.

Chapter 3 Widget Basics

66 VisualWorks Cookbook, Rev. 2.0

Spacing a Group of Widgets

Strategy

When painting a canvas, you frequently need to make the
spaces between a group of widgets equal. Dragging the widgets
is sufficient sometimes, but for precise control you can use the
Distribute dialog, shown above. You can also use the Position
Tool (Position page), but it is less convenient unless you need to
manipulate the position settings for other reasons.

Basic Steps
1. In a canvas, select the widgets to be spaced.

2. In the Canvas Tool, select the Align➞Distribute command.

3. In the Distribute dialog, select left to right for widgets that are
to be spaced in a horizontal row. Select top to bottom for
columnar distribution.

4. In the Distribute dialog, select the type of spacing. For
constant spacing between edges, you must specify the number of
pixels to place between each pair of widgets.

5. Install the canvas.

Bordering a Widget

VisualWorks Cookbook, Rev. 2.0 67

Bordering a Widget

Strategy

Most widgets have a border by default. The appearance of the
border changes according to the selected UILook.

Basic Steps
1. Select a widget in a canvas.

2. To apply a border to the widget, turn on its Border property.

3. To remove the border, turn off the Border property.

4. Apply the properties and install the canvas.

bordered unbordered

Chapter 3 Widget Basics

68 VisualWorks Cookbook, Rev. 2.0

Changing a Widget’s Font

Strategy

When a widget’s default font is not suitable, you can use the
Font menu in the widget’s properties to choose an alternative
font. The built-in fonts are:

■ Default

■ Fixed, for a fixed-width font that is useful when you want to
align text in columns

■ Large, for a font that is slightly larger than the default

■ Small, for a font that is slightly smaller than the default

■ System, for a font that matches the current platform’s
system font, when available

You can add or remove fonts in the menu, as referenced in “See
Also.”

You can also change a widget’s font programmatically, as
shown in the basic steps.

Basic Steps

Online example: Font1Example

1. In a method in the application model, get the widget from
the application model’s builder.

2. Create an instance of TextAttributes corresponding to the new
font. If the font exists in the fonts menu, you can send a
styleNamed: message to the TextAttributes class. The argument is
the name of the font (for example, #large for the system’s
Large font).

3. Get the label from the widget by sending a label message; get
the text of the label by sending a text message to it. Then

This menu . . .

. . . lets you select the font
for this label dynamically

Changing a Widget’s Font

VisualWorks Cookbook, Rev. 2.0 69

install a blank text temporarily as a means of erasing the
old label if the new font is smaller.

4. Install the new font in the widget by sending a textStyle:
message to the widget. The argument is the TextAttributes you
created in step 2.

5. Reinstate the original label by sending a labelString: message
to the widget.

changedFont
| widget newStyle oldLabel |
widget := (self builder componentAt: #label) widget. "Basic Step 1"
newStyle := TextAttributes styleNamed: (self labelFont value). "Basic Step 2"

"Erase the existing label in case its font is larger than the new one."
oldLabel := widget label text. "Basic Step 3"
widget labelString: ''.

"Install the new font."
widget textStyle: newStyle. "Basic Step 4"

"Reinstate the original label."
widget labelString: oldLabel. "Basic Step 5"

See Also
■ “Creating a Custom Text Style” on page 576

■ “Changing the Fonts Menu” on page 587

Chapter 3 Widget Basics

70 VisualWorks Cookbook, Rev. 2.0

Hiding a Widget

Strategy

Sometimes a widget is useful only under certain conditions and
needs to be hidden at other times to avoid confusing the user of
your application. Action buttons need to be hidden when their
actions are not appropriate.

A widget may also be hidden when two alternative widgets are
layered on top of each other. For example, the Online Documen-
tation window uses a text editor on top of a list editor and hides
the view that is unneeded at any given time.

You can turn on a widget’s Initially Invisible property to cause the
widget to be hidden when the window opens. You can also
program the application model to hide and show the widget
while the application is running (shown in the basic steps).

Basic Steps

Online example: HideExample

1. In a method in the application model, get the widget’s
wrapper from the application model’s builder.

2. To hide the widget, send a beInvisible message to the wrapper.

3. To make the widget visible again, send a beVisible message to
the wrapper.

This butto n . . .

. . . makes this list
invisible

Hiding a Widget

VisualWorks Cookbook, Rev. 2.0 71

changedListVisibility
| wrapper desiredState |
wrapper := self builder componentAt: #colorList. "Basic Step 1"
desiredState := self listVisibility value.

desiredState == #hidden
ifTrue: [wrapper beInvisible]. "Basic Step 2"

desiredState == #disabled
ifTrue: [

wrapper beVisible. "Basic Step 3"
wrapper disable].

desiredState == #normal
ifTrue: [

wrapper enable.
wrapper beVisible].

See Also
■ “Disabling a Widget” on page 72

Chapter 3 Widget Basics

72 VisualWorks Cookbook, Rev. 2.0

Disabling a Widget

Strategy

Sometimes a widget is useful only under certain conditions, but
making it invisible would be confusing to the user of your appli-
cation. You can disable a widget, causing it to be displayed in
gray. In addition, its controller is inactivated so the widget does
not respond to user input. Action buttons are frequently
“grayed out” when not needed.

You can turn on a widget’s Initially Disabled property to cause the
widget to be disabled when the window opens. You can also
program the application model to disable and enable the widget
while the application is running (shown in the basic steps).

Basic Steps

Online example: HideExample

1. In a method in the application model, get the widget’s
wrapper from the application model’s builder.

2. To disable the widget, send a disable message to the wrapper.

3. To make the widget active again, send an enable message to
the wrapper.

changedListVisibility
| wrapper desiredState |
wrapper := self builder componentAt: #colorList. "Basic Step 1"

This butto n . . .

. . . makes this list grayed out
and unresponsive to user input

Disabling a Widget

VisualWorks Cookbook, Rev. 2.0 73

desiredState := self listVisibility value.

desiredState == #hidden
ifTrue: [wrapper beInvisible].

desiredState == #disabled
ifTrue: [

wrapper beVisible.
wrapper disable]. "Basic Step 2"

desiredState == #normal
ifTrue: [

wrapper enable. "Basic Step 3"
wrapper beVisible].

See Also
■ “Hiding a Widget” on page 70

Chapter 3 Widget Basics

74 VisualWorks Cookbook, Rev. 2.0

Changing the Tabbing Order

Strategy

When an application is running, users can use the <Tab> key
to shift the keyboard focus from one widget to the next in a
window, without having to move the mouse.

More specifically, the <Tab> key moves focus to each widget on
the tab chain. You add a widget to the tab chain by turning on
its Can Tab property. Passive widgets such as labels and dividers
do not have a Can Tab property, so they cannot be put on the tab
chain. Note that you should turn off the Can Tab property in a
text editor, if you want the editor to interpret the <Tab> key as
a literal character to be entered into the text.

Basic Steps

By default, the order in which the <Tab> key advances the
focus is the order in which the widgets were drawn. The
following steps show how to change the order of widgets in the
tab chain.

1. Hold down a <Shift> key while you select the tabbing
widgets in the desired order.

2. In the Canvas Tool, select the Arrange➞Bring To Front
command. Install the canvas.

Coloring a Widget

VisualWorks Cookbook, Rev. 2.0 75

Coloring a Widget

Strategy

A widget can have up to four color zones:

■ Foreground

■ Background

■ Selection foreground

■ Selection background

The Properties Tool (Color page) enables you to apply a color to
any of these zones. On a monochrome or gray-scale monitor,
the colors are rendered in gray patterns based on the lumi-
nosity of the color.

The variant shows how to change a widget’s colors program-
matically.

This butto n . . .

. . . applies a new
color to all of these
sample widgets

Chapter 3 Widget Basics

76 VisualWorks Cookbook, Rev. 2.0

Basic Steps
1. In a canvas, select the widget whose color you want to set.

1. In a Properties Tool (Color page), select the desired color
from the color chart. Alternatively, you can access one of
the standard, named color constants from a pull-down
menu in the color box of the Properties Tool. You can also
revert to the widget’s default colors through the policy colors
submenu in the same pull-down menu.

2. Select the color zone in the Properties Tool.

3. Apply the properties and install the canvas.

Variant

Changing a Widget’s Colors Programmatically

Online example: ColorExample

1. In a method in the application model, get the widget’s
wrapper from the application model’s builder.

2. Get the LookPreferences from the wrapper and create a copy
with the desired color. The copy is created when a color-
zone message is sent: foregroundColor:, backgroundColor:,
selectionForegroundColor:, or selectionBackgroundColor:. The argument
is the desired new color.

3. Install the new LookPreferences by sending a lookPreferences:
message to the wrapper. The argument is the new
LookPreferences.

foregroundColor: aColor
"For each sample widget, change the indicated color layer."

| wrapper lookPref |
self sampleWidgets do: [:widgetID |

wrapper := (self builder componentAt: widgetID). "Variant Step 1"
lookPref := wrapper

lookPreferences foregroundColor: aColor. "Variant Step 2"
wrapper lookPreferences: lookPref]. "Variant Step 3"

Coloring a Widget

VisualWorks Cookbook, Rev. 2.0 77

See Also
■ “Creating a Color” on page 686

Chapter 3 Widget Basics

78 VisualWorks Cookbook, Rev. 2.0

Adding and Removing Dependencies

Strategy

When a widget’s value is changed, such as when an item is
selected from a list, the application often needs to react in some
way. A common reaction is to update other widgets based on
the new value. You can arrange for such a reaction, typically as
part of the initialization process. This is known as setting up a
dependency or registering an interest.

You can also bypass the dependency when unusual circum-
stances arise. For example, when two widgets depend on each
other, one of them must bypass the dependency mechanism to
avoid infinite recursion. The variants show two ways of
bypassing a dependency.

The first variant removes the dependency and relies on the
application to reestablish it after the value has been changed.

The second variant bypasses all dependencies, including that of
the widget’s view. Thus, you must ask the widget to update its
view programmatically. This variant also bypasses any depen-
dencies that may have been established by objects other than
the application model and the widget, but that is not a common
situation.

This check box . . .

. . . controls whether the
list selection is echoed in
the field below the list

Adding and Removing Dependencies

VisualWorks Cookbook, Rev. 2.0 79

Basic Step

Adding a Dependency

Online example: DependencyExample

➤ In the application model’s initialize method (typically), send an
onChangeSend:to: message to the widget’s value holder. The
first argument is a message, which will be sent to the
second argument. The second argument is typically the
application model itself.

initialize
colorNames := SelectionInList with: ColorValue constantNames.
selectedColor := String new asValue.
fieldIsDependent := false asValue.

"Arrange for the application model to take action when the
check box is turned on or off."
fieldIsDependent

onChangeSend: #changedDependency to: self. "Basic Step"

Variants

V1. Removing a Dependency by Retracting the
Interest

Online example: DependencyExample

1. Send a retractInterestsFor: message to the widget’s value holder.
The argument is the object that registered the interest, typi-
cally the application model itself.

2. After the value has been changed, register the interest
again as shown in the basic step.

changedDependency
"Turn on or off the dependency link between the list and
the input field, depending on the value of the check box."

| valueModel |
valueModel := self colorNames selectionIndexHolder.

Chapter 3 Widget Basics

80 VisualWorks Cookbook, Rev. 2.0

self fieldIsDependent value
ifTrue:

[valueModel onChangeSend: #changedSelection to: self]"V1 Step 2"
ifFalse:

[valueModel retractInterestsFor: self]. "V1 Step 1"

V2. Bypassing All Dependencies

Online example: FieldConnectionExample

1. Send a setValue: message to the widget’s value holder instead
of the usual value: message. The argument is the widget’s
new value.

2. Get the widget from the application model’s builder and ask
the widget to update itself with the new value.

changedB
"Use setValue: to bypass dependents, thus avoiding circularity."
self bSquared setValue: (self b value raisedTo: 2). "V2 Step 1"

"Since dependents were bypassed when the model was updated,
update the view manually."
(self builder componentAt: #b2) widget update: #value. "V2 Step 2"

VisualWorks Cookbook, Rev. 2.0 81

Chapter 4

Windows

Opening a Window 82
Getting a Window from a Builder 85
Sizing a Window 86
Moving a Window 90
Changing a Window’s Label 92
Refreshing a Window’s Display 93
Coloring a Window 94
Adding and Removing Scroll Bars 96
Adding a Menu Bar 98
Getting the Active Window 99
Getting the Window at a Specific Location 100
Closing a Window 101
Expanding and Collapsing a Window 103
Hiding a Window 104
Making a Window a Slave 105
Setting a Window’s Icon 108

Chapter 4 Windows

82 VisualWorks Cookbook, Rev. 2.0

Opening a Window

Strategy

The usual way of opening a running window is to ask an appli-
cation model to open one of its interface specifications (an inter-
face specification is created when you install a painted canvas
in an application model). You can do so programmatically or by
using a Resource Finder.

You can also create an instance of ApplicationWindow and open it
programmatically. This is rarely necessary, but it does offer
more flexibility because you can control the window’s type
(normal, dialog, or pop-up) as well as its contents.

Basic Steps
1. In a Resource Finder, select the application (such as

Editor1Example).

2. Click on the Start button in the Resource Finder.

Opening a Window

VisualWorks Cookbook, Rev. 2.0 83

Variants

V1. Opening a Default Canvas Programmatically

This is the programmatic equivalent of basic steps 1 and 2.

➤ Send an open message to the application model.

Editor1Example open "V1 Step"

V2. Opening a Main Canvas by Spec Name

When the spec name is #windowSpec, you can just send open as in
the variant above. When you want to open a different spec on a
new instance of an application, use this variant.

Some specs are meant to be opened only after the application
has reached a certain state—that is, after the variables on
which the widgets depend have been properly initialized. In
those situations, use step 1 in variant 3. This variant is
provided for situations when your main window’s spec has to
be named other than #windowSpec.

➤ Send openWithSpec: to the application class.

Editor1Example openWithSpec: #windowSpec "V2 Step"

V3. Opening a Secondary Canvas by Spec Name

When the same application model serves one or more
secondary canvases in addition to the main canvas, you can
open a secondary canvas with this variant. The example is the
openFinder method implemented by the class named HelpBrowser.

A “secondary” canvas implies that the application has reached
the proper state—that is, the instance variables required by the
interface have been initialized. In the HelpBrowser, the main
window must be opened before the secondary canvas named
#finderSpec is opened.

This example creates a new UIBuilder the first time it is
invoked, and it stores that builder in an instance variable.
When your application needs to access widgets on the

Chapter 4 Windows

84 VisualWorks Cookbook, Rev. 2.0

secondary canvas later, storing this second builder assures you
will have a means of accessing the widgets.

1. In a method in the application model, create a new UIBuilder.

2. Tell the builder which object will supply its menus, aspects,
and other resources by sending it a source: message. The
argument is typically the application model itself. (Alterna-
tively, you can send a series of aspectAt:put: messages to
install the resources directly.)

3. Create the spec object and add the spec to the builder.

4. Open the window.

openFinder
"Open the Search window. If already open, raise to top."

| bldr |
(self finderBuilder notNil and: [self finderBuilder window isOpen])

ifTrue: [self finderBuilder window raise]
ifFalse: [

self finderBuilder: (bldr := UIBuilder new). "V3 Step 1"
bldr source: self. "V3 Step 2"
bldr add: (self class

interfaceSpecFor: #finderSpec). "V3 Step 3"
bldr window

application: self;
beSlave.

self adjustSearchScope.
self searchStatus value: 0.
(bldr componentAt: #searchStatus) widget

setMarkerLength: 5.

bldr openAt: (self "V3 Step 4"
originFor: bldr window
nextTo: #findButton)].

(self builder componentAt: #listView) takeKeyboardFocus.

See Also
■ “Getting a Window from a Builder” on page 85

■ “Dialogs” on page 277

Getting a Window from a Builder

VisualWorks Cookbook, Rev. 2.0 85

Getting a Window from a Builder

Strategy

When you ask an application model to open an interface spec-
ification, the application model creates an interface builder,
which in turn creates the specified window and its contents.
Your application code can manipulate the window programmat-
ically by obtaining the window from the builder and then
sending it messages.

Each application model holds onto the builder for its primary
window. In addition, you can arrange for your application
model to hold onto additional builders created for assembling
any secondary windows.

Basic Step

Online example: Editor2Example

➤ Ask the builder for its window.

| bldr win |
bldr := Editor2Example open.
win := bldr window. "Basic Step"
win label: 'Editor'.

application model

builder

Chapter 4 Windows

86 VisualWorks Cookbook, Rev. 2.0

Sizing a Window

Strategy

You can control the initial size of a window as well as the
minimum and maximum sizes. These sizes can be established
either programmatically or by directly sizing a canvas.

Basic Steps
1. While editing a canvas, use the window manager to resize

it.

2. Make sure no widget is selected in the canvas. This selects
the canvas itself.

3. Select the layout→window→pref size command in the canvas’s
menu to set the initial size of the window.

4. Install the canvas.

Variants

V1. Setting the Initial Size Programmatically

Online example: Editor2Example

1. Build an interface up to the point of opening the window.

2. Get the window from the interface builder.

3. Ask the window to open with a specified size (extent).

Sizing a Window

VisualWorks Cookbook, Rev. 2.0 87

| bldr win |
bldr := Editor2Example new allButOpenInterface: #windowSpec.
win := bldr window.
win openWithExtent: 500@220. "V1 Step 3"

V2. Constraining the Size Using the Canvas

When the interface becomes unusable below a certain
minimum size, or when larger than a certain maximum size,
you can impose limits on the size. Then when the user tries to
make the window larger or smaller than is reasonable, the
window maintains a useful size.

1. While editing the canvas, use the window manager to resize
the canvas to its intended minimum size.

2. Make sure no widget is selected in the canvas.

3. Select the layout→window→min size command in the canvas’s
menu.

4. Install the canvas.

For maximum size, in step 3 use the layout→window→max size
command.

V3. Constraining the Size Programmatically
1. Give the window a minimum size and/or a maximum size.

2. Open the window. Then try to resize the window beyond its
minimum or maximum size.

| bldr win |
bldr := Editor2Example new allButOpenInterface: #windowSpec.
win := bldr window.
win minimumSize: 100@100; "V3 Step 1"

maximumSize: 500@300;
open. "V3 Step 2"

V4. Making the Size Unchangeable (Fixed)

In step 3 of variant 2, use the layout→window→fixed size command.
To accomplish the same thing programmatically, in step 1 of
variant 3 set the minimum size equal to the maximum size.

Chapter 4 Windows

88 VisualWorks Cookbook, Rev. 2.0

V5. Changing the Size of an Open Window
➤ Give the window a new display box, which is the rectangle

within which it displays itself, using screen coordinates.

| bldr win |
bldr := Editor2Example open.
win := bldr window.
win displayBox: (100@100 extent: 400@220). "V5 Step"

V6. Clearing All Size Constraints on a Canvas
1. In the window’s canvas, make sure no widget is selected.

2. Select the layout→window→clear all command in the canvas’s
menu. Install the canvas.

V7. Determining a Window’s Dimensions
1. Ask the window for its minimum size.

2. Ask for its maximum size.

3. Ask for its display box.

4. Ask the display box for its width.

5. Ask the display box for its height.

6. Display the parameters in the Transcript.

| win min max box width height |
win := (Editor2Example open) window.

min := win minimumSize. "V7 Step 1"
max := win maximumSize. "V7 Step 2"
box := win displayBox. "V7 Step 3"
width := box width. "V7 Step 4"
height := box height. "V7 Step 5"

Transcript "V7 Step 6"
show: 'Min: ', min printString; cr;
show: 'Max: ', max printString; cr;
show: 'Box: ', box printString; cr;
show: 'Width: ', width printString; cr;
show: 'Height: ', height printString; cr

Sizing a Window

VisualWorks Cookbook, Rev. 2.0 89

See Also
■ “Moving a Window” on page 90

Chapter 4 Windows

90 VisualWorks Cookbook, Rev. 2.0

Moving a Window

Strategy

You can move a window that is already open and you can also
set its location at startup. Both of these operations are
performed programmatically.

Moving a canvas has no effect on the startup location of its
window.

Your prompt-for-open preference also affects the startup
location of a window unless you specify a location programmat-
ically as shown here.

Variants

V1. Setting the Startup Location of a Window
1. Build the interface up to the point of opening the window.

2. Get the window from the interface builder.

3. Ask the window to open itself within a specified rectangle,
using screen coordinates, in pixels.

| bldr win |
bldr := Editor2Example new

allButOpenInterface: #windowSpec. "V1 Step 1"
win := bldr window. "V1 Step 2"
win openIn: (50@50 extent: win minimumSize). "V1 Step 3"

Moving a Window

VisualWorks Cookbook, Rev. 2.0 91

V2. Moving an Open Window
➤ Ask the window to relocate its origin (upper-left corner) to a

specified point, using screen coordinates.

| win |
win := (Editor2Example open) window.
(Delay forSeconds: 1) wait.
win moveTo: 300@50. "V2 Step"

Chapter 4 Windows

92 VisualWorks Cookbook, Rev. 2.0

Changing a Window’s Label

Strategy

You can modify a window’s label using the canvas or, for
dynamic control, by sending a message to the window.

Basic Steps
1. In the canvas for the window, make sure no widget is

selected.

2. In the Properties Tool, fill in the window’s Label property
with the desired label.

3. Apply the properties and install the canvas.

Variant

Changing the Label Programmatically
➤ Send a label: message to the window, with the new label as

argument.

| win |
win := (Editor2Example open) window.
win label: 'Editor'. "Variant Step"

label

Refreshing a Window’s Display

VisualWorks Cookbook, Rev. 2.0 93

Refreshing a Window’s Display

Strategy

Under normal conditions, a window redisplays its contents
whenever those contents change or whenever an overlapping
window is moved. Sometimes you need to redisplay a window
programmatically, as when you want to display an intermediate
state of the window before a drawing operation has been
completed.

Basic Step

Online example: Editor2Example

➤ Send a display message to the window.

| win |
win := (Editor2Example open) window.
5 timesRepeat: [

(Delay forMilliseconds: 400) wait.
win display]. "Basic Step"

Chapter 4 Windows

94 VisualWorks Cookbook, Rev. 2.0

Coloring a Window

Strategy

You can use the Properties Tool to change the background color
of a window. Changing the foreground or selection color has no
effect in the case of a window.

You can also change the color of a window programmatically for
run-time control. Doing so enables you to use window color as
a visual cue to indicate a change in some property of your appli-
cation.

Limitation: Under any look policy other than OS/2 or
Windows, widgets inherit the background color of the window
until you explicitly make them opaque and apply a different
color to their backgrounds. Also, make sure you choose a back-
ground color for the window that contrasts sufficiently with
scroll bars.

Coloring a Window

VisualWorks Cookbook, Rev. 2.0 95

Basic Steps
1. In the canvas for the window, make sure no widget is

selected.

2. In a Properties Tool (Color page), select the color for the
background.

3. Apply the properties and install the canvas.

Variant

Changing the Color Programmatically

Online example: Editor2Example

In the following example, we create a loop that is repeated for
each of the color constants. For each color, the window back-
ground is changed and the window is redisplayed.

➤ Send a background: message to the window, with the color as
argument.

| win color |
win := (Editor2Example open) window.

ColorValue constantNames do: [:colorName |
(Delay forMilliseconds: 200) wait.
color := ColorValue perform: colorName.
win background: color. "Variant Step"
win display]

See Also
■ “Creating a Color” on page 686

Chapter 4 Windows

96 VisualWorks Cookbook, Rev. 2.0

Adding and Removing Scroll Bars

Strategy

The Properties Tool enables you to add vertical and/or hori-
zontal scroll bars to a window.

You can also add and remove scroll bars programmatically. You
can do so, however, only in the way shown here when the
window had a scroll bar to start with. Thus, to add a vertical
scroll bar while your application is running (but not before),
you must turn on the vertical scroll bar property before
installing the canvas and then remove the scroll bar program-
matically before opening the window. This equips the window
with a BorderDecorator, which is the object that is empowered to
supply scroll bars.

Basic Steps
1. In the window’s canvas, make sure no widget is selected.

2. In a Properties Tool (Details page), turn on the desired scroll
bars.

3. Apply the properties and install the canvas.

Adding and Removing Scroll Bars

VisualWorks Cookbook, Rev. 2.0 97

Variant

Adding and Removing Scroll Bars Programmatically
1. After opening the window, remove the scroll bars that are

meant to be displayed later.

2. Ask the window’s component to add scroll bars.

| win |
win := ApplicationWindow new.
win component: (BorderDecorator

on: Object comment asComposedText).
win open.

win component "Variant Step 1"
noVerticalScrollBar;
noHorizontalScrollBar.

win display.

Cursor wait showWhile: [
(Delay forSeconds: 2) wait].

win component "Variant Step 2"
useVerticalScrollBar;
useHorizontalScrollBar.

Chapter 4 Windows

98 VisualWorks Cookbook, Rev. 2.0

Adding a Menu Bar

Strategy

Adding a menu bar has two parts: turning on a menu bar
property for the window and creating the underlying menu.

Basic Steps
1. In the canvas for the window, make sure no widget is

selected.

2. In a Properties Tool, turn on the Enable switch for the Menu
Bar property.

3. In the Menu field, enter the name of the menu-creation
method.

4. Install the canvas.

5. Use the Menu Editor to create the menu. Each first-level
entry in the menu appears in the menu bar, but only when
it has a submenu. That is, a menu bar displays menu
names, not command names.

See Also
■ “Creating a Menu” on page 226

Getting the Active Window

VisualWorks Cookbook, Rev. 2.0 99

Getting the Active Window

Strategy

The ScheduledControllers object keeps track of all controllers,
including the active controller. You can ask the active controller
for its associated window.

Although this maneuver is rarely needed in application code, it
is often useful in ad hoc experiments when you want to display
an object on a Workspace window.

Basic Step
➤ Ask the active controller for its associated window (that is,

the topComponent associated with the controller's view).

| win |
win := ScheduledControllers

activeController view topComponent. "Basic Step"
win moveTo: 20@20.

See Also
■ “Getting a Window from a Builder” on page 85

ScheduledControllers

Chapter 4 Windows

100 VisualWorks Cookbook, Rev. 2.0

Getting the Window at a Specific Location

Strategy

When your application performs an operation on a window that
is pointed to by the user (using the mouse), you can access the
window as shown in the basic steps. Drag-and-drop operations,
in particular, rely on this technique.

Basic Steps
1. Prompt the user to point at a window by sending a waitButton

message to the current controller’s sensor. It’s a good idea
to change the cursor while waiting, so the user knows that
input is expected.

2. Get the cursor location in screen coordinates by sending a
globalCursorPoint message to the controller’s sensor.

3. Get the window at the cursor point by sending a windowAt:
message to the default Screen. The argument is the cursor
location. (In the example, the window’s component flashes
so you can verify that the correct window was accessed.)

| sensor pt window |
sensor := ScheduledControllers activeController sensor.
Cursor bull showWhile: [sensor waitButton]. "Basic Step 1"
pt := sensor globalCursorPoint. "Basic Step 2"

window := Screen default windowAt: pt. "Basic Step 3"

window component flash.

cursor location

Closing a Window

VisualWorks Cookbook, Rev. 2.0 101

Closing a Window

Strategy

The window manager provides the user with a means of closing
a window. Closing a window programmatically is useful mainly
when the user exits from the application in some other way,
such as clicking on a Quit button. You might also want to close
a window as a side effect of some conclusive user action.

As with a window-closing event that is initiated using the
window manager, the techniques shown below are safe—that
is, the window’s model is notified in case it wants to take some
precaution such as confirming the action. The variant shows
how to set up such a confirmer.

Basic Step

When an application model is running one or more windows,
you can close it (or all of them at once, if there is more than one)
by sending closeRequest to the application.

➤ Ask the application model to close its associated windows.

| editor |
editor := Editor2Example new.
editor openInterface: #windowSpec.
(Delay forSeconds: 1) wait.
editor closeRequest. "Basic Step"

window

sensor

Chapter 4 Windows

102 VisualWorks Cookbook, Rev. 2.0

Variant

Arranging for Final Actions When Closing a Window

When an application window has been asked to close, it first
sends a changeRequest message to its application model. If the
model answers false, the window won’t close; if it answers true,
the window proceeds to close itself. Thus, the model has a
chance to verify that no damage will be done if the window is
closed.

For example, as shown below, the Image Editor (UIMaskEditor)
uses a changeRequest method to confirm the user’s intent to
abandon any unsaved changes in the image.

➤ Implement a changeRequest method in your application model,
which answers true when the window can close and false
otherwise.

changeRequest "Variant Step"
^super changeRequest

ifFalse: [false]
ifTrue: [(self modified or: [self magnifiedBitView controller

updateRequest not])
ifTrue:

[Dialog confirm: 'The image has been altered, but not installed.
Do you wish to discard the changes?']

ifFalse: [true]]

Notice also in the example above that the inherited version of
changeRequest is first invoked to preserve any precautions that a
parent class may have implemented.

See Also
■ “Making a Window a Slave” on page 105

Expanding and Collapsing a Window

VisualWorks Cookbook, Rev. 2.0 103

Expanding and Collapsing a Window

Strategy

Window managers typically provide a means of collapsing (icon-
ifying) a window and expanding it back to its normal state. You
can also control that behavior programmatically.

Basic Steps
1. Send a collapse message to the window.

2. Send an expand message to the window.

| win |
win := (Editor2Example open) window.
win display.
(Delay forSeconds: 1) wait.
win collapse. "Basic Step 1"
(Delay forSeconds: 1) wait.
win expand. "Basic Step 2"

See Also
■ “Hiding a Window” on page 104

■ “Making a Window a Slave” on page 105

Chapter 4 Windows

104 VisualWorks Cookbook, Rev. 2.0

Hiding a Window

Strategy

A window is a relatively expensive object, because it holds a
visual component that is often bulky and because it allocates a
display surface using the window manager. When your applica-
tion needs to open and close a window repeatedly, it is not
necessary to reconstruct it each time. Instead, you can unmap it,
which hides the window without disassembling it. Then you
can simply map it to redisplay it.

Basic Steps
1. Ask the window to unmap itself.

2. Ask the window to map itself.

| win |
win := (Editor2Example open) window.
win display.
(Delay forSeconds: 1) wait.
win unmap. "Basic Step 1"
(Delay forSeconds: 1) wait.
win map. "Basic Step 2"

Making a Window a Slave

VisualWorks Cookbook, Rev. 2.0 105

Making a Window a Slave

Strategy

In a multiwindow application, it is often helpful to close all
secondary windows automatically when the user closes the
main window. In this situation, the main window is called the
master window and the secondary windows are called slave
windows.

Basic Steps
1. Tell the master window which application model to inform

of its events.

2. Tell the master window to be a master.

3. Tell the slave window which application model will relay
events from the master window.

4. Tell the slave window to be a slave.

| app masterWin slaveWin |
app := Editor1Example new.
masterWin := (app openInterface) window.
masterWin

label: 'Master';
application: app; "Basic Step 1"
beMaster. "Basic Step 2"

Chapter 4 Windows

106 VisualWorks Cookbook, Rev. 2.0

slaveWin := (Editor2Example open) window.
slaveWin

label: 'Slave';
application: app; "Basic Step 3"
beSlave. "Basic Step 4"

Variants

V1. Make Windows Equal Partners

When you want to be able to close all of your application’s
windows by closing any one of them, make them partners
instead of master and slaves.

➤ Tell the windows to be partners.

| app win1 win2|
app:= Editor1Example new.

win1 := (app openInterface) window.
win1

label: 'Partner 1';
application: app;
bePartner. "V1 Step"

win2 := (Editor2Example open) window.
win2

label: 'Partner 2';
application: app;
bePartner. "V1 Step"

V2. Choosing the Events That Are Sent

By default, master and partner windows broadcast the
following events: #close, #collapse, and #expand. You can remove any
of those events, and you can add any of the following: #bounds,
#enter, #exit, #hibernate, #reopen, and #release.

➤ Tell the master or partner window which events to
broadcast.

Making a Window a Slave

VisualWorks Cookbook, Rev. 2.0 107

| app masterWin slaveWin |
app := Editor1Example new.

masterWin := (app openInterface) window.
masterWin

label: 'Master';
application: app;
beMaster;
sendWindowEvents: #(#close #collapse

#expand #hibernate #reopen). "V2 Step"

slaveWin := (Editor2Example open) window.
slaveWin

label: 'Slave';
application: app;
beSlave.

V3. Choosing the Events That Are Received

By default, slave and partner windows mimic the following
events: #close, #collapse, and #expand. Controlling the events that
are received lets each slave be selective according to its needs.

➤ Tell the slave or partner window which events to receive.

| app masterWin slaveWin |
app := Editor1Example new.

masterWin := (app openInterface) window.
masterWin

label: 'Master';
application: app;
beMaster.

slaveWin := (Editor2Example open) window.
slaveWin

label: 'Slave';
application: app;
beSlave;
receiveWindowEvents: #(#close). "V3 Step"

Chapter 4 Windows

108 VisualWorks Cookbook, Rev. 2.0

Setting a Window’s Icon

Strategy

Under window managers that support iconified windows, the
default icon appears as shown in the illustration above. You
can assign a different icon, perhaps a custom icon that you
have created.

Basic Step
➤ Tell the window which icon to use. (If your window manager

supports iconification, try collapsing the window after you
open it.)

| helpIcon win |
helpIcon := Icon image: VisualLauncher BWHelp24.
win := (Editor2Example open) window.
win icon: helpIcon. "Basic Step"

See Also
■ “Creating an Icon” on page 682

default icon help icon

VisualWorks Cookbook, Rev. 2.0 109

Chapter 5

Labels

Creating a Textual Label 110
Creating a Graphic Label 111
Supplying the Label at Run Time 113
Changing Font, Emphasis, and Color 116
Building a Registry of Labels 118

See Also
■ “Widget Basics” on page 53

Chapter 5 Labels

110 VisualWorks Cookbook, Rev. 2.0

Creating a Textual Label

Strategy

A label is most often used in conjunction with another widget,
such as a field, to describe the purpose of the field. It is also
used by itself as a title for a group of widgets or a window. Since
the text of a label can be changed while the application is
running, a label can also be used for read-only display.

Multiline label: A label accommodates only a single line of text.
For a multiline label, use a separate label for each line or use a
read-only text widget.

Basic Steps

Online example: LogoExample

1. Use a Palette to place a label widget on the canvas. Don’t
worry about the size—it will expand to accommodate your
text. Leave the label selected.

2. In a Properties Tool, fill in the label’s Label property with the
text of the label.

3. Apply the properties and install the canvas.

See Also
■ “Changing the Fonts Menu” on page 587

Creating a Graphic Label

VisualWorks Cookbook, Rev. 2.0 111

Creating a Graphic Label

Strategy

Use a graphic label when you want to add a pictorial element to
an interface. The graphic can be changed while the application
is running, so you can also use a graphic label to represent a
changing aspect of the model pictorially.

Passive vs. active: A graphic label is passive. Use a graphic
button when the graphic is meant to respond to a mouse click.

Scroll bars: For a large graphic that requires scroll bars, insert
the graphic in a view holder instead.

Basic Steps

Online example: LogoExample

1. Use a Palette to place a label widget on the canvas, and
leave the label selected.

2. In a Properties Tool, fill in the label’s Label property with the
name of the method that you will create to supply the
graphic image (in the example, logo). Do not prefix the name
with the pound sign (#); this will be added automatically.

Chapter 5 Labels

112 VisualWorks Cookbook, Rev. 2.0

3. In Properties Tool, turn on the Label is Image property.

4. Apply the properties and install the canvas.

5. Use the Image Editor or other means to create the graphic
image and install it in the application model, using the
method name from step 2. Put the method in a class
protocol named resources.

Hint: The graphic will appear in the running application. You
can see the graphic in the canvas if you install the image
resource before you fill in and apply the label’s properties.

See Also
■ “Giving a Button a Graphic Label” on page 167

■ “Integrating a View into an Interface” on page 389

■ “Creating a Graphic Image” on page 658

Supplying the Label at Run Time

VisualWorks Cookbook, Rev. 2.0 113

Supplying the Label at Run Time

Strategy

You can change the content of a label programmatically while
the application is running.

This technique enables you to use a label instead of a field for
read-only display of a text. The advantage is that a label
requires less mechanism than a field (no instance variable, no
accessing method, and no initialization code). The disadvantage
is that updating a label is more awkward than updating a field.

Caution: When you supply a longer text or a larger graphic, you
run the risk of overlapping neighboring widgets, if any.

Basic Steps

Online example: LogoExample

1. In a method in the application model (such as postBuildWith:),
get the widget from the application model’s builder and
send a labelString: message to it. The argument is the new
label string.

2. When the replacement label is in the form of a ComposedText
(which can have boldness, color, etc.), get the widget from

canvas run-time window

Chapter 5 Labels

114 VisualWorks Cookbook, Rev. 2.0

the builder and send a label: message to it. The argument is
the composed text.

postBuildWith: aBuilder
"Update the slogan's text, and make the company name bold and red."

| slogan txt emph label |

"Insert the years-in-business into the slogan."
slogan := 'Serving Shrimps For '

, (Date today year - 1869) printString, ' Years'.
aBuilder componentAt: #slogan labelString: slogan. "Basic Step 1"

"Make the company name bold and red."
txt := 'Many Hands Shrimppickers' asText
emph := Array

with: #bold
with: #color->ColorValue red.

txt emphasizeFrom: 1 to: 10 with: emph.
label := Label

with: txt
attributes: (TextAttributes styleNamed: #large).

(aBuilder componentAt: #textLogo) label: label. "Basic Step 2"

Hint: The example updates a label before the canvas is opened,
but you can change the label string at any time after the inter-
face has been built.

Variant

Supplying a Graphic Label’s Image at Run Time

Online example: LogoExample

➤ Get the widget from the builder and send a label: message to
it, with the new graphic as argument.

animateLogo
"Display the logo in successively larger sizes
(as a way of demonstrating dynamic updating
of a graphic label)."

Supplying the Label at Run Time

VisualWorks Cookbook, Rev. 2.0 115

| logo widget view animationRegion |
logo := self class logo.
widget := self builder componentAt: #logo.
animationRegion := widget bounds.
view := self builder composite.

10 to: 1 by: -1 do: [:factor |
(Delay forMilliseconds: 100) wait.
widget label: (logo shrunkenBy: factor @ factor). "Variant Step"
view invalidateRectangle: animationRegion repairNow: true]

Chapter 5 Labels

116 VisualWorks Cookbook, Rev. 2.0

Changing Font, Emphasis, and Color

Strategy

You specify a label’s font by choosing the font in the label’s
properties. The chosen font applies to the entire label. Alterna-
tively, you can change the font programmatically or mix
emphases (bold, italic, etc.) and colors.

The advantage of mixing font emphases within a single label
rather than creating multiple labels is that the spacing between
the parts of the label will be preserved even when you run the
image on a platform that supplies different fonts.

Mixing fonts: Although you can mix font families in the same
label to the limited extent that you can apply or remove serifs
from a portion of the text, generally you must create a separate
label for each font family.

Basic Steps

Online example: LogoExample

1. In a method in the application model (such as postBuildWith:),
create a Text by sending an asText message to the label string.

2. Add the desired emphases to the text.

3. Create a Label with the text and the desired font.

4. Get the widget wrapper from the builder (with componentAt:)
and install the new label with label:.

bold, red font

Changing Font, Emphasis, and Color

VisualWorks Cookbook, Rev. 2.0 117

postBuildWith: aBuilder
"Update the slogan's text, and make the company name bold and red."

| slogan txt emph label |

"Insert the years-in-business into the slogan."
slogan := 'Serving Shrimps For '

, (Date today year - 1869) printString, ' Years'.
(aBuilder componentAt: #slogan) labelString: slogan.

"Make the company name bold and red."
txt := 'Many Hands Shrimppickers' asText. "Basic Step 1"
emph := Array "Basic Step 2"

with: #bold
with: #color->ColorValue red.

txt emphasizeFrom: 1 to: 10 with: emph.
label := Label

with: txt
attributes: (TextAttributes styleNamed: #large). "Basic Step 3"

(aBuilder componentAt: #textLogo) label: label. "Basic Step 4"

See Also
■ “Applying Boldfacing and Other Emphases” on page 572

■ “Creating a Custom Text Style” on page 576

■ “Setting Text Color” on page 585

Chapter 5 Labels

118 VisualWorks Cookbook, Rev. 2.0

Building a Registry of Labels

Strategy

When you plan to use the same label (such as a company name
or logo) in multiple interfaces, you can store it in a central
registry. The system will look for the label there when it does
not find the usual resource method.

Two separate registries are available, one for graphics and the
other for strings. The basic steps show how to register both
kinds of labels. The variant shows how to remove an entry from
a registry.

Memory usage: Use these registries sparingly, especially when
graphic images are involved rather than strings, because each
entry occupies memory until it is explicitly removed.

Basic Steps

Registering a Graphic Label

Online example: LogoExample

1. To register a graphic image, send a visualAt:put: message to
the ApplicationModel class. The first argument is the name of
the label, as defined in the Label property of the widget. This

Building a Registry of Labels

VisualWorks Cookbook, Rev. 2.0 119

is usually done in a class-initialization method, so the
registration will occur whenever the class is filed into a new
image.

2. To register a string label, send a labelAt:put: message to the
ApplicationModel class. The first argument is the name of the
label as defined in the Label property of the widget.

initialize
"LogoExample initialize"

"Register the graphic image for the trademark symbol."
ApplicationModel "Basic Step 1"

visualAt: #trademark
put: self trademark.

"Register the textual version of the trademark symbol."
ApplicationModel "Basic Step 2"

labelAt: #tm
put: '(TM)'.

3. Execute the initialization method.

Variant

Removing an Entry from a Registry
1. To get the graphic labels registry, send a visuals message to

the ApplicationModel class. To get the string labels registry,
send a labels message.

2. The registry is a dictionary, so use the standard message
(removeKey:ifAbsent:) for removing an entry from a dictionary.
The first argument is the name of the label, as identified in
the Label property of the widget. The second argument is a
block containing the action to be taken if the label is not
found, frequently an empty block for no action.

"Visual registry"
| registry |
registry := ApplicationModel visuals. "Variant Step 1"
registry removeKey: #trademark ifAbsent: []. "Variant Step 2"

Chapter 5 Labels

120 VisualWorks Cookbook, Rev. 2.0

"Labels registry"
registry := ApplicationModel labels. "Variant Step 1"
registry removeKey: #tm ifAbsent: []. "Variant Step 2"

VisualWorks Cookbook, Rev. 2.0 121

Chapter 6

Input Fields

Creating an Input Field 122
Restricting the Type of Input 125
Formatting Displayed Data 129
Validating the Input 132
Modifying a Field’s Pop-Up Menu 139
Connecting a Field to Another Field 143
Restricting Entries in a Field (Combo Box) 146
Moving the Insertion Point 150

See Also
■ “Widget Basics” on page 53

Chapter 6 Input Fields

122 VisualWorks Cookbook, Rev. 2.0

Creating an Input Field

Strategy

An input field is used for both entering and displaying data. You
can also use a field in read-only mode when you just want to
display data. When a field has a short list of valid entries,
consider using a menu button or a combo box instead.

A field is designed to use some kind of value model to manage
the data it presents. When the field accepts input from a user,
it sends this data to the value model for storage; when the field
needs to update its display, it asks its value model for the data
to be displayed.

The basic kind of value model for a field is a value holder (an
instance of ValueHolder), which stores the data by holding it in an
instance variable. A value holder is most appropriate for data
that is not held elsewhere in the application. If the relevant data
is to be held in a domain model, you can set up the field with
another kind of value model, namely, an aspect adaptor (an
instance of AspectAdaptor) which stores and retrieves the data
directly from the domain model. Otherwise (if a value holder is
used), the application model must be programmed to copy the
relevant data between the domain model and the value holder.

input field

Creating an Input Field

VisualWorks Cookbook, Rev. 2.0 123

Basic Steps

Online example: Slider2Example

1. Use a Palette to add a field to the canvas (such as the Month
field).

2. Optionally, add a label to the canvas, and fill in the Label
property to describe the field’s contents.

3. Use the widget handles to size and position the field. Leave
the field selected.

4. In a Properties Tool, fill in the field’s Aspect property with the
name of the method (month) that will return a value model for
the field’s data.

5. Apply the properties and install the canvas.

6. Use the canvas’s define command or a System Browser to
add an instance variable (month) to the application model.
The instance variable will hold the value model for the
field’s data.

7. Use the canvas’s define command or a System Browser to
create the aspect method that you named in step 3 (month).

month "Basic Step 7"
^month

8. Use a System Browser to initialize the instance variable you
created in step 6 (month), either in the aspect method or in a
separate initialize method. In this example, you use the latter
to initialize the variable with a value holder that holds the
desired month. (You create the value holder by sending
asValue to the data object.)

initialize
month := (Date nameOfMonth: 1) asValue. "Basic Step 8"
year := 1900 asValue.

dateRange := (0@1) asValue.
dateRange onChangeSend: #changedDate to: self.

Chapter 6 Input Fields

124 VisualWorks Cookbook, Rev. 2.0

Variants

V1. Aligning a Field’s Contents
➤ Set the field’s Align property to Left (to start the data at the

left side of the field), Center (to center the data), or Right (to
place the data against the right margin).

V2. Creating a Read-Only Field
➤ Turn on the field’s Read Only property.

V3. Restricting the Size of User Input
➤ In the field’s Size property, enter the number of characters

that you want to allow. (When the user tries to enter char-
acters beyond that limit, they are ignored.)

See Also
■ “Adding a Menu Button” on page 236

■ “Adapting Domain Models to Widgets” on page 703

Restricting the Type of Input

VisualWorks Cookbook, Rev. 2.0 125

Restricting the Type of Input

Strategy

You specify the type of input that a field is to accept by setting
its Type property. This property tells the field to convert the
user’s input string into an appropriate kind of object before
sending it to the value model. If the conversion cannot be
performed, the field flashes and continues to display the unac-
cepted string without storing it in its value model. When the
field updates its display with data from its value model, it
converts the data object to a display string.

You can choose from the following data types:

■ String—Input is stored as an instance of ByteString. This is the
default property setting.

■ Symbol—Input is stored as an instance of Symbol and is
displayed with a prepended pound sign (#). Useful for
programming applications that manipulate method selec-
tors.

■ Text—Input is stored as an instance of Text, which can have
emphasis (boldness, etc.).

■ Number—Input is stored as an appropriate subclass of
Number. Acceptable input includes literal expressions for
integers, single or double floating-point numbers, scientific
notation, or radix notation.

■ Password—Input is stored as a string, with an asterisk (*)
displayed for each character the user enters. (The real char-
acters are sent to the field’s value model.)

■ Date—Input is converted into an instance of Date.

■ Time—Input is converted into an instance of Time.

■ Timestamp—Input is converted into an instance of Timestamp,
which combines a date and a time.

Entry is converted
to time

Chapter 6 Input Fields

126 VisualWorks Cookbook, Rev. 2.0

■ FixedPoint(2)—Input is converted to an instance of FixedPoint
that represents a fixed point number with two decimal
places. Useful for applications that manipulate monetary
amounts.

■ Boolean—Input is stored as an instance of Boolean. Acceptable
values are true and false.

■ ByteArray—Input is stored as an instance of ByteArray.

■ Object—Input is evaluated as a Smalltalk expression; the
resulting object is stored as the field’s value. The field redis-
plays this object using the object’s printString method.

The Format property provides predefined formatting alternatives
for some of these types.

You can also add a custom data type to the list, as described in
the variant below.

Basic Steps
1. Select the field in the canvas.

2. In the Properties Tool, set the field’s Type property to the
desired data type.

Hint: Ensure that the field is initialized with the appro-
priate type of data.

3. Apply the properties and install the canvas.

Variant

Creating a Custom Data Converter

Online example: FieldTypeExample

This example shows how to create a data converter for handling
an instance of Time. Note this converter, as given below, is
unnecessary, because you can set the Type property to Time.
However, you can use it as a model for building converters for
other kinds of objects.

1. Use a Palette to add a field to the canvas. Leave the field
selected.

Restricting the Type of Input

VisualWorks Cookbook, Rev. 2.0 127

2. In a Properties Tool, fill in the Aspect property with the name
of the method (time) that will return a value model for the
field. Apply the property and install the canvas.

3. Use a System Browser to create an instance method (timeTo-
Text) in the initialize algorithm protocol of the TypeConverter class.
Use an existing method in that protocol as your template.
The method is responsible for initializing the getBlock and
putBlock of a PluggableAdaptor (ignore the updateBlock).

4. Use a System Browser to create a class method (onTimeValue:)
in the instance creation protocol of TypeConverter. Use an existing
method in that protocol as your template. The method is
responsible for returning a new instance of TypeConverter,
which is initialized using the method from the preceding
step.

5. Ensure that the object responds to the messages sent to it
by the method in step 3 (often printOn: will suffice).

6. Use a System Browser to create the instance variable (time)
that you named in step 2 in the application model (FieldType-
Example).

7. Use a System Browser to create the aspect method (time) for
the instance variable. The method is responsible for initial-
izing the variable with a TypeConverter, using the instance
creation method you defined in step 4.

timeToText "Variant Step 3"
"Initialize the receiver to perform the action
when assigned a value."

self
getBlock: [:m | m value == nil

ifTrue: [String new]
ifFalse: [m value printString]]

putBlock: [:m :v | v isEmpty
ifTrue: [m value: nil]
ifFalse: [m value: (Time readFrom: v readStream)]]

updateBlock: [:m :a :p | true]

onTimeValue: aValue "Variant Step 4"
^(self on: aValue) timeToText

Chapter 6 Input Fields

128 VisualWorks Cookbook, Rev. 2.0

time "Variant Step 7"
^time isNil

ifTrue: [time := (TypeConverter onTimeValue: Time now asValue)]
ifFalse: [time]

Formatting Displayed Data

VisualWorks Cookbook, Rev. 2.0 129

Formatting Displayed Data

Strategy

A field displays a string represention of the data stored by its
value model. For some types of data, the displayed string can
be formatted in various ways. For example, numbers can be
formatted as phone numbers, monetary units, percentages,
and so on.

The basic steps show how to use property settings to choose
among alternative predefined formats for certain types of data.
The first three variants describe some useful predefined
formats. The final variant describes how to create a custom
format programmatically.

For applications that are to be deployed in locations other than
the United States, VisualWorks offers a separate mechanism
(Locale objects) for adapting to local formatting conventions. This
mechanism is described in the International User’s Guide. For
this mechanism to take effect, you must set the Type property to
Number, Time, or Date, and leave the Format property setting blank.

Basic Steps
1. Select the field in the canvas.

2. In the Properties Tool, set the field’s Format property to the
desired data format. Note that the field’s Type property
setting determines the kinds of available formats, if any.

3. Apply the properties and install the canvas.

Entry is formatted as money

Chapter 6 Input Fields

130 VisualWorks Cookbook, Rev. 2.0

Variants

V1. Displaying a U.S. Phone Number
1. Select the field in the canvas.

2. In the Properties Tool, set the field’s Type property by
selecting either String or Number, as desired.

3. In the Properties Tool, set the field’s Format property by
selecting either (@@@) @@@-@@@@ (for type String) or
(000) 000-0000 (for type Number). In a String format, the @ stands
for a single character. In a Number format, the 0 stands for
exactly one digit.

V2. Displaying a U.S. Dollar Amount
1. Select the field in the canvas.

2. In the Properties Tool, set the field’s Type property by
selecting either Number or FixedPoint(2), as desired.

3. In the Properties Tool, set the field’s Format property by
selecting any of the formats that begin with $—for example,
$#,##0.00;[Red]($#,##0.00)

In formats such as this, the 0 stands for exactly one digit,
and the # stands for zero or one digit. This example also
specifies that negative numbers be displayed in red and
enclosed in parentheses.

V3. Displaying a Date
1. Select the field in the canvas.

2. In the Properties Tool, set the field’s Type property by
selecting Date.

3. In the Properties Tool, set the field’s Format property by
selecting a date format such as d-mmm-yy.

In formats such as this, the symbol d stands for the
minimum number of digits representing the day, mmm
stands for a three-letter abbreviation of the month name,
and yy stands for the two-digit year number.

Formatting Displayed Data

VisualWorks Cookbook, Rev. 2.0 131

V4. Creating a Custom Format

Online example: FieldTypeExample

A TypeConverter enables a field to display a number in a special
format, such as a monetary format. You define the format as a
string that uses the same conventions as the predefined
formats. For more information about format conventions, use a
System Browser to read the class comments for the NumberPrint-
Policy, TimestampPrintPolicy, and StringPrintPolicy classes.

This example shows how to create a format for a monetary
amount. Note this format, as given below, is unnecessary,
because you can set the Format property to a predefined format.
However, you can use it as a model for building other kinds of
formats.

1. Use a Palette to add a field to the canvas.

2. Fill in the Aspect property, naming the method (price) that
returns a value model for the field. Apply the property and
install the canvas.

3. Use a System Browser to create the instance variable (price)
in the application model.

4. Use a System Browser to create the aspect method (price), in
which you initialize the value to a TypeConverter that uses the
desired format string.

price "V4 Step 4"
^price isNil

ifTrue: [price := (TypeConverter
onNumberValue: 0 asValue
format: '$###,###,###.##')]

ifFalse: [price]

Chapter 6 Input Fields

132 VisualWorks Cookbook, Rev. 2.0

Validating the Input

Strategy

Frequently, only certain entries are valid for a particular field.
For example, you might want to restrict input to a numeric
range such as 0 to 999 or check for undesirable characters.

Validating whole entries: You can arrange for a typed entry to
be validated when the user accepts it (that is, when the user
chooses accept from the field’s <Operate> menu, or presses the
<Tab> or <Return> key to move focus out of the field). You
arrange for validation by specifying one or more validation call-
backs (messages for the widget to send when asked to accept
input or change focus). You implement corresponding methods
in the application model to test the input, warn the user if it is
unacceptable, and, if desired, prevent further actions until
valid input is entered. The basic steps implement the following
callbacks for a field that accepts strings:

■ A change validation callback, which prevents input from
being passed to the value model unless the it is valid

■ An exit validation callback, which prevents the user from
moving focus out of the field until the input is corrected

The first variant implements the same kinds of callbacks for a
field whose Type property is set to Number.

Character-by-character validation: You can arrange for the
user to get immediate feedback after typing an invalid char-
acter. The character might be illegal under any circumstances,
in which case you can simply intercept the keyboard event and
check the character (second variant). Or you might want to
validate the partly completed entry against a list of valid entries
after each keystroke (third variant).

Validating the Input

VisualWorks Cookbook, Rev. 2.0 133

Basic Steps

Validating String Entries

Online example: FieldValidInputExample

1. Use the Palette to add a field labeled Username: to the canvas.
Leave the field selected.

2. In a Properties Tool, fill in the Aspect property with the name
of the method (username) that will return a value model for
the field. Leave the Type property set to String.

3. On the Validation page of the Properties Tool, fill in the Change
property with the name (validateUsername:) of the change vali-
dation callback. This specifies the method that will deter-
mine whether to accept input into the field’s value model.

4. On the Validation page of the Properties Tool, fill in the Exit
property with the name (validateUsername:) of the exit valida-
tion callback. This specifies the method that will determine
whether the field can give up focus. In this example, the
same method is used for both change and exit validation.

5. Apply properties and install the canvas.

6. Use the canvas’s define command or a System Browser to
add an instance variable (username) and aspect method
(username) to the application model. Initialize the instance
variable with a value model—for example, in an initialize
method.

7. Use a System Browser to create the method (validateUsername:)
corresponding to the callback you named in steps 3 and 4.
Note that, because the name ends in a colon, the method
must accept a Controller as an argument.

8. Send an editValue message to the field’s Controller to obtain the
user’s entry. The entry must be obtained from the controller
instead of the value model, because validation occurs
before the entry has been passed to the value model.

9. Validate the entry (in this case, check its length).

10. If the entry is valid, return true. This permits the field to
pass the entry to the value model and, if requested, give up
focus.

Chapter 6 Input Fields

134 VisualWorks Cookbook, Rev. 2.0

11. If the user’s entry is not valid, warn the user and return
false. This tells the field to wait until the user enters a valid
entry.

validateUsername: aController "Basic Step 7"
"Check the length of the entered username. Warn the user if the entered input
is too long."

| entry lengthLimit |
lengthLimit := 6.
entry := aController editValue. "Basic Step 8"

"If the username is too long, warn the user (and reject the input)."
^entry size <= lengthLimit "Basic Step 9"

ifTrue: [true] "Basic Step 10"
ifFalse: [Dialog warn: ’Please enter only ’, lengthLimit printString ,

’ characters.’.
false] "Basic Step 11"

Variants

V1. Validating Non-String Entries

Online example: FieldValidInputExample

1. Use the Palette to add a field labeled Access Code: to the
canvas. Leave the field selected.

2. In a Properties Tool, fill in the Aspect property (accessCode)
and change the Type property (in this example, to Number).

3. On the Validation page of the Properties Tool, set the Change
and Exit properties (in this case, enter validateAccessCode:).

4. Apply properties and install the canvas.

5. Use the canvas’s define command or a System Browser to
add an instance variable (accessCode) and aspect method
(accessCode) to the application model. Initialize the instance
variable with a value model.

6. Use a System Browser to create the method
(validateAccessCode:) corresponding to the callback you named
in steps 3.

Validating the Input

VisualWorks Cookbook, Rev. 2.0 135

7. Send a hasEditValue message to the field’s Controller to find out
whether the user’s entry can be converted from a string to
the specified type (in this case, a number).

8. If the input string was successfully converted, send editValue
to the controller to obtain the converted entry.

9. If the input string could not be converted, warn the user
and return false to tell the field to wait for valid input.

10. Validate the successfully converted entry, if any (in this
case, check whether the number is in the correct range).

11. If the entry is valid, return true to pass the entry to the value
model and, if requested, give up focus.

12. If the user’s entry is not valid, warn the user and return false
to wait until the user enters a valid entry.

validateAccessCode: aController "V1 Step 6"
"Check whether the user entered a number. If not, warn the user. If so, check
whether the number is in the right range. If not, warn the user."

| entry lowerLimit upperLimit |
lowerLimit := 50.
upperLimit := 100.

"Test whether the input can be converted to a number.
If not, warn the user and reject the input. If so, get the number."
aController hasEditValue "V1 Step 7"

ifTrue: [entry := aController editValue.] "V1 Step 8"
ifFalse: [Dialog warn: ’Enter a number.’.

^false]. "V1 Step 9"

"If the access code is in the wrong range, warn the user and
reject the input."
^(lowerLimit < entry) & (entry < upperLimit) "V1 Step 10"

ifTrue: [true] "V1 Step 11"
ifFalse: [Dialog warn: ’Enter a number between’, lowerLimit printString ,

’ and ’, upperLimit printString, ’.’.
false] "V1 Step 12"

Chapter 6 Input Fields

136 VisualWorks Cookbook, Rev. 2.0

V2. Validating Each Keystroke

Online example: FieldValidation1Example

1. In a Properties Tool, give the field an ID property (in the
example, the ID is codeField). Apply the property and install
the canvas.

2. Use a System Browser to add a postBuildWith: instance method
to the application model (FieldValidation1Example), in which the
first task is to get the controller from the field.

3. In the postBuildWith: method, send a keyboardHook: message to
the controller. The argument to keyboardHook: is a block that
takes two arguments: the keyboard event and the
controller.

4. Inside the block, invoke the method (keyPress:) that you will
create to validate the keystroke. (You can also put the vali-
dation code directly inside the block.)

postBuildWith: aBuilder "V2 Step 2"
| ctrlr |
ctrlr := (aBuilder componentAt: #codeField) widget controller.
ctrlr keyboardHook: [:ev :c | "V2 Step 3"

self keyPress: ev]. "V2 Step 4"

5. Use a System Browser to create the keyPress: method, which
takes the keyboard event as its argument, extracts the
character, and validates it.

6. As the last step in the keyPress: method, return the event
when you want to forward the keyboard event for normal
processing. Return nil to bypass normal processing.

keyPress: ev "V2 Step 5"
"Validate the character."

| ch ascii |
ch := ev keyValue.

"Allow tab and cr."
ascii := ch asInteger.
(ascii == 9 or: [ascii == 13])

ifTrue: [^ev].

Validating the Input

VisualWorks Cookbook, Rev. 2.0 137

ch isAlphaNumeric
ifFalse: [

Dialog warn: 'Please enter only letters and digits'.
^nil].

^ev "V2 Step 6"

V3. Validating a Partial Entry After Each Keystroke

Online example: FieldValidation2Example

1. Use a System Browser to add a postBuildWith: method to the
application model (FieldValidation2Example) in an interface opening
protocol.

2. In the postBuildWith: method, register an interest in the field’s
value holder (productCode).

3. In the postBuildWith: method, send a continuousAccept: message to
the field’s controller, with an argument of true.

4. Use a System Browser to add the change method that was
named in step 2 (codeChanged), in a change messages protocol.
This method is responsible for performing the validation.

postBuildWith: aBuilder "V3 Step 1"
"Ask the field's controller to accept continuously -- that is, to
return the entry to the model after each keystroke."
| ctrlr |
self productCode onChangeSend: #codeChanged to: self. "V3 Step 2"

ctrlr := (aBuilder componentAt: #codeField) widget controller.
ctrlr continuousAccept: true. "V3 Step 3"

codeChanged "V3 Step 4"
"The code entry was changed -- if the (partial) entry
uniquely identifies a valid product code, fill in the rest
of the code for the user."

| entry qualifiedCodes holder |
holder := self productCode.
entry := holder value.

"If the partial entry uniquely identifies a valid product code,

Chapter 6 Input Fields

138 VisualWorks Cookbook, Rev. 2.0

fill in the rest of the code for the user."
entry := entry, '*'.
qualifiedCodes := OrderedCollection new.
self validCodes do: [:code |

(entry match: code)
ifTrue: [qualifiedCodes add: code]].

qualifiedCodes size == 1
ifTrue: [

holder retractInterestsFor: self.
holder value: qualifiedCodes first.
holder onChangeSend: #codeChanged to: self].

See Also
■ “Creating a Custom Adaptor (PluggableAdaptor)” on

page 717

Modifying a Field’s Pop-Up Menu

VisualWorks Cookbook, Rev. 2.0 139

Modifying a Field’s Pop-Up Menu

Strategy

By default, a field has the menu of text-editing commands that
is shown above. You can add or omit commands, override the
action that is associated with a command, or disable the menu
entirely.

A field’s menu is usually oriented toward commands. Although
you can arrange for a field’s menu to contain a list of valid
entries, this is properly the job of a menu button.

Basic Steps

B1. Adding a Command

Online example: FieldMenuExample

1. In a canvas, select the field.

2. In a Properties Tool, fill in the field’s Menu property with the
name of the method that you will create to supply a custom
menu (expandedMenu).

normal
menu

Chapter 6 Input Fields

140 VisualWorks Cookbook, Rev. 2.0

3. Use a System Browser to add the menu-creating method
(expandedMenu) to the application model in a menu messages
protocol.

expandedMenu "B1 Step 3"
"Add a command to the default text-editing menu."

| mb |
mb := MenuBuilder new.
mb

add: 'capitalize'->#capitalize;
line;
addDefaultTextMenu.

^mb menu

4. Use a System Browser to add the method (capitalize) that is
invoked by the newly added command. Put the method in
the menu messages protocol.

capitalize "B1 Step 4"
"Capitalize the field's contents."

self field1 value: (self field1 value
collect: [:ch | ch asUppercase]).

B2. Omitting a Command

Do basic steps 1 through 3 above (substituting reducedMenu for
expandedMenu).

➤ In the menu-creating method, build the default menu from
its parts, omitting the command that you don’t want to
include.

reducedMenu
"Omit one of the commands (#again) from the default text-editing menu."

| mb |
mb := MenuBuilder new.
mb "B2 Step"

add: 'undo'->#undo;

Modifying a Field’s Pop-Up Menu

VisualWorks Cookbook, Rev. 2.0 141

line;
addCopyCutPaste;
line;
addAcceptCancel.

^mb menu

Variants

V1. Overriding a Default Command

Do basic steps 1 through 3 above (substituting newAcceptMenu for
expandedMenu).

1. In the menu-creating method, build the default menu from
its parts. For the command that you want to override,
provide the name of your overriding method as the value
(#newAccept).

newAcceptMenu
"Redefine the 'accept' command by invoking a local alternate."

| mb |
mb := MenuBuilder new.
mb

addFindReplaceUndo;
line;
addCopyCutPaste;
line;
add: 'accept'->#newAccept; "V1 Step 1"
add: 'cancel'->#cancel.

^mb menu

2. Use a System Browser to create the overriding method
(newAccept).

newAccept V1 Step 2"
Transcript show: self field3 value; cr.

Chapter 6 Input Fields

142 VisualWorks Cookbook, Rev. 2.0

V2. Disabling a Field’s Menu

Do basic steps 1 through 3 (substituting noMenu for expanded-
Menu).

➤ In the menu-creating method (noMenu), return a block
containing nil. When asked for its menu, the field will
evaluate this block, and no menu is displayed.

noMenu
^[nil] "V2 Step"

See Also
■ “Creating a Menu” on page 226

■ “Adding a Menu Button” on page 236

Connecting a Field to Another Field

VisualWorks Cookbook, Rev. 2.0 143

Connecting a Field to Another Field

Strategy

When the value in a field depends on the value in another field,
you can link them using the built-in dependency mechanism.

Use a one-way connection when only one of the fields can affect
the other, as when a data field updates a total field.

Use a two-way connection when a change in either field affects
the other field, as when a lookup of a customer record can be
initiated by entering either the customer’s name or the
customer’s ID number.

Basic Step

Creating a One-Way Connection

Online example: FieldConnectionExample

1. Use a System Browser to add a postBuildWith: method to the
application model in an interface opening protocol.

2. In the postBuildWith: method, register an interest in the field
that originates updates, naming a method to be invoked
when that field is changed (changedA).

postBuildWith: aBuilder "Basic Step 1"
self a onChangeSend: #changedA to: self. "Basic Step 2"

Chapter 6 Input Fields

144 VisualWorks Cookbook, Rev. 2.0

3. Use a System Browser to add the change method (changedA)
to the application model in a change messages protocol. That
method updates the dependent field’s model.

changedA "Basic Step 3"
self aSquared value: (self a value raisedTo: 2).

Variant

Creating a Two-Way Connection

Online example: FieldConnectionExample

1. Use a System Browser to add a postBuildWith: method to the
application model (FieldConnectionExample) in an interface opening
protocol.

2. In the postBuildWith: method, register interests in both fields,
naming the method to be invoked when each field is
changed (changedB, changedBSquared).

postBuildWith: aBuilder "Variant Step 1"
self b onChangeSend: #changedB to: self. "Variant Step 2"
self bSquared onChangeSend: #changedBSquared to: self.

3. Use a System Browser to add the change methods (changedB,
changedBSquared) to the application model in a change messages
protocol. Those methods update the dependent field’s
model in a way that avoids circularity.

changedB "Variant Step 3"
"Use setValue: to bypass dependents, thus avoiding circularity."
self bSquared setValue: (self b value raisedTo: 2).

"Since dependents were bypassed when the model was updated,
update the view manually."
(self builder componentAt: #b2) widget update: #value.

changedBSquared "Variant Step 3"
"Use setValue: to bypass dependents, thus avoiding circularity."
self b setValue: (self bSquared value raisedTo: (1/2)).

Connecting a Field to Another Field

VisualWorks Cookbook, Rev. 2.0 145

"Since dependents were bypassed when the model was updated,
update the view manually."
(self builder componentAt: #b) widget update: #value.

See Also
■ “Connecting a Slider to a Field” on page 267

Chapter 6 Input Fields

146 VisualWorks Cookbook, Rev. 2.0

Restricting Entries in a Field (Combo Box)

Strategy

Frequently, an input field must be restricted to a group of
standard entries. For example, a field that identifies the
shipping instructions in an order-entry application might use a
standard set of entries because there are a limited number of
ways to ship a package. A combo box is ideally suited to this
situation because it combines a field with a pull-down list of the
standard entries for the field. The basic steps show how to
create a combo box.

A menu button can be used in the same situation, but more
programming effort is required to coordinate it with the field.

Basic Steps

Online example: ComboBoxExample

1. Use a Palette to add a combo-box widget to the canvas.
Leave the combo box selected.

2. In a Properties Tool, fill in the combo box’s Aspect property
with the name of the method (in the example, shipper) that
returns a value model for the combo box.

3. In the combo box’s Choices property, enter the name of the
method (shipperChoices) that returns a collection of entry
choices.

4. In the combo box’s Type property, choose the type of input
the widget is to accept (see “Restricting the Type of Input”).
Set the Format property, as appropriate (see “Formatting
Displayed Data”).

Restricting Entries in a Field (Combo Box)

VisualWorks Cookbook, Rev. 2.0 147

5. Apply the properties and install the canvas.

6. Use a System Browser or the Define button to create the
instance variable (shipper) and accessing method (shipper) for
the aspect.

shipper "Basic Step 6"
^shipper

7. Use a System Browser to create the method that you named
in step 3 (shipperChoices). The method returns a value holder
containing the list of valid entries. The value holder can be
held in an instance variable (as in the example).

shipperChoices "Basic Step 7"
^shipperChoices

8. Initialize the field’s aspect variable, typically in an initialize
method. Initialize the variable with a value model
containing data of the type specified in step 4.

9. Initialize the choices variable with a value holder containing
the list of valid entries. Initialize this list with data of the
type specified in step 4.

initialize

| list |
shipper := 'Courier' asValue. "Basic Step 8"

list := List new.
list add: 'Courier'; "Basic Step 9"

add: 'FedEx';
add: 'UPS';
add: 'USPS'.

shipperChoices := list asValue. "Basic Step 9"

Variant

You can arrange for a combo box to display a list of choices that
are arbitrary objects (for example, a list of Employee objects). You
do this by supplying a print method and a read method that
translate the relevant objects into displayable elements (for

Chapter 6 Input Fields

148 VisualWorks Cookbook, Rev. 2.0

example, Strings or graphical images) and back. For example, in
ComboCoversionExample, the print method enables the combo box to
display Employee names in the pull-down list and, when an
Employee is selected, to display that Employee’s name in the field.
The read method enables the combo box to interpret the user’s
input as an Employee name, which can be matched with an
existing Employee, or used to create a new one.

Online example: ComboConversionExample

1. In the Properties Tool, set the Type property of the combo
box to Object.

2. Fill in the Print property with the name of a method for
converting the relevant objects to strings (in this example,
employeeToString:). The name must end with a colon.

3. Fill in the Read property with the name of a method for
converting strings to objects of the desired type (in this
example, stringToEmployee:). The name must end with a colon.

4. In the application model, create a print method with the
name you specified in step 2 (employeeToString:). This method
accepts an object from the choices list as an argument (in
this case, an instance of Employee).

5. In the print method, return a String that represents the
object from the choices list. In this example, display the
name of the Employee. The string is displayed in the combo
box’s pull-down list and also in the combo box’s field when
the choice is selected.

employeeToString: anEmployee "Variant Step 4"
"Return a String for representing the Employee in the combo box’s list and field."

^anEmployee name. "Variant Step 5"

6. Create a read method with the name you specified in step 3
(stringToEmployee:). This method accepts a String argument.

7. In the read method, return an object for the given String. In
this example, determine whether the String is the name of an
Employee in the choices list; if so return that Employee. Other-
wise, create a new Employee and add it to the choices list.

Restricting Entries in a Field (Combo Box)

VisualWorks Cookbook, Rev. 2.0 149

stringToEmployee: aString "Variant Step 6"
"Return an Employee corresponding to the given String. If the String
corresponds to the name of an Employee on the choices list, return that
Employee. Otherwise, create a new Employee and add it to the list."

| theEmp |
theEmp := self employeeChoices value "Variant Step 7"

detect: [:each | each name = aString]
ifNone: [nil].

theEmp isNil
ifTrue:

[theEmp := Employee new name: aString.
self employeeChoices value addLast: theEmp].

^theEmp

See Also
■ “Restricting the Type of Input” on page 125

■ “Formatting Displayed Data” on page 129

Chapter 6 Input Fields

150 VisualWorks Cookbook, Rev. 2.0

Moving the Insertion Point

Strategy

You can control the position of the insertion point in a field
programmatically. For example, the data in a field might have
a prefix that rarely changes—you could highlight the suffix for
convenient editing. In that case, the “insertion point” is actually
a portion of the field’s text, which will be replaced by the user’s
entry.

When the suffix has yet to be filled in, you can simply position
the insertion point at the end of the prefix.

Variants

V1. Highlighting a Portion of a Field

Online example: FieldSelectionExample

1. In a method in the application model, ask the field’s
wrapper to takeKeyboardFocus.

2. Tell the field’s controller the indices (character positions) of
the substring that is to be highlighted.

addPart
"Put a template in the partID field, then highlight the suffix."

| wrapper |
self partID value: 'MW-0000'.

wrapper := self builder componentAt: #part1.
wrapper takeKeyboardFocus. "V1 Step 1"
wrapper widget controller selectFrom: 4 to: 7. "V1 Step 2"

Moving the Insertion Point

VisualWorks Cookbook, Rev. 2.0 151

Hint: When you want to select the entire contents of the field,
just do step 1.

V2. Positioning the Insertion Point
1. In a method in the application model, ask the field’s

wrapper to takeKeyboardFocus.

2. Tell the field’s controller the character position at which to
place the insertion point.

addPart2
"Put a template in the partID2 field, then position the insertion point."

| wrapper |
self partID2 value: 'MW-'.

wrapper := self builder componentAt: #part2.
wrapper takeKeyboardFocus. "V2 Step 1"
wrapper widget controller selectAt: 4. "V2 Step 2"

VisualWorks Cookbook, Rev. 2.0 153

Chapter 7

Lines, Boxes, and Ovals

Separating Widgets with a Line 154
Grouping Widgets with a Box 156
Grouping Widgets with an Ellipse 158

Chapter 7 Lines, Boxes, and Ovals

154 VisualWorks Cookbook, Rev. 2.0

Separating Widgets with a Line

Strategy

Use a divider to provide visual separation between two sets of
interface components. It can be either vertical or horizontal.

A divider’s thickness is one pixel—for a thicker line, use a
region as described below.

Basic Steps

Online example: LineExample

1. Use a Palette to add a divider to the canvas.

2. Use the widget handles to size and position the divider.

Variants

V1. Adding a Vertical Line
1. Use a Palette to add a divider to the canvas. Leave the

divider selected.

2. In the Properties Tool, turn on the divider’s Vertical orienta-
tion property. Apply the property.

3. Use the widget handles to size and position the divider.

region

divider

Separating Widgets with a Line

VisualWorks Cookbook, Rev. 2.0 155

4. Install the canvas.

V2. Simulating a Thicker Line
1. Use a Palette to add a region to the canvas. Leave the region

selected.

2. Turn on the Thick property. Apply the property.

3. Use the widget handles to radically elongate the region,
merging two opposite sides and making it appear to be a
thick line.

4. Install the canvas.

Chapter 7 Lines, Boxes, and Ovals

156 VisualWorks Cookbook, Rev. 2.0

Grouping Widgets with a Box

Strategy

When an interface begins to appear cluttered, the user of your
application may have trouble understanding how the widgets
relate to one another. As a visual aid, cluster the widgets in
logical groups. Spacing is one way to group widgets; another
way is to surround some groups with boxes.

A box can have a label embedded in its top border. Its line thick-
ness is one pixel. For a thicker line, use a region as described
below.

Basic Steps

Online example: LineExample

1. Use a Palette to add a box to the canvas. Leave the box
selected.

2. Use the widget handles to size and position the box.

3. Fill in the Label property, if desired.

4. Choose the label’s font.

5. Apply the properties and install the canvas.

box

region

Grouping Widgets with a Box

VisualWorks Cookbook, Rev. 2.0 157

Variants

V1. Adding a Box with Thicker Lines
1. Use a Palette to add a region to the canvas. Leave the region

selected.

2. Turn on the desired Border thickness property.

3. Use the widget handles to size and position the region.

4. If you want the region to have a label, use a Palette to add a
label widget. Turn on the label’s opaque property, fill in its
Label property, and then position it as desired.

5. Apply the properties and install the canvas.

V2. Changing a Box’s Colors

A box widget has no interior surface to color, so use a region
when you want a filled box.

■ To change the label color of a box, use a Properties Tool to
apply foreground color.

■ To change only the background color of the label, apply
background color.

■ To change the border color of a region, apply foreground
color.

■ To change the interior color of a region, apply background
color.

Chapter 7 Lines, Boxes, and Ovals

158 VisualWorks Cookbook, Rev. 2.0

Grouping Widgets with an Ellipse

Strategy

For visual variety, you can make a region circular or elliptical
in shape rather than rectangular.

Basic Steps

Online example: LineExample

1. Use a Palette to add a region to the canvas. Leave the region
selected.

2. Turn on the region’s Ellipse property.

3. Use the widget handles to size and position the region.

4. If desired, use the Properties Tool to apply color to the fore-
ground (border) and/or background (interior).

5. Apply the properties and install the canvas.

regions

colored regions

VisualWorks Cookbook, Rev. 2.0 159

Chapter 8

Buttons

Adding a Set of Radio Buttons 160
Adding a Check Box 162
Adding an Action Button 164
Giving a Button a Graphic Label 167
Turning Off Highlighting 168

See Also
■ “Widget Basics” on page 53

■ “Adding a Menu Button” on page 236

Chapter 8 Buttons

160 VisualWorks Cookbook, Rev. 2.0

Adding a Set of Radio Buttons

Strategy

A group of radio buttons enables the user of your application to
select from a limited list of choices. Selecting a radio button
causes any other button in its group to be deselected. This
characteristic makes radio buttons useful only where an exclu-
sive selection is appropriate.

Alternatives to radio buttons. Radio buttons display the full
set of choices at all times. If you need to save space, you can
use a menu or menu button instead.

Radio buttons are typically used only for a very brief and static
set of choices. If you want your application to reconfigure the
list of choices programmatically, you use a list widget, instead.
A list is also scrollable, making it more suitable for a long list of
options.

