
An Introduction to Smalltalk
for

Objective-C Programmers

O’Reilly Mac OS X Conference
October 25—28, 2004

Philippe Mougin - pmougin@acm.org
http://www.fscript.org

IT Management & Consulting

What you will get from
this session

• An understanding of the basic principles of
Smalltalk.

• The ability to read code.

• An overview of Smalltalk options available
on Mac OS X.

Objective-C

“Objective-C is a hybrid language
that contains all of C language plus
major parts of Smalltalk-80.”

[playList addSong:aSong]

 playList addSong:aSong

Brad Cox

Objective-C:

Smalltalk:

Xerox Palo Alto
Research Center

Alan Kay Dan Ingalls Adele Goldberg Ted Kaehler

 Steve Jobs meets Smalltalk
• “They showed me 3 things: graphical user interfaces, object

oriented computing and networking.”

• z

• z

• z

• z

• “I only saw the first one which was so incredible to me that
it saturated me...”

• “If I'd only stayed another 20 minutes!”

• “It took really until a few years ago for the industry to fully
recreate it, in this case with NeXTSTEP.”

Smalltalk on a Xerox Alto III Steve on a chair

Smalltalk
• ANSI standard approved in 1998: ANSI INCITS 319-1998

• A pure object language: everything is an object

• dd

• d

• s

• Message sending is (almost) the only control
structure.

• Interactive environment.

• Simplicity and power.

“Smalltalk's design is due to the insight that everything we can
describe can be represented by the recursive composition of a
single kind of behavioral building block that hides its
combination of state and process inside itself and can be dealt
with only through the exchange of messages.” Alan Kay

Smalltalk-Based
Environments

Ambrai Smalltalk Sharp #Smalltalk

Dolphin Smalltalk Slate

F-Script Smalltalk MT

GemStone/S S#

GNU Smalltalk Smalltalk/X

Little Smalltalk Squeak

Smalltalk/JVM StepTalk

LSW Vision-Smalltalk Strongtalk

OOVM/Resilient Embedded Smalltalk Talks2

Object Studio Smalltalk VisualAge Smalltalk

MicroSeeker PIC/Smalltalk VisualWorks

Pocket Smalltalk Vmx Smalltalk

Public Domain Smalltalk (PDST) Zoku

message sending

objects

compile/link/run

ObjC/Smalltalk

control structures (if, while, for etc.)
explicit typing

other data types

reference counting

Objective-C

garbage collector
interactive system

ObjC/Smalltalk

message sending

objects

Smalltalk

Message sending syntax

Objective-C Smalltalk

[playList play] playList play

Unary message

Objective-C Smalltalk

[playList addSong:aSong] playList addSong:aSong

Keyword message

Message sending syntax

Objective-C Smalltalk

[object1 compare:object2]
== NSOrderedDescending object1 > object2

Binary message

Message sending syntax

Objective-C Smalltalk

[[playList firstSong] artistName] playList firstSong artistName

Smalltalk Objective-C Equivalent ?

object1 method1:object2 method2

[[object1 method1:object2] method2]

or

[object1 method1:[object2 method2]]

Message sending syntax

Smalltalk Objective-C Equivalent ?

object1 method1:object2 method2

[[object1 method1:object2] method2]

or

[object1 method1:[object2 method2]]

Message sending syntax

Message Precedence:

1. Unary messages
2. Binary messages
3. Keyword messages

(object1 method1:object2) method2

Base Library
Cocoa Smalltalk
class class

copy copy

isEqual: =

hash hash

isKindOfClass: iskindOf:

isMemberOfClass: isMemberOf:

performSelector: perform:

performSelector:withObject: perform:with:

respondsToSelector: respondsTo:

forwardInvocation: doesNotUnderstand:

description printString

objectAtIndex: at:

replaceObjectAtIndex:withObject: at:put:

Powerful Object Model
A few examples:

Asks a class for its subclasses: myClass subclasses

Renames a class: myClass rename:'GreatClass'

Asks a class for all its instances: myClass allInstances

Adds an instance variable to a class: myClass addInstVarName:'lastName'

Changes an object into another one: object1 become:object2

Evaluates code given in a string Compiler evaluate:aString

There are also methods for dynamically creating new classes, adding or
removing methods, getting all the current references to an object etc.