If you want to allow users to select more than one choice, use
either a group of check boxes or a list widget that has the Multi
Select property turned on.

Basic Steps

Online example: ButtonExample

1. Use the Palette to add one radio button to the canvas for
each item in the list of choices.

2. For each button, change the Label property to name the
choice (in the example, “Dialog” and “Transcript”).

3. For all buttons, enter the same Aspect property (outputMode).

4. For each button, enter a different Select property (#dialog and
#transcript). This is the symbol that is stored in the Aspect
value holder whenever the button is selected.

radio buttons

Adding a Set of Radio Buttons

VisualWorks Cookbook, Rev. 2.0 161

5. Apply the properties and install the canvas.

6. Use the canvas’s define command or a System Browser to
add an instance variable for the aspect that is shared by the
buttons (outputMode).

7. Use the canvas’s define command or a System Browser to
create a method for accessing the aspect variable
(outputMode), in an aspects protocol.

8. Use a System Browser to create an initialize method, in which
you initialize the aspect variable so it holds a value holder
containing one of the valid Select symbols (#dialog). Your
choice of symbol determines which radio button will be
selected as a default.

outputMode "Basic Step 7"
^outputMode

initialize
super initialize.
outputMode := #dialog asValue. "Basic Step 8"
showMinutes := true asValue.
showHours := true asValue.
showSeconds := true asValue.

Variant

Relocating the Label

A radio button’s built-in label appears to the right of the button
under most window managers. To place the label in a different
location, such as above the button:

1. Leave the button’s Label property blank, so nothing appears
in the button’s default labeling location.

2. Use a separate label widget to label the button.

See Also
■ “Adding a List” on page 184

■ “Adding a Menu Button” on page 236

Chapter 8 Buttons

162 VisualWorks Cookbook, Rev. 2.0

Adding a Check Box

Strategy

A check box is like a toggle button that enables the user of your
application to turn on or turn off an attribute. Check boxes are
often used in a group to represent a set of related attributes.

Selecting one check box has no effect on others in the set, so
users can select as many as they want. When you want only one
attribute to be selected at a time, use radio buttons instead.

Basic Steps

Online example: ButtonExample

1. Use a Palette to add a check box to the canvas. (The
example uses three check boxes to control whether hours,
minutes, and/or seconds are displayed.)

2. For each check box, enter a descriptive name in its Label
property (for example, “Hours”).

3. For each checkbox, fill in its Aspect property with the name
of the method that accesses the check box’s value holder
(showHours). This value holder will contain true when the
check box is selected and false when it is not selected.

4. Apply the properties and install the canvas.

5. Use the canvas’ define command or a System Browser to
create an instance variable in which to store the check
box’s value holder (showHours).

6. Use the canvas’ define command or a System Browser to
create the method(s) named in step 3 (showHours) in an aspects
protocol.

check boxes

Adding a Check Box

VisualWorks Cookbook, Rev. 2.0 163

showHours "Basic Step 6"
^showHours

7. In the initialize method, initialize the variable to a value holder
containing true if you want the check box to be selected by
default and false otherwise.

initialize
super initialize.
outputMode := #dialog asValue.
showHours := true asValue. "Basic Step 7"
showMinutes := true asValue.
showSeconds := true asValue.

Variant

Relocating the Label

A check box’s built-in label appears to the right of the check
box. To place the label in a different location, such as above the
check box:

1. Leave the check box’s Label property blank, so nothing
appears in the check box’s default labeling location.

2. Use a separate label widget to label the check box.

See Also
■ “Displaying an Icon in a Menu” on page 254

Chapter 8 Buttons

164 VisualWorks Cookbook, Rev. 2.0

Adding an Action Button

Strategy

An action button triggers an action, such as opening a dialog
window. If you want to save space in an interface, consider
using a menu instead of multiple buttons.

Basic Steps

Online example: ButtonExample

1. Use a Palette to add an action button to the canvas. Leave
the button selected.

2. In a Properties Tool, fill in the button’s Label property with a
descriptive label (in the example, “Tell time”).

3. Fill in the button’s Action property with the name of the
method that performs the action (#tellTime).

4. Apply the properties and install the canvas.

5. Use a System Browser to create the method named in step
3 (tellTime) in an actions protocol.

tellTime "Basic Step 5"
 | t tString |
t := Time now.
tString := String new.

"Assemble the time string based on the check boxes."
self showHours value

ifTrue: [tString := tString, t hours printString].
self showMinutes value

ifTrue: [tString := tString, ':', t minutes printString, ':']
ifFalse: [tString := tString, '::'].

self showSeconds value

action button

Adding an Action Button

VisualWorks Cookbook, Rev. 2.0 165

ifTrue: [tString := tString, t seconds printString].

"Send the time string to the output channel set by the radio buttons."
self outputMode value == #transcript

ifTrue: [Transcript show: tString; cr]
ifFalse: [DialogView warn: tString]

Variants

V1. Using a Placeholder Action

Sometimes it is convenient to add a button to a canvas before
you are ready to implement the action method. If you leave the
Action property blank, the button will have no effect in the
running interface, which can be disconcerting. This variant
causes the button to display a dialog reminding you that the
method has not yet been implemented.

➤ In the button’s Action property, enter unimplemented.

V2. Designating a Default Button

In a canvas that is to be used as a dialog, it is common to enable
the user to signify completion either by clicking on a particular
button (such as OK or Done) or by pressing <Return> on the
keyboard. To arrange for <Return> to activate a particular
button (before the focus is shifted manually):

➤ Turn on the button’s Be Default property.

V3. Sizing a Button as If It Were the Default Button

With some window managers, such as Windows and OSF Motif,
a default button has a different appearance and the difference
may affect the dimensions of the button’s border. This can
complicate matters when you try to align nondefault buttons
with the default button, even after you have equalized their
heights and widths. To make a nondefault button take on the
sizing characteristics of a default button:

➤ Turn on the button’s Size as Default property.

Chapter 8 Buttons

166 VisualWorks Cookbook, Rev. 2.0

See Also
■ “Adding a Menu Bar” on page 233

Giving a Button a Graphic Label

VisualWorks Cookbook, Rev. 2.0 167

Giving a Button a Graphic Label

Strategy

Any of the three kinds of buttons—action buttons, radio
buttons, or check boxes—can have a graphic label instead of a
text label. In practice, graphic labels are used most often with
action buttons, if only because the other two types of button
already have a graphic component under most window
managers.

Basic Steps

Online example: ButtonExample (You must do steps 1 and 2 first)

1. Select the button in the canvas.

2. In a Properties Tool, fill in the button’s Label property with
the name of the method that returns a graphic image (in
the example, hourglass).

3. Turn on the button’s Label is Image property.

4. Apply the properties and install the canvas.

5. Use an Image Editor or System Browser to create, in a
resources protocol, the class method that returns the graphic
image (hourglass).

hourglass "Basic Step 5"
^Cursor wait asOpaqueImage

See Also
■ “Creating a Graphic Image” on page 658

graphic label

Chapter 8 Buttons

168 VisualWorks Cookbook, Rev. 2.0

Turning Off Highlighting

Strategy

By default, a button is highlighted when the user clicks on it.
The highlighting is rectangular, like the button’s border, even
when the border is not displayed and the interior graphic is not
rectangular. The basic steps show how to turn off the high-
lighting in such situations.

Basic Steps

Online example: HelpBrowser

1. Select the button in the canvas. In a Properties Tool, turn
off the button’s Bordered property.

2. In a method in the application model (typically postBuildWith:),
get the widget from the application model’s builder and
send a hiliteSelection: message to it. The argument is false.

postBuildWith: aBuilder
| oddButtons |

Highlighting has been turned off
for nonrectangular action buttons

Turning Off Highlighting

VisualWorks Cookbook, Rev. 2.0 169

"Make the main window a master window."
aBuilder window

application: self;
beMaster.

"Turn off highlighting for the nonrectangular buttons."
oddButtons := #(#prevPageButton #nextPageButton).
oddButtons do: [:buttonName |

(aBuilder componentAt: buttonName)
widget hiliteSelection: false]. "Basic Step 2"

"Disable the appropriate buttons."
self adjustButtons.

"Set keyboard hook for special shortcut keys."
aBuilder keyboardProcessor keyboardHook: [:ev :ctrl |

self keyPress: ev].

VisualWorks Cookbook, Rev. 2.0 171

Chapter 9

Text Editors

Adding a Text Editor 172
Accessing the Selected Text 174
Highlighting Text Programmatically 176
Aligning Text 178
Making an Editor Read-Only 180
Modifying an Editor’s Menu 182

See Also
■ “Characters and Strings” on page 529

■ “Text and Fonts” on page 555

Chapter 9 Text Editors

172 VisualWorks Cookbook, Rev. 2.0

Adding a Text Editor

Strategy

A text editor is useful for displaying and editing text that does
not fit comfortably within a field, especially when the text is
expected to have multiple lines. The text editor has built-in
facilities for:

■ Line wrapping

■ Changing the text style

■ Cutting, copying, and pasting

■ Undoing and reverting

■ Searching and replacing

■ Printing

■ Executing Smalltalk expressions

text editor

Adding a Text Editor

VisualWorks Cookbook, Rev. 2.0 173

Basic Steps

Online example: Editor1Example

1. Use a Palette to add a text editor to the canvas. Leave the
text editor selected.

2. In a Properties Tool, fill in the editor’s Aspect property with
the name of the method (comment) that will return the value
model for the text editor.

3. Use the define command or a System Browser to add an
instance variable (comment) to the application model for
storing the text editor’s value model.

4. Use a System Browser to add, in an aspects protocol, a
method (comment) that returns the contents of the instance
variable.

comment "Basic Step 4"
^comment

5. Use a System Browser to create an initialize method that
initializes the aspect variable (comment) with a value holder
containing the initial text to be displayed (an empty string).

initialize
super initialize.

comment := '' asValue. "Basic Step 5"

classes := SelectionInList with: Smalltalk classNames.
classes selectionIndexHolder

onChangeSend: #changedClass to: self.

textStyle := #plain asValue.
textStyle onChangeSend: #changedStyle to: self.

readOnly := false asValue.
readOnly onChangeSend: #changedReadOnly to: self

Chapter 9 Text Editors

174 VisualWorks Cookbook, Rev. 2.0

Accessing the Selected Text

Strategy

When the user highlights a portion of the text in an editor, your
application can find out what is highlighted. This is useful
when the application needs to use the selected text in some
way—as a parameter in a message send, for example.

Sometimes you need to modify the text in some way (in the
example, we change the font) and then insert the new version
into the main text. The variant shows how to do this.

Basic Steps

Online example: Editor1Example

1. In a method in the application model, get the controller
from the widget.

2. Ask the controller for the selected text.

changedStyle
"A text style was selected -- apply it to the current selection in the

comment."

selected
text

Accessing the Selected Text

VisualWorks Cookbook, Rev. 2.0 175

| c selectedText style |

"Get the selected text."
c := (builder componentAt: #comment) widget controller. "Basic Step 1"
selectedText := c selection. "Basic Step 2"

"If nothing is selected, take no action."
selectedText isEmpty ifTrue: [^self].

"If 'Plain' was selected, remove all emphases;
otherwise add the new emphasis."
style := self textStyle value.
style == #plain

ifTrue: [selectedText emphasizeAllWith: nil]
ifFalse: [

selectedText addEmphasis: (Array with: style)
removeEmphasis: nil
allowDuplicates: false].

"Ask the controller to insert the modified text, then update the view."
c replaceSelectionWith: selectedText. "Variant Step 1"
c view resetSelections. "Variant Step 2"
c view invalidate. "Variant Step 3"

Variant

Replacing the Selected Text

(See example method above.)

1. Ask the controller to replace the selection with a new text.

2. Ask the controller’s view to reset its selections (to adjust for
a possible width change in the selection).

3. Ask the view to redisplay itself.

See Also
■ “Replacing a Range of Text” on page 567

Chapter 9 Text Editors

176 VisualWorks Cookbook, Rev. 2.0

Highlighting Text Programmatically

Strategy

The user of your application can highlight text in an editor by
dragging the mouse. Sometimes your application may need to
highlight text for the user, perhaps as a way of drawing atten-
tion to a keyword or phrase.

Basic Steps

Online example: Editor1Example

1. In a method in the application model, get the controller
from the widget.

2. Ask the controller to select the text between two endpoints
(and ask it to scroll the selection into view if necessary).

3. Ask the builder’s component to take the keyboard focus, so
the highlighting will be displayed.

changedClass
"When the list selection changes, update the comment view."

The name of the class
is highlighted
programmatically

Highlighting Text Programmatically

VisualWorks Cookbook, Rev. 2.0 177

| selectedClass txt start wrapper |
selectedClass := self classes selection.

selectedClass isNil
ifTrue: [self comment value: '' asText]
ifFalse: [

txt := (Smalltalk at: selectedClass) comment.

self comment
value: txt.

"Find and highlight the class name in the text."
start := txt

indexOfSubCollection: selectedClass asString
startingAt: 1.

start > 0 ifTrue: [
wrapper := (self builder componentAt: #comment).
wrapper widget controller "Basic Step 1"

selectAndScrollFrom: start "Basic Step 2"
to: start + selectedClass asString size - 1.

wrapper takeKeyboardFocus]]. "Basic Step 3"

Chapter 9 Text Editors

178 VisualWorks Cookbook, Rev. 2.0

Aligning Text

Strategy

By default, text in an editor is aligned at the left margin. For
word-processing applications, you may want to center the text
or align it at the right margin. You can change the alignment by
setting the text editor’s Align property.

When you want to enable the user of your application to change
the alignment, you can provide a button or menu item for doing
so. The variant shows how to arrange it.

Limitation: Alignment applies to the entire text—it cannot be
applied selectively to a portion of the text.

Basic Step

Online example: Editor1Example

1. Select the text editor in the canvas.

2. In the Properties Tool, set the editor’s Align property to Left,
Center, or Right.

3. Apply the property and install the canvas.

Text is aligned
at right margin

Aligning Text

VisualWorks Cookbook, Rev. 2.0 179

Variant

Changing the Alignment Programmatically
1. In a method in the application model, get the widget from

the builder.

2. Get a copy of the widget’s text style. (Do not modify the
widget’s text style directly, because that object is shared by
many text editors in the system.)

3. Set the alignment of the text style to 0, 1, or 2 (0 is flush left,
1 is flush right, and 2 is centered).

4. Install the new text style in the widget.

5. Ask the widget to redisplay itself.

alignRight
| widget style |
widget := (self builder componentAt: #comment) widget. "Variant Step 1"
style := widget textStyle copy. "Variant Step 2"
style alignment: 1. "Variant Step 3"
widget textStyle: style. "Variant Step 4"
widget invalidate. "Variant Step 5"

See Also
■ “Controlling Alignment” on page 561

Chapter 9 Text Editors

180 VisualWorks Cookbook, Rev. 2.0

Making an Editor Read-Only

Strategy

By default, a text editor is both an output and an input device.
You can turn off the input capability either at canvas-painting
time or while the program is running. For example, you might
want to disable input based on the user’s security level.

Basic Step
1. Select the text editor in the canvas.

2. Turn on the editor’s Read Only property.

3. Apply the property and install the canvas.

Variant

Changing the Read-Only Setting Programmatically
1. In a method in the application model, get the controller

from the widget.

2. Ask the controller to change its readOnly setting to true or false.

Text cannot be edited

Making an Editor Read-Only

VisualWorks Cookbook, Rev. 2.0 181

changedReadOnly
| c |
c := (self builder componentAt: #comment) widget controller. "Variant Step 1"
c readOnly: (self readOnly value). "Variant Step 2"

Chapter 9 Text Editors

182 VisualWorks Cookbook, Rev. 2.0

Modifying an Editor’s Menu

Strategy

By default, a text editor has the same menu of text-editing
commands that the system tools have. You can add or remove
commands, override the action that is associated with a
command, or disable the menu entirely.

Detailed steps for modifying an editor’s menu are the same as
those for modifying an input field’s menu.

See Also
■ “Modifying a Field’s Pop-Up Menu” on page 139

normal menu

VisualWorks Cookbook, Rev. 2.0 183

Chapter 10

Lists

Adding a List 184
Editing the List of Elements 187
Allowing for Multiple Selections 189
Finding Out What Is Selected 191
Adding a Menu to a List 194
Changing the Highlighting Style 196
Connecting Two Lists 198
Connecting a List to a Text Editor 200

See Also
■ “Widget Basics” on page 53

Chapter 10 Lists

184 VisualWorks Cookbook, Rev. 2.0

Adding a List

Strategy

A list widget is useful for displaying a collection of objects. As
an input device, the list also enables the user to select one or
more elements in the list as the targets for browsing and other
operations.

A list widget is designed to depend on two value models, unlike
most data widgets, which require only one. In particular, a list
widget uses two value holders—one to hold the collection of
objects to be displayed, and the other to hold the index of the
current selection. Consequently, you program the application
model to supply a SelectionInList, a complex object that contains
both of the required value holders.

The elements in the collection need not be textual in nature,
provided that they can display themselves textually. The
variant shows how to control an object’s textual representation
in a list.

list widgets

nontextual elements

Adding a List

VisualWorks Cookbook, Rev. 2.0 185

Basic Steps

Online example: List1Example

1. Use a Palette to add a list widget to the canvas. Leave the
list selected.

2. In the Properties Tool, fill in the list’s Aspect property with
the name of the method that will return an instance of
SelectionInList.

3. Use the canvas’s define command or a System Browser to
add an instance variable (classes) to the application model.
This instance variable will hold the SelectionInList.

4. Use the canvas’s define command or a System Browser to
create the aspect method you named in step 2 (classes).

5. Use a System Browser to initialize the instance variable you
created in step 3 (classes), usually in an initialize method. You
initialize the variable with an instance of SelectionInList that is
itself initialized with a list of Smalltalk class names.

classes "Basic Step 4"
^classes

initialize
super initialize.
classes := SelectionInList with: Smalltalk classNames. "Basic Step 5"
classes selectionIndexHolder onChangeSend: #changedClass to: self.

methodNames := MultiSelectionInList new.

instances := SelectionInList new.

Variant

Controlling the Textual Display of List Elements

Online example: List1Example

A list sends a displayString message to its elements at display time.
Every object responds to this message, because it is inherited
from the Object class. However, the default implementation of
displayString, which simply sends printString to the object, may not

Chapter 10 Lists

186 VisualWorks Cookbook, Rev. 2.0

be appropriate for your application. For example, if you use
List1Example to list the instances of classes such as
ApplicationWindow, you will find that most of the listings are unin-
formative because all that is displayed is a generic description
such as “an ApplicationWindow.”

In contrast, if you use List1Example to list the instances of the Asso-
ciation class, you will find that the listings are more useful.
Underlyingly, each Association instance consists of a key paired
with a value, which would be too complex to display in a list.
Consequently, the Association class has reimplemented the
displayString method, so that each instance represents itself in a
list using just the key displayed as a string.

In general, you can equip an object for its role as a list element
by providing a reimplementation of displayString that returns an
appropriate string.

➤ In the class whose instances are to be displayed in a list,
create a printing protocol that contains a displayString method
that returns a descriptive string. (The following method is
implemented in the Association class.)

displayString "Variant Step"
"Allows a value to be quietly associated with the key that is
displayed in a SequenceView."

^key displayString

See Also
■ “Adding a Notebook” on page 316

■ “Creating a Collection” on page 491

Editing the List of Elements

VisualWorks Cookbook, Rev. 2.0 187

Editing the List of Elements

Strategy

The contents of a list often change frequently, depending on
other parts of the interface. In List1Example, both the Selectors
view and the Instances view change whenever the selection in
the Classes view is changed.

Changing the list is accomplished by giving the SelectionInList a
new collection of elements. Note that this is not the same as
installing an entirely new SelectionInList, which would have the
effect of breaking the link with the list widget.

Basic Step

Online example: List1Example

➤ In the method that is responsible for updating the list, get
the SelectionInList from the application model and send a list:
message to it, with the new collection as the argument.

changedClass
| cls |
self classes selection isNil

Changing the selection in
this list . . .

. . . causes these lists to
get modified collections

Chapter 10 Lists

188 VisualWorks Cookbook, Rev. 2.0

"No class is selected -- empty the selector list."
ifTrue: [

self methodNames list: List new. "Basic Step"
self instances list: List new]

"A class is selected"
ifFalse: [

cls := Smalltalk at: self classes selection.

"Update the selectors list."
self methodNames list: cls selectors asSortedCollection.

"Update the instances list."
self instances list: cls allInstances].

See Also
■ “Creating a Collection” on page 491

Allowing for Multiple Selections

VisualWorks Cookbook, Rev. 2.0 189

Allowing for Multiple Selections

Strategy

Sometimes it is appropriate for the user to select more than one
item in a list as targets for an action. In List1Example, the Selec-
tors list provides this capability so the user can open a Method
Browser on several methods.

A list allows multiple selections when its Multi Select property is
turned on. A second property, Use Modifier Keys For Multi Select,
determines how selections are to be made. When this property
is turned on (the default), the user:

■ Clicks the <Select> mouse button to select a single item on
the list

■ <Shift>-clicks to select additional contiguous items

■ <Control>-clicks to select additional nonconitiguous items

When the Use Modifier Keys For Multi Select property is turned off, the
user clicks the <Select> mouse button on each item to be
selected. You normally turn this property off only when a multi-
select list is to be compatible with other such lists in an older
VisualWorks interface.

More than one item in this
list can be selected at the
same time

Chapter 10 Lists

190 VisualWorks Cookbook, Rev. 2.0

Basic Steps

Online example: List1Example

1. Select the list widget in the canvas.

2. In a Properties Tool, turn on the list widget’s Multi Select
property. (Leave the Use Modifier Keys For Multi Select property
turned on.) Apply properties and install the canvas.

3. In the application model’s initialize method, initialize the list
widget’s aspect variable to hold a MultiSelectionInList (instead of
a SelectionInList).

initialize
super initialize.
classes := SelectionInList with: Smalltalk classNames.
classes selectionIndexHolder onChangeSend: #changedClass to: self.

methodNames := MultiSelectionInList new. "Basic Step 3"
instances := SelectionInList new.

Finding Out What Is Selected

VisualWorks Cookbook, Rev. 2.0 191

Finding Out What Is Selected

Strategy

When a list widget serves as an input device, your application
needs to be able to find out which object is selected. You can
ask a SelectionInList for the selected object or for the index of the
selected object in the list. You can also set the selection
programmatically.

For a multiselect list, there may be multiple selections or selec-
tion indexes, so your application model must be prepared to
handle a collection of objects rather than a single selection or
index.

When nothing is selected, a SelectionInList returns a nil object as
the selection and zero as the index; a MultiSelectionInList returns an
empty collection for either the selections or the indexes.

Basic Step

Online example: List1Example

➤ In the method that needs to know the current selection in
the list, get the SelectionInList from the application model and
send a selection message to it. (To get the just index, send

You can get the
index of the selection or
the actual object that is
selected

A multilist returns a
collection of selection
indexes or selections

Chapter 10 Lists

192 VisualWorks Cookbook, Rev. 2.0

selectionIndex. For a MultiSelectionInList, use a selections or selectionIn-
dexes message.)

changedClass
| cls |
self classes selection isNil "Basic Step"

"No class is selected -- empty the selector list."
ifTrue: [

self methodNames list: List new.
self instances list: List new]

"A class is selected"
ifFalse: [

cls := Smalltalk at: self classes selection.

"Update the selectors list."
self methodNames list: cls selectors asSortedCollection.

"Update the instances list."
self instances list: cls allInstances].

Variants

V1. Setting the Selection Programmatically

Online example: List1Example

➤ In the method that is to change the selection programmati-
cally, get the SelectionInList from the application model and
send it a selectionIndex: message with the desired index
number as the argument.

Alternatively, send a selection: message with the desired
object itself as the argument.

postOpenWith: aBuilder

super postOpenWith: aBuilder.

"Uncomment the line below to auto-select the first class."
self classes selectionIndex: 1. "V1 Step"

Finding Out What Is Selected

VisualWorks Cookbook, Rev. 2.0 193

"Uncomment the lines below to auto-select the last class."
"self classes selection: self classes list last.
(aBuilder componentAt: #classes) widget controller

cursorPointWithScrolling."

"In the classes list, use boxed highlighting instead of reverse-video."
(aBuilder componentAt: #classes) widget strokedSelection.

Note that, for a MultiSelectionInList, send selectionIndexes: or selec-
tions:, supplying as argument a collection of indexes or a
collection of objects in the list.

V2. Selecting All Objects in a Multiple-Selection List
➤ Get the MultiSelectionInList from the application model and send

a selectAll message to it.

selectAll
self methodNames selectAll. "V2 Step"

V3. Clearing All Selections in a Multiple-Selection List
➤ Get the MultiSelectionInList from the application model and send

a clearAll message to it.

clearAll
self methodNames clearAll. "V3 Step"

Chapter 10 Lists

194 VisualWorks Cookbook, Rev. 2.0

Adding a Menu to a List

Strategy

By default, a list does not a provide a pop-up menu, but you
can arrange for it to have a custom menu that is available
through the <Operate> mouse button. Typically, a list’s menu
contains two kinds of commands:

■ Commands that act on the selection(s).

■ Commands that act on the list itself, usually by updating or
filtering its contents.

Basic Steps

Online example: List1Example (Instances view)

1. Select the list widget in the canvas.

2. In the Properties Tool, fill in the list widget’s Menu property
with the name of the method that will supply the menu
(instancesMenu).

3. Apply the property and install the canvas.

4. Use a Menu Editor or a System Browser to create the menu
method (instancesMenu).

A menu with just one
command was added to
this list

Adding a Menu to a List

VisualWorks Cookbook, Rev. 2.0 195

5. Use a System Browser to write the methods that are
invoked by the menu (inspectInstance).

inspectInstance "Basic Step 5"
"Open an inspector on the selected instance."

| inst |
inst := self instances selection.
inst isNil ifFalse: [inst inspect].

See Also
■ “Creating a Menu” on page 226

Chapter 10 Lists

196 VisualWorks Cookbook, Rev. 2.0

Changing the Highlighting Style

Strategy

By default, the selected item in a list is highlighted through
reverse video. You can use the list’s Selection Type property to
cause selected items to be indicated by check marks (basic
step).

You can also arrange for selected items to be surrounded by a
rectangular border (variant).

Basic Step

Online example: List1Example

1. In the canvas, select the list widget whose selection style
you want to change. (In the example, this is the Selectors
list.)

2. In a Properties Tool, set the list’s Selection Type property to
Check Mark. Apply the property and install the canvas.

stroked selection

normal selection

Changing the Highlighting Style

VisualWorks Cookbook, Rev. 2.0 197

Variant

Online example: List1Example

➤ In a method in the application model (typically postBuildWith:
or postOpenWith:), get the list widget from the application
model’s builder and send a strokedSelection message to it. (A
normalSelection message causes the list to revert to normal
highlighting.)

postOpenWith: aBuilder

super postOpenWith: aBuilder.

"Uncomment the line below to auto-select the first class."
self classes selectionIndex: 1.

"Uncomment the lines below to auto-select the last class."
"self classes selection: self classes list last.
(aBuilder componentAt: #classes) widget controller

cursorPointWithScrolling."

"In the classes list, use boxed highlighting instead of reverse-video."
(aBuilder componentAt: #classes) widget strokedSelection. "Basic Step"

Chapter 10 Lists

198 VisualWorks Cookbook, Rev. 2.0

Connecting Two Lists

Strategy

A list widget frequently interacts with another list. For example,
in the Resource Finder, selecting a class in the Class list causes
the Resource list to display all resources for that class.

Basic Steps

Online example: List1Example (Classes and Selectors lists)

1. In the application model’s initialize method, arrange for a
change message (changedClass) to be sent to the application
model whenever the selection is changed in the first list.

initialize
super initialize.
classes := SelectionInList with: Smalltalk classNames.
classes selectionIndexHolder

onChangeSend: #changedClass to: self. "Basic Step 1"

methodNames := MultiSelectionInList new.
instances := SelectionInList new.

This lis t . . .

. . . is connected to
these two lists

Connecting Two Lists

VisualWorks Cookbook, Rev. 2.0 199

2. Use a System Browser to create the change method
(changedClass) in the application model. This method tests
whether anything is selected in the first list (classes) and
then updates the second list (methodNames) appropriately.

changedClass "Basic Step 2"
| cls |
self classes selection isNil

"No class is selected -- empty the selector list."
ifTrue: [

self methodNames list: List new.
self instances list: List new]

"A class is selected"
ifFalse: [

cls := Smalltalk at: self classes selection.

"Update the selectors list."
self methodNames list: cls selectors asSortedCollection.

"Update the instances list."
self instances list: cls allInstances].

Chapter 10 Lists

200 VisualWorks Cookbook, Rev. 2.0

Connecting a List to a Text Editor

Strategy

A list widget often interacts with a text editor. For example, the
VisualWorks browsers commonly use a list for choosing a class
or method and a text view for displaying information about that
class or method.

Basic Steps

Online example: Editor1Example

1. In the application model’s initialize method, arrange for a
change message (changedClass) to be sent to the application
model whenever the list selection is changed.

initialize
super initialize.

comment := '' asValue.

classes := SelectionInList with: Smalltalk classNames.

This lis t . . .

. . . is connected
to this editor

Connecting a List to a Text Editor

VisualWorks Cookbook, Rev. 2.0 201

classes selectionIndexHolder
onChangeSend: #changedClass to: self. "Basic Step 1"

textStyle := #plain asValue.
textStyle onChangeSend: #changedStyle to: self.

readOnly := false asValue.
readOnly onChangeSend: #changedReadOnly to: self.

2. Use a System Browser to create the change method (changed-
Class) in the application model. This method tests whether
anything is selected in the list (classes) and then updates the
text editor’s value holder (comment) appropriately.

changedClass "Basic Step 2"
"When the list selection changes, update the comment view."

| selectedClass txt start wrapper |
selectedClass := self classes selection.

selectedClass isNil
ifTrue: [self comment value: '' asText]
ifFalse: [

txt := (Smalltalk at: selectedClass) comment.

self comment
value: txt.

"Find and highlight the class name in the text."
start := txt

indexOfSubCollection: selectedClass asString
startingAt: 1.

start > 0
ifTrue: [

wrapper := (self builder componentAt: #comment).
wrapper widget controller

selectAndScrollFrom: start
to: start + selectedClass asString size - 1.

wrapper takeKeyboardFocus]].

Chapter 10 Lists

202 VisualWorks Cookbook, Rev. 2.0

See Also
■ “Adding a Text Editor” on page 172

VisualWorks Cookbook, Rev. 2.0 203

Chapter 11

Datasets

Adding a Dataset 204
Selecting Columns While Painting 209
Adding a Row 210
Connecting Data to a Dataset 212
Enhancing Column Labels 213

Chapter 11 Datasets

204 VisualWorks Cookbook, Rev. 2.0

Adding a Dataset

Strategy

A dataset presents a list of similar objects for a user to edit. In
appearance, datasets are similar to tables in that both kinds of
widget presents information in tabular form. However, datasets
present data in cells that can be edited directly, whereas tables
require that changes be entered indirectly through separate
input fields. Furthermore, datasets are best suited for
presenting similar kinds of data, whereas a table can present a
possibly disparate assortment of data in a collection that allows
two-dimensional access.

A dataset uses a SelectionInList to hold the list of objects to be
displayed, along with information about the current selection.
Each object in the list is displayed in its own row, with indi-
vidual aspects of the object displayed in their own columns. As
shown in the basic steps, you use the Properties Tool to specify
the means by which each column presents its data—through
cells that contain read-only fields, editable fields, combo boxes,
or checkboxes.

The variants show you how to resize the dataset’s columns and
change the order of the columns while painting the canvas.

row labels

dataset widget

Adding a Dataset

VisualWorks Cookbook, Rev. 2.0 205

Basic Steps

Online example: Dataset1Example

In this example, you create a dataset that displays instances of
an Employee class. An Employee consists of three objects (name,
empNo, and citizen), which are to be presented in three dataset
columns.

1. Use the Palette to add the dataset widget to the canvas.
Leave the dataset selected.

2. In the Properties Tool, fill in the dataset’s Aspect property
with the name of the method (dsvList) that will supply an
instance of SelectionInList. Apply the property.

3. Use the define command to add the dsvList instance variable
to the application model and to create the dsvList method in
an aspects protocol.

The dsvList method returns a SelectionInList object that will
eventually hold the list to be displayed. This method also
sets up the SelectionInList so it will cause a user’s selection to
be put in a separate value holder (selectedRow).

4. In the dataset’s properties, click the New Column button for
each column you want in the dataset. In this example, click
the button three times to add three columns to the canvas.

5. In the canvas, <Control>-click in the leftmost column to
select it.

6. In the Properties Tool, display the dataset’s Column property
page. The properties you set on this page will apply to the
currently selected column.

7. On the Column page, enter Name as the Label property. This
creates a visual label above the selected column, which is to
display employee names.

8. On the Column page, enter selectedRow name in the Aspect field.
selectedRow refers to the value holder that will hold the object
(the Employee) selected by the user. name refers to the aspect
of Employee that is displayed in this column.

9. On the Column page, select Input Field as the Type. This causes
each cell in the selected column to display its data in an
editable input field. Note that you can optionally specify
nondefault characteristics for these input fields by filling in
properties on the Column Type page.

Chapter 11 Datasets

206 VisualWorks Cookbook, Rev. 2.0

10. <Control>-click on the middle column to select it.

11. On the Column page, enter Employee Number as the Label and
selectedRow empNo as the Aspect. Select Input Field as the Type.

12. <Control>-click on the rightmost column to select it.

13. On the Column page, enter U.S. Citizen as the Label and
selectedRow citizen as the Aspect. Select Check Box as the Type.

14. When the all properties have been applied, install the
canvas.

15. Use the define command to add the selectedRow instance
variable to the application model and to create the
selectedRow method in the aspects protocol.

The selectedRow method returns a value holder for holding
the user-selected Employee object from the SelectionInList.

16. Use a browser to initialize the dataset (in an initialize method
in an initialize-release protocol).

initialize "Basic Step 16"
| aList |
aList := List new.
aList add: Employee new initialize.
self dsvList list: aList.

When you open the application, the dataset contains one empty
row. You can type a name and number in the Name and Employee
Number columns, and select the U.S. Citizen check box.

Note that the first part of the Aspect setting for each column
must be the same as the message sent by the SelectionInList to
obtain a value holder for storing the selected object. You used
selectedRow in steps 8, 11, and 13, because that name is used in
the generated dsvList method that sets up the SelectionInList (step
3). To use a name other than selectedRow, you must replace
selectedRow with the desired name in each Aspect field and in the
code generated for dsvList in step 3. Use the define command (as
in step 15) to generate an instance variable and method with
the new name.

Adding a Dataset

VisualWorks Cookbook, Rev. 2.0 207

Variants

V1. Changing Column Widths

By default, all columns have a width of 80 pixels. You can set
specific widths in the dataset’s Column properties. You can also
change the column widths by editing the dataset in the canvas.
For example, to resize the Employee Number column:

1. In the canvas, <Control>-click in the Employee Number column
to select it.

2. Place the cursor near the right margin of the column.

3. <Control>-click and hold down the mouse button. If neces-
sary, move the pointer toward the right margin of the
selected column until the cursor changes appearance.

4. Drag the cursor to the right to widen the column; drag the
cursor to the left to make the column narrower.

5. Install the canvas.

V2. Changing the Column Order

You can switch the order of a dataset’s columns by editing it in
the canvas. For example, to switch the order of the Employee
Number and U.S. Citizen columns:

1. In the canvas, <Control>-click in the Employee Number column
to select it.

2. Place the cursor on the drag handle within the selected
column.

3. Click on the handle and drag it toward the U.S. Citizen
column.

4. Install the canvas.

V3. Disabling Column Scrolling

You can set a dataset’s columns so that they cannot be scrolled
horizontally. This is useful if you want to keep one or more
columns displayed on the dataset at all times, while the others
continue to scroll.

Chapter 11 Datasets

208 VisualWorks Cookbook, Rev. 2.0

1. To disable scrolling for a column (and all columns to the left
of it), select that column and click the Fixed check box in the
Column properties.

2. Apply the property and install the canvas.

See Also
■ “Selecting Columns While Painting” on page 209

Selecting Columns While Painting

VisualWorks Cookbook, Rev. 2.0 209

Selecting Columns While Painting

Strategy

You must select a column before you can set its properties.

Basic Steps
1. Select the dataset on the canvas.

2. Place the cursor inside one of the columns of the dataset.

3. Hold down the <Control> key while clicking the <Select>
mouse button.

Variant

V1. Moving the Selection to Another Column
1. Select a column in the dataset using the basic steps.

2. Click the <Select> mouse button for subsequent column
selections.

If you then select another widget on the canvas, you must
repeat the basic steps to reselect a dataset column.

V2. Scrolling Dataset Columns

You can scroll the columns in the dataset you are painting:

1. Select a column in the dataset.

2. Press <Control> while using the mouse to move the scroll
bars on the dataset.

selected column

Chapter 11 Datasets

210 VisualWorks Cookbook, Rev. 2.0

Adding a Row

Strategy

When the number of rows needed for a dataset is not predeter-
mined, you can program your application to add rows while it
is running.

Basic Steps

Online example: Dataset2Example

1. Use the Palette to add an action button to a canvas
containing a dataset. Leave the button selected.

2. In the Properties Tool, enter Add Row as the button’s Label
property and addRow as the button’s Action property. Apply
the properties and install the canvas.

3. Using the define command or a System Browser, add the
instance method addRow in the actions protocol. This method
adds a new object to the list displayed by the dataset. This,
in turn, adds a new row to the dataset.

addRow "Basic Step 3"
(dsvList list) add: Employee new

row marker

Adding a Row

VisualWorks Cookbook, Rev. 2.0 211

Variant

Adding a Row Marker

A row marker indicates which row is selected within a dataset.
It is used in place of row highlighting. To add a row marker,
select Row Selector on the dataset’s Details properties. The marker
appears as the first column within the dataset.

Chapter 11 Datasets

212 VisualWorks Cookbook, Rev. 2.0

Connecting Data to a Dataset

Strategy

An initially empty dataset is sufficient if you want users to
input the data after the application is open. However, some
applications require their datasets to display data initially.

Basic Step

Online example: Dataset3Example

➤ In the application model, create an initialize method that
provides the data for your dataset.

initialize
| aList anEmp |
aList := List new.

"The aspect for the dataset should be a list of Employee instances.
Create an employee to put in the list."
anEmp := Employee new initialize.
anEmp name: 'Tami Hayes'; empNo: '341-2'; citizen: true.
aList add: anEmp.

"Create an employee to put in the list."
anEmp := Employee new initialize.
anEmp name: 'Leo Mazon'; empNo: '786-9'; citizen: false.
aList add: anEmp.

"Set the list for the dataset aspect. This list appears when you start."
self dsvList list: aList.
super initialize.

Enhancing Column Labels

VisualWorks Cookbook, Rev. 2.0 213

Enhancing Column Labels

Strategy

When you specify a column label by entering a string in the
Label property, it appears on one line. If a column label is partic-
ularly long, you can split the label so that it appears on two
lines. You do this by providing a text that contains the appro-
priate carriage returns.

Basic Steps

Online example: Dataset4Example

To split the Employee Number column label:

1. Create a class method (number) in a resources protocol of the
application model. This method returns a composed text
that is to appear as the label.

number "Basic Step 1"
^('Employee

Number' asText allBold) asComposedText

2. In the canvas, select the Employee Number column of the
dataset.

3. In the Properties Tool, enter number as the Label in the Column
properties.

enhanced column label

Chapter 11 Datasets

214 VisualWorks Cookbook, Rev. 2.0

4. Select the Image check box next to Label. This specifies that
the column label will come from the resource method
named in the Label property.

5. Apply the properties and install the canvas.

Variant

Changing label colors
➤ To change the color of the column label, follow the basic

steps, and then edit the number method to set the desired
color.

number "Variant Step"
^('Employee
Number' asText emphasizeAllWith: (Array

with: #bold with: #color->ColorValue red)) asComposedText

VisualWorks Cookbook, Rev. 2.0 215

Chapter 12

Tables

Using TableInterface 216
Adding a Table 217
Connecting a Table to an Input Field 221
Labeling Columns and Rows 223

Chapter 12 Tables

216 VisualWorks Cookbook, Rev. 2.0

Using TableInterface

Strategy

Each basic widget, such as a field or label, requires only a
simple value model for managing its data, which is usually just
a single object such as a text, a number, and so on. In contrast,
a table requires a relatively complex auxiliary object. This
object, which is an instance of TableInterface, holds information
about row and column labeling and formatting in addition to
the table data itself.

Within a TableInterface, the table data is held by a composite
object, an instance of SelectionInTable. This object holds the collec-
tion of cell contents and the selection index. The collection is
expected to be a TwoDList (two-dimensional list), which converts
a flat collection such as an array into a matrix of rows and
columns. Alternatively, you can use a TableAdaptor to adapt a
collection.

All of this interface machinery can be held by a single instance
variable in the application model, and you can simply send
messages to that object to fetch the table or the selection or any
other aspect of it. However, you may find it economical to create
instance variables to hold onto various aspects of the table
interface. For example, the SelectionInTable is useful when your
application model will need to access the contents of the table
at run time.

Adding a Table

VisualWorks Cookbook, Rev. 2.0 217

Adding a Table

Strategy

A table is familiar to you if you have used a spreadsheet
program. It is useful for presenting data that fits into a rows-
and-columns structure. In appearance, tables are similar to
dataset widgets. However, tables can present dissimilar kinds
of data, provided that this data is in a collection that allows
two-dimensional access. Furthermore, tables are best suited
for presenting data that is unlikely to be edited. In contrast, a
dataset is best for presenting a list of similar objects that a user
can edit.

By default, a table is bordered and has both vertical and hori-
zontal scroll bars. You can selectively turn off these features in
the properties dialog. You can also set the font to be used with
text that is displayed in the table cells, connect an <Operate>
menu to the table, and turn on vertical and horizontal grid lines
to separate rows and columns.

A table needs a special kind of container in which to store its
collection of cells. Typically, it keeps the container in an
instance variable of the application model. The first step in
connecting the table to a model is to identify the method that
the table must use to get the container from the model. To
identify that method, enter its name in the Aspect field of the
properties dialog. Then install the canvas.

In broad terms, you must create at least the following frame-
work in the application model. Note that the canvas’ define
command creates an Aspect variable and accessing method.

table widget

Chapter 12 Tables

218 VisualWorks Cookbook, Rev. 2.0

■ Add an instance variable for storing descriptive information
about the table (a TableInterface) and, optionally, a second
variable for storing the table’s contents (a SelectionInTable).

■ Create an initialize method in which the instance variables are
initialized.

■ Create the Aspect method, which simply returns the object
held by the table-interface variable.

Basic Steps

Table1Example creates a table of UFO sightings for the past three
years. This table will have a separate row for each type of space-
craft.

Online example: Table1Example

1. Use a Palette to add a table widget to the canvas. Leave the
table selected.

2. In the Properties Tool, enter tableInterface as the Aspect. Turn
on both horizontal and vertical grid lines. Apply the proper-
ties and install the canvas.

3. Use the canvas’ define command or a System Browser to add
the instance variables sightingsTable and tableInterface.

4. Use the canvas’ define command or a System Browser to
create the instance methods sightingsTable and tableInterface in
an accessing protocol.

sightingsTable "Basic Step 4"
^sightingsTable

tableInterface "Basic Step 4"
^tableInterface

5. Using a System Browser, initialize the SelectionInTable, usually
in an initialize method in the application model (initialize-release
protocol).

initialize "Basic Step 5"
| list |
super initialize.
"Create a collection of sightings data."

Adding a Table

VisualWorks Cookbook, Rev. 2.0 219

list := TwoDList
on: #('Vulcans' 188 173 192 'Romulans' 26 26 452) copy
columns: 4
rows: 2.

sightingsTable := SelectionInTable with: list.
"Create a table interface and load it with the sightings."
tableInterface := TableInterface new

selectionInTable: sightingsTable.

Open the table interface. Although the data in a table cannot be
edited directly, the next topic will describe how to use an input
field to edit the highlighted cell.

Normally, of course, you wouldn’t initialize the table with a
hard-coded collection—the table data would be gathered from
a database or some other source.

Variants

V1. Controlling Column Widths

By default, all columns have an equal width that is determined
by the space available in the table. If the table expands with the
window, the column widths will also expand. To set specific
widths for the columns, send a columnWidths: message to the table
interface. The argument is an array containing one number for
each column. The number is the width in pixels. Any column
for which no width is specified gets the width of the last entry
in the array.

➤ Reset the widths at any time by adding to the initialize
method.

tableInterface columnWidths: #(100 40). "V1 Step"

In the above example, the first column has been changed so
that it is wide enough to show the entire name of the alien race.
These widths will remain in effect even if the window is
expanded.

Chapter 12 Tables

220 VisualWorks Cookbook, Rev. 2.0

V2. Selecting by Row or Column

By default, a single cell in the table is highlighted when the user
clicks in it. In some applications, it is more appropriate to high-
light the entire row or column in which the cell is located. To
arrange for this, simply turn on row or column Selection in the
table’s properties.

Connecting a Table to an Input Field

VisualWorks Cookbook, Rev. 2.0 221

Connecting a Table to an Input Field

Strategy

A read-only table is sufficient for some applications, but in
many situations the user needs a way to change the contents
of a cell in the table. This can be arranged indirectly by placing
an input field near the table and connecting it to the highlighted
cell. This technique relies on a single cell being selected—
although it still works when row or column selection is enabled,
the effect is not very intuitive.

Basic Steps

Online example: Table2Example

1. In the canvas, add an input field below the table. Leave the
field selected.

2. In a Properties Tool, enter cellContents as the field’s Aspect
property.

3. Use the canvas’ define command or a System Browser to add
an instance variable named cellContents to the UFOtable class.

4. Use the canvas’ define command or a System Browser to
create the instance method named in step 3 (cellContents) in
an aspects protocol.

cellContents "Basic Step 4"
^cellContents

5. Add the instance method changedCell in a change messages
protocol.

changed cell

input field

Chapter 12 Tables

222 VisualWorks Cookbook, Rev. 2.0

changedCell "Basic Step 5"
| cellLocation |
"Get the coordinates of the highlighted cell."
cellLocation := self sightingsTable selectionIndex.
"If a cell is selected, update its contents from the input field."
cellLocation = Point zero

ifFalse: [self sightingsTable table
at: cellLocation
put: self cellContents value]

6. In the application model’s initialize method, initialize the
input field (cellContents).

initialize
| list |
super initialize.
"Create a collection of sightings data."
list := TwoDList

on: #('Vulcans' 188 173 192 'Romulans' 26 26 452) copy
columns: 4
rows: 2.

sightingsTable := SelectionInTable with: list.
"Create a table interface and load it with the sightings."
tableInterface := TableInterface new

selectionInTable: sightingsTable.

cellContents := String new asValue. "Basic Step 6"
self cellContents onChangeSend: #changedCell to: self.

When you run the application, you can use the input field to
edit a selected cell. Notice that when you select a new cell, its
contents are not shown in the input field. To make the field
update its contents when the table selection changes, you must
register interest in the table selection with onChangeSend: and
trigger an update in the input field. In effect, the table selection
and the input field would be watching each other for updates.

Labeling Columns and Rows

VisualWorks Cookbook, Rev. 2.0 223

Labeling Columns and Rows

Strategy

You can label one or more columns by sending an array of
labels to the table interface. For row labels, you need to send an
array of labels and also an indication of the width of those
labels.

Basic Step

Online example: Table3Example

➤ Add code to the end of Table2Example’s initialize method that
initializes the row and column labels.

tableInterface "Basic Step"
columnLabelsArray: #('Visiting Race' '1992' '1993' '1994');
rowLabelsArray: #(1 2);
rowLabelsWidth: 20.

Variant

Aligning Data and Labels

By default, all cells display their contents beginning at the left
margin, and all labels are centered. You can align data and
labels using any of three symbols: #left, #right, #centered, or

column labels

row labels

Chapter 12 Tables

224 VisualWorks Cookbook, Rev. 2.0

#leftWrapped. Using these symbols, you can control the alignment
of a column’s data, a column’s labels, or a row’s labels.

➤ Add code to the initialize method that initializes the label
alignments.

tableInterface "Variant Step"
columnFormats: #(#left #right #right #right);
columnLabelsFormats: #(#left #right #right #right);
rowLabelsFormat: #right.

As the example shows, you can set row labels to the same align-
ment by passing a single symbol as argument, and the same
applies to the column alignments. For column data and labels,
however, you also have the option of setting each column’s
alignment individually, as we have done, by passing an array of
symbols.

VisualWorks Cookbook, Rev. 2.0 225

Chapter 13

Menus

Creating a Menu 226
Creating a Submenu 231
Adding a Menu Bar 233
Adding a Menu Button 236
Adding a Pop-Up Menu 240
Modifying a Menu Dynamically 243
Disabling a Menu Item 248
Adding a Divider to a Menu 250
Adding a Shortcut Key 252
Displaying an Icon in a Menu 254
Changing Menu Colors 257
Using a Menu Editor 259

See Also
■ “Widget Basics” on page 53

Chapter 13 Menus

226 VisualWorks Cookbook, Rev. 2.0

Creating a Menu

Strategy

Menu bars, menu buttons, and pop-up menus all rely on an
underlying instance of Menu. The Menu Editor provides a conve-
nient means of creating a menu and generating a resource
method for recreating the menu on demand. Alternatively, you
can assemble a menu programmatically, which is useful when
the items in the menu must change depending on current
conditions in the application. This chapter primarily shows how
to assemble menus programmatically; the last topic provides
an introduction to using the Menu Editor.

In this topic, the basic steps show how to create a menu of
commands in which each command label is paired with the
name of an action method that is to be sent to the application
model.

The first variant shows how to create a menu of values, which
inserts a value in a value holder rather than executing a
command. Such menus are commonly used by menu buttons.
The second variant shows an alternative menu in which each
item uses a block to perform an action rather than a method.

A menu typically is created by a method in a resources protocol
on the class side of an application model. The resource method
can also be an instance method, which is useful when it relies
on data supplied by a running application.

menu of commands menu of values

Creating a Menu

VisualWorks Cookbook, Rev. 2.0 227

Basic Steps

Creating a Menu of Commands

This type of menu is typically used with a menu bar or popup
menu. In such menus, selecting a menu item causes the asso-
ciated symbol to be sent as a message to the application model.

Online example: MenuCommandExample

1. In a resource method that is responsible for creating the
menu (in the example, fileMenu), create a MenuBuilder by
sending a new message to that class.

2. For each item in the menu, send an add: message to the
menu builder. The argument is an association in which the
label string is paired with the name of an action method
defined in the application model.

3. Get the menu by sending a menu message to the menu
builder. Return that menu as the result of the method.

fileMenu
| mb menu submenu |
mb := MenuBuilder new. "Basic Step 1"

mb
beginSubMenuLabeled: 'File';
add: 'Open' -> #openFile; "Basic Step 2"
line;
add: 'Add' -> #addFile;
add: 'Delete' -> #deleteFile;
endSubMenu.

mb
beginSubMenuLabeled: 'Help';
add: 'Usage' -> #explainUsage;
endSubMenu.

"Add shortcut keys."
menu := mb menu. "Basic Step 3"
submenu := (menu menuItemLabeled: 'File') submenu.
(submenu menuItemLabeled: 'Open') shortcutKeyCharacter: $O.
(submenu menuItemLabeled: 'Add') shortcutKeyCharacter: $A.

Chapter 13 Menus

228 VisualWorks Cookbook, Rev. 2.0

(submenu menuItemLabeled: 'Delete') shortcutKeyCharacter: $D.

^menu "Basic Step 3"

Variants

V1. Creating a Menu of Values

This type of menu is typically used with a menu button. In such
menus, selecting a menu item causes the associated value to be
sent to a value holder (see “Adding a Menu Button” in this
chapter).

Online example: MenuValueExample

1. In a menu-creating instance method (in this example,
templatesMenuForMenuButton), create a MenuBuilder by sending a new
message to that class.

2. For each menu item, send an add: message to the menu
builder. The argument is an association between the item’s
label string and the value to be sent to a value holder. In
this case, the value is a textual template that the menu
button puts into its value holder.

3. Get the menu from the menu builder by sending a menu
message to the menu builder, and return the menu as the
result of the method.

templatesMenuForMenuButton
| mb |
mb := MenuBuilder new. "V1 Step 1"

mb
add: 'First Notice' -> self class firstNotice; "V1 Step 2"
add: 'Second Notice' -> self class secondNotice;
add: 'Final Notice' -> self class finalNotice.

^mb menu "V1 Step 3"

Creating a Menu

VisualWorks Cookbook, Rev. 2.0 229

V2. Creating a Menu of Action Blocks

You can use a menu of action blocks to provide a menu of
values for a menu bar or pop-up menu. Each block causes the
menu item to put a particular value in a value holder in
response to the user’s selection.

Online example: MenuValueExample

1. In a menu-creating instance method (templatesMenuForMenuBar),
create a menu builder by sending a new message to the
MenuBuilder class. An instance method is used here because
information is needed from the application model instance.

2. For each menu item, send an add: message to the menu
builder. The argument is an association between the item’s
label string and the block that is to perform the desired
action. In this case, the block inserts a textual template in
the value holder for a text editor.

3. Get the menu from the menu builder using a menu message
and return it as the result of the menu-creating method.

templatesMenuForMenuBar
| mb menu submenu |
mb := MenuBuilder new. "V2 Step 1"

mb
beginSubMenuLabeled: 'Templates';
add: ' ' -> [self letter value: self class firstNotice]; "V2 Step 2"
add: ' ' -> [self letter value: self class secondNotice];
add: ' ' -> [self letter value: self class finalNotice];
endSubMenu.

"Add graphic labels."
menu := mb menu. "V2 Step 3"
submenu := (menu menuItemLabeled: 'Templates') submenu.
(submenu menuItemAt: 1)

labelImage: (self class oneImage).
(submenu menuItemAt: 2)

labelImage: (self class twoImage).
(submenu menuItemAt: 3)

labelImage: (self class threeImage).

"Set the background color."

Chapter 13 Menus

230 VisualWorks Cookbook, Rev. 2.0

submenu backgroundColor: ColorValue chartreuse.

^menu "V2 Step 3"

See Also
■ “Adding a Menu Bar” on page 233

■ “Adding a Menu Button” on page 236

■ “Adding a Pop-Up Menu” on page 240

■ “Using a Menu Editor” on page 259

Creating a Submenu

VisualWorks Cookbook, Rev. 2.0 231

Creating a Submenu

Strategy

A menu can be nested inside another menu, as shown in the
basic steps. This nesting can be repeated, creating a hierar-
chical menu structure. Nesting beyond a second level begins to
decrease the usability of your application, however.

Submenus are used in the construction of menu bars, which
use a submenu for the contents of each menu bar item.

Basic Steps

Online example: MenuCommandExample

1. Send a beginSubMenuLabeled: message to the menu builder that
you have created to assemble the menu. The argument is
the label for the submenu, which appears in the parent
menu.

2. For each submenu item, send an add: message to the menu
builder. The argument is an association in which a label
string is paired with a method name, value, or block.

3. Send an endSubMenu message to the menu builder.

fileMenu
| mb menu submenu |
mb := MenuBuilder new.

mb
beginSubMenuLabeled: 'File'; "Basic Step 1"
add: 'Open' -> #openFile; "Basic Step 2"

Chapter 13 Menus

232 VisualWorks Cookbook, Rev. 2.0

line;
add: 'Add' -> #addFile;
add: 'Delete' -> #deleteFile;
endSubMenu. "Basic Step 3"

mb
beginSubMenuLabeled: 'Help';
add: 'Usage' -> #explainUsage;
endSubMenu.

"Add shortcut keys."
menu := mb menu.
submenu := (menu menuItemLabeled: 'File') submenu.
(submenu menuItemLabeled: 'Open') shortcutKeyCharacter: $O.
(submenu menuItemLabeled: 'Add') shortcutKeyCharacter: $A.
(submenu menuItemLabeled: 'Delete') shortcutKeyCharacter: $D.

^menu

Adding a Menu Bar

VisualWorks Cookbook, Rev. 2.0 233

Adding a Menu Bar

Strategy

A menu bar appears to the user as a set of separate menus
across the top edge of a window. The items in these menus typi-
cally give the user access to the commands that are available in
the application window.

A menu bar is actually implemented with a single menu object.
The menu labels displayed across the menu bar are top-level
menu items in the menu object. The contents of the apparently
separate menus are actually submenus associated with the
top-level menu items.

A menu bar is normally a menu of commands, although you
can implement it to behave like a menu of values. As a menu of
commands (basic steps), the menu bar responds to the selec-
tion of a menu item by sending the associated symbol as a
message to the application model. To implement a menu of
values (variant), you program each menu item to put a value
into a value holder.

Basic Steps

Online example: MenuCommandExample

1. In the canvas for the window, make sure no widget is
selected.

2. In a Properties Tool, turn on the Enable switch for the Menu
Bar property.

menu bar

Chapter 13 Menus

234 VisualWorks Cookbook, Rev. 2.0

3. In the Menu field, enter the name of the menu-creation
method (in the example, fileMenu).

4. Create the resource method that you named in step 3
(fileMenu). This method must return an instance of Menu in
which each top-level label is associated with a submenu.

fileMenu "Basic Step 4"
| mb menu submenu |
mb := MenuBuilder new.

mb
beginSubMenuLabeled: 'File';
add: 'Open' -> #openFile;
line;
add: 'Add' -> #addFile;
add: 'Delete' -> #deleteFile;
endSubMenu.

mb
beginSubMenuLabeled: 'Help';
add: 'Usage' -> #explainUsage;
endSubMenu.

"Add shortcut keys."
menu := mb menu.
submenu := (menu menuItemLabeled: 'File') submenu.
(submenu menuItemLabeled: 'Open') shortcutKeyCharacter: $O.
(submenu menuItemLabeled: 'Add') shortcutKeyCharacter: $A.
(submenu menuItemLabeled: 'Delete') shortcutKeyCharacter: $D.

^menu

5. Create the action methods that are invoked by the menu
items.

Adding a Menu Bar

VisualWorks Cookbook, Rev. 2.0 235

Variant

Creating a Menu Bar That Inserts a Value

Online example: MenuValueExample

➤ In the method that is responsible for creating the menu
(templatesMenuForMenuBar), send an add: message to the menu
builder for each item in the menu. The argument is an
association in which a label string is paired with a block.
The block is responsible for inserting the desired value in
the desired value holder.

templatesMenuForMenuBar
| mb menu submenu |
mb := MenuBuilder new.

mb
beginSubMenuLabeled: 'Templates';
add: ' ' -> [self letter value: self class firstNotice]; "Variant Step"
add: ' ' -> [self letter value: self class secondNotice];
add: ' ' -> [self letter value: self class finalNotice];
endSubMenu.

"Add graphic labels."
menu := mb menu.
submenu := (menu menuItemLabeled: 'Templates') submenu.
(submenu menuItemAt: 1)

labelImage: (self class oneImage).
(submenu menuItemAt: 2)

labelImage: (self class twoImage).
(submenu menuItemAt: 3)

labelImage: (self class threeImage).

"Set the background color."
submenu backgroundColor: ColorValue chartreuse.

^menu

Chapter 13 Menus

236 VisualWorks Cookbook, Rev. 2.0

Adding a Menu Button

Strategy

A menu button is a visual representation of a set of menu items.
It is similar to a submenu in a menu bar, but with two advan-
tages: it can be placed anywhere in the canvas, and its label can
change to reflect the current selection. A menu button is more
visible to the user than a pop-up menu, but it uses space in the
canvas.

A menu button can present either a menu of values (first
variant) or a menu of commands (second variant). In either
case, the menu button sends a value to a value model (usually
a value holder) in response to a user’s selection. For a menu of
values, you program the application model to process the
values as desired. For a menu of commands, you program the
application model to treat these values as messages that invoke
action methods.

Variants

V1. Adding a Menu Button with a Menu of Values

Online example: MenuValueExample

1. Use the Palette to add a menu button widget to the canvas.

2. In the button’s Label property, enter the desired label, which
will appear on the menu button. Leaving the Label blank
causes the current selection to appear on the menu button
while the application is running.

menu button

Adding a Menu Button

VisualWorks Cookbook, Rev. 2.0 237

3. In the button’s Aspect property, enter the name of the
method that returns the value holder (in the example, letter).

4. In the menu button’s Menu property, enter the name of the
resource method that returns a menu of values (templates-
MenuForMenuButton).

5. Use the define command or a System Browser to add an
instance variable (letter) to the application model
(MenuValueExample).

6. Use a System Browser to add a method (letter), in an aspects
protocol, that returns the contents of the instance variable.

letter "V1 Step 6"
^letter

7. Use a System Browser to create an initialize method, in an
initialize-release protocol, that initializes the aspect variable .

initialize "V1 Step 7"
letter := self class firstNotice asValue.
letter onChangeSend: #setCheckMark to: self.

8. Use a Menu Editor or a System Browser to create a
resource method (templatesMenuForMenuButton) that creates a
menu of values.

templatesMenuForMenuButton "V1 Step 8"
| mb |
mb := MenuBuilder new.

mb
add: 'First Notice' -> self class firstNotice;
add: 'Second Notice' -> self class secondNotice;
add: 'Final Notice' -> self class finalNotice.

^mb menu

Chapter 13 Menus

238 VisualWorks Cookbook, Rev. 2.0

V2. Adding a Menu Button with a Menu of Commands

Online example: MenuCommandExample

1. Use the Palette to add a menu-button widget to the canvas.

2. In the button’s Label property, enter the desired label, which
will appear on the menu button. Leaving the Label blank
causes the current selection to appear on the menu button
while the application is running.

3. In the button’s Aspect property, enter the name of the
method that returns a value holder (in the example, action).

4. In the menu button’s Menu property, enter the name of the
resource method that returns a menu of commands
(templatesMenuForMenuButton).

5. Use the define command or a System Browser to add an
instance variable (action) to the application model
(MenuCommandExample).

6. Use a System Browser to add a method (action), in an aspects
protocol, that returns the contents of the instance variable .

action "V2 Step 6"
^action

7. Use a System Browser to create an initialize method, in an
initialize-release protocol, that initializes the aspect variable.
Also in the initialize method, send an onChangeSend:to: message
to the value holder (action); the first argument is the name of
a method that performs the command (performAction), and the
second argument is typically the application model.

initialize "V2 Step 7"
files := SelectionInList new.
files selectionIndexHolder onChangeSend: #configureMenu to: self.

action := nil asValue.
action onChangeSend: #performAction to: self.

8. Use a System Browser to add a method that performs the
currently selected action (performAction).

Adding a Menu Button

VisualWorks Cookbook, Rev. 2.0 239

performAction "V2 Step 8"
self perform: self action value.

9. Use a Menu Editor or a System Browser to create a
resource method (fileMenu) that creates a menu of
commands.

fileMenu "V2 Step 9"
| mb menu submenu |
mb := MenuBuilder new.

mb
beginSubMenuLabeled: 'File';
add: 'Open' -> #openFile;
line;
add: 'Add' -> #addFile;
add: 'Delete' -> #deleteFile;
endSubMenu.

mb
beginSubMenuLabeled: 'Help';
add: 'Usage' -> #explainUsage;
endSubMenu.

"Add shortcut keys."
menu := mb menu.
submenu := (menu menuItemLabeled: 'File') submenu.
(submenu menuItemLabeled: 'Open') shortcutKeyCharacter: $O.
(submenu menuItemLabeled: 'Add') shortcutKeyCharacter: $A.
(submenu menuItemLabeled: 'Delete') shortcutKeyCharacter: $D.

^menu

10. Use a System Browser to create each of the action methods.

Chapter 13 Menus

240 VisualWorks Cookbook, Rev. 2.0

Adding a Pop-Up Menu

Strategy

Several widgets, notably lists and text editors, provide a pop-up
menu in response to the <Operate> mouse button.

The underlying menu is typically a menu of commands,
although you can implement it to behave like a menu of values.
As a menu of commands (basic steps), the pop-up menu
responds to the selection of a menu item by sending the asso-
ciated symbol as a message to the application model. To imple-
ment a menu of values (variant), you program each menu item
to put a value into a value holder.

Basic Steps

Online example: MenuCommandExample

1. In the Menu property of the widget, enter the name of the
method that returns a menu of commands (in the example,
fileMenu).

2. Use a Menu Editor or a System Browser to create a method
that returns a menu such as fileMenu.

fileMenu "Basic Step 2"
| mb menu submenu |
mb := MenuBuilder new.

mb
beginSubMenuLabeled: 'File';
add: 'Open' -> #openFile;

pop-up menu

Adding a Pop-Up Menu

VisualWorks Cookbook, Rev. 2.0 241

line;
add: 'Add' -> #addFile;
add: 'Delete' -> #deleteFile;
endSubMenu.

mb
beginSubMenuLabeled: 'Help';
add: 'Usage' -> #explainUsage;
endSubMenu.

"Add shortcut keys."
menu := mb menu.
submenu := (menu menuItemLabeled: 'File') submenu.
(submenu menuItemLabeled: 'Open') shortcutKeyCharacter: $O.
(submenu menuItemLabeled: 'Add') shortcutKeyCharacter: $A.
(submenu menuItemLabeled: 'Delete') shortcutKeyCharacter: $D.

^menu

3. Use a System Browser to create each of the action methods
named in the menu of commands.

Variant

Adding a Pop-Up Menu of Values

Online example: MenuValueExample

1. In the Menu property of the widget, enter the name of the
method that returns a menu of values (templatesMenuForPopUp).

2. Use a Menu Editor or System Browser to create the menu
method (templatesMenuForPopUp). In the menu, each item label
is paired with a block in which the widget’s aspect variable
(letter) is updated with the desired value.

templatesMenuForPopUp "Variant Step 2"
| mb |
mb := MenuBuilder new.

mb
add: 'First Notice' -> [self letter value: self class firstNotice];
add: 'Second Notice' -> [self letter value: self class secondNotice];

Chapter 13 Menus

242 VisualWorks Cookbook, Rev. 2.0

add: 'Final Notice' -> [self letter value: self class finalNotice].

^mb menu

Modifying a Menu Dynamically

VisualWorks Cookbook, Rev. 2.0 243

Modifying a Menu Dynamically

Strategy

Sometimes a menu needs to change depending on conditions
within the application. In the Resource Finder, for example, one
set of menu items is displayed when an application is selected
and another set is displayed when there is no selection.

The first variant shows how to substitute one menu for another.
This is useful when the changes in a menu are major.

The second and third variants show how to add and remove
menu items individually. This is useful when the changes are
minor; however, this approach has the limitation that items are
appended to the end of the menu.

The fourth variant shows how to temporarily hide and later
reveal a menu item, preserving its position in the menu. This is
useful when an item is to be repeatedly removed and
reinstated.

Variants

V1. Substituting a Different Menu

Online example: MenuSwapExample

1. In the Menu property of the widget, enter the name of a
method that returns a value holder containing a menu (in
the example, menuHolder).

Chapter 13 Menus

244 VisualWorks Cookbook, Rev. 2.0

2. In the application model, create an instance variable to hold
the menu in a value holder (menuHolder).

3. Use a System Browser to create a method (menuHolder) that
returns the value of the instance variable.

menuHolder "V1 Step3"
^menuHolder

4. Use a Menu Editor or System Browser to create the starting
menu (nothingSelectedMenu) and the alternate menu
(colorSelectedMenu).

nothingSelectedMenu "V1 Step 4"
| mb |
mb := MenuBuilder new.
mb add: 'Add At Bottom' -> #unimplemented;

line;
add: 'Delete All' -> #unimplemented.

^mb menu

colorSelectedMenu "V1 Step 4"
| mb |
mb := MenuBuilder new.
mb add: 'Add Above' -> #unimplemented;

line;
add: 'Delete' -> #unimplemented;
add: 'Delete All' -> #unimplemented.

^mb menu

5. Use a System Browser to create an initialize method that gets
the starting menu, puts it in a value holder, and assigns the
holder to the instance variable.

initialize
colors := SelectionInList with: ColorValue constantNames.
colors selectionIndexHolder onChangeSend: #selectionChanged to: self.

menuHolder := self nothingSelectedMenu asValue. "V1 Step 5"

Modifying a Menu Dynamically

VisualWorks Cookbook, Rev. 2.0 245

6. Create a method (selectionChanged) that tests to see which
menu should be used and then puts the correct menu in
the menu holder.

selectionChanged "V1 Step 6"
self colors selection isNil

ifTrue: [self menuHolder value: self nothingSelectedMenu]
ifFalse: [self menuHolder value: self colorSelectedMenu]

7. Arrange for the menu-changing method to be invoked when
the relevant condition changes in the application. (In the
example, an onChangeSend:to: message in the initialize method
accomplishes this.)

V2. Adding an Item to a Menu

Online example: MenuModifyExample

1. Get the menu by sending a menuAt: message to the applica-
tion model’s builder. The argument is the name of the menu
as identified in the Menu property.

2. Send an addItemLabel:value: message to the menu. The first
argument is the label string and the second argument is a
command, a value, or an action block.

addTitle
"Prompt for a new job title and add it to the list."

| newTitle jMenu |
newTitle := Dialog request: 'New title?'.
newTitle isEmpty ifTrue: [^self].

jMenu := self builder menuAt: #jobTitlesMenu. "V2 Step 1"
jMenu addItemLabel: newTitle value: newTitle asSymbol. "V2 Step 2"

self jobTitle value: newTitle asSymbol.

Chapter 13 Menus

246 VisualWorks Cookbook, Rev. 2.0

V3. Removing an Item from a Menu

Online example: MenuModifyExample

1. Get the menu by sending a menuAt: message to the applica-
tion model’s builder. The argument is the name of the menu
as specified in the Menu property.

2. Get the item to be deleted by sending a menuItemLabeled:
message to the menu. The argument is the label string of
the menu item. (If the item is in a submenu, you must first
access the submenu and get the item from it.)

3. Send a removeItem: message to the menu. The argument is the
menu item from the previous step.

4. In the case of a menu button in which the current selection
is displayed (that is, a menu button whose Label property is
blank), make sure the button’s value holder has a valid
value. If necessary, choose a new value to displace the
deleted menu item’s value.

deleteTitle
"Prompt for a title and remove it from the list."

| jMenu removableTitles title item |
jMenu := self builder menuAt: #jobTitlesMenu. "V3 Step 1"

"Don't permit the president to be overthrown."
removableTitles := jMenu labels

reject: [:nextTitle | nextTitle = 'President'].

title := Dialog
choose: 'Delete Title'
fromList: removableTitles
values: removableTitles
lines: 8
cancel: [^nil]
for: ScheduledControllers activeController view.

item := jMenu menuItemLabeled: title. "V3 Step 2"
jMenu removeItem: item. "V3 Step 3"

"If the deleted title is showing, pick the first title."

Modifying a Menu Dynamically

VisualWorks Cookbook, Rev. 2.0 247

self jobTitle value == title asSymbol
ifTrue: [self jobTitle value: #President]. "V3 Step 4"

V4. Hiding a Menu Item

Online example: MenuModifyExample

1. Get the menu by sending a menuAt: message to the applica-
tion model’s builder. The argument is the name of the menu
as specified in the Menu property.

2. Get the item to be deleted by sending a menuItemLabeled:
message to the menu. The argument is the label string of
the menu item. (If the item is in a submenu, you must first
access the submenu and get the item from it.)

3. To hide the item, send a hideItem: message to the menu. The
argument is the menu item from the previous step. If the
item is already hidden, no error occurs.

4. To reveal an item, send an unhideItem: message to the menu.
The argument is the menu item from the previous step. If
the item is already revealed, no error occurs.

adjustBenefitList
"Hide benefit items that are not available to the currently
selected job title."

| bMenu item |
bMenu := self builder menuAt: #benefitsMenu. "V4 Step 1"
item := bMenu menuItemLabeled: 'Golden Parachute'. "V4 Step 2"

"Only the President gets the Golden Parachute."
self jobTitle value == #President

ifTrue: [bMenu unhideItem: item] "V4 Step 4"
ifFalse: [bMenu hideItem: item]. "V4 Step 3"

See Also
■ “Disabling a Menu Item” on page 248

Chapter 13 Menus

248 VisualWorks Cookbook, Rev. 2.0

Disabling a Menu Item

Strategy

Rather than removing a menu item when it is not appropriate
for the user to select it, you can disable it. When disabled, it
appears in a different color in the menu as a visual cue to the
user, and it does nothing when the user tries to select it.
Disabling a menu item is usually preferable to removing it,
especially when the item is likely to be reinstated later.

In MenuCommandExample, menu items are enabled and disabled
depending on whether a file name in a list is selected. The
method that performs this service (configureMenu) is invoked at
two different times: by a postBuildWith: method (to configure the
menu at startup) and whenever the selection changes in the list
(as arranged in the initialize method).

Basic Steps

Online example: MenuCommandExample

1. To disable a menu item, send a disable message to it. This is
typically done after testing some condition in the applica-
tion (in the example, after testing whether anything is
selected in the list).

2. To enable a menu item, send an enable message to it.

configureMenu
"Disable or enable the menu items depending on whether
a file is selected."

disabled item

Disabling a Menu Item

VisualWorks Cookbook, Rev. 2.0 249

| menu submenu |
menu := self builder menuAt: #fileMenu.
submenu := (menu menuItemLabeled: 'File') submenu.

self files selection isNil
ifTrue: [

(submenu menuItemLabeled: 'Open') disable. "Basic Step 1"
(submenu menuItemLabeled: 'Delete') disable]

ifFalse: [
(submenu menuItemLabeled: 'Open') enable. "Basic Step 2"
(submenu menuItemLabeled: 'Delete') enable]

See Also
■ “Modifying a Menu Dynamically” on page 243

■ “Using a Menu Editor” on page 259

Chapter 13 Menus

250 VisualWorks Cookbook, Rev. 2.0

Adding a Divider to a Menu

Strategy

When a menu contains several items, it is often helpful to the
user to group the items into functional sets. A submenu is one
way of subdividing a large menu, but a divider line that
provides visual separation is often adequate.

Basic Step

Online example: MenuCommandExample

➤ When creating a menu using a menu builder, send a line
message to the menu builder before adding each new group
of items.

fileMenu
| mb menu submenu |
mb := MenuBuilder new.

mb
beginSubMenuLabeled: 'File';
add: 'Open' -> #openFile;
line; "Basic Step"
add: 'Add' -> #addFile;
add: 'Delete' -> #deleteFile;
endSubMenu.

mb
beginSubMenuLabeled: 'Help';
add: 'Usage' -> #explainUsage;

divider

Adding a Divider to a Menu

VisualWorks Cookbook, Rev. 2.0 251

endSubMenu.

"Add shortcut keys."
menu := mb menu.
submenu := (menu menuItemLabeled: 'File') submenu.
(submenu menuItemLabeled: 'Open') shortcutKeyCharacter: $O.
(submenu menuItemLabeled: 'Add') shortcutKeyCharacter: $A.
(submenu menuItemLabeled: 'Delete') shortcutKeyCharacter: $D.

^menu

See Also
■ “Using a Menu Editor” on page 259

Chapter 13 Menus

252 VisualWorks Cookbook, Rev. 2.0

Adding a Shortcut Key

Strategy

For frequently used commands, it is helpful to provide a
keyboard shortcut or keyboard accelerator—that is, a key
sequence that invokes the command just as if the user had
selected it from the menu. In some operating environments,
every menu command is expected to have a keyboard equiva-
lent. The basic steps show how to add a shortcut key to a menu
bar.

Only a menu bar displays shortcut keys—not a menu button
or a pop-up menu. This is true because only the menu bar is
capable of responding to a keypress no matter where the cursor
is located.

Basic Step

Online example: MenuCommandExample

➤ Send a shortcutKeyCharacter: message to a menu item. The
argument is a character. The uppercase form of the char-
acter will appear in the menu, prefixed by <Alt>, indicating
that the user must press the <Alt> key and the letter key
simultaneously. (The <Alt> key has a different name on
some keyboards.)

fileMenu
| mb menu submenu |
mb := MenuBuilder new.

shortcut key

Adding a Shortcut Key

VisualWorks Cookbook, Rev. 2.0 253

mb
beginSubMenuLabeled: 'File';
add: 'Open' -> #openFile;
line;
add: 'Add' -> #addFile;
add: 'Delete' -> #deleteFile;
endSubMenu.

mb
beginSubMenuLabeled: 'Help';
add: 'Usage' -> #explainUsage;
endSubMenu.

"Add shortcut keys."
menu := mb menu.
submenu := (menu menuItemLabeled: 'File') submenu.
(submenu menuItemLabeled: 'Open')

shortcutKeyCharacter: $O. "Basic Step"
(submenu menuItemLabeled: 'Add')

shortcutKeyCharacter: $A.
(submenu menuItemLabeled: 'Delete')

shortcutKeyCharacter: $D.

^menu

See Also
■ “Sensing Keyboard Activity” on page 416

Chapter 13 Menus

254 VisualWorks Cookbook, Rev. 2.0

Displaying an Icon in a Menu

Strategy

Menu items can have a textual or graphical label.

The basic step shows how to substitute a graphic label for a
textual label or combine the two.

The variant shows a special case in which a check mark or
check box is prefixed to the textual label as a toggle indicator.
This technique is frequently used with a menu item that repre-
sents a setting to indicate whether the condition is on or off.
You can also use it to simulate a set of radio buttons in a menu,
as MenuValueExample does.

Basic Step

Online example: MenuValueExample

➤ Send a labelImage: message to the menu item. The argument
is any visual component, but typically it is a graphic image.
The label string will be displaced to the right to make room
for the image. The label string must have at least one char-
acter (even just a space).

templatesMenuForMenuBar
| mb menu submenu |
mb := MenuBuilder new.

mb
beginSubMenuLabeled: 'Templates';
add: ' ' -> [self letter value: self class firstNotice];

graphic labels

on/off indicator

Displaying an Icon in a Menu

VisualWorks Cookbook, Rev. 2.0 255

add: ' ' -> [self letter value: self class secondNotice];
add: ' ' -> [self letter value: self class finalNotice];
endSubMenu.

"Add graphic labels."
menu := mb menu.
submenu := (menu menuItemLabeled: 'Templates') submenu.
(submenu menuItemAt: 1) "Basic Step"

labelImage: (self class oneImage).
(submenu menuItemAt: 2)

labelImage: (self class twoImage).
(submenu menuItemAt: 3)

labelImage: (self class threeImage).

"Set the background color."
submenu backgroundColor: ColorValue chartreuse.

^menu

Variant

Displaying an On/Off Indicator

Online example: MenuValueExample

1. To display an “on” indicator, send a beOn message to the
menu item. The indicator is a check mark in some looks
and a box in others.

2. To display an “off” indicator, send a beOff message. In some
looks, beOff simply removes the “on” indicator; in others it
displays a different image.

setCheckMark
"In the pop-up menu, set the check box to indicate the currently
displayed template."

| menu item |
menu := self builder menuAt: #templatesMenuForPopUp.

item := menu menuItemAt: 1.
self letter value = self class firstNotice

Chapter 13 Menus

256 VisualWorks Cookbook, Rev. 2.0

ifTrue: [item beOn] "Variant Step 1"
ifFalse: [item beOff]. "Variant Step 2"

item := menu menuItemAt: 2.
self letter value = self class secondNotice

ifTrue: [item beOn]
ifFalse: [item beOff].

item := menu menuItemAt: 3.
self letter value = self class finalNotice

ifTrue: [item beOn]
ifFalse: [item beOff].

See Also
■ “Creating a Graphic Image” on page 658

■ “Using a Menu Editor” on page 259

Changing Menu Colors

VisualWorks Cookbook, Rev. 2.0 257

Changing Menu Colors

Strategy

You can modify the background color of a menu, as shown in
the basic steps. This technique can be used to make all menus
of a particular type appear similar. For example, you might
make the Help menu a distinctive color wherever it occurs.

You can also group related items in a menu by applying a color
to their labels, as shown in the basic steps. This approach is
especially effective when you want to bring attention to the rela-
tionship among items that are not adjacent to one another.

Basic Steps

Online example: MenuModifyExample

1. To color a menu’s background, send a backgroundColor:
message to the menu. The argument is a paint, typically an
instance of ColorValue.

2. To color a menu item’s label, send a color: message to the
menu item. The argument is a paint, typically a ColorValue.

benefitsMenu
| mb menu |
mb := MenuBuilder new.
mb add: 'Health Insurance' -> #health;

add: 'Retirement Fund' -> #retirement;
add: 'Life Insurance' -> #life;
add: 'Stock Options' -> #stock;
add: 'Golden Parachute' -> #parachute.

menu := mb menu.
menu backgroundColor: ColorValue chartreuse. "Basic Step 1"
(menu menuItemLabeled: 'Golden Parachute')

color: ColorValue red. "Basic Step 2"

^menu

Chapter 13 Menus

258 VisualWorks Cookbook, Rev. 2.0

See Also
■ “Creating a Color” on page 686

Using a Menu Editor

VisualWorks Cookbook, Rev. 2.0 259

Using a Menu Editor

Strategy

You can use a Menu Editor to create menus for menu bars,
menu buttons, and pop-up menus. With a Menu Editor, you
can create menus of commands and values (you cannot create
menus of action blocks).

This topic assumes you are using the enhanced Menu Editor.
To use the enhanced menu editor, turn on Use Enhanced Tools on
the UI Options page of the Settings Tool. The enhanced Menu
Editor provides a display in which the menu items appear as
you create them, plus a notebook in which you can specify
various properties for each menu item (label, value, identifier
for programmatic use, shortcut character, graphical image for
use in a label, on/off indicator, and initial states such as
hiddenness).

The basic steps build a menu of values for a menu button. This
menu includes a submenu and has a divider. To display a Menu
Editor for the provided example, make sure that MenuEditorExample
is filed in, then locate it in a Resource Finder, select the colorMenu
resource and click Edit.

The variant shows how to access a menu, a submenu, and their
menu items programmatically.

Chapter 13 Menus

260 VisualWorks Cookbook, Rev. 2.0

Basic Steps

Online example: MenuEditorExample

1. Open an enhanced Menu Editor (for example, from a
Canvas Tool, choose Tools➞Menu Editor).

2. Create the top-level menu. For each item that is to appear
in it, choose Edit➞New Item to create an empty item labeled
<new item>.

3. Select each top-level <new item> and enter its string label in
the Label Default property. Each label appears in the text area
as soon as you accept input in the field (for example, by
tabbing to the next field or pressing the <Return> key). In
the example, create items labeled white, black, and colors.

4. Select each top-level item and enter its value in the Value
property. Each value is turned into a symbol (with a
prepended pound sign #) when you accept input in the field.
In the example, enter values white and black for the first two
items (colors does not need a value because it is the label for
a submenu).

5. Create the submenu. Select the label for the submenu
(colors) and choose Edit➞New Submenu Item to create the first
item in the submenu. Then, choose Edit➞New Item once for
each subsequent submenu item. In this example, create six
items labeled <new item>, all at the same indentation level
under the submenu label.

6. Select each indented <new item> and enter its string label in
the Label property. In this example, create items labeled red,
green, blue, cyan, magenta, and yellow.

7. Select each labeled submenu item and enter its value in the
Value property. In this sample, enter values red, green, blue,
cyan, magenta, and yellow.

8. Add a divider line below an item by selecting that item and
choosing Edit➞Add Line. In the example, add a divider line
below the item labeled black.

9. Pull down the Test menu in the menu bar of the Menu
Editor to test the menu you have created. Adjust any menu
items as needed—for example, use Move➞Left and Move➞Right
to change the level of indentation of the items; use Move➞Up
and Move➞Down to change the order of items.

Using a Menu Editor

VisualWorks Cookbook, Rev. 2.0 261

10. Choose Menu➞Install... to install a specification for the menu
in a resource method of the application model. In this
example, install the menu specification in a colorMenu class
method in MenuEditorExample.

11. In the canvas, select the menu button to which you want to
apply the menu.

12. In a Properties tool, fill in the menu button’s Menu property
with the name of the menu resource (colorMenu). Apply prop-
erties and install the canvas.

Variant

Accessing Menus Programmatically

Online example: MenuEditorExample

1. In an enhanced Menu Editor, select the menu item to be
accessed and fill in its ID: property with an identifying name
key. In the example, use the corresponding color name as
the name key for each item. Install the menu.

2. In a System Browser, create the method that is to access
the menu programmatically (in this example,
disableDarkColors). Get the menu by sending a menuAt: message
to the builder. The argument is the name of the menu’s
resource method (#colorMenu).

3. Get the menu’s collection of menu items by sending a
menuItems message to the menu.

4. Send a nameKey message to each menu item to obtain its
name key. In this example, disable each menu item whose
name key is in the darkColors array.

5. Get the menu item that serves as the label for the submenu
(in this example, get the menu item whose name key is
#colors). To do this, send an atNameKey: message to the menu,
specifying the desired name key (#colors) as the argument.

6. Get the submenu by sending a submenu message to the menu
item returned in step 5.

7. Get the submenu’s menu items by sending a menuItems
message to the submenu. In this example, disable each
submenu item whose name key is in the darkColors array.

Chapter 13 Menus

262 VisualWorks Cookbook, Rev. 2.0

disableDarkColors

| menu submenu darkColors |
darkColors := #(#black #red #blue #magenta).

menu := self builder menuAt: #colorMenu. "Variant Step 2"
menu menuItems do: [:menuItem | "Variant Step 3"

(darkColors includes: menuItem nameKey) "Variant Step 4"
ifTrue: [menuItem disable]].

submenu := (menu atNameKey: #colors) submenu. "Variant Step 5, 6"
submenu menuItems do: [:menuItem | "Variant Step 7"

(darkColors includes: menuItem nameKey)
ifTrue: [menuItem disable]].

VisualWorks Cookbook, Rev. 2.0 263

Chapter 14

Sliders

Adding a Slider 264
Connecting a Slider to a Field 267
Changing the Range Dynamically 270
Changing the Length of the Marker 273
Making a Slider Two-Dimensional 274

See Also
■ “Widget Basics” on page 53

Chapter 14 Sliders

264 VisualWorks Cookbook, Rev. 2.0

Adding a Slider

Strategy

A slider widget simulates the sliding switch that some elec-
tronic devices use for controlling volume, bass level, and other
properties. A slider enables you as the designer of an applica-
tion to define a specific range of legal values, and it enables the
user to conveniently select a value within that range.

Basic Steps

Online example: Slider1Example (the Destination slider)

1. Use a Palette to add a slider widget to the canvas. Leave the
slider selected.

2. In the Properties Tool, fill in the slider’s Aspect property with
the name of the method (destination) that will supply a value
model for the slider.

3. Optionally change the Start (0), Stop (4000), and Step (10) prop-
erties, which control the endpoints of the range and the
increment by which the marker will move. The default Start
is 0 and the default Stop is 1. The default Step is nil, giving
the effect of continuous marker motion.

4. Apply the properties and install the canvas.

slider

read-only slider

Adding a Slider

VisualWorks Cookbook, Rev. 2.0 265

5. Use the canvas’s define command or a System Browser to
create an instance variable to hold the slider’s value model
(destination).

6. Use the canvas’s define command or a System Browser to
create a method, in an aspects protocol, for accessing the
instance variable (destination).

destination "Basic Step 6"
^destination

7. Use a System Browser to initialize the variable, usually in
an initialize method, in an initialize release protocol. Initialize the
variable with a value holder whose initial value is the
current year.

initialize
"Destination"
destination := Date today year asValue. "Basic Step 7"

"Current year"
currentYear := Date today year asValue.

"Trip meter"
tripRange := RangeAdaptor

on: currentYear
stop: 4000
grid: 1.

Variants

V1. Making a Slider Vertical

By default, a slider is horizontal in shape, and the marker
moves horizontally as well.

1. To alter the shape of a slider, drag the selection handles of
the widget.

2. To alter the marker’s direction of movement, select the
slider’s Vertical or Horizontal property.

3. Apply the properties and install the canvas.

Chapter 14 Sliders

266 VisualWorks Cookbook, Rev. 2.0

Note that it is possible to have a slider that is horizontal in
shape but vertical in operation.

V2. Making a Slider Read-Only

Although it is normally an input device, a slider can be used
purely as an output device. In Slider1Example, we use a read-only
slider as a meter to display the progress of the user’s time-trav-
eling adventure.

1. Select the slider in the canvas.

2. In a Properties Tool, fill in the slider’s ID property with an
identifying name (tripRange).

3. In a method in the application model (typically postBuildWith:),
get the slider component from the builder and disable it.

postBuildWith: aBuilder
"Disable the trip meter, making it read-only."
(aBuilder componentAt: #tripRange) disable. "V2 Step 3"

Connecting a Slider to a Field

VisualWorks Cookbook, Rev. 2.0 267

Connecting a Slider to a Field

Strategy

Although a slider is both an input and an output device, it typi-
cally gives the user only a rough idea of the current value.
Frequently, a field is used to display the same value precisely.

For example, the Slider1Example uses a field to display the desti-
nation year, because the slider covers such a large range (zero
to 4000) that the user can only guess at its current value.

Unless you make the field read-only, the user has the option of
changing the value by using either the slider or the field.

Nonnumeric slider: By its nature, a slider always manipulates
a numeric value. You can make it appear to manipulate a
nonnumeric value, however, by using a field to display the
transformed value. The variant shows how to do so.

Basic Steps

Online example: Slider1Example (the Destination slider and field)

1. Use a Palette to add a field to the canvas. Leave the field
selected.

field

slider

Chapter 14 Sliders

268 VisualWorks Cookbook, Rev. 2.0

2. In the Properties Tool, fill in the field’s Aspect property with
the same name that the slider uses for its Aspect (destination).

3. In the field’s Type property, select Number.

4. Apply the properties and install the canvas.

Variant

Displaying a Transformed Value in the Field

Online example: Slider2Example (the Month field)

1. In the field’s Aspect property, enter a different method name
than the slider’s Aspect (in the example, the slider’s Aspect is
dateRange while the field’s Aspect is month).

2. In the field’s Type property, select the type that corresponds
to the transformed value (in the example, a month name
will be displayed, so we use a String type field).

3. Use the canvas’ define command or a System Browser to
create the field’s instance variable (month) and accessing
method (month).

month "Variant Step 3"
^month

4. In a method in the application model (typically initialize),
initialize the field’s variable.

5. In the initialize method, arrange for a change message
(changedDate) to be sent to the application model when the
slider’s value changes.

initialize
month :=(Date nameOfMonth: 1) asValue. "Variant Step 4"
year := 1900 asValue.

dateRange := (0@1) asValue.
dateRange onChangeSend: #changedDate to: self. "Variant Step 5"

6. Use a System Browser to create the change method
(changedDate) in the application model. This method is
responsible for changing the field’s value based on the
slider’s new value.

Connecting a Slider to a Field

VisualWorks Cookbook, Rev. 2.0 269

changedDate
"Convert the y-axis value to a month." "Variant Step 6"
| y x |
y := self dateRange value y.
y := (12 - (y * 12) asInteger) max: 1. "(12 months)"
self month value: (Date nameOfMonth: y).

"Convert the x-axis value to a year."
x := self dateRange value x.
x := 1900 + (x * 100) asInteger. "(100 years)"
self year value: x.

See Also
■ “Creating an Input Field” on page 122

Chapter 14 Sliders

270 VisualWorks Cookbook, Rev. 2.0

Changing the Range Dynamically

Strategy

When the slider’s range is unchanging, you can use the slider’s
Start, Stop, and Step properties to set the range and the step
value. When the range or step varies, however, this approach is
not sufficient.

A RangeAdaptor provides the required flexibility. It is a specialized
value model that also keeps track of the range and step values.
You can change those values by sending messages to the
adaptor. This can be done anytime—in the Slider1Example, the trip
meter’s range is modified every time the Engage button is
pressed.

Basic Steps

Online example: Slider1Example (the Trip Meter slider)

1. In a method in the application model (typically in an initialize
method), initialize the slider’s aspect variable with a
RangeAdaptor by sending the instance creation message
(on:start:stop:grid:). The first argument (currentYear) is a value
holder containing the number that the slider manipulates.
(When a field is connected to the slider, as in the example,

Range is reset
when trip begins.
New range is the
years to be traversed

Changing the Range Dynamically

VisualWorks Cookbook, Rev. 2.0 271

this argument is the field’s aspect variable.) The grid
argument is the step value.

initialize
"Destination"
destination := Date today year asValue.

"Current year"
currentYear := Date today year asValue.

"Trip meter"
tripRange := RangeAdaptor "Basic Step 1"

on: currentYear
start: 0
stop: 4000
grid: 1.

2. Whenever the range or step must change, send a rangeStart:,
rangeStop:, or grid: message to the adaptor. (In the example,
this is done in the engage method.)

engage
"Start the time trip."

| startingYear destinationYear direction |
startingYear := self currentYear value.
destinationYear := self destination value.

destinationYear == startingYear
ifTrue: [^Dialog warn: 'Please select a new destination.'].

"Set the endpoints on the trip meter."
self tripRange "Basic Step 2"

rangeStart: startingYear;
rangeStop: destinationYear;
grid: 1.

"Reset the meter to the starting position."
currentYear value: startingYear.

"Set up a step value for the loop that follows (-1 = backward in time)."
destinationYear > startingYear

Chapter 14 Sliders

272 VisualWorks Cookbook, Rev. 2.0

ifTrue: [direction := 1]
ifFalse: [direction := -1].

"For each year of time travel, update the current year."
startingYear to: destinationYear by: direction do: [:yr |

currentYear value: yr].

Changing the Length of the Marker

VisualWorks Cookbook, Rev. 2.0 273

Changing the Length of the Marker

Strategy

By default, a slider’s marker is 29 pixels long. This length is
suitable for most purposes. For a very short slider, however, a
shorter marker may be more pleasing.

Before you change the marker width, be aware that the
marker’s appearance changes under different window-manager
looks. In particular, the beveled appearance used by some
window managers makes a marker that is less than 3 pixels
wide display incorrectly.

Basic Step

Online example: Slider2Example

➤ In a message in the application model (typically postBuildWith:),
get the slider widget from the builder and send a
setMarkerLength: message to it, with the length in pixels as
argument.

postBuildWith: aBuilder

(aBuilder componentAt: #dateRange) widget
beTwoDimensional;
setMarkerLength: 10. "Basic Step"

Marker in a
2D slider is
a box

Chapter 14 Sliders

274 VisualWorks Cookbook, Rev. 2.0

Making a Slider Two-Dimensional

Strategy

By default, a slider operates in one dimension, changing a value
along a linear scale. You can arrange for a slider to manipulate
a point in two dimensions and then use the x-axis and y-axis
components of that point to control two separate parameters.

In Slider2Example, a two-dimensional slider is used to alter two
fields simultaneously. The first field, which uses the y-axis
component of the slider’s value, displays one of the 12 months.
The second field uses the x-axis component of the slider’s value
to arrive at a year between 1900 and 2000.

Basic Steps

Online example: Slider2Example

1. In a method in the application model (typically initialize),
initialize the slider’s variable to an instance of Point that is
held by a value holder.

initialize
month := (Date nameOfMonth: 1) asValue.
year := 1900 asValue.
dateRange := (0@1) asValue. "Basic Step 1"
dateRange onChangeSend: #changedDate to: self.

2. In a postBuildWith: method, get the slider from the builder and
ask it to beTwoDimensional.

2D marker
controls
two aspects of
the model

Making a Slider Two-Dimensional

VisualWorks Cookbook, Rev. 2.0 275

postBuildWith: aBuilder

(aBuilder componentAt: #dateRange) widget
beTwoDimensional; "Basic Step 2"
setMarkerLength: 10.

Variant

Connecting a Two-Dimensional Slider to Two Fields
1. In a method in the application model (typically initialize),

arrange for a change message (changedDate) to be sent to the
application model when the slider’s value changes.

initialize
month :=(Date nameOfMonth: 1) asValue.
year := 1900 asValue.

dateRange := (0@1) asValue.
dateRange onChangeSend: #changedDate to: self. "Variant Step 1"

2. Use a System Browser to create the change method
(changedDate) in the application model. This method splits the
slider’s value into its x-axis and y-axis components. Each
component is a value between 0 and 1 and is transformed
as needed to produce a suitable value for the related field.

changedDate "Variant Step 2"
"Convert the y-axis value to a month."
| y x |
y := self dateRange value y.
y := (12 - (y * 12) asInteger) max: 1."12 months"
self month value: (Date nameOfMonth: y).

"Convert the x-axis value to a year."
x := self dateRange value x.
x := 1900 + (x * 100) asInteger. "(100 years)"
self year value: x.

Chapter 14 Sliders

276 VisualWorks Cookbook, Rev. 2.0

See Also
■ “Creating an Input Field” on page 122

VisualWorks Cookbook, Rev. 2.0 277

Chapter 15

Dialogs

Displaying a Warning 278
Asking a Yes/No Question 280
Asking a Multiple-Choice Question 282
Requesting a Textual Response 284
Requesting a Filename 286
Choosing from a List of Items 289
Linking a Dialog to a Master Window 292
Creating a Custom Launcher 294
Creating a Custom Dialog 296

See Also
■ “Widget Basics” on page 53

Chapter 15 Dialogs

278 VisualWorks Cookbook, Rev. 2.0

Displaying a Warning

Strategy

A warning dialog is frequently used when an action cannot be
completed. For example, when a search command cannot find
a user-specified string, the command normally reports this in
a warning dialog. In general, a warning dialog can be used to
display any simple textual message. The message can have
embedded carriage returns and multiple text styles.

The dialog provides an OK button with which the user can
dismiss the dialog. For this reason, a warning dialog is often
referred to as an OK dialog.

A warning dialog is displayed by sending a warn: message to the
Dialog class. When the user clicks OK, the message returns the
value nil.

Basic Step

Online example: DialogExample

➤ In the method responsible for bringing up the dialog, send a
warn: message to the Dialog class. The argument is the
dialog’s label string. Note that the backslash characters in
this string are converted to carriage returns by the withCRs
message.

This butto n . . .

. . . displays this
warning dialog

Displaying a Warning

VisualWorks Cookbook, Rev. 2.0 279

warn
| returnVal |
returnVal := Dialog

warn: ’The memory named\’’FirstKiss’’\was not found.\’
withCRs. "Basic Step"

"Update the text field in the main window."
self returnedValue value: returnVal printString.

Chapter 15 Dialogs

280 VisualWorks Cookbook, Rev. 2.0

Asking a Yes/No Question

Strategy

Frequently an application needs to ask the user a yes/no ques-
tion. A common situation for using such a dialog is when the
user is initiating an action that may have unintended side
effects, such as closing a file editor before saving edits. Because
a yes/no dialog is so often used to confirm a dangerous action,
it is often referred to as a confirmer.

By convention, the question is phrased in such a way that a Yes
answer causes the action to proceed. Except in the most
hazardous situations, Yes is also the default answer.

A confirmer dialog is displayed by sending a confirm: message to
the Dialog class. When the user clicks Yes, the message returns
the value true. When the user clicks No, the message returns the
value false.

The basic steps show how to use a confirm: message. The first
variant shows how to specify the default answer. The second
variant specifies a master window from which the dialog adopts
certain look-specific features such as its colors.

Basic Step
➤ Send a confirm: message to the Dialog class. The argument is

the question to be asked.

This butto n . . .

. . . displays this
confirmer dialog

Asking a Yes/No Question

VisualWorks Cookbook, Rev. 2.0 281

Dialog confirm: 'Really erase all memories\of adolescent period?\'
withCRs. "Basic Step"

Variants

V1. Supplying a Default Answer
➤ Send a confirm:initialAnswer: message to Dialog. The second

argument is either true or false.

Dialog "V1 Step"
confirm: 'Really erase all memories\of adolescent period?' withCRs
initialAnswer: false

V2. Adopting the Look of a Master Window

Online example: DialogExample

➤ Send a confirm:initialAnswer:for: message to Dialog. The third
argument is the master window, typically the currently
active window.

confirm
| returnVal |
returnVal := Dialog "V2 Step"

confirm: 'Really erase all memories\of adolescent period?' withCRs
initialAnswer: false
for: ScheduledControllers activeController view.

"Update the text field in the main window."
self returnedValue value: returnVal printString.

Chapter 15 Dialogs

282 VisualWorks Cookbook, Rev. 2.0

Asking a Multiple-Choice Question

Strategy

Frequently an application requires a means of offering the user
a small set of choices. The Dialog class provides a dialog that
accommodates any number of choices. In practice, because the
choices are arrayed as a horizontal row of buttons, this dialog
is useful only for a very few choices.

In the message that creates a multiple-choice dialog, you assign
a symbol to each choice (basic steps). When the user clicks a
choice, the message returns the corresponding symbol to the
application. You can use a multiple-choice dialog to simulate a
yes/no dialog when you want the dialog to return values other
than true and false.

The variant indicates a master window from which the dialog
adopts certain look-specific features such as its colors.

Basic Step
➤ Send a choose:labels:values:default: message to the Dialog class.

The choose argument is the question. The labels argument is
an array of strings to be displayed on the answer buttons.
The values argument is an array of Symbols to be used as

This butto n . . .

. . . displays this dialog

Asking a Multiple-Choice Question

VisualWorks Cookbook, Rev. 2.0 283

return values by the answer buttons. The default argument is
the Symbol that is associated with the desired default
answer.

Dialog "Basic Step"
choose: 'Which memory would you like to review first?'
labels: #('Swimming the Channel'

'Triumph at the Coliseum'
'Love & War #47')

values: #(#swim #triumph #love47)
default: #triumph

Variant

Adopting the Look of a Master Window

Online example: DialogExample

➤ Send a choose:labels:values:default:for: message to Dialog. The first
four arguments are as described above. The for: argument is
typically the active window.

askMultiChoice
| returnVal |
returnVal := Dialog "Variant Step"

choose: 'Which memory would you like to review first?'
labels: #('Swimming the Channel'

'Triumph at the Coliseum'
'Love & War #47')

values: #(#swim #triumph #love47)
default: #triumph
for: ScheduledControllers activeController view.

self returnedValue value: returnVal printString.

See Also
■ “Choosing from a List of Items” on page 289

Chapter 15 Dialogs

284 VisualWorks Cookbook, Rev. 2.0

Requesting a Textual Response

Strategy

A fill-in-the-blank dialog contains an input field and a label. It
is commonly used to prompt for a string, such as a search
string. By default, an empty string appears in the input field
(basic steps). The first variant shows how to supply a different
default.

When the user fills in a string and clicks OK, the message that
creates the dialog returns the user-specified string. When the
user clicks Cancel, an empty string is returned by default. The
second variant shows how to arrange for a different value to be
returned for canceling. The block that is used to return a
canceling value can also be used to take other action, such as
prompting the user for a nonblank response.

Basic Step
➤ Send a request: message to the Dialog class, with the question

as the argument.

Dialog request: 'Find all memories associated with...' "Basic Step"

This butto n . . .

. . . displays this dialog

Requesting a Textual Response

VisualWorks Cookbook, Rev. 2.0 285

Variants

V1. Supplying a Default Answer
➤ Send a request:initialAnswer: message to Dialog. The second

argument is the default answer string.

Dialog
request: 'Find all memories associated with...'
initialAnswer: 'friend' "V1 Step"

V2. Supplying a Cancel Block

Online example: DialogExample

➤ Send a request:initialAnswer:onCancel: message to Dialog. The third
argument is a block containing the action to be taken, the
value to be returned, or both.

getText
| returnVal |
returnVal := Dialog

request: 'Find all memories associated with...'
initialAnswer: 'friend'
onCancel: [self defaultRuminationTopic]. "V2 Step"

"Update the text field in the main window."
self returnedValue value: returnVal printString.

Chapter 15 Dialogs

286 VisualWorks Cookbook, Rev. 2.0

Requesting a Filename

Strategy

A filename is a special case for a fill-in-the-blank dialog because
it is frequently desirable to test for the existence of the named
file. The built-in dialog performs this service automatically and
reprompts as needed. In addition, it responds to wildcard char-
acters (* and #) by displaying a list of all files that match the
pattern.

By default, the dialog accepts any filename that is accepted by
the operating system. The variants show how to arrange for the
dialog to take various actions depending on whether the file is
supposed to exist already.

When the user clicks Cancel, an empty string is returned by
default. The final variant shows how to arrange for a different
value to be returned, an action to be taken, or both.

Basic Step
➤ Send a requestFileName: message to the Dialog class. The

argument is a label string for the dialog.

Dialog requestFileName: 'Open memory file named...' "Basic Step"

This butto n . . .

. . . displays this dialog

Requesting a Filename

VisualWorks Cookbook, Rev. 2.0 287

Variants

V1. Supplying a Default Filename
➤ Send a requestFileName:default: message to Dialog. The second

argument is a string containing the name of the default file.

Dialog
requestFileName: 'Open memory file named...'
default: 'hero01.mem' "V1 Step"

V2. Confirming When the File Already Exists
➤ Send a requestFileName:default:version: message to Dialog. The third

argument is the #new symbol, which indicates that you
expect the file to be a new one.

Dialog
requestFileName: 'Open memory file named...'
default: 'hero01.mem'
version: #new "V2 Step"

V3. Confirming When the File Does Not Exist
➤ Send a requestFileName:default:version: message to Dialog. The third

argument is the #old symbol, which indicates that you
expect the file to exist.

Dialog
requestFileName: 'Open memory file named...'
default: 'hero01.mem'
version: #old "V3 Step"

V4. Canceling When the File Already Exists
➤ Send a requestFileName:default:version: message to Dialog. The third

argument is the #mustBeNew symbol, which indicates that
you require the file to be a new one.

Dialog
requestFileName: 'Open memory file named...'

Chapter 15 Dialogs

288 VisualWorks Cookbook, Rev. 2.0

default: 'hero01.mem'
version: #mustBeNew "V4 Step"

V5. Canceling When the File Does Not Exist
➤ Send a requestFileName:default:version: message to Dialog. The third

argument is the #mustBeOld symbol, which indicates that you
require the file to be an existing one.

Dialog
requestFileName: 'Open memory file named...'
default: 'hero01.mem'
version: #mustBeOld "V5 Step"

V6. Supplying a Cancel Block

Online example: DialogExample

➤ Send a requestFileName:default:version:ifFail: message to Dialog. The
final argument is a block containing the action to be taken,
the value to be returned, or both.

getFilename
| returnVal |
returnVal := Dialog

requestFileName: 'Open memory file named...'
default: 'hero01.mem'
version: #mustBeOld
ifFail: [Transcript show: 'Memory file access canceled'. '']. "V6 Step"

"Update the text field in the main window."
self returnedValue value: returnVal printString.

See Also
■ “Creating a File or Directory” on page 592

Choosing from a List of Items

VisualWorks Cookbook, Rev. 2.0 289

Choosing from a List of Items

Strategy

You can display a dialog with a built-in list of commands or
data values. This dialog is used as a kind of stand-alone menu.
Each item in the list is associated with a value, just as a menu
item is, and your application can either insert the selected
value in a value holder or trigger an action.

By default, the dialog contains a list of items, an OK button, and
a Cancel button (basic step). The variant shows how to add
custom buttons to the dialog, for situations when neither
selecting an item in the list nor canceling the dialog is accept-
able. For example, when you enter a wildcard pattern in a file-
pathname dialog, a list dialog shows the files that match your
pattern and offers a Try again button in case you want to try a
different pattern.

Basic Step
➤ Send a choose:fromList:values:lines:cancel: message to the Dialog

class. The choose: argument is a prompt string. The fromList:
argument is a collection of strings—either command names
or value descriptions (in the example, filenames). The values:
argument is a collection of the same size as the fromList:
collection, containing the values to be associated with the
list items. The lines: argument is an integer indicating the
maximum number of list items to display (for a long list).
The cancel: argument is a block containing the action to be

basic dialog dialog with custom button

Chapter 15 Dialogs

290 VisualWorks Cookbook, Rev. 2.0

taken or the value to be supplied when the Cancel button is
selected by the user.

| files response |
files := Filename defaultDirectory directoryContents

reject: [:name | name asFilename isDirectory].

response := Dialog "Basic Step"
choose: 'Edit which file?'
fromList: files
values: files
lines: 8
cancel: [^nil].

response asFilename edit.

Variant

Supplying Extra Action Buttons Below the List
➤ Send a choose:fromList:values:buttons:values:lines:cancel: message to

the Dialog class. The arguments are the same as in the basic
step, with the addition of buttons: and values:. The buttons:
argument is a collection of strings to be used as button
labels. The values: argument is a collection of values to be
associated with the button labels.

| files response |
files := Filename defaultDirectory directoryContents

reject: [:name | name asFilename isDirectory].

response := Dialog
choose: 'Edit which file?'
fromList: files
values: files
buttons: #('Count Files') "Variant Step"
values: #(#count)
lines: 12
cancel: [^nil].

Choosing from a List of Items

VisualWorks Cookbook, Rev. 2.0 291

response == #count
ifTrue: [Dialog warn: files size printString]
ifFalse: [response asFilename edit]

See Also
■ “Asking a Multiple-Choice Question” on page 282

Chapter 15 Dialogs

292 VisualWorks Cookbook, Rev. 2.0

Linking a Dialog to a Master Window

Strategy

By default, the built-in dialogs use system defaults for their
colors and UI Look. When your application employs a special
set of colors or a nondefault UI Look, you can arrange for
dialogs to mimic the colors and UI Look of a master window. In
addition, some window systems create a visual connection
between a dialog and its master window.

The basic steps shows how to link a warning dialog to the
currently active window with a warn:for: message. A master
window with a yellow background color is opened. You can add
a for: argument to other dialog-creation messages. The master
window is typically the main application window, which an
application model can access through self builder window.

Basic Steps
1. Send a useColorOveridesFromParent: message to the SimpleDialog

class. The argument true causes subsequently opened
dialogs to adopt the colors of their master window, in
addition to the UI look. By default, instances of SimpleDialog
and its subclasses adopt only the UI look of the master
window. (Note that ‘Overides’ is misspelled in the method
name and must therefore be misspelled here.)

2. Send a warn:for: message to the Dialog class. The first
argument is the message string, and the second argument
is the master window.

| masterWindow |
SimpleDialog useColorOveridesFromParent: true. "Basic Step 1"
masterWindow := ScheduledWindow new.
masterWindow background: ColorValue yellow.
masterWindow open.

Dialog "Basic Step 2"
warn: 'This dialog has a yellow background, too.'
for: masterWindow.

Linking a Dialog to a Master Window

VisualWorks Cookbook, Rev. 2.0 293

masterWindow sensor eventQuit: nil.

Note that you may want to reset the SimpleDialog class to its
default behavior by sending it the useColorOveridesFromParent:
message with the argument false.

Chapter 15 Dialogs

294 VisualWorks Cookbook, Rev. 2.0

Creating a Custom Launcher

Strategy

A Launcher is a window whose widgets provide access to other
parts of an application. Launchers offer similar functionality to
dialogs. You can create a custom Launcher for each of your
applications or a single custom Launcher for all of them.

By default, the Launcher’s window label is “Launcher.” The
second variant shows how to arrange for an alternative window
label.

You can also arrange for a heading within the Launcher
window, as shown in the second variant. (The second variant
presents the fullest form of the message for creating a
Launcher, so only that variant has example code.)

Basic Step
➤ Send an openOnMenu: message to the LauncherView class. The

argument is an instance of Menu.

Variants

V1. Supplying an Alternative Window Label
➤ Send an openOnMenu:withLabel: message to LauncherView. The

second argument is the window’s label string.

This butto n . . .

. . . displays this launcher

Creating a Custom Launcher

VisualWorks Cookbook, Rev. 2.0 295

V2. Supplying a Heading

Online example: DialogExample

➤ Send an openOnMenu:withLabel:andHeader: message to LauncherView.
The third argument is a string containing the desired
header. The string can contain embedded carriage returns,
which cause the header to be displayed on multiple lines.

createLauncher
LauncherView "V2 Step"

openOnMenu: self dialogMenu
withLabel: 'Launcher'
andHeader: 'Example Dialogs'.

See Also
■ “Creating a Menu” on page 226

Chapter 15 Dialogs

296 VisualWorks Cookbook, Rev. 2.0

Creating a Custom Dialog

Strategy

When a built-in dialog is not sufficient, you can paint a canvas
that has the desired widgets on it. You can then open the
resulting interface specification in a dialog window—that is, in
a window whose controller yields control only after the dialog
has been closed.

The basic technique is to ask the application model to open a
dialog window from an installed interface specification (basic
steps). The dialog is created as an instance of SimpleDialog, which
provides its own interface builder for setting up the dialog’s
widgets. This builder obtains any needed value models, actions,
and resources for the widgets from the application model. Note,
however, that buttons whose Action properties are #accept or
#cancel obtain their actions from the SimpleDialog instance instead.
These predefined actions are useful for OK and Cancel buttons on
the dialog (first variant).

By default, the dialog’s builder is discarded after the interface
is constructed. If your application will need to access any
widgets in the dialog (for disabling, etc.), you should save the
builder in an instance variable of the application model for later
use in any method (second variant).

These button s . . .

. . . display this dialog

Creating a Custom Dialog

VisualWorks Cookbook, Rev. 2.0 297

A second technique for creating a custom dialog (not illustrated
here) is to create a separate model for the dialog (typically, a
subclass of SimpleDialog). You install the dialog’s canvas in this
subclass and then program the subclass to provide the value
models, actions, and resources needed by the dialog’s widgets.
A method in the main application model asks the dialog’s model
to open itself and use itself as the source of value models,
actions, and resources. This technique enables you to reuse the
dialog more easily in further applications.

A third technique for creating a custom dialog is to program the
application model to create an instance of SimpleDialog and
configure its interface builder dynamically (third variant). This
has the effect of creating a temporary model for the dialog,
which is useful when the value models for the dialog’s widgets
are not needed beyond the lifetime of the dialog. For example, a
file-finding dialog might employ several widgets, each requiring
a value model, but only the ultimate filename is of interest to
the application.

Basic Step

Online example: DialogExample

➤ In the method that is to open the dialog, send an
openDialogInterface: message to the application model. The
argument is the symbol that identifies the dialog’s interface
specification.

openDialogCanvas
| returnVal |
returnVal := self openDialogInterface: #memoryZonesDialog. "Basic Step"
"Update the text field in the main window."
self returnedValue value: returnVal printString.

Chapter 15 Dialogs

298 VisualWorks Cookbook, Rev. 2.0

Variants

V1. Requesting Actions for OK and Cancel Buttons

Online example: DialogExample

When a custom dialog has OK and Cancel buttons, you can
arrange for them to invoke predefined methods that close the
dialog and return the appropriate value (true or false).

1. In the canvas for the dialog, select the action button that is
to accept the dialog (typically labeled OK).

2. In the Properties Tool, enter accept in the button’s Action
property.

3. In the canvas, select the button that is to cancel the dialog
(typically labeled Cancel).

4. In the Properties Tool, enter cancel in the button’s Action
property.

5. Apply the properties and install the canvas.

These Action settings cause the buttons to send accept and cancel
messages to the SimpleDialog instance. Consequently, if you
define methods named accept or cancel in the application model,
they will be ignored. (Other dialog buttons with other Action
settings do rely on the application model for their action
methods, however.)

V2. Storing the Dialog’s Builder for Later Use

Online example: DialogExample

1. In the method that is to open the dialog, create an instance
of SimpleDialog.

2. Get the builder from the SimpleDialog and store it, typically in
an instance variable of the application model (dialogBuilder).

3. Send an openFor:interface: message to the SimpleDialog. The first
argument is the application model so that the dialog’s
widgets can obtain their value models, actions, and
resources from it. The second argument is the name of the
dialog’s interface specification.

Creating a Custom Dialog

VisualWorks Cookbook, Rev. 2.0 299

openDialogStoreBuilder
| returnVal dialogModel |
dialogModel := SimpleDialog new. "V2 Step 1"
self dialogBuilder: dialogModel builder. "V2 Step 2"

returnVal := dialogModel "V2 Step 3"
openFor: self
interface: #memoryZonesDialog.

"Update the text field in the main window."
self returnedValue value: returnVal printString.

V3. Providing a Temporary Model for the Dialog

Online example: DialogExample

In the example, the properties you set for the dialog’s list widget
tell the dialog’s builder that the list widget needs a
MultiSelectionInList to supply its value holders. In the other vari-
ants, the builder obtains the required MultiSelectionInList by
sending the memoryZones aspect message to the application
model. In this variant, the builder does not need to send this
message, because it has been preconfigured with the required
MultiSelectionInList through an aspectAt:put: message.

1. In the method that is to open the dialog, create an instance
of SimpleDialog.

2. Get the builder from the SimpleModel and preload it with one
binding for each active widget. The aspectAt: argument is the
symbol you specified in the widget’s Aspect property. The put:
argument is an appropriate value model.

3. Ask the SimpleDialog to open the interface.

openTempModelDialog
| returnVal dialogModel list |
dialogModel := SimpleDialog new. "V3 Step 1"
dialogBuilder := dialogModel builder.

"Since the simple model does not respond to a #memoryZones message,
its builder must be preloaded with a multilist."
list := MultiSelectionInList new

Chapter 15 Dialogs

300 VisualWorks Cookbook, Rev. 2.0

list: self memoryZones list copy.
dialogBuilder aspectAt: #memoryZones put: list. "V3 Step 2"

"Open the interface."
returnVal := dialogModel

openFor: self
interface: #memoryZonesDialog. "V3 Step 3"

"Update the text field in the main window."
self returnedValue value: returnVal printString.

VisualWorks Cookbook, Rev. 2.0 301

Chapter 16

Subcanvases

Inheriting an Application’s Capabilities 302
Nesting One Application in Another 305
Reusing an Interface Only 308
Swapping Interfaces at Run Time 310
Accessing an Embedded Widget 313

See Also
■ “Widget Basics” on page 53

Chapter 16 Subcanvases

302 VisualWorks Cookbook, Rev. 2.0

Inheriting an Application’s Capabilities

Strategy

The ApplicationModel class provides a wealth of functionality that is
inherited by any subclass, which is why you must make any
new application model a subclass of ApplicationModel. In the same
way, you can use your own subclass as a parent class, so that
its children will inherit standard interface modules, value
holders, and action methods. For example, Subcanvas1Example is a
subclass of List2Example, so it can reuse the List2Example interface,
value holders, and actions.

Overriding actions is possible: Although a subclass need not
reimplement anything that the parent class has implemented,
it can override an inherited action. (That is not always possible
when you nest one application inside another without the aid
of inheritance.)

No multiples: A limitation of the inheritance approach is that
you cannot reuse an inherited interface more than once on the
same canvas. For example, Subcanvas1Example could not use two
subcanvases that each contained the same inherited List2Example
interface, because both would reference the same value holder
(selectionInList). (More precisely, you can use the same inherited
interface twice, but both will display the same thing.)

This application mode l . . .

. . . is the parent of this
application model

Inheriting an Application’s Capabilities

VisualWorks Cookbook, Rev. 2.0 303

Basic Steps

Online example: List2Example (parent) and Subcanvas1Example

1. Use a System Browser to create a new application model
(Subcanvas1Example) as a subclass of the application model
from which it is to inherit (List2Example).

2. Use a Palette to place a subcanvas widget on the inheriting
canvas (the canvas for Subcanvas1Example). Leave the
subcanvas widget selected.

3. In the subcanvas’s Canvas property, enter the name of the
inherited interface specification to be used by the
subcanvas (listSpec). This name must be unique within the
inheritance chain—for example, you could not embed an
inherited canvas named windowSpec in a local canvas named
windowSpec.

4. Apply the property and install the inheriting canvas in its
application model (Subcanvas1Example).

Variants

V1. Installing a Different Value in an Inherited Widget

The power of reuse is fully realized when you provide local
values for the inherited widgets. For example, List2Example initial-
izes its list to display a collection of color names. Now the inher-
iting application, Subcanvas1Example, provides its own collection,
causing the reused list to display cursor names instead.

1. Use a System Browser to create an initialize method in the
inheriting application model (Subcanvas1Example).

2. In the initialize method, invoke the inherited initialize method.

3. In the initialize method, use the inherited aspect message
(selectionInList) to access the desired valued model. Then send
an accessing message (in this case, list:) to the value model
to install the desired value (cursorNames).

initialize
"Install a different list (cursor names) than
the inherited default (color names)."
| cursorNames |
super initialize. "V1 Step 2"

Chapter 16 Subcanvases

304 VisualWorks Cookbook, Rev. 2.0

cursorNames := Cursor class organization
listAtCategoryNamed: #constants.

self selectionInList list: cursorNames. "V1 Step 3"

V2. Overriding an Inherited Action Method
➤ In the inheriting application model (Subcanvas1Example), create

a method with the same name as the inherited method that
you want to override (add).

add "V2Step"
"Override the inherited implementation of this method,
refining the prompt in the dialog."

| entry newList |

"Prompt for the name to add."
entry := Dialog request: 'Add cursor name'.

"If the entry is blank, exit."
entry isEmpty

ifTrue: [^nil].

"Update the list."
newList := SortedCollection withAll: self selectionInList list.
newList add: entry.
self selectionInList list: newList.

See Also
■ “Creating a Class (Subclassing)” on page 26

Nesting One Application in Another

VisualWorks Cookbook, Rev. 2.0 305

Nesting One Application in Another

Strategy

With a subcanvas, you can embed one application in another.
In this way, you can create a set of application modules that
can be plugged into larger applications as needed. This
approach avoids wasteful duplication of effort for generic
modules, enforces interface-design uniformity, and makes
changes much easier to implement, because you have to
change only the embedded application to effect a change in all
reusing applications.

Overriding actions is not possible: The embedded application
supplies all of its own value models and action methods. This
feature makes it simple to implement but slightly more difficult
to customize than an application with inherited capabilities. In
particular, you cannot override an embedded application’s
action methods. In truly generic modules, however, this is not
a serious limitation.

Multiples are possible: You can embed the same application
any number of times in the same canvas. For example, you
could reuse List2Example four times in creating a System
Browser’s four list views.

This entire
applicatio n . . .

. . . is reused in
this subcanvas

Chapter 16 Subcanvases

306 VisualWorks Cookbook, Rev. 2.0

Basic Steps

Online example: List2Example embedded in Subcanvas2Example

1. Use a Palette to place a subcanvas in the reusing canvas
(the canvas for Subcanvas2Example). Leave the subcanvas
selected.

2. In the subcanvas’s Name property, enter the name of the
method (classNames) that will supply an instance of the
embedded application.

3. In the subcanvas’s Class property, enter the name of the
application (List2Example) that you are embedding.

4. In the subcanvas’s Canvas property, enter the name of the
interface specification (listSpec) that you are using from the
embedded application (List2Example).

5. Apply the properties and install the reusing canvas in its
application model (Subcanvas2Example).

6. Use a System Browser to create an instance variable
(classNames) in the reusing application model
(Subcanvas2Example), for holding onto the embedded applica-
tion.

7. Use a System Browser to create an initialize method in the
reusing application model, in which the embedded applica-
tion is created and assigned to the variable that you created
in step 6.

initialize
"Reusing List2Example's interface only -- initialize the list holder."
selectionInList := SelectionInList with: Smalltalk classNames.

"Reusing List2Example application -- initialize the application instance."
classNames := List2Example new. "Basic Step 7"
classNames list: Smalltalk classNames.

Nesting One Application in Another

VisualWorks Cookbook, Rev. 2.0 307

Variant

Installing a Different Value in an Embedded Widget

An embedded widget uses the value with which its host appli-
cation initializes it.

1. In the initialize method of basic step 7, send a message (list:) to
the embedded application, installing the desired value.

initialize
"Reusing List2Example's interface only -- initialize the list holder."
selectionInList := SelectionInList with: Smalltalk classNames.

"Reusing List2Example application -- initialize the application instance."
classNames := List2Example new.
classNames list: Smalltalk classNames. "Variant Step 1"

2. In some situations, as in the example, you will have to
create a method (list:) in the embedded application model
that enables an outside application to supply a new value.

list: aCollection "Variant Step 2"
"Install aCollection in the list. This message is provided so reusers
can install a list that is different than the default list (color names)."

self selectionInList list: aCollection.

Chapter 16 Subcanvases

308 VisualWorks Cookbook, Rev. 2.0

Reusing an Interface Only

Strategy

You can use a subcanvas to embed one canvas inside another.
This is similar to embedding an entire subapplication, but the
difference is that all value models and methods must be
supplied by the reusing application. This is duplicative, but it
is sometimes necessary, especially when you need to override
action methods.

Overriding actions is possible: Because you are reusing only
the interface and have to reimplement all of the supporting
value holders and methods, you also have to supply actions for
any buttons in the embedded interface.

Multiples are not possible: Because you are forced to use the
aspect names that the embedded interface expects, you can
have only one set of those names. So you cannot reuse an inter-
face more than once on the same canvas.

Basic Steps

Online example: Subcanvas2Example (which reuses List2Example’s
listSpec)

1. Use a Palette to place a subcanvas in the reusing canvas
(the canvas for Subcanvas2Example).

This interface
(but not the
underlying value
holders and
methods) . . .

. . . is reused in
this subcanvas

Reusing an Interface Only

VisualWorks Cookbook, Rev. 2.0 309

2. In the subcanvas’s Class property, enter the name of the
application (List2Example) that defines the interface to be
embedded.

3. In the subcanvas’s Canvas property, enter the name of the
interface specification (listSpec) to be embedded.

4. Apply the properties and install the reusing canvas in its
application model (Subcanvas2Example).

5. Use a System Browser to edit the reusing application model
(Subcanvas2Example), creating instance variables (selectionInList)
and methods (selectionInList, initialize, add, and delete) to support
the embedded interface. These instance variables and
methods must have the same names as the corresponding
ones in the reused class (List2Example). Modify values and
action methods as desired.

Chapter 16 Subcanvases

310 VisualWorks Cookbook, Rev. 2.0

Swapping Interfaces at Run Time

Strategy

A subcanvas makes it easy to change the widgets that appear
in a larger canvas, depending on the circumstances. In
Subcanvas3Example, a subcanvas is used to hold either a text editor
or a list view, depending on whether the user wants to see
textual or listed material related to a selected class.

An alternative approach is to layer the multiple sets of widgets
in the main canvas (without using subcanvases at all) and then
make the desired widgets visible as needed.

Basic Steps

Online example: Subcanvas3Example (which swaps Editor2Example
and List2Example)

1. Use a Palette to place a subcanvas in the reusing canvas
(the canvas for Subcanvas3Example).

2. In the subcanvas’s Name property, enter the name of the
method (embeddedApplication) that supplies the embedded
application at startup time.

3. Apply the properties and install the reusing canvas in its
application model (Subcanvas3Example).

This subcanvas holds
a List2Editor when the
Methods button is chosen
and an Editor2Example when
another button is chosen

Swapping Interfaces at Run Time

VisualWorks Cookbook, Rev. 2.0 311

4. Use a System Browser to create the method
(embeddedApplication) that you named in step 2. You create this
method in the reusing application model (Subcanvas3Example).
This method can supply either a nil value (for a blank
subcanvas) or one of the subapplications.

embeddedApplication "Basic Step 4"
^nil asValue

5. In a change message (presumably triggered by a change in
some other widget such as a button), create an instance of
the desired application model (Editor2Example) and initialize it.
(Or you can create and initialize the application model once
at startup and store it in an instance variable.)

6. Continuing in the change message, get the spec object for
the interface you want to use by sending an interfaceSpecFor:
message to the embedded application model’s class
(Editor2Example). The argument is the name of the interface
specification (#windowSpec).

7. Continuing in the change message, get the subcanvas from
the builder and send a client:spec: message to it. The first
argument is the application you created in step 5. The
second argument is the spec object you obtained in step 6.

showComment
| selectedClass subcanvas spec application |
selectedClass := Smalltalk at: self classNames selection.

"Create the subapplication and initialize it." "Basic Step 5"
application := Editor2Example new.
application text value: selectedClass comment.

"Get the spec object for the embedded canvas."
spec := Editor2Example interfaceSpecFor: #windowSpec. "Basic Step 6"

"Get the subcanvas and install the editing application." "Basic Step 7"
subcanvas := (self builder componentAt: #subcanvas) widget.
subcanvas client: application spec: spec.

Chapter 16 Subcanvases

312 VisualWorks Cookbook, Rev. 2.0

Variants

Blanking the Subcanvas

In Subcanvas3Example, the subcanvas goes blank when no class is
selected. You may encounter a similar situation that requires
you to empty a subcanvas at run time.

➤ Get the subcanvas from the builder and send a client:
message to it. The argument is nil.

showNothing
| subcanvas |
subcanvas := (self builder componentAt: #subcanvas) widget. "Variant Step"
subcanvas client: nil.

See Also
■ “Hiding a Widget” on page 70

Accessing an Embedded Widget

VisualWorks Cookbook, Rev. 2.0 313

Accessing an Embedded Widget

Strategy

Frequently an embedded or inherited interface contains more
than you need. For example, when an embedded action button
is not appropriate in the local application, you could make it
invisible or disable it. Before you can manipulate embedded
widgets, however, you need to access them.

Basic Steps

Online example: Subcanvas3Example

1. Before installing the new subapplication using client:spec:,
initialize the subapplication’s builder to nil. (Otherwise, the
subapplication will continue to hold the old builder even
after a new builder is created to assemble the new
interface.)

2. Ask the subapplication for its builder and then send
componentAt: to that builder. The argument is the ID of the
desired widget.

showMethods
| selectedClass subcanvas spec |
selectedClass := Smalltalk at: self classNames selection.
spec := List2Example interfaceSpecFor: #listSpec.

These buttons are disabled

Chapter 16 Subcanvases

314 VisualWorks Cookbook, Rev. 2.0

"Install the method names as the collection in the list application."
self listApplication list: selectedClass selectors asSortedCollection.

"Set the subbuilder to nil to discard the old builder. This is only
necessary when the application uses the builder later to access widgets."
listApplication builder: nil. "Basic Step 1"

"Get the subcanvas and install the list application."
subcanvas := (self builder componentAt: #subcanvas) widget.
subcanvas client: listApplication spec: spec.

"Disable the embedded buttons (just to show that we can)."
(listApplication builder componentAt: #addButton) disable.

"Basic Step 2"
(listApplication builder componentAt: #deleteButton) disable.

VisualWorks Cookbook, Rev. 2.0 315

Chapter 17

Notebooks

Adding a Notebook 316
Determining Which Tab Is Selected 319
Changing the Binding’s Appearance 322
Changing the Size and Axis of the Tabs 324
Setting the Starting Page 326
Adding Secondary Tabs (Minor Keys) 328
Connecting Minor Tabs to Major Tabs 331
Changing the Page Layout (Subcanvas) 334
Connecting a Notebook to a Text Editor 336

See Also
■ “Widget Basics” on page 53

Chapter 17 Notebooks

316 VisualWorks Cookbook, Rev. 2.0

Adding a Notebook

Strategy

A notebook is a powerful navigational widget. At its simplest, as
shown here, it provides a list in the form of index tabs. When
the user selects an index tab, the effect is the same as selecting
an item in a conventional list—in fact, both a list and a note-
book’s tabs use a SelectionInList to provide their value models. A
notebook can be used in many of the same situations in which
a list or a menu might be used, though its richer set of capabil-
ities (such as minor keys) extend its range of uses.

A notebook also contains a subcanvas. This subcanvas can be
used to display a different interface for each index tab or, as in
this simple example, the same interface. In Notebook1Example, the
subcanvas contains a list widget, and the list is changed each
time an index tab is selected.

Basic Steps

Online example: Notebook1Example

1. Use a Palette to paint a notebook widget on your canvas.
Leave the notebook selected.

Selecting a tab
causes a different page
of the notebook to be
displayed

Adding a Notebook

VisualWorks Cookbook, Rev. 2.0 317

2. In a Properties Tool (Basics page), fill in the notebook’s Major
property with the name of the method (majorKeys) that
returns a SelectionInList containing the labels for the index
tabs.

3. In the notebook’s ID property, enter an identifying name
(pageHolder).

4. Apply the properties and install the canvas.

5. Create a second canvas for the interface that is to be
displayed inside the notebook. Install this canvas in its own
resource method (listSpec).

6. Use a System Browser or the canvas’s define command to
create the instance variable (majorKeys) and accessing
method (majorKeys) for the notebook’s list of index labels.
Initialize the variable, either in the accessing method or in
an initialize method (as in the example), with a SelectionInList
containing either strings or associations.

majorKeys "Basic Step 6"
^majorKeys

7. Use a System Browser or the canvas’s define command to
create any variables and methods needed by the
subcanvas. (In the example, these are the classNames vari-
able, the classNames method, and the initialize method.)

classNames "Basic Step 7"
^classNames

8. In the initialize method, use an onChangeSend:to: message to
arrange for the notebook to send a message (changedLetter) to
the application model when the user selects an index tab.

initialize
| letters |
letters := #(' A' ' B' ' C' ' D' ' E' ' F' ' G' ' H' ' I' ' J' ' K' ' L' ' M'

' N' ' O' ' P' ' Q' ' R' ' S' ' T' ' U' ' V' ' W' ' X' ' Y' ' Z').
majorKeys := SelectionInList with: letters. "Basic Step 6"
majorKeys selectionIndexHolder

onChangeSend: #changedLetter to: self. "Basic Step 8"
classNames := SelectionInList new. "Basic Step 7"

Chapter 17 Notebooks

318 VisualWorks Cookbook, Rev. 2.0

9. Create the change message (changedLetter) in which the
subcanvas is updated based on the index tab that has been
selected. (In the example, the classNames list is updated with
classes beginning with the letter on the index tab.)

changedLetter "Basic Step 9"
| chosenLetter list |
chosenLetter := self majorKeys selection last.
list := Smalltalk classNames select: [:name | name first == chosenLetter].
self classNames list: list.

10. Create a postOpenWith: method. In this method, first get the
notebook from the application model’s builder, using the
notebook’s ID (pageHolder). Then install the subcanvas by
sending a client:spec: message to the notebook. The first
argument is the subapplication’s application model (in the
example, self). The second argument is the name of the spec
method (listSpec) that defines the desired canvas.

postOpenWith: aBuilder "Basic Step 10"
(aBuilder componentAt: #pageHolder) widget

client: self
spec: #listSpec.

majorKeys selectionIndex: 1.

See Also
■ “Adding a List” on page 184

■ “Creating a Collection” on page 491

Determining Which Tab Is Selected

VisualWorks Cookbook, Rev. 2.0 319

Determining Which Tab Is Selected

Strategy

When the user selects an index tab on a notebook widget, the
selection changes in the underlying SelectionInList. Accessing that
selection is a fundamental operation because the application
model must know which tab is selected before it can take the
appropriate action.

The basic step shows how to access the label on the index tab.

The first variant shows how to access an object that has been
associated with the selected index tab. This assumes that you
have associated an object with each label, much as a menu
does. The associated object is typically a Symbol that identifies a
method to be performed, a canvas to be installed, or an appli-
cation-specific attribute.

The second variant shows how to access the relative position of
the index tab. The resulting index number can be used to find
the appropriate object in a separate collection. Because the
separate collection can be changing dynamically, this approach
is one way to vary the action associated with each index tab.

A SelectionInList holds the
tab labels and responds
to a selection message

Chapter 17 Notebooks

320 VisualWorks Cookbook, Rev. 2.0

Basic Step

Online example: Notebook1Example

➤ In a method in the application model, get the selected index
tab’s string or association by sending a selection message to
the notebook’s major SelectionInList. (In the example, the
resulting string contains a leading space, so a last message
is sent to get the index letter that follows the space).

changedLetter
| chosenLetter list |
chosenLetter := self majorKeys selection last. "Basic Step"
list := Smalltalk classNames

select: [:name | name first == chosenLetter].
self classNames list: list.

Variants

V1. Getting a Value Associated with an Index Tab

Online example: Notebook2Example

1. In a method in the application model, get the selected tab’s
association by sending a selection message to the SelectionInList
(in the example, minorKeys, to which the initialize method
assigned a SelectionInList with a collection of associations.)

2. Send a value message to the resulting association. (In the
example, the value is a Symbol—#all or #examples—which is
used to filter the list of class names.)

changedPage
| chosenLetter list filter filteredList |
chosenLetter := self majorKeys selection last.
filter := self minorKeys selection value. "V1 Step 2"

list := Smalltalk classNames
select: [:name | name first == chosenLetter].

filter == #all
ifTrue: [filteredList := list]
ifFalse: [filteredList := list

Determining Which Tab Is Selected

VisualWorks Cookbook, Rev. 2.0 321

select: [:name | '*Example' match: name]].

self classNames list: filteredList.

V2. Getting the Index Number of the Tab
➤ Send selectionIndex to the SelectionInList (instead of a selection

message).

Chapter 17 Notebooks

322 VisualWorks Cookbook, Rev. 2.0

Changing the Binding’s Appearance

Strategy

A solid color strip at the left or top edge of a notebook is used
to simulate the appearance of a book binding. By default, the
binding is along the left edge—the first variant shows how to
move it to the top edge.

By default, the binding strip is 18 pixels wide. The variant
shows how to change the width of the binding. A width of zero
can be used to eliminate the binding strip altogether.

Basic Step

Changing the Location

Online example: Notebook3Example

1. Select the notebook in the canvas.

2. In Properties Tool, go to the notebook’s Binding property and
select top. This moves the binding to the top edge. (To move
it back, select left.)

3. Apply properties and install the canvas.

A color strip simulates
a book binding

Changing the Binding’s Appearance

VisualWorks Cookbook, Rev. 2.0 323

Variant

Changing the Width

Online example: Notebook3Example

➤ In the Width field of the notebook’s Binding property, enter the
desired number of pixels of width (in the example, 30). A
zero setting makes the binding disappear.

Chapter 17 Notebooks

324 VisualWorks Cookbook, Rev. 2.0

Changing the Size and Axis of the Tabs

Strategy

By default, the major index tabs are aligned along the right-
hand edge of the notebook, and the minor tabs are along the
bottom. The basic step shows how to reverse that orientation.

By default, the right-hand tabs are 60 pixels wide and the
bottom tabs are 24 pixels high. These values are called insets,
because the notebook page is inset by those amounts from the
widget’s allotted area. When a label does not fit in those insets,
the user cannot see the end of the label. The second variant
shows how to adjust the insets to allow for the longest label on
the right. (Allowing for the highest label on the bottom is less
often a concern, unless you are using a nonstandard font.)

Basic Step

Changing the Axis

Online example: Notebook3Example

1. Select the notebook in the canvas.

The width of the right-hand
tabs must accommodate the
longest label

The major tabs have been
moved to the bottom edge

Changing the Size and Axis of the Tabs

VisualWorks Cookbook, Rev. 2.0 325

2. In the Properties Tool, go to the notebook’s Major Tabs
property and select bottom. (The minor tabs, if any, will move
to the right-hand edge.)

3. Apply the property and install the canvas.

Variant

Setting the Size

Online example: Notebook3Example

1. In Right field of the notebook’s Insets property, enter the
number of pixels of width for the right-hand index tabs.
(The height adjusts automatically to fit the label font).

2. In Bottom field of the notebook’s Insets property, enter the
number of pixels of height for the bottom tabs. (The width
adjusts to fit each tab’s label.)

Chapter 17 Notebooks

326 VisualWorks Cookbook, Rev. 2.0

Setting the Starting Page

Strategy

By default, a notebook opens with a blank page showing. This
can be regarded as the cover of the notebook, and it is properly
left blank if choosing a particular page to display at startup
would be arbitrary and therefore confusing. However,
displaying a nonblank page often provides better visual clues to
the user as to the nature of the notebook. The basic steps show
how to choose a default page by setting the selection indexes of
the major and minor SelectionInLists.

The variant shows how to set the selection by specifying the list
element itself (rather than the index number of that element).
This approach is more convenient when your application has
held onto the list element from an earlier operation.

Basic Steps

Online example: Notebook1Example

1. In a method in the application model (such as postOpenWith:),
send a selectionIndex: message to the SelectionInList that holds the
major keys (in the example, majorKeys). The argument is the
index number of the desired tab in the list.

By default,
the notebook shows an
empty page at startup

Setting the Starting Page

VisualWorks Cookbook, Rev. 2.0 327

postOpenWith: aBuilder
(aBuilder componentAt: #pageHolder) widget

client: self
spec: #listSpec.

majorKeys selectionIndex: 1. "Basic Step 1"

2. If the notebook has minor keys, also set the selection index
in the SelectionInList that contains the minor keys.

Variant

Setting the Page by Specifying the List Element
➤ Send a selection: message to the SelectionInList that holds the

major keys and, if applicable, another such message to the
minor list. The argument is the desired element in the list.

Chapter 17 Notebooks

328 VisualWorks Cookbook, Rev. 2.0

Adding Secondary Tabs (Minor Keys)

Strategy

In addition to the first set of index tabs, a second row of tabs
can be added along another edge of the notebook. This second
set of tabs is referred to as the minor keys. The minor keys can
be used either to refine the subdivisions implied by the major
keys or to filter the content of the notebook along a separate
dimension.

In Notebook2Example, which lists the classes in the system, two
minor keys are used to control whether the page shows all
classes beginning with the selected letter or just the example
classes.

Basic Steps

Online example: Notebook2Example

1. Select the notebook in the canvas.

1. In the Properties Tool, fill in the notebook’s Minor property
with the name of the method that returns a SelectionInList
containing the labels for the secondary tabs (in the
example, minorKeys).

The side tabs control
the first letter of the
displayed classes

The bottom tabs control
whether all classes are
displayed or only
example classes

Adding Secondary Tabs (Minor Keys)

VisualWorks Cookbook, Rev. 2.0 329

2. Use a System Browser or the canvas’s define command to
create the instance variable (minorKeys) and accessing
method (minorKeys) for the notebook’s list of index labels.

minorKeys "Basic Step 2"
^minorKeys

3. Initialize the variable, either in the accessing method or in
an initialize method (as in the example), with a SelectionInList
containing either strings or associations (the example uses
associations).

4. In the initialize method, use an onChangeSend:to: message to
arrange for the notebook to send a message (changedPage) to
the application model when the user selects a secondary
tab. (In the example, both the major and minor tabs trigger
the same message: changedPage.)

initialize
| letters |
letters := #(' A' ' B' ' C' ' D' ' E' ' F' ' G' ' H' ' I' ' J' ' K' ' L' ' M'

' N' ' O' ' P' ' Q' ' R' ' S' ' T' ' U' ' V' ' W' ' X' ' Y' ' Z').
majorKeys := SelectionInList with: letters.
majorKeys selectionIndexHolder

onChangeSend: #changedPage to: self.

minorKeys := SelectionInList with: (Array "Basic Step 3"
with: 'All classes'-> #all
with: 'Examples only' -> #examples).

minorKeys selectionIndexHolder
onChangeSend: #changedPage to: self. "Basic Step 4"

classNames := SelectionInList new.

5. Create the change message (changedPage) in which the
subcanvas is updated based on the selected index tab. (In
the example, the classNames list is updated with all class
names or only example classes, based on the minor key.)

changedPage
| chosenLetter list filter filteredList |

Chapter 17 Notebooks

330 VisualWorks Cookbook, Rev. 2.0

"Major key."
chosenLetter := self majorKeys selection last.
list := Smalltalk classNames

select: [:name | name first == chosenLetter].

"Minor key." "Basic Step 5"
filter := self minorKeys selection value.
filter == #all

ifTrue: [filteredList := list]
ifFalse: [filteredList := list

select: [:name | '*Example' match: name]].

self classNames list: filteredList.

Connecting Minor Tabs to Major Tabs

VisualWorks Cookbook, Rev. 2.0 331

Connecting Minor Tabs to Major Tabs

Strategy

The major and minor keys of a notebook can be used to
navigate through a two-tiered hierarchy of information. The
minor keys depend on the major keys—that is, when the user
selects a different major key, a different set of minor keys is
presented.

In Notebook3Example, the major keys represent departments in a
company. The minor keys represent subdepartments, and they
change depending on which department is selected. (Compare
this with Notebook2Example, in which the minor keys remain
unchanged when a new major key is selected.)

Basic Steps

Online example: Notebook3Example

1. In the application model’s initialize method, use onChangeSend:to:
messages to arrange for the two SelectionInLists to notify the
application model when their selections are changed.

The minor tab chooses the
second level of a hierarchy
(a subdepartment)

The major tab chooses the
first level of a hierarchy
(department)

Chapter 17 Notebooks

332 VisualWorks Cookbook, Rev. 2.0

initialize
self initializeDepartments.
self initializeEmployees.

majorKeys := SelectionInList with: departments keys asArray.
majorKeys selectionIndexHolder

onChangeSend: #changedDepartment
to: self. "Basic Step 1"

minorKeys := SelectionInList new.
minorKeys selectionIndexHolder

onChangeSend: #changedSubdepartment
to: self. "Basic Step 1"

employeeList := SelectionInList new.

2. Create the change message (changedDepartment) for the major
keys. In this method, get the selection from the major Selec-
tionInList and verify that it is not nil. Then use that selection as
the basis for choosing the new labels for the minor tabs.
Typically, this method will also reset the minor key selec-
tion so the notebook displays the first subpage.

changedDepartment "Basic Step 2"
| subdepts sel |
sel := self majorKeys selection.
sel isNil ifTrue: [^self].

"Display the appropriate subdepartments as minor keys."
subdepts := self departments at: sel.
self minorKeys list: subdepts.
self minorKeys selectionIndex: 1.

3. Create the change message (changedSubdepartment) for the
minor keys. In this method, get the minor selection and
verify that it is not nil. Then use that selection as the basis
for updating the canvas in the notebook or, as in the
example, its model (employeeList).

changedSubdepartment "Basic Step 3"
"Display the appropriate employees in the list."

Connecting Minor Tabs to Major Tabs

VisualWorks Cookbook, Rev. 2.0 333

| emps sel |
sel := self minorKeys selection.
sel isNil ifTrue: [^self].

emps := self employees at: sel.
self employeeList list: emps.

Chapter 17 Notebooks

334 VisualWorks Cookbook, Rev. 2.0

Changing the Page Layout (Subcanvas)

Strategy

In some applications, a notebook can be used to present a
different interface on each page. This approach can be used as
an alternative to placing each subinterface in its own window,
and thus it reduces the number of windows cluttering the
application user’s screen. There is some loss of convenience,
however, which is especially noticeable when the user might
want to view two subinterfaces simultaneously.

In Notebook4Example, each index tab represents an example appli-
cation. Selecting a tab causes a working instance of that appli-
cation to be contained in the notebook.

Basic Steps

Online example: Notebook4Example

1. In the application model’s initialize method, arrange for the
SelectionInList that holds the major keys to notify the applica-
tion model when a tab is selected. (In the example, a
changedExample message is triggered.)

initialize
| exampleClasses |

Each page represents a
different interface or even
a different application

Changing the Page Layout (Subcanvas)

VisualWorks Cookbook, Rev. 2.0 335

exampleClasses := OrderedCollection new.
exampleClasses := Smalltalk keys select: [:c |

(('*Example' match: c)
and: [(Smalltalk at: c) isVisualStartable])
and: [('Notebook*' match: c) not]].

majorKeys := SelectionInList
with: exampleClasses asSortedCollection.

majorKeys selectionIndexHolder
onChangeSend: #changedExample to: self. "Basic Step 1"

2. In the change method (changedExample), get the notebook
widget from the application model’s builder by sending a
componentAt: message.

3. Still in the change method, send a client:spec: message to the
notebook. The first argument is an instance of the desired
application model (in the example, exampleClass). The second
argument is the name of the desired canvas (in the
example, each example class’s windowSpec is used).

changedExample
| sel exampleClass |
sel := self majorKeys selection.
sel isNil ifTrue: [^self].

exampleClass := Smalltalk at: sel value.

(self builder componentAt: #pageHolder) widget "Basic Step 2"
client: exampleClass new "Basic Step 3"
spec: #windowSpec.

See Also
■ “Nesting One Application in Another” on page 305

Chapter 17 Notebooks

336 VisualWorks Cookbook, Rev. 2.0

Connecting a Notebook to a Text Editor

Strategy

A common use for a notebook is for navigating through a set of
textual pages. The text editor can be separate from the
notebook or displayed as a subcanvas within the notebook.
Using a separate text editor permits the user of your application
to see the navigational hierarchy and the text at the same time.

In Notebook5Example, a notebook is used for finding a class. The
text editor displays the class comment for the selected class.

Since the major and minor keys of a notebook can represent
two levels of a hierarchy, a list widget inside the notebook can
represent a third level. Thus, a notebook is a convenient means
of navigating up to three levels deep in a hierarchy. The text
editor is typically connected to the lowest level of the
hierarchy—in the example, the classNames list that is displayed
inside the notebook.

Selecting a class name here displays the class comment

Connecting a Notebook to a Text Editor

VisualWorks Cookbook, Rev. 2.0 337

Basic Steps

Online example: Notebook5Example

1. In the application model’s initialize method, arrange for the
SelectionInList that holds the lowest level of selections to notify
the application model when a text is selected. (In the
example, a changedClass message is triggered by a selection in
the classNames list.)

initialize
| letters |
letters := #(' A' ' B' ' C' ' D' ' E' ' F' ' G' ' H' ' I' ' J' ' K' ' L' ' M'

' N' ' O' ' P' ' Q' ' R' ' S' ' T' ' U' ' V' ' W' ' X' ' Y' ' Z').
majorKeys := SelectionInList with: letters.
majorKeys selectionIndexHolder

onChangeSend: #changedLetter to: self.

classNames := SelectionInList new.
classNames selectionIndexHolder

onChangeSend: #changedClass to: self. "Basic Step 1"

classComment := '' asValue.

2. In the change method (changedClass), get the selection from
the lowest-level SelectionInList (classNames). Then use that selec-
tion as the basis for choosing the text and install the new
text in the text holder (classComment).

changedClass
| chosenClass newText |
chosenClass := self classNames selection. "Basic Step 2"

newText := chosenClass isNil
ifTrue: ['']
ifFalse: [(Smalltalk at: chosenClass) comment].

self classComment value: newText.

See Also
■ “Adding a Text Editor” on page 172

VisualWorks Cookbook, Rev. 2.0 339

Chapter 18

Drag and Drop

About Drag and Drop 340
Adding a Drop Source 343
Adding a Drop Target (General) 348
Providing Visual Feedback During a Drag 350
Responding to a Drop 359
Examining the Drag Context 365
Responding to Modifier Keys 366
Defining Custom Effect Symbols 371

Chapter 18 Drag and Drop

340 VisualWorks Cookbook, Rev. 2.0

About Drag and Drop

Strategy

You can program application interfaces to enable users to
transfer data using drag and drop. A user performs drag and
drop by using the mouse pointer to:

1. Grab the object to be transferred

2. Drag that object to another location on the screen

3. Release (drop) the object there

For example, a user might copy an object such as a file by
dragging that object to a target location and dropping it there.
Throughout such an interaction, the pointer typically changes
shape to indicate whether it is over a valid target location.

You arrange for drag and drop by setting up one or more
widgets to be drop sources (widgets that present data to be
transferred) and/or drop targets (widgets that respond in some
way to the transferred data). Currently, a drop source must be
a list widget, while a drop target can be any widget except a
linked or embedded dataform. Drop sources and drop targets
may be in the same interface, or they may be in the interfaces
of different applications.

As shown in the topics in this chapter, you set up drop sources
and drop targets by specifying various message names in their
properties, and then programming the relevant application
model(s) to respond to these messages.

aDragDropData

aDropSource

aConfigurable-
DropTarget

aDragDropManager

aDragDropContext

About Drag and Drop

VisualWorks Cookbook, Rev. 2.0 341

Drag and drop framework classes. In a running application, a
drag-and-drop interaction is carried out by instances of several
framework classes. Some of these instances are created as a
result of the code you write, while others are created automat-
ically when the interface is built or when drag and drop is
underway. Each drag-and-drop interaction involves:

■ An instance of DragDropData, which holds the data to be
transferred, plus information about where the drag origi-
nated (the widget’s controller, the containing window, and
the associated application model).

■ An instance of DropSource, which defines the shapes that the
pointer can have during a drag originating from this drop
source. By default, the DropSource defines pointer shapes for
signaling whether a move, a copy, or no transfer would take
place if a drop were to occur at any point during the drag.

■ An instance of DragDropManager, which tracks the mouse
pointer throughout the drag. When the pointer encounters
a potential drop target, the DragDropManager sends messages
to find out whether the dragged data can be dropped there;
the DragDropManager asks the DropSource to set the pointer’s
shape based on the response. When a drop occurs in a drop
target, the DragDropManager sends a message to process the
transferred data.

■ Instances of ConfigurableDropTarget, which identify the widgets
that have been set up as drop targets. When the pointer
moves to a particular drop target, the associated
ConfigurableDropTarget receives the messages that are sent by
the DragDropManager and forwards them to the associated
application model, which provides the actual response.

■ An instance of DragDropContext, in which the DragDropManager
combines the DragDropData, the DropSource, and the
ConfigurableDropTarget to create a convenient object for passing
as an argument in various messages. The DragDropManager
also adds other information to the DragDropContext during a
drag, such as the current pointer position and modifier key
state.

Extended example. You can obtain an example of an extended
drag and drop implementation by filing in tooldd.st from the
extras subdirectory of your VisualWorks installation directory

Chapter 18 Drag and Drop

342 VisualWorks Cookbook, Rev. 2.0

or folder. This example modifies the Browser, UIPropertiesTool, and
VisualLauncher classes so that you can:

■ Drag a selector to move it to a different protocol in a
browser.

■ Drag a class to move it to a different category in a browser.

■ Drag a category, class, protocol, or selector to the System
Browser button on the toolbar of the VisualWorks main
window. This opens a System Browser on the dragged
object.

■ Drag a category, class, protocol, or selector to the File List
button on the toolbar of the VisualWorks main window.
This files out the dragged object.

■ Drag a selector for an interface specification (for example,
windowSpec) to the Canvas button on the toolbar of the
VisualWorks main window. This opens the canvas for
editing.

■ Drag a selector from a browser to a Properties Tool to copy
it into a field that accepts selectors.

After filing in tooldd.st , close any open browsers and Proper-
ties Tools. You must also rebuild the VisualWorks main
window, for example, by exiting and restarting VisualWorks.

Adding a Drop Source

VisualWorks Cookbook, Rev. 2.0 343

Adding a Drop Source

Strategy

A drop source is a widget from which a drag can originate; it
displays the data that is to be transferred. Currently, only a list
can serve as a drop source.

You set up a drop source by filling in the Drag OK and Drag Start
properties on the Drop Source page of the Properties Tool. These
properties specify the names of the messages that the widget
will send whenever the user presses a mouse button down and
starts to move the pointer within the widget’s bounds. You
program the widget’s application model to respond to these
messages as follows:

■ The drag-ok method must return a Boolean to indicate
whether-drag and drop is appropriate from this drop
source.

■ The drag-start method must create DragDropData, DropSource,
and DragDropManager instances and set them to work.

The basic steps show how to set up a list of colors from which
a single color can be dragged. The variant outlines steps for
setting up a multi-selection list as a drop source.

drop source

drop data

"no-drop" pointer

Chapter 18 Drag and Drop

344 VisualWorks Cookbook, Rev. 2.0

Basic Steps

Online example: ColorDDExample

1. Add a list widget to the canvas and set its Aspect and ID
properties (in this example, enter color and colorList, respec-
tively). Apply the properties and install the canvas.

2. Use the canvas’ define command or a System Browser to add
an instance variable (color) to the application model to hold
the list’s SelectionInList.

3. Use the canvas’ define command or a System Browser to
create an aspect method (color) in an aspects protocol.

color "Basic Step 3"
^color

4. Using a System Browser, initialize the SelectionInList in an
initialize method in the application model (initialize-release
protocol).

initialize
| tableList |

color := SelectionInList
with: #(#white #black #red #green #blue

#cyan #magenta #yellow) asList. "Basic Step 4"

colorLayer := SelectionInList
with: #('Foreground' 'Background' 'Selection Foreground'

'Selection Background') asList.

"Sample data for demonstration widgets"
sampleList := SelectionInList with: ColorValue constantNames asList.
tableList := TwoDList

on: #('Red' 'Cyan' 'Green' 'Magenta' 'Blue' 'Yellow')
columns: 2
rows: 3.

sampleTable := TableInterface new
selectionInTable: (SelectionInTable with: tableList).

sampleText := ColorValue comment asValue.

Adding a Drop Source

VisualWorks Cookbook, Rev. 2.0 345

5. In a Properties Tool, fill in the list’s Drag OK property with the
name of the method that will determine whether a drag can
proceed from this list. In this example, enter colorWantToDrag:
(the selector must end with a colon).

6. In a Properties Tool, fill in the list’s Drag Start property with
the name of the method that will initiate drag and drop. In
this example, enter colorDrag: (the selector must end with a
colon).

7. Leave the Select On Down property selected. This causes a
selection to occur when the mouse is pressed down to start
the drag (rather than waiting for the mouse to be released).
Apply the properties and install the canvas.

8. In a System Browser, add a drag-ok method (colorWantToDrag:)
in a suitable protocol (drag source). This method must return
a Boolean (true to permit drag and drop, false to prevent it).
Note that this method must accept a Controller as an argu-
ment, even if that controller isn’t used.

colorWantToDrag: aController "Basic Step 8"
"Determine whether to permit a drag to start from this widget. In this case,
make sure that there is data to drag and that the drag starts a selection."

^self color list size > 0 and: [self color selection notNil]

9. In a System Browser, add a drag-start method (colorDrag:) in
the drag source protocol. Note that this method must accept a
Controller as an argument.

10. In the drag-start method, create a DragDropData instance. This
instance will hold various pieces of information about the
dragged data and where it came from.

11. Send a key: message to the DragDropData instance to specify a
symbol (#colorChoice) that identifies the kind of data being
stored. A drop target can use this key to filter out inappro-
priate kinds of data (for example, data being dragged from
an unrelated drop source).

12. Send messages to the DragDropData instance to specify any
further information that a drop target might use when eval-
uating this drag. Typically, you send a contextWindow: message
specifying the containing window, a contextWidget: message

Chapter 18 Drag and Drop

346 VisualWorks Cookbook, Rev. 2.0

specifying the list widget; and a contextApplication: message
specifying the application model.

13. Send a clientData: message to the DragDropData instance to store
the object to be transferred (in this case, the color that is
currently selected). Notice that the color choice is stored in
an IdentityDictionary, which is a general technique for storing
multiple related pieces of data. (The utility of this technique
is not exploited here, however, so the color selection could
have been stored directly in the DragDropData).

14. Create an instance of DropSource to make predefined kinds of
visual feedback available during the drag.

15. Create an instance of DragDropManager and initialize it with
the DropSource and DragDropData instances.

16. Send a doDragDrop message to the DragDropManager to start the
drag and drop.

colorDrag: aController "Basic Step 9"
"Drag the currently selected color. Provide all available information about the
context of the color so that the drop target can use whatever it needs."

| ds dm data |
data := DragDropData new. "Basic Step 10"
data key: #colorChoice. "Basic Step 11"
data contextWindow: self builder window. "Basic Step 12"
data contextWidget: aController view.
data contextApplication: self.
data clientData: IdentityDictionary new. "Basic Step 13"
data clientData at: #colorChoice put: self color selection. "Basic Step 13"

ds := DropSource new. "Basic Step 14"

dm := DragDropManager
withDropSource: ds
withData: data. "Basic Step 15"

dm doDragDrop "Basic Step 16"

Note that when the drag and drop completes, the doDragDrop
message returns a symbol which can be stored in a tempo-
rary variable and then used to trigger further actions (such
as cutting the dragged data out of the drop source list). This
symbol is ignored in the colorDrag: method.

Adding a Drop Source

VisualWorks Cookbook, Rev. 2.0 347

Variants

V1. Dragging Multiple Selections

You can use most of the same basic steps to set up a drop
source so that multiple selected items can be dragged from it.
The exceptions are listed below:

1. In Basic Step 1, click the list’s Multi Select property.

2. In Basic Step 4, initialize the list’s aspect variable with a
MultiSelectionInList instead of a SelectionInList.

3. In Basic Step 13, send the selections message (instead of selec-
tion) to obtain the selected data to store in the DragDropData
instance. The selections message returns an ordered collec-
tion of objects. You may want to store individual members
of this collection as separate elements of an IdentityDictionary.

Chapter 18 Drag and Drop

348 VisualWorks Cookbook, Rev. 2.0

Adding a Drop Target (General)

Strategy

A drop target is a widget in which dragged data can potentially
be dropped. You can set up any window or widget as a drop
target (except a linked or embedded dataform).

In general, you set up a drop target by filling in one or more of
its properties on the Drop Target page of the Properties Tool, and
then implementing corresponding methods in the application
model. Each of a widget’s DropTarget properties specifies the
name of a message that the DragDropManager sends at various
points after the drag encounters this widget.

At a minimum, you must fill in the widget’s Drop property to
specify the name of a method that implements the desired
response when a drop occurs in that widget. Filling in the Drop
property causes the builder to set up the widget with a
ConfigurableDropTarget instance so that the DragDropManager can
recognize the widget as a drop target.

In addition, you normally fill in the widget’s Entry, Over, and Exit
properties to specify the names of methods that provide visual
feedback when the pointer is dragged across the widget. Typi-
cally, these methods specify the pointer’s shape and adjust the

potential drop
targets

Adding a Drop Target (General)

VisualWorks Cookbook, Rev. 2.0 349

drop target’s appearance to signal whether the drop target can
accept a drop from this particular drag. Strictly speaking, these
properties are optional, in that drag and drop can function
without them. However, providing visual feedback is normally
required by user interface design guidelines.

Specific steps are given in the topics listed under See Also.

See Also
■ “Providing Visual Feedback During a Drag” on page 350

■ “Responding to a Drop” on page 359

Chapter 18 Drag and Drop

350 VisualWorks Cookbook, Rev. 2.0

Providing Visual Feedback During a Drag

Strategy

As part of adding a drop target, you normally arrange for visual
feedback to be given to users when they drag the pointer over
it. The purpose of this feedback is to let users know whether a
drop can be accepted from this particular drag, and, if so, what
kind of transfer may result. Visual feedback typically includes
changing the pointer’s shape and adjusting the drop target’s
appearance—for example, by highlighting a button (basic
steps), changing a label (first variant), or scrolling a list to track
the pointer’s movement over it (second variant).

Drop target messages. You arrange for visual feedback by filling in
the drop target’s Entry, Over, and Exit properties with the names
of messages to be sent by the DragDropManager at various points
during a drag. You then implement methods in the application
model to respond to these messages:

■ The entry message is sent as soon as the pointer enters the
widget’s bounds. The method typically saves the drop
target’s visual state for restoring later, and/or toggles
simple visual characteristics such as highlighting.

drop target is
highlighted

pointer indicates
a possible drop

Providing Visual Feedback During a Drag

VisualWorks Cookbook, Rev. 2.0 351

■ The over message is sent immediately after the entry
message, and then every time the pointer moves within the
widget’s bounds. The method typically adjusts the drop
target’s appearance in response to pointer location or a
modifier key press.

■ The exit message is sent wherever the pointer is dragged
out of the widget’s bounds before the mouse button is
released. The method typically restores the widget’s original
appearance.

Each method has access to the dragged data through the
DragDropContext instance that is passed to it by the DragDropManager.
The methods query the DragDropContext to decide what kind of
visual feedback to provide. Furthermore, these methods use
the DragDropContext to save and restore drop target characteristics
(both variants).

Note that no changes are made to a drop target’s appearance
unless you implement them in these methods. Programmatic
techniques for changing widget appearance are described in the
specific widget chapters of this book.

Pointer shapes. Each of the entry, over, and exit methods
control the pointer shape by returning an effect symbol. The
DragDropManager passes each effect symbol to the operation’s
DropSource instance, which sets the pointer shape accordingly. A
standard DropSource recognizes these basic effect symbols:

■ #dropEffectNone—produces a pointer shaped like a circle with a
slash through it; usually indicates that no transfer is
possible in the pointer’s current location.

■ #dropEffectMove—produces an arrow-shaped pointer with an
open box below it; usually indicates a simple transfer such
as a move (data is cut from the source after the transfer).

■ #dropEffectCopy—produces the same pointer as #dropEffectMove,
but with a plus sign; usually indicates a modified transfer
such as a copy (data is left in the source after the transfer).

Basic Steps

Online example: ColorDDExample

This example highlights the Apply Color button and changes the
pointer’s shape while the pointer is in the button.

Chapter 18 Drag and Drop

352 VisualWorks Cookbook, Rev. 2.0

1. In the canvas, select the Apply Color button, and set its ID
property (in this case, enter #applyColorButton).

2. On the Drop Target page of a Properties Tool, fill in the
widget’s Entry, Over, and Exit properties with the names of the
messages to be sent during the drag (applyColorEnter:,
applyColorOver:, and applyColorExit:, respectively). Each selector
must end with a colon. Apply the properties and install the
canvas.

3. In a System Browser, add an entry method (applyColorEnter:) in
an appropriate protocol (in this case, drop target - button1). The
method must accept a DragDropContext instance as an argu-
ment.

4. In the entry method, test the dragged data to determine
what kind of feedback to provide (positive feedback if the
data is a color choice, and negative feedback otherwise).
Send a key message to the DragDropContext instance to obtain
the identifying symbol that was assigned when the drag
started. If the data’s key is not #colorChoice, return an effect
symbol (#dropEffectNone) to signal that a drop is not allowed.

5. If the dragged data is acceptable, highlight the button as if
it were pressed and return an effect symbol (#dropEffectMove)
that signals permission to drop.

applyColorEnter: aDragContext "Basic Step 3"
"A drag has entered the bounds of the Apply Color button. Test whether a drop
would be permitted here with this data. If so, cause the button to be highlighted
as if it were pressed, and return a symbol that indicates the feedback to be
given to the user."

aDragContext key == #colorChoice
ifFalse: [^#dropEffectNone]. "Basic Step 4"

(self builder componentAt: #applyColorButton) widget
isInTransition: true. "Basic Step 5"

^#dropEffectMove. "Basic Step 5"

6. Add an over method (applyColorOver:) that accepts a DragDrop-
Context instance as an argument.

Providing Visual Feedback During a Drag

VisualWorks Cookbook, Rev. 2.0 353

7. In the over method, test the dragged data and return the
appropriate effect symbols. No other processing is neces-
sary in this method because the button’s highlighting does
not vary with the pointer’s movement.

applyColorOver: aDragContext "Basic Step 6"
"A drag is over the Apply Color button. Test whether a drop would be permitted
here with this data. If so, return a symbol that indicates the feedback to be
given to the user. The DragDropManager uses this symbol to determine the
pointer shape."

aDragContext key == #colorChoice
ifFalse: [^#dropEffectNone]. "Basic Step 7"

^#dropEffectMove "Basic Step 7"

8. Add an exit method (applyColorExit:) that accepts a
DragDropContext instance as an argument.

9. In the exit method, test the dragged data and return
#dropEffectNone if the dragged data is not a color choice.

10. If the dragged data is acceptable, reverse any visual effect
that was set in the entry method (in this case, unhighlight
the button).

11. Return #dropEffectNone, to signal that no drop has occurred
(this method executes only if the pointer leaves the widget
without dropping).

applyColorExit: aDragContext "Basic Step 8"
"A drag has exited the Apply Color button without dropping. Test whether a drop
would have been permitted here with this data. If so, restore the button to its
former state, and return a symbol that indicates the feedback to be given to the
user."

aDragContext key == #colorChoice "Basic Step 9"
ifFalse: [^#dropEffectNone].

(self builder componentAt: #applyColorButton) widget
isInTransition: false. "Basic Step 10"

^#dropEffectNone "Basic Step 11"

Chapter 18 Drag and Drop

354 VisualWorks Cookbook, Rev. 2.0

Variant

V1. Changing a Button Label During a Drag

Online example: ColorDDExample

This example saves and changes the label of the Apply More Color
button when the pointer enters the button, restoring the
original label when the pointer exits.

1. In the canvas, select the Apply More Color button, and set its ID
property (in this case, enter #applyMoreColorButton).

2. On the Drop Target page of a Properties Tool, set the widget’s
Entry, Over, and Exit properties (enter applyMoreColorEnter:,
applyMoreColorOver:, and applyMoreColorExit:).

3. In an entry method (applyMoreColorEnter:), create an
IdentityDictionary in which to save the drop target’s original
state.

4. Save any button characteristics in the IdentityDictionary that
are to be restored later. In this case, store the widget and its
label. (Storing the widget is a stylistic option that enables
the widget to be accessed later through the DragDropContext
rather than through the builder.)

5. Get the widget’s ConfigurableDropTarget instance from the
DragDropContext, and set the IdentityDictionary as its client data.

6. Change the button’s label by sending the labelString: message
to the button. The message argument is the string to be
displayed. Note that a different string is specified depending
on the state of the shift key.

applyMoreColorEnter: aDragContext
"A drag has entered the bounds of the Apply More Color button. Test whether a
drop would be permitted here with this data. If so, store the current label of the
button. Then test whether the shift key is down. Based on this test, change the
button's label and return a symbol that indicates the feedback to be given to the
user."

| widget dict |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].

widget := (self builder componentAt: #applyMoreColorButton) widget.

Providing Visual Feedback During a Drag

VisualWorks Cookbook, Rev. 2.0 355

dict := IdentityDictionary new. "V1 Step 3"
dict at: #widget put: widget. "V1 Step 4"
dict at: #label put: widget label. "V1 Step 4"
aDragContext dropTarget clientData: dict. "V1 Step 5"

aDragContext shiftDown
ifTrue:

[widget labelString: 'Background'. "V1 Step 6"
^#dropEffectCopy].

widget labelString: 'Foreground'. "V1 Step 6"
^#dropEffectMove.

7. In an exit method (applyMoreColorExit:), get the drop target’s
IdentityDictionary from the DragDropContext.

8. Retrieve the button from the IdentityDictionary. (Alternatively,
you could obtain the button from the builder.)

9. Retrieve the original label from the IdentityDictionary and put it
back on the button. (Note that argument of the label:
message is a label object, not a string.)

10. Remove the drop target data from the DragDropContext. This
prepares the DragDropContext for the next drop target the
pointer may encounter.

applyMoreColorExit: aDragContext
"A drag has exited the Apply More Color button without dropping. Test whether
a drop would have been permitted here with this data. If so, restore the button
to its former state, and return a symbol that indicates the feedback to be given
to the user."

| dict widget |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].

dict := aDragContext dropTarget clientData. "V1 Step 7"
widget := dict at: #widget. "V1 Step 8"
widget label: (dict at: #label). "V1 Step 9"
aDragContext dropTarget clientData: nil. "V1 Step 10"

^#dropEffectNone.

Chapter 18 Drag and Drop

356 VisualWorks Cookbook, Rev. 2.0

V2. Tracking a Targeted List Item

Online example: ColorDDExample

This example provides visual feedback for a list in which a drop
is intended for a particular item rather than the list as a whole.
The steps cause the pointer’s location to be indicated by target
emphasis, a rectangular border around the item containing the
pointer. The target emphasis tracks the pointer, scrolling if
necessary. (Target emphasis is also used in keyboard traversal
of lists to indicate the target for selection.)

1. In the canvas, select the list of color layers and set its ID
property (in this case, enter #colorLayerList).

2. On the Drop Target page of a Properties Tool, set the widget’s
Entry, Over, and Exit properties (enter colorLayerEnter:,
colorLayerOver:, and colorLayerExit:).

3. In an entry method (colorLayerEnter:), create an IdentityDictionary in
which to save the drop target’s original state.

4. Save any characteristics into the IdentityDictionary that are to
be restored later. In this case, store the widget, the location
of any target emphasis resulting from keyboard traversal,
and a Boolean indicating whether the list has focus.

5. Get the widget’s ConfigurableDropTarget instance from the
DragDropContext. Store the IdentityDictionary as its client data.

6. Give focus to the list to prepare it for tracking the pointer
with target emphasis.

colorLayerEnter: aDragContext
"A drag has entered the bounds of the list of color layers. Test whether a drop
would be permitted here with this data. If so, save the initial state of the color
layer list, give focus to the list, and return a symbol that indicates the feedback
to be given to the user."

| dict widget |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].

widget := (self builder componentAt: #colorLayerList) widget.
dict := IdentityDictionary new. "V2 Step 3"
dict at: #widget put: widget. "V2 Step 4"
dict at: #targetIndex put: widget targetIndex. "V2 Step 4"

Providing Visual Feedback During a Drag

VisualWorks Cookbook, Rev. 2.0 357

dict at: #hasFocus put: widget hasFocus. "V2 Step 4"
aDragContext dropTarget clientData: dict. "V2 Step 5"

widget hasFocus: true. "V2 Step 6"
^#dropEffectMove

7. In an over method (colorLayerOver:), retrieve the list widget
from the DragDropContext.

8. Send the showDropFeedbackIn:allowScrolling: message to the list to
display target emphasis at the pointer’s current position,
scrolling, if necessary. (Remember, this message gets sent
each time the pointer moves in the list).

colorLayerOver: aDragContext
"A drag is over the list of color layers. Test whether a drop would be permitted
here with this data. If so, tell the list to scroll the target emphasis when the
pointer moves. Return a symbol that indicates the feedback to be given to the
user. The DragDropManager uses this symbol to determine the pointer shape."

| list |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].

list := aDragContext dropTarget clientData at: #widget. "V2 Step 7"
list

showDropFeedbackIn: aDragContext
allowScrolling: true. "V2 Step 8"

^#dropEffectMove

9. In an exit method (colorLayerExit:), get the drop target’s
IdentityDictionary from the DragDropContext and retrieve the list
widget.

10. Restore the list’s original target emphasis and focus state.

11. Remove the drop target data from the DragDropContext. This
prepares the DragDropContext for the next drop target the
pointer may encounter.

colorLayerExit: aDragContext
"A drag has exited the list of color layers without dropping. Test whether a drop
would have been permitted here with this data. If so, restore the initial state of

Chapter 18 Drag and Drop

358 VisualWorks Cookbook, Rev. 2.0

the color layer list, and return a symbol that indicates the feedback to be given
to the user."

| dict widget |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].

dict := aDragContext dropTarget clientData. "V2 Step 9"
widget := dict at: #widget. "V2 Step 9"
widget targetIndex: (dict at: #targetIndex). "V2 Step 10"
widget hasFocus: (dict at: #hasFocus). "V2 Step 10"

aDragContext dropTarget clientData: nil. "V2 Step 11"
^#dropEffectNone

See Also
■ “Adding a Drop Target (General)” on page 348

■ “Examining the Drag Context” on page 365

■ “Responding to Modifier Keys” on page 366

■ “Defining Custom Effect Symbols” on page 371

Responding to a Drop

VisualWorks Cookbook, Rev. 2.0 359

Responding to a Drop

Strategy

A central part of creating a drop target is to implement the
action to be taken whenever a drop occurs in it. A typical action
is to verify that the dragged data is acceptable to this drop
target, and then process that data accordingly. You arrange for
this by filling in the widget’s Drop property on the Drop Target page
of the Property Tool. This property specifies the name of the
message that the DragDropManager will send when a drop occurs
in the widget. You then create a corresponding method in the
application model to implement the response.

Like the entry, over, and exit methods, a drop method receives
a DragDropContext instance as an argument from the
DragDropManager. The method can examine this instance to deter-
mine whether to accept the dragged data and, if so, how to
process it.

A typical drop method adjusts the appearance of the drop target
widget to reverse any visual feedback caused by the enter or
over method or to provide visual evidence of the completed
drop. The drop method may also need to clean up any drop
target data that was created by the entry method.

Dropping a color
here...

...changes the
background color
of the demonstra-
tion widgets

Chapter 18 Drag and Drop

360 VisualWorks Cookbook, Rev. 2.0

A drop method returns an effect symbol for the DragDropManager
to return to the drag-start method that initiated the drag.

The basic steps set up the Apply Color button in ColorDDExample so
that dropping a color on this button applies that color to the
foreground layer of the demonstration widgets. The variant sets
up the color layer list so that dropping a color on a targeted
layer applies the dragged color to that layer.

Basic Steps

Online example: ColorDDExample

1. In the canvas, select the widget you want to use as a drop
target. In this case, select the Apply Color button.

2. On the Drop Target page of a Properties Tool, set the widget’s
Drop property (applyColorDrop:). The selector must end with a
colon. Apply properties and install the canvas.

3. In a System Browser, add a drop method (applyColorDrop:) in
an appropriate protocol (in this case, drop target - button 1). The
method must accept a DragDropContext instance as an argu-
ment.

4. In the drop method, determine whether the dragged data
should be accepted for processing (that is, whether it is a
color choice). To do this, send a key message to the
DragDropContext instance to obtain the identifying symbol that
was assigned when the drag started. If the key is not
#colorChoice, return an effect symbol (#dropEffectNone) to signal
that no drop is allowed.

5. If the dragged data is acceptable, perform the processing
that is to result from the drop. In this example, send a
sourceData message to the DragDropContext to obtain the
DragDropData; then send this object a clientData message to
obtain the selected color. Turn the selected color into a
color value and set it as the foreground color of the demon-
stration widgets.

6. Restore the widget’s original appearance (turn off the high-
lighting that was turned on by the applyColorEnter: method).

7. Return an effect symbol indicating the result of the drop.
This symbol is passed to the drag-start method (colorDrag:),

Responding to a Drop

VisualWorks Cookbook, Rev. 2.0 361

where it can be used to trigger further actions at the drop
source.

applyColorDrop: aDragContext "Basic Step 3"
"A drop has occurred in the Apply Color button. If the drop is permitted, set the
foreground color of the demonstration widgets to be the dragged color choice.
Restore the button to its former visual state and return an effect symbol for
possible use in the colorDrag method."

| dict aColor |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone]. "Basic Step 4"

dict := aDragContext sourceData clientData. "Basic Step 5"
aColor := ColorValue perform: (dict at: #colorChoice).

(self builder componentAt: #applyColorButton) widget
isInTransition: false. "Basic Step 6"

self foregroundColor: aColor. "Basic Step 5"

^#dropEffectMove. "Basic Step 7"

Variant

Dropping data on a particular list item requires that you enable
target emphasis in the list through the entry and over methods.
Target emphasis tracks the location of the pointer, displaying a
rectangular border around the currently targeted list item.

Online example: ColorDDExample

1. In the canvas, select the list of color layers and set its ID
property (in this case, enter #colorLayerList).

2. On the Drop Target page of a Properties Tool, set the widget’s
Entry, Over and Drop properties (colorLayerEnter:, colorLayerOver: and
colorLayerDrop:).

3. In an entry method (colorLayerEnter:), give focus to the list to
prepare it for displaying target emphasis.

Chapter 18 Drag and Drop

362 VisualWorks Cookbook, Rev. 2.0

colorLayerEnter: aDragContext
"A drag has entered the bounds of the list of color layers. Test whether a drop
would be permitted here with this data. If so, save the initial state of the color
layer list, give focus to the list, and return a symbol that indicates the feedback
to be given to the user."

| dict widget |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].

widget := (self builder componentAt: #colorLayerList) widget.
dict := IdentityDictionary new.
dict at: #widget put: widget.
dict at: #targetIndex put: widget targetIndex.
dict at: #hasFocus put: widget hasFocus.
aDragContext dropTarget clientData: dict.

widget hasFocus: true. "Variant Step 3"
^#dropEffectMove

4. In an over method (colorLayerOver:), retrieve the list widget
from the DragDropContext and send it the showDropFeed-
backIn:allowScrolling: message to display target emphasis at the
pointer’s current position.

colorLayerOver: aDragContext
"A drag is over the list of color layers. Test whether a drop would be permitted
here with this data. If so, tell the list to scroll the target emphasis when the
pointer moves. Return a symbol that indicates the feedback to be given to the
user. The DragDropManager uses this symbol to determine the pointer shape."

| list |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].

list := aDragContext dropTarget clientData at: #widget. "Variant Step 4"
list

showDropFeedbackIn: aDragContext
allowScrolling: true. "Variant Step 4"

Responding to a Drop

VisualWorks Cookbook, Rev. 2.0 363

^#dropEffectMove

5. In a drop method (colorLayerDrop:), test whether the dragged
data is a color choice; if so, obtain the selected color from
the dragged data and turn it into a color value.

6. Send a targetIndex message to the list to get the index of the
targeted list item (the item containing the pointer when the
drop occurs).

7. Get the color layer that is shown in the list at the targeted
index.

8. Give visual feedback to indicate a successful drop. In this
case, cause the targeted list item to appear selected (set the
list’s selection index to be the targeted index). Alternatively,
you could restore the list to its original visual state, as is
done in the colorLayerExit: method.

9. Use the targeted color layer to choose the appropriate
message for changing the color of the demonstration
widgets.

colorLayerDrop: aDragContext
"A drop has occur in the list of color layers. If the drop is permitted, combine the
dragged color choice and the targeted color layer to change the color of the
appropriate parts of the demonstration widgets. Return an effect symbol for
possible use in the colorDrag method."

| dict aColor widget idx aLayer |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone]. "Variant Step 5"

dict := aDragContext sourceData clientData. "Variant Step 5"
aColor := ColorValue perform: (dict at: #colorChoice).

widget := aDragContext dropTarget clientData at: #widget.
idx := widget targetIndex. "Variant Step 6"
idx = 0 ifTrue: [^#dropEffectNone].
aLayer := self colorLayer listHolder value at: idx. "Variant Step 7"

self colorLayer selectionIndexHolder value: idx. "Variant Step 8"

aDragContext dropTarget clientData: nil.

Chapter 18 Drag and Drop

364 VisualWorks Cookbook, Rev. 2.0

aLayer = 'Foreground' "Variant Step 9"
ifTrue: [self foregroundColor: aColor].

aLayer = 'Background'
ifTrue: [self backgroundColor: aColor].

aLayer = 'Selection Foreground'
ifTrue: [self selectionForegroundColor: aColor].

aLayer = 'Selection Background'
ifTrue: [self selectionBackgroundColor: aColor].

^#dropEffectMove.

See Also
■ “Adding a Drop Target (General)” on page 348

■ “Providing Visual Feedback During a Drag” on page 350

■ “Examining the Drag Context” on page 365

■ “Responding to Modifier Keys” on page 366

Examining the Drag Context

VisualWorks Cookbook, Rev. 2.0 365

Examining the Drag Context

Strategy

In ColorDDExample, the various Entry, Over, Exit, and Drop methods
determine what kind of action or visual feedback to provide by
examining the dragged data. Specifically, these methods test
the key symbol that was assigned to the dragged data in the
Drag Start method.

In general, drop target methods can examine a variety of infor-
mation by querying the DragDropContext instance that is passed to
them by the DragDropManager. Among other things, the
DragDropContext instance contains the DragDropData you created in
the Drag Start method, plus the current pointer location and
modifier key states.

Basic Steps
➤ In a drop target method, obtain information about the drag

from the DragDropContext instance that is passed to the
method (assume the argument name is aDragContext).

"Get the key that was assigned to the dragged data."

aDragContext key.

"Get the application model from which the drag originated."

aDragContext sourceData contextApplication.

"Get the window from which the drag originated."

aDragContext sourceData contextWindow.

"Get the current pointer location."

aDragContext mousePoint.

Chapter 18 Drag and Drop

366 VisualWorks Cookbook, Rev. 2.0

Responding to Modifier Keys

Strategy

You can make drag and drop sensitive to the state of the
<Control>, <Shift>, <Alt>, and <Meta> modifier keys. For
example, in many applications, a user can move a file by
dragging it and copy a file by <Shift>-dragging it.

Making drag and drop sensitive to modifier keys involves:

■ Providing the appropriate visual feedback in the drop
target’s entry, over, and exit methods.

■ Providing appropriate processing in the drop target’s drop
method.

The basic steps set up the Apply More Color button in
ColorDDExample so that dragging changes the foreground color of
the demonstration widgets, while <Shift>-dragging changes the
background color.

Pressing the
<Shift> key during
a drag displays
the ’copy’ pointer
and changes the
button label.

Responding to Modifier Keys

VisualWorks Cookbook, Rev. 2.0 367

Basic Steps

Online example: ColorDDExample

1. In the canvas, select the list of color layers and set its ID
property (in this case, enter #applyMoreColorButton).

2. On the Drop Target page of a Properties Tool, set the widget’s
Entry, Over, Exit and Drop properties (applyMoreColorEnter:,
applyMoreColorOver:, applyMoreColorExit:, and applyMoreColorDrop:).
Apply properties and install the canvas.

3. In an entry method (applyMoreColorEnter:), send a shiftDown
message to the DragDropContext instance to find out whether
the user is pressing the <Shift> key down.

4. If the <Shift> key is down, provide appropriate visual feed-
back. In this case, change the button’s label to indicate that
background colors will be set, and return an effect symbol
(#dropEffectCopy) to signal a modified transfer.

5. If the <Shift> key is not down, change the button’s label to
indicate that foreground colors will be set, and return an
effect symbol (#dropEffectMove) to signal a regular transfer.

applyMoreColorEnter: aDragContext
"A drag has entered the bounds of the Apply More Color button. Test whether a
drop would be permitted here with this data. If so, store the current label of the
button. Then test whether the shift key is down. Based on this test, change the
button's label and return a symbol that indicates the feedback to be given to the
user."

| widget dict |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].

widget := (self builder componentAt: #applyMoreColorButton) widget.
dict := IdentityDictionary new.
dict at: #widget put: widget.
dict at: #label put: widget label.
aDragContext dropTarget clientData: dict.

aDragContext shiftDown "Basic Steps 3"
ifTrue:

[widget labelString: 'Background'.
^#dropEffectCopy]. "Basic Steps 4"

Chapter 18 Drag and Drop

368 VisualWorks Cookbook, Rev. 2.0

widget labelString: 'Foreground'. "Basic Steps 5"
^#dropEffectMove.

6. In an over method (applyMoreColorOver:), find out whether the
user has changed the <Shift> key state while dragging the
pointer within the widget. (Remember, this method executes
each time the pointer moves in the widget.) If the <Shift>
key is down, test whether the button’s label needs to
change; if so, change it. Return the #dropEffectCopy symbol.

7. If the <Shift> key is not down, test whether the button’s
label needs to change; if so, change it. Return the
#dropEffectMove symbol.

applyMoreColorOver: aDragContext
"A drag is over the Apply More Color button. Test whether a drop would be
permitted here with this data. If so, test whether the shift key is down. Based on
this test, return a symbol that indicates the feedback to be given to the user.
The DragDropManager uses this symbol to determine the pointer shape."

| widget |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].

widget := aDragContext dropTarget clientData at: #widget.

aDragContext shiftDown
ifTrue: "Basic Step 6"

[widget label text string = 'Background'
ifFalse: [widget labelString: 'Background'].

^#dropEffectCopy].

widget label text string = 'Foreground’
ifFalse: [widget labelString: 'Foreground'].

^#dropEffectMove. "Basic Step 7"

8. In an exit method (applyMoreColorExit:), restore the button’s
original label. In this example, the same label is restored,
regardless of the <Shift> key’s state.

Responding to Modifier Keys

VisualWorks Cookbook, Rev. 2.0 369

applyMoreColorExit: aDragContext
"A drag has exited the Apply More Color button without dropping. Test whether
a drop would have been permitted here with this data. If so, restore the button
to its former state, and return a symbol that indicates the feedback to be given
to the user."

| dict widget |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].

dict := aDragContext dropTarget clientData.
widget := dict at: #widget.
widget label: (dict at: #label). "Basic Steps 8"
aDragContext dropTarget clientData: nil.

^#dropEffectNone.

9. In a drop method (applyMoreColorDrop:), test whether the
<Shift> key is down.

10. If the <Shift> key is down, apply the dragged color choice to
the background color layer of the demonstration widgets.
Return #dropEffectCopy to signal a modified transfer.

11. If the <Shift> key is not down, apply the dragged color
choice to the foreground color layer. Return #dropEffectMove to
signal a regular transfer. Note that a drag-start method
could respond differently depending on which symbol is
returned.

applyMoreColorDrop: aDragContext
"A drop has occured in the Apply More Color button. If the drop is permitted,
obtain the dragged color. Then test whether the shift key is down. If so, set the
background color of the demonstration widgets. If not, set their foreground
color. Restore the button to its former visual state and return an effect symbol
for possible use in the colorDrag method."

| dict widget aColor |

aDragContext key == #colorChoice
ifFalse: [^#dropEffectNone].

Chapter 18 Drag and Drop

370 VisualWorks Cookbook, Rev. 2.0

dict := aDragContext sourceData clientData.
aColor := ColorValue perform: (dict at: #colorChoice).

dict := aDragContext dropTarget clientData.
widget := dict at: #widget.
widget label: (dict at: #label).
aDragContext dropTarget clientData: nil.

aDragContext shiftDown "Basic Steps 9"
ifTrue:

[self backgroundColor: aColor.
^#dropEffectCopy]. "Basic Steps 10"

self foregroundColor: aColor.
^#dropEffectMove. "Basic Steps 11"

See Also
■ “Adding a Drop Target (General)” on page 348

■ “Providing Visual Feedback During a Drag” on page 350

■ “Responding to a Drop” on page 359

Defining Custom Effect Symbols

VisualWorks Cookbook, Rev. 2.0 371

Defining Custom Effect Symbols

Strategy

As part of providing visual feedback during drag and drop, you
set the pointer’s shape by returning effect symbols from the
drop target’s entry, over, and exit methods. The DragDropManager
passes each symbol to the operation’s DropSource instance, which
converts it into a pointer shape.

A standard DropSource recognizes the following effect symbols:

■ #dropEffectNone—produces a pointer shaped like a circle with a
slash through it; usually indicates that no transfer is
possible in the pointer’s current location.

■ #dropEffectMove—produces an arrow-shaped pointer with an
open box below it; usually indicates a simple transfer such
as a move (data is cut from the source after the transfer).

■ #dropEffectCopy—produces the same pointer as #dropEffectMove,
but with a plus sign; usually indicates a modified transfer
such as a copy (data is left in the source after the transfer).

■ #dropEffectNormal—produces a plain arrow-shaped pointer;
useful for situations in which other visual feedback besides
pointer shape is provided.

If you want to use different pointer shapes in your application,
you can add your own effect symbols (basic steps) or override
the existing ones (variant).

#dropEffectNormal

#dropEffectNone#dropEffectMove

#dropEffectCopy

Chapter 18 Drag and Drop

372 VisualWorks Cookbook, Rev. 2.0

Basic Steps

Adding a New Effect Symbol
1. In the application model, create a ConfigurableDropSource

instance (instead of a DropSource instance) in a drag-start
method.

2. Initialize the ConfigurableDropSource instance with the name of
the message to be sent to convert an effect symbol into a
pointer shape. In this example, specify giveFeedback:for:. Note
that the message name must consist of two keywords.

3. Initialize the ConfigurableDropSource instance with the object
that is to receive the message specified in step 2. In this
case, specify the application model itself.

4. Initialize the DragDropManager with the ConfigurableDropSource
instance.

someDragStartMethod: aController
"This is a hypothetical method that doesn’t really exist in any example."

| ds dm data |
data := DragDropData new.
data key: #someKindOfData.
data contextWindow: self builder window.
data contextWidget: aController.
data contextApplication: self.
data clientData: IdentityDictionary new.
data clientData at: #someKindOfData put: self someData selection.

ds := ConfigurableDropSource new. "Basic Step 1"
ds giveFeedbackSelector: #giveFeedback:for: . "Basic Step 2"
ds receiver: self. "Basic Step 3"

dm := DragDropManager
withDropSource: ds
withData: data. "Basic Step 4"

dm doDragDrop.

Defining Custom Effect Symbols

VisualWorks Cookbook, Rev. 2.0 373

5. In the application model, create a giveFeedback:for: method
that accepts an effect symbol and a ConfigurableDropSource
instance as its arguments.

6. In the giveFeedback:for: method, define the desired new effect
symbols. In this case, the symbol #dropEffectDelete results in a
pointer shaped like a garbage can.

7. Return true to preserve the standard interpretation for the
effect symbols #dropEffectNone, #dropEffectMove, #dropEffectCopy,
and #dropEffectNormal.

giveFeedBack: anEffect for: aDropSource "Basic Step 5"
anEffect == #dropEffectDelete

ifTrue: [Cursor garbage show]. "Basic Step 6"
^true "Basic Step 7"

Variant

Redefining a Standard Effect Symbol
1. Repeat Basic Steps 1-5 to create and initialize a

ConfigurableDropTarget instance in the drag-start method.

2. In the giveFeedback:for: method, define all of the effect
symbol(s) you plan to use. In this case, cause the
#dropEffectMove symbol to result in a pointer shaped like a
hand, but keep the standard shapes for the other standard
symbols.

3. Return false to prevent your custom definitions from being
overridden by the standard definitions.

giveFeedBack: anEffect for: aDropSource "Variant Step 2"
anEffect == #dropEffectMove ifTrue: [Cursor hand show].
anEffect == #dropEffectCopy ifTrue: [Cursor standardDragCopy show].
anEffect == #dropEffectNone ifTrue: [Cursor dropNotOK show].
anEffect == #dropEffectNormal ifTrue: [Cursor normal show].
^false "Variant Step 3"

See Also
■ “Providing Visual Feedback During a Drag” on page 350

VisualWorks Cookbook, Rev. 2.0 375

Chapter 19

Custom Views

Creating a View Class 376
Connecting a View to a Domain Model 378
Defining What a View Displays 380
Updating a View When Its Model Changes 382
Connecting a View to a Controller 385
Redisplaying All or Part of a View 387
Integrating a View into an Interface 389

See Also
■ “Creating a Custom Dialog” on page 296

■ “Custom Controllers” on page 391

Chapter 19 Custom Views

376 VisualWorks Cookbook, Rev. 2.0

Creating a View Class

Strategy

A view displays text or graphics representing all or part of a
data model. Each of the existing widgets uses a view to display
a data model. When an existing widget does not serve your
purpose, you can create a custom view. You begin that process
by creating a view class.

About the example: In CustomView1Example, a simple sketch pad
is created using a SketchView1. A SketchView1 uses a Sketch as its
model—a Sketch has a name and a collection of points repre-
senting a series of sketched strokes. A SketchView1 uses a
SketchController1 to handle mouse and keyboard input. These four
classes are all example classes that have been created to
demonstrate the interactions among a domain model (Sketch), a
custom view (SketchView1), a custom controller (SketchController1),
and an application model (CustomView1Example).

Basic Steps

Online example: SketchView1

1. In a System Browser, display the class-definition template
by selecting a class category and making sure no class is
selected.

2. In the template, replace “NameOfSuperclass” with the name
of the view’s parent class (in the example, View). For

custom view for sketching

Creating a View Class

VisualWorks Cookbook, Rev. 2.0 377

guidance in choosing a superclass, refer to the View class in
the VisualWorks Object Reference.

3. Replace “NameOfClass” with the new class’s name
(SketchView1).

4. Supply variable names, if any, and then accept the
definition.

View subclass: #SketchView1
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Examples-Cookbook'

See Also
■ “Creating a Class (Subclassing)” on page 26

Chapter 19 Custom Views

378 VisualWorks Cookbook, Rev. 2.0

Connecting a View to a Domain Model

Strategy

A view displays text or graphics that communicate the state of
its domain model, or at least a portion of its domain model.
Since a view must communicate frequently with the domain
model, it needs a way of accessing that object. As a subclass of
DependentPart, every view inherits an instance variable for storing
its model. Sending a model: message to the view, typically when
the view is created, stores the model in this instance variable,
where it can be accessed easily.

A side effect of the model: message is that the view is registered
as a dependent of the model. This link sets the stage for the
view to update its display when the model changes.

About the example: Although some views have the same
domain model for their whole lifetimes, SketchView1 changes its
model each time the user selects a different Sketch. For that
reason, SketchView1 reimplements the model: method so it can
update its display after storing the new model.

When a different
domain model
is selecte d . . .

. . . the customer view is given the
new model and displays it

Connecting a View to a Domain Model

VisualWorks Cookbook, Rev. 2.0 379

Basic Steps

Online example: CustomView1Example, SketchView1

1. Tell the view which object to use as its domain model. This
is done in an initialization method or, as in the example, the
application model (CustomView1Example) can notify the view
whenever the domain model changes.

changedSketch
self sketchView model: self sketches selection. "Basic Step 1"

2. If the view needs to take action when its model is changed,
such as redisplaying itself, override the inherited model:
method (as in SketchView1).

model: aModel "Basic Step 2"
super model: aModel.
self invalidate.

"Tell the controller where to send menu messages."
self controller performer: aModel.

Chapter 19 Custom Views

380 VisualWorks Cookbook, Rev. 2.0

Defining What a View Displays

Strategy

A view’s purpose is to display text or graphics. It does so in a
method named displayOn:, which is sent to the view whenever
circumstances require that it update its display.

The view decides what to display based on the state of its
domain model.

It displays the text and/or graphics on a GraphicsContext, which is
an object that windows and other display surfaces use for
rendering objects.

About the example: In CustomView1Example, a SketchView1 is used
to display the line segments that are stored in its domain
model, a Sketch.

Basic Steps

Online example: SketchView1

1. In a displaying protocol, add a displayOn: method to the view.
The argument is a GraphicsContext.

2. In the displayOn: method, get the required data from the
model (in the example, a set of line segments, each repre-
sented as a collection of points).

3. In the displayOn: method, display the appropriate text or
graphics, based on the data from step 2 (in the example,
each collection of points is displayed as a Polyline).

The view gets a collection
of points from the model
and displays the points as
line segments

Defining What a View Displays

VisualWorks Cookbook, Rev. 2.0 381

displayOn: aGraphicsContext "Basic Step 1"
self model isNil ifTrue: [^self].

self model strokes do: [:stroke | "Basic Step 2"
aGraphicsContext displayPolyline: stroke]. "Basic Step 3"

See Also
■ “Displaying a Text Object” on page 558

■ “Integrating a Graphic into an Application” on page 652

Chapter 19 Custom Views

382 VisualWorks Cookbook, Rev. 2.0

Updating a View When Its Model Changes

Strategy

Since the purpose of a view is to display some aspect of its
domain model, it must be prepared to change its display when
the model is changed.

When the domain model changes its state, it is responsible for
notifying all of its dependents. It does so by sending a variant
of the changed:with: message to itself. The first argument is a Symbol
indicating what was changed, and the second argument is the
new value.

The changed:with: message is inherited, and it sends an update:with:
message to each dependent, passing along the same two argu-
ments. Thus, the view must implement an update:with: method in
which it gets the new data from the model and displays it.

Basic Steps

Online example: Sketch, SketchView1

1. In any method in the domain model that changes the model
in a way that affects the view, send a variant of the
changed:with: message to the model. (In the example, Sketch
sends three such messages, one when it adds a point and
the others when it erases some or all of its contents.)

add: aPoint
"Add aPoint to the current stroke."

self

aModel

changed

update

update

dependents

view1 view2

Updating a View When Its Model Changes

VisualWorks Cookbook, Rev. 2.0 383

self strokes last add: aPoint.
self changed: #stroke with: self currentLineSegment. "Basic Step 1"

eraseLine
"Erase the last stroke that was drawn."

self strokes isEmpty
ifFalse: [

self strokes removeLast.
self changed: #erase with: nil]. "Basic Step 1"

eraseAll
"Erase my contents."

self strokes removeAll: self strokes copy.
self changed: #erase with: nil. "Basic Step 1"

2. In the view, implement a variant of the update:with: method to
take the appropriate action in response to a change in the
model. (In the example, the same update:with: method
responds to either of the changed:with: messages sent by the
model.)

update: anAspect with: anObject "Basic Step 2"
"When a point is added to the model..."
anAspect == #stroke

ifTrue: [anObject asStroker displayOn: self graphicsContext].

"When the model erases its contents..."
anAspect == #erase

ifTrue: [self invalidate].

Chapter 19 Custom Views

384 VisualWorks Cookbook, Rev. 2.0

Variant

Using Shorter Forms of the changed:with: Message

The changed:with: message sent by the model can be shortened to
changed: when it only needs to tell dependents what changed
without sending a new value.

The message can be further shortened to changed when it simply
wants dependents to know that it has changed without telling
them what aspect of itself has changed.

When two different forms are to be sent, send the fuller form in
both places. Otherwise, the simpler message is ignored. In the
example, the erase method uses nil as the second argument in
changed:with:. That makes it conform with the changed:with: message
sent by the add: method—otherwise, the erase method could
have sent changed:.

The view must implement the corresponding form of the
update:with: message.

Connecting a View to a Controller

VisualWorks Cookbook, Rev. 2.0 385

Connecting a View to a Controller

Strategy

A passive view—a view that does not respond to mouse or
keyboard input—does not need a controller. An active view
uses a controller to process mouse and keyboard input. A view
is often closely allied with its controller, so an inherited mech-
anism installs the desired controller when the view is created.
You can control which type of controller is installed.

About the example: SketchView1 uses a SketchController1, which
changes the cursor to a crosshair, notifies the model when the
user draws with the <Select> button, and provides a menu
when the <Operate> button is pressed.

Basic Step

Online example: SketchView1, SketchController1

➤ Use a System Browser to create a defaultControllerClass method
for the view. This method returns the name of the desired
controller class.

defaultControllerClass "Basic Step"
^SketchController1

This view uses a custom controller,
so it names that controller as its
defaultControllerClass

Chapter 19 Custom Views

386 VisualWorks Cookbook, Rev. 2.0

Variants

V1. Making a View Passive
1. Do the basic step.

2. Return NoController from the defaultControllerClass method.

V2. Connecting a Composite View to a Controller

When multiple views inhabit the same window, normally they
have separate controllers. In some situations, the composite
object that groups them needs its own controller, either instead
of the individual controllers or in addition to them. A
CompositeView is intended for grouping views that need a common
controller. To initialize its controller:

➤ Send a controller: message to the composite that groups the
views. The argument is an instance of the desired type of
controller (not the class name as with defaultControllerClass).

See Also
■ “Creating a Controller Class” on page 395

Redisplaying All or Part of a View

VisualWorks Cookbook, Rev. 2.0 387

Redisplaying All or Part of a View

Strategy

A view can redisplay its entire contents or just a portion of
them. For example, when one window overlaps another, the
overlap region is all that needs to be redisplayed when the lower
window is no longer obscured by the upper window. This
overlap region is called a damage rectangle, because it is a rect-
angular region that was damaged by an overlapping window.

The window’s sensor keeps track of such damage rectangles
and repairs them in a batch to avoid repairing the same region
twice. Sending invalidate to a view causes the entire view to be
treated as a damage rectangle, as shown in the basic steps. The
first variant shows how to limit the damage rectangle to a
portion of the window.

By default, damage rectangles are accumulated until the
window’s controller reaches a certain point in its cycle of
activity. That is sufficient in most situations. However, when a
competing process is monopolizing the processor, the delay can
be significant. The second variant shows how to force the
damage to be repaired immediately.

Invalidating a view is done in a view method, when the view
updates its model. It can also be done by an application model
that has changed a widget’s data model in a way that bypasses
the normal dependencies.

This view redisplays
in response to
an invalidate message

Chapter 19 Custom Views

388 VisualWorks Cookbook, Rev. 2.0

Basic Step

Online example: SketchView1

➤ Send invalidate to the view. This is typically done in a view
method that changes the model (as in the example).

model: aModel
super model: aModel.
self invalidate. "Basic Step"

"Tell the controller where to send menu messages."
self controller performer: aModel.

Variants

V1. Redisplaying Part of a View
➤ Send invalidateRectangle: to the view. The argument is a rect-

angle that represents all or part of the view’s bounding box.
The bounding box can be accessed by sending bounds to the
view.

V2. Arranging for Immediate Redisplay
➤ Send invalidateRectangle:repairNow: to the view. The first

argument is a rectangle that represents all or part of a
view’s bounding box. The second argument is true when
immediate redisplay is desired, and false for the default
behavior.

Integrating a View into an Interface

VisualWorks Cookbook, Rev. 2.0 389

Integrating a View into an Interface

Strategy

A view-holder widget is provided on the Palette for integrating a
custom view into a canvas. This view holder enables you to
treat your custom view like a standard widget in that you can
paint its layout and apply borders and scroll bars. However,
your application is responsible for connecting the view to a
domain model.

Basic Steps

Online example: CustomView1Example, SketchView1

1. Use a Palette to place a view-holder widget on the canvas.

2. In the view holder’s View property, enter the name of the
application-model method that supplies an instance of the
desired view (sketchView).

3. If the application model will need to access the custom view
while the application is running, use a System Browser to
create an instance variable (sketchView) in which to store the
custom view.

4. Use a System Browser to create the application-model
method that you named in step 2 (sketchView). This method
typically answers the contents of the instance variable that
you created in step 3.

sketchView "Basic Step 4"
^sketchView

This view is contained in
a view-holder widget

Chapter 19 Custom Views

390 VisualWorks Cookbook, Rev. 2.0

5. In an initialize method in the application model, create an
instance of the custom view. If appropriate, connect the
custom view to a data model. (In the example, there is no
model to be connected until the user adds the first Sketch
object.)

initialize
sketches := SelectionInList with: OrderedCollection new.
sketches selectionIndexHolder onChangeSend: #changedSketch to: self.

sketchView := SketchView1 new. "Basic Step 5"

VisualWorks Cookbook, Rev. 2.0 391

Chapter 20

Custom Controllers

Choosing an Input Architecture 392
Creating a Controller Class 395
Connecting a Controller to a Model 399
Connecting a Controller to a View 400
Defining When a Controller Has Control 402
Defining What a Controller Does 405
Equipping a Controller with a Menu 409
Shifting Control to a Different Controller 411
Sensing Mouse Activity 412
Sensing Keyboard Activity 416
Getting the Cursor’s Location 419

See Also
■ “Custom Views” on page 375

Chapter 20 Custom Controllers

392 VisualWorks Cookbook, Rev. 2.0

Choosing an Input Architecture

Strategy

An input controller is the part of a user interface that responds
to user-input events, typically mouse actions and keyboard
activity. VisualWorks supports one type of input controller that
uses a polling architecture and another type that uses an
event-driven architecture. Within a given user-interface
canvas, all views must employ the same input architecture. The
basic steps show how to specify the desired input architecture
for a canvas.

Polling controller: One type of input controller uses a loop to
repeatedly check for input events, for as long as the controller
retains control. (Typically, a controller retains control while the
mouse cursor is within the boundaries of the associated view.)
Each time the controller asks for events that have occurred
since the previous iteration, it is said to be polling for events,
hence the name polling controller.

Event-driven controller: The second type of input controller
does not use a loop to poll for input events. Instead, it relies on
the ControlManager to notify it whenever an input event occurs. It
then decides whether the event is of interest—for example, a
button widget’s controller cares about mouse-button events
but ignores most keyboard events. Because this type of
controller is inactive except when there is a relevant input event
for it to process, it is said to be driven by events, or event-driven.
While the flow of control is dispatched to a polling controller,
individual events are dispatched to an event-driven controller.

Missed mouse events: When a mouse button is pressed and
released rapidly while the controller is busy processing an
earlier event, the button-pressing event can be displaced in the
object that stores button states (an InputState) before a polling
controller has a chance to poll for events. As a result, a polling
controller can miss some events and thus appear unresponsive.
This phenomenon is usually associated with single-clicking
and double-clicking maneuvers, and is often referred to as
missed mouse events. An event-driven controller captures all
events faithfully. This is considered the primary advantage of
an event-driven controller.

Choosing an Input Architecture

VisualWorks Cookbook, Rev. 2.0 393

Processor burden: Because a polling controller runs its polling
loop even when there are no events to process, it places a
greater burden on the processor. In practice, VisualWorks mini-
mizes this difference by putting a polling controller to sleep
after a brief period of fruitless polling, then awakening it when
fresh input arrives.

Cross-platform portability: An event-driven controller is more
sensitive to differences in event sequences across platforms,
which requires more care in multi-platform applications. If you
only want to be faithful to a single platform, an event-driven
controller is generally preferred because the host window
manager’s sequence of input events is preserved.

Filing in the input events code: By default, all canvases use
the polling architecture because that is the only architecture
that is available in the standard VisualWorks environment. A
file named events.st in the extras directory contains the
code for the event-driven architecture. After you file in that
code, all canvases use the event-driven architecture by default.
Canvases that use a standard VisualWorks controller can use
either type of input architecture, but canvases that use custom
controllers will usually need to have the architecture set indi-
vidually, as shown in the basic steps.

Dual-architecture controllers: A given controller class can be
equipped for both input architectures. After you file in the input
events code, standard VisualWorks controllers are capable of
servicing either a polling or an event-driven canvas. A custom
controller class also inherits from Controller most of the
machinery for fitting into either architecture, though you will
typically need to add custom protocol for each architecture.
Thus, for example, you can continue to use a custom controller
within the older polling style while you layer on the event-
handling methods, then you can switch any canvases that use
the controller to the event-driven architecture. The remaining
topics in this chapter discuss the functional customizations
needed to suit each input architecture.

Basic Steps
1. If necessary, file in the input events code that is supplied

with VisualWorks, as described above.

Chapter 20 Custom Controllers

394 VisualWorks Cookbook, Rev. 2.0

2. If a Resource Finder is not already open, open one by
choosing Browse➞Resources from the VisualWorks main
window.

3. In the Resource Finder, select the application class and the
interface spec whose input architecture you want to set,
then click on the Edit button. The canvas will be opened in
edit mode.

4. In the Canvas Tool, click on the Properties button. A Proper-
ties Tool will be opened. Make sure no widget is selected in
the canvas, so the Properties Tool is displaying the window
properties.

5. In the Properties Tool, turn on the Event Driven check box if
you want to use the event-driven input architecture for this
canvas. Turn it off to use the polling architecture.

6. Save the change by clicking on Install in the Canvas Tool.

Creating a Controller Class

VisualWorks Cookbook, Rev. 2.0 395

Creating a Controller Class

Strategy

Because an input controller defines the interactive character of
a view, changing the controller can have a dramatic impact on
the operation of a view. When an existing controller class does
not serve your purposes, you can create a custom controller
class, as shown in the basic steps.

Event-driven variant: An event-driven controller that
responds to keyboard input needs to have an instance variable
named keyboardProcessor, and accessor methods for that variable
(keyboardProcessor and keyboardProcessor:), as shown in the variant.
The controller should not initialize the variable, however,
because a KeyboardProcessor will be supplied by the window via a
keyboardProcessor: message.

By default, an event-driven controller does not accept keyboard
focus. When it handles keyboard input, it must respond true to
a desiresFocus message, as shown in the variant.

About the examples: In CustomView1Example, a simple sketch pad
is created using a SketchView1. A SketchView1 uses a Sketch as its
model—a Sketch has a name and a collection of points repre-
senting a series of sketched strokes. A SketchView1 uses a
SketchController1 to handle mouse and keyboard input. These four
classes are all example classes that have been created to
demonstrate the interactions among a domain model (Sketch), a
custom view (SketchView1), a custom controller (SketchController1),
and an application model (CustomView1Example).

Custom controller interprets
<Select> mouse button activity
as a desire to draw

Chapter 20 Custom Controllers

396 VisualWorks Cookbook, Rev. 2.0

A parallel set of example classes demonstrates the event-driven
way of doing things. CustomView2Example is identical to
CustomView1Example, except that its canvas has the Event Driven
property turned on. SketchView2 is identical to SketchView1, except
that its defaultControllerClass is SketchController2 instead of
SketchController1. SketchController2 has the event-specific methods
needed to service an event-driven canvas. (Separate example
classes have been used for clarity — a single controller class
can easily have both polling and event-driven protocol.)

To file in these classes, choose File➞Browse Example Class from the
Online Documentation browser and select CustomView1Example or
CustomView2Example, or both.

Basic Steps

Online example: SketchController1

1. In a System Browser, display the class-definition template
by selecting a class category and making sure no class is
selected.

2. In the template, replace “NameOfSuperclass” with the name
of the controller’s parent class (in the example,
ControllerWithMenu). For guidance in choosing a superclass,
consult the entry for Controller in the VisualWorks Object
Reference.

3. Replace “NameOfClass” with the new class’s name
(SketchController1).

4. Supply variable names, if any, and then accept the defini-
tion. (In the example, a variable named strokeInProgress is
created to store a true/false indication of whether the user
is actively sketching.)

ControllerWithMenu subclass: #SketchController1 "Basic Steps 1-4"
instanceVariableNames: 'strokeInProgress '
classVariableNames: ''
poolDictionaries: ''
category: 'Examples-Cookbook'

5. Add an initialize method in an instance protocol named
initialize-release. The method is responsible for assigning
an initial value to the instance variables.

Creating a Controller Class

VisualWorks Cookbook, Rev. 2.0 397

initialize "Basic Step 5"

super initialize.
strokeInProgress := false.

6. Add accessor methods in an instance protocol named
accessing. The methods are responsible for getting and
setting the value of each instance variable.

strokeInProgress "Basic Step 6"
^strokeInProgress

strokeInProgress: aBoolean "Basic Step 6"
strokeInProgress := aBoolean

Variant

Creating an Event-Driven Controller Class

Online example: SketchController2

1. Do the basic steps, adding an instance variable named
keyboardProcessor as well as accessor methods for that variable
(when keyboard input is to be handled).

ControllerWithMenu subclass: #SketchController2 "Variant Step 1"
instanceVariableNames: 'keyboardProcessor strokeInProgress '
classVariableNames: ''
poolDictionaries: ''
category: 'Examples-Cookbook'

keyboardProcessor "Variant Step 1"
^keyboardProcessor

keyboardProcessor: kp "Variant Step 1"
keyboardProcessor := kp

Chapter 20 Custom Controllers

398 VisualWorks Cookbook, Rev. 2.0

2. When keyboard input is to be handled, add a desiresFocus
message to the controller, in a protocol named event driven.
The method simply returns true, overriding the inherited
method, which returns false.

desiresFocus "Variant Step 2"
^true

See Also
■ “Creating a Class (Subclassing)” on page 26

Connecting a Controller to a Model

VisualWorks Cookbook, Rev. 2.0 399

Connecting a Controller to a Model

Strategy

A controller’s purpose is to respond to input events. Frequently,
the response involves sending a message to the view’s domain
model. A controller inherits a model instance variable for storing
the model so it can easily access that object.

By default, a view automatically sends a model: message to its
controller when it receives that message. In effect, installing the
model in the view also installs it in the controller.

You can also set the controller’s model explicitly, as shown in
the step.

Basic Step
➤ Send a model: message to the controller. The argument is the

model.

When a user draws a line her e . . .

. . . the controller adds a line to the
domain model that is selected here

Chapter 20 Custom Controllers

400 VisualWorks Cookbook, Rev. 2.0

Connecting a Controller to a View

Strategy

An application model sometimes needs to access a view’s
controller. The usual way of accessing the controller is to ask
the view for it. Thus, the view must itself be able to access its
controller.

A view inherits an instance variable for storing its controller. By
default, this instance variable is initialized automatically when
a view is opened. The basic step shows how to arrange for a view
to be initialized with your custom controller.

By default, the view simply sends new to the defaultControllerClass to
get the controller instance. The first variant shows how to
arrange for the default controller to be created in a different
manner.

The second variant shows how to install a controller in a view
directly.

Basic Step

Online example: SketchView1, SketchController1

➤ Use a System Browser to add to the view an instance
method named defaultControllerClass, in a message category
named controller accessing. This method must return the
name of the desired controller class.

The view names its
desired controller
in a defaultControllerclass
method

Connecting a Controller to a View

VisualWorks Cookbook, Rev. 2.0 401

defaultControllerClass "Basic Step"
^SketchController1

Variants

V1. Initializing the Controller in a Nonstandard Way

Online example: CUARadioButtonView (not an example class)

➤ Use a System Browser to add to the view an instance
method named defaultController, in a message category named
controller accessing. This method must return a properly
initialized instance of the desired controller class.

defaultController "V1 Step"
^super defaultController beTriggerOnUp

V2. Setting the View’s Controller Directly
➤ Send a controller: message to the view, typically within the

view’s initialize method. The argument is an instance of the
desired controller class.

See Also
■ “Creating a View Class” on page 376

Chapter 20 Custom Controllers

402 VisualWorks Cookbook, Rev. 2.0

Defining When a Controller Has Control

Strategy

Taking control: By default, a polling controller takes control
and an event-driven controller accepts mouse events whenever
the mouse cursor enters the boundaries of the view. (Window
and keyboard events are directed to the active widget in the
active window, regardless of where the cursor is located.) This
is inherited behavior, which may differ depending on the super-
class you choose for your custom controller. The B1 step shows
how to override that inherited behavior for a polling controller,
and the B2 step shows how to override it for an event-driven
controller.

Each of the example controllers, SketchController1 and
SketchController2, adds a stipulation that a Sketch must be selected
in the neighboring list of sketches. It tests this by verifying that
its model is not nil.

Yielding control: During its cycle of activity, a polling
controller continually tests whether it should yield control. By
default, it yields when the cursor goes outside the view’s
boundaries or when the window menu button is pressed. The
variant shows how to redefine the test for yielding control. An
event-driven controller needs no such test because it yields
control whenever there are no events for it to process.

control manager

isControlWanted

isControlActive
polling controller

event-driven controller

handlerForMouseEvent:

Defining When a Controller Has Control

VisualWorks Cookbook, Rev. 2.0 403

Basic Steps

B1. Taking Control (Polling Controller)

Online example: SketchController1

➤ Use a System Browser to create an isControlWanted method in
the controller. This method must answer true when its
conditions for taking control are met, and false otherwise.

isControlWanted "B1 Step"
"Answer true when the cursor is inside the view and the model is not nil."

^self viewHasCursor and: [self model notNil].

B2. Taking Control (Event-Driven Controller)

Online example: SketchController2

➤ Use a System Browser to create a handlerForMouseEvent:
method in the controller. The argument is a mouse event.
This method must return the controller when its conditions
for handling the mouse event are met, and false otherwise.
Note that this method uses viewHasCursorWithEvent: instead of
the polling variant, viewHasCursor.

handlerForMouseEvent: aMouseEvent "B2 Step"
"Answer true when the cursor is inside the view and the model is not nil."

^((self viewHasCursorWithEvent: event)
and: [self model notNil])

ifTrue: [self]
ifFalse: [nil]

Variant

Defining the Test for Yielding Control

Online example: ParagraphEditor (not an example class)

➤ Use a System Browser to create an isControlActive method in
the controller. This method must answer true when its

Chapter 20 Custom Controllers

404 VisualWorks Cookbook, Rev. 2.0

conditions for holding onto control are met, and false when it
is ready to yield.

isControlActive "Variant Step"
"I want control only if there is a key waiting or a mouse
button other than blue button is pressed"

^super isControlActive
and: [self hasControl.

 self sensor keyboardPressed
or: [self sensor redButtonPressed
or: [self sensor yellowButtonPressed]]]

Defining What a Controller Does

VisualWorks Cookbook, Rev. 2.0 405

Defining What a Controller Does

Strategy

Polling controller: A controller’s purpose is to sense user input
and respond appropriately. For a polling controller, the inher-
ited machinery employs a cycle of activity known as a control
loop. During each cycle, the controller checks to make sure it
still has control and then sends controlActivity to itself.

The inherited control activity varies depending on which super-
class your custom controller has. The B1 step shows how to
override the inherited behavior. Because this method is the core
of a controller and defines its basic character, you will almost
always need to create such a method for a custom polling
controller.

Event-driven controller: Instead of using a control loop that
checks for user input continuously, an event-driven controller
must be prepared to respond to each type of input event indi-
vidually as shown in B2. To do so, it must be equipped with a
set of event methods, such as enterEvent:, exitEvent: and
keyPressedEvent:. The Controller class provides default methods (see
the events protocol), which generally do nothing, so you only
need to define methods for events that your custom controller
cares about. In the example, SketchController2 responds to the
following events: cursor entering or exiting the view, keyboard
key being pressed, mouse being moved, or <Select> button
being pressed or released.

Initializing and terminating: The first variant shows how to
arrange for actions that need to take place only when a polling

This controller changes the cursor,
provides a menu, provides
keyboard shortcuts, and adds a
stroke to the model when the user
drags the mouse

Chapter 20 Custom Controllers

406 VisualWorks Cookbook, Rev. 2.0

controller accepts or yields control. An event-driven controller
performs such actions in its enterEvent: and exitEvent: methods.

Changing the cursor: The second variant shows how to
override the inherited control loop for a polling controller. As in
the example, this technique is used mainly for adding to the
basic loop by displaying a different cursor while the controller
has control. The SketchController1 displays a cross-hair cursor to
indicate to the user that drawing is enabled. An event-driven
controller implements a cursor change in the enterEvent: and
exitEvent: methods, as shown in B2.

Event consumption: When an event-driven controller receives
an event, it has the choice of passing the event on to subordi-
nate controllers or consuming the event. An event-handling
method consumes the event by returning nil, and passes the
event on by returning the event.

Basic Steps

B1. Control Loop (Polling Controller)

Online example: SketchController1

➤ Use a System Browser to create a controlActivity method in the
controller. This method must find out what user input event
has occurred, if any, and take the appropriate action. User
input is sensed by the controller’s sensor.

controlActivity "B1 Step"
"Check for mouse button and keyboard activity."

"If the <Select> mouse button is being pressed, draw."
self sensor redButtonPressed

ifTrue: [^self redButtonActivity].

"When not drawing, end the stroke."
self strokeInProgress: false.

"If the <Operate> button is being pressed, display the menu."
self sensor yellowButtonPressed

ifTrue: [^self yellowButtonActivity].

Defining What a Controller Does

VisualWorks Cookbook, Rev. 2.0 407

"Check for keyboard input (specifically, the shortcut keys)."
self checkForAccelerators.

B2. Event Methods (Event-Driven Controller)

Online example: SketchController2

➤ Use a System Browser to create an event-handling method
for each type of event that needs custom handling. See the
events protocol in the Controller class for the names of event
methods. (The example methods define what happens when
the cursor enters or exits the controller’s view; other event
methods are discussed later in this chapter.)

enterEvent: anEnterEvent "B2 Step"
"Change the cursor and request keyboard focus."

self keyboardProcessor requestActivationFor: self.
Cursor crossHair show.

exitEvent: anExitEvent "B2 Step"
"Change the cursor shape back to normal.
Also end current stroke in case red button is still being pressed."

Cursor normal show.
self strokeInProgress: false.

Variants

V1. Initializing and Terminating (Polling Controller)

Online example: ApplicationDialogController (not an example class)

1. Use a System Browser to create a controlInitialize method in the
controller. This method has no typical usage—it can take
any action that is appropriate when the view becomes
active.

Chapter 20 Custom Controllers

408 VisualWorks Cookbook, Rev. 2.0

controlInitialize "V1 Step 1"
self locked: false.
super controlInitialize

2. Create a matching controlTerminate method in the controller.
This method is a convenient place to reverse whatever
actions are invoked by controlInitialize.

controlTerminate "V1 Step 2"
self locked: true.
super controlTerminate

V2. Displaying a Different Cursor (Polling Controller)

Online example: SketchController1

➤ Use a System Browser to create a controlLoop method in the
controller. This method typically displays an alternate
cursor while it invokes the inherited implementation.

controlLoop "V2 Step"
"Change the cursor to a cross-hair for drawing."

Cursor crossHair showWhile: [super controlLoop].

Equipping a Controller with a Menu

VisualWorks Cookbook, Rev. 2.0 409

Equipping a Controller with a Menu

Strategy

The pop-up menu that is offered in many of the system views is
maintained by each view’s controller. A common motivation for
creating a new controller, in fact, is simply to equip it with a
menu that differs from the menu provided by the view’s usual
controller.

The basic steps show how to install a custom menu, for either
a polling or event-driven controller. Those steps assume that
your custom controller is a subclass of ControllerWithMenu, which
provides an instance variable for a menu holder, and
supporting mechanisms.

Routing menu messages: When the user of an application
selects a menu item, a corresponding message is sent to the
performer—the object that performs the associated action. By
default, the performer is the controller itself. Because a
controller frequently just forwards the message to the model,
you can arrange for the model to receive the messages directly,
saving you the trouble of defining unnecessary action methods
in the controller. The variant shows how to make the model the
performer.

Basic Steps

Online example: SketchController1

1. Use a System Browser to create an initializeMenu method in
the controller. This has the effect of overriding the parent
class’s implementation.

This controller provides
a custom menu when the
<Operate> button is pressed
on the mouse

Chapter 20 Custom Controllers

410 VisualWorks Cookbook, Rev. 2.0

2. In the initializeMenu method, send a menuHolder: message to the
controller. The argument is a value holder containing an
instance of Menu.

initializeMenu "Basic Step 1"
| mb |

"Build the menu."
mb := MenuBuilder new.
mb add: 'Erase line <space>' -> #eraseLine.
mb add: 'Erase all <Shift-space>' -> #eraseAll.

"Install the menu."
self menuHolder: mb menu asValue. "Basic Step 2"

Variant

Routing Menu Messages

Online example: SketchView1

➤ Send a performer: message to the controller. The argument is
the object to which menu messages should be sent—
typically, the domain model. This message is typically sent
by either the application model or the view. (In the example,
the view updates the controller’s performer whenever its
model changes.)

model: aModel
super model: aModel.
self invalidate.

"Tell the controller where to send menu messages."
self controller performer: aModel. "Variant Step"

See Also
■ “Creating a Menu” on page 226

Shifting Control to a Different Controller

VisualWorks Cookbook, Rev. 2.0 411

Shifting Control to a Different Controller

Strategy

In most situations, the user determines which view is the focus
of keyboard and mouse activity by moving the cursor into that
view. Sometimes the application itself needs to shift the focus.
For example, the Can Tab property of the standard views is imple-
mented with this technique, enabling the user to shift focus to
the next widget by pressing the <Tab> key.

Unless you also move the cursor to the view that is to become
active, this technique assumes that the controller can take
control even when the cursor is outside its view.

Basic Steps

Online example: WidgetWrapper (not an example class)

1. Get the window that contains the controller’s view by
sending topComponent to the view.

2. Get the KeyboardProcessor from the window by sending
keyboardProcessor to the window.

3. Send a requestActivationFor: message to the keyboard processor.
The argument is the controller that is to take control.

takeKeyboardFocus
(self isVisible and: [self isEnabled and: [widgetState canTakeFocus]])

ifTrue: [self topComponent keyboardProcessor "Basic Steps 1,2"
requestActivationFor: self widget controller] "Basic Step 3"

application model

setActive: customController

window’s keyboard processor

Chapter 20 Custom Controllers

412 VisualWorks Cookbook, Rev. 2.0

Sensing Mouse Activity

Strategy

Polling controller: As part of its controlActivity loop, a polling
controller asks its sensor whether a mouse button has been
pressed. It must inquire separately for each mouse button (red,
yellow or blue) that it cares about. If a button has been pressed,
the controller responds appropriately, typically by invoking a
red-, yellow- or blueButtonActivity method, as shown in B1.

Mouse movement is detected by caching the cursor location on
each pass through the controlActivity loop and comparing that
cached location with the cursor location on the next pass
through the loop.

Event-driven controller: While a polling controller must ask
its sensor whether each mouse button was pressed, an event-
driven controller is notified directly when the control manager
sends a red-, yellow- or blueButtonPressedEvent: message, as shown in
B2. Similarly messages notify the controller of button-released
events and mouse-moved events.

Button names: For both polling and event-driven controllers,
the mouse buttons are identified as redButton (the <Select>
button), yellowButton (the <Operate> menu button), and blue-
Button (the <Window> menu button). These colors correspond
to colors that were on the mouse buttons on the development
machine that was used by the original Smalltalk developers.

redButtonPressed <Select>
yellowButtonPressed <Operate>
blueButtonPressed <Window>

polling controller sensor

event-driven controllercontrol manager
redButtonPressedEvent: anEvent
yellowButtonPressedEvent: anEvent
blueButtonPressedEvent: anEvent

Sensing Mouse Activity

VisualWorks Cookbook, Rev. 2.0 413

Other polling sensor messages: The variants show other tests
that are available to a polling controller when asking its sensor
about mouse-button activity.

Basic Steps

B1. Mouse Activity (Polling Controller)

Online example: SketchController1

1. Get the sensor from the controller.

2. Send a redButtonPressed message to the sensor. If true is
returned, the user pressed the <Select> button on the
mouse. Send yellowButtonPressed to find out about the
<Operate> button, and blueButtonPressed to find out about the
<Window> button.

controlActivity
"Check for mouse button and keyboard activity."

"If the <Select> mouse button is being pressed, draw."
self sensor redButtonPressed "B1 Steps 1, 2"

ifTrue: [^self redButtonActivity].

"When not drawing, end the stroke."
self strokeInProgress: false.

"If the <Operate> button is being pressed, display the menu."
self sensor yellowButtonPressed

ifTrue: [^self yellowButtonActivity].

"Check for keyboard input (specifically, the shortcut keys)."
self checkForAccelerators.

B2. Mouse Activity (Event-Driven Controller)

Online example: SketchController2

1. Use a System Browser to add red-, yellow- and
blueButtonPressedEvent: methods to the controller (assuming the
controller has a separate response for each of the three
mouse buttons), in an instance protocol named events. The

Chapter 20 Custom Controllers

414 VisualWorks Cookbook, Rev. 2.0

method is responsible for taking the appropriate action. (In
the example, a new stroke is initiated in the sketch when
the red button is pressed.)

redButtonPressedEvent: aRedButtonPressedEvent "B2 Step 1"
"Start drawing a new line when the <Select> button is pressed."

self model beginStroke.
self strokeInProgress: true.

self model add: (self sensor cursorPointFor: aRedButtonPressedEvent)

2. Add similar red-, yellow- or blueButtonReleasedEvent: methods if the
controller takes separate actions when the buttons are
released. (In the example, the current stroke in the sketch
is ended when the red button is released.)

redButtonReleasedEvent: aRedButtonReleasedEvent "B2 Step 2"
"Stop drawing when the <Select> button is released."

self strokeInProgress: false.

3. Add a similar mouseMovedEvent: method if the controller takes
a separate action each time the mouse is moved. (In the
example, the controller tests whether a stroke is in progress
and, if so, it records the cursor location as a new point on
the current stroke.)

mouseMovedEvent: aMouseMovedEvent "B2 Step 3"
"Add a new point for every mouse movement when drawing is in progress."

self strokeInProgress
ifTrue: [self model

add: (self sensor cursorPointFor: aMouseMovedEvent)]

Variants

V1. Any Mouse Button (Polling Controller)
➤ Send anyButtonPressed to the controller’s sensor. If true is

returned, one of the mouse buttons was pressed.

Sensing Mouse Activity

VisualWorks Cookbook, Rev. 2.0 415

V2. No Mouse Button (Polling Controller)
➤ Send noButtonPressed to the controller’s sensor. If true is

returned, none of the mouse buttons was pressed.

V3. Non-<Window> Button (Polling Controller)
➤ Send nonBlueButtonPressed to the controller’s sensor. Because a

view’s controller rarely responds to the <Window> button,
this is used to distinguish window-related events from view-
related events.

Chapter 20 Custom Controllers

416 VisualWorks Cookbook, Rev. 2.0

Sensing Keyboard Activity

Strategy

When a controller’s view manipulates text, the controller needs
to detect keyboard activity and respond appropriately. A
controller might also want to detect keyboard activity in a
nontextual view to invoke the actions associated with command
shortcuts, as shown in the basic steps.

In SketchController1, for example, the <Space> key is interpreted as
a shortcut for the Erase line command in its menu. Similarly,
<Shift><Space> is a shortcut for Erase all.

Polling controller: As part of its controlActivity loop, a polling
controller asks its sensor whether a key has been pressed. If so,
it asks the sensor for the queued KeyboardEvent, as shown in B1.

Event-driven controller: While a polling controller must ask
its sensor whether a key was pressed and, if so, ask for the
queued KeyboardEvent, an event-driven controller is handed the
event directly as the argument to a keyPressedEvent: message, as
shown in B2.

Querying an event: You can find out from the KeyboardEvent
which character was pressed (keyValue) and whether a modifier
key such as <Shift> or <Meta> was pressed at the same time
(hasAlt or hasMeta). See the accessing and testing protocols in the
KeyboardEvent class for messages that can be sent to the event.

Dispatch table: The example shows a technique for enabling
menu shortcuts when the set of shortcuts is small. A more
sophisticated approach involves the use of a dispatch table to

polling controller
keyboardPressed

sensor

keyboardEvent

event-driven controllercontrol manager
keyPressedEvent: anEvent

Sensing Keyboard Activity

VisualWorks Cookbook, Rev. 2.0 417

associate actions with keyboard keys. That approach is used by
ParagraphEditor and its subclasses, which are used by the text
views in the system. For an example of that approach, see the
class method named initializeDispatchTable in ParagraphEditor.

Basic Steps

B1. Keyboard Input (Polling Controller)

Online example: SketchController1

1. Get the sensor by sending sensor to the controller. This is
typically done in the controller’s controlActivity method or, as in
the example, a method invoked by controlActivity.

2. Find out whether a key was pressed by sending a keyboard-
Pressed message to the sensor. If true is returned, a keyboard
key was pressed since the last time the controller checked.

3. Get the keyboard event by sending keyboardEvent to the
sensor. (To get the event without removing it from the event
queue, send a keyboardPeek message.)

4. Get the character by sending keyValue to the keyboard event.
If a known character was pressed, that character is
returned. If a known special key was pressed, such as
<Help>, a symbol naming that key (#Help) is returned. Other-
wise, an integer is returned that identifies the key in a
platform-dependent way.

5. Find out whether a modifier key was pressed at the same
time. Valid messages for testing the state of modifier keys
are: hasAlt, hasCtrl, hasLock, hasMeta, and hasShift.

checkForAccelerators
"If a keyboard shortcut was used,
tell the model to take the appropriate action."

| event char |
self sensor keyboardPressed "B1 Step 2"

"A keyboard key was pressed -- check for <Space>."
ifTrue: [

event := self sensor keyboardEvent. "B1 Step 3"
char := event keyValue. "B1 Step 4"

Chapter 20 Custom Controllers

418 VisualWorks Cookbook, Rev. 2.0

(char == Character space)

"<Space> was pressed -- check for <Shift> key."
ifTrue: [event hasShift "B1 Step 5"

"<Shift> was pressed -- erase all."
ifTrue: [self model eraseAll]

"<Shift> was not pressed -- erase line."
ifFalse: [self model eraseLine]]].

B2. Keyboard Input (Event-Driven Controller)

Online example: SketchController2

➤ Use a System Browser to add a keyPressedEvent: method to the
controller, in an instance protocol named events. The
method is responsible for testing the given KeyPressedEvent for
conditions that the controller cares about, and then taking
the appropriate action. (In the example, a space character
causes the most recent stroke to be erased from the sketch,
and a shifted space erases the entire sketch.)

keyPressedEvent: aKeyPressedEvent "B2 Step"
"Respond to the <Space> key."

| char |
self model == nil ifTrue: [^nil].

char := aKeyPressedEvent keyValue.
(char == Character space)

ifTrue: [aKeyPressedEvent hasShift
ifTrue: [self model eraseAll]
ifFalse: [self model eraseLine]].

See Also
■ “Adding a Shortcut Key” on page 252

Getting the Cursor’s Location

VisualWorks Cookbook, Rev. 2.0 419

Getting the Cursor’s Location

Strategy

Polling controller: In drawing applications, especially, the
controller often needs to supply the model with the location of
the cursor. In SketchController1, for example, the cursor location
determines the coordinates of a point that is added to the
model’s collection of sketch points.

The basic steps show how to get the coordinates of the cursor
relative to the upper-left corner of the view. The first variant
shows how to get the location relative to the upper-left corner
of the screen.

Event-driven controller: For an event-driven controller, the
cursor location is obtained from a mouse event. For example,
after the user moves the mouse, a mouseMovedEvent: message is
sent to the controller. The argument MouseMovedEvent knows the
cursor location and the state of the mouse buttons at the time
of the event. See the accessing and testing protocols in
MouseEvent and MouseMovedEvent.

View has cursor: In some situations, the controller does not
need to have the cursor’s coordinates, it only needs to know
whether the cursor is within the boundaries of the view. The
second variant shows how to determine this conveniently.

Waiting for a button: The third variant shows how to put a
polling controller into a waiting state until the user presses a
button, releases a button, or both presses and releases a
button. The cursor’s location is returned. This can be used to
retain control while the user clicks on a target outside the view,

polling controller

cursorPoint

sensor

globalCursorPoint

viewHasCursor

Chapter 20 Custom Controllers

420 VisualWorks Cookbook, Rev. 2.0

such as another window. An event-driven controller can
achieve the equivalent

Basic Steps

B1. Cursor Location (Polling Controller)

Online example: SketchController1

1. Get the sensor by sending sensor to the controller.

2. Send a cursorPoint message to the sensor. An instance of Point
is returned, containing the coordinates of the cursor
relative to the origin of the view.

redButtonActivity
"If necessary, begin a new stroke."
self strokeInProgress

ifFalse: [
self model beginStroke.
self strokeInProgress: true].

"Give the cursor's location to the model."
self model add: self sensor cursorPoint. "B1 Step 2"

B2. Cursor Location (Event-Driven Controller)

Online example: SketchController2

1. Get the sensor by sending sensor to the controller.

2. Send a cursorPointFor: message to the sensor, with a mouse
event as the argument. An instance of Point is returned,
containing the coordinates of the cursor relative to the
origin of the view.

mouseMovedEvent: aMouseMovedEvent
"Add a new point for every mouse movement
when drawing is in progress."

self strokeInProgress
ifTrue: [self model

add: (self sensor cursorPointFor: aMouseMovedEvent)] "B2 Step 2"

Getting the Cursor’s Location

VisualWorks Cookbook, Rev. 2.0 421

Variants

V1. Getting the Global Cursor Location
➤ For a polling controller, send a globalCursorPoint message to the

controller’s sensor to get the cursor location relative to the
screen’s origin. For an event-driven controller, send a
globalPoint message to the mouse event. (To get the cursor
location relative to the containing window, send a point
message to the mouse event.)

V2. Testing Whether the Cursor Is Within the View
➤ For a polling controller, send a viewHasCursor message to the

controller. If true is returned, the cursor is inside the view’s
boundaries. For an event-driven controller, send a
viewHasCursorWithEvent: message to the controller, with the
input event as the argument.

V3. Waiting for a Mouse Button
➤ Send a waitButton message to the controller’s sensor. The user

can then move the cursor anywhere, including beyond the
controller’s view, without disrupting the current controller’s
focus. When the user depresses any mouse button, the
cursor’s location is returned, relative to the view’s origin. If
a button is already depressed, send waitNoButton to wait until
the button is released. Send waitClickButton to wait until a
button is both pressed and released.

"Inspect"
| sensor window |
sensor := ScheduledControllers activeController sensor.

Cursor bull showWhile: [sensor waitButton]. "V3 Step"
window := Screen default

windowAt: sensor globalCursorPoint.
^window

See Also
■ “Creating a Cursor” on page 678

■ “Changing the Current Cursor” on page 681

VisualWorks Cookbook, Rev. 2.0 423

Part III

Data Structures

Chapter 21: Numbers 425
Chapter 22: Dates 461
Chapter 23: Times 477
Chapter 24: Collections 489
Chapter 25: Characters and Strings 529
Chapter 26: Text and Fonts 555
Chapter 27: Text Files 591
Chapter 28: Object Files (BOSS) 613
Chapter 29: Geometrics 629
Chapter 30: Images, Cursors, and Icons 657
Chapter 31: Color 685
Chapter 32:

Adapting Domain Models to Widgets 703

VisualWorks Cookbook, Rev. 2.0 425

Chapter 21

Numbers

Creating a Number 426
Adding and Subtracting 431
Multiplying and Dividing 432
Rounding 434
Getting Squares and Roots 436
Comparing Two Numbers 438
Getting the Minimum and Maximum 441
Performing Trigonometric Functions 442
Performing Logarithmic Functions 444
Testing Numberness, Evenness, Zeroness 445
Accessing and Converting the Sign 447
Converting a Number to Another Form 449
Factoring 453
Generating a Random Number 454
Accessing Numeric Constants 458

See Also
■ “Formatting Displayed Data” on page 129

Chapter 21 Numbers

426 VisualWorks Cookbook, Rev. 2.0

Creating a Number

Strategy

VisualWorks provides classes for integers, floating-point
numbers, fractions, and fixed-point numbers.

Integers come in three varieties: SmallInteger, LargePositiveInteger, and
LargeNegativeInteger. In practice, only the most demanding numeric
applications need to be aware of the distinctions among the
three types of integer. VisualWorks converts a value from one
form to another as needed.

A floating-point number has a decimal point and at least one
digit before the decimal and at least one digit after the decimal.
A Float is a single-precision number, with six to seven digits of
precision. A Double is a double-precision number having 14 to 15
digits of precision.

A Fraction has an integral numerator and an integral denomi-
nator, separated by a division slash. Fractions are always
reduced to lowest terms—for example, 4/6 is reduced to 2/3.

A fixed-point number (an instance of FixedPoint) is useful for
business applications in which a fixed number of decimal
places is required.

Basic Steps

Creating an Integer

You can create integers as numeric literals or as the result of
arithmetic operations involving one or more integers.

1. Create an integer using a literal expression.

2. Create another integer as a result of the arithmetic opera-
tion +.

"Print it"
| x y |
x := 100. "Basic Step 1"
y := 5.
^x + y "Basic Step 2"

Creating a Number

VisualWorks Cookbook, Rev. 2.0 427

Variants

V1. Creating a Floating-Point Number

You can create floating-point numbers (instances of Float) as
numeric literals or as the result of arithmetic operations
involving one or more instances of Float. Note that after you
create a floating-point number, you can use integerPart and
fractionPart to access its parts separately.

1. Create a floating-point number using a literal expression
that includes the predecimal digits, the decimal point, and
the postdecimal digits.

2. Create another floating-point number as a result of the
arithmetic operation +.

"Print it"
| x y |
x := 100.2. "V1 Step 1"
y := 5.3.
^x + y "V1 Step 2"

V2. Creating a Double-Precision Floating-Point
Number

You can create double-precision floating-point numbers
(instances of Double) as numeric literals or as the result of arith-
metic operations involving one or more instances of Double.

1. Create a double-precision floating-point number by placing
the letter d after a floating-point number.

2. Create another Double as the result of the arithmetic opera-
tion +.

"Print it"
| x y |
x := 5.5d. "V2 Step 1"
y := 5555.5555d.
^x + y "V2 Step 2"

Chapter 21 Numbers

428 VisualWorks Cookbook, Rev. 2.0

V3. Creating a Fraction

You can create fractions by dividing integer literals or as the
result of arithmetic operations involving one or more fractions.
After you create a fraction, you can use numerator and denominator
to access its parts separately.

1. Create a fraction by dividing one integer by another. The
division slash, like other binary messages, can either be
separated from the two integers by white space or not.

2. Create another fraction by sending a numerator:denominator:
message with integer arguments to the Fraction class. If a
noninteger argument is provided, it will be converted to an
integer (the fractional part will be ignored).

3. Create another Fraction as the result of the arithmetic opera-
tion +.

"Print it"
| x y |
x := 1/2. "V3 Step 1"
y := Fraction "V3 Step 2"

numerator: 3
denominator: 4.

^x + y "V3 Step 3"

V4. Creating a Fixed-Point Number

You can create fixed-point numbers as numeric literals or as
the result of arithmetic operations involving one or more such
numbers.

1. Create a fixed-point number by placing the letter s after a
literal integer or a floating-point number. The number of
decimal places preceding the s implicitly specifies scale of
the number (the number of decimal places to be preserved).

2. Create another fixed-point number by specifying the scale
explicitly. To do this, append the letter s as in step 1, and
specify the desired scale after the letter s. Note that an
explicit scale takes precedence over an implicit one, so that
99.95s4 is the same as 99.9500s, while 99.9500s2 is an error.

3. Create another fixed-point number by coercing a nonliteral
number. To do this, send an asFixedPoint: message to the

Creating a Number

VisualWorks Cookbook, Rev. 2.0 429

original number. The message argument is the scale (the
number of decimal places to be preserved).

"Print it"
| fixed1 fixed2 fixed3 |

fixed1 := 99.95s. "V4 Step 1"

fixed2 := 99.95s4. "V4 Step 2"

fixed3 := (fixed1 * fixed2 * 0.075) asFixedPoint: 2. "V4 Step 3"

^fixed3

V5. Creating a Number with Scientific Notation

You can create numbers with scientific notation by using
numeric literals or by obtaining the result of arithmetic opera-
tions involving one or more such numbers. A number that is
created with scientific notation is stored and displayed in its
normal form, as either an integer or a floating-point number.

1. Create a number with scientific notation by placing the
letter e after a literal integer or a floating-point number.
Indicate the power of 10 for the number after the letter e.

2. Create a Double with scientific notation by using the letter d
in place of the letter e. (Note that you can also use the letter
q instead of d. The letter q stands for quad-precision, and is
available for portability to other Smalltalk systems;
however, in VisualWorks, q has the same effect as d.)

"Print it"
| x y |
x := 1.555e3. "V5 Step 1"
y := -3.955d2. "V5 Step 2"
^x + y

V6. Creating a Number with Radix Notation

You use radix notation for a number whose base is not 10. You
can create numbers with radix notation by using numeric

Chapter 21 Numbers

430 VisualWorks Cookbook, Rev. 2.0

literals or by obtaining the result of arithmetic operations
involving one or more such numbers. A number that is created
using radix notation is stored and displayed in its normal form,
as either an integer or a floating-point number.

1. Create a number with radix notation by indicating the base,
followed by the letter r and the number as represented in
that base.

"Print it"
| x y |
x := 2r101. "V6 Step 1"
y := 16r1A. "V6 Step 1"
^x + y

Adding and Subtracting

VisualWorks Cookbook, Rev. 2.0 431

Adding and Subtracting

Variants

V1. Adding (+)
➤ Send a + message to a number. The argument is another

number.

"Print it"
| x y |
x := 100.
y := 5.
^x + y "V1 Step"

V2. Subtracting (–)
➤ Send a – message to a number. The argument is another

number.

"Print it"
| x y |
x := 100.
y := 5.
^x - y "V2 Step"

Chapter 21 Numbers

432 VisualWorks Cookbook, Rev. 2.0

Multiplying and Dividing

Variants

V1. Multiplying (*)
➤ Send an * message to a number. The argument is another

number.

"Print it"
| x y |
x := 100.
y := 5.
^x * y "V1 Step"

V2. Dividing (/)
➤ Send a / message to a number. The argument is another

number.

"Print it"
| x y |
x := 99.
y := 5.
^x / y "V2 Step"

V3. Dividing and Discarding the Remainder (//)
➤ Send a // message to a number. The argument is another

number.

"Print it"
| x y |
x := 99.
y := 5.
^x // y "V3 Step"

V4. Dividing and Answering the Remainder (\\)
➤ Send a \\ message to a number. The argument is another

number.

Multiplying and Dividing

VisualWorks Cookbook, Rev. 2.0 433

"Print it"
| x y |
x := 99.
y := 5.
^x \\ y "V4 Step"

Chapter 21 Numbers

434 VisualWorks Cookbook, Rev. 2.0

Rounding

Variants

V1. Rounding to the Nearest Integer
➤ Send a rounded message to the number.

"Print it"
| x |
x := -5.5.
^x rounded "V1 Step"

V2. Rounding Down (toward Negative Infinity)
➤ Send a floor message to the number.

"Print it"
| x |
x := 5.8.
^x floor "V2 Step"

V3. Rounding Up (toward Positive Infinity)
➤ Send a ceiling message to the number.

"Print it"
| x |
x := 5.2.
^x ceiling "V3 Step"

V4. Rounding Toward Zero
➤ Send a truncated message to the number.

"Print it"
| x |
x := -5.8.
^x truncated "V4 Step"

Rounding

VisualWorks Cookbook, Rev. 2.0 435

V5. Rounding to the Nearest Multiple of a Value
➤ Send a roundTo: message to the number. The argument is a

number indicating the desired granularity. (In the example,
x is rounded to the nearest hundredth.)

"Print it"
| x |
x := 5555.55555.
^x roundTo: 0.01 "V5 Step"

V6. Truncating to the Nearest Multiple of a Value
➤ Send a truncateTo: message to the number. The argument is a

number indicating the desired granularity. In the example,
x is truncated (rounded toward zero) to the nearest
hundredth.

"Print it"
| x |
x := 5555.55555.
^x truncateTo: 0.01 "V6 Step"

See Also
■ “Formatting Displayed Data” on page 129

Chapter 21 Numbers

436 VisualWorks Cookbook, Rev. 2.0

Getting Squares and Roots

Variants

V1. Squaring a Number
➤ Send a squared message to the number.

"Print it"
| x |
x := 5.5.
^x squared "V1 Step"

V2. Taking the Square Root of a Number
➤ Send a sqrt message to the number.

"Print it"
| x |
x := 5.5.
^x sqrt "V2 Step"

V3. Raising a Number to a Power (**)
➤ Send a ** message to the number. The argument is the

power to which the number is to be raised.

"Print it"
| x |
x := 5.
^x ** 3 "V3 Step"

V4. Taking a Root of a Number (**)
➤ Send a ** message to the number. The argument is a frac-

tional value indicating the root. (In the example, the third
root of x is derived.)

"Print it"
| x |

Getting Squares and Roots

VisualWorks Cookbook, Rev. 2.0 437

x := 125.
^x ** (1/3) "V4 Step"

Chapter 21 Numbers

438 VisualWorks Cookbook, Rev. 2.0

Comparing Two Numbers

Variants

V1. Testing for Equality

Be careful when testing two limited-precision numbers (Float
and Double) for equality—the limits of their precision must be
taken into account.

➤ Send an = message to a number. The argument is another
number.

"Print it"
| x y |
x := 5.5.
y := 5.5.
^x = y "V1 Step"

V2. Testing for Identity

This test is faster than testing for equality. It answers true when
the receiver and the argument are the same object, which is
always true with equal numbers. Do not use this test, however,
with limited-precision numbers.

➤ Send an == message to a number. The argument is another
number.

"Print it"
| x y |
x := 5.
y := 5.
^x == y "V2 Step"

V3. Testing for Inequality
➤ Send a ~= message to a number. The argument is another

number.

Comparing Two Numbers

VisualWorks Cookbook, Rev. 2.0 439

"Print it"
| x y |
x := 5.5.
y := 5.6.
^x ~= y "V3 Step"

V4. Testing for Nonidentity

This test is faster than testing for inequality, but it should not
be used with limited-precision numbers (Float and Double).

➤ Send a ~~ message to a number. The argument is another
number.

"Print it"
| x y |
x := 5.
y := 6.
^x ~~ y "V4 Step"

V5. Testing for “Less Than”
➤ Send a < message to a number. The argument is another

number.

"Print it"
| x y |
x := 5.
y := 6.
^x < y "V5 Step"

V6. Testing for “Less Than or Equal To”
➤ Send a <= message to a number. The argument is another

number.

"Print it"
| x y |
x := 5.

Chapter 21 Numbers

440 VisualWorks Cookbook, Rev. 2.0

y := 5.
^x <= y "V6 Step"

V7. Testing for “Greater Than”
➤ Send a > message to a number. The argument is another

number.

"Print it"
| x y |
x := 6.
y := 5.
^x > y "V7 Step"

V8. Testing for “Greater Than or Equal To”
➤ Send a >= message to a number. The argument is another

number.

"Print it"
| x y |
x := 5.
y := 5.
^x >= y "V8 Step"

V9. Testing for Inclusion in a Range
➤ Send a between:and: message to a number. The first argument

is a number indicating the beginning of the range. The
second argument is a number indicating the end of the
range. The arguments are included in the range.

"Print it"
| x y z |
x := 50.
y := 1.
z := 100.
^x between: y and: z "V9 Step"

Getting the Minimum and Maximum

VisualWorks Cookbook, Rev. 2.0 441

Getting the Minimum and Maximum

Variants

V1. Getting the Minimum of Two Numbers
➤ Send a min: message to one of the numbers to be compared.

The argument is the second number to be compared. The
lesser number is returned.

"Print it"
| x y |
x := 5.5.
y := 6.5.
^x min: y "V1 Step"

V2. Getting the Maximum of Two Numbers
➤ Send a max: message to one of the numbers to be compared.

The argument is the second number to be compared. The
greater number is returned.

"Print it"
| x y |
x := 5.5.
y := 6.5.
^x max: y "V2 Step"

Chapter 21 Numbers

442 VisualWorks Cookbook, Rev. 2.0

Performing Trigonometric Functions

Variants

V1. Sine
1. Convert to radians an angle expressed in degrees.

2. Send a sin message to the angle.

"Print it"
| x |
x := 45 degreesToRadians. "V1 Step 1"
^x sin "V2 Step 2"

V2. Cosine
➤ Send a cos message to a number representing an angle,

expressed in radians.

"Print it"
| x |
x := 45 degreesToRadians.
^x cos "V2 Step"

V3. Tangent
➤ Send a tan message to a number representing an angle,

expressed in radians.

"Print it"
| x |
x := 45 degreesToRadians.
^x tan "V3 Step"

V4. ArcSine
➤ Send an arcSin message to a number representing a sine

value. The result is an angle expressed in radians, which
can be converted to degrees if desired.

Performing Trigonometric Functions

VisualWorks Cookbook, Rev. 2.0 443

"Print it"
| x y |
x := 45 degreesToRadians sin.
y := x arcSin radiansToDegrees. "V4 Step"
^y

V5. ArcCosine
➤ Send an arcCos message to a number representing a cosine

value. The result is an angle expressed in radians, which
can be converted to degrees if desired.

"Print it"
| x y |
x := 45 degreesToRadians cos.
y := x arcCos radiansToDegrees. "V5 Step"
^y

V6. ArcTangent
➤ Send an arcTan message to a number representing a tangent

value. The result is an angle expressed in radians, which
can be converted to degrees if desired.

"Print it"
| x y |
x := 45 degreesToRadians tan.
y := x arcTan radiansToDegrees. "V6 Step"
^y

Chapter 21 Numbers

444 VisualWorks Cookbook, Rev. 2.0

Performing Logarithmic Functions

V1. Getting the Base 10 Log of a Number
➤ Send a log message to the number.

"Print it"
| x |
x := 5.5.
^x log "V1 Step"

V2. Getting a Log with a Specified Base
➤ Send a log: message to the number. The argument is a

number indicating the base.

"Print it"
| x |
x := 5.5.
^x log: 7 "V2 Step"

V3. Getting a Natural Log
➤ Send an ln message (with a lowercase l, not an uppercase I)

to the number.

"Print it"
| x y |
x := 5.5 ln.
y := x exp. "V3 Step"
^y

V4. Getting a Number’s Exponential
➤ Send an exp message to the number.

"Print it"
| x |
x := 5.5.
^x exp "V4 Step"

Testing Numberness, Evenness, Zeroness

VisualWorks Cookbook, Rev. 2.0 445

Testing Numberness, Evenness, Zeroness

Strategy

Because variables have no declared type in VisualWorks, it is
sometimes prudent to test a variable that is expected to hold a
number, as shown in the first variant. If it does hold a number,
you can safely send arithmetic and other number messages to
it.

The other variants show how to test various qualities of a
number: whether it is an integer, whether it is even or odd, and
whether it is zero.

Basic Step

Testing for Numberness
➤ Send a respondsToArithmetic message to the object (which can

be any type of object). If the object is a number, it responds
true.

"Print it"
| x |
x := 55.
^x respondsToArithmetic "Basic Step"

Variants

V1. Testing for Integerness
➤ Send an isInteger message to the number.

"Print it"
| x |
x := 55.
^x isInteger "V1 Step"

V2. Testing for Evenness
➤ Send an even message to the number.

Chapter 21 Numbers

446 VisualWorks Cookbook, Rev. 2.0

"Print it"
| x |
x := 56.
^x even "V2 Step"

V3. Testing for Oddness
➤ Send an odd message to the number.

"Print it"
| x |
x := 55.
^x odd "V3 Step"

V4. Testing for Zeroness
➤ Send an isZero message to the number.

"Print it"
| x |
x := 0.
^x isZero "V4 Step"

Accessing and Converting the Sign

VisualWorks Cookbook, Rev. 2.0 447

Accessing and Converting the Sign

Variants

V1. Testing for Zero or Greater
➤ Send a positive message to the number.

"Print it"
| x |
x := 55.
^x positive "V1 Step"

V2. Testing for Greater Than Zero
➤ Send a strictlyPositive message to the number.

"Print it"
| x |
x := 55.
^x strictlyPositive "V2 Step"

V3. Testing for Less Than Zero
➤ Send a negative message to the number.

"Print it"
| x |
x := -55.
^x negative "V3 Step"

V4. Accessing the Sign as a Multiplier
➤ Send a sign message to the number. The returned value is 1

when the number is greater than zero, -1 when the number
is less than zero, or 0. This value can be used to convert
another number, such as the absolute value of the receiver,
to the same sign.

"Print it"
| x y |

Chapter 21 Numbers

448 VisualWorks Cookbook, Rev. 2.0

x := -55.
y := x abs.
^y * (x sign) "V4 Step"

V5. Reversing the Sign
➤ Send a negated message to the number.

"Print it"
| x |
x := -55.
^x negated "V5 Step"

Converting a Number to Another Form

VisualWorks Cookbook, Rev. 2.0 449

Converting a Number to Another Form

Variants

V1. Converting to Fixed Point
➤ Send an asFixedPoint: message to the number; the argument

is the number of decimal places.

"Print it"
| x |
x := 99.95 asFixedPoint: 2. "V1 Step"
^x

V2. Converting to Single-Precision Float
➤ Send an asFloat message to the number.

"Print it"
| x |
x := 55.
^x asFloat "V2 Step"

V3. Converting to Double-Precision Float
➤ Send an asDouble message to the number.

"Print it"
| x |
x := 55.
^x asDouble "V3 Step"

V4. Converting to Integer or Fraction
(Rational Number)
➤ Send an asRational message to the number.

"Print it"
| x |

Chapter 21 Numbers

450 VisualWorks Cookbook, Rev. 2.0

x := 55.5.
^x asRational "V4 Step"

V5. Converting to Absolute Number
➤ Send an abs message to the number.

"Print it"
| x |
x := -55.5.
^x abs "V5 Step"

V6. Converting to Reciprocal
➤ Send a reciprocal message to the number.

"Print it"
| x |
x := 0.5.
^x reciprocal "V6 Step"

V7. Converting from Degrees to Radians
➤ Send a degreesToRadians message to the number.

"Print it"
| x |
x := 90.
^x degreesToRadians "V7 Step"

V8. Converting from Radians to Degrees
➤ Send a radiansToDegrees message to the number.

"Print it"
| x |
x := 1.5.
^x radiansToDegrees "V8 Step"

Converting a Number to Another Form

VisualWorks Cookbook, Rev. 2.0 451

V9. Converting to Symmetric Point
➤ Send an asPoint message to the number. The point that is

returned has the number as both its x and y coordinates.

"Print it"
| x |
x := 55.
^x asPoint "V9 Step"

V10. Converting to One Axis of a Point
➤ Send an @ message to the number. The receiver is the x

coordinate and the argument is the y coordinate of the
resulting point. Like other binary messages, the @ message
can either have white space before and after it or not.

"Print it"
| x y |
x := 55.
y := 100.
^x @ y "V10 Step"

V11. Converting to Character
➤ Send an asCharacter message to an integer. If the receiver is

the numeric representation of a valid character, the char-
acter is returned; otherwise, an error results.

"Print it"
| x |
x := 55.
^x asCharacter "V11 Step"

V12. Converting to String
➤ Send a printString message to the number.

"Print it"
| x |

Chapter 21 Numbers

452 VisualWorks Cookbook, Rev. 2.0

x := 55.
^x printString "V12 Step"

V13. Converting to String, Using a Base
Other Than 10
➤ Send a printStringRadix: message to the number. The argument

is a number indicating the base.

"Print it"
| x |
x := 55.
^x printStringRadix: 16 "V13 Step"

See Also
■ “Formatting Displayed Data” on page 129

Factoring

VisualWorks Cookbook, Rev. 2.0 453

Factoring

Variants

V1. Getting the Greatest Common Divisor
➤ Send a gcd: message to one of the two numbers. The

argument is the second number.

"Print it"
| x y |
x := 5.
y := 10.
^x gcd: y "V1 Step"

V2. Getting the Least Common Multiple
➤ Send an lcm: message to one of the two numbers. The

argument is the second number.

"Print it"
| x y |
x := 5.
y := 8.
^x lcm: y "V2 Step"

V3. Getting the Factorial of a Number
➤ Send a factorial message to the number.

"Print it"
| x |

x := 5.
^x factorial "V3 Step"

Chapter 21 Numbers

454 VisualWorks Cookbook, Rev. 2.0

Generating a Random Number

Strategy

A random number can be generated by an instance of Random.
This object is a kind of stream, so it responds to stream
messages—in particular, the next message gets the next number
in the sequence, as shown in the basic steps.

By default, a random stream returns fractional values between
0 and 1. The first variant shows how to convert those values to
a range, in effect generating a value between, say, 1 and 52.

VisualWorks provides seven different streams of random
numbers, identified as generators 1 through 7. You can also
choose a position in the stream by supplying a seed value—
often, Time millisecondClockValue is used for this purpose because it
is a value that varies with time. By default, a different seed
value is used each time you send a new message to the Random
class.

The second variant shows how to use the same generator and
seed value when you want a reproducible sequence of “random”
numbers. The third variant shows how to ensure that a second
sequence of numbers is not the same as the first by changing
the generator, the seed value, or both.

Basic Steps

Generating a Random Number between 0 and 1
1. Create a random stream of numbers by sending new to the

Random class.

2. Get the next number in the stream by sending new to the
random stream.

"Print it"
| randomStream x |
randomStream := Random new. "Basic Step 1"
x := randomStream next. "Basic Step 2"
^x

Generating a Random Number

VisualWorks Cookbook, Rev. 2.0 455

Variants

V1. Generating a Random Integer
in a Specified Range
1. Create a random stream of numbers by sending new to

Random.

2. Define the beginning and ending values of the range.

3. Derive the extent of the range.

4. Get the next value from the random stream, then multiply it
by the extent of the range, add the range’s beginning value,
and round the result.

"Print it"
| randomStream rangeStart rangeEnd rangeExtent x |
randomStream := Random new. "V1 Step 1"
rangeStart := 1. "V1 Step 2"
rangeEnd := 52.
rangeExtent := rangeEnd - rangeStart. "V1 Step 3"
x := (randomStream next * rangeExtent + rangeStart) rounded. "V1 Step 4"
^x

V2. Reproducing a Sequence of Random Numbers
1. Create the first random stream by sending a

fromGenerator:seededWith: message to the Random class. The first
argument is an integer from 1 to 7, identifying one of the
seven streams that VisualWorks provides. The second
argument is a number that is used to select a position in
the stream.

2. Create the second random stream exactly the same way as
in step 1—that is, use the same two values for the argu-
ments to assure that the same generator and the same seed
value are used.

"Print it"
| rangeStart rangeEnd rangeExtent randomStream1 randomStream2
firstSequence secondSequence |
rangeStart := 1.
rangeEnd := 52.
rangeExtent := rangeEnd - rangeStart.

Chapter 21 Numbers

456 VisualWorks Cookbook, Rev. 2.0

"Create the two equivalent generators."
randomStream1 := Random "V2 Step 1"

fromGenerator: 1
seededWith: 1.

randomStream2 := Random "V2 Step 2"
fromGenerator: 1
seededWith: 1.

"Collect the first 1000 numbers from generator 1."
firstSequence := OrderedCollection new.
1000 timesRepeat: [

firstSequence
add: (randomStream1 next * rangeExtent + rangeStart) rounded].

"Collect the first 1000 numbers from generator 2."
secondSequence := OrderedCollection new.
1000 timesRepeat: [

secondSequence
add: (randomStream2 next * rangeExtent + rangeStart) rounded].

"Answer whether the two collections are the same."
^firstSequence = secondSequence

V3. Encouraging Randomness
in Multiple Sequences
1. Create the first random stream by sending a

fromGenerator:seededWith: message to the Random class. The first
argument is an integer from 1 to 7, identifying one of the
seven streams that VisualWorks provides. The second
argument is a number that is used to select a position in
the stream.

2. Create each of the other random streams in the same way,
but use a different value for the generator, the seed value,
or both.

"Print it"
| rangeStart rangeEnd rangeExtent randomStream1 randomStream2
randomStream3 numbers outStream |
rangeStart := 1.

Generating a Random Number

VisualWorks Cookbook, Rev. 2.0 457

rangeEnd := 52.
rangeExtent := rangeEnd - rangeStart.

"Create three nonequivalent generators."
randomStream1 := Random "V3 Step 1"

fromGenerator: 1
seededWith: 1.

randomStream2 := Random "V3 Step 2"
fromGenerator: 2
seededWith: 1.

randomStream3 := Random "V3 Step 2"
fromGenerator: 1
seededWith: Time millisecondClockValue.

"Collect the first 10 numbers from each generator."
numbers := OrderedCollection new.
10 timesRepeat: [

numbers add: (randomStream1 next * rangeExtent + rangeStart) rounded.
numbers add: (randomStream2 next * rangeExtent + rangeStart) rounded.
numbers add: (randomStream3 next * rangeExtent + rangeStart) rounded].

"Arrange the random numbers in columns."
outStream := ('' writeStream) cr.
1 to: 30 do: [:i |

outStream nextPutAll: (numbers at: i) printString; tab.
(i \\ 3) isZero ifTrue: [outStream cr]].

^outStream contents

Chapter 21 Numbers

458 VisualWorks Cookbook, Rev. 2.0

Accessing Numeric Constants

Variants

V1. Accessing Zero
1. Send a zero message to any numeric class. Note that the

type of zero returned varies—for example, Float returns 0.0
and Integer returns 0.

2. To get a zero of the same class as an existing number, first
get the class of that number by sending a class message to it
and then send zero to the resulting object.

"Print it"
| x y z |
x := Float zero. "V1 Step 1"
y := Integer zero.
z := x class zero. "V1 Step 2"
^x + y + z

V2. Accessing One
1. Send a unity message to any numeric class. Note that the

type of one returned varies—for example, Float returns 1.0
and Integer returns 1.

2. To get a one of the same class as an existing number, first
get the class of that number and then send unity to the
resulting object.

"Print it"
| x y z |
x := Float unity. "V2 Step 1"
y := Integer unity.
z := x class unity. "V2 Step 2"
^x + y + z

Accessing Numeric Constants

VisualWorks Cookbook, Rev. 2.0 459

V3. Accessing Pi
1. Send a pi message to the Float or Double class. Note that Float

returns a single-precision version while Double returns a
double-precision version.

2. To get a pi of the same class as an existing number, first get
the class of that number and then send pi to the resulting
object.

"Print it"
| x y z |
x := Float pi. "V3 Step 1"
y := Double pi.
z := x class pi. "V3 Step 2"
^x + y + z

V4. Accessing the Largest SmallInteger

This value is frequently used to specify an arbitrarily large
number whose exact value is not important. For example, the
ComposedText class uses this value to set its default composition
width—in effect, turning off any semblance of word wrapping.

➤ Send a maxVal message to the SmallInteger class.

"Print it"
| x |
x := SmallInteger maxVal. "V4 Step"
^x

V5. Accessing the Smallest SmallInteger

This value is seldom used.

➤ Send a minVal message to the SmallInteger class.

"Print it"
| x |
x := SmallInteger minVal. "V5 Step"
^x

VisualWorks Cookbook, Rev. 2.0 461

Chapter 22

Dates

Creating a Date 462
Getting Information about a Day 465
Getting Information about a Month 467
Getting Information about a Year 469
Adding and Subtracting with Dates 471
Comparing Dates 473
Formatting a Date 475

See Also
■ “Times” on page 477

Chapter 22 Dates

462 VisualWorks Cookbook, Rev. 2.0

Creating a Date

Basic Step

Creating Today’s Date
➤ Send a today message to the Date class.

"Print it"
| date |
date := Date today. "Basic Step"
^date

Variants

V1. Creating a Date from a String
➤ Send a readFromString: message to Date. The argument is a

string containing the month, day, and year in any of several
formats. The string can begin with either the month or the
day—if the month is expressed as an integer, it must be in
the first position. The year is always last. The month can be
either a number (1 through 12) or the unique first letters of
the name (case is irrelevant). The month, day, and year can
be separated by a space, comma, hyphen, slash, period, or
nothing.

"Print it"
| dates |
dates := OrderedCollection new.

dates
add: (Date readFromString: 'January 31, 1994'); "V1 Step"
add: (Date readFromString: '31 January 1994'); "V1 Step"
add: (Date readFromString: '1/31/94'); "V1 Step"
add: (Date readFromString: '1.31.1994'); "V1 Step"
add: (Date readFromString: '1-31-1994'); "V1 Step"
add: (Date readFromString: '31JAN94'). "V1 Step"

^dates

Creating a Date

VisualWorks Cookbook, Rev. 2.0 463

V2. Creating a Date from a Day, Month, and Year
1. Send a newDay:monthNumber:year: message to the Date class. The

newDay argument is the day number. The monthNumber
argument is the month number. The year argument is the
year, with or without the century part.

2. To specify the month by name, send a newDay:month:year:
message to Date. The month argument is the unique first
letters of a month name expressed as a Symbol.

"Print it"
| date1 date2 |

date1 := Date "V2 Step 1"
newDay: 31
monthNumber: 1
year: 1994.

date2 := Date "V2 Step 2"
newDay: 31
month: #Jan
year: 1994.

^date1 = date2

V3. Creating a Date by Specifying the Days
Since January 1

During a series of date computations that span several months
in the same year, it can be helpful to treat a date as the number
of days that it represents since the beginning of the year. After
the computation is completed, you can convert the day-count
back into a date.

➤ Send a newDay:year: message to Date. The first argument is the
number of days from the beginning of the year. The second
argument is the year number.

"Print it"
| date |
date := Date "V3 Step"

newDay: 32

Chapter 22 Dates

464 VisualWorks Cookbook, Rev. 2.0

year: 1994.
^date

V4. Creating a Date by Specifying the Days
Since 1901

During a series of date computations that span multiple years,
it can be helpful to treat a date as the number of days that it
represents since 1901 (in effect, the beginning of recorded
time). After the computation is completed, you can convert the
day-count back into a date.

➤ Send a fromDays: message to Date. The argument is the
number of days from the beginning of 1901.

"Print it"
| date |
date := Date "V4 Step"

fromDays: (94 * 366).
^date

See Also
■ “Creating a Time” on page 478

Getting Information about a Day

VisualWorks Cookbook, Rev. 2.0 465

Getting Information about a Day

Basic Step

Getting the Day of the Week
➤ Send a weekday message to a date. The name of the week day

is expressed as a Symbol, such as #Friday.

"Print it"
| date |
date := Date today.
^date weekday "Basic Step"

Variants

V1. Getting the Day of the Month
➤ Send a dayOfMonth message to a date. The day number within

the month is returned.

"Print it"
| date |
date := Date today.
^date dayOfMonth "V1 Step"

V2. Getting the Day of the Year
➤ Send a day message to a date. The day number within the

year is returned.

"Print it"
| date |
date := Date today.
^date day "V2 Step"

V3. Counting the Days Since 1901 Began
➤ Send an asDays message to a date. The day number within

the century is returned.

Chapter 22 Dates

466 VisualWorks Cookbook, Rev. 2.0

"Print it"
| date |
date := Date today.
^date asDays "V3 Step"

V4. Counting the Seconds Since 1901 Began

In computations that involve both times and dates, it can be
useful to represent both as a quantity of seconds.

➤ Send an asSeconds message to a date. The number of
seconds elapsed prior to the date in the century is returned.

"Print it"
| date |
date := Date today.
^date asSeconds "V4Step"

Getting Information about a Month

VisualWorks Cookbook, Rev. 2.0 467

Getting Information about a Month

Basic Step

Getting the Name of the Month
➤ Send a monthName message to a date. The month name is

expressed as a Symbol, as in #January.

"Print it"
| date |
date := Date today.
^date monthName "Basic Step"

Variants

V1. Getting the Number of the Month
➤ Send a monthIndex message to a date.

"Print it"
| date |
date := Date today.
^date monthIndex "V1 Step"

V2. Counting the Days in the Month
➤ Send a daysInMonth message to a date.

"Print it"
| date |
date := Date today.
^date daysInMonth "V2 Step"

Chapter 22 Dates

468 VisualWorks Cookbook, Rev. 2.0

V3. Getting the Number of the First Day
Relative to the Year

In computations involving dates that span months, it can be
useful to know how many days have elapsed in the year at the
month’s beginning.

➤ Send a firstDayOfMonth message to a date.

"Print it"
| date |
date := Date today.
^date firstDayOfMonth "V3 Step"

Getting Information about a Year

VisualWorks Cookbook, Rev. 2.0 469

Getting Information about a Year

Basic Step

Getting the Year Number from a Date
➤ Send a year message to a date.

"Print it"
| date |
date := Date today.
^date year "Basic Step"

Variants

V1. Counting the Days in the Year
➤ Send a daysInYear message to a date.

"Print it"
| date |
date := Date today.
^date daysInYear "V1 Step"

V2. Counting the Days Remaining in the Year
➤ Send a daysLeftInYear message to a date.

"Print it"
| date |
date := Date today.
^date daysLeftInYear "V2 Step"

V3. Finding Out Whether a Year Is a Leap Year
➤ Send a leap message to a date. The result is 1 in a leap year

and zero otherwise.

"Print it"
| date |

Chapter 22 Dates

470 VisualWorks Cookbook, Rev. 2.0

date := Date today.
^date leap "V3 Step"

Adding and Subtracting with Dates

VisualWorks Cookbook, Rev. 2.0 471

Adding and Subtracting with Dates

Basic Step

Adding Days to a Date
➤ Send an addDays: message to a date. The argument is the

number of days to be added, and can be a negative number.

"Print it"
| date daysToAdd |
date := Date today.
daysToAdd := 60.
^date addDays: daysToAdd "Basic Step"

Variants

V1. Subtracting Days from a Date
➤ Send a subtractDays: message to a date. The argument is the

number of days to be subtracted, and it can be a negative
number.

"Print it"
| date daysToSubtract |
date := Date today.
daysToSubtract := 60.
^date subtractDays: daysToSubtract "V1 Step"

V2. Getting the Number of Days between Two Dates
➤ Send a subtractDate: message to a date. The argument is the

date to be subtracted, which can be either before or after
the first date.

"Print it"
| date1 date2 |
date1 := Date today.
date2 := Date readFromString: '31 December 1999'.
^date2 subtractDate: date1 "V2 Step"

Chapter 22 Dates

472 VisualWorks Cookbook, Rev. 2.0

V3. Getting a Previous Day of the Week
➤ Send a previous: message to a date. The argument is the

name of the preceding weekday whose date you desire,
expressed as a Symbol.

"Print it"
| date dayOfWeek |
date := Date today.
dayOfWeek := #Monday.
^date previous: dayOfWeek "V3 Step"

Comparing Dates

VisualWorks Cookbook, Rev. 2.0 473

Comparing Dates

Basic Step

Testing Whether Two Dates Are Equal
➤ Send an = message to a date. The argument is the date to be

compared. If the dates are equal, true is returned; otherwise,
false is returned.

"Print it"
| date1 date2 |
date1 := Date today.
date2 := Date fromDays: 1.
^date1 = date2 "Basic Step"

Variants

V1. Testing Whether Two Dates Are Unequal
➤ Send a ~= message to a date. The argument is the date to be

compared. If the dates are unequal, true is returned; other-
wise, false is returned.

"Print it"
| date1 date2 |
date1 := Date today.
date2 := Date fromDays: 1.
^date1 ~= date2 "V1 Step"

V2. Testing for “Less Than”
➤ Send a < message to a date. The argument is the date to be

compared. If the first date is earlier, true is returned; other-
wise, false is returned.

"Print it"
| date1 date2 |
date1 := Date today.

Chapter 22 Dates

474 VisualWorks Cookbook, Rev. 2.0

date2 := Date fromDays: 1.
^date1 < date2 "V2 Step"

V3. Testing for “Less Than or Equal”
➤ Send a <= message to a date. The argument is the date to be

compared. If the first date is earlier or equal, true is
returned; otherwise, false is returned.

"Print it"
| date1 date2 |
date1 := Date today.
date2 := Date fromDays: 1.
^date1 <= date2 "V3 Step"

V4. Testing for “Greater Than”
➤ Send a > message to a date. The argument is the date to be

compared. If the first date is later, true is returned; other-
wise, false is returned.

"Print it"
| date1 date2 |
date1 := Date today.
date2 := Date fromDays: 1.
^date1 > date2 "V4 Step"

V5. Testing for “Greater Than or Equal”
➤ Send a >= message to a date. The argument is the date to be

compared. If the first date is earlier or equal, true is
returned; otherwise, false is returned.

"Print it"
| date1 date2 |
date1 := Date today.
date2 := Date fromDays: 1.
^date1 >= date2 "V5 Step"

Formatting a Date

VisualWorks Cookbook, Rev. 2.0 475

Formatting a Date

Strategy

A date can describe itself in a string having a variety of formats.
The printFormat: message takes as its argument an array
containing six elements. The six elements are interpreted as
follows:

■ Day’s position in the string (1, 2, or 3)

■ Month’s position in the string (1, 2, or 3)

■ Year’s position in the string (1, 2, or 3)

■ The separator character

■ Month’s format: 1 (numeric), 2 (abbreviation), or 3 (full
name)

■ Year’s format: 1 (with century) or 2 (without century)

Basic Step
➤ Send a printFormat: message to the date. The argument is an

array of six elements.

"Print it"
| date |
date := Date today.
^date printFormat: #(2 1 3 $- 3 1) "Basic Step"

See Also
■ “Restricting the Type of Input” on page 125

VisualWorks Cookbook, Rev. 2.0 477

Chapter 23

Times

Creating a Time 478
Getting the Seconds, Minutes, and Hours 480
Adding and Subtracting Times 482
Creating a Time Stamp 483
Timing a Block of Code 484
Changing the Time Zone 486

See Also
■ “Dates” on page 461

Chapter 23 Times

478 VisualWorks Cookbook, Rev. 2.0

Creating a Time

Basic Step

Creating the Current Time
➤ Send a now message to the Time class.

"Print it"
| time |
time := Time now. "Basic Step"
^time

Variants

V1. Creating a Time from a String
➤ Send a readFromString: message to Time. The argument is a

string containing the hours, minutes, and seconds, sepa-
rated by colons. The minutes and/or seconds can be
omitted. The “am/pm” designation can be omitted (“am” is
the default) and can be in upper- or lowercase.

"Print it"
| times |
times := OrderedCollection new.

times
add: (Time readFromString: '3:47:26 pm'); "V1 Step"
add: (Time readFromString: '03:47'); "V1 Step"
add: (Time readFromString: '::26 PM'). "V1 Step"

^times

V2. Creating a Time by Specifying the Seconds
Since Midnight

In computations involving times on different dates, it is some-
times useful to represent each time as a number of seconds

Creating a Time

VisualWorks Cookbook, Rev. 2.0 479

since midnight. At the end of the computation, you can convert
the number of seconds back into an instance of Time.

➤ Send a fromSeconds: message to Time. The argument is the
number of seconds that have elapsed since midnight.

"Print it"
| time |
time := Time fromSeconds: (60 * 60 * 4). "V2 Step"
^time

See Also
■ “Creating a Date” on page 462

Chapter 23 Times

480 VisualWorks Cookbook, Rev. 2.0

Getting the Seconds, Minutes, and Hours

Basic Step

Getting the Seconds Since the Minute Began
➤ Send a seconds message to the time.

"Print it"
| time |
time := Time now.
^time seconds. "Basic Step"

Variants

V1. Getting the Seconds Since the Day Began

In computations involving time, it is sometimes convenient to
represent each time as the number of seconds since midnight.

➤ Send an asSeconds message to the time.

"Print it"
| time |
time := Time now.
^time asSeconds. "V1 Step"

V2. Getting the Seconds Since the Century Began

In time computations that span multiple days, it is sometimes
convenient to represent each time as the number of seconds
since 1901 began.

➤ Send a totalSeconds message to Time.

"Print it"
| x |
x := Time totalSeconds. "V2 Step"
^x

Getting the Seconds, Minutes, and Hours

VisualWorks Cookbook, Rev. 2.0 481

V3. Getting the Seconds Since the Millisecond Clock
Was Reset

When you want to measure the number of milliseconds
required by some process, you can take a reading of the milli-
second clock both before and after the process. This reading is
also sometimes used as a simple random number for temporary
file naming and as a seed value for a random stream.

➤ Send a millisecondClockValue message to Time.

"Print it"
"Time 1000 repetitions of the millisecondClockValue method"
| x |
x := Time millisecondClockValue. "V3 Step"
1000 timesRepeat: [Time millisecondClockValue].
^Time millisecondClockValue - x

V4. Getting the Minutes Since the Hour Began
➤ Send a minutes message to the time.

"Print it"
| time |
time := Time now.
^time minutes. "V4 Step"

V5. Getting the Hours Since the Day Began
➤ Send an hours message to the time.

"Print it"
| time |
time := Time now.
^time hours. "V5 Step"

Chapter 23 Times

482 VisualWorks Cookbook, Rev. 2.0

Adding and Subtracting Times

Variants

V1. Adding Times (and Dates)
➤ Send an addTime: message to a time. The argument is either a

time or a date.

"Print it"
| time1 time2 |
time1 := Time readFromString: '5'.
time2 := Time readFromString: '8:51:39 am'.
^time1 addTime: time2 "V1 Step"

V2. Subtracting Times (and Dates)
➤ Send a subtractTime: message to a time. The argument is

either a time or a date.

"Print it"
| time1 time2 |
time1 := Time readFromString: '5'.
time2 := Time readFromString: '8:51:39 am'.
^time2 subtractTime: time1 "V2 Step"

Creating a Time Stamp

VisualWorks Cookbook, Rev. 2.0 483

Creating a Time Stamp

Strategy

When an application needs to record the date and time that an
event occurred, the Time class provides a dateAndTimeNow method
for that purpose. It returns an array containing two elements:
the current date and the present time. You can store the array
itself as a time stamp, or you can convert it to a string as shown
in the basic steps.

You can achieve the same result by using Date today and Time now
separately to obtain the current date and the present time.
However, since each of those methods invokes dateAndTimeNow,
the cost is an extra invocation of dateAndTimeNow.

Basic Steps
1. Send a dateAndTimeNow message to the Time class.

2. If desired, convert the resulting array to a string.

"Print it"
| dateTime |
dateTime := Time dateAndTimeNow. "Basic Step 1"
^(dateTime at: 1) printString, ' ', (dateTime at: 2) printString. "Basic Step 2"

Chapter 23 Times

484 VisualWorks Cookbook, Rev. 2.0

Timing a Block of Code

Strategy

During the optimization phase of application development, it is
frequently useful to compare the running time of alternate
versions of the same code. The Advanced Programming
ObjectKit, which is available as an add-on to VisualWorks,
provides a Profiler tool for measuring execution times and
reporting the consumption in a detailed breakdown by method.
That tool helps you isolate the methods that consume suspi-
cious amounts of execution time, so you can focus your opti-
mizing efforts.

In simple circumstances, when you already know which
method you want to test, you can use a utility provided by the
Time class. That class provides a millisecondsToRun: method, which
reports the number of milliseconds it takes to execute a block
containing one or more Smalltalk expressions.

Basic Steps
1. Create a BlockClosure containing one or more expressions to

be tested. Repeating the expressions through timesRepeat:
usually improves the validity of the comparison.

2. Send a millisecondsToRun: message to the Time class. The
argument is the block you created in step 1.

3. Repeat steps 1 and 2 for the second version of the code. If
the second version is not ready yet, you can simply record
the value from step 2 for later comparison.

"Print it"
| block1 block2 ms1 ms2 |

"Test the speed of Time now and Date today."
block1 := [100 timesRepeat: [Time now. Date today]]. "Basic Step 1"
ms1 := Time "Basic Step 2"

millisecondsToRun: block1.

"Test the speed of dateAndTimeNow, which does the same thing."
block2 := [100 timesRepeat: [Time dateAndTimeNow]]. "Basic Step 3"

Timing a Block of Code

VisualWorks Cookbook, Rev. 2.0 485

ms2 := Time
millisecondsToRun: block2.

^ms1 printString, '', ms2 printString

Chapter 23 Times

486 VisualWorks Cookbook, Rev. 2.0

Changing the Time Zone

Strategy

On machines that report Greenwich Mean Time (GMT) rather
than local time, the Time class converts GMT to local time with
the aid of another class, TimeZone. A TimeZone stores an offset from
GMT for local time. In some parts of the world, this offset is an
integral number of hours; in other places it is not. Both kinds
of offset are handled by TimeZone.

TimeZone provides an algorithm for determining whether
Daylight Saving Time (DST) is in effect. The algorithm relies on
parameters that you can change to suit your needs. By default,
DST is in effect from 2 a.m. on the Sunday preceding April 7 to
2 a.m. on the Sunday preceding October 31.

The basic steps show how to change the day of the week on
which DST begins and ends.

The first variant shows how to create a new TimeZone and install
it as the system default.

The second variant shows how to install a null time zone, for
machines that return local time rather than GMT.

In a few locations, the algorithm for determining the beginning
and ending of DST is different from the algorithm that TimeZone
uses. To accommodate such a time zone, you will need to
modify the instance method named convertGMT:do: in TimeZone.

Basic Steps
1. Get the default time zone by sending a default message to the

TimeZone class.

2. Send a weekDayToStartDST message to the default time zone.
The argument is the name of the day on which DST is to
begin and end, in the form of a Symbol.

3. Use the File→Save As command to save your image.

| zone |
zone := TimeZone default. "Basic Step 1"
zone weekDayToStartDST: #Saturday. "Basic Step 2"

Changing the Time Zone

VisualWorks Cookbook, Rev. 2.0 487

Variants

V1. Installing a New Time Zone
as the System Default

The example shows the parameters for California (the default
settings in the delivered product).

1. Create a new instance of TimeZone by sending a
timeDifference:DST:at:from:to:startDay: message to the TimeZone class.
The arguments are:

■ timeDifference is the offset in hours from GMT.

■ DST is the number of hours by which DST differs.

■ at is the number of hours after midnight at which DST
begins and ends.

■ from is the number of the day on which DST begins in a
nonleap year (it will be adjusted automatically during
leap years).

■ to is the number of the day on which DST ends in a
nonleap year.

■ startDay is the day of the week on which DST begins and
ends.

2. Send a setDefaultTimeZone: message to the TimeZone class. The
argument is the time zone you created in step 1.

3. Use the File→Save As command to save your image.

| newZone |
newZone := TimeZone "V1 Step 1"

timeDifference: -8
DST: 1
at: 2
from: 97
to: 304
startDay: #Sunday.

TimeZone setDefaultTimeZone: newZone. "V1 Step 2"

Chapter 23 Times

488 VisualWorks Cookbook, Rev. 2.0

V2. Installing a Null TimeZone
1. Create a null time zone—one that does not alter the time

returned by your computer—by sending a null message to
the TimeZone class.

2. Send a setDefaultTimeZone: message to the TimeZone class. The
argument is the time zone you created in step 1.

3. Use the File→Save As command to save your image.

| nullZone |
nullZone := TimeZone null. "V2 Step 1"
TimeZone setDefaultTimeZone: nullZone. "V2 Step 2"

VisualWorks Cookbook, Rev. 2.0 489

Chapter 24

Collections

Choosing the Right Collection 490
Creating a Collection 491
Getting the Size 495
Adding Elements 497
Removing Elements 500
Replacing Elements 505
Copying Elements 508
Combining Two Collections 510
Finding Elements 511
Comparing Collections 517
Sorting a Collection 519
Converting to a Different Type of Collection 522
Looping through the Elements (Iterating) 524

See Also
■ “Characters and Strings” on page 529

■ “Lists” on page 183

Chapter 24 Collections

490 VisualWorks Cookbook, Rev. 2.0

Choosing the Right Collection

Strategy

VisualWorks contains a wealth of specialized collection classes,
as described in the VisualWorks Object Reference. For most
situations, however, one of four types of collection will suffice:

■ List

■ Array

■ Set

■ Dictionary

A List is the most flexible type of collection and the most
commonly used. It keeps elements in the order in which they
were added. You can add a single element or a collection of
elements, and the additions can be inserted anywhere. A List
can also be sorted. A List is typically the collection that is held
by a SelectionInList or MultiSelectionInList, as the model for a list or
notebook widget. (List supersedes the older OrderedCollection and
SortedCollection.)

An Array is a very simple collection that is efficient in situations
that do not require adding, removing, or sorting elements.
However, an array does support replacing of elements.

A Set is another simple collection whose main distinguishing
feature is that it discards duplicate elements. This is useful
when you want to be able to add an element without first having
to make sure that element was not added previously. Unlike the
other three types of collections, a set does not support replacing
of elements, so it is not useful in situations requiring such
changes.

A Dictionary is useful for lookup tables and similar collections.
Each element in a Dictionary is an Association, which is a lookup key
(usually a Symbol) paired with a value (any type of object).

Creating a Collection

VisualWorks Cookbook, Rev. 2.0 491

Creating a Collection

Strategy

Typically, you create an empty collection, as shown in the basic
step.

For an Array, which cannot add elements, the equivalent is to
specify the size of the array, as shown in the first variant. Each
element will be nil until your application replaces it with another
object. The second variant shows how to specify an alternate
object with which to initialize the new collection. These tech-
niques can be used for collection classes other than Array also.

You can also create a collection by specifying up to four
elements, as shown in the third variant. This approach is typi-
cally used to create a small array, because it is less cumber-
some than creating a nil array and then replacing the elements.

When an array contains only literal elements, such as numbers
and strings, you can also create the array using its literal form,
as shown in the fourth variant.

Sometimes a new collection needs to be created from an
existing collection. For example, a nongrowing array might
need to be expanded to accommodate more elements. Or a
dictionary’s keys might be placed in a list for sorting. The fifth
variant shows how to create a new collection that has the
elements of an existing collection.

The sixth variant shows how to create a new collection from an
existing collection, but with a starting size that is larger than
the existing set. This is mainly useful as a means of expanding
an array (which cannot grow to accept new elements).

Basic Step
➤ Send a new message to the desired collection class (in the

example, List).

"Inspect"
| list |
list := List new. "Basic Step"

Chapter 24 Collections

492 VisualWorks Cookbook, Rev. 2.0

list add: 'Leonardo';
add: 'Michelangelo';
add: 'Donatello';
add: 'Raphael'.

^list.

Variants

V1. Creating a Collection of a Certain Size
➤ Send a new: message to the desired collection class (typically

Array, but useful with other types of collections to avoid
time-consuming grow operations as elements are added).

"Inspect"
| array |
array := Array new: 4. "V1 Step"

array at: 1 put: 'Leonardo';
at: 2 put: 'Michelangelo';
at: 3 put: 'Donatello';
at: 4 put: 'Raphael'.

^array.

V2. Creating an Initialized Collection
of a Certain Size
➤ Send a new:withAll: message to the desired collection class (in

the example, Array).

"Inspect"
^Array new: 16 withAll: 0. "V2 Step"

V3. Creating an Array with Up to Four Elements
➤ Send a with:with:with:with: message to the Array class, or a variant

of that message containing as many with: keywords as
needed, up to four. The argument of each with: keyword can
be any object. (This variant can be used with any collection
class but is most often used with arrays.)

Creating a Collection

VisualWorks Cookbook, Rev. 2.0 493

"Inspect"
| array1 array2 array3 array4 |
array1 := Array with: 'Leonardo'. "V3 Step"

array2 := Array "V3 Step"
with: 'Leonardo'
with: 'Michelangelo'.

array3 := Array "V3 Step"
with: 'Leonardo'
with: 'Michelangelo'
with: 'Donatello'.

array4 := Array "V3 Step"
with: 'Leonardo'
with: 'Michelangelo'
with: 'Donatello'
with: 'Raphael'.

^Array "V3 Step"
with: array1
with: array2
with: array3
with: array4.

V4. Creating a Literal Array
➤ Enclose the list of literal elements in parentheses, with a

number-sign prefix. Any white-space character can be used
to separate the elements.

"Inspect"
^#('Leonardo' 'Michelangelo' 'Donatello' 'Raphael') "V4 Step"

V5. Creating a New Collection
from an Old Collection
➤ Send a withAll: message to the desired collection class (List).

Chapter 24 Collections

494 VisualWorks Cookbook, Rev. 2.0

"Inspect"
^List withAll: Smalltalk keys "V5 Step"

Getting the Size

VisualWorks Cookbook, Rev. 2.0 495

Getting the Size

Strategy

The basic step shows how to count the elements in a collection.

Each position in which an element can be stored is known as a
slot. A collection often has more slots than elements to avoid
having to expand the collection each time a new element is
added. The first variant shows how to count the slots in a
collection.

Frequently, it is useful to know whether a collection is empty of
elements, as shown in the second variant.

Basic Step
➤ Send a size message to the collection. The response is an

integer (in the example, 31).

"Print it"
| array |
array := ColorValue constantNames.
^array size "Basic Step"

Variants

V1. Getting the Capacity
➤ Send a capacity message to the collection. The response is an

integer (47).

"Print it"
| set |
set := Set withAll: ColorValue constantNames.
^set capacity "V1 Step"

V2. Testing for Emptiness
➤ Send an isEmpty message to the collection. The response is

true when the collection has no elements and false otherwise.

Chapter 24 Collections

496 VisualWorks Cookbook, Rev. 2.0

| list |
list := List allInstances.

list isEmpty "V2 Step"
ifFalse: [^list first]

Adding Elements

VisualWorks Cookbook, Rev. 2.0 497

Adding Elements

Strategy

Although an Array can contain only the elements with which it
was created, a List, Set, or Dictionary can add elements at any time,
as shown in the basic steps.

By default, a List adds new elements to the end of the collection.
The first variant shows how to position the additional element
at the beginning of the collection, before a particular element,
or before a particular index. (A Set and a Dictionary do not keep
their elements in an externally visible order, so the notion of
inserting a new element does not apply.)

When a List or Set is used to accumulate the contents of other
collections, the additions can be added in batches, as shown in
the second variant. Each batch can be inserted at a specific
location, as with a single-element addition.

The third variant shows a technique for expanding an array by
creating a copy that has a new element appended to it. The copy
can then be substituted for the original.

Basic Steps
1. Send an add: message to a List or Set. The argument can be

any object.

2. Send an at:put: message to a Dictionary. The first argument is
the lookup key, typically but not necessarily a Symbol. The
second argument is the object that is associated with the
key. (Note: A Dictionary also responds to add:, with an Association
as the argument, but this is considered bad style by
experts.)

"Inspect"
| list dict |
list := List new.
dict := Dictionary new.

list add: 'Leonardo'; "Basic Step 1"
add: 'Michelangelo';
add: 'Donatello';

Chapter 24 Collections

498 VisualWorks Cookbook, Rev. 2.0

add: 'Raphael'.

dict at: #Leader put: 'Leonardo'; "Basic Step 2"
at: #Member1 put: 'Michelangelo';
at: #Member2 put: 'Donatello';
at: #Member3 put: 'Raphael'.

^Array with: list with: dict

Variants

V1. Inserting an Element at a Specific Location
1. Send an addFirst: message to a List. The argument is the

element to be inserted at the beginning of the collection.

2. Send an add:before: message to a List. The first argument is the
element to be inserted. The second argument is the element
before which the insertion is to take place.

3. Send an add:beforeIndex: message to a List. The first argument
is the element to be inserted. The second argument is the
index of the element before which the insertion is to take
place.

"Inspect"
| list |
list := List new.

list add: 'Raphael';
addFirst: 'Leonardo'; "V1 Step 1"
add: 'Michelangelo' before: 'Raphael'; "V1 Step 2"
add: 'Donatello' beforeIndex: 3. "V1 Step 3"

^list

V2. Adding a Collection of Elements
1. Send an addAll: message to a List or Set. The argument is a

collection of elements to be added. Remember that a Set will
discard duplicate elements.

Adding Elements

VisualWorks Cookbook, Rev. 2.0 499

2. Send an addAllFirst: message to a List (not a Set). The argument
is the collection of elements to be inserted at the beginning
of the list.

3. Send an addAll:beforeIndex: message to a List. The first argument
is the collection to be inserted. The second argument is the
index number of the element before which the new batch is
to be inserted.

"Print it"
| sizes totalElements |
sizes := List new: 10000.

sizes addAll: (List allInstances collect: [:list | list size]). "V2 Step 1"
sizes addAllFirst: (Dictionary allInstances collect: [:dict | dict size]). "V2 Step 2"
sizes "V2 Step 3"

addAll: (Array allInstances collect: [:array | array size])
beforeIndex: 2.

totalElements := 0.
sizes do: [:sz | totalElements := totalElements + sz].
^totalElements

V3. Expanding an Array
1. Send a copyWith: message to a List or Array. The argument is

the object that is to be appended to the end of the copy.

2. Replace the original array with the expanded copy.

"Print it"
| array copy |
array := #(1 2 3 4 5 6 7 8 9).

copy := array copyWith: 10. "V3 Step 1"
array := copy. "V3 Step 2"
^array

Chapter 24 Collections

500 VisualWorks Cookbook, Rev. 2.0

Removing Elements

Strategy

The basic step shows how to remove a specified element from a
List or Set. If the specified object is not an element in the collec-
tion, an error results. The first variant shows how to supply an
alternative action (including doing nothing) when the object is
not found.

The second variant shows how to remove a subset of a List or Set
when the subset is held in a separate collection.

A List provides several messages for removing a single element
at a specified position or a range of elements. The third variant
shows how to use the available messages.

The fourth variant shows how to test each element in a List and
remove those that meet the test conditions.

The fifth variant shows how to remove an association from a
Dictionary by supplying the association’s key.

The sixth variant shows a technique for removing occurrences
of an object from an array. It involves making a copy of the
array, omitting each occurrence of a specified object. The copy
can then be substituted for the original array.

Basic Step
➤ Send a remove: message to a List or Set. The argument is the

object to be removed.

"Print it"
| list |
list := List withAll: ColorValue constantNames.

list remove: #red. "Basic Step"
^list

Removing Elements

VisualWorks Cookbook, Rev. 2.0 501

Variants

V1. Supplying an Alternative Element-Not-Found
Response
➤ Send a remove:ifAbsent: message to a List or Set. The first

argument is the object to be removed. The second argument
is a block containing the action or actions.

An empty block is an effective means of taking no action—
that is, simply shutting off the error notifier that is
displayed by default.

| list |
list := List withAll: ColorValue constantNames.

list remove: #brickRed "V1 Step"
ifAbsent: [Dialog warn: 'You must be kidding -- brickRed?'].

list remove: #moonbeam "V1 Step"
ifAbsent: [].

^list

V2. Removing a Subset
➤ Send a removeAll: message to a List or Set. The argument is a

collection containing the elements to be removed. If an
element is not found, an error results. The subset can be
contained in a different type of collection.

"Print it"
| list |
list := List withAll: ColorValue constantNames.

list removeAll: #(#red #green #blue). "V2 Step"
^list

Chapter 24 Collections

502 VisualWorks Cookbook, Rev. 2.0

V3. Removing an Element or Range of Elements
by Index
1. Send a removeFirst message to a List (but not a Set, Array, or

Dictionary). The first element in the list will be removed. If the
list is empty, an error results.

2. Send a removeFirst: message to a List. The argument is the
number of elements to be removed from the front of the list.

3. Send a removeLast message to remove the last element.

4. Send a removeLast: message. The argument is the number of
elements to be removed from the end of the list.

5. Send a removeFrom:to: message to a List. The first argument is
the starting index of the range and the second argument is
the ending index. An array containing the deleted elements
is returned.

6. Send a removeFrom:to:returnElements: message to a List. The first
and second arguments are index numbers identifying the
range to be removed. The third argument is false when you
want nil to be returned instead of an array containing the
deleted elements—for large removal operations, this is
more efficient.

"Print it"
| list |
list := List new: 25.
1 to: 25 do: [:i | list add: i].

"Removes 1"
list removeFirst. "V3 Step 1"

"Removes 2 3 4 5 6"
list removeFirst: 5. "V3 Step 2"

"Removes 25"
list removeLast. "V3 Step 3"

"Removes 20 21 22 23 24"
list removeLast: 5. "V3 Step 4"

"Removes 14 15 16 17 18"
list removeFrom: 8 to: 12. "V3 Step 5"

Removing Elements

VisualWorks Cookbook, Rev. 2.0 503

"Removes 9 10 11 12 13"
list removeFrom: 3 to: 7 returnElements: false. "V3 Step 6"

^list

V4. Removing All Elements That Pass a Test
➤ Send a removeAllSuchThat: message to a List. The argument is a

block containing the test. The block must declare one
argument variable for the element to be tested. (In the
example, all color names beginning with the letter r are
removed.)

| list |
list := List withAll: ColorValue constantNames.

list removeAllSuchThat: [:name | name first == $r]. "V4 Step"
^list

V5. Removing an Association from a Dictionary
1. Send a removeKey: message to the dictionary. The argument

is the key of the association that you want to remove. The
removed value is returned. If the key is not found, an error
results.

2. To provide an alternative response to the key-not-found
condition, send a removeKey:ifAbsent: message to the dictio-
nary. The first argument is the key to be removed and the
second argument is a block that specifies the action to take
if the key is not found. An empty block causes no action,
which is the same as silently ignoring the condition.

"Inspect"
| dict |
dict := Dictionary new.
dict at: #Leader put: 'Leonardo';

at: #Member1 put: 'Michelangelo';
at: #Member2 put: 'Donatello';
at: #Member3 put: 'Raphael'.

Chapter 24 Collections

504 VisualWorks Cookbook, Rev. 2.0

dict removeKey: #Member2. "V5 Step 1"

dict removeKey: #Villain ifAbsent: []. "V5 Step 2"
^dict

V6. Removing an Element from an Array
1. Send a copyWithout: message to an Array (or a List). The

argument is the object to be removed. Every occurrence of
that object will be removed from the copy.

2. Replace the original array with the copy.

"Print it"
| array copy |
array := #(1 8 3 4 5 6 7 8 9).

copy := array copyWithout: 8. "V6 Step 1"
array := copy. "V6 Step 2"
^array

Replacing Elements

VisualWorks Cookbook, Rev. 2.0 505

Replacing Elements

Strategy

A Set does not support replacing of elements, because there is
no index number or key for specifying which element to replace.
A Dictionary supports a single form of replacement, in which you
specify the lookup key and provide a new value, as shown in the
basic steps. List and Array support a similar form of replacement,
but the lookup key is the index number of the element you want
to replace, as shown in the basic steps.

When you want to replace all elements of a List or Array with a
particular object, use the technique shown in the first variant.
To replace only those elements with specified index numbers,
use the second variant.

To replace all occurrences of a specified object with a new
object, use the third variant.

To replace a subset of a List or Array with a new set of elements,
use the fourth variant.

Basic Steps
1. Send an at:put: message to a Dictionary. The first argument is

the lookup key. The second argument is the value to be
placed at that key. If the key does not exist, it will be added.

2. Send an at:put: message to a List or Array. The first argument is
the index number of the element to be replaced. The second
argument is the object that is to replace the old element.

"Inspect"
| list dict |
dict := Dictionary new.
dict at: #Leader put: 'Leonardo';

at: #Member1 put: 'Michelangelo';
at: #Member2 put: 'Donatello';
at: #Member3 put: 'Raphael'.

list := List withAll: dict values.
list sort.

dict at: #Leader put: 'Rembrandt'. "Basic Step 1"

Chapter 24 Collections

506 VisualWorks Cookbook, Rev. 2.0

list at: 1 put: 'Rembrandt'. "Basic Step 2"

^Array with: list with: dict.

Variants

V7. Replacing All Elements
➤ Send an atAllPut: message to a List or Array. The argument is

the object that is to replace all existing elements.

"Print it"
| list |
list := List new.
1 to: 10 do: [:number | list add: number].

list atAllPut: 0. "V7 Step"
^list

V8. Replacing Specified Elements
➤ Send an atAll:put: message to a List or Array. The first argument

is a collection containing the index numbers of the
elements to be replaced. The second argument is the object
to be placed in those slots.

"Print it"
| list |
list := List new.
list

add: 'red';
add: 'ghoulishGreen';
add: 'red';
add: 'blackAndBlue'.

list atAll: #(1 3) put: 'bloodRed'. "V8 Step"
^list

Replacing Elements

VisualWorks Cookbook, Rev. 2.0 507

V9. Replacing All Occurrences of an Object
➤ Send a replaceAll:with: message to a List or Array. The first

argument is the object whose occurrences you want to
replace. The second argument is the replacement object.

"Print it"
| list |
list := List new.
list

add: 'red';
add: 'ghoulishGreen';
add: 'red';
add: 'blackAndBlue'.

list replaceAll: 'red' with: 'bloodRed'. "V9 Step"
^list

V10. Replacing a Subset with a New Subset
➤ Send a replaceFrom:to:with:startingAt: message to a List or Array. The

first and second arguments are index numbers identifying
the replacement range. The with: argument is a collection
containing the new elements. The startingAt: argument is the
index number in the new collection at which to begin
copying the replacement elements.

"Print it"
| mainList replacements |
mainList := #(1 2 3 4 5 6 7 8 9).
replacements := #(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1).

mainList "V10 Step"
replaceFrom: 1
to: mainList size
with: replacements
startingAt: 7.

^mainList

Chapter 24 Collections

508 VisualWorks Cookbook, Rev. 2.0

Copying Elements

Strategy

A collection, like any other object, can provide a copy of itself,
as shown in the basic step. You can modify literal elements
such as numbers and strings without affecting the copy. For a
nonliteral element, however, the copied collection holds onto
the same object rather than a copy and will reflect any changes
you make to that object. One way around this problem is to
replace the element with a copy of itself—you can modify this
copied object freely without affecting the similar element in the
copied collection. In the case of a Dictionary, you must remove the
key and then add it with the new value to avoid affecting the
copied association, as shown in the basic step.

To copy a subset of a List or Array, use the technique shown in the
variant.

Basic Step
➤ Send a copy message to the collection.

"Inspect"
| dict1 dict2 |
dict1 := Dictionary new.
dict1 at: #Leader put: 'Leonardo';

at: #Member1 put: 'Michelangelo';
at: #Member2 put: 'Donatello';
at: #Member3 put: 'Raphael'.

dict2 := dict1 copy. "Basic Step"

"Change the original without changing the copy."
dict1 removeKey: #Leader.
dict1 at: #Leader put: 'Rembrandt'.

^Array with: dict1 with: dict2

Copying Elements

VisualWorks Cookbook, Rev. 2.0 509

Variants

V1. Copying a Subset
➤ Send a copyFrom:to: message to a List or Array. The first

argument is the starting index of the range you want to
copy, and the second argument is the ending index.

"Print it"
| list copy |
list := List new.
1 to: 10 do: [:number | list add: number].

copy := list copyFrom: 1 to: 3. "V1 Step"
^copy

Chapter 24 Collections

510 VisualWorks Cookbook, Rev. 2.0

Combining Two Collections

Strategy

Two ordered collections, such as a List and an Array, can be
combined, as shown in the basic step. This technique is widely
used with strings (which are ordered collections of characters),
but it can also be used with other kinds of ordered collections.

Basic Step
➤ Send a comma (,) message to a List or Array. The argument is

another ordered collection. A new collection will be
returned, of the same type as the first collection, containing
the elements of both collections.

"Print it"
| list array combinedList |
list := List withAll: ColorValue constantNames.
array := #(#bloodRed #ghoulishGreen #blackAndBlue).

combinedList := list, array.
^combinedList

Finding Elements

VisualWorks Cookbook, Rev. 2.0 511

Finding Elements

Strategy

Given an index location, a List or Array can supply the corre-
sponding element, as shown in the basic step.

A Dictionary can find the value for a specified lookup key, as the
first variant shows. By default, an error results if the key does
not exist, so using an alternate not-found action is also shown.

A Dictionary can also find the key corresponding to a given value
(that is, a reverse lookup), also shown in the first variant.

A List or Array can also do a reverse lookup, returning the index
number that corresponds to a given element, as shown in the
second variant. The search can be initiated at the beginning of
the collection or later, or it can go backward from the end.

Any collection can tell you whether it includes a specific object,
as shown in the third variant. It can either answer true when it
finds the object, or it can count the occurrences.

A List can find the element that is either before or after a speci-
fied object, as shown in the fourth variant.

A List or Array can return the first or last element, as shown in
the fifth variant.

To find the starting index of a subset in a List or Array, use the
sixth variant.

To find elements that meet your custom conditions in any
collection, use the seventh variant.

Basic Step
➤ Send an at: message to a List or Array. The argument is an

index number. If the object is not found, zero is returned.

"Print it"
| list |
list := List withAll: Smalltalk classNames.

^list at: 1 "Basic Step"

Chapter 24 Collections

512 VisualWorks Cookbook, Rev. 2.0

Variants

V1. Searching a Dictionary
1. Send an at: message to the dictionary. The argument is the

lookup key. If the key does not exist, an error results.

2. To avoid the key-not-found error, send an at:ifAbsent:
message. The second argument is an empty block (for no
action) or a block containing actions to be taken if the key
does not exist.

3. To find the key that corresponds to a value, send a
keyAtValue:ifAbsent: message to the dictionary. The first
argument is the object whose key is to be found. The
second argument is a block containing the value-not-found
action.

"Print it"
| dict found1 found2 found3 |
dict := Smalltalk.

found1 := dict at: #List. "V1 Step 1"
found2 := dict at: #UnlikelyClassName ifAbsent: [nil]. "V1 Step 2"
found3 := dict keyAtValue: List ifAbsent: [nil]. "V1 Step 3"

^Array with: found1 with: found2 with: found3

V2. Finding the Index of an Object
1. Send an indexOf: message to a List or Array. The argument is

the object to be found. If the object is not an element, zero
is returned.

2. To search a subset of the List or Array, send a nextIndexOf:from:to:
message. The first argument is the object to be found. The
second and third arguments are indexes that define the
search range. The returned index is relative to the begin-
ning of the collection.

3. To search backward from the end, send a lastIndexOf:
message. The index of the last occurrence is returned, or
zero if none exists. The returned index is relative to the
beginning of the collection.

Finding Elements

VisualWorks Cookbook, Rev. 2.0 513

"Print it"
| list found1 found2 found3 |
list := List withAll: #(#red #green #blue #red #yellow #blue).

found1 := list indexOf: #red. "V2 Step 1"
found2 := list nextIndexOf: #red from: 2 to: 6. "V2 Step 2"
found3 := list lastIndexOf: #red. "V2 Step 3"

^Array with: found1 with: found2 with: found3

V3. Learning Whether an Object Is in a Collection
1. Send an includes: message to the collection. The argument is

the object to be found. The response is true if the collection
contains at least one matching object, and false otherwise. (A
Dictionary can also be sent includesKey: and includesAssociation:
messages.)

2. Send an occurrencesOf: message to the collection. The
argument is the object whose matching instances among
the elements are to be counted. If the object is not found,
zero is returned.

"Print it"
| list found1 found2 |
list := List withAll: #(#red #green #blue #red #yellow #blue).

found1 := list includes: #red. "V3 Step 1"
found2 := list occurrencesOf: #red. "V3 Step 2"

^Array with: found1 with: found2

V4. Finding the Element Before or After an Object
1. Send a before: message to a List. The argument is the element

before which the desired element is located. If the argument
matches the first element, an error results.

2. Send an after: message to a List. The argument is the element
after which the desired element is located. If the argument
matches only the last element, an error results.

Chapter 24 Collections

514 VisualWorks Cookbook, Rev. 2.0

"Print it"
| list found1 found2 |
list := List withAll: #(#red #green #blue #red #yellow #blue).

found1 := list before: #blue. "V4 Step 1"
found2 := list after: #yellow. "V4 Step 2"

^Array with: found1 with: found2

V5. Finding the First or Last Element
1. To get the first element, send a first message to a List or Array.

If the collection is empty, an error results.

2. To get the last element, send a last message to a List or Array.
If the collection is empty, an error results.

"Print it"
| list found1 found2 |
list := List withAll: #(#red #green #blue).

found1 := list first. "V5 Step 1"
found2 := list last. "V5 Step 2"

^Array with: found1 with: found2

V6. Finding a Subset
➤ Send an indexOfSubCollection:startingAt: message to a List or Array.

The first argument is the subset to be found, which need
not be the same type of collection. The second argument is
the index number at which the search is to begin. The
returned index number is relative to the beginning of the
collection. If the subset is not found, zero is returned.

"Print it"
| list subset found |
list := List withAll: #(#red #green #blue #red #yellow #blue).
subset := #(#red #yellow #blue).

Finding Elements

VisualWorks Cookbook, Rev. 2.0 515

found := list indexOfSubCollection: subset startingAt: 1. "V6 Step"
^found

V7. Finding Elements That Pass or Fail a Test
1. To find all elements that pass a test, send a select: message

to any type of collection. The argument is a block
containing a test to determine whether each element is to
be selected. The block is expected to declare one argument
for the next collection element to be tested. A collection
containing the elements that passed the test is returned.

2. To find all elements that fail a test, send a reject: message to
any type of collection. The argument is a block containing a
test to determine whether each element is to be rejected.
The block is expected to declare one argument for the next
collection element to be tested. A collection containing the
elements that failed the test is returned.

3. To find the first element that passes a test, send a
detect:ifNone: message to any type of collection. The first
argument is a block containing the test. The block must
declare one argument for the next collection element to be
tested. The second argument is a no-argument block
containing the action to take if no element passes the test.

"Inspect"
| list found1 found2 found3 |
list := List withAll: Smalltalk classNames.

"Select classes with 'Example' in their names."
found1 := list "V7 Step 1"

select: [:nextElement |
(nextElement indexOfSubCollection: 'Example'

startingAt: 1) > 0].

"Reject classes with 'Example' in their names."
found2 := list "V7 Step 2"

reject: [:nextElement |
(nextElement indexOfSubCollection: 'Example'

startingAt: 1) > 0].

"Detect the first class beginning with 'R'."

Chapter 24 Collections

516 VisualWorks Cookbook, Rev. 2.0

found3 := list "V7 Step 3"
detect: [:nextElement | nextElement first == $R]
ifNone: [0].

^Array with: found1 with: found2 with: found3

Comparing Collections

VisualWorks Cookbook, Rev. 2.0 517

Comparing Collections

Strategy

A collection can be compared to another collection or even to a
noncollection object. The basic step shows how to test whether
a collection is equal to another collection, meaning it is the
same type of collection, has the same number of elements, and
all of the elements are equal.

The first variant shows a more stringent test, but one that is
much faster. It tests whether the two collections are the same
object. Note that two collections will fail this test even if they are
of the same type, have the same number of elements, and all of
their elements are the same. For that reason, this more strin-
gent test is rarely used with collections, but it is often used to
compare other kinds of objects.

When you want to know which elements are unique to one of
two sets or dictionaries, use the second variant.

Basic Step
➤ Send an = message to one of the collections. The argument

is the other collection. The response is true when both collec-
tions are of the same type, have the same number of
elements, and all of the elements are equal. (The example
shows that a copy is equal, but a copy with one changed
element is not equal.)

"Print it"
| list1 list2 copyIsEqual copyWithChangedElementIsEqual |
list1 := List withAll: ColorValue constantNames.
list2 := list1 copy.

copyIsEqual := list1 = list2. "Basic Step"

list2 at: 1 put: #burntOrange.
copyWithChangedElementIsEqual := list1 = list2.

^Array with: copyIsEqual with: copyWithChangedElementIsEqual.

Chapter 24 Collections

518 VisualWorks Cookbook, Rev. 2.0

Variants

V1. Comparing with the Same-Object Test
➤ Send an == message to one of the collections. The argument

is the other collection (typically, another variable, which
may be holding the same collection as the receiver). The
response is true when the argument is the same object as
the receiver. (The example shows that a copy is not the
same, nor, of course, is a copy with a changed value.)

"Print it"
| list1 list2 copyIsSame copyWithChangedElementIsSame |
list1 := List withAll: ColorValue constantNames.
list2 := list1 copy.

copyIsSame := list1 == list2. "V1 Step"

list2 at: 1 put: #burntOrange.
copyWithChangedElementIsSame := list1 == list2.

^Array with: copyIsSame with: copyWithChangedElementIsSame.

V2. Subtracting One Set from Another
➤ Send a – (minus) message to a Set or Dictionary. The argument

is another set or dictionary. A similar type of collection is
returned, containing the elements that occur in the first set
but not the second.

"Print it"
| set1 set2 |
set1 := Set withAll: ColorValue constantNames.
set2 := set1 select: [:name |

(name indexOfSubCollection: 'light' startingAt: 1) > 0].

^set1 - set2 "V2 Step"

Sorting a Collection

VisualWorks Cookbook, Rev. 2.0 519

Sorting a Collection

Strategy

A List can be asked to rearrange its elements in ascending order,
as shown in the basic step. It is assumed that the elements
respond to < and = messages, which are used to compare
elements during the sorting.

You can customize the sorting order by supplying a block
containing the test for determining whether one element comes
before another, as shown in the first variant. The block is given
two elements to compare, and is expected to answer true when
the first element should precede the second element.

Any collection can be sorted by converting it to an instance of
SortedCollection, as shown in the second variant. Again, the default
sort order is ascending, and you can supply a block to
customize the sort order.

A List or Array can be inverted by creating a copy with its elements
in reverse order, as shown in the third variant. No sorting is
implied by this operation—when the elements are unsorted to
begin with, they will remain unsorted in the reversed copy, but
their order will be inverted.

Basic Step
➤ Send a sort message to a List. Its elements are rearranged in

ascending order.

"Print it"
| list |
list := List withAll: #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').

list sort. "Basic Step"
^list

Chapter 24 Collections

520 VisualWorks Cookbook, Rev. 2.0

Variants

V1. Customizing the Sort Order
➤ Send a sortWith: message to a List. The argument is a block

containing the test for determining whether one element
precedes another. The block must declare two arguments to
contain the two elements being compared. (In the example,
the test causes the elements to be sorted in descending
order.)

"Print it"
| list |
list := List withAll: #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').

list sortWith: [:element1 :element2 | element1 > element2]. "V1 Step"
^list

V2. Sorting a nonList Collection
1. Send an asSortedCollection message to the collection. A SortedCol-

lection is returned, with the collection’s elements in
ascending order.

2. To customize the sort order, send an asSortedCollection:
message to the collection. The argument is a block that
compares two elements and answers true when the first
element is to precede the second element.

"Inspect"
| array1 sort1 array2 sort2 |

array1 := #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').
sort1 := array1 asSortedCollection. "V2 Step 1"

array2 := #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').
sort2 := array2 asSortedCollection: [:name1 :name2 | name1 > name2].

"V2 Step 2"

^Array with: sort1 with: sort2.

Sorting a Collection

VisualWorks Cookbook, Rev. 2.0 521

V3. Reversing the Elements
➤ Send a reverse message to a List or Array (or any ordered collec-

tion). A new instance of the same type of collection is
returned, with the elements in reverse order (but not explic-
itly sorted).

"Print it"
| array reversedArray |
array := #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').

reversedArray := array reverse. "V3 Step"
^reversedArray

Chapter 24 Collections

522 VisualWorks Cookbook, Rev. 2.0

Converting to a Different Type of Collection

Strategy

Any collection can be converted to a List, an Array, or a Set, as
shown in the three variants. Strictly speaking, the collection is
not converted. Instead, an instance of the desired type of collec-
tion is returned containing the original collection’s elements,
and the original collection remains unchanged.

The order of the elements is random when the original collec-
tion is a Set, Dictionary, or any other type of unordered collection.
One practical implication of this limitation is that a later
conversion of the same collection may return a collection with
the elements in a different order, which would make it unequal
to the first conversion.

When a Dictionary is converted, its keys are ignored—only its
values are contained in the new collection.

Variants

V1. Converting to a List
➤ Send an asList message to a collection. A List is returned that

contains the original collection’s elements, in the same
order when possible.

"Inspect"
| array list |
array := ColorValue constantNames.

list := array asList. "V1 Step"
^list.

V2. Converting to an Array
➤ Send an asArray message to a collection. An Array is returned

that contains the original collection’s elements, in the same
order when possible.

Converting to a Different Type of Collection

VisualWorks Cookbook, Rev. 2.0 523

"Inspect"
| dict array |
dict := Smalltalk.

array := dict asArray. "V2 Step"
^array.

V3. Converting to a Set
➤ Send an asSet message to a collection. A Set is returned that

contains the original collection’s elements, minus any
duplicates. This is a useful technique for removing dupli-
cates from a collection that normally allows duplicates.

"Inspect"
| array set |
array := #(#red #green #blue #red #yellow #blue).

set := array asSet. "V3 Step"
^set

Chapter 24 Collections

524 VisualWorks Cookbook, Rev. 2.0

Looping through the Elements (Iterating)

Strategy

Frequently an application needs to perform a set of actions for
each element in a collection. For example, a sales processing
application might want to generate a packing slip for each
element in a list of sales orders. The basic step shows how to
create a loop that repeats a series of steps for each element in
a collection.

Occasionally the elements in a collection need to be processed
in reverse order, starting with the final element and proceeding
toward the first element, as shown in the first variant.

For collections that provide an index number (List, Array) or other
lookup key (Dictionary) for accessing the elements, the second
variant shows how to loop through the keys instead of the
values, or both the keys and values. This is especially useful
with dictionaries, whose values are sometimes meaningless
without the associated keys.

Frequently the actions inside a block transform the element or
create a related object, and the new object is then added to a
separate collection. The third variant shows a shortcut for
collecting the objects that result from the processing without
having to explicitly create the separate collection and add the
objects to it.

Often two collections need to be processed in tandem. The
fourth variant shows how to pass corresponding elements from
two ordered collections into a two-argument block.

Basic Step
➤ Send a do: message to a collection. The argument is a block

that performs a series of operations on an element. The
block is repeated for each element in the collection, and it is
expected to declare one argument variable to hold the next
element to be processed.

| list color |
list := List withAll: ColorValue constantNames.

Looping through the Elements (Iterating)

VisualWorks Cookbook, Rev. 2.0 525

list sort.

list do: [:colorName | "Basic Step"
Transcript show: colorName asString; cr.
color := ColorValue perform: colorName.
Transcript

show: color red printString;
tab;
show: color green printString;
tab;
show: color blue printString;
cr; cr].

Variants

V1. Looping in Reverse Order
➤ Send a reverseDo: message to a collection. The argument is a

block that performs a series of operations on an element.
The block is repeated for each element in the collection,
starting with the last and proceeding toward the first
element. The block is expected to declare one argument
variable to hold the next element to be processed.

| list color |
list := List withAll: ColorValue constantNames.
list sort.

list reverseDo: [:colorName | "V1 Step"
Transcript show: colorName asString; cr.
color := ColorValue perform: colorName.
Transcript

show: color red printString;
tab;
show: color green printString;
tab;
show: color blue printString;
cr; cr].

Chapter 24 Collections

526 VisualWorks Cookbook, Rev. 2.0

V2. Looping through Lookup Keys
1. Send a keysDo: message to an ordered collection such as a

Dictionary, List, or Array. The argument is a block that performs
a series of operations using the lookup key for each
element. The block is expected to declare one argument
variable to hold the next key to be processed.

2. Send a keysAndValuesDo: message to an ordered collection
such as a Dictionary, List, or Array. The argument is a block that
performs a series of operations using the lookup key and
associated value for each element. The block is expected to
declare two argument variables to hold the next key-value
pair to be processed.

| dict randomGenerator gc randomX randomY colorValue |
randomGenerator := Random new.
gc := (ExamplesBrowser prepareScratchWindowOfSize: 300@400)

graphicsContext.

dict := Dictionary new.
ColorValue constantNames do: [:colorName |

colorValue := ColorValue perform: colorName.
dict at: colorName put: colorValue].

dict keysDo: [:colorName | "V2 Step 1"
randomX := randomGenerator next * 300.
randomY := randomGenerator next * 300.
colorName displayOn: gc at: (randomX @ randomY)].

dict keysAndValuesDo: [:colorName :color | "V2 Step 2"
randomX := randomGenerator next * 300.
randomY := randomGenerator next * 300.
gc paint: color.
colorName displayOn: gc at: (randomX @ randomY)].

V3. Collecting the Results of the Processing
➤ Send a collect: message to a collection. The argument is a

block that processes an element and returns an object that
is to become an element in the result collection. The block
is expected to declare one argument variable for the next
element to be processed.

Looping through the Elements (Iterating)

VisualWorks Cookbook, Rev. 2.0 527

"Inspect"
| list capitalizedName initial |
list := List withAll: ColorValue constantNames.
list sort.

list collect: [:colorName | "V3 Step"
capitalizedName := colorName asString.
initial := (capitalizedName at: 1) asUppercase.
capitalizedName at: 1 put: initial.
capitalizedName].

V4. Looping through Two Parallel Collections
➤ Send a with:do: message to a List or Array. The first argument is

another List or Array. The second argument is a block that
performs a series of operations on a pair of elements, one
from each of the two collections. The block is expected to
declare two argument variables, one for each of the
elements. (The example creates key-value pairs for a dictio-
nary, taking the keys from one array and the associated
values from a second array.)

"Inspect"
| array1 array2 dict |
array1 := #(#Leader #Member1 #Member2 #Member3).
array2 := #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').
dict := Dictionary new.

array1 with: array2 do: [:array1Element :array2Element | "V4 Step"
dict at: array1Element put: array2Element].

^dict

See Also
■ “Searching” on page 543

■ “Finding Elements” on page 511

VisualWorks Cookbook, Rev. 2.0 529

Chapter 25

Characters and Strings

Creating a Character 530
Creating a String 532
Distinguishing Types of Characters 534
Changing the Case 537
Getting a String’s Length and Width 539
Comparing 540
Searching 543
Combining Two Strings 545
Extracting a Substring 547
Removing or Replacing a Substring 549
Abbreviating a String 551
Inserting Line-End Characters 553

See Also
■ “Collections” on page 489

■ “Text and Fonts” on page 555

Chapter 25 Characters and Strings

530 VisualWorks Cookbook, Rev. 2.0

Creating a Character

Strategy

To create a character as a separate entity, rather than as part
of a string, use its literal form (basic step).

Certain characters cannot be created as keyboard literals, such
as <Delete> and <Return>. The Character class provides conve-
nience messages for creating such nondisplaying characters
(first variant).

A character can also be created from its numeric equivalent
(second variant). The numeric value is displayed in a char-
acter’s print string.

Finally, you can create a composed character (third variant). A
composed character has a base character plus a diacritical
mark.

Note: Any application that manipulates characters should be
prepared to encounter any character value from 0 through
65535.

Basic Step
➤ Precede the desired character with a dollar sign.

"Print it"
| char |
char := $C. "Basic Step"
^char

Variants

V1. Creating a Nondisplaying Character
➤ Send one of the following messages to the Character class to

create the corresponding character: backspace, cr, del, esc,
leftArrow, lf, newPage, space, tab.

"Print it"
| char |

Creating a Character

VisualWorks Cookbook, Rev. 2.0 531

char := Character cr. "V1 Step"
^char

V2. Creating a Character from a Numeric Code
➤ Send a value: message to the Character class. The argument is

the numeric Unicode representation for the character.

"Print it"
| char |
char := Character value: 67. "V2 Step"
^char

V3. Creating a Composed Character
➤ Send a composeDiacritical: message to a character. The

argument is a diacritical character, which can be obtained
by sending diacriticalNamed: to the Character class. The argument
is a symbol naming a diacritical character—see the method
comment for the list of valid names.

"Print it"
| baseChar diacrit composedChar |
baseChar := $a.
diacrit := Character diacriticalNamed: #grave.
composedChar := baseChar composeDiacritical: diacrit. "V3 Step"
^composedChar

Chapter 25 Characters and Strings

532 VisualWorks Cookbook, Rev. 2.0

Creating a String

Strategy

A string is usually created using its literal form, enclosed
between single quotes, as shown in the basic step. (Double
quotes are used to enclose a code comment in Smalltalk.) Note
that the returned object will be a platform-specific subclass of
String.

For initializing a string variable, an empty string is frequently
used, as shown in the first variant.

Although a string will grow to accommodate newly added char-
acters, it is more efficient to create a string of the appropriate
size and then change its characters. The second variant shows
how to create a string containing a specified number of charac-
ters. By default, the string is filled with null characters, but you
can specify the default character.

In parsing situations, it is sometimes necessary to convert a
single character into a one-character string. The third variant
shows how to do this.

Basic Step
➤ Enclose the desired characters in single quotes.

"Inspect"
| string |
string := 'This is a string.'. "Basic Step"
^string

Variants

V1. Creating an Empty String
➤ Send a new message to the String class. This is equivalent to

enclosing nothing between single quotes.

"Inspect"
| emptyString |

Creating a String

VisualWorks Cookbook, Rev. 2.0 533

emptyString := String new. "V1 Step"
^emptyString

V2. Creating a String of a Certain Size
1. Send a new: message to the String class. The argument is an

integer indicating how many characters are to be in the
string. Each character is a null, which you can replace with
another character as a separate operation.

2. To supply a default character, send a new:withAll: message to
the String class. The first argument is the number of charac-
ters. The second argument is the default character that is
to fill all of the string’s slots.

"Inspect"
| nullString zeroString |

nullString := String new: 10. "V2 Step 1"

zeroString := String new: 10 withAll: $0. "V2 Step 2"

^Array with: nullString with: zeroString

V3. Creating a String from a Character
➤ Send a with: message to the String class. The argument is the

character that is to be the sole element of the string.

"Print it"
| oneCharString |
oneCharString := String with: Character tab. "V3 Step"
^oneCharString

Chapter 25 Characters and Strings

534 VisualWorks Cookbook, Rev. 2.0

Distinguishing Types of Characters

Strategy

VisualWorks uses one encoding internally (Unicode) to repre-
sent characters, allowing you to translate to other character
encodings as needed (see the International User’s Guide).
Unicode supports characters from nearly all modern and clas-
sical alphabets, as well as other special characters such as
math operators and monetary symbols.

Within this extended character set, VisualWorks distinguishes
several subsets, and applications that manipulate characters
sometimes need to know whether a specific character belongs
to a particular subset. For example, a numeric application
might want to verify that a character is numeric. Characters
provide a series of testing methods that conveniently answer
the common queries regarding group membership.

Variants

V1. Testing for Letterness
1. Send an isAlphabetic message to a character. The response is

true when the character is a–z or A–Z in the English
alphabet.

2. Send an isAlphaNumeric message to a character. The response
is true when the character is in a–z, A–Z, or 0–9.

3. Send an isLetter message to a character. The response is true
when the character is in a–z, A–Z, or the set of non-English
letters.

4. Send an isVowel message to a character. The response is true
when the character is in aeiou or AEIOU, with or without
diacritical marks.

"Print it"
| char responses |
char := $a.
responses := Array new: 4.

responses

Distinguishing Types of Characters

VisualWorks Cookbook, Rev. 2.0 535

at: 1 put: char isAlphabetic; "V1 Step 1"
at: 2 put: char isAlphaNumeric; "V1 Step 2"
at: 3 put: char isLetter; "V1 Step 3"
at: 4 put: char isVowel. "V1 Step 4"

^responses

V2. Testing for Numberness
➤ Send an isDigit message to a character. The response is true

when the character is in the range 0–9.

"Print it"
| char |
char := $5.
^char isDigit "V2 Step"

V3. Testing for Case
1. Send an isLowercase message to the character. The response

is true when the character is a lowercase letter.

2. Send an isUppercase message to find out whether the char-
acter is an uppercase letter.

"Print it"
| char isLower isUpper |
char := $C.

isLower := char isLowercase. "V3 Step 1"
isUpper := char isUppercase. "V3 Step 2"

^Array with: isLower with: isUpper.

V4. Testing for White Spaceness
➤ Send an isSeparator message to the character. The response is

true when the character is a space, tab, carriage return, line
feed, form feed, or null.

"Print it"
| char |

Chapter 25 Characters and Strings

536 VisualWorks Cookbook, Rev. 2.0

char := Character cr.
^char isSeparator "V4 Step"

V5. Testing for Composedness
1. Send an isComposed message to the character. The response

is true when the character is composed of a base character
plus a diacritical mark.

2. To find out whether a character is a diacritical mark (alone),
send an isDiacritical message.

"Print it"
| char |
char := Character diacriticalNamed: #grave.
^Array

with: char isComposed "V5 Step 1"
with: char isDiacritical "V5 Step 2"

Changing the Case

VisualWorks Cookbook, Rev. 2.0 537

Changing the Case

Strategy

Applications that manipulate strings sometimes need to
convert one or more lowercase letters to uppercase, or vice
versa. You can change the case of an entire string (basic steps).
You can also change the case of a selected letter (variant)—for
example, in a loop that capitalizes the initial letter in each word
in a string.

Do not use case-changing protocol with strings whose charac-
ters are caseless (for example, Japanese Katakana characters).

Basic Steps
1. To convert a string to all lowercase letters, send an

asLowercase message to the string.

2. To convert a string to all uppercase, send an asUppercase
message.

"Print it"
| string |
string := 'North American Fertilizer Company'.

^string asUppercase "Basic Step 2"

Variant

Changing the Case of a Selected Letter
1. Send an asUppercase message to the character. An uppercase

equivalent will be returned.

2. Send an asLowercase message to get the lowercase equivalent.

"Print it"
| string prevCharIsSeparator newChar |
string := 'NORTH AMERICAN FERTILIZER COMPANY'.
prevCharIsSeparator := true.

string keysAndValuesDo: [:index :char |

Chapter 25 Characters and Strings

538 VisualWorks Cookbook, Rev. 2.0

prevCharIsSeparator
ifTrue: [newChar := char asUppercase] "Variant Step 1"
ifFalse: [newChar := char asLowercase]. "Variant Step 2"

string at: index put: newChar.
prevCharIsSeparator := char isSeparator].

^string

Some character sets contain single lowercase characters
that become multiple characters in their uppercase form. If
you are working with such a character set, your code
should handle the results of asUppercase accordingly.

Getting a String’s Length and Width

VisualWorks Cookbook, Rev. 2.0 539

Getting a String’s Length and Width

Strategy

A String is a kind of Collection. Its elements are characters.
Counting the characters in a string is accomplished by getting
the size of the collection, as shown in the first variant.

The width of a string changes depending on the font that is
used to display it. Because the font choice is controlled by the
graphics context of the display surface, that object can
compute the width of a string, in pixels, as shown in the second
variant.

Variants

V1. Counting the Characters
➤ Send a size message to the string.

"Print it"
| string |
string := '123456789'.
^string size "V1 Step"

V2. Getting the Width in Pixels
➤ Send a widthOfString: message to the graphics context of the

display surface on which the string will be displayed. The
argument is the string. The width in pixels is returned.

"Print it"
| window string width |
window := ScheduledWindow new.
string := 'Hello, world'.

width := window graphicsContext
widthOfString: string. "V2 Step"

^width

Chapter 25 Characters and Strings

540 VisualWorks Cookbook, Rev. 2.0

Comparing

Strategy

Characters and strings respond to the same comparison
messages as most objects: =, ==, <, >, and so on (basic step and
first two variants).

Characters are compared based on their numeric equivalents.
Thus, $a is greater than $A.

Strings are compared as other collections are compared. They
are equal when both are strings, both have the same number of
characters, and both have the same characters in the same
order.

Case difference makes two strings unequal but does not make
one string greater than the other. For example, 'abc' is not less
than, equal to, or greater than 'ABC'. You can treat two strings
as being equal in spite of case difference (third variant).

To find out how similar two strings are, you can either count
the number of leading characters that are the same, or you can
derive a similarity rating on a scale of 100 (fourth variant).

Basic Step
➤ Send an = or ~= (not equal) message to the object (character

or string). The argument is a similar object.

"Print it"
| char1 char2 |
char1 := $a.
char2 := $A.
^char1 = char2 "Basic Step"

Variants

V1. Comparing Identities
➤ To compare based on identity, send an == or ~~ (not iden-

tical) message to the object. The argument is a similar

Comparing

VisualWorks Cookbook, Rev. 2.0 541

object. Two different strings cannot be identical, though two
variables that refer to the same string are identical.

"Print it"
| str1 str2 str3 |
str1 := 'Excellent'.
str2 := 'Excellent'.
str3 := str1.

^Array
with: (str1 == str2) "V1 Step"
with: (str1 == str3)

V2. Comparing by Sorting Order
1. Send a < (less than) or <= (less than or equal to) message to

the object. The argument is a similar object. Remember that
case differences make two strings unequal but not less
than or greater than each other.

2. Send a > or >= message to compare for greater than.

"Print it"
| str1 str2 str3 |
str1 := 'north'.
str2 := 'North'.
str3 := 'northwest'.

^Array
with: (str1 < str2) "V2 Step 1"
with: (str1 < str3)
with: (str2 < str3)

V3. Comparing Strings While Ignoring
Case Differences
➤ Send a sameAs: message to one of the strings. The argument

is the second string.

"Print it"
| str1 str2 str3 |
str1 := 'north'.

Chapter 25 Characters and Strings

542 VisualWorks Cookbook, Rev. 2.0

str2 := 'North'.
str3 := 'northwest'.

^Array
with: (str1 sameAs: str2) "V3 Step"
with: (str1 sameAs: str3)
with: (str2 sameAs: str3)

V4. Rating the Similarity of Two Strings
1. Send a sameCharacters: message to one of the strings. The

argument is the second string. An integer is returned, indi-
cating how many of the beginning characters are the same
(including case) in the two strings.

2. Send a spellAgainst: message to one of the strings, with the
second string as argument. An integer from 1 (entirely
different) through 100 (equal) is returned.

"Print it"
| str1 str2 str3 |
str1 := 'north'.
str2 := 'North'.
str3 := 'northwest'.

^Array
with: (str1 sameCharacters: str2) "V4 Step 1"
with: (str1 sameCharacters: str3)
with: (str1 spellAgainst: str2) "V4 Step 2"
with: (str1 spellAgainst: str3)

Searching

VisualWorks Cookbook, Rev. 2.0 543

Searching

Strategy

The ability to find a specific character or substring is essential
in applications that parse strings. Often a special character or
series of characters identifies a field within a string, especially
when the string represents the contents of a structured text file.
The basic steps show how to find either a character (a less-than
character) or a substring ('Class Variables:') within the class
comment for the String class.

By default, searching is case-sensitive. The variant shows how
to ignore case during a search.

The variant also shows how to use wildcard characters during
a search. A pound sign (#) takes the place of any single char-
acter, and an asterisk (*) takes the place of zero or more char-
acters.

Basic Steps
1. To get the index of a character, send an indexOf: message to

the string. The argument is the search character. If it is not
found, zero is returned.

2. To find the starting index of a substring, send a
findString:startingAt:ifAbsent: message to the string. The first
argument is the substring to be found. The second
argument is the character position at which the search is to
begin. The third argument is a block containing actions to
be taken if the substring is not found (often an empty block,
to avoid the default error).

"Print it"
| classComment searchChar searchString index1 index2 |
classComment := String comment.
searchChar := $<.
searchString := 'Class Variables:'.

index1 := classComment indexOf: searchChar. "Basic Step 1"
index2 := classComment "Basic Step 2"

findString: searchString

Chapter 25 Characters and Strings

544 VisualWorks Cookbook, Rev. 2.0

startingAt: 1
ifAbsent: [].

^Array with: index1 with: index2

Variant

Searching While Ignoring Case Difference
➤ Send a findString:ignoreCase:useWildcards: message to the string.

The findString argument is the substring to be found. The
ignoreCase argument is true when case difference is to be
ignored. The useWildcards argument is true when the number
sign and asterisk are to be interpreted as wildcard charac-
ters rather than literal characters. Because the presence of
an asterisk wildcard affects the endpoint of the found
string, this variant returns an Interval identifying the index
range of the found string. A zero interval is returned when
the search string is not found.

"Print it"
| classComment searchString interval |
classComment := String comment.
searchString := 'Var*:'.

interval := classComment "Variant Step"
findString: searchString
startingAt: 1
ignoreCase: true
useWildcards: true.

^classComment
copyFrom: interval first
to: interval last

See Also
■ “Scanning Fields in a File (Stream)” on page 609

Combining Two Strings

VisualWorks Cookbook, Rev. 2.0 545

Combining Two Strings

Strategy

In simple situations, you can combine two strings using a
comma (basic step). For situations involving a large number of
such concatenations, it is more efficient to use a stream, as
shown in the variant. For example, when assembling a series of
strings for a report, the variant would be preferable.

For cross-cultural applications, use the string expansion
facility described in the International User’s Guide.

Basic Step
➤ Send a , (comma) message to the first string. The argument

is the second string. A new string is returned, containing
the first string followed by the second string.

"Print it"
| firstName lastName fullName space |
firstName := 'Bill'.
lastName := 'Clinton'.
space := String with: Character space.

fullName := firstName, space, lastName. "Basic Step"
^fullName

Variant

Combining Strings Using a Stream
1. Create a stream by sending an on: message to the WriteStream

class. The argument is typically an empty string, but it
could be any string, such as a preassembled report
heading.

2. Append each string in the series to the stream by sending a
nextPutAll: message to the stream, with the string as argu-
ment.

3. Get the stream contents in the form of a string by sending a
contents message to the stream.

Chapter 25 Characters and Strings

546 VisualWorks Cookbook, Rev. 2.0

"Print it"
| classNames formalList |
classNames := Smalltalk classNames.
formalList := WriteStream on: String new. "Variant Step 1"

classNames do: [:name |
formalList nextPutAll: 'Class: ';

nextPutAll: name; "Variant Step 2"
cr].

^formalList contents "Variant Step 3"

Extracting a Substring

VisualWorks Cookbook, Rev. 2.0 547

Extracting a Substring

Strategy

When a string contains two or more parts, getting the parts as
separate strings is a common requirement. For example, you
might need to extract the first and last names from a string
containing a full name. You can copy a portion of a string, using
the starting and stopping character locations (basic step).

In certain situations, the only part of a string that you need is
a prefix that ends at a specific character. You can copy the char-
acters that precede a specific endpoint character (variant).

Basic Step
➤ Send a copyFrom:to: message to the string. The first argument

is the starting index and the second argument is the ending
index of the desired substring.

"Print it"
| fullName firstName lastName spaceIndex |
fullName := 'Mahatma Gandhi'.
spaceIndex := fullName indexOf: Character space.

firstName := fullName "Basic Step"
copyFrom: 1
to: spaceIndex - 1.

lastName := fullName
copyFrom: spaceIndex + 1
to: fullName size.

^Array with: firstName with: lastName

Variant

Copying a Prefix
➤ Send a copyUpTo: message to the string. The argument is the

character that marks the end of the prefix (but is not
included in it).

Chapter 25 Characters and Strings

548 VisualWorks Cookbook, Rev. 2.0

"Print it"
| fullName firstName |
fullName := 'Boris Yeltsin'.

firstName := fullName copyUpTo: Character space. "Variant Step"
^firstName

Removing or Replacing a Substring

VisualWorks Cookbook, Rev. 2.0 549

Removing or Replacing a Substring

Strategy

A string can be quite long and complicated, representing an
entire report or the contents of a lengthy text file. In long strings
especially, replacing a portion of the string with a new
substring is frequently useful. The basic steps show how to
replace a substring based on the starting and stopping indexes.

Removing characters is accomplished by creating a copy in
which the unwanted characters have been replaced by an
empty string, as shown in the basic steps.

When a string contains multiple occurrences of a substring,
you can replace all occurrences by using the technique shown
in the variant.

Basic Steps
1. Send a copyReplaceFrom:to:with: message to the string. The first

and second arguments are the index locations of the
starting and stopping characters in the substring that is to
be replaced. The with: argument is the new substring, which
need not be the same size as the original substring.

2. To insert a substring without removing any characters in
the existing string, make the ending index less than the
starting index.

3. To remove characters, replace them with an empty string.

"Print it"
| colorNames magentaStart yellowStart |
colorNames := 'cyan magenta yellow'.
magentaStart := colorNames findString: 'magenta' startingAt: 1.

"Replace magenta with oddDarkReddishColor."
colorNames := colorNames "Basic Step 1"

copyReplaceFrom: magentaStart
to: magentaStart + 'magenta' size - 1
with: 'oddDarkReddishColor'.

"Insert newColor before oddDarkReddishColor."

Chapter 25 Characters and Strings

550 VisualWorks Cookbook, Rev. 2.0

colorNames := colorNames "Basic Step 2"
copyReplaceFrom: magentaStart
to: magentaStart - 1
with: 'newColor '.

"Remove yellow."
yellowStart := colorNames findString: 'yellow' startingAt: 1.
colorNames := colorNames "Basic Step 3"

copyReplaceFrom: yellowStart
to: yellowStart + 'yellow' size - 1
with: String new.

^colorNames

Variant

Replacing All Occurrences of a Substring
➤ Send a copyReplaceAll:with: message to the string. The first

argument is the substring that is to be replaced. The
second argument is the replacement substring.

"Print it"
| colorNames |
colorNames := String new.
ColorValue constantNames do: [:name |

colorNames := colorNames, name asString, ' '].

colorNames := colorNames "Variant Step"
copyReplaceAll: 'Gray'
with: 'Grey'.

^colorNames

Abbreviating a String

VisualWorks Cookbook, Rev. 2.0 551

Abbreviating a String

Strategy

Abbreviations are rarely as comprehensible as the full form of
a string, and automatically derived abbreviations tend to be
even less readable. In some situations, however, an abbrevia-
tion is preferable, as when a field is too short to display the full
string. For example, an extra-long filename might well extend
beyond the width of the field that is intended to display it. In
such a situation, displaying the beginning and ending of the
string is often more effective than simply truncating it. The
basic step shows how to abbreviate a string, inserting an
ellipsis (. . .) in place of the missing characters.

Another common abbreviation technique involves removing all
vowels. The variant shows how to remove all vowels except the
first letter of the string.

Basic Step
➤ Send a contractTo: message to the string. The argument is the

number of characters in the abbreviation, including three
for the ellipsis. Half of the abbreviation will be taken from
the beginning of the string and the other half from the end.

"Print it"
| string contractedString |
string := 'North American Free Trade Agreement'.

contractedString := string contractTo: 15. "Basic Step"
^contractedString

Variant

Removing All Vowels
➤ Send a dropFinalVowels message to the string. An abbreviated

string will be returned, in which only the leading vowel (if
any) remains.

Chapter 25 Characters and Strings

552 VisualWorks Cookbook, Rev. 2.0

"Print it"
| string noVowelString |
string := 'North American Free Trade Agreement'.
noVowelString := string dropFinalVowels. "Variant Step"
^noVowelString

Inserting Line-End Characters

VisualWorks Cookbook, Rev. 2.0 553

Inserting Line-End Characters

Strategy

In Smalltalk methods, certain conventions of indentation and
line wrapping make the code more readable. Sometimes a
string disrupts the readability of the code because it contains
embedded carriage returns. The basic steps show how to keep
the entire string on one line without sacrificing the embedded
returns.

Basic Steps
1. For each embedded carriage return in the string, substitute

a backslash character (\).

2. Send a withCRs message to the string to convert the back-
slashes back to carriage returns.

Dialog
request: 'This string\has 3 lines\when displayed.' withCRs

"Basic Steps 1, 2"
initialAnswer: 'No response needed'.

This technique is not recommended for cross-cultural
applications, because it interferes with text lookup in
message catalogs. Instead, use separate strings and recom-
bine them with literal line-end characters (use the string
expansion facility described in the International User’s
Guide).

VisualWorks Cookbook, Rev. 2.0 555

Chapter 26

Text and Fonts

Creating a Text Object 556
Displaying a Text Object 558
Setting the Line Length 559
Disabling Word Wrapping 560
Controlling Alignment 561
Setting Indents and Tabs 562
Counting the Characters 564
Printing a Text Object 565
Searching for Strings 566
Replacing a Range of Text 567
Comparing Text Objects 568
Copying a Range of Text 569
Changing Case 571
Applying Boldfacing and Other Emphases 572
Using the Platform’s Default Font 575
Creating a Custom Text Style 576
Changing Font Size 578
Setting Font Family or Name 582
Setting Text Color 585
Changing the Fonts Menu 587
Changing the Default Font 588
Listing Platform Fonts 589

See Also
■ “Characters and Strings” on page 529

Chapter 26 Text and Fonts

556 VisualWorks Cookbook, Rev. 2.0

Creating a Text Object

Strategy

A ComposedText is the displayable counterpart of a String. A
ComposedText consists of a string plus a set of attributes that
control the appearance of that string, such as boldness and
font. Typically, a composed text is created when you want to
customize the appearance of the text that is displayed in a
textual widget such as a text editor or a label.

The basic step shows how to convert a string into a composed
text. The default display attributes then can be changed sepa-
rately.

The composed text’s display attributes are controlled by an
instance of TextAttributes. To supply a custom TextAttributes while
creating a composed text, use the variant.

A Text is an intermediate text object between a string and a
composed text. It holds a string plus an array of emphasis
values that apply to the string. Because the emphasis values
can be interpreted only by a composed text, a Text is rarely used
in applications directly. However, it is frequently manipulated
during operations that involve applying boldness or other
emphasis values to a composed text.

Basic Step
➤ Send an asComposedText message to a string.

| string txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
string := ComposedText comment.

txt := string asComposedText. "Basic Step"

txt displayOn: gc at: 5@5.

Creating a Text Object

VisualWorks Cookbook, Rev. 2.0 557

Variant

Creating a Text with Custom Display Attributes
1. Create an instance of Text, typically by sending an asText

message to the string that is the basis for the composed
text.

2. Create a TextAttributes, or get one from the dictionary that is
held by the TextAttributes class by sending a styleNamed: message
to TextAttributes.

3. Send a withText:style: message to the ComposedText class. The
first argument is the text. The second argument is the
TextAttributes.

| txt gc textStyle |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := ComposedText comment asText. "Variant Step 1"
textStyle := TextAttributes styleNamed: #large. "Variant Step 2"

txt := ComposedText "Variant Step 3"
withText: txt
style: textStyle.

txt displayOn: gc at: 5@5.

See Also
■ “Creating a String” on page 532

Chapter 26 Text and Fonts

558 VisualWorks Cookbook, Rev. 2.0

Displaying a Text Object

Strategy

Because a ComposedText is a visual component, you can ask it to
display itself on a window or other display surface, as shown in
the basic steps. A variety of textual widgets are provided in
VisualWorks, however, so displaying a text directly on a window
is usually necessary only when you are creating a new kind of
textual widget.

Basic Steps
1. Get the graphics context from the display surface by

sending a graphicsContext message.

2. Send a displayOn: message to the composed text. The
argument is the graphics context of the display surface.

| txt gc |
txt := ComposedText comment asComposedText.
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

"Basic Step 1"
txt displayOn: gc at: 5@5. "Basic Step 2"

See Also
■ “Defining What a View Displays” on page 380

Setting the Line Length

VisualWorks Cookbook, Rev. 2.0 559

Setting the Line Length

Strategy

By default, a composed text wraps long sentences onto multiple
lines to avoid running off the right edge of the display area. The
line length is determined by the composition width of the
composed text, as shown in the basic steps.

Normally the composition width is adjusted automatically
when a composed text is installed in a text widget. The example
does not use a text widget; it simply displays the text directly
on a scratch window. Thus, this technique would be useful
mainly when you are creating the displaying method (displayOn:)
for a new text widget.

Changing the composition width has no effect when word
wrapping has been disabled in the text.

Basic Steps
1. Send a compositionWidth: message to the composed text. The

argument is the line length in pixels.

2. To get the current line length, send a compositionWidth
message.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := VisualComponent comment asComposedText.

txt compositionWidth: 380. "Basic Step 1"

txt displayOn: gc at: 5@5.

See Also
■ “Getting a String’s Length and Width” on page 539

Chapter 26 Text and Fonts

560 VisualWorks Cookbook, Rev. 2.0

Disabling Word Wrapping

Strategy

By default, a composed text wraps long sentences onto multiple
lines to avoid running off the right edge of the display area. This
word-wrapping feature can be disabled for columnar material
or other text that would be disrupted by wrapping, as shown in
the basic steps. If you turn off word wrapping, however, be sure
to provide a horizontal scroll bar on the text widget, or fix the
size of the widget to ensure that it is wide enough.

Note that VisualWorks text widgets do not consult the text
about word wrapping, because frequently a string is the “text”
of a widget and a string has no notion of wrappability. So when
you turn off word wrapping in a text that is held by a text
widget, you must turn off word wrapping in the text widget
itself.

Basic Step
➤ Send a wordWrap: message to the composed text. The

argument is false to disable wrapping and true to turn it on.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := ComposedText comment asComposedText.
txt compositionWidth: 380.

txt wordWrap: false. "Basic Step"

txt displayOn: gc at: 5@5.

Controlling Alignment

VisualWorks Cookbook, Rev. 2.0 561

Controlling Alignment

Strategy

By default, a composed text starts each new line flush against
the left margin. In some situations, it is more appropriate to
align the text flush at the right margin, or centered, or flush
with both margins. The basic steps show how to change the
alignment of a composed text.

Basic Steps
1. For flush-left text (the default), send a leftFlush message to

the composed text.

2. For flush-right text, send rightFlush.

3. For centered text, send centered.

4. For text that aligns with both left and right margins, send
justified.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := VisualComponent comment asComposedText.
txt compositionWidth: 380.

txt rightFlush. "Basic Step 2"

txt displayOn: gc at: 5@5.

See Also
■ “Aligning Text” on page 178

Chapter 26 Text and Fonts

562 VisualWorks Cookbook, Rev. 2.0

Setting Indents and Tabs

Strategy

With a composed text, you can set two indents and any number
of tab stops. All of these settings are measured in pixels.

By default, all lines in a composed text begin at the left edge of
the containing view. The first variant shows how to set one
indent that affects only the first line and another that affects all
subsequent lines of text.

You can set any number of tab stops, as shown in the second
variant. The tab settings are controlled by the TextAttributes object
that is held by the composed text. Notice that you must make
a copy of the attributes object (called a text style) because the
default text style for any composed text is a systemwide
object—changing that object affects all texts that do not already
have custom attributes, possibly with disruptive effects.

Variants

V1. Setting the First and Subsequent Indents
1. Send a firstIndent: message to the composed text. The

argument is the width in pixels of the first line’s indentation
from the left edge.

2. To set the indent for later lines, send a restIndent: message to
the composed text. The argument is the width of the inden-
tation from the left edge for all lines after the first line.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'Line 1\Line 2\Line 3\Line 4'

withCRs asComposedText.
txt compositionWidth: 380.

txt firstIndent: 50. "V1 Step 1"
txt restIndent: 100. "V1 Step 2"

txt displayOn: gc at: 5@5.

Setting Indents and Tabs

VisualWorks Cookbook, Rev. 2.0 563

V2. Setting Tab Stops
1. Get a copy of the TextAttributes from the composed text by

sending a textStyle message followed by a copy message.

2. Send a useTabs: message to the text style. The argument is an
array containing one or more tab settings. Each setting is
an integer indicating how many pixels separate that tab
stop from the restIndent setting. When each tab is an equal
distance from its predecessor, the array can contain a
single integer indicating that separation distance.

3. Install the modified text style in the composed text by
sending a textStyle: message to the text, with the style as the
argument.

| txt gc style tab |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
tab := String with: Character tab.
txt := ('Line 1\Line 2\Line 3\',

tab, '1 Tab\',
tab, tab, '2 Tabs\',
tab, tab, tab, '3 Tabs').

txt := txt withCRs asComposedText.
txt compositionWidth: 380.

txt firstIndent: 50.
txt restIndent: 100.

style := txt textStyle copy. "V2 Step 1"
style useTabs: #(15). "V2 Step 2"
txt textStyle: style. "V2 Step 3"

txt displayOn: gc at: 5@5.

Chapter 26 Text and Fonts

564 VisualWorks Cookbook, Rev. 2.0

Counting the Characters

Strategy

A ComposedText holds a Text, which in turn holds a String. Like a
String, a Text can supply its size, measured in characters. When
you need to know how many characters a ComposedText contains,
the basic steps show how to query the underlying Text.

Basic Steps
1. Get the underlying Text from the composed text by sending a

text message.

2. Send a size message to the Text.

"Print it"
| composedText plainText |
composedText := Object comment asComposedText.

plainText := composedText text. "Basic Step 1"

^plainText size "Basic Step 2"

Printing a Text Object

VisualWorks Cookbook, Rev. 2.0 565

Printing a Text Object

Strategy

A composed text can be printed on paper very simply, as shown
in the basic step. This technique assumes that you have config-
ured your system to send output to a printer. If you can
successfully print by using the hardcopy command in a System
Browser, you can also print a composed text as shown here.

Basic Step
➤ Send a hardcopy message to a composed text.

| txt |
txt := Object comment asComposedText.

txt hardcopy. "Basic Step"

See Also
■ “Printing a File” on page 607

Chapter 26 Text and Fonts

566 VisualWorks Cookbook, Rev. 2.0

Searching for Strings

Strategy

A ComposedText has a Text, which has a String. Strings support a
variety of flexible searching techniques. The basic steps show
the fullest form of the string searching message.

Basic Steps
1. Get the string from the composed text by sending a string

message to the text.

2. Send a findString:startingAt:ignoreCase:useWildcards: message to the
string. The findString argument is the substring to be found.
The startingAt argument is the index position at which the
search is to begin. The ignoreCase argument is true when case
difference is to be disregarded. The useWildcards argument is
true when the pound sign (#) and asterisk (*) are to be treated
as wildcard characters, with the pound sign taking the
place of any single character and the asterisk taking the
place of zero or more characters.

"Print it"
| composedText string |
composedText := Object comment asComposedText.

string := composedText string. "Basic Step 1"

^string "Basic Step 2"
 findString: 'Var*:'
startingAt: 1
ignoreCase: true
useWildcards: true.

See Also
■ “Searching” on page 543

Replacing a Range of Text

VisualWorks Cookbook, Rev. 2.0 567

Replacing a Range of Text

Strategy

Replacing part of a ComposedText is done very much as with a
string. Either a string or a text can be substituted for part of an
existing text. If the replacement text has boldfacing or other
emphasis values, they will be preserved.

Basic Step
➤ Send a replaceFrom:to:with: message to the composed text. The

first and second arguments are integers indicating the
range of text to be replaced. The third argument is the
replacement text, which can be either a string or a text.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'Red Green Blue' asComposedText.
txt compositionWidth: 300.

txt replaceFrom: 1 "Basic Step"
to: 3
with: 'BloodRed' asText allBold.

txt displayOn: gc at: 5@5.

See Also
■ “Removing or Replacing a Substring” on page 549

Chapter 26 Text and Fonts

568 VisualWorks Cookbook, Rev. 2.0

Comparing Text Objects

Strategy

A ComposedText can only tell whether it is the same object as
another text. In technical terms, the = comparison has the same
effect as an == comparison. In many situations, it is more useful
to test the underlying Text objects, which compare their under-
lying strings.

Basic Steps
1. To test whether two variables reference the same

ComposedText object, send an = message to one variable, with
the second variable as the argument.

2. To test whether two different instances of ComposedText have
equal Text objects and hence equal strings, get the text from
each composed text and compare using an = message.

"Print it"
| txt1 txt2 equal equivalent |
txt1 := Object comment asComposedText.
txt2 := Object comment asComposedText.

equal := txt1 = txt2. "Basic Step"
equivalent := txt1 text = txt2 text. "Basic Step"

^Array with: equal with: equivalent

See Also
■ “Comparing” on page 540

Copying a Range of Text

VisualWorks Cookbook, Rev. 2.0 569

Copying a Range of Text

Strategy

A ComposedText does not directly support copying a range of it.
The basic steps demonstrate a technique that is based on
copying a range of its underlying Text and then creating a new
composed text with that range. The text style is also transferred
to the new composed text.

The composition width and word-wrap setting are not copied in
this approach. That is rarely necessary because the width is
often set by a text view, and word wrap typically remains in the
default “on” condition. The variant shows how to preserve those
settings, just in case.

Basic Steps
1. Get the underlying Text by sending a text message to the

composed text.

2. Copy the desired range of text by sending a copyFrom:to:
message. The first argument is the beginning index and the
second argument is the ending index.

3. Convert the text to a composed text by sending an
asComposedText message.

| composedText plainText descriptionEnd copy gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
composedText := Object comment asComposedText.
composedText compositionWidth: 300.

plainText := composedText text. "Basic Step 1"
descriptionEnd := plainText

findString: 'Class Variables'
startingAt: 1.

descriptionEnd := descriptionEnd - 1.

copy := plainText copyFrom: 1 to: descriptionEnd. "Basic Step 2"
copy asComposedText displayOn: gc at: 5@15. "Basic Step 3"

Chapter 26 Text and Fonts

570 VisualWorks Cookbook, Rev. 2.0

Variant

Copying the Width and Word Wrap, Too

After doing the basic steps above:

1. Send a compositionWidth: message to the copy. The argument is
the composition width of the original composed text, which
can be obtained by sending a width message to it.

2. Send a wordWrap: message to the copy. The argument is the
word-wrap setting of the original composed text, which can
be accessed using a wordWrap message.

| composedText plainText descriptionEnd copy gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
composedText := Object comment asComposedText.
composedText compositionWidth: 300.

plainText := composedText text.
descriptionEnd := plainText

findString: 'Class Variables'
startingAt: 1.

descriptionEnd := descriptionEnd - 1.

copy := plainText copyFrom: 1 to: descriptionEnd.
copy := copy asComposedText.

copy compositionWidth: composedText width. "Variant Step 1"
copy wordWrap: composedText wordWrap. "Variant Step 2"
copy displayOn: gc at: 5@15.

Changing Case

VisualWorks Cookbook, Rev. 2.0 571

Changing Case

Strategy

The underlying Text that is held by a composed text can be
converted to uppercase or lowercase. The basic steps show how
to extract the underlying text, change its case, and insert the
modified text back into the composed text.

In the example, the “HELLO, WORLD” text retains the compo-
sition width of the shorter “Hello, World” text. As a result, the
capitalized version is displayed on two lines because it no
longer fits on a single line. You can adjust the composition
width to compensate for the increased size of the text, but
normally this is handled automatically by the text widget that
is responsible for displaying the text.

Basic Steps
1. Get the underlying Text from the composed text by sending a

text message, and then change the case by sending either an
asUppercase or asLowercase message.

2. Install the changed text by sending a text: message to the
composed text. The argument is the changed text.

| composedText capText gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
composedText := 'Hello, World' asComposedText.

capText := composedText text asUppercase. "Basic Step 1"
composedText text: capText. "Basic Step 2"

composedText displayOn: gc at: 5@5.

Chapter 26 Text and Fonts

572 VisualWorks Cookbook, Rev. 2.0

Applying Boldfacing and Other Emphases

Strategy

A Text, the underlying text in a composed text, has two parts: a
String and an array of modifiers that indicate how each character
in the string is to be displayed. Each modifier is called an
emphasis because the commonly used modifiers such as #bold
and #italic are often used to emphasize a portion of a text.

Emphasis values are implemented by a TextAttributes, also known
as a text style, which is held by a composed text. When a Text is
displayed directly, rather than with a containing ComposedText,
the system provides a default TextAttributes. The same default is
used by a composed text unless you supply an alternate. This
default set of attributes defines several standard emphases, as
shown in the basic step.

When two or more emphases apply to the same range of char-
acters, such as bold and italic, an array containing the
emphases can be used, as shown in the first variant.

When an entire text is to be given the same emphasis, you can
apply it without having to specify the range explicitly, as shown
in the second variant.

Because boldfacing an entire text is a common operation, a
convenient means of applying the #bold emphasis to a text is
available, as shown in the third variant.

Basic Step
➤ Send an emphasizeFrom:to:with: message to a Text. The first and

second arguments identify the character range to be modi-
fied. The third argument is the emphasis value. Standard
emphases are #bold, #italic, #serif, #underline, #strikeout, #large, and
#small.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'normal bold italic serif underline strikeout large small' asText.

txt emphasizeFrom: 8 to: 11 with: #bold. "Basic Step"

Applying Boldfacing and Other Emphases

VisualWorks Cookbook, Rev. 2.0 573

txt emphasizeFrom: 13 to: 18 with: #italic.
txt emphasizeFrom: 20 to: 24 with: #serif.
txt emphasizeFrom: 26 to: 34 with: #underline.
txt emphasizeFrom: 36 to: 44 with: #strikeout.
txt emphasizeFrom: 46 to: 50 with: #large.
txt emphasizeFrom: 52 to: 56 with: #small.

txt displayOn: gc at: 5@25.

Variants

V1. Applying Multiple Emphases
to the Same Characters
➤ Send an emphasizeFrom:to:with: message to a Text. The first and

second arguments identify the character range. The third
argument is an array containing the emphasis values.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'normal bold&italic large&bold&italic&underline' asText.

txt emphasizeFrom: 8 to: 18 with: #(#bold #italic). "V1 Step"
txt emphasizeFrom: 20 to: txt size with: #(#large #bold #italic #underline).

txt displayOn: gc at: 5@25.

V2. Applying Emphasis to an Entire Text
➤ Send an emphasizeAllWith: message to a Text. The argument is

the emphasis value or an array containing multiple
emphasis values.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'Hello, World' asText.

txt emphasizeAllWith: #(#bold #italic). "V2 Step"

txt displayOn: gc at: 5@25.

Chapter 26 Text and Fonts

574 VisualWorks Cookbook, Rev. 2.0

V3. Boldfacing an Entire Text
➤ Send an allBold message to a Text.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'Hello, World' asText.

txt allBold displayOn: gc at: 5@25. "V3 Step"

Using the Platform’s Default Font

VisualWorks Cookbook, Rev. 2.0 575

Using the Platform’s Default Font

Strategy

Among the built-in text styles that are available is a virtual text
style, which corresponds to the default font that is supplied by
the window manager, when applicable. When the Look Selec-
tion is set to something other than the host window manager, a
font is selected that mimics the appearance of the default font
for that look. In the fonts menu, this is the System font. Thus, a
widget that uses the System font has the best chance of looking
like other applications on any platform on which it is deployed.

The System text style can be applied to any composed text, as
shown in the basic steps.

Basic Steps
1. Get the text style nearest the platform default by sending a

styleNamed: message to the TextAttributes class, with the
argument #systemDefault.

2. Send a textStyle: message to the composed text. The
argument is the text style from step 1.

| txt gc style |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'Hello, World' asComposedText.

style := TextAttributes styleNamed: #systemDefault. "Basic Step 1"
txt textStyle: style. "Basic Step 2"

txt displayOn: gc at: 5@25.

Chapter 26 Text and Fonts

576 VisualWorks Cookbook, Rev. 2.0

Creating a Custom Text Style

Strategy

A composed text uses an instance of TextAttributes to control
various properties of its text: line spacing, alignment, indents,
tabs, and font properties. The TextAttributes in turn holds an
instance of CharacterAttributes, which defines the emphases that
are available to the text. Associated with each emphasis symbol
is a block that operates on a FontDescription. The font description
is also held by the CharacterAttributes and controls font selection by
specifying the font size, family, boldness, and so on. Thus,
creating a custom text style, although not a simple task, gives
you great flexibility in controlling font selection. The basic steps
show how to assemble a custom text style that is equipped to
provide a large (24-pixel) font.

A limitation to bear in mind is that a composed text applies the
same line spacing to its entire text, so mixing font sizes is effec-
tive within only a narrow range for each composed text.
Separate instances of ComposedText are recommended in such
situations.

Basic Steps
1. Create a new instance of CharacterAttributes by sending a

newWithDefaultAttributes message to the CharacterAttributes class.
This message initializes the CharacterAttributes with the
standard emphases such as #bold and #italic, so you don’t
have to redefine them.

2. Install an instance of FontDescription in the new CharacterAttributes
by sending a setDefaultQuery: message. The argument can be
either a new instance of FontDescription or, as in the example, a
copy of the default font description from an existing text
style’s character attributes. The advantage of copying an
existing font description is that you retain the existing
settings.

3. Customize the CharacterAttributes as desired. The example
defines a new emphasis called #title, which specifies that the
font must be 24 pixels in height.

Creating a Custom Text Style

VisualWorks Cookbook, Rev. 2.0 577

4. Create a new TextAttributes by sending a characterAttributes:
message to the TextAttributes class. The argument is the
CharacterAttributes that you customized in step 3.

5. If you intend to display unusually large or small text, as in
the example, adjust the line spacing and baseline of the text
style. The line spacing is set by sending a lineGrid: message to
the text style, with an argument at least a few pixels larger
than the largest font size. To set the baseline, which is the
distance between the top of the line and the imaginary line
on which capital letters rest, send a baseline: message to the
text style; the argument is the distance in pixels.

6. Install the custom text style by sending a textStyle: message
to the composed text. The argument is the custom
TextAttributes from step 5.

7. Apply the new emphasis to the desired portions of the
composed text’s underlying Text.

| txt gc ca ta |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := Object comment asComposedText.
txt compositionWidth: 300.

"Create and install a custom text style."
ca := CharacterAttributes newWithDefaultAttributes. "Basic Step 1"
ca setDefaultQuery: txt textStyle defaultFont. "Basic Step 2"
ca at: #title put: [:fontDesc | fontDesc pixelSize: 24]. "Basic Step 3"
ta := TextAttributes characterAttributes: ca. "Basic Step 4"
ta lineGrid: 27; baseline: 18. "Basic Step 5"
txt textStyle: ta. "Basic Step 6"

txt text emphasizeAllWith: #title. "Basic Step 7"
txt displayOn: gc at: 5@25.

See Also
■ “Changing Font Size” on page 578

■ “Setting Font Family or Name” on page 582

Chapter 26 Text and Fonts

578 VisualWorks Cookbook, Rev. 2.0

Changing Font Size

Strategy

Two of the standard text emphases, #small and #large, give you
control over the font size within a narrow range, as shown in
the basic steps.

Because fonts are supplied by the operating system, and Visu-
alWorks runs on several different operating systems, fonts are
specified flexibly by describing the desired properties. This font
description is held by a CharacterAttributes, which in turn is held by
a composed text’s text style. Font size is just one of the proper-
ties you can set by modifying the font description.

The first variant shows how to define a #title emphasis, which
modifies the pixel size in the font description for any parts of the
text that have the #title emphasis.

When mixing font sizes in the same composed text, bear in
mind that a single text can have only one setting for line
spacing. The second variant shows how to adjust the line
spacing and the baseline to suit the largest font you are using.
When this produces unsatisfactory results for smaller text, put
the smaller text in its own ComposedText, with appropriate line
spacing.

The built-in text styles (#large and #small, for example) automati-
cally adjust their pixel sizes to suit the pixel density of the
display device. This resizing feature is especially useful when
deploying your application on different types of hardware. To
incorporate it into your custom text style, use
VariableSizeTextAttributes instead of its parent class, TextAttributes, in
the following examples.

Basic Steps
1. Send an emphasizeFrom:to:with: message to the composed text’s

underlying Text. The first and second arguments define the
character range by specifying the starting and stopping
indexes. The third argument is #small or #large, depending on
whether you want the font size to be slightly smaller or
slightly larger than normal. The actual size depends on the

Changing Font Size

VisualWorks Cookbook, Rev. 2.0 579

fonts available from the operating system, and on some
platforms it may not differ at all.

2. To return to the default size, apply a nil emphasis to the
text.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'large small' asText.

txt emphasizeFrom: 1 to: 5 with: #large. "Basic Step 1"
txt emphasizeFrom: 7 to: 11 with: #small.
txt displayOn: gc at: 5@25.

txt emphasizeAllWith: nil. "Basic Step 2"
txt displayOn: gc at: 5@40.

Variants

V1. Defining an Emphasis for a Custom Size
1. Create a new instance of CharacterAttributes by sending a

newWithDefaultAttributes message to the CharacterAttributes class.

2. Install an instance of FontDescription in the new CharacterAttributes
by sending a setDefaultQuery: message. The argument can be
either a new instance of FontDescription or, as in the example, a
copy of the default font description from an existing text
style. The advantage of copying an existing font description
is that you retain the existing settings.

3. Define a new emphasis by sending an at:put: message to the
character attributes. The first argument is the name of the
emphasis (#title). The second argument is a block that sends
a pixelSize: message to the block argument, with the desired
size of the font (in pixels, not in points).

4. Create a new TextAttributes by sending a characterAttributes:
message to the TextAttributes class. The argument is the
CharacterAttributes that you customized in step 3.

5. Install the custom text style in the composed text by
sending a textStyle: message to the composed text. The
argument is the custom TextAttributes from step 4.

Chapter 26 Text and Fonts

580 VisualWorks Cookbook, Rev. 2.0

6. Apply the new emphasis to the desired portions of the
composed text’s underlying Text.

| txt gc ca ta |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := Object comment asComposedText.
txt compositionWidth: 300.

"Create and install a custom text style."
ca := CharacterAttributes newWithDefaultAttributes. "V1 Step 1"
ca setDefaultQuery: txt textStyle defaultFont. "V1 Step 2"
ca at: #title put: [:fontDesc | fontDesc pixelSize: 24]. "V1 Step 3"
ta := TextAttributes characterAttributes: ca. "V1 Step 4"
txt textStyle: ta. "V1 Step 5"

txt text emphasizeFrom: 1 to: 6 with: #title. "V1 Step 6"
txt displayOn: gc at: 5@25.

V2. Adjusting the Line Spacing and Baseline
➤ Send a gridForFont:withLead: message to the TextAttributes that is

held by the composed text. The first argument is the name
of the text emphasis (#title). The second argument is the
leading, which is the vertical space to be left between one
line and the next—typically zero to two pixels. This adjusts
both the line spacing and the baseline to suit the font’s size.

| txt gc ca ta |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := Object comment asComposedText.

"Create and install a custom text style."
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: txt textStyle defaultFont.
ca at: #title put: [:fontDesc | fontDesc pixelSize: 24].
ta := TextAttributes characterAttributes: ca.
ta gridForFont: #title "V2 Step"

withLead: 2.
txt textStyle: ta.

txt text emphasizeAllWith: #title.

Changing Font Size

VisualWorks Cookbook, Rev. 2.0 581

txt compositionWidth: 300.
txt displayOn: gc at: 5@25.

See Also
■ “Creating a Custom Text Style” on page 576

Chapter 26 Text and Fonts

582 VisualWorks Cookbook, Rev. 2.0

Setting Font Family or Name

Strategy

The default font is Helvetica, Arial, or a similar font, depending
on the operating system. Two of the built-in text emphases give
you some control over the choice of font family: #serif (for a serif
font such as Times) and #fixedWidth (for a font whose letters all
occupy the same horizontal space, such as Courier). The basic
steps show how to apply one of these emphases.

When you want to be more specific about the font family, you
can create a custom emphasis to do so. That emphasis can
then be applied to all or part of a text, as shown in the variant.

The most specific technique is to provide the name string that
the operating system uses to identify a particular font. This
approach is useful when, for example, you want to examine the
operating system’s fonts.

Because some operating systems may not supply the font
family or name that you specify, it’s a good idea to specify alter-
natives. You can also specify a wildcard pattern for any of the
three attributes, such as helv* to indicate that a partial match is
acceptable. You can also use the #serif and #fixedWidth emphases
to guide the selection of an alternative—the family attribute
supersedes those settings, and the name attribute supersedes
the family.

Basic Steps
1. Create a new FontDescription and send a family: message to it.

The argument is an array containing one or more strings.
Each string names a font family or a wildcard pattern for
partial matching. A string containing an asterisk is
frequently used as the final element in the array to indicate
that any alternate is preferable to a “font not found” error.

2. Create a CharacterAttributes by sending a newWithDefaultAttributes
message to the class.

3. Install the custom font description by sending a
setDefaultQuery: message to the character attributes. The
argument is the font description from step 2.

Setting Font Family or Name

VisualWorks Cookbook, Rev. 2.0 583

4. Create a text style by sending a characterAttributes: message to
the TextAttributes class. The argument is the character
attributes from step 3.

5. Adjust the line spacing to suit the font by sending a
gridForFont:withLead: message to the text style. The first
argument is nil in this case. The second argument is the
amount of leading (space) between lines of text (typically
zero to two pixels).

6. Install the text style in the composed text by sending a
textStyle: message to the composed text. The argument is the
text style from step 5.

| txt gc ca ta fd |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := Object comment asComposedText.

"Create and install a custom text style."
fd := FontDescription new

family: #('bookman' 'times*' '*'); "Basic Step 1"
serif: true;
fixedWidth: false;
pixelSize: 14.

ca := CharacterAttributes newWithDefaultAttributes. "Basic Step 2"
ca setDefaultQuery: fd. "Basic Step 3"
ta := TextAttributes characterAttributes: ca. "Basic Step 4"
ta gridForFont: nil "Basic Step 5"

withLead: 2.
txt textStyle: ta. "Basic Step 6"

txt compositionWidth: 300.
txt displayOn: gc at: 5@25.

Variant

Setting the Font Name
➤ Create a new FontDescription and send a name: message to it.

The argument is a string that names a font family or a
wildcard pattern for partial matching. (The example takes
the list of available fonts from the operating system and
uses the first one.)

Chapter 26 Text and Fonts

584 VisualWorks Cookbook, Rev. 2.0

| txt gc ca ta fd |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := Object comment asComposedText.

"Create and install a custom text style."
fd := FontDescription new

name: (Screen default listFontNames at: 1). "Variant Step"
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: fd.
ta := TextAttributes characterAttributes: ca.
ta gridForFont: nil

withLead: 2.
txt textStyle: ta.

txt compositionWidth: 300.
txt displayOn: gc at: 5@25.

See Also
■ “Creating a Custom Text Style” on page 576

Setting Text Color

VisualWorks Cookbook, Rev. 2.0 585

Setting Text Color

Strategy

The default text style that supports standard emphasis values
for text objects also supports color and patterns. Unlike
emphases such as #bold and #italic, a color emphasis requires an
argument (the specific color desired). The #color emphasis is
paired with its argument by making an association out of them,
as shown in the basic step.

Patterned text is assembled in the same way by providing a
Pattern as the color argument, as shown in the variant.

Basic Step
➤ Send an emphasizeFrom:to:with: message to the underlying Text of

a composed text. The first and second arguments identify
the range of characters to be affected. The third argument
is an association, which is created by sending a -> message
to the lookup key (#color), with the desired color as the argu-
ment.

| txt gc boldBlue |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'BLACK RED GRAY BOLDBLUE' asText.

txt emphasizeFrom: 7 to: 9 with: #color -> ColorValue red. "Basic Step"
txt emphasizeFrom: 11 to: 14 with: #color -> ColorValue gray.

boldBlue := Array with: #bold with: #color -> ColorValue blue.
txt emphasizeFrom: 16 to: 23 with: boldBlue.

txt displayOn: gc at: 5@25.

Variant

Patterned Text
1. Create the Pattern. One way to do so, as shown in the

example, is to create a Pixmap, display the graphic elements

Chapter 26 Text and Fonts

586 VisualWorks Cookbook, Rev. 2.0

that make up a tile in the pattern, and then convert the
Pixmap to a Pattern by sending an asPattern message to it.

2. Send an emphasizeAllWith: message to the underlying Text of the
composed text, or a more selective emphasizeFrom:to:with:
message. The with argument is an association between the
lookup key (#color) and the pattern. (In the example, a large
font is used, so the pattern will be more visible.)

| txt gc fd ca ta dotTile dotPattern |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := Object comment asComposedText.

"Create a 48-pixel font description."
fd := FontDescription new

pixelSize: 48.
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: fd.
ta := TextAttributes characterAttributes: ca.
ta gridForFont: fd withLead: 2.
txt textStyle: ta.

"Create a dotted pattern."
dotTile := Pixmap extent: 6@6. "Variant Step 1"
dotTile graphicsContext

displayDotOfDiameter: 5 at: 3@3.
dotPattern := dotTile asPattern.

txt text emphasizeAllWith: #color->dotPattern. "Variant Step 2"

txt compositionWidth: 300.
txt displayOn: gc at: 5@25.

See Also
■ “Creating a Color” on page 686

Changing the Fonts Menu

VisualWorks Cookbook, Rev. 2.0 587

Changing the Fonts Menu

Strategy

Each of the textual widgets, such as label and field, provides a
menu of fonts in its property sheet. You can expand the menu
to include a custom font, as shown in the basic steps. The tech-
nique involves adding a new TextAttributes to the system’s dictio-
nary of text styles.

Removing a text style from the system’s dictionary can be trou-
blesome when existing widgets specify that font. For that
reason, no supported mechanism for removing a font exists.
The best you can do is to replace the text style that is associated
with a particular name, in the same way that you added the
original text style. For this reason, we recommend that you
expand the fonts menu with caution.

Basic Steps
1. Create the desired text style. In the example, a 24-pixel font

is created.

2. Install the text style in the system’s dictionary of styles by
sending a styleNamed:put: message to the TextAttributes class. The
first argument is a lookup name, specified as a Symbol—a
capitalized version of the name will appear in the fonts
menu. The second argument is the custom text style.

| fd ca ta |
fd := FontDescription new

pixelSize: 24.
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: fd.
ta := TextAttributes characterAttributes: ca. "Basic Step 1"
ta gridForFont: fd withLead: 2.

TextAttributes styleNamed: #title put: ta. "Basic Step 2"

Chapter 26 Text and Fonts

588 VisualWorks Cookbook, Rev. 2.0

Changing the Default Font

Strategy

The default font that is used by VisualWorks tools to display
textual information can be changed as shown in the basic
steps. Widgets in which the Default font has been selected, both
in system tools and in your applications, will also be affected.
Because many of the widgets use the System font by default, they
will not be affected unless you change their font property to
Default.

Basic Steps
1. Send a setDefaultTo: message to the TextAttributes class. The

argument is the Symbol that names the desired text style.
The text style must have been defined and installed in the
fonts menu previously.

2. Refresh the windows that are already open by sending a
resetViews message to the TextAttributes class. When they are
redisplayed, they will use the new default.

TextAttributes setDefaultTo: #default. "Basic Step 1"
TextAttributes resetViews. "Basic Step 2"

Listing Platform Fonts

VisualWorks Cookbook, Rev. 2.0 589

Listing Platform Fonts

Strategy

In VisualWorks, fonts are usually described in general terms
that allow the system to choose a matching font from those
provided by the operating system. This approach enables you
to move an application to a different operating system, possibly
with a different set of fonts, without having to adjust fonts
manually. When you are developing an application for a single
platform, however, specifying a platform-specific font directly
gives you the greatest control over font selection. The basic
steps show how to obtain a list of the platform’s font names in
the form of encoded strings. The font name can be used to set
the font for a text style.

Basic Steps

Online example: Font2Example

1. Get the default Screen by sending a default message to that
class.

2. Get the list of platform font names by sending a
listPlatformFonts message to the default screen.

initialize
platformFonts := SelectionInList

with: Screen default listFontNames. "Basic Steps 1, 2"

platformFonts selectionIndexHolder onChangeSend: #changedFont to: self.

VisualWorks Cookbook, Rev. 2.0 591

Chapter 27

Text Files

Creating a File or Directory 592
Getting Information about a File 594
Getting File or Directory Contents 597
Storing Text in a File 598
Opening an Editor on a File 601
Deleting a File or Directory 602
Copying or Moving a File 603
Comparing Two Files or Directories 605
Printing a File 607
Scanning Fields in a File (Stream) 609
Setting File Permissions 611

See Also
■ “Requesting a Filename” on page 286

■ “Characters and Strings” on page 529

■ “Object Files (BOSS)” on page 613

Chapter 27 Text Files

592 VisualWorks Cookbook, Rev. 2.0

Creating a File or Directory

Strategy

The File List and File Editor provide convenient ways of creating
files and directories interactively. This chapter describes the
programmatic means of doing so.

The Filename class supports operations involving disk files and
directories. Although Filename is an abstract class—the real
work is done by its platform-specific subclasses—it directs the
creation message to the appropriate subclass. This enables you
to keep your file-creating code general enough to run on any of
the supported platforms. A Filename can represent either a direc-
tory or a file (basic step).

When the disk file does not already exist, it is created when the
first character is written to it. A directory must be explicitly
created (first variant).

The technique shown in the basic step works well for creating
a file in the working directory. You can also use that approach
with a full pathname that includes directory separators, but the
separator character differs across platforms, so you would be
compromising the portability of your application. You can
preserve portability (second variant) by using a technique that
never mentions the separator character explicitly but instead
supplies it through the platform-specific subclass of Filename.

Basic Step
➤ Send an asFilename message to the string identifying the

desired file or directory. The disk file or directory is not
affected by the mere creation of a Filename object. Because no
explicit link exists to the disk file or directory, you need not
do anything explicit to release the external resource when
you are finished with it.

"Inspect"
| name filename |
name := 'test.tmp'.

Creating a File or Directory

VisualWorks Cookbook, Rev. 2.0 593

filename := name asFilename. "Basic Step"
^filename

Variants

V1. Creating a New Disk Directory
➤ Send a makeDirectory message to the Filename representing the

desired directory. If the disk directory already exists, an
error results.

"Print it"
| directory |
directory := 'test' asFilename.
directory makeDirectory. "V1 Step"
^directory exists

V2. Constructing a Filename in a Portable Way
➤ Send a construct: message to the Filename representing the

parent directory. When a pathname is to represent a hier-
archy of nested parent directories, use a series of such
construct: messages.

| unixDir portableDir |
unixDir := 'visual/utils' asFilename.

portableDir := 'visual' asFilename "V2 Step"
construct: 'utils'.

unixDir inspect.
portableDir inspect.

Chapter 27 Text Files

594 VisualWorks Cookbook, Rev. 2.0

Getting Information about a File

Basic Step

Finding Out Whether a File or Directory Exists
➤ Send an exists message to the Filename. If the disk file or direc-

tory exists, true is returned.

"Print it"
| unlikelyFile |
unlikelyFile := 'qqqqzzzz' asFilename.
^unlikelyFile exists "Basic Step"

Variants

V1. Counting the Characters in a File
➤ Send a fileSize message to the Filename. If the file exists, the

number of characters it contains is returned. If the file does
not exist, an error results. If the Filename represents a disk
directory rather than a disk file, zero is returned.

"Print it"
| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

^newFile fileSize. "V1 Step"

V2. Getting the Working Directory
➤ Send a defaultDirectory message to the Filename class. A Filename

representing the working directory is returned.

"Inspect"
| workingDir |

Getting Information about a File

VisualWorks Cookbook, Rev. 2.0 595

workingDir := Filename defaultDirectory. "V2 Step"
^workingDir

V3. Getting the Parent Directory
➤ Send a directory message to the Filename. A Filename repre-

senting the parent directory is returned.

"Print it"
| dir parentDir |
dir := Filename defaultDirectory.

parentDir := dir directory. "V3 Step"
^parentDir

V4. Getting the Parts of a Pathname
1. To get the entire pathname as a string, send an asString

message to the Filename.

2. To get the directory part of a pathname, send a head
message to the Filename. A string containing the directory’s
pathname is returned.

3. To get the file part of the pathname, send a tail message. A
string containing the file’s name is returned.

"Print it"
| filename pathString dirString fileString |
filename := Filename defaultDirectory.

pathString := filename asString. "V4 Step 1"
dirString := filename head. "V4 Step 2"
fileString := filename tail. "V4 Step 3"

^'
PATH: ', pathString, '
DIRECTORY: ', dirString, '
FILE: ', fileString

Chapter 27 Text Files

596 VisualWorks Cookbook, Rev. 2.0

V5. Distinguishing a File from a Directory
➤ Send an isDirectory message to the Filename. If the Filename

represents a disk directory, true is returned. If it represents
a disk file, false is returned. If neither a file nor a directory
with a matching name exists, an error results.

"Print it"
| dir |
dir := Filename defaultDirectory.
^dir isDirectory "V5 Step"

V6. Getting the Access and Modification Times
1. Get a dictionary containing dates and times associated with

a file or directory by sending a dates message to the Filename.

2. Get the desired date-time pair by sending an at: message to
the dictionary. The argument is #accessed for the time at
which the file’s contents were most recently accessed. The
argument is #modified for the time of the most recent modifi-
cation to the file’s contents. The argument is #statusChanged
for the time of the most recent change in external attributes
of the file, such as ownership and permissions.

If the operating system does not support the requested type
of information, nil is returned; otherwise, an array
containing a date and a time is returned.

"Print it"
| newFile stream datesDict modifyDates modifyDate modifyTime |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
datesDict := newFile dates. "V6 Step 1"
modifyDates := datesDict at: #modified. "V6 Step 2"
modifyDates isNil

ifFalse: [
modifyDate := modifyDates first.
modifyTime := modifyDates last].

^'
MODIFIED: ', modifyDate printString, ' at ', modifyTime printString

Getting File or Directory Contents

VisualWorks Cookbook, Rev. 2.0 597

Getting File or Directory Contents

Strategy

The contents of a disk file can be accessed in the form of a
string, as shown in the first variant. The second variant shows
how to obtain the contents of a directory in the form of an array
of strings naming files and subdirectories.

Variants

V1. Getting the Contents of a File
➤ Send a contentsOfEntireFile message to a Filename representing a

disk file. A string is returned.

"Inspect"
| newFile stream contents |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

contents := newFile contentsOfEntireFile. "V1 Step"
^contents

V2. Getting the Contents of a Directory
➤ Send a directoryContents message to a Filename representing a

disk directory. An array of file and subdirectory names is
returned.

"Inspect"
| workingDir contents |
workingDir := Filename defaultDirectory.

contents := workingDir directoryContents. "V2 Step"
^contents

Chapter 27 Text Files

598 VisualWorks Cookbook, Rev. 2.0

Storing Text in a File

Strategy

Putting a string into a disk file involves using a stream to funnel
the characters to the file, as shown in the basic steps.

The stream that is used in the basic steps causes any existing
contents in the file to be erased. The first variant shows how to
append a string to the existing contents, if any.

A stream holds onto an external resource, which must be
released. The second variant shows a technique for assuring
that the stream is closed gracefully under any conditions short
of a system failure.

When your intention is to create a new disk file, it’s a good idea
to test the Filename to make sure a file with the same name does
not already exist. When your application will be deployed on a
UNIX system, it’s also advisable to make sure the user has the
appropriate file permissions, as shown in the second variant.

Basic Steps
1. Create a Filename by sending an asFilename message to a string

containing the pathname.

2. Create a stream for writing characters onto the file by
sending a writeStream message to the Filename.

3. Send the string’s characters to the file by sending a nextPutAll:
message to the stream. The argument is the string. This
operation can be repeated for a series of strings.

4. Close the stream by sending a close message to it.

"Inspect"
| newFile stream |
newFile := 'testFile' asFilename. "Basic Step 1"
stream := newFile writeStream. "Basic Step 2"
stream nextPutAll: Object comment. "Basic Step 3"
stream close. "Basic Step 4"

^newFile contentsOfEntireFile

Storing Text in a File

VisualWorks Cookbook, Rev. 2.0 599

Variants

V1. Appending Text to a File
➤ When creating the stream, send an appendStream message to

the Filename.

"Print it"
| filename stream |
filename := 'testFile' asFilename.

"Creating the file."
stream := filename writeStream.
stream nextPutAll: 'FIRST STRING'.
stream close.

"Appending"
stream := filename appendStream. "V1 Step"
stream nextPutAll: ' -- SECOND STRING'.
stream close.

^filename contentsOfEntireFile

V2. Storing Text with Safeguards
1. After creating the Filename, test whether a disk file or direc-

tory with a matching name already exists by sending an
exists message to it.

2. If the Filename already exists, test whether it is a directory by
sending an isDirectory message to it.

3. If the Filename represents a directory, warn the user and
cancel the operation.

4. If the Filename represents a file, warn the user that the
existing contents of the file will be overwritten (this is not
always necessary).

5. Test whether the user has permission to write onto the file
(especially when your application will be deployed on UNIX
systems) by sending a canBeWritten message to the Filename.

6. If the user does not have write permission on the file, warn
the user and cancel the operation.

Chapter 27 Text Files

600 VisualWorks Cookbook, Rev. 2.0

7. To assure that the stream is closed and the external
resource is released, even if an abnormal interruption
occurs, enclose the stream-writing operation in a block and
send a valueNowOrOnUnwindDo: message to it; the argument is
another block containing the stream close expression.

"Inspect"
| filename stream response |
filename := 'testFile' asFilename.

filename exists "V2 Step 1"
ifTrue: [filename isDirectory "V2 Step 2"

ifTrue: [
Dialog warn: 'The file is a directory'. "V2 Step 3"
^self]

ifFalse: [
response := Dialog "V2 Step 4"

confirm: 'All right to overwrite the existing file?'
initialAnswer: false.

response ifFalse: [^self]]].

filename canBeWritten "V2 Step 5"
ifFalse: [

Dialog warn: 'You do not have the necessary permissions'. "V2 Step 6"
^self].

stream := filename writeStream.
[stream nextPutAll: Object comment]

valueNowOrOnUnwindDo: [stream close]. "V2 Step 7"

^filename contentsOfEntireFile

Opening an Editor on a File

VisualWorks Cookbook, Rev. 2.0 601

Opening an Editor on a File

Strategy

The main VisualWorks window provides a convenient means of
opening a File Editor. The basic step shows how to open an
editor programmatically. The editor gives the user of your appli-
cation the ability to alter the contents of the file. For read-only
access to the file, create a canvas containing a read-only text
editor or a text editor with a limited menu.

Basic Step
➤ Send an edit message to the Filename. If the Filename represents

a disk directory, an error results. If the Filename represents a
nonexistent file, an editor is opened with which the user
can create the contents of the file.

| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

newFile edit. "Basic Step"

Chapter 27 Text Files

602 VisualWorks Cookbook, Rev. 2.0

Deleting a File or Directory

Strategy

The File List enables you to delete a file interactively. The basic
steps show how to do so programmatically (in the example, the
target file is first created).

On operating systems such as UNIX that support multiple
pathnames for the same physical disk file or directory, deleting
as shown here removes the reference that is identified by the
pathname, but it does not delete the physical file or directory if
another reference exists.

Basic Steps
1. If necessary, confirm that the disk file or directory to be

deleted exists by sending an exists message to the Filename.

2. Send a delete message to the Filename.

"Print it"
| newFile stream pretest posttest |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
pretest := newFile exists. "Basic Step 1"

newFile delete. "Basic Step 2"
posttest := newFile exists.

^'
EXISTS BEFORE DELETION: ', pretest printString, '
EXISTS AFTER DELETION: ', posttest printString.

Copying or Moving a File

VisualWorks Cookbook, Rev. 2.0 603

Copying or Moving a File

Strategy

The basic step shows how to make a copy of a disk file, giving
the copy a new name.

The first variant shows how to move a disk file, which has the
same effect as making a copy and then deleting the original file.

The second variant shows how to rename a file. On operating
systems that support this, such as UNIX, renaming a file is
more efficient than moving it.

Basic Step

Copying a File
➤ Send a copyTo: message to the Filename. The argument is a

string containing the pathname of the copy. If the Filename
represents a directory or a nonexistent disk file, an error
results.

"Print it"
| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

newFile copyTo: 'testFile.tmp'. "Basic Step"

^'testFile.tmp' asFilename exists.

Variants

V1. Moving a File
➤ Send a moveTo: message to the Filename. The argument is a

string containing the new pathname, which can include a
different directory. If the Filename represents a directory or a
nonexistent disk file, an error results.

Chapter 27 Text Files

604 VisualWorks Cookbook, Rev. 2.0

"Print it"
| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

newFile moveTo: 'testFile.tmp'. "V1 Step"

^'testFile.tmp' asFilename exists.

V2. Renaming a File
➤ Send a renameTo: message to the Filename. The argument is a

string containing the new pathname, which can include a
different directory. If the Filename represents a directory or a
nonexistent disk file, an error results.

"Print it"
| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

newFile renameTo: 'testFile2.tmp'. "V2 Step"

^'testFile2.tmp' asFilename exists.

Comparing Two Files or Directories

VisualWorks Cookbook, Rev. 2.0 605

Comparing Two Files or Directories

Strategy

When comparing two files or directories, it is important to
remember the distinction between a Filename and the disk object
that it represents. Two Filenames are equal when they have the
same pathname and not equal when their pathnames differ.
When you want to know whether the contents of two disk files
or two directories are the same, you must explicitly compare
the contents. The basic steps show both types of comparison for
files, and the first variant does the same for directories.

Basic Steps

Comparing Two Filenames or Two Files
1. To compare two filenames, send an = message to one File-

name. The argument is the second Filename. If they have the
same pathname (that is, they point to the same physical
disk file), true is returned.

2. To compare the contents of two disk files, get the contents
of each file by sending contentsOfEntireFile messages to the
Filenames. Then send an = message to one of the resulting
strings, with the other string as the argument.

"Print it"
| file1 file2 stream pathsAreEqual contentsAreEqual |
file1 := 'fileOne' asFilename.
file2 := 'fileTwo' asFilename.
stream := file1 writeStream.
stream nextPutAll: Object comment.
stream close.
file1 copyTo: file2 asString.

pathsAreEqual := (
file1 = file2). "Basic Step 1"

contentsAreEqual := (
file1 contentsOfEntireFile = file2 contentsOfEntireFile). "Basic Step 2"

^'

Chapter 27 Text Files

606 VisualWorks Cookbook, Rev. 2.0

PATHS ARE EQUAL: ', pathsAreEqual printString, '
CONTENTS ARE EQUAL: ', contentsAreEqual printString.

Variant

Comparing Two Filenames or Two Directories
1. To compare two Filenames, send an = message to one Filename.

The argument is the second Filename. If they have the same
pathname (that is, they point to the same physical disk
directory), true is returned.

2. To compare the contents of two disk directories, get the
contents of each directory by sending directoryContents
messages to the Filenames. Then send an = message to one of
the resulting arrays, with the other array as the argument.

"Print it"
| dir1 dir2 pathsAreEqual contentsAreEqual |
dir1 := Filename defaultDirectory.
dir2 := dir1 directory.

pathsAreEqual := (
dir1 = dir2). "Variant Step 1"

contentsAreEqual := (
dir1 directoryContents = dir2 directoryContents). "Variant Step 2"

^'
PATHS ARE EQUAL: ', pathsAreEqual printString, '
CONTENTS ARE EQUAL: ', contentsAreEqual printString.

Printing a File

VisualWorks Cookbook, Rev. 2.0 607

Printing a File

Strategy

Some operating systems support printing a text file directly,
and others require that it first be converted to PostScript or
another printer-specific format. The basic steps show a tech-
nique for printing a file that works regardless of the operating
system. This approach involves converting the file contents to a
composed text, so it has the added benefit of providing margins
and line wrapping.

The technique of converting the contents of the file to a
ComposedText takes extra time and memory (especially for large
files). The variant shows how to print a text file directly. If you
try this on an operating system that does not support this, an
error will result.

Basic Steps
1. Get the contents of the file by sending a contentsOfEntireFile

message to the Filename. Convert the resulting string to a
ComposedText by sending an asComposedText message to it.

2. Print the composed text by sending a hardcopy message to it.

| newFile stream contents composedText |
newFile := 'testFile' asFilename printTextFile.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

contents := newFile contentsOfEntireFile. "Basic Step 1"
composedText := contents asComposedText.
composedText hardcopy. "Basic Step 2"

Variant

Printing a File Directly
➤ Send a printTextFile message to the Filename. If text file printing

is not supported by the operating system, an error results.

Chapter 27 Text Files

608 VisualWorks Cookbook, Rev. 2.0

| newFile stream |
newFile := 'testFile' asFilename printTextFile.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

newFile printTextFile "Variant Step"

Scanning Fields in a File (Stream)

VisualWorks Cookbook, Rev. 2.0 609

Scanning Fields in a File (Stream)

Strategy

A stream is a device for finding an element in a collection,
scanning a certain number of elements from that position, and
so on. In the case of a text file, each element is a character in
the file. Thus, by using a special character such as a comma or
a colon to separate fields of textual data, you can use a text file
as a crude form of database. More to the point, you can use a
stream to read the fields in a textual data file that has been
created by another application.

The first variant shows how to create and edit a data file that
contains comma-delimited fields. The second variant shows
how to read such a data file back in.

Variants

V1. Writing Fields to a Data File
1. Create a write stream on the file by sending a writeStream

message to the Filename.

2. Create a block in which, for each field of data, a nextPutAll:
message is sent to the stream with the data string as argu-
ment, followed by a nextPut: message with the separator
character as argument.

3. Send a valueNowOrOnUnwindDo: message to the data-writing
block. The argument is another block that closes the
stream by sending a close message to it.

4. To confirm the operation, open an editor on the data file.

| dataFile stream separator writingBlock |
dataFile := 'dataFile' asFilename.
separator := $,."comma"

stream := dataFile writeStream. "V1 Step 1"
writingBlock := [

ColorValue constantNames do: [:color |
stream nextPutAll: color. "V1 Step 2"
stream nextPut: separator]].

Chapter 27 Text Files

610 VisualWorks Cookbook, Rev. 2.0

writingBlock valueNowOrOnUnwindDo: [stream close]. "V1 Step 3"

dataFile edit. "V1 Step 4"

V2. Reading Fields in a Data File
1. Create a read stream on the file by sending a readStream

message to the Filename.

2. Create a block in which the next field of data is fetched by
sending an upTo: message to the stream, with the separator
character as the argument. This is repeated by placing it
within an inner block that is repeated until the end of the
stream is encountered.

3. Send a valueNowOrOnUnwindDo: message to the data-reading
block. The argument is another block that closes the
stream by sending a close message to it.

"Inspect"
| dataFile stream separator writingBlock colorNames readingBlock |
dataFile := 'dataFile' asFilename.
separator := $,."comma"

"Write data"
stream := dataFile writeStream.
writingBlock := [

ColorValue constantNames do: [:color |
stream nextPutAll: color.
stream nextPut: separator]].

writingBlock valueNowOrOnUnwindDo: [stream close].

"Read data"
stream := dataFile readStream. "V2 Step 1"
colorNames := OrderedCollection new.
readingBlock := [

[stream atEnd] whileFalse: [
colorNames add: (stream upTo: separator)]]. "V2 Step 2"

readingBlock valueNowOrOnUnwindDo: [stream close]. "V2 Step 3"

^colorNames

Setting File Permissions

VisualWorks Cookbook, Rev. 2.0 611

Setting File Permissions

Strategy

On operating systems such as UNIX that support file and direc-
tory permissions, the permission to change a file can be added
or removed as shown in the basic steps. The most general
permission is affected—when possible, the permission change
applies to everyone else in addition to the current user. The
basic steps also show how to ask a Filename whether the associ-
ated disk file or directory can be written to, which is a portable
operation that can be used on any operating system.

Basic Steps
1. To remove the permission to change the contents of a file or

directory, send a makeUnwritable message to the Filename.

2. To restore the writing permission, send a makeWritable
message.

3. To find out whether the writing permission is enabled, send
a canBeWritten message. If the file or directory does not exist, a
response of true indicates that the parent directory is writ-
able. The canBeWritten test works on all operating systems.

"Print it"
| newFile stream removed restored |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

newFile makeUnwritable. "Basic Step 1"
removed := newFile canBeWritten.

newFile makeWritable. "Basic Step 2"
restored := newFile canBeWritten. "Basic Step 3"

^'
PERMISSION REMOVED: ', removed printString, '
PERMISSION RESTORED: ', restored printString.

VisualWorks Cookbook, Rev. 2.0 613

Chapter 28

Object Files (BOSS)

Storing Objects in a BOSS File 614
Getting Objects from a BOSS File 617
Storing and Getting a Class 621
Converting Data After Changing a Class 624
Customizing the Storage Representation 626

See Also
■ “Text Files” on page 591

Chapter 28 Object Files (BOSS)

614 VisualWorks Cookbook, Rev. 2.0

Storing Objects in a BOSS File

Strategy

When you need to store an object’s data, connecting to a
database is the usual solution. When a database is not avail-
able, you can use the Binary Object Streaming Service (BOSS)
to store one or more objects in a file. Each object is stored in a
compact, encoded format, along with any objects that it holds.
The basic steps show how to store a single instance of
PointExample in a file.

When you need to store a collection of objects, you can either
store the collection as a unit or store each of its elements indi-
vidually, as shown in the first variant. Storing the elements
individually enables you to stop reading in the file after the
desired element is found, which is useful in applications
involving large data files and selective access.

You can also append more objects to the end of an existing
BOSS file, as shown in the second variant.

Limitation: Avoid BOSSing out objects that are tied to the
windowing system or the execution machinery, such as Window,
Context, and BlockClosure. Avoid circular references, such as an
application model that holds onto a window that holds onto the
application model, and so on. BOSS is intended for data
objects, not interface objects.

Basic Steps
1. Create a data stream, typically a write stream on a Filename.

2. Create a BinaryObjectStorage by sending an onNew: message to
that class. The argument is the data stream.

3. Store each data object by sending a nextPut: message to the
BinaryObjectStorage. The argument is the data object. This
operation is safer when enclosed in a block and with a
valueNowOrOnUnwindDo: message sent to that block. The
argument is another block in which the stream is closed.
This protects against leaving the file open when an error or
interrupt occurs.

Storing Objects in a BOSS File

VisualWorks Cookbook, Rev. 2.0 615

| dataObject dataStream bos |
dataObject := PointExample x: 3 y: 4 z: 5.

dataStream := 'points.b' asFilename writeStream. "Basic Step 1"
bos := BinaryObjectStorage onNew: dataStream. "Basic Step 2"

[bos nextPut: dataObject] "Basic Step 3"
valueNowOrOnUnwindDo: [bos close].

Variants

V1. Storing a Collection of Objects

After doing basic steps 1 and 2:

➤ Send a nextPutAll: message to the BinaryObjectStorage. The
argument is a collection of objects. Each element in the
collection will be stored separately, enabling you to access
them separately later.

| dataCollection bos |
dataCollection := ColorValue constantNames.
bos := BinaryObjectStorage

onNew: 'colors.b' asFilename writeStream.

[bos nextPutAll: dataCollection] "V1 Step"
valueNowOrOnUnwindDo: [bos close].

V2. Appending an Object to a File
1. Create a read-append data stream, typically by sending a

readAppendStream message to a Filename.

2. Create a BinaryObjectStorage by sending an onOld: message to
that class. The argument is the data stream.

3. Set the writing position to the end of the file by sending a
setToEnd message to the BinaryObjectStorage.

4. For each object to be appended, send a nextPut: message to
the BinaryObjectStorage. The argument is the data object.

Chapter 28 Object Files (BOSS)

616 VisualWorks Cookbook, Rev. 2.0

"Inspect"
| colorNames newColor bos |

"First create a file containing color names."
colorNames := ColorValue constantNames.
bos := BinaryObjectStorage

onNew: 'colors.b' asFilename writeStream.
[bos nextPutAll: colorNames]

valueNowOrOnUnwindDo: [bos close].

"Then append a new color name."
newColor := #mudBrown.
bos := BinaryObjectStorage "V2 Step 2"

onOld: 'colors.b' asFilename readAppendStream.
bos setToEnd. "V2 Step 3"
[bos nextPut: newColor] "V2 Step 4"

valueNowOrOnUnwindDo: [bos close].

Getting Objects from a BOSS File

VisualWorks Cookbook, Rev. 2.0 617

Getting Objects from a BOSS File

Strategy

The basic steps show how to get the entire contents of a BOSS
file, with each stored object as an element in an array. (In the
example, a BOSS file is created first.)

For selective access to the objects in the data stream, you can
read them sequentially until you find the desired object, as
shown in the first variant.

Another selective approach is to position the stream at the
beginning of the desired object, as shown in the second variant.
This technique, although swifter than reading each object
sequentially, assumes that your application keeps a position
index for each object in the file when the objects are stored.

Basic Steps
1. Create a data stream, typically by sending a readStream

message to a Filename that represents the data file.

2. Create a BinaryObjectStorage by sending an onOld: message to
that class, with the data stream as argument. (When you do
not intend to write new objects onto the file, send an
onOldNoScan: message instead; this is faster because it does
not scan the data file as it must before writing more data.)

3. Get the objects in the file by sending a contents message to
the BinaryObjectStorage. An array containing the stored objects
will be returned.

4. Close the BinaryObjectStorage (which also closes the data
stream).

"Inspect"
| colorNames bos array |

"First create a file containing color names."
colorNames := ColorValue constantNames.
bos := BinaryObjectStorage

onNew: 'colors.b' asFilename writeStream.
[bos nextPutAll: colorNames]

valueNowOrOnUnwindDo: [bos close].

Chapter 28 Object Files (BOSS)

618 VisualWorks Cookbook, Rev. 2.0

"Read the file contents"
bos := BinaryObjectStorage "Basic Step 2"

onOldNoScan: 'colors.b' asFilename readStream.
[array := bos contents] "Basic Step 3"

valueNowOrOnUnwindDo: [bos close]. "Basic Step 4"

^array

Variants

V1. Searching Sequentially for an Object
1. Create a block in which you test whether the end of the

data stream has been reached by sending an atEnd message
to the BinaryObjectStorage.

2. Send a whileFalse: message to the block. The argument is
another block, in which you get the next object in the data
stream by sending a next message to the BinaryObjectStorage.
Test the object to find out whether it is the desired object; if
so, send a setToEnd message to the BinaryObjectStorage to break
out of the loop.

3. Close the BinaryObjectStorage.

"Inspect"
| points bos foundObject nextObject |

"First create a file containing points."
points := OrderedCollection new.
1 to: 100 do: [:coord |

points add: (PointExample x: coord y: coord z: coord)].
bos := BinaryObjectStorage

onNew: 'points.b' asFilename writeStream.
[bos nextPutAll: points]

valueNowOrOnUnwindDo: [bos close].

"Search sequentially."
foundObject := nil.
bos := BinaryObjectStorage

onOldNoScan: 'points.b' asFilename readStream.
[[bos atEnd] "V1 Step 1"

Getting Objects from a BOSS File

VisualWorks Cookbook, Rev. 2.0 619

whileFalse: ["V1 Step 2"
nextObject := bos next.
(nextObject z > 45)

ifTrue: [
foundObject := nextObject.
bos setToEnd]]]

valueNowOrOnUnwindDo: [bos close]. "V1 Step 3"

^foundObject

V2. Getting an Object at a Specific Position
1. Create a dictionary to be used as a lookup table. Each entry

in the dictionary will associate an object’s identifier with
that object’s position in the BOSS file.

2. Before each object-writing operation, record the binary
stream’s position in the lookup table.

3. After each object-writing operation, send a forgetInterval:
message to the binary stream. The argument is an Interval
beginning with the binary stream’s index before the write
operation and ending with the next index. This assures that
the BinaryObjectStorage will not make use of back-references to
the object just stored when storing future objects; such
back-references thwart random access to stored objects.

4. When reading the desired object, first send a position:
message to the binary stream. The argument is the object’s
position, as recorded in the lookup table.

5. To get the object at that position, send a next message to the
binary stream.

"Print it"
| bos foundObject positions prevIndex |
positions := Dictionary new. "V2 Step 1"
bos := BinaryObjectStorage onNew: 'colors.b' asFilename writeStream.
prevIndex := bos nextIndex.

"First create a file containing colors."
[ColorValue constantNames do: [:name |

positions at: name put: bos position. "V2 Step 2"
bos nextPut: (ColorValue perform: name).
bos forgetInterval: (prevIndex to: bos nextIndex). "V2 Step 3"

Chapter 28 Object Files (BOSS)

620 VisualWorks Cookbook, Rev. 2.0

prevIndex := bos nextIndex]]
valueNowOrOnUnwindDo: [bos close].

"Get the object at a certain location."
bos := BinaryObjectStorage onOld: 'colors.b' asFilename readStream.
[bos position: (positions at: #chartreuse). "V2 Step 4"
foundObject := bos next] "V2 Step 5"

valueNowOrOnUnwindDo: [bos close].

^foundObject

Storing and Getting a Class

VisualWorks Cookbook, Rev. 2.0 621

Storing and Getting a Class

Strategy

A BinaryObjectStorage is most often used to store instances rather
than classes, relying on the virtual image to contain the class
definitions. When the virtual image that is to read a BOSS file
does not contain the necessary classes, you can use BOSS,
parcels, or the conventional file-out/file-in procedure to
transfer the necessary class definitions.

Unlike the file-in procedure, the BOSS technique does not
normally require the presence of any compilers in the receiving
image. Thus, you can use BOSS to introduce a new or redefined
class into a deployment image, perhaps as a means of deliv-
ering a patch that fixes a bug.

Note, however, that BOSSing in a class requires the Smalltalk
compiler to be present when any superclass of that class varies
in structure between the receiving image and the original image
(the image from which the class was originally BOSSed out). In
particular, if any superclass varies between these two images
with respect to the number or order of its instance variables,
BOSS will attempt to invoke the Smalltalk compiler to recom-
pile the class’s methods.When a collection of classes is stored
using BOSS, they are automatically sorted into superclass
order. BOSS writes the same information that fileOut does: the
class definition, method definitions, and an expression that
initializes the class if a class initialize method is present.

By default, BOSS stores the source code for methods, the class
comment, and the protocols. The variant shows how to arrange
for BOSS to omit the source code, which is useful when you
want to discourage users of your application from modifying it.
For this reason, even classes that have nothing to do with BOSS
data are sometimes transferred from one image to another
using BOSS.

Basic Steps
1. To store a collection of classes in a BOSS file, send a

nextPutClasses: message to a binary stream. The argument is a
collection containing the desired classes.

Chapter 28 Object Files (BOSS)

622 VisualWorks Cookbook, Rev. 2.0

2. To load a collection of classes from a BOSS file, send a next-
Classes message to a binary stream on the file. (In the
example, loading the Date class has no effect because the
image already contains the same definition of that class.)

"Print it"
| file bos |
file := 'date.b' asFilename.
bos := BinaryObjectStorage onNew: file writeStream.

"Write the Date class to a file."
[bos nextPutClasses: (Array with: Date)] "Basic Step 1"

valueNowOrOnUnwindDo: [bos close].

"Read the file contents"
bos := BinaryObjectStorage onOldNoScan: file readStream.
[bos nextClasses] "Basic Step 2"

valueNowOrOnUnwindDo: [bos close].

^file fileSize

Variant

Omitting the Source Code
➤ Before storing the classes, send a sourceMode: message to the

binary stream. The argument is #discard. (An argument of
#keep causes sources to be stored, which is the default.)

"Print it"
| file bos |
file := 'date.b' asFilename.
bos := BinaryObjectStorage onNew: file writeStream.

"Write the Date class to a file."
[bos sourceMode: #discard. "Variant Step"
bos nextPutClasses: (Array with: Date)]

valueNowOrOnUnwindDo: [bos close].

"Read the file contents"
bos := BinaryObjectStorage onOldNoScan: file readStream.

Storing and Getting a Class

VisualWorks Cookbook, Rev. 2.0 623

[bos nextClasses]
valueNowOrOnUnwindDo: [bos close].

^file fileSize

Chapter 28 Object Files (BOSS)

624 VisualWorks Cookbook, Rev. 2.0

Converting Data After Changing a Class

Strategy

When you store instances of an object in a BOSS file and then
add an instance variable or otherwise change the definition of
that object’s class, BOSS detects the incompatibility when it
tries to read the old data file. For example, suppose the
PointExample class began its life representing a two-dimensional
point; later you extend it to represent three-dimensional points
by adding a z instance variable in addition to the x and y
variables. The basic steps show how to arrange for old files
containing two-dimensional instances of PointExample to be read
without error.

Basic Steps

Online example: PointExample

1. In the class whose definition has been changed, create a
class method named binaryRepresentationVersion. This method is
responsible for returning a version identifier, commonly a
sequential number or a descriptive string. (The method
must be rewritten each time the class definition is changed,
assuming BOSS files relying on the prior version of the
class definition will need to be read.)

2. Create a class method named binaryReaderBlockForVersion:format:.
This method must return a block that converts the old
object to a new instance. The block takes one argument, an
array of the instance variables (for pointer-type objects) or a
ByteString (for byte-type objects). The block typically assigns
the data values from the old instance variables and then
sends a become: message to the old object; the argument is
the new instance. The first method argument (oldVersion)
identifies the version (nil, by default, and later defined by the
method you created in the preceding step) and enables you
to distinguish between old data and current data. The
second method argument (oldFormat) is typically ignored
except for internal system purposes.

Converting Data After Changing a Class

VisualWorks Cookbook, Rev. 2.0 625

binaryRepresentationVersion "Basic Step 1"
"First version (nil) had x and y coordinates.
Second version (2) added a z coordinate."

^2

binaryReaderBlockForVersion: oldVersion format: oldFormat "Basic Step 2"
| newPoint |
oldVersion isNil ifTrue: [

^[:oldPoint |
newPoint := PointExample new.

"Each oldPoint obtained from the BOSS file is an Array
that contains the state of an old instance of PointExample.
The array elements are the values of the old instance’s
variables, in the order in which the old version of PointExample
defined them."

newPoint x: (oldPoint at: 1).
newPoint y: (oldPoint at: 2).
newPoint z: 0. "oldPoint has no z"

oldPoint become: newPoint]].

Chapter 28 Object Files (BOSS)

626 VisualWorks Cookbook, Rev. 2.0

Customizing the Storage Representation

Strategy

By default, BOSS stores the entire contents of an object,
including its dependents and the dependents of its variables.
Although this default is appropriate for most data objects, it
results in a BOSS error when an interface object is a dependent
of a data object that is being BOSSed out. This kind of depen-
dency is often encountered in the case of an instance variable
that holds onto a collection when the collection is displayed in
a list widget. BOSSing a copy of the collection is one way to
remove the dependency.

The basic step shows how to control which parts of an object
are BOSSed out. This technique is also useful when an
instance variable holds an object that points back to the
original object, creating a circular reference that causes
endless repetition when BOSS attempts to store either object.

In the example, the custom storage representation contains all
of the instance variables, but it nevertheless shows the tech-
nique for customizing.

Basic Step
➤ Create an instance method named representBinaryOn: in the

class whose BOSS representation you want to customize.
The method typically returns a MessageSend, which is created
by sending a receiver:selector:arguments: message to that class.
The receiver argument identifies the class that is to create an
instance, typically the object’s class. The selector argument is
the name of the instance-creation method that is to be used
when the data is read by BOSS. The arguments argument is a
collection of data values, typically the values of the object’s
instance variables.

representBinaryOn: bos "Basic Step"
"Represent a PointExample by its x, y and z coordinates
plus the message and receiver for creating an instance from
those coordinates."

Customizing the Storage Representation

VisualWorks Cookbook, Rev. 2.0 627

^MessageSend
receiver: self class
selector: #x:y:z:
arguments: (Array with: x with: y with: z).

VisualWorks Cookbook, Rev. 2.0 629

Chapter 29

Geometrics

Displaying a Point 630
Displaying a Straight or Jointed Line 631
Displaying a Curved Line 634
Displaying a Polygon 637
Displaying an Arc, Circle, or Ellipse 640
Changing the Line Thickness 644
Changing the Line Cap Style 645
Changing the Line Join Style 647
Coloring a Geometric 649
Integrating a Graphic into an Application 652

See Also
■ “Images, Cursors, and Icons” on page 657

■ “Color” on page 685

Chapter 29 Geometrics

630 VisualWorks Cookbook, Rev. 2.0

Displaying a Point

Strategy

Displaying a single point is rarely done except in batches, as
when you are building up a dotted pattern. The basic steps
show how to display a dot in the context of a loop that creates
a random dot pattern. The technique relies on displaying a line
segment from the desired point to a neighboring point.

Basic Steps
1. Create a Point by sending an @ message to the integer repre-

senting the x coordinate. The argument is the y coordinate.

2. Display the point by sending a displayLineFrom:to: message to
the graphics context. The first argument is the point and
the second argument is a neighboring point, which can be
derived by adding 1 to the point.

| gc random points |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
random := Random new.
points := OrderedCollection new.

"Create 1000 random points in a 100-pixel square."
1000 timesRepeat: [

points add: ((random next * 100) @ (random next * 100))]. "Basic Step 1"

"Display each random point."
points do: [:pt |

gc displayLineFrom: pt to: pt + 1] "Basic Step 2"

Each point is displayed as a line segment
to a neighboring point

Displaying a Straight or Jointed Line

VisualWorks Cookbook, Rev. 2.0 631

Displaying a Straight or Jointed Line

Strategy

You can draw a straight line directly on a display surface, as
shown in the basic steps. Or you can create an instance of
LineSegment and display it, as shown in the first variant. Creating
a LineSegment is useful when your application needs to perform
an operation on the line, such as determining its length or
scaling it.

A jointed line, or polyline, can also be drawn directly or instan-
tiated as a PolyLine, as shown in the second variant.

Basic Steps
1. Get the graphics context of the display surface by sending a

graphicsContext message.

2. Send a displayLineFrom:to: message to the graphics context. The
first argument is the starting point of the line and the
second argument is the endpoint.

| gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

"Basic Step 1"

Chapter 29 Geometrics

632 VisualWorks Cookbook, Rev. 2.0

5 to: 400 by: 5 do: [:i |
gc displayLineFrom: 0@i to: i@400]. "Basic Step 2"

Variants

V1. Creating and Displaying a Line Segment
1. Create a line segment by sending a from:to: message to the

LineSegment class. The first argument is the starting point of
the line and the second argument is the endpoint.

2. Perform any desired operations on the line (in the example,
the x dimension is exaggerated by a factor of 10).

3. Wrap the line segment in a stroking wrapper by sending an
asStroker message to it. This equips the line with the ability to
render itself.

4. Display the wrapped line segment by sending a displayOn:
message to its stroking wrapper. The argument is the
graphics context of the display surface.

| gc line scaleFactor |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
scaleFactor := 10@1.

5 to: 400 by: 5 do: [:i |
line := LineSegment from: 0@i to: i@400. "V1 Step 1"
line := line scaledBy: scaleFactor.
line asStroker displayOn: gc]. "V1 Steps 3, 4"

V2. Displaying a Polyline
1. Send a displayPolyLine: message to the graphics context. The

argument is a collection of points defining the endpoints
and vertices of the polyline.

2. Alternatively, create a Polyline by sending a vertices: message
to the Polyline class. The argument is the collection of
vertices. Then wrap the polyline in a stroking wrapper
(using asStroker) and display it on the graphics context (using
displayOn:).

Displaying a Straight or Jointed Line

VisualWorks Cookbook, Rev. 2.0 633

| gc points x y radians polyline |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
points := OrderedCollection new.
0 to: 360 by: 30 do: [:angle |

radians := angle degreesToRadians.
x := 200 - (200 * radians cos).
y := 200 - (200 * radians sin).
points add: x@y].

gc displayPolyline: points. "V2 Step 1"

polyline := Polyline vertices: points. "V2 Step 2"
0.9 to: 0.1 by: -0.1 do: [:scale |

polyline := polyline scaledBy: scale.
polyline asStroker displayOn: gc].

See Also
■ “Changing the Line Thickness” on page 644

■ “Changing the Line Cap Style” on page 645

■ “Changing the Line Join Style” on page 647

Chapter 29 Geometrics

634 VisualWorks Cookbook, Rev. 2.0

Displaying a Curved Line

Strategy

Frequently a smoothly curved line is preferable to the jointed
line provided by a Polyline. A Spline is like a Polyline except that it
curves the joints in its collection of points, as shown in the
basic steps.

For scientific purposes, a Bezier curve is also available. A Bezier
curve has a start, an end, and two control points. Each control
point causes the line to curve toward it, as if exerting gravity on
the line, as shown in the variant.

Basic Steps
1. Create a Spline by sending a controlPoints: message to the Spline

class. The argument is a collection of points.

2. Wrap the spline in a stroking wrapper by sending an
asStroker message to it.

3. Display the wrapped spline by sending a displayOn: message
to the stroking wrapper. The argument is the graphics
context.

| gc points spline random x y |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

spline Bezier curve

Displaying a Curved Line

VisualWorks Cookbook, Rev. 2.0 635

points := OrderedCollection new.
random := Random new.

"Collect 10 random points."
10 timesRepeat: [

x := random next * 400.
y := random next * 400.
points add: x@y.
gc displayDotOfDiameter: 8 at: points last].

spline := Spline controlPoints: points. "Basic Step 1"
spline asStroker displayOn: gc. "Basic Steps 2, 3"

Variant

Displaying a Bezier Curve
1. Create a Bezier by sending a start:end:controlPoint1:controlPoint2:

message to the Bezier class. Each of the arguments is a
point.

2. Wrap the Bezier curve in a stroking wrapper by sending an
asStroker message to it.

3. Display the wrapped spline by sending a displayOn: message
to the stroking wrapper. The argument is the graphics
context.

| gc points bezier random x y |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
points := OrderedCollection new.
random := Random new.

"Collect 10 random points."
4 timesRepeat: [

x := random next * 400.
y := random next * 400.
points add: x@y.
gc displayDotOfDiameter: 8 at: points last].

bezier := Bezier "Variant Step 1"
start: (points at: 1)
end: (points at: 2)

Chapter 29 Geometrics

636 VisualWorks Cookbook, Rev. 2.0

controlPoint1: (points at: 3)
controlPoint2: (points at: 4).

bezier asStroker displayOn: gc. "Variant Steps 2, 3"

See Also
■ “Changing the Line Thickness” on page 644

■ “Changing the Line Cap Style” on page 645

Displaying a Polygon

VisualWorks Cookbook, Rev. 2.0 637

Displaying a Polygon

Strategy

A polygon is a filled Polyline. A polygon can be created and
displayed from a collection of vertices, as shown in the basic
steps.

A Rectangle is a special case that provides an extended set of
operations because it is so commonly used in constructing
complex views. A rectangle is commonly created by specifying
its origin point and either its lower-right corner or its extent, as
shown in the variant.

Basic Steps
1. Send a displayPolygon: message to the graphics context of the

display surface. The argument is a collection of points, each
point representing one vertex of the polygon.

2. Alternatively, create an instance of Polyline by sending a
vertices: message to the Polyline class, with the vertex points as
the argument. Wrap the polyline in a stroking or filling
wrapper (using asStroker or asFiller) and display the wrapped
polygon by sending displayOn: to the wrapper with the
graphics context as argument. A variant of displayOn: (used
here) enables you to specify the origin—that is, the upper-
left corner of the rectangle containing the polygon.

Chapter 29 Geometrics

638 VisualWorks Cookbook, Rev. 2.0

| gc points x y radians polyline origin |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
points := OrderedCollection new.
0 to: 360 by: 30 do: [:angle |

radians := angle degreesToRadians.
x := 200 - (200 * radians cos).
y := 200 - (200 * radians sin).
points add: x@y].

gc displayPolygon: points. "Basic Step 1"

polyline := Polyline vertices: points. "Basic Step 2"
0.9 to: 0.1 by: -0.1 do: [:scale |

gc paint: (ColorValue brightness: 1 - scale).
polyline := polyline scaledBy: scale.
origin := 200@200 - (polyline bounds width / 2).
polyline asFiller displayOn: gc at: origin].

Variant

Displaying a Rectangle
1. Create a rectangle (in the example, rect1) by sending an extent:

message to the point representing the origin. The argument
is a point whose x value indicates the width of the rectangle
and whose y value indicates the height.

2. Alternatively, create a rectangle (rect2) by sending a corner:
message to the origin point. The argument is the lower-
right corner point.

3. Wrap the rectangle in a stroking or filling wrapper (using
asStroker or asFiller) and display the resulting wrapper on a
graphics context.

| gc rect1 rect2 border |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

"Black rectangle"
rect1 := 100@100 extent: 200@200. "Variant Step 1"
rect1 asFiller displayOn: gc. "Variant Step 3"

Displaying a Polygon

VisualWorks Cookbook, Rev. 2.0 639

"Gray rectangle"
border := 3.
rect2 := (rect1 origin + border) corner: (rect1 corner - border). "Variant Step 2"
rect2 asFiller displayOn: (gc paint: ColorValue gray). "Variant Step 3"

See Also
■ “Changing the Line Thickness” on page 644

Chapter 29 Geometrics

640 VisualWorks Cookbook, Rev. 2.0

Displaying an Arc, Circle, or Ellipse

Strategy

A circle is created by specifying its center point and radius, as
shown in the basic steps. The first variant shows an alternative
technique that avoids creating an instance of Circle, but it is
useful only for filled circles (not stroked circles).

An ellipse is created by specifying the rectangle that encloses it,
as well as the beginning angle and the number of degrees
traversed (the sweep angle) from that starting angle. For a
complete ellipse, the angles are 0 and 360, as shown in the
second variant. When the bounding rectangle is a square, the
ellipse is circular.

An arc is created in the same way as a full ellipse, except that
the beginning and sweep angles specify only a portion of the full
360 degrees, as shown in the third variant.

Basic Steps
1. Send a center:radius: message to the Circle class. The first

argument is the center point of the circle. The second
argument is an integer indicating the radius of the circle.

Displaying an Arc, Circle, or Ellipse

VisualWorks Cookbook, Rev. 2.0 641

2. Wrap the circle in a stroking or filling wrapper by sending
asStroker or asFiller to it.

3. Display the wrapped circle by sending displayOn: to it, with
the graphics context as argument.

| gc circle |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

"Blue filled circle"
circle := Circle center: 200@200 radius: 100. "Basic Step 1"
circle asFiller displayOn: (gc paint: ColorValue blue). "Basic Steps 2, 3"

"Black stroked circle"
gc paint: ColorValue black; lineWidth: 2.
circle asStroker displayOn: gc.

Variants

V1. Displaying a Filled Dot
➤ Send a displayDotOfDiameter:at: message to the graphics context

of the display surface. The first argument is the diameter of
the circle. The second argument is the center point.

| gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

gc displayDotOfDiameter: 200 at: 200@200. "V1 Step"

V2. Displaying an Ellipse
1. For a stroked ellipse, send a displayArcBoundedBy:start-

Angle:sweepAngle: message to the graphics context. The first
argument is the rectangle that encloses the ellipse. The
second argument is 0 and the third argument is 360.

2. For a filled ellipse, send a
displayWedgeBoundedBy:startAngle::sweepAngle: message to the
graphics context, with the same arguments as above.

3. Alternatively, create an instance of EllipticalArc by sending a
boundingBox:startAngle:sweepAngle: message to that class. The

Chapter 29 Geometrics

642 VisualWorks Cookbook, Rev. 2.0

arguments are the same as above. Then wrap the ellipse in
a stroking or filling wrapper and display it on the graphics
context.

| gc ellipse |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

"Black stroked ellipse"
gc displayArcBoundedBy: (150@100 extent: 100@200) "V2 Step 1"

startAngle: 0
sweepAngle: 360.

"Black filled ellipse"
gc displayWedgeBoundedBy: (160@110 extent: 80@180) "V2 Step 2"

startAngle: 0
sweepAngle: 360.

"Red ellipse"
ellipse := EllipticalArc "V2 Step 3"

boundingBox: (150@175 extent: 100@50)
startAngle: 0
sweepAngle: 360.

ellipse asFiller displayOn: (gc paint: ColorValue red)

V3. Displaying an Arc
➤ Use the same technique as for displaying a full ellipse, but

the startAngle argument is the angle at which the arc or wedge
begins, measured in degrees clockwise from the 3 o’clock
position. The sweepAngle argument is the number of degrees
spanned by the arc, measured clockwise from the starting
angle.

| gc arc box |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
box := 150@100 extent: 100@200.

"Black stroked arc"
gc displayArcBoundedBy: box "V3 Step"

startAngle: 0
sweepAngle: 180.

Displaying an Arc, Circle, or Ellipse

VisualWorks Cookbook, Rev. 2.0 643

"Black filled arc"
gc displayWedgeBoundedBy: box "V3 Step"

startAngle: 180
sweepAngle: 90.

"Red arc"
arc := EllipticalArc "V3 Step"

boundingBox: box
startAngle: 270
sweepAngle: 90.

arc asFiller displayOn: (gc paint: ColorValue red)

See Also
■ “Changing the Line Thickness” on page 644

Chapter 29 Geometrics

644 VisualWorks Cookbook, Rev. 2.0

Changing the Line Thickness

Strategy

By default, lines, arcs, and polygons are drawn with a one-pixel
line. The basic step shows how to increase the line width. Extra
thickness is spread evenly on both sides of the actual line, so a
horizontal line that is 20 pixels thick has 10 pixels above the
line and 10 pixels below.

Basic Step
➤ Send a lineWidth: message to the graphics context of the

display surface. The argument is an integer indicating the
number of pixels of thickness.

| gc rect |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
rect := 10@10 extent: 30@30.

2 to: 20 by: 2 do: [:width |
gc lineWidth: width. "Basic Step"
rect moveBy: 30@30.
rect asStroker displayOn: gc].

Changing the Line Cap Style

VisualWorks Cookbook, Rev. 2.0 645

Changing the Line Cap Style

Strategy

By default, lines and arcs are drawn with butt ends, which
means each end stops abruptly at the specified endpoint. When
two thick lines share an endpoint, butt ends produce a notched
joint. Changing the cap style to projecting fixes this by
extending each end of the line by half of its thickness. Another
solution is to use round ends, which extend the ends in a
semicircle.

Basic Step
➤ Send a capStyle: message to the graphics context of the

display surface. The argument is derived by sending a
capButt, capProjecting, or capRound message to the GraphicsContext
class.

| gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
gc lineWidth: 20.

"Butt line caps -- the default"
gc capStyle: GraphicsContext capButt. "Basic Step"
gc displayLineFrom: 100@100 to: 300@100.
gc displayLineFrom: 300@100 to: 300@300.

capButt

capProjecting

capRound

Chapter 29 Geometrics

646 VisualWorks Cookbook, Rev. 2.0

"Projecting line caps"
gc capStyle: GraphicsContext capProjecting. "Basic Step"
gc displayLineFrom: 100@150 to: 250@150.
gc displayLineFrom: 250@150 to: 250@300.

"Round line caps"
gc capStyle: GraphicsContext capRound. "Basic Step"
gc displayLineFrom: 100@200 to: 200@200.
gc displayLineFrom: 200@200 to: 200@300.

Changing the Line Join Style

VisualWorks Cookbook, Rev. 2.0 647

Changing the Line Join Style

Strategy

By default, a polyline or polygon is drawn with mitered joints.
In some situations, a beveled or rounded joint is preferable. The
basic step shows how to change the join style.

Basic Step
➤ Send a joinStyle: message to the graphics context of the

display surface. The argument is derived by sending a join-
Miter, joinBevel, or joinRound message to the GraphicsContext class.

| gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
gc lineWidth: 30.

"Miter joins -- the default"
gc joinStyle: GraphicsContext joinMiter. "Basic Step"
gc displayPolyline: (Array with: 100@200 with: 200@50 with: 300@200).

"Bevel joins"
gc joinStyle: GraphicsContext joinBevel. "Basic Step"
gc displayPolyline: (Array with: 100@300 with: 200@150 with: 300@300).

joinMiter

joinBevel

joinRound

Chapter 29 Geometrics

648 VisualWorks Cookbook, Rev. 2.0

"Round joins"
gc joinStyle: GraphicsContext joinRound. "Basic Step"
gc displayPolyline: (Array with: 100@400 with: 200@250 with: 300@400).

Coloring a Geometric

VisualWorks Cookbook, Rev. 2.0 649

Coloring a Geometric

Strategy

By default, a color-based display surface (ApplicationWindow or
Pixmap) displays geometric objects in black. The basic step
shows how to change the color by installing a new paint (color
or pattern) in the graphics context.

When the graphic object is going to be reused and the color
information needs to be kept with it, the variant shows how to
wrap the geometric object in a wrapper that keeps track of the
paint to be used for its component.

Basic Step
➤ Send a paint: message to the graphics context of the display

surface. The argument is a color or pattern.

| gc circle colors |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
circle := Circle center: 200@200 radius: 200.
colors := ColorValue constantNames.

colors do: [:colorName |
gc paint: (ColorValue perform: colorName). "Basic Step"
circle := circle scaledBy: 0.9.
circle asFiller displayOn: gc]

Chapter 29 Geometrics

650 VisualWorks Cookbook, Rev. 2.0

Variant

Storing the Paint with the Geometric Object
1. Wrap the geometric object in a stroking or filling wrapper by

sending asStroker or asFiller to it.

2. Wrap the stroking or filling wrapper in a
GraphicsAttributesWrapper by sending an on: message to that
class, with the wrapper from the basic step as the argu-
ment.

3. Create a new GraphicsAttributes and send a paint: message to it.
The argument is a color or pattern.

4. Install the graphics attributes in the GraphicsAttributesWrapper
by sending an attributes: message with the attributes as the
argument.

5. Display the graphics attributes wrapper by sending a
displayOn:at: message to it. The first argument is the graphics
context of the display surface. The second argument is the
origin point at which the geometric object is to be displayed.

| gc circle wrapper1 wrapper2 random pt attributes1 attributes2 |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
circle := Circle center: 0@0 radius: 50.

wrapper1 := GraphicsAttributesWrapper on: circle asFiller. "Variant Steps 1, 2"
attributes1 := GraphicsAttributes new paint: ColorValue red. "Variant Step 3"
wrapper1 attributes: attributes1. "Variant Step 4"

wrapper2 := GraphicsAttributesWrapper on: circle asFiller.
attributes2 := GraphicsAttributes new paint: ColorValue blue.
wrapper2 attributes: attributes2.

random := Random new.
100 timesRepeat: [

pt := random next * 300 + 50 @ (random next * 300 + 50).
wrapper1 displayOn: gc at: pt. "Variant Step 5"
pt := random next * 300 + 50 @ (random next * 300 + 50).
wrapper2 displayOn: gc at: pt]

Coloring a Geometric

VisualWorks Cookbook, Rev. 2.0 651

See Also
■ “Creating a Color” on page 686

■ “Creating a Tiled Pattern” on page 692

Chapter 29 Geometrics

652 VisualWorks Cookbook, Rev. 2.0

Integrating a Graphic into an Application

Strategy

Displaying graphic objects directly onto a window, as in the
examples shown previously, is fine for ad hoc testing. However,
an overlapping window quickly damages the displayed object
because it is not integrated into the damage repair mechanism
provided by VisualWorks.

The technique for integrating a graphic relies on the fact that a
view is automatically sent a displayOn: message whenever its
containing window perceives that the view’s display area is in
need of repair. For a graphic that changes when the model
changes, as in the example, the application model can trigger
the displaying method whenever necessary. Thus, a view gets
display requests from two sources: the window-repair mecha-
nism and the application. Requests of the first kind happen
automatically; you arrange for the second in your application,
as shown in the basic steps.

In the example, a SketchView1 updates its display when any of
three changes occur in the model (a Sketch): a point is added to
the current stroke (step), the sketch is erased (step 3), or a new
sketch is selected in the list of sketches (step 5). Each of these
three events demonstrates a variant in the basic mechanism for
keeping the displayed graphic up to date.

Basic Steps

Online example: CustomView1Example, Sketch and SketchView1

Integrating a Graphic into an Application

VisualWorks Cookbook, Rev. 2.0 653

1. In the view that is responsible for displaying the graphic (in
the example, SketchView1), create a displayOn: method. This
method is responsible for creating the graphic objects based
on data from the model. The method displays the graphic
objects on the graphics context that is supplied as the
method argument. This method is triggered whenever an
invalidate message is received by the view, as when window
damage occurs or the view is notified of a change in the
model.

displayOn: aGraphicsContext "Basic Step 1"
self model isNil ifTrue: [^self].

self model strokes do: [:stroke |
aGraphicsContext displayPolyline: stroke].

2. In any method in the domain model (Sketch) that affects the
graphics being displayed, send a changed:with: message to self.
The first argument is a symbol identifying the nature of the
change (#stroke, because a point has been added to the
current stroke in the sketch). The second argument is a
data or control parameter that will be needed by the view to
display the appropriate graphic (in the example, a line
segment is sent, which is all that the view needs to add to
its display of the sketch). The changed:with: message causes an
update:with: message with the same parameters to be sent to
all dependents of the model—the view is the primary and
often the only dependent.

add: aPoint
"Add aPoint to the current stroke."

self strokes last add: aPoint.
self changed: #stroke with: self currentLineSegment. "Basic Step "

3. When the change in the model is such that the view needs
no data or control parameter, use nil as the second
argument in the changed:with: message. In the example, when
the Sketch model erases all or part of itself, it specifies #erase
as the first argument in the changed:with: message and nil as
the second argument, because the view has no way of

Chapter 29 Geometrics

654 VisualWorks Cookbook, Rev. 2.0

removing part of the drawing except to display the new
sketch entirely.

eraseAll
"Erase my contents."

self strokes removeAll: self strokes copy.
self changed: #erase with: nil. "Basic Step 3"

4. In the view (SketchView1), create an update:with: method in an
updating protocol. This method is invoked by the model
whenever it changes and is responsible for updating its
display based on the aspect of the model that changed. In
the example, it displays a new line when the #stroke aspect is
changed. When the sketch is #erased, the update:with: method
sends invalidate to the view. This inherited method causes a
displayOn: message to be sent to the view with the appropriate
graphics context.

update: anAspect with: anObject "Basic Step 4"
"When a point is added to the model..."
anAspect == #stroke

ifTrue: [anObject asStroker displayOn: self graphicsContext].

"When the model erases its contents..."
anAspect == #erase

ifTrue: [self invalidate].

5. When an entirely new model is given to the view using its
model: method, the view sends invalidate to itself, again causing
a displayOn: message to be sent to the view with the appro-
priate graphics context. Because model: overrides an inher-
ited method with that name, begin the method by invoking
the inherited version by sending a model: message to super.

model: aModel
super model: aModel.
self invalidate. "Basic Step 5"

"Tell the controller where to send menu messages."
self controller performer: aModel.

Integrating a Graphic into an Application

VisualWorks Cookbook, Rev. 2.0 655

See Also
■ “Defining What a View Displays” on page 380

VisualWorks Cookbook, Rev. 2.0 657

Chapter 30

Images, Cursors, and Icons

Creating a Graphic Image 658
Displaying an Image 662
Coloring Pixels in an Image 664
Masking Part of an Image 666
Expanding or Shrinking an Image 668
Flopping an Image 669
Rotating an Image 670
Layering Two Images 672
Caching an Image 674
Animating an Image 675
Creating a Cursor 678
Changing the Current Cursor 681
Creating an Icon 682
Associating an Icon with a Window 683

See Also
■ “Geometrics” on page 629

■ “Color” on page 685

Chapter 30 Images, Cursors, and Icons

658 VisualWorks Cookbook, Rev. 2.0

Creating a Graphic Image

Strategy

A graphic image is a rectangular painting made up of colored
pixels arranged in rows. Complex graphics that involve non-
geometric elements are typically graphic images. The Image
Editor enables you to paint an image pixel by pixel, and then
store it, encoded textually, in a compilable resource method
(basic steps). Because of the size of this encoding, the Image
Editor is best suited for producing small images (such as for
cursor shapes or icons).

You can also capture a graphic image from the screen, either
using an Image Editor (first variant) or programmatically
(second variant). Images captured through the Image Editor are
limited to 128 pixels square; images captured programmati-
cally can be of arbitrary size. An image can be captured from a
non-VisualWorks window, although only the colors that are in
the VisualWorks color palette will be represented accurately.

Because you can color the pixels in an image in a variety of
ways, the third variant shows how to create a blank image of a
particular size.

A display surface can be converted into an image, as shown in
the fourth variant. This is useful when you want to assemble an
image by displaying a set of graphic objects on a window or
Pixmap. It is also a convenient way of capturing the graphic
contents of an existing window.

When you want to use an image that was created with another
application, but you have no means of displaying it for a
capture operation, you may have to convert its stored numeric
data into a ByteArray. Then you can use the fifth variant to create
an image from the array of bytes.

Creating a Graphic Image

VisualWorks Cookbook, Rev. 2.0 659

Basic Steps
1. Open an Image Editor, for example, by choosing Tools➞Image

Editor from the VisualWorks main window.

2. Paint the desired image in the scrollable pixel grid. To do
this, click on a color and then click on each pixel to be
painted that color.

3. Use the Image Editor's Install button to a create method that
returns the image, typically a class method in a resource
protocol of an application model class.

Variants

V1. Capturing an Image from the Screen
1. In an Image Editor, choose the Image➞Capture command. The

cursor changes to a cross-hair.

2. Press the <Select> mouse button at the upper-left corner of
the desired rectangle, drag to the lower-right corner, and
then release the mouse button. The rectangle is limited to
1024 pixels on a side.

3. If desired, edit the captured image by changing the color of
individual pixels.

4. Use the Image Editor's Install button to create a method that
returns the image, typically a class method in a resource
protocol of an application model class.

V2. Capturing a Screen Image Programmatically
1. In a Workspace, send a fromUser message to the Image class.

The cursor changes to a cross-hair.

| gc capturedImage |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
capturedImage := Image fromUser. "V1 Step 1"
capturedImage displayOn: gc.

2. Press the <Select> mouse button at the upper-left corner of
the desired rectangle, drag to the lower-right corner, and
then release the mouse button.

Chapter 30 Images, Cursors, and Icons

660 VisualWorks Cookbook, Rev. 2.0

V3. Creating a Blank Image
➤ Send an extent:depth:palette: message to the Image class. The

extent argument is a Point whose x coordinate controls the
width of the image (in pixels) and whose y coordinate
controls the height. The depth argument is an integer indi-
cating the color depth of the image—that is, the number of
bits required to represent a color in the palette that the
image uses. The palette argument is a color palette from
which the image draws its colors.

"Inspect"
| blankImage palette |
palette := Screen default colorPalette.

blankImage := Image "V3 Step"
extent: 8@8
depth: (palette depth)
palette: palette.

^blankImage

V4. Creating an Image from a Display Surface
➤ Send an asImage message to a display surface (window,

Pixmap, or Mask). In the case of a window, the window must
not be overlapped by other windows.

| gc window image |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
window := Window currentWindow.

window raise.

image := window asImage. "V4 Step"
image displayOn: gc.

V5. Creating an Image from a Byte Array
➤ Send an extent:depth:palette:bits:pad: message to the Image class.

The first three arguments are the same as in step V3. The
bits argument is a ByteArray specifying the color for each pixel,
using the color encodings from the palette with a multiple
of 32 bits per row. The pad argument is 8, 16, or 32.

Creating a Graphic Image

VisualWorks Cookbook, Rev. 2.0 661

Because each row in the byte array must contain a multiple
of 32 bits, the pad size appends 8 bits to a 24-bit row, 16
bits to a 16-bit row (as in the example), or none to a 32-bit
row, as a convenience.

| gc lampImage |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

lampImage := Image "V5 Step"
extent: 16@16
depth: 1
palette: MappedPalette whiteBlack
bits: #[

2r00011111 2r11111000
2r00011111 2r11111000
2r00111111 2r11111100
2r00111111 2r11111100
2r00111111 2r11111100
2r01111111 2r11111110
2r01111111 2r11111110
2r11111111 2r11111111
2r11111111 2r11111111
2r00000011 2r11000000
2r00001111 2r11110000
2r00011111 2r11111000
2r00011111 2r11111000
2r00001111 2r11110000
2r00001111 2r11110000
2r00000111 2r11100000]

pad: 16.

lampImage displayOn: gc at: 10@10.

Chapter 30 Images, Cursors, and Icons

662 VisualWorks Cookbook, Rev. 2.0

Displaying an Image

Strategy

As with other visual objects, an image can display itself on a
graphics context, as shown in the basic steps. Note that an
image’s palette cannot be color-based if you intend to display it
on a coverage-based Mask rather than a color-based Window or
Pixmap.

A common situation requires creating a hidden display surface
(Mask or Pixmap) of the same size as an image and then displaying
the image on it. The variant shows how to accomplish this in a
single step.

Basic Steps
1. Send a displayOn: message to the image. The argument is the

graphics context of the display surface on which the image
is to be displayed.

2. To specify a display origin other than the default 0@0, send
a displayOn:at: message to the image. The first argument is the
graphics context and the second argument is a Point indi-
cating the origin of the image relative to the display
surface’s origin.

| gc logo |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
logo := LogoExample logo.

logo displayOn: gc. "Basic Step 1"
logo displayOn: gc at: 50@50. "Basic Step 2"

The image can be displayed at the
origin of the display surfac e . . .

. . . or it can be positioned elsewhere

Displaying an Image

VisualWorks Cookbook, Rev. 2.0 663

Variant

Creating a Display Surface Bearing an Image
➤ Send an asRetainedMedium message to the image. If the image

has a color-based palette, a Pixmap will be returned. If the
image has a coverage-based palette, a Mask will be returned.

"Inspect"
| image pixmap |
image := LogoExample logo.

pixmap := image asRetainedMedium. "Variant Step"
^pixmap

See Also
■ “Defining What a View Displays” on page 380

■ “Integrating a Graphic into an Application” on page 652

Chapter 30 Images, Cursors, and Icons

664 VisualWorks Cookbook, Rev. 2.0

Coloring Pixels in an Image

Strategy

In an application such as the Image Editor, which enables you
to paint a new image or edit an existing image, individual pixel
colors can be changed as shown in the basic steps. You can also
specify the color to be applied using the numeric equivalent, as
shown in the variant.

The colors that you substitute, however, must exist in the
image's palette. For example, if the image's palette contains
only black and white, as in the example image used in the basic
steps, the most you can do is reverse a given pixel from white
to black or from black to white.

Basic Steps
1. To get the current color of a pixel, send a valueAtPoint:

message to the image. The argument is a Point indicating the
coordinates of the pixel in the image.

2. To change the color of a pixel, send a valueAtPoint:put: message
to the image. The first argument is the location of the pixel,
and the second is a color that exists in the image’s palette.

| gc logo oldColor newColor white black |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
logo := LogoExample logo.
white := ColorValue white.
black := ColorValue black.

"Change each black pixel to white, and vice versa."
0 to: logo height -1 do: [:y |

0 to: logo width - 1 do: [:x |
oldColor := logo valueAtPoint: x@y. "Basic Step 1"
oldColor = white

ifTrue: [newColor := black]
ifFalse: [newColor := white].

The colors have been inverted
by changing white to black and
black to white

Coloring Pixels in an Image

VisualWorks Cookbook, Rev. 2.0 665

logo valueAtPoint: x@y put: newColor]]. "Basic Step 2"

logo displayOn: gc

Variant

Specifying the New Color by Its Encoded Number
1. To get the current color number of a pixel, send an atPoint:

message to the image. The argument is a Point indicating the
coordinates of the pixel in the image. The number that
identifies the pixel color in the image’s palette is returned.

2. To change the color of a pixel, send an atPoint:put: message to
the image. The first argument is the location of the pixel
and the second argument is a color number that exists in
the image’s palette.

| gc logo oldColor newColor |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
logo := LogoExample logo.

"Change each black pixel to white, and vice versa."
0 to: logo height -1 do: [:y |

0 to: logo width - 1 do: [:x |
oldColor := logo atPoint: x@y. "Variant Step 1"
oldColor = 1

ifTrue: [newColor := 0]
ifFalse: [newColor := 1].

logo atPoint: x@y put: newColor]]. "Variant Step 2"

logo displayOn: gc

See Also
■ “Creating a Color” on page 686

■ “Changing an Image’s Color Palette” on page 696

■ “Changing the Policy for Rendering Colors” on page 698

Chapter 30 Images, Cursors, and Icons

666 VisualWorks Cookbook, Rev. 2.0

Masking Part of an Image

Strategy

Sometimes an image contains extraneous material that needs
to be removed. The basic steps show how to copy a rectangular
portion.

When the desired portion of an image is not rectangular, you
can create a Mask whose shape matches the desired portion. The
mask is then used as a kind of stencil through which the image
is displayed onto a graphics context.

Basic Steps
1. Create a display surface containing the image by sending

an asRetainedMedium message to the image.

2. Send a completeContentsOfArea: message to the display surface.
The argument is a rectangle that defines the desired portion
of the image. The copied portion is returned as an image.

| gc logo subImage pixmap copyRect |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
logo := LogoExample logo magnifiedBy: 2@2.

pixmap := logo asRetainedMedium. "Basic Step 1"
copyRect := 0@0 extent: (logo width @ logo height / 2) rounded.

subImage := pixmap completeContentsOfArea: copyRect. "Basic Step 2"
subImage displayOn: gc at: 10@10.

You can mask out
a rectangular portion
of an imag e . . .

. . . or any other shape

Masking Part of an Image

VisualWorks Cookbook, Rev. 2.0 667

Variant

Masking a Nonrectangular Portion
1. Create a display surface on which the image has been

displayed by sending asRetainedMedium to the image.

2. Create the desired mask by sending an extent: message to the
Mask class. The argument is a Point indicating the size of the
mask. You can display the desired shape or shapes on the
Mask as with a window or other display surface (in the
example, a solid oval is displayed). The shapes on the mask
define the regions through which the image will be visible.

3. Send a copyArea:from:sourceOffset:destinationOffset: message to the
graphics context of the destination display surface (in the
example, the scratch window). The copyArea argument is the
mask. The from argument is the graphics context of the
source display surface (the pixmap containing the logo).
The sourceOffset argument is a Point indicating the origin of the
mask when placed over the source display surface. The desti-
nationOffset argument is the origin of the subimage when
displayed on the destination display surface.

| gc logo pixmap ovalMask |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
logo := LogoExample logo magnifiedBy: 2@2.
pixmap := logo asRetainedMedium. "Variant Step 1"

ovalMask := Mask extent: 66@66. "Variant Step 2"
ovalMask graphicsContext

displayWedgeBoundedBy: ovalMask bounds
startAngle: 0
sweepAngle: 360.

gc copyArea: ovalMask "Variant Step 3"
from: pixmap graphicsContext
sourceOffset: 0@0
destinationOffset: 10@10.

Chapter 30 Images, Cursors, and Icons

668 VisualWorks Cookbook, Rev. 2.0

Expanding or Shrinking an Image

Strategy

You can get a copy of an image that has been magnified or
shrunken in the x dimension, the y dimension, or both, as
shown in the basic steps.

Basic Steps
1. To get an expanded copy of an image, send a magnifiedBy:

message to the image. The argument is a Point whose x value
is multiplied by the width of the image to derive the width of
the expanded version; similarly, the y value controls the
height of the expanded version.

2. To shrink an image, send a shrunkenBy: message to the image.
The argument is a point that is used as a divisor to reduce
the width and height in the shrunken version.

| gc logo bigLogo tinyLogo |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
logo := LogoExample logo.

bigLogo := logo magnifiedBy: 1@2. "Basic Step 1"
tinyLogo := logo shrunkenBy: 1@2. "Basic Step 2"

logo displayOn: gc.
bigLogo displayOn: gc at: logo extent.
tinyLogo displayOn: gc at: logo extent + bigLogo extent.

Flopping an Image

VisualWorks Cookbook, Rev. 2.0 669

Flopping an Image

Strategy

Sometimes you need a mirror copy of an image. The basic steps
show how to get a reflected copy in which the imaginary mirror
is aligned with the x axis, the y axis, or both. This process of
rotating an image about the x axis or the y axis is known as
flopping an image, from the photographic process in which a
negative is flopped onto its backside to produce a mirror image.

Basic Steps
1. To flop an image about the x axis, send a reflectedInX message

to the image.

2. To flop an image about the y axis, send a reflectedInY
message.

3. To flop an image about both axes, send a reflectedInX message
followed by a reflectedInY message.

| gc helpImage |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
helpImage := VisualLauncher helpIcon asImage.

helpImage
displayOn: gc at: 10@10.

helpImage reflectedInX "Basic Step 1"
displayOn: gc at: 60@10.

helpImage reflectedInY "Basic Step 2"
displayOn: gc at: 10@60.

helpImage reflectedInX reflectedInY "Basic Step 3"
displayOn: gc at: 60@60.

Chapter 30 Images, Cursors, and Icons

670 VisualWorks Cookbook, Rev. 2.0

Rotating an Image

Strategy

You can rotate an image about the z axis in 90-degree incre-
ments, as shown in the basic step.

Each rotated copy uses time and memory resources. For a
series of rotations, you can reduce the resources required by
reusing the same scratch image for each subsequent copy, as
shown in the variant. The scratch image must be of the same
size as the unrotated image, so this technique works only when
all images in the series are the same size.

Basic Step
1. Send a rotatedByQuadrants: message to the image. The

argument is an integer indicating how many 90-degree
rotations you want. A rotated copy of the image is returned.

| gc helpImage rotatedImage |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
helpImage := VisualLauncher helpIcon asImage.

rotatedImage := helpImage rotatedByQuadrants: 1. "Basic Step"

helpImage
displayOn: gc at: 10@10.

rotatedImage
displayOn: gc at: 60@10.

Rotating an Image

VisualWorks Cookbook, Rev. 2.0 671

Variant

Reusing the Rotated Image
1. Create a scratch image the same size as the image that is to

be rotated by sending a copyEmpty message to the original
image.

2. Send a rotateByQuadrants:to: message to the image to be copied.
The first argument is the number of quadrants to rotate the
image. The second argument is the scratch image.

| gc helpImage scratchImage |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
helpImage := VisualLauncher helpIcon asImage.

scratchImage := helpImage copyEmpty. "Variant Step 1"

1 to: 4 do: [:quads |
helpImage rotateByQuadrants: quads to: scratchImage. "Variant Step 2"
scratchImage displayOn: gc at: (60 * quads) @ 10]

Chapter 30 Images, Cursors, and Icons

672 VisualWorks Cookbook, Rev. 2.0

Layering Two Images

Strategy

You can achieve a variety of layering effects by combining two
images and applying a filtering algorithm to the overlapping
portions. VisualWorks provides 16 built-in algorithms, called
combination rules. The rules are numbered 0 through 15, and
the more commonly used rules have names. Thus, sending an
erase message to the RasterOp class returns the combination rule
for erasing shared pixels from the combined image. Combining
two images involves copying a region from one image (the
source) onto the other image (the destination), applying the
combination rule.

Raster operations work correctly only on monochrome screens
that have the most commonly used polarity characteristics. On
color screens and on monochrome screens of the opposite
polarity, the effects will be unpredictable. Because of this, only
the RasterOp over rule is portable across screen types.

Basic Steps
1. To preserve the destination image in its unchanged state,

make a copy on which to merge the source image.

Layering Two Images

VisualWorks Cookbook, Rev. 2.0 673

2. Send a copy:from:in:rule: message to the destination image (in
the example, triangle). The copy argument is a rectangle identi-
fying the region in the destination image to be merged with
the source image (the lower part of the triangle). The from
argument is the origin of the rectangle within the source
image (the origin of the circle, because we want to copy the
entire circle). The in argument is the source image. The rule
argument is an integer identifying a combination rule
(which can be derived by sending and, over, erase, reverse, under,
or reverseUnder to the RasterOp class).

| gc triangle circle scratch |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

triangle := Pixmap extent: 50@100.
triangle graphicsContext

displayPolygon: (Array
with: 0@0
with: 0@50
with: 50@50).

triangle := triangle asImage.

circle := Pixmap extent: 50@50.
circle graphicsContext

displayDotOfDiameter: 50
at: 25@25.

circle := circle asImage.

0 to: 15 do: [:rule |
scratch := triangle copy. "Basic Step 1"
scratch "Basic Step 2"

copy: (0@20 extent: 50@50)
from: 0@0
in: circle
rule: rule.

scratch displayOn: gc at: (50 * rule \\ 400) @ (50 * rule // 400 * 100)]

Chapter 30 Images, Cursors, and Icons

674 VisualWorks Cookbook, Rev. 2.0

Caching an Image

Strategy

A display surface such as a Pixmap usually can be displayed on
another display surface (such as a window) more quickly than
an equivalent Image. However, an Image has greater longevity
because it does not require a resource from the operating
system, and thus it survives when you quit and restart Visual-
Works. A CachedImage combines the longevity of an Image with the
displaying speed of a display surface. Whenever its display
surface is unavailable, as when it has been destroyed by a save-
and-restart operation, it is recreated from the image automati-
cally. This relieves your application from having to recreate
such display surfaces manually. The images used by Visual-
Works, such as the insertion point in the text editor, use cached
images in this way.

Note that a CachedImage must be treated like a display surface,
not an image. For example, you cannot rotate a CachedImage.

Basic Step
➤ Create a CachedImage by sending an on: message to that class.

The argument is the image that is to be cached.

| gc logo |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

logo := CachedImage on: LogoExample logo. "Basic Step"
logo displayOn: gc.

Animating an Image

VisualWorks Cookbook, Rev. 2.0 675

Animating an Image

Strategy

Animating an image, or any graphic object, consists of creating
a loop in which the object is drawn and erased at successive
locations along a path. All subclasses of VisualComponent,
including Image, can animate themselves in this way, as shown
in the basic step.

The first technique is limited to a single object, so it is not
useful when multiple objects are being animated, nor when the
object has multiple phases, such as a walking robot. This tech-
nique also suffers from a phenomenon known as flashing,
which results when the new location overlaps the previous
location—the overlapping pixels are first erased (unnecessarily)
and then redrawn.

For smoother animation, a technique called double buffering is
used. With double buffering, when the new location overlaps
the old location, only the pixels that need to be erased or drawn
are affected. Double buffering is also useful when multiple
objects are being animated together, because an entire scene
can be assembled on a hidden Pixmap and then substituted for
the current scene all at once. Double buffering tends to be
slower, especially in a medium to large window. The variant
demonstrates a technique for double buffering during
animation.

Basic Step
➤ Send a follow:while:on: message to the image. The follow

argument is a block in which the origin of the image is
shifted to the next location in the path. The while argument
is a block that provides a test for ending the display loop.

Chapter 30 Images, Cursors, and Icons

676 VisualWorks Cookbook, Rev. 2.0

The on argument is the graphics context of the display
surface on which the animation is to take place.

| gc logo origin jump |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
logo := LogoExample logo.
origin := 0@0.
jump := 3@3.

logo "Basic Step"
follow: [origin := origin + jump]
while: [origin x < 400]
on: gc.

Variant

Animating with Double Buffering
1. Create a Pixmap of the same size as the window on which the

animation is to take place by sending an extent: message to
the Pixmap class. The argument is a rectangle with the
window’s dimensions, which can be derived by sending a
clippingBounds message to the window’s graphics context.

2. Create a loop in which the erase-and-display operations
occur.

3. Inside the loop, begin by moving the origin of each object to
be animated.

4. Still inside the loop, erase the Pixmap by sending a clear
message to it.

5. Still inside the loop, display each animated object in its new
location.

6. Still inside the loop, display the Pixmap on the window.

| gc buffer logo windowSize origin1 origin2 jump bufferGC |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
windowSize := gc clippingBounds extent.
logo := LogoExample logo.
origin1 := 0@0.
origin2 := 360@0.
jump := 5.

Animating an Image

VisualWorks Cookbook, Rev. 2.0 677

buffer := Pixmap extent: windowSize. "Variant Step 1"
bufferGC := buffer graphicsContext.

80 timesRepeat: ["Variant Step 2"
origin1 := origin1 + jump. "Variant Step 3"
origin2 := (origin2 x - jump) @ (origin2 y + jump).

"Clear the buffer, then assemble the next scene."
buffer clear. "Variant Step 4"
logo displayOn: bufferGC at: origin1. "Variant Step 5"
logo displayOn: bufferGC at: origin2.

"Display the next scene."
buffer displayOn: gc] "Variant Step 6"

Chapter 30 Images, Cursors, and Icons

678 VisualWorks Cookbook, Rev. 2.0

Creating a Cursor

Strategy

The cursor is familiar to you as the pictorial object that repre-
sents the mouse pointer. A variety of built-in cursors are avail-
able to indicate various kinds of application activity, such as an
hourglass for when the user must wait for processing to be
completed. The basic step shows how to access one of the built-
in cursors. The first variant shows a technique for displaying all
of the cursors with their names, so you can choose an appro-
priate one.

The second variant shows how to create a cursor from scratch.
The technique requires creating an image that defines the
appearance of the cursor. In addition, a second image is used
as a mask to define the opaque areas in the first image. For
example, the familiar arrow cursor has a mask that is arrow-
shaped but slightly larger than the arrow, so that the arrow has
a one-pixel border of opacity.

A cursor has a control point or hot spot, which is the single
pixel that defines the cursor’s location on the screen. For the
arrow cursor, for example, the control point is at the tip of the
arrow. When creating a new cursor, you must also specify its
control point, as shown in the second variant.

Basic Step
➤ The Cursor class provides methods for accessing the built-in

cursors. Send one of those messages to the Cursor class to

Creating a Cursor

VisualWorks Cookbook, Rev. 2.0 679

access the corresponding cursor. (To see the available
cursors, try the first variant below.)

| gc cursor |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

cursor := Cursor wait. "Basic Step"
cursor displayOn: gc at: 10@10.

Variants

V1. Displaying the Available Cursors
1. Get a list of the methods for accessing built-in cursors by

sending a listAtCategoryNamed: message to the Cursor class
organization. The argument is #constants (the name of the
protocol containing the methods).

2. Create a loop in which each cursor is displayed along with
its name. (Because you probably won’t use this code in an
application, it won’t be described in detail.)

| gc cursorNames index topLeftMargin columnWidth rowHeight x y cursor |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
index := 0.
topLeftMargin := 10.
columnWidth := 140.
rowHeight := 30.

cursorNames := Cursor class organization "Variant Step 1"
listAtCategoryNamed: #constants.

cursorNames do: [:cName | "Variant Step 2"
x := topLeftMargin + (columnWidth * (index//8)).
y := topLeftMargin + (rowHeight * (index\\8)).
cursor := Cursor perform: cName.

cursor displayOn: gc at: x@y.
cName displayOn: gc at: (x + 25) @ (y + 10).
index := index + 1]

Chapter 30 Images, Cursors, and Icons

680 VisualWorks Cookbook, Rev. 2.0

V2. Creating a New Cursor

Online example: CursorExample

1. Create an image that provides the pictorial element in the
cursor. If you use the Image Editor to create the image, you
must convert its palette to a color-based palette rather than
a coverage-based one. To do so, edit the resource method
that defines the image, substituting MappedPalette whiteBlack (or
another two-color palette) for the default CoveragePalette mono-
MaskPalette.

2. Create a coverage-based image that defines the opaque
portion of the first image. The Image Editor can be used to
create this image. Typically, it is the same shape as the
image from step 1, but completely darkened and one pixel
larger on each side.

3. Create the cursor by sending an image:mask:hotSpot:name:
message to the Cursor class. The image argument is the color-
based image that you created in step 1. The mask argument
is the coverage-based image from step 2. The hotSpot
argument is a point indicating which pixel in the image is
the control point. The name argument is a string containing
a descriptive name for the cursor. The name is of little
importance, but it is displayed when you inspect a cursor.

| cursor colorImage maskImage |
colorImage := CursorExample townCrierForCursor. "V2 Step 1"
maskImage := CursorExample shadow. "V2 Step 2"

cursor := Cursor "V2 Step 3"
image: colorImage
mask: maskImage
hotSpot: 8@8
name: 'townCrier'.

cursor showWhile: [(Delay forSeconds: 3) wait].

Changing the Current Cursor

VisualWorks Cookbook, Rev. 2.0 681

Changing the Current Cursor

Strategy

By default, an arrow cursor is displayed and moves in response
to mouse movements. You can display a different cursor as a
way of indicating that your application is processing informa-
tion (reading or writing data, for example). Changing the cursor
is also a means of indicating to the user of your application that
a certain kind of input is expected—for example, the crossHair
cursor is typically used to indicate that a drawing operation is
expected. The basic steps show how to display a different
cursor and then revert to the normal cursor when appropriate.

In the example, the SketchController1 causes the cursor to change
to a cross-hair whenever it comes within the boundaries of the
SketchView1.

Basic Step

Online example: CustomView1Example and SketchController1

➤ Send a showWhile: message to the cursor. The argument is a
block containing the actions that are to take place while the
cursor is in its changed state. After the actions in the block
are finished, the cursor will return to normal automatically.
(In the example, the controller changes the cursor for as
long as it holds onto control.)

controlLoop
"Change the cursor to a cross-hair for drawing."

Cursor crossHair showWhile: [super controlLoop]. "Basic Step"

Chapter 30 Images, Cursors, and Icons

682 VisualWorks Cookbook, Rev. 2.0

Creating an Icon

Strategy

Most often used to represent a collapsed window, an icon typi-
cally provides a pictorial clue to the nature of the window. The
basic steps show how to create an icon.

Basic Steps
1. Create an Image containing the pictorial element for the icon.

You can use the Image Editor to create the image and save
it in a method (in the example, the image is returned by the
townCrier method of the CursorExample class).

2. Create a Mask containing the image by sending an
asRetainedMedium message to the image.

3. Create an icon by sending an image: message to the Icon
class. The argument is the mask from step 2.

| icon gc image mask |

image := CursorExample townCrier. "Basic Step 1"
mask := image asRetainedMedium. "Basic Step 2"

gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

icon := Icon image: mask. "Basic Step 3"
icon displayOn: gc at: 10@10.

Note that the Icon instance takes care of reconstructing the
Mask instance when you quit and restart VisualWorks.

Associating an Icon with a Window

VisualWorks Cookbook, Rev. 2.0 683

Associating an Icon with a Window

Strategy

The default icon that VisualWorks displays for each collapsed
window may not be appropriate for your application’s windows.
The basic step shows how to associate a custom icon with a
window. This is typically done in the method that creates the
window.

Basic Step
➤ Send an icon: message to the window. The argument is the

icon that is to be displayed when the window is collapsed.

| icon window mask |
mask := CursorExample townCrier asRetainedMedium.
icon := Icon image: mask.
window := ApplicationWindow new.

window icon: icon. "Basic Step"

window open.
(Delay forSeconds: 1) wait.
window collapse.

VisualWorks Cookbook, Rev. 2.0 685

Chapter 31

Color

Creating a Color 686
Creating a Coverage 690
Creating a Tiled Pattern 692
Applying a Color or Pattern 694
Changing an Image’s Color Palette 696
Changing the Policy for Rendering Colors 698

Chapter 31 Color

686 VisualWorks Cookbook, Rev. 2.0

Creating a Color

Strategy

The Properties Tool enables you to choose and apply a color for
a window or widget. When the color of a graphic element needs
to be changed dynamically, you can create a color programmat-
ically. A set of predefined colors is provided by the ColorValue
class, as demonstrated in the basic step. The first variant
shows a technique for displaying all of the color constants along
with their names.

When a predefined color will not suffice, you can create a color
by specifying its percentages of red, green, and blue (the
primary colors in the world of computer monitors), as shown in
the second variant. This approach enables you to create fine
gradations of color and lends itself to algorithmic generation of
color, in which numeric values are represented as colors.

For some applications, the red-green-blue or RGB approach to
creating a color does not suffice. This is especially so when
three-dimensional shading effects are involved, because it is
not easy to darken or lighten a color when you cannot manipu-
late a black or white component. For this reason you can also

Creating a Color

VisualWorks Cookbook, Rev. 2.0 687

create a color using hue, saturation, and brightness (known as
HSB color), as shown in the third variant.

Basic Step
➤ Send a cyan message to the ColorValue class, or another

message identifying one of the predefined color constants.

| gc color |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

color := ColorValue cyan. "Basic Step"

gc paint: color.
gc displayDotOfDiameter: 400 at: 200@200.

Variants

V1. Displaying the Predefined Colors
1. Get the list of color constants by sending a constantNames

message to the ColorValue class.

2. Create a loop in which a thick line is drawn in each color,
with the color name displayed at the end of the line.
(Because this is not likely to be a loop that you will use in
an application, it will not be described in detail.)

| gc endPoint colors |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
gc lineWidth: 7.
endPoint := 350@0.

colors := ColorValue constantNames. "V1 Step 1"

colors do: [:c | "V1 Step 2"
endPoint := endPoint + (-10@12).
gc paint: (ColorValue perform: c).
gc displayLineFrom: 0@0 to: endPoint.
gc paint: ColorValue black.
c asString displayOn: gc at: endPoint + (0@8)]

Chapter 31 Color

688 VisualWorks Cookbook, Rev. 2.0

V2. Creating a Color from Red, Green, and Blue
➤ Send a red:green:blue: message to the ColorValue class. All argu-

ments are numbers between zero and one, representing the
intensity of their respective colors. (In the example, the
intensity of green is varied while the red and blue intensi-
ties remain at zero.)

| gc origin |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
origin := 0@0.

1 to: 0 by: -0.01 do: [:grn |
gc paint: (ColorValue red: 0.0 green: grn blue: 0.0). "V2 Step"
origin := origin + 4.
gc displayRectangle: (origin extent: 400 - origin)]

V3. Creating a Color from Hue, Saturation,
and Brightness
➤ Send a hue:saturation:brightness: message to the ColorValue class.

The hue argument is a number from 0 to 1, where 0 is red,
0.333 is green, 0.667 is blue, and 1 is red again. The
saturation argument is a number from 0 to 1, representing
minimum vividness (white) to full color; a more saturated
color makes an object appear closer to the viewer. The
brightness argument is a number from 0 to 1, representing
minimum brightness (black) to full color; varying the
brightness is useful for representing shadows.

| gc r x y |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
r := 50.
gc lineWidth: 2.

gc translation: 150@150.
0 to: 1 by: 0.005 do: [:i |

x := (i * Float pi) cos * r.
y := (i * Float pi) sin * r / 2.
gc paint: (ColorValue hue: 0.0 saturation: 0.5 brightness: i). "V3 Step"
gc displayLineFrom: x@y to: 0@-100].

Creating a Color

VisualWorks Cookbook, Rev. 2.0 689

gc translation: 200@200.
0 to: 1 by: 0.005 do: [:i |

x := (i * Float pi) cos * r.
y := (i * Float pi) sin * r / 2.
gc paint: (ColorValue hue: 0.0 saturation: 0.75 brightness: i).
gc displayLineFrom: x@y to: 0@-100].

gc translation: 250@250.
0 to: 1 by: 0.005 do: [:i |

x := (i * Float pi) cos * r.
y := (i * Float pi) sin * r / 2.
gc paint: (ColorValue hue: 0.0 saturation: 1.0 brightness: i).
gc displayLineFrom: x@y to: 0@-100]

Chapter 31 Color

690 VisualWorks Cookbook, Rev. 2.0

Creating a Coverage

Strategy

In a window or Pixmap, each pixel can be assigned a different
color. In a Mask, each pixel is assigned a level of opaqueness—
that is, 0 (transparent) or 1 (opaque). The mask is then used as
a stencil through which a graphic image is projected onto
another display surface. Each opaque pixel in the mask causes
the corresponding pixel in the image to be displayed. (This
works the opposite way from a physical stencil, in which the
opaque regions block paint.) A CoverageValue is used to represent
the level of opaqueness associated with a pixel, as shown in the
basic step.

Basic Step
➤ Send a coverage: message to the CoverageValue class. The

argument is 0 (transparent) or 1 (opaque). As an alternative,
you can also send a transparent or opaque message to the
CoverageValue class.

| gc mask |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

Creating a Coverage

VisualWorks Cookbook, Rev. 2.0 691

mask := Mask extent: 400@400.

mask graphicsContext
displayDotOfDiameter: 400 at: 200@200.

mask graphicsContext
paint: (CoverageValue coverage: 0); "Basic Step"
displayRectangle: (59@59 extent: 283@283).

mask displayOn: gc at: 0@0.

Chapter 31 Color

692 VisualWorks Cookbook, Rev. 2.0

Creating a Tiled Pattern

Strategy

A Pattern is created by filling a space with a single graphic image
that is repeated over and over, like tiles covering a floor. A
pattern can be used in the same situations in which you would
use a solid color. The basic steps show how to create a tile and
from it, a pattern.

By default, the first tile in the pattern is displayed at the origin
of the display surface. You can shift that first tile, and with it
the entire pattern. This shift, known as the tile phase, is some-
times helpful for aligning the edges of the tiles with the edges of
the graphic object that is being painted, as in the variant.

Basic Steps
1. Create the graphic image that will serve as the repeating tile

in the pattern. You can also use a window, Pixmap, or Mask as
the tile.

2. Send an asPattern message to the tile.

Creating a Tiled Pattern

VisualWorks Cookbook, Rev. 2.0 693

| gc tile |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

tile := Image parcPlaceDigitalkLogo shrunkenBy: 4@4. "Basic Step 1"
tile := tile asPattern. "Basic Step 2"

gc paint: tile.
gc displayRectangle: (50@50 extent: 300@300).

Variant

Adjusting a Pattern’s Tile Phase
➤ Send a tilePhase: message to the graphics context of the

display surface on which the patterned object is to be
displayed. The argument is a point that defines the origin of
the first tile in the pattern. (As in the example, the tile
phase is often the same as the origin of the painted object,
which aligns the tiles with the top and left edges of the
object.)

| gc tile |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
tile := Image parcPlaceDigitalkLogo shrunkenBy: 4@4.
tile := tile asPattern.
gc paint: tile.

gc tilePhase: 50@50. "Variant Step"

gc displayRectangle: (50@50 extent: 300@300).

Chapter 31 Color

694 VisualWorks Cookbook, Rev. 2.0

Applying a Color or Pattern

Strategy

The Properties Tool is the best means of applying color to a
widget or a window. For graphic images, the color is defined
when the image is created. For colorless graphic objects such
as geometrics, the basic step shows how to arrange for a partic-
ular paint to be used.

Basic Step
➤ Send a paint: message to the graphics context of the display

surface on which the object is to be displayed. The
argument is a color, a pattern, or in the case of a Mask, a
coverage.

| gc tile |
tile := Pixmap extent: 10@10.
gc := tile graphicsContext.

"Tile background"
gc paint: ColorValue chartreuse. "Basic Step"
gc displayRectangle: (0@0 extent: 10@10).

Applying a Color or Pattern

VisualWorks Cookbook, Rev. 2.0 695

"Tile foreground"
gc paint: ColorValue red.
gc displayDotOfDiameter: 10 at: 4@4.

"Patterned circle"
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
gc paint: tile asPattern. "Basic Step"
gc displayDotOfDiameter: 400 at: 200@200.

See Also
■ “Coloring a Widget” on page 75

■ “Coloring a Window” on page 94

■ “Coloring a Geometric” on page 649

■ “Coloring Pixels in an Image” on page 664

Chapter 31 Color

696 VisualWorks Cookbook, Rev. 2.0

Changing an Image’s Color Palette

Strategy

In a graphic image, each pixel is associated with a color in the
image’s palette of colors. One way of changing the color scheme
is to substitute a different palette. By placing the desired new
color at the old color’s position in the palette, you can effectively
change the color of every pixel in the image that had the old
color. The basic steps show how to create a color palette and
install it in the image. The new palette must have the same
number of color entries as the old palette. In the example, every
pixel that was previously white is converted to yellow by
changing the white entry in the palette to yellow.

When a color palette differs from the palette used by the display
surface, a temporary image is created so VisualWorks can
simulate the desired colors when necessary. This step can take
a significant amount of time. To display an image quickly,
convert it to use the default palette that is used by display
surfaces, as shown in the variant. This is especially helpful
when the image is to be displayed more than once.

Basic Steps
1. Create an array containing the new colors. To access the

existing palette’s array of colors, send a palette message to
the image, and then send a colors message to the resulting
palette. You can then modify the color array as desired (in
the example, we locate the white entry and substitute the
color yellow).

2. Create a new palette by sending a withColors: message to the
MappedPalette class. The argument is the new or modified
color array.

Changing an Image’s Color Palette

VisualWorks Cookbook, Rev. 2.0 697

3. Install the new palette by sending a palette: message to the
image. The argument is the new palette.

| gc palette image colors whiteIndex |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
image := InputFieldSpec paletteIcon asImage.

colors := image palette colors. "Basic Step 1"
whiteIndex := colors indexOf: ColorValue white.
colors at: whiteIndex put: ColorValue yellow.

palette := MappedPalette withColors: colors. "Basic Step 2"

image := image palette: palette. "Basic Step 3"
image displayOn: gc at: 10@10.

Variant

Converting an Image to Use the Default Palette
➤ Send a convertToPalette: message to the image. The argument

is the default color palette, which can be accessed by
sending a default message to the Screen class and then
sending a colorPalette message to the resulting screen. (For a
coverage-based image, send a coveragePalette message instead
of colorPalette.)

| gc image |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
image := Image parcPlaceDigitalkLogo magnifiedBy: 2@2.

image := image convertToPalette: Screen default colorPalette. "Variant Step"
image displayOn: gc at: 10@10.

Chapter 31 Color

698 VisualWorks Cookbook, Rev. 2.0

Changing the Policy for Rendering Colors

Strategy

When a graphic image contains a color that does not exist in the
screen’s palette, a neighboring color is used instead. Visual-
Works provides three different renderers for deciding which
color to substitute for a missing color. Of the three, NearestPaint
is the fastest and is the default on color screens. OrderedDither is
the default on monochrome and gray-scale screens. ErrorDiffusion
uses a more sophisticated color-blending algorithm than
OrderedDither does, but it tends to be slower.

The basic step shows how to convert a graphic image of three
colored spotlights to the screen’s palette using a specified
renderer. Converting the image in this way makes it possible to
display the converted image multiple times, instead of leaving
it to the display surface to perform the conversion each time the
original image is displayed on it.

The image can be converted to a palette other than the screen’s
palette. In the first variant, the color image is converted to a
monochrome palette. This technique is useful when you want
to show what the image looks like on a screen that has a limited
palette.

Graphic objects other than images do not have their own color,
so the rendering is performed by the graphics context of the
display surface. The second variant shows how to install the
desired renderer in the graphics context. The example paints a
series of 4-pixel squares successively, each time shifting the
color from red toward green.

Basic Step
➤ Send a convertForGraphicsDevice:renderedBy: message to the image.

The first argument is typically Screen default. The second
argument is NearestPaint when you want to use the nearest

Changing the Policy for Rendering Colors

VisualWorks Cookbook, Rev. 2.0 699

available paint from the screen’s palette, OrderedDither when
you want to synthesize the nonexistent color by blending
neighboring colors, and ErrorDiffusion when you want to use a
more sophisticated (but often slower) blending algorithm.

"THIS EXAMPLE IS INTENDED TO BE USED ON
A COLOR SCREEN. IT CAN TAKE SEVERAL MINUTES."
| gc r g b im |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
im := Image

extent: 60@60
depth: 15
palette: (FixedPalette

redShift: 10 redMask: 31
greenShift: 5 greenMask: 31
blueShift: 0 blueMask: 31).

0 to: 59 do: [:x |
0 to: 59 do: [:y |

r := 1 - ((x@y - (10@10)) r / 30) max: 0.
g := 1 - ((x@y - (20@50)) r / 30) max: 0.
b := 1 - ((x@y - (50@30)) r / 30) max: 0.
im atPoint: x@y put: (im palette

indexOfPaintNearest: (ColorValue red: r green: g blue: b))]].

(im convertForGraphicsDevice: Screen default "Basic Step"
renderedBy: NearestPaint new)

displayOn: gc at: 10@10.

(im convertForGraphicsDevice: Screen default "Basic Step"
renderedBy: OrderedDither new)

displayOn: gc at: 80@10.

(im convertForGraphicsDevice: Screen default "Basic Step"
renderedBy: ErrorDiffusion new)

displayOn: gc at: 150@10.

Chapter 31 Color

700 VisualWorks Cookbook, Rev. 2.0

Variants

V1. Converting an Image to a Specific Palette
➤ Send a convertToPalette:renderedBy: message to the image. The

first argument is the desired palette (in the example, a
monochrome palette). The second argument is the desired
renderer (a NearestPaint, an OrderedDither, or an ErrorDiffusion).

| gc r g b im |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
im := Image

extent: 60@60
depth: 15 palette: (FixedPalette

redShift: 10 redMask: 31
greenShift: 5 greenMask: 31
blueShift: 0 blueMask: 31).

0 to: 59 do: [:x |
0 to: 59 do: [:y |

r := 1 - ((x@y - (10@10)) r / 30) max: 0.
g := 1 - ((x@y - (20@50)) r / 30) max: 0.
b := 1 - ((x@y - (50@30)) r / 30) max: 0.
im atPoint: x@y put: (im palette

indexOfPaintNearest: (ColorValue brightness: 1-((1-r)*(1-g)*(1-
b))))]].

(im convertToPalette: MappedPalette whiteBlack "V1 Step"
renderedBy: NearestPaint new)

displayOn: gc at: 10@10.

(im convertToPalette: MappedPalette whiteBlack "V1 Step"
renderedBy: OrderedDither new)

displayOn: gc at: 80@10.

(im convertToPalette: MappedPalette whiteBlack "V1 Step"
renderedBy: ErrorDiffusion new)

displayOn: gc at: 150@10.

Changing the Policy for Rendering Colors

VisualWorks Cookbook, Rev. 2.0 701

V2. Setting the Rendering Policy
for Nonimage Graphics
1. Install a paint policy in the graphics context of the display

surface by sending a paintPolicy: message to the graphics
context. The argument is a PaintPolicy, typically a new
instance.

2. Set the rendering algorithm by sending a paintRenderer:
message to the paint policy. The argument is a NearestPaint or
an OrderedDither (but not an ErrorDiffusion, which is only used
with images). By default, a new OrderedDither has an order of
6, which means it synthesizes 65 (2 to the sixth, plus 1)
intermediate color values between each pair of neighboring
colors in the palette. You can set the order by sending an
order: message to the OrderedDither class to create an instance;
the argument is the desired order number.

| gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

gc paintPolicy: (PaintPolicy new imageRenderer: OrderedDither new).
"V2 Step 1"

gc paintPolicy paintRenderer: NearestPaint new. "V2 Step 2"
0 to: 60 by: 4 do: [:i |

0 to: 60 by: 4 do: [:j |
gc paint: (ColorValue red: i/60 green: j/60 blue: 0).
gc displayRectangle: (i@j+(10@10) extent: 4@4)]].

gc paintPolicy paintRenderer: (OrderedDither order: 1). "V2 Step 2"
0 to: 60 by: 4 do: [:i |

0 to: 60 by: 4 do: [:j |
gc paint: (ColorValue red: i/60 green: j/60 blue: 0).
gc displayRectangle: (i@j+(80@10) extent: 4@4)]].

gc paintPolicy paintRenderer: (OrderedDither order: 6). "V2 Step 2"
0 to: 60 by: 4 do: [:i |

0 to: 60 by: 4 do: [:j |
gc paint: (ColorValue red: i/60 green: j/60 blue: 0).
gc displayRectangle: (i@j+(150@10) extent: 4@4)]].

VisualWorks Cookbook, Rev. 2.0 703

Chapter 32

Adapting Domain Models to
Widgets

Setting up Simple Value Models (ValueHolder) 704
Adapting Part of a Domain Model (AspectAdaptor) 706
Synchronizing Updates (Buffering) 710
Adapting a Collection (SelectionInList) 713
Adapting a Collection Element 715
Creating a Custom Adaptor (PluggableAdaptor) 717

See Also
■ “Changing the Range Dynamically” on page 270

Chapter 32 Adapting Domain Models to Widgets

704 VisualWorks Cookbook, Rev. 2.0

Setting up Simple Value Models (ValueHolder)

Strategy

A widget that presents data (such as an input field) relies on an
auxiliary object called a value model to manage the data it
presents. That is, instead of holding onto the data directly, a
data widget delegates this task to its value model. Thus, when
a data widget accepts input from a user, it sends this data to its
value model for storage. When a data widget needs to update its
display, it asks its value model for the data to be displayed.

A value model provides a uniform set of messages for accessing
the data to be presented. This enables all data widgets to store
and refresh their data in a standard way—by using a value
message to get the data from the value model and a value:
message to send the data to the value model for storage. Other
objects, such as the application model, can also send these
messages to a value model to obtain or change a widget’s data
programmatically.

A data widget is a dependent of its value model in that the
widget depends on its value model to notify it when the relevant
data has changed. The widget responds to such notification by
asking the value model for the new data and displaying it. This
keeps the widget’s display synchronized with changes made
programmatically to the data.

A ValueHolder is the most basic type of value model. As its name
implies, a value holder holds onto the relevant data in an
instance variable. A value holder is most useful for widgets that
accept temporary pieces of information that the interface must
hold onto until they can be further processed.

This input field is a
dependent of the
value holder in the
name variable

Setting up Simple Value Models (ValueHolder)

VisualWorks Cookbook, Rev. 2.0 705

The basic step shows a common way to create a value holder.
The variants demonstrate special-purpose ways.

Basic Step

Online example: Adaptor1Example

➤ Send an asValue message to the data object that is to be
contained (in the example, the number 0 is asked to return
a value holder containing itself).

initializeID
accountID := 0 asValue. "Basic Step"
accountID onChangeSend: #changedID to: self.

Variants

V1. Creating a Value Holder on an Empty String

Online example: Adaptor1Example

➤ Send a newString message to the ValueHolder class. This is
equivalent to the expression String new asValue, and the choice
of which to use is a matter of personal preference.

initializeName
name := ValueHolder newString. "V1 Step"
name onChangeSend: #changedName to: self.

V2. Creating a Value Holder
on a Boolean Value (False)
➤ Send a newBoolean message to the ValueHolder class. This is

equivalent to the expression false asValue.

V3. Creating a Value Holder
on a Decimal Number (0.0)
➤ Send a newFraction message to the ValueHolder class. This is

equivalent to the expression 0.0 asValue.

Chapter 32 Adapting Domain Models to Widgets

706 VisualWorks Cookbook, Rev. 2.0

Adapting Part of a Domain Model (AspectAdaptor)

Strategy

Data widgets are commonly used for presenting data that is
held by some object in the application, such as a domain model.
In such cases, the appropriate value model is an AspectAdaptor,
which is conceptually a pointer to the remote data. An aspect
adaptor has a subject, which is the relevant domain model, and
an aspect, which is the name of the instance variable that holds
the relevant data. An aspect adapter translates the value and
value: messages it receives into accessor and mutator messages
that are understood by its subject.

Subject channel: You can set up an aspect adaptor so that it
obtains its subject from a value holder, called a subject channel.
A subject channel provides indirect access to the subject,
allowing you to programmatically introduce a new subject for
an existing aspect adaptor. This is useful when you want partic-
ular data widget to display data held by successive domain
model instances. The basic steps show how to create an Aspect-
Adaptor with a subject channel. Variant 1 shows the slight modi-
fication required to address a subject directly.

Unusual accessors: By default, an aspect adaptor assumes
that the domain model has accessing messages for getting and
setting the value of the variable, and that those messages can
be derived from the variable’s name—in the example, the
domain model is a Customer1Example, and it provides name and
name: methods for accessing the value of its name variable.
Variant 2 shows how to customize the accessing messages for
a domain model that has unusual names for its accessors.

subject

AspectAdaptor

Name (input field)

Name (variable)

Customer (domain model)

aspect

Adapting Part of a Domain Model (AspectAdaptor)

VisualWorks Cookbook, Rev. 2.0 707

Programmatic changes to data: By default, an aspect adaptor
notices programmatic changes to the data only upon receiving
a value: message. However, a domain model normally changes its
data without sending any messages to the aspect adaptor.
Variant 3 shows how to arrange for such changes to be noticed
by the aspect adaptor (and hence its dependents).

Basic Steps

Online example: Adaptor2Example

This example shows how to set up an aspect adaptor with a
subject channel—a value holder from which the aspect adaptor
will obtain its subject.

1. In an initialize method in the application model, initialize an
instance variable (selectedCustomer) with a value holder that
holds the domain model (a Customer1Example).

2. In an aspect method (accountID), send a subjectChannel: message
to the AspectAdaptor class. The argument is the value holder
you created in step 1.

3. Tell the aspect adaptor which aspect of the domain model to
monitor by sending a forAspect: message to the adaptor. The
argument is a Symbol, typically the name of the desired
instance variable (accountID) in the domain model.

initialize
customers := SelectionInList new.
customers selectionIndexHolder

onChangeSend: #changedCustomer to self.

selectedCustomer := Customer1Example new asValue "Basic Step 1"

accountID
| adaptor |
adaptor := AspectAdaptor subjectChannel: self selectedCustomer.

"Basic Step 2"
adaptor forAspect: #accountID. "Basic Step 3"

adaptor onChangeSend: #redisplayList to: self.
^adaptor

Chapter 32 Adapting Domain Models to Widgets

708 VisualWorks Cookbook, Rev. 2.0

Variants

V1. Addressing the Subject Directly
➤ Send a subject: message to the AspectAdaptor class (instead of a

subjectChannel: message). The argument is a domain model
(instead of a value holder containing the domain model).

V2. Accommodating Unusual Accessors

Use these steps when a domain model provides accessor
methods whose names are different from the instance variable
they access—for example, when the aspect is an instance
variable called income, and its accessors are getIncome and
putIncome:.

Online example: Adaptor2Example

➤ After creating the adaptor, send an accessWith:assignWith:
message to it. The first argument is the name of the domain
model’s method that accesses the desired value. The second
argument is the name of the method that assigns a new
value. (In the example, the message names are address and
address:, and they access an instance variable named address,
so the same effect can be achieved via forAspect: #address).

address
| adaptor |
adaptor := AspectAdaptor subjectChannel: self selectedCustomer.
^adaptor "V2 Step"

accessWith: #address
assignWith: #address:

V3. Monitoring Programmatic Changes

Online example: Adaptor2Example and Customer1Example

1. Send a subjectSendsUpdates: message to the adaptor with the
argument is true. This causes the adaptor to register itself as
a dependent of the subject (in the example, a
Customer1Example).

2. In the domain model class (Customer1Example), edit every
method that alters the data value directly (that is, without

Adapting Part of a Domain Model (AspectAdaptor)

VisualWorks Cookbook, Rev. 2.0 709

going through the adaptor), so that it sends a changed:
message to self. The argument is the aspect that has been
changed (#phoneNumber). This causes the dependent adaptor
to be notified when the domain model makes the relevant
change.

phoneNumber
| adaptor |
adaptor := AspectAdaptor subjectChannel: self selectedCustomer.
adaptor forAspect: #phoneNumber.

adaptor subjectSendsUpdates: true. "V3 Step 1"

^adaptor

formatUSPhoneNumber
| rawPhone rawSize areaCode prefix suffix separator |
rawPhone := self phoneNumber select: [:ch | ch isDigit].
rawSize := rawPhone size.
areaCode := ''.
prefix := ''.
suffix := ''.
separator := '-'.

rawSize > 0 ifTrue: [areaCode :=
rawPhone copyFrom: 1 to: (3 min: rawSize)].

rawSize > 3 ifTrue: [prefix :=
separator,
(rawPhone copyFrom: (4 min: rawSize) to: (6 min: rawSize))].

rawSize > 6 ifTrue: [suffix :=
separator,
(rawPhone copyFrom: (7 min: rawSize) to: (rawSize min: 10))].

self phoneNumber: areaCode, prefix, suffix.
self changed: #phoneNumber. "V3 Step 2"

Chapter 32 Adapting Domain Models to Widgets

710 VisualWorks Cookbook, Rev. 2.0

Synchronizing Updates (Buffering)

Strategy

Frequently, it is useful to delay updating a particular widget’s
value until other widgets in the same series are ready to be
updated. This is especially true in applications that make use
of a database, because a row is updated only after all changes
to the fields in that row have been made. Using
BufferedValueHolders enables you to arrange a trigger channel that
is monitored by all of the widgets in the series.

The trigger channel is a value holder that contains true or false—
putting true in the trigger channel causes all of the dependent
adaptors to update the model. Putting false in the trigger
channel discards the buffered values, canceling the update.

Adaptor3Example provides an OK button that you press after you
enter customer information in the input fields. When you press
the OK button, the values are assigned to the selected customer.

The basic steps show how to connect a series of buffered value
holders to arrange for a simultaneous update. The variant
shows how to discard the buffered values. In the example, this
is done when a new customer is selected.

Basic Steps

Online example: Adaptor3Example

1. In the application model, create an instance variable (in the
example, updateTrigger) to contain the true/false value that
triggers updates.

2. Create an accessing method for the variable.

These input fields
all pass their values
to the model
at the same time
(when the OK button
is clicked)

Synchronizing Updates (Buffering)

VisualWorks Cookbook, Rev. 2.0 711

updateTrigger "Basic Step 2"
^updateTrigger

3. Initialize the variable to a value holder containing false.

initialize
customers := SelectionInList new.
customers selectionIndexHolder onChangeSend: #changedCustomer to:

self.

selectedCustomer := Customer1Example new asValue.

updateTrigger := false asValue. "Basic Step 3"

4. For each widget in the series, place the widget’s value model
in a BufferedValueHolder by sending a subject:triggerChannel:
message to the BufferedValueHolder class. The first argument is
the widget’s value model (in the example, an AspectAdaptor).
The second argument is the trigger channel (updateTrigger).
This is typically done when the widget’s value model is
initialized. Note that the buffered value holder does not
replace the widget’s value model—rather, it contains that
value model.

accountID
| adaptor bufferedAdaptor |
adaptor := AspectAdaptor subjectChannel: self selectedCustomer.
adaptor forAspect: #accountID.

bufferedAdaptor := BufferedValueHolder "Basic Step 4"
subject: adaptor
triggerChannel: self updateTrigger.

^bufferedAdaptor

5. Provide a button, a menu command, or other device with
which the user can indicate that the series of values have
all been edited as much as necessary (in the example,
completion is indicated using an OK button that triggers an
accept action).

Chapter 32 Adapting Domain Models to Widgets

712 VisualWorks Cookbook, Rev. 2.0

6. In the action method (accept), send a value: message to the
trigger channel (updateTrigger). The argument is true.

accept
self updateTrigger value: true. "Basic Step 6"

self redisplayList.

Variant

Discarding the Buffered Values

Online example: Adaptor3Example

➤ Send a value: message to the trigger channel (updateChannel).
The argument is false. This is typically done after confirming
that the user wants to abandon the edited data.

changedCustomer
| chosenCustomer selector |
chosenCustomer := self customers selection.

chosenCustomer isNil
ifTrue: [

self selectedCustomer value: Customer1Example new.
selector := #disable]

ifFalse: [
self selectedCustomer value: chosenCustomer.
selector := #enable].

"Discard changes that were not OK'd."
self updateTrigger value: false. "Variant Step"

"Enable/disable selection-sensitive widgets."
#(#accountID #name #address #phoneNumber #ok)

do: [:componentName
| (self builder componentAt: componentName)

perform: selector].

Adapting a Collection (SelectionInList)

VisualWorks Cookbook, Rev. 2.0 713

Adapting a Collection (SelectionInList)

Strategy

A list or notebook widget is designed to work with a SelectionInList,
which contains a value holder for holding the collection to be
displayed. When the domain model supplies a simple collec-
tion, you can set up a SelectionInList to adapt to it, as shown in the
basic step.

Basic Step

Online examples: Adaptor4Example and Customer2Example

In this example, the application model is Adaptor4Example, and the
domain model is a Customer2Example, which holds an
OrderedCollection of customers.

➤ Put the domain model’s collection in a SelectionInList by
sending an adapt:aspect:list:selection: message to the SelectionInList
class. The adapt: argument is the domain model (in the
example, collectionModel). The aspect: argument is typically the
name of the domain model’s collection variable. The list:
argument is the name of the domain model’s method that
returns the collection. The selection: argument is the name of
the domain model’s method that sets the selection in the
collection.

initialize
collectionModel := Customer2Example new.
customers := SelectionInList "Basic Step"

adapt: collectionModel
aspect: #customers
list: #customers
selection: #selectedCustomer:.

Collection of customers

SelectionInList

customers (list widget)

Chapter 32 Adapting Domain Models to Widgets

714 VisualWorks Cookbook, Rev. 2.0

customers selectionIndexHolder
onChangeSend: #changedCustomer to: self.

selectedCustomer := Customer1Example new asValue.

Adapting a Collection Element

VisualWorks Cookbook, Rev. 2.0 715

Adapting a Collection Element

Strategy

Sometimes a widget is used to display a single element in a
collection. This situation arises when an array or other collec-
tion is used to gather a set of related attributes that would
normally be separate instance variables in a domain model.

In the example, the domain model has a vector that consists of
an array of three numbers, representing the x, y, and z axes. If
the vector were an instance of a hypothetical Vector class and
could respond to vectorlike accessing messages, you could use
AspectAdaptors to hold its three axis values. Because the vector is
a simple array that cannot respond to such messages, you
must use IndexedAdaptors.

An IndexedAdaptor has a subject (the collection) or subject channel
(when the collection is in a value holder) and an index number
(the position of the desired element in the collection).

Basic Steps

Online example: Adaptor5Example

1. Send a subjectChannel: message to the IndexedAdaptor class, with
the value holder containing the collection as the argument.
If the collection is not contained in a value holder, send a
subject: message instead, with the collection as the argu-
ment.

2. Send a forIndex: message to the adaptor. The argument is the
position of the desired element in the collection.

Each of these fields
monitors one of three
elements in an array

Chapter 32 Adapting Domain Models to Widgets

716 VisualWorks Cookbook, Rev. 2.0

xAxis
| adaptor |
adaptor := IndexedAdaptor subjectChannel: self vector. "Basic Step 1"
^adaptor forIndex: 1 "Basic Step 2"

Creating a Custom Adaptor (PluggableAdaptor)

VisualWorks Cookbook, Rev. 2.0 717

Creating a Custom Adaptor (PluggableAdaptor)

Strategy

Occasionally it is convenient to use a custom adaptor that
performs a block of actions each time its value is accessed or
changed. A PluggableAdaptor provides this flexibility. In the
example, a PluggableAdaptor is used to translate an integer such as
342 into a string containing prefixed zeroes ('000342'), saving the
user the trouble of entering the leading zeroes.

A PluggableAdaptor takes three blocks, which enable it to perform
custom actions at three junctures in the flow of communica-
tions between the widget and the domain model:

■ The getBlock: controls what happens when a value is fetched
from the model by the widget. In the example, the block
translates the model’s account number into a zero-padded
string.

■ The putBlock: controls what happens when a value is sent to
the model by the widget. In the example, the zero-padded
string is converted back into a number.

■ The updateBlock: controls when the widget updates itself
based on an update message sent by the model. When the
widget is the only source of changes to the data value, this
block can simply return false. When the data value can be
changed by other objects, the block performs a test to
determine whether the widget should refetch the data
value. Typically this test uses the update block’s second
argument, the aspect, to find out whether the aspect that it
cares about has changed.

This input field uses a PluggableAdaptor
to translate from a number to a
zero-padded string and back again

Chapter 32 Adapting Domain Models to Widgets

718 VisualWorks Cookbook, Rev. 2.0

Basic Steps

Online example: Adaptor6Example

1. Create the custom adaptor by sending an on: message to the
PluggableAdaptor class. The argument is the domain model.

2. Send a getBlock:putBlock:updateBlock: message to the adaptor. The
first block takes one argument: the domain model. The
second block takes two arguments: the model and the value
to be assigned. The third block takes three arguments: the
model, the aspect of the model that was changed, and a
parameter that corresponds to the argument of a changed:with:
message, when applicable.

initialize
accountID := 1.
paddedID := PluggableAdaptor on: self. "Basic Step 1"
paddedID "Basic Step 2"

getBlock: [:model |
| paddedString |
paddedString := model accountID printString.
6 - paddedString size

timesRepeat: [paddedString := '0', paddedString].
paddedString]

putBlock: [:model :value |
model accountID: value asNumber]

updateBlock: [:model :aspect :parameter | false]

VisualWorks Cookbook, Rev. 2.0 719

Index

Symbols
- 431, 518
$ 530
& 38
* 432
** 436
+ 431
, 510, 545
/ 432
// 432
:= 4
< 439
<= 439
<Control>-click xvii
<Meta>-click xvii
<Operate> button xvi
<Select> button xvi
<Shift>-click xvii
<Window> button xvi
= 438
== 438
> 440
>= 440
@ 451, 630
\ 553
\\ 432
^ 20
| 38
~= 438
~~ 439

’ 532

A
abbreviating a string 551
abs message 450
absolute number 450
accelerator

See also shortcut key
access date of a file 596
accessing method 10
accessors

adapting 706
accessWith:assignWith: message 708
action

overriding an inherited 304
action button

adding 164
uses for 164

action method 47
Action property 48
active window, accessing 99
adapt:aspect:list:selection: message 713
adaptor

aspect of a model 706
buffered 710
custom 717
on a collection 713
on a collection element 715
value holder 704

Index

720 VisualWorks Cookbook, Rev. 2.0

Adaptor1Example 705
Adaptor2Example 707, 708
Adaptor3Example 710, 712
Adaptor4Example 713
Adaptor5Example 715
Adaptor6Example 718
add command

in System Browser 29, 31
add: message 497
add:before: message 498
add:beforeIndex: message 498
addAll: message 498
addAll:beforeIndex: message 499
addAllFirst: message 499
addDays: message 471
addFirst: message 498
adding

dates 471
elements to a collection 497
numbers 431
times 482

addItemLabel:value: message 245
addTime: message 482
after: message 513
Align command 65
Align->Distribute command 66
aligning

text 561
text in a field 124
widgets 65

allBold message 574
and: message 38
animating

a graphic image 675
anyButtonPressed message 414
appending

text to a file 599
appendStream message 599
application

closing windows 101
designing 42
grouping its classes 29
inheriting capabilities 302
integrating graphics 652
nesting 305
starting 82

application model
and custom controller 399
combined with domain model 46
connecting to interface 47
description 43

ApplicationDialogController 407
ApplicationModel 302

creating a subclass 27
ApplicationWindow 82
applyColorDrop: message 360
applyColorEnter: message 352
applyColorExit: message 352, 353
applyColorOver: message 352
applyMoreColorEnter: message 354
applyMoreColorExit: message 354
applyMoreColorOver: message 354
arc

displaying 640
arcCos message 443
arcSin message 442
arcTan message 443
Arrange->Align command 65
Arrange->Bring To Front command 74
Arrange->Equalize command 56
array

creating 492
description 490
expanding 499
literal 493
removing an element 504
See also collection

as geometric object 637

Index

VisualWorks Cookbook, Rev. 2.0 721

asArray message 522
asCharacter message 451
asComposedText message 556, 569, 607
asDays message 465
asDouble message 449
asFilename message 592, 598
asFiller message 637
asFixedPoint: message 428, 449
asFloat message 449
asImage message 660
asList message 522
asLowercase message 537, 571
asPattern message 586, 692
aspect adaptor 122, 706
Aspect property 48
aspectAt:put: message 299
asPoint message 451
asRational message 449
asRetainedMedium message 663, 666
asSeconds message 466, 480
asSet message 523
assigning to a variable 4
Association 490
association

removing from dictionary 503
associationAt: message 17
asString message 595
asStroker message 632
asText message 557
asUppercase message 537, 571
asValue message 705
at: message 511
at:ifAbsent: message 512
at:put: message 497, 505
atAllPut: message 506
atEnd message 618
atNameKey

message 261
atPoint: message 665

atPoint:put: message 665

B
background: message 95
backgroundColor: message 76, 257
base

of a number 429
baseline

in text 580
baseline: message 577
before: message 513
beginSubMenuLabeled: message 231
beInvisible message 70
beMaster message 105
beOff message 255
beOn message 255
bePartner message 106
beSlave message 105
between:and: message 440
beTwoDimensional message 274
beVisible message 70
Bezier curve 634
binary file

See also BOSS
binary message 6
BinaryObjectStorage 614
binaryReaderBlockForVersion:format:

method 624
binaryRepresentationVersion

method 624
binding

in a notebook 322
blanking a subcanvas 312
blueButton 412
blueButtonPressed message 413
bold emphasis 572
boolean

in a field 126

Index

722 VisualWorks Cookbook, Rev. 2.0

Border property 67
bordering a widget 67
BOSS

appending 615
converting old data 624
custom representations 626
omitting source code 622
random access 619
reading a file 617
sequential access 618
skipping the initial scan 617
storing a class 621
storing a collection 615
storing objects 614

bounded widget 58
boundingBox:startAngle:sweepAngle:

message 641
bounds message 59
box

around widgets 156
branch

creating 33
browseAllCallsOn: message 17
BufferedValueHolder 710
buffering

model updates 710
builder

window 85
bulletin boards xx
button

default 165
graphic label 167
highlighting 168
See also action button
See also check box
See also menu button
See also radio button

ButtonExample 160, 162, 164, 167
buttons, mouse, see mouse buttons

bypassing a dependency 78
byte array

creating an image 660
in a field 126

C
caching

a graphic image 674
Can Tab property 74
canBeWritten message 599, 611
canvas

opening 82
polling vs. event-driven 392
tab order 74

cap style of a line 645
capacity message 495
capturing

a graphic image 659
cascading messages 9
case

in a string search 544
in text 571
of a character 535
of a string 537

category
of classes 29
of messages 31

ceiling message 434
center:radius: message 640
centered message 561
century

seconds in 480
chaining messages 7
change validation callback 132
Change Validation property 133
changed: message 384, 709
changed:with: message 382, 653, 718
changeRequest message 102

Index

VisualWorks Cookbook, Rev. 2.0 723

character
categories of 534
comparing 540
composed 531
counting in text 564
creating 451, 530
line ends 553
nondisplaying 530

CharacterAttributes 576, 578
characterAttributes: message 577, 579,

583
check box

adding 162
in menu 254
uses for 162

choose:fromList:values:lines:cancel:
message 289

choose:labels:values:default:
message 282

circle 640
See also ellipse

class
BOSS representation 626
category 29
changing BOSSed instances 624
creating 26
grouping 29
in a BOSS file 621
moving to different category 30
naming conventions 26

class category
adding 29
definition 29
removing 29
renaming 30
reordering 30

class instance variable
declaring 14
removing 17

usage 11
class var refs command 16
class variable

declaring 14
removing 16
undeclared 19
usage 11

clear all command 88
clearAll message 193
click xvii

See also mouse
client: message 312
client:spec: message 311, 335
clientData message 360
clippingBounds message 676
clock

elapsed seconds 481
close message 598
closeRequest message 101
closing a window 101
code

timing 484
collapse message 103
collapsing a window 103
collect: message 37, 526
collection

adapting 713
adapting an element 715
adding elements 497
capacity 495
combining 510
comparing 517
copying elements 508
counting occurrences 513
creating 491
finding an element 36
finding elements 511
in a BOSS file 615
inserting an element 498

Index

724 VisualWorks Cookbook, Rev. 2.0

iterating 35
looping 524
removing elements 500
replacing elements 505
See also array
See also dictionary
See also list
See also list widget
See also set
selecting elements 36
size 495
sorting 519
subtracting a subset 518
testing for emptiness 495
transforming 37
type conversion 522
types 490

collection class
creating 27

color
applying 694
box widget 157
creating 686
dithering 698
in a menu 257
label widget 116
of a geometric object 649
palette 696
predefined 686
rendering policy 698

color emphasis 585
color: message 257
ColorDDExample 344, 351, 354, 356,

360, 367
colorDrag: message 345, 360
ColorExample 76
coloring

a graphic image 664
a widget 75

a window 94
text 585

colorLayerEnter: message 356
colorLayerExit: message 356
colorLayerOver: message 356
colorPalette message 697
colors message 696
ColorValue 686
colorWantToDrag: message 345
column selecting

dataset 209
column widths

dataset 207
table 219

combining
collections 510
graphic images 672
strings 545

combo box
creating 146

ComboBoxExample 146
ComboConversionExample 148
comma

for combining collections 510
for combining strings 545

comparing
characters 540
collections 517
dates 473
files or directories 605
numbers 438
strings 540
texts 568

completeContentsOfArea: message 666
component

See also widget
componentAt: message 55
composed character 531
composeDiacritical: message 531

Index

VisualWorks Cookbook, Rev. 2.0 725

ComposedText 113, 607
See also text

composite view
connecting to controller 386

compositionWidth: message 559, 570
compressing

a string 551
concatenating

See also combining
conditional expression 33
conditional looping 35
conditional test 38
ConfigurableDropSource 372
ConfigurableDropTarget 341, 348
confirm: message 280
confirmer dialog 280
connecting

controller to model 399
controller to view 400
field to field 143
view to controller 385

constantNames message 687
constants

numeric 458
constraining window size 87
construct: message 593
contents

of a file or directory 597
contents message 617
contentsOfEntireFile message 597, 605
contextApplication: message 346
contextWidget: message 345
contextWindow: message 345
continuousAccept: message 137
contractTo: message 551
control loop 405
controlActivity method 406, 412, 413,

416, 417
controlInitialize method 407

Controller 393, 405
controller

activity 405
connecting to model 399
connecting to view 400
connecting view 385
consuming events 406
creating 395
cursor control 408
cursor location 419
dual-architecture 393
event methods 405
handing off control 411
initializing 401, 407
keyboard input 416
loading event-driven code 393
mouse input 412
polling vs. event-driven 392
pop-up menu 409
routing menu messages 410
taking control 402
terminating 408
yielding control 403

controller: message 386, 401
ControllerWithMenu 409
controlLoop method 408
ControlManager 392
controlPoints: message 634
controlTerminate method 408
conventions

screen xvi
typographic xiv–xvi

convertForGraphicsDevice:renderedBy:
message 698

converting
collection type 522
number types 449
old BOSS data 624

convertToPalette

Index

726 VisualWorks Cookbook, Rev. 2.0

message 697
convertToPalette:renderedBy:

message 700
copy:from:in:rule: message 673
copyArea:from:sourceOffset:destination

Offset: message 667
copyEmpty message 671
copyFrom:to: message 509, 547, 569
copying

a file or directory 603
elements in a collection 508
text 569

copyReplaceAll:with: message 550
copyReplaceFrom:to:with: message 549
copyTo: message 603
copyUpTo: message 547
copyWith: message 499
copyWithout: message 504
corner: message 638
cos message 442
coverage

as a paint 690
coverage: message 690
CoveragePalette 680
coveragePalette message 697
CoverageValue 690
CR

as line end 553
CUARadioButtonView 401
current

time 478
current window

See also active window
cursor

changing 681
changing via controller 408
creating 678
predefined 678
sensing location 419

cursorPoint message 420
cursorPointFor: message 420
curve

Bezier 634
spline 634

custom
adaptor 717
controller 395
dialog 296
font 576
view 376

Customer1Example 20, 24, 26, 708
Customer2Example 713
CustomerExample 25
CustomView1Example 376, 379, 389,

395, 652, 681
CustomView2Example 396

D
damage

rectangle 387
window 93

data
as fields in a file 609
formatting 129

data types 125
dataset

adding a row 210
connecting data 212

dataset columns
labels 213
order 207
scrolling 207
selecting 209
widths 207

dataset widget
adding 204
label colors 214

Index

VisualWorks Cookbook, Rev. 2.0 727

row marker 211
selecting columns 209
splitting column labels 213

Dataset1Example 205
Dataset2Example 210
Dataset3Example 212
Dataset4Example 213
date

adding 471
comparing 473
creating 462
day information 465
days left in year 469
days since 1901 465
formatting 475
in a field 125
leap year 469
month information 467
previous day of week 472
seconds since 1901 466
subtracting 471
year information 469

dateAndTimeNow message 483
dates message 596
day

hours in 481
in a date 465
of year 468
seconds in 480

dayOfMonth message 465
days

in each month 467
daysInMonth message 467
daysInYear message 469
daysLeftInYear message 469
declaring a variable 13
default

button 165
font 575, 588

message 23
palette 697

defaultController method 401
defaultControllerClass method 385, 400
defaultDirectory message 594
degreesToRadians message 450
delete message 602
deleting

a file or directory 602
denominator message 428
dependency

adding and removing 78
bypassing 78

DependencyExample 79
dependent window

See also slave window
desiresFocus message 395
detect: message 36
detect:ifNone: message 515
diacritical mark 531
dialog

custom 296
file name 286
list 289
multiple-choice 282
textual 284
warning 278
yes-no 280

DialogExample 278, 283, 297
dictionary

description 490
removing an association 503
See also collection

dimensions, accessing window 88
directory

characteristics 594
comparing 605
contents 597
copying or moving 603

Index

728 VisualWorks Cookbook, Rev. 2.0

creating 592
dates 596
default 594
deleting 602
distinguishing from file 596
parent 595

directoryContents message 597, 606
disable message 72, 248
disabling

menu items 248
widgets 72

display message 93
display surface

capturing as an image 660
displayArcBoundedBy:startAngle:sweep

Angle: message 641
displayBox: message 88
displayDotOfDiameter:at: message 641
displaying

a graphic image 662
a line 631
a point 630
a polygon 637
in a view 380
text 558

displayLineFrom:to: message 630, 631
displayOn: message 558, 632
displayOn: method 380
displayOn:at: message 662
displayPolygon: message 637
displayPolyLine: message 632
displayWedgeBoundedBy:startAngle:swe

epAngle: message 641
Distribute command 66
distributing widgets 66
dithering color 698
divider 154

in a menu 250
dividing

numbers 432
division 428
divisor, greatest common 453
do: message 35, 524
documentation, see VisualWorks

documentation
doDragDrop message 346
dollar sign

in creating a character 530
domain model

adapting an aspect 706
combined with application model 46
connecting to view 378
creating 45
description 45
updating view 382

Double
See also floating-point

double-click xvii
double-clicking 392
drag and drop 339–373

adding 343–349
defining custom pointers 371
dragging multiple selections 347
drag-ok method 343
drag-start method 343
dropping data on a list item 361
effect symbol. See effect symbol
examining dragged data 365
framework classes 341
implementation example 341
providing visual feedback 350
responding to a drop 359
using modifier keys 366
See also drop source
See also drop target

Drag OK property 343
Drag Start property 343
DragDropContext 341, 351

Index

VisualWorks Cookbook, Rev. 2.0 729

DragDropData 341, 345
DragDropManager 341, 346, 348, 359
drop method 359
Drop property 348, 359
drop source 340, 343

adding 343–347
setting up 340

drop target 340, 348
adding 348–349
button 354
changing button label 354
examining dragged data 365
list item 356, 361
messages 350
providing visual feedback 350–358,

371
responding to a drop 359
setting up 340
tracking a specific list item 356
using modifier keys 366

dropFinalVowels message 551
DropSource 341, 346
dummy

See also placeholder

E
edit all command 30

in System Browser 32
edit message 601
editing

a list 187
editor

opening on a file 601
editor widget

accessing selection 174
adding 172
connecting to list 200
connecting to notebook 336

Editor1Example 173, 174, 200
Editor2Example 93, 310
editors

image 659
effect symbol 351, 360

adding 372
creating custom symbol 373
defining 371
types of 351
See also target emphasis

electronic bulletin boards xx
electronic mail xx
elements

adapting 715
adding to collection 497

ellipse 640
grouping widgets 158

Ellipse property 158
EllipticalArc 641
embedded canvas

See also subcanvas
emphasizeAllWith: message 573, 586
emphasizeFrom:to:with: message 572,

578, 585
enable message 72, 248
endSubMenu message 231
enterEvent: method 406
Entry property 348, 350
enumerating

See also looping
enumerating a collection 35
equality

of numbers 438
Equalize command 56
error

compilation 19
ErrorDiffusion 699
even message 445
event

Index

730 VisualWorks Cookbook, Rev. 2.0

consumption 406
methods 405
user-input 392
window 106

Event Driven property 394
event-driven controller

See controller
events.st 393
exists message 594
Exit property 348, 350
exit validation callback 132
Exit Validation property 133
exitEvent: method 406
exp message 444
expand message 103
expandedMenu message 140
expanding

graphic images 668
windows 103

exponential
of a number 444

extent: message 638
extent:depth:palette: message 660
extent:depth:palette:bits:pad:

message 660

F
factorial 453
factoring

numbers 453
family of a font 582
family: message 582
fax support xxi
field

aligning 124
connecting to a field 143
creating 122
dialog 284

filtering and validating 132
formatting numbers 129
highlighting 150
in a text file 609
insertion point 150
menu 139
menu of entries 146
read-only 124
size restriction 124
type restriction 125
widget, connecting to a slider 267

FieldConnectionExample 143, 144
FieldMenuExample 139
FieldSelectionExample 150
FieldTypeExample 126, 131
FieldValidation1Example 136
FieldValidation2Example 137
FieldValidInputExample 133, 134
file

binary
See also BOSS

characteristics 594
comparing 605
contents 597
copying or moving 603
creating 592
dates 596
deleting 602
distinguishing from directory 596
fields of textual data 609
opening an editor 601
parts of name 595
permissions 611
printing 607
size 594
storing text 598

file name
dialog 286

file out

Index

VisualWorks Cookbook, Rev. 2.0 731

vs. a BOSS file 621
Filename 592
fileSize message 594
filling wrapper for geometrics 637
fill-in-the-blank dialog 284
filtering

field input 132
finalization

upon window closing 102
finding

elements in a collection 511
See also searching

findString:ignoreCase:useWildcards:
message 544

findString:startingAt:ifAbsent:
message 543

findString:startingAt:ignoreCase:useWild
cards: message 566

first message 514
firstDayOfMonth message 468
firstIndent: message 562
fixed command 57
fixed size command 87
fixed-point number

creating 428
definition 426
in a field 126

fixedWidth emphasis 582
floating-point number

creating 427
definition 426

floor message 434
flopping an image 669
follow:while:on: message 675
font

changing widget’s 68
creating 576
default 588
default for platform 575

family 582
in a text 572
label 116
menu 587
name 582
platform 589
size 578

font mixing 116
Font1Example 68
Font2Example 589
FontDescription 576, 583
fonts xiv–xvi
forAspect: message 707
foregroundColor: message 76
forgetInterval: message 619
forIndex: message 715
Format property 126, 129
formatting

a date 475
displayed data 129
numeric field 129

fraction
creating 428
definition 426

from:to: message 632
fromDays: message 464
fromGenerator:seededWith:

message 455
fromSeconds: message 479
fromUser message 659

G
gcd: message 453
geometric

arc 640
Bezier curve 634
color 649
ellipse 640

Index

732 VisualWorks Cookbook, Rev. 2.0

integrating in application 652
line 631
point 630
polygon 637
rendering color 701
spline 634

getBlock:putBlock:updateBlock:
message 718

global variable
removing 17
usage 10

globalCursorPoint message 100, 421
globalPoint message 421
graphic image

animating 675
caching 674
capturing 659
coloring 664
converting to display surface 663
creating 658
displaying 662
expanding and shrinking 668
flopping 669
in menu 254
layering 672
masking 666
palette 696
rotating 670

graphic label 111, 118
in a button 167

graphics
See also geometric

graphics context 558
GraphicsAttributes 650
GraphicsAttributesWrapper 650
GraphicsContext 380
graphicsContext message 631
graying out

See also disabling

greater than 440
greatest common divisor 453
grid

in lines of text 580
grid: message 271
gridForFont:withLead: message 580,

583
grouping widgets 156

H
handlerForMouseEvent: method 403
hardcopy

See also printing
hardcopy message 565
hasAlt message 417
hasCtrl message 417
hasLock message 417
hasMeta message 417
hasShift message 417
head message 595
HelpBrowser example 168
HideExample 70, 72
hideItem: message 247
hiding

widgets 70
windows 104

hierarchic menus 231
highlighting

button 168
in a field 150
in a list 196
See also selection

hiliteSelection: message 168
holder

See also value holder
hour

minutes in 481
hours

Index

VisualWorks Cookbook, Rev. 2.0 733

in day 481
hsb color 688
hue:saturation:brightness: message 688

I
icon

creating 682
in a menu 254
linking to a window 683
predefined 682
window 108

icon: message 108, 683
iconify

See also collapsing
ID property 54
identity

comparing numbers 438
IdentityDictionary 346
ifTrue: message 33
image

See also graphic image 658
Image Editor 659
image:mask:hotSpot:name:

message 680
includes: message 513
includesAssociation: message 513
includesKey: message 513
indenting

text 562
IndexedAdaptor 715
indexOf: message 512, 543
indexOfSubCollection:startingAt:

message 514
inequality

testing numbers 438
inheriting

application capabilities 302
initialize message 24, 123

initialize method 48
initializeDispatchTable method 417
initializeMenu method 409
Initially Disabled property 72
Initially Invisible property 70
input architecture 392
input controller

See controller
input field

See also field
inserting

element in a collection 498
insertion point

in a field 150
inst var refs command 16
install command 27
instance

creating 22
initializing 24
used in drag and drop 341

instance variable
declaring 14
removing 16
undeclared 19
usage 11

integer
creating 426
definition 426
small-large boundary 459

integrating
graphics in an application 652
view in interface 389

interface
connecting to models 47
integrating a custom view 389
painting 43
reusing 308
swapping at runtime 310

interface builder 43

Index

734 VisualWorks Cookbook, Rev. 2.0

interface component
See also widget

interfaceSpecFor: message 311
interval

iterating 34
invalidate message 174, 653
invalidateRectangle 388
invalidateRectangle: message 388
invalidateRectangle:repairNow:

message 388
invalidating a view 387
invisible, making a widget 70
isAlphabetic message 534
isAlphaNumeric message 534
isComposed message 536
isControlActive method 403
isControlWanted method 403
isDigit message 535
isDirectory message 596
isEmpty message 495
isInteger message 445
isLetter message 534
isLowercase message 535
isSeparator message 535
isVowel message 534
isZero message 446
italic emphasis 572
iterating

See also looping
iterating a collection 35

J
join style of a line 647
justified message 561
justify

See also aligning

K
key: message 345
keyAtValue:ifAbsent: message 512
keyboard

sensing input 416
keyboard activity, responding to 392
keyboard shortcut 252
KeyboardEvent 416
keyboardEvent message 417
keyboardHook: message 136
keyboardPeek message 417
keyboardPressed message 417
KeyboardProcessor 395, 411
keyboardProcessor message 411
keyPressedEvent: message 416
keyPressedEvent: method 418
keysAndValuesDo: message 526
keysDo: message 526
keyValue message 417
keyword message 5

L
label

aligning table labels 223
table columns 223
table rows 223
window 92

Label property 92
label widget

changing at runtime 113
color 116
creating 110
font 116
graphic 111
multi-line 110
registry of labels 118

label: message 92, 114
labelAt:put: message 119

Index

VisualWorks Cookbook, Rev. 2.0 735

labelImage: message 254
labelString

message 69
labelString: message 113, 354
large emphasis 572, 578
LargeNegativeInteger 426
LargePositiveInteger 426
last message 514
lastIndexOf: message 512
Launcher

creating 294
layering

graphic images 672
Layout->Be Bounded command 58
Layout->Relative command 56, 60
Layout->Unbounded command 58
lcm: message 453
leap message 469
least common multiple 453
leftFlush message 561
length

of a string 539
of text line 559

less than 439
LF, as line end 553
line

cap style 645
displaying 631
join style 647
See also divider
thickness 644

line end characters 553
line message 250
line spacing in text 580
LineExample 154, 156, 158
lineGrid: message 577
LineSegment 631
lineWidth: message 644
lining up

See also aligning
list

creating 492
description 490
See also collection

list dialog 289
list widget

adding 184
connecting to editor 200
connecting two lists 198
controlling textual representation 185
editing the list 187
highlighting style 196
menu 194
multiple selections 189
selection 191

List1Example 185, 187, 190, 191, 194,
196, 198

List2Example 303, 306, 308, 310
listAtCategoryNamed: message 679
listPlatformFonts message 589
literal

array 493
ln message 444
Locale object 129
log message 444
log: message 444
logarithmic functions 444
LogoExample 110, 111, 113, 114, 116,

118
LookPreferences 76
loop

creating 34
looping 34–37

through a collection 524
lowercase

See also case

Index

736 VisualWorks Cookbook, Rev. 2.0

M
magnifiedBy: message 668
mail

electronic xx
makeDirectory message 593
makeUnwritable message 611
makeWritable message 611
map message 104
MappedPalette 680, 696
marker

in a slider 273
mask

creating 666
setting opaqueness 690

master window 105
master windows 292
max size command 87
max: message 441
maximum

of two numbers 441
maximumSize: message 87
maxVal message 459
Menu 410
menu

as list in dialog 289
check box in 254
color 257
combined with field 146
creating 226
disabling an item 248
divider 250
icon 254
in a field 139
in a Launcher 294
in list widget 194
modifying at runtime 243
of commands 227
of fonts 587

of values 228
pop-up 240
routing messages 410
shortcut key 252
submenu 231
via controller 409

menu bar
adding 98, 233
creating 233

Menu Bar property 98, 233
menu button

adding 236
Menu Editor 226, 259
menu item

label 254
Menu property 48
menuAt

message 261
menuAt: message 247
MenuBuilder 227
MenuCommandExample 227, 231, 233,

238, 240, 248, 250, 252
MenuEditorExample 260, 261
menuHolder: message 410
menuItemLabeled: message 246
menuItems message 261
MenuModifyExample 245, 246, 247,

257
MenuSwapExample 243
MenuValueExample 228, 229, 235, 236,

241, 254, 255
merging graphic images 672
Message

constructing 4
message

binary 6
cascading 9
chaining 7
definition 4

Index

VisualWorks Cookbook, Rev. 2.0 737

keyword 5
message category

See also protocol
message expression 4

complex 7
MessageSend 626
method

copying to other class 32
creating 18
grouping 31
instance vs. class 18
moving to different protocol 32
subdividing 18

millisecondClockValue message 454,
481

millisecondsToRun: message 484
min size command 87
min: message 441
minimum

of two numbers 441
minimumSize: message 87
minor keys in notebook 328
minutes

in hour 481
minVal message 459
model

See also application model
See also domain model

model: message 399, 654
model: method 379
modification date of a file 596
modulo division 432
monoMaskPalette message 680
month

days in 467
in a date 467

monthIndex message 467
monthName message 467
mouse

sensing input 412
waiting for click 421

mouse action, responding to 392
mouse buttons xvi

<Operate> button xvi
<Select> button xvi
<Window> button xvi
one-button mouse xvii
three-button mouse xvi
two-button mouse xvii

mouse operations xvii
<Control>click xvii
<Meta>-click xvii
<Shift>-click xvii
click xvii
double-click xvii

MouseEvent 419
MouseMovedEvent 419
mouseMovedEvent: method 414
move to command

in System Browser 30, 32
moveBy: message 63
MoveExample 63
moveTo: message 64, 91, 603
moving

a file or directory 603
a widget 63
a window 90

Multi Select property 189, 347
multi-line label 110
multiple, least common 453
multiple-choice dialog 282
multiplying

numbers 432
MultiSelectionInList 190, 347, 490

N
name

Index

738 VisualWorks Cookbook, Rev. 2.0

of a font 582
name key 261
name: message 583
nameKey message 261
natural log 444
NearestPaint 698
negated message 448
negative message 447
nesting

applications 305
new message 22
new: message 492
new:withAll: message 492
newBoolean message 705
newBounds: message 59
newDay:monthNumber:year:

message 463
newDay:year: message 463
newFraction message 705
newString message 705
newWithDefaultAttributes

message 576, 579, 582
nextIndexOf:from:to: message 512
nextPut: message 614, 615
nextPutAll: message 545, 598, 615
nextPutClasses: message 621
noButtonPressed message 415
NoController 386
noMenu message 142
nonBlueButtonPressed message 415
nontextual collection

displaying in list 185
normalSelection message 197
notational conventions xiv–xvi
notebook widget

adding 316
binding appearance 322
changing the page 334
connecting to editor 336

index tabs 324
minor keys 328, 331
secondary tabs 328
starting page 326
tab selection 319

Notebook1Example 316, 320, 326
Notebook2Example 320, 328
Notebook3Example 322, 324, 331
Notebook4Example 334
Notebook5Example 337
now message 478
number

adding 431
comparing 438
constants 458
creating 426
dividing 432
exponential 444
factoring 453
field formatting 129
in a field 125
logarithmic functions 444
maximum 441
minimum 441
multiplying 432
raised to a power 436
random 454
range checking 440
root 436
rounding 434
See also fixed-point
See also floating-point
See also fraction
See also integer
See also radix notation 429
See also scientific notation 429
sign conversion 447
subtracting 431
testing 445

Index

VisualWorks Cookbook, Rev. 2.0 739

trigonometric functions 442
type conversion 449

NumberPrintPolicy 131
numerator message 428

O
object

in a field 126
See also instance

object file
See also BOSS

occurrencesOf: message 513
odd message 446
onChangeSend:to: message 79
online documentation, see VisualWorks

documentation
onNew: message 614
onOld: message 615, 617
onOldNoScan: message 617
opaque message 690
open message 83
openDialogInterface: message 297
openFor:interface: message 298
openIn: message 90
opening

canvases 83
specs 83
windows 82

openOnMenu: message 294
openWithExtent: message 86
openWithSpec: message 83
or: message 38
order

of tabbing 74
order of execution 8
OrderedCollection 490
OrderedDither 698
Over property 348, 350

P
page

in a notebook 326
paint

applying 694
See also color
See also coverage
See also pattern

paint: message 649, 694
PaintPolicy 701
paintPolicy: message 701
paintRenderer: message 701
palette

default 697
of an image 696

palette message 696
pane

See also view
ParagraphEditor 403, 417
parsing order of messages 8
partner windows 106
password

in a field 125
Pattern 585
pattern

applying 694
creating 692
tile phase 693

patterned text 585
performer: message 410
permissions

on a file or directory 611
persistence

See also BOSS
phase

of a tiled pattern 693
pi message 459
pixelSize: message 579

Index

740 VisualWorks Cookbook, Rev. 2.0

placeholder
button action 165

platform fonts, listing 589
PluggableAdaptor 127, 717
point

creating 451, 630
displaying 630

pointer shape
See effect symbol

pointer-type class
creating 27

PointExample 614, 624
policy

for rendering color 698
policy colors, in Color Tool 76
polling controller

See controller
polygon

displaying 637
PolyLine 631
Polyline 637
pool dictionary

declaring 15
removing 17
usage 12

pop-up menu 409
creating 240

position: message 619
positioning a widget 60
positive message 447
postBuildWith: method 136, 143, 168
power

of a number 436
pref size command 86
PreferredCustomerExample 25
previous day of week 472
Print property 148
printFormat: message 475
printing

a text file 607
text 565

printString message 451
printStringRadix: message 452
printTextFile message 607
protocol

adding 31
creating 31
private vs. public 31
removing 31
renaming 32
reordering 32

Q
quotation mark

in creating a string 532

R
radiansToDegrees message 450
radio button

adding 160
uses for 160

radix notation 429
random access

in a BOSS file 619
random number

generating 454
range

in a slider 270
of numbers 440

rangeStart: message 271
rangeStop: message 271
RasterOp 672
rational number 449
Read property 148
read stream 610
readAppendStream message 615

Index

VisualWorks Cookbook, Rev. 2.0 741

readFromString: message 462, 478
read-only

fields 124
sliders 266

readStream message 617
receiver 4
receiver:selector:arguments:

message 626
reciprocal message 450
Rectangle 637
red:green:blue: message 688
redButton 412
redButtonPressed message 413
redisplaying a view 387
reducedMenu message 140
references

to a variable 16
reflectedInX message 669
reflectedInY message 669
refreshing a window 93
registering an interest 78
registry

labels 118
reject: message 36, 515
relative sizing of widget 57
remainder division 432
remove command

in System Browser 29, 31
remove: message 500
remove:ifAbsent: message 501
removeAll: message 501
removeAllSuchThat: message 503
removeFirst message 502
removeFirst: message 502
removeFrom:to: message 502
removeItem: message 246
removeKey: message 17, 503
removeKey:ifAbsent: message 503
removeLast message 502

removeLast: message 502
removing a variable 16
rename as command

in System Browser 30, 32
renameTo: message 604
rendering color 698
repeating a block 34
replaceAll:with: message 507
replaceFrom:to:with: message 567
replaceFrom:to:with:startingAt:

message 507
replaceSelectionWith: message 174
replacing

elements in a collection 505
part of a text 567

representBinaryOn: method 626
request: message 284
requestActivationFor: message 411
requestFileName: message 286
resetSelections message 174
resetViews message 588
respondsToArithmetic message 445
restIndent: message 562
retractInterestsFor: message 79
return

from a method 20
reuse techniques 18, 301–314
reusing

interface 308
reverse message 521
reverseDo: message 525
rgb color 688
rightFlush message 561
root

of a number 436
rotateByQuadrants:to: message 671
rotatedByQuadrants: message 670
rotating

a graphic image 670

Index

742 VisualWorks Cookbook, Rev. 2.0

See also flopping
rounded message 434
rounding numbers 434
roundTo: message 435
row selector

dataset 211

S
sameAs: message 541
sameCharacters: message 542
scale 428
scanning

fields in a file 609
ScheduledControllers 99
scientific notation 429
scope of variables 10
Screen 100, 589

default palette 697
screen capture

See also graphic image 659
screen conventions xvi
screen coordinates

of cursor 421
scroll bars

adding and removing 96
searching

a string 543
in a text 566

secondary tabs in notebook 328
seconds

creating time 478
in a date 466
in century 480
in day 480
in minute 480
since clock reset 481

select: message 36, 515
selectAll message 193

selection
editor widget 174
list 191

selection: message 327
selectionBackgroundColor: message 76
selectionForegroundColor: message 76
selectionIndex: message 326
selectionIndexes: message 193
SelectionInList 184, 205, 317, 344, 490,

713
SelectionInTable 218
SelectionInTable class 216
selections message 347
selections: message 193
sensing input

See also controller
sensor

cursor location 419
sensor message 417, 420
separator

characters 535
sequential access

in a BOSS file 618
serif emphasis 572, 582
set

creating 492
description 490
See also collection

setDefaultQuery: message 576, 579,
582

setDefaultTimeZone: message 487
setDefaultTo: message 588
setMarkerLength: message 273
setting up a dependency 78
setToEnd message 615
setValue: message 80
shortcut key

in a menu 252
shortcutKeyCharacter: message 252

Index

VisualWorks Cookbook, Rev. 2.0 743

shortening a string 551
showDropFeedbackIn:allowScrolling:

message 357
showWhile: message 681
shrinking graphic images 668
shrunkenBy: message 668
sign

of a number 447
sign message 447
SimpleDialog 297

creating a subclass 27
sin message 442
size

of a file 594
of a string 539
of field input 124
of font 578
of text 564

Size as Default property 165
size message 495, 539
Size1Example 57, 61
Size2Example 58, 62
Size3Example 59
sizing

widgets 56
windows 86

Sketch 376, 382, 395, 652
SketchController1 376, 385, 396, 400,

403, 406, 408, 409, 413, 417,
420, 681

SketchController2 396, 397, 403, 405,
407, 413, 418, 420

SketchView1 376, 379, 380, 382, 385,
388, 389, 395, 400, 652, 681

SketchView2 396
slave window 105
slider widget

adding 264
connecting to field 267

marker length 273
modifying range 270
read-only 266
two-dimensional 274

Slider1Example 264, 267, 270
Slider2Example 123, 268, 273, 274
small emphasis 572, 578
SmallInteger 426
sort message 519
SortedCollection 490
sorting

a collection 519
sortWith: message 520
source code

omitting in BOSS file 622
source: message 84
sourceData message 360
sourceMode: message 622
spacing a group of widgets 66
spacing widgets 66
spacing, of lines in text 580
spawn command 19
spec

opening 83
special symbols xiv–xvi
spellAgainst: message 542
Spline 634
sqrt message 436
squared message 436
start:end:controlPoint1:controlPoint2:

message 635
stencil

See also mask
stream

closing 598
creating 598
for reading a text file 609
positioning 615

strictlyPositive message 447

Index

744 VisualWorks Cookbook, Rev. 2.0

strikeout emphasis 572
string

abbreviating 551
changing its case 537
combining 545
comparing 540
converting to text 556
creating 451, 532
getting a substring 547
in a field 125
length and width 539
removing a substring 549
replacing a substring 549
searching 543

StringPrintPolicy 131
strokedSelection message 197
stroking wrapper for geometrics 632
style

See also text style
style of text

See also font
styleNamed: message 68, 557, 575
styleNamed:put: message 587
subcanvas

accessing embedded widget 313
in a notebook 334

subcanvas widget
adding 302
blanking 312

Subcanvas1Example 303
Subcanvas2Example 306, 308
Subcanvas3Example 310, 312, 313
subclass

creating 26
subject

of an adaptor 706
subject channel

of an adaptor 706
subject: message 708, 715

subject:triggerChannel: message 711
subjectChannel: message 707, 715
subjectSendsUpdates: message 708
submenu

creating 231
submenu message 261
substituting a menu 243
substring

extracting 547
subtractDate: message 471
subtractDays: message 471
subtracting

dates 471
numbers 431
time 482

subtractTime: message 482
super message 25
support, technical xix

electronic bulletin boards xx
electronic mail xx
fax xxi
telephone xxi
World Wide Web xx

swapping interfaces 310
symbol

in a field 125
symbols used in documentation xiv–xvi
synchronizing

updates in model 710
System font 588
systemDefault text style 575

T
tab stops in text 562
tabbing order 74
table

updating 221
table widget

Index

VisualWorks Cookbook, Rev. 2.0 745

adding 216
aligning labels 223
connecting to input field 221
labeling 223

Table1Example 218
Table2Example 221
Table3Example 223
TableInterface class 216
tail message 595
takeKeyboardFocus message 150, 151
tan message 442
target emphasis 356, 361
technical support xix

electonic mail xx
electronic bulletin boards xx
fax support xxi
telephone support xxi
World Wide Web xx

telephone support xxi
templatesMenuForMenuBar

message 229
temporary variable

declaring 13
removing 16
undeclared 19
usage 10

testing
equality of numbers 438

text
adding emphasis 572
aligning 561
boldfacing 572
changing case 571
color 585
comparing 568
copying a subtext 569
creating 556
custom font 576
default font 575

displaying 558
editor

See also editor widget
font family 582
font size 578
in a field 125
indents and tabs 562
line length 559
line spacing 580
patterned 585
printing 565
replacing a subtext 567
searching 566
size 564
storing in file 598
vs. string 556
word wrapping 560

text style
adding 587
creating 576
default 588
emphasis 572
See also font
tab stops 562

text: message 571
TextAttributes 68, 556, 575, 578, 583,

587, 588
See also text style

textStyle message 563
textStyle: message 69, 563, 575, 577,

579, 583
textual dialog 284
thickness

box widget 157
of a line 644

tile
in a pattern 692
phase 693

tilePhase: message 693

Index

746 VisualWorks Cookbook, Rev. 2.0

Time 454
time

adding 482
creating 478
current 478
in a field 125
seconds 480
subtracting 482
zones 486

time stamp 483
in a field 125

timeDifference:DST:at:from:to:startDay:
message 487

timesRepeat: message 34
TimestampPrintPolicy 131
TimeZone 486
timing code 484
title

See also window label
to:by:do: message 35
to:do: message 34
today message 462
tooldd.st 341
topComponent message 99, 411
totalSeconds message 480
transparent message 690
trigonometric functions 442
true-false dialog 280
truncated message 434
truncateTo: message 435
truncating

a string 551
two-dimensional slider 274
type

of field input 125
Type property 125, 129
TypeConverter 127, 131
typographic conventions xiv–xvi

U
UI

See also interface
UIBuilder 84

See also builder
unbounded widget 58, 62
Undeclared 13
undeclared variables 13
underline emphasis 572
unhideItem: message 247
unity message 458
unmap message 104
update:with: message 653
update:with: method 383
updating

a table 221
a view 382
an aspect adaptor 707
buffered 710

uppercase
See also case

useHorizontalScrollBar message 97
user interface

See also interface
user-input event 392
useTabs: message 563
useVerticalScrollBar message 97

V
validating

field input 132
Validation properties 133
value holder 122, 704

dependency 78
valueAtPoint: message 664
valueAtPoint:put: message 664
valueNowOrOnUnwindDo: message 600,

614

Index

VisualWorks Cookbook, Rev. 2.0 747

variable
accessing 10
class instance 11
declaring 13
default value 13
naming 13
pool dictionary 12
removing 16
See also class variable
See also global variable
See also instance variable
See also temporary variable
types 10
undeclared 13

variable-byte class
creating 27

VariableSizeTextAttributes 578
version

of a BOSS file 624
vertices: message 637
view

connecting to controller 385, 400
connecting to model 378
creating 376
displaying 380
integrating in interface 389
invalidating 387
redisplaying 387
updating 382
with no controller 386

viewHasCursor message 421
viewHasCursorWithEvent: message 421
visibility of a widget 70
visual component

See also widget
visualAt:put: message 118
visuals message 119
VisualWorks documentation

online xix

Database Cookbook xix
Database Quick Start Guides xix
International User’s Guide xix
VisualWorks Cookbook xix
VisualWorks DLL and C Connect

Reference xix
printed

Database Connect User’s Guide xviii
Database Tools Tutorial and

Cookbook xviii
Installation Guide xviii
International User’s Guide xviii
Object Reference xviii
Release Notes xviii
Tutorial xviii
User’s Guide xviii

W
waitButton message 100, 421
waitClickButton message 421
waiting

for mouse click 421
waitNoButton message 421
warn: message 278
warn:for: message 292
warning dialog 278
weekday message 465
weekDayToStartDST message 486
whileTrue: message 35
white space characters 535
whiteBlack message 680
widget

accessing programmatically 54
aligning 65
border 67
bounded vs. unbounded 58
color 75
dependency 78

Index

748 VisualWorks Cookbook, Rev. 2.0

disable 72
distribute 66
drop source. See drop source
drop target. See drop target
embedded in subcanvas 313
font 68
grouping visually 156
hiding 70
positioning 60
separating groups 154
sizing 56
spacing 66
tab order 74
unbounded 62

widget message 55
WidgetWrapper 54, 411
width

of a string 539
of dataset columns 207
of table columns 219

wildcard
in a string search 544

window
accessing dimensions 88
active 99
at a location 100
clearing size constraints 88
closing 101
color 94
Event Driven property 394
events 106
expanding and collapsing 103
from a builder 85
hiding 104
icon 108, 682, 683
label 92
master 292
menu bar 98, 233
moving 90

opening 82
refreshing 93
scroll bars 96
sizing 86
slave 105

window message 85
windowAt: message 100
#windowSpec 83
with:do: message 527
with:with:with:with: message 492
withAll: message 493
withColors: message 696
withCRs message 553
withText:style: message 557
wordWrap: message 560, 570
working directory 594
World Wide Web xx
wrapper 54
wrapping text 560
write stream 609, 614
WriteStream 545
writeStream message 598

Y
year

counting days 469
day in 468
days left 469
in a date 469

yellowButton 412
yellowButtonPressed message 413
yes-no dialog 280
yielding control 403

Z
zero 458
zone, time 486