The meta class level is accessible and can be modified to experiment
new things, implement new features etc.

Assignment Syntax

Objective-C Smalltalk

a = 1 a := 1

Instructions separator

Objective-C Smalltalk

instruction1 ; instruction2 instruction1 . instruction2

Cascade

Objective-C Smalltalk

playList addSong:s1;
playList addSong:s2;
playList play;

playList addSong:1; addSong:s2; play.

Syntax Details
Objective-C Smalltalk

@"I am a string" 'I am a String'

'z' $z

@selector(setTitle:) #setTitle:

YES, NO true, false

/* I am a comment */ "I am a comment"

3.14 3.14

self, super self, super

nil nil

Methods (accessors)
Objective-C Smalltalk

- (NSString*) title
{
 return title;
}

- (void) setTitle:(NSString*) newTitle
{
 [newTitle retain];
 [title release];
 title = newTitle;
}

title
 ^ title

title: newTitle
 title := newTitle

^ means “return”.
No explicit typing.
A different naming convention for the setter (title: instead of setTitle:).
No typing and the garbage collector makes things simpler.

Local variables

Objective-C Smalltalk

-(void)switchValueWith:(NSMutableString*) aString
{
 NSString *temp;
 temp = [self copy];
 [self setString:aString];
 [aString setString:temp];
}

switchValueWith: aString
 |temp|
 temp = self copy.
 self setString:aString.
 aString setString:temp.

Local variables are declared between vertical bars.
You can have several local variables: |local1 local2 local3|
Local variables are initialized to nil.

Control structures

• Smalltalk does not have a specific syntax for
expressing control structures like if, for,
while etc.

• How can we do any serious programming
without such constructs ???

Code blocks

Objective-C Smalltalk

{
 instruction1;
 instruction2;
}

[
 instruction1.
 instruction2.
]

Executes instruction1 and instruction2. Creates and returns a block object
containing instruction1 and instruction2.

To execute the instructions in the block,
you send it the “value” message.

Code blocks

Objective-C Smalltalk

{
 id local1, local2;

 instruction1;
 instruction2;
}

[
 |local1 local2|

 instruction1.
 instruction2.
]

Executes instruction1 and instruction2. Creates and returns a block object
containing instruction1 and instruction2.

To execute the instructions in the block,
you send it the “value” message.

Blocks are objects

• They can be sent messages

• They can be assigned to variables.

• They can be stored into collections.

• They can be passed as argument or
returned from methods.

• They can be archived.

• Etc.

Conditional evaluation
• Boolean objects implements a method named

ifTrue:

• This method takes a block as argument.

• The method ifTrue: triggers the evaluation of
the block if and only if the receiver is true.

Objective-C Smalltalk
 if (a > b)
 {
 instructions
 }

 a > b ifTrue:
 [
 instructions
]

Conditional evaluation
• Booleans implement ifTrue:ifFalse:

• This method takes two blocks as argument.

• It triggers the evaluation of the first block if
the receiver is true, and the evaluation of the
second block if the receiver is false.

Objective-C Smalltalk
 if (a > b)
 {
 instructions
 }
 else
 {
 instructions
 }

 a > b ifTrue:
 [
 instructions
]
 ifFalse:
 [
 instructions
]

Repetitive evaluation

• Blocks implement whileTrue:, a method that
takes another block as argument.

• The block that receive the whileTrue: message
repeatedly evaluates itself and, if the termination
condition is not met yet, evaluates the argument.

Objective-C Smalltalk

 while (a > b)
 {
 instructions
 }

 [a > b] whileTrue:
 [
 instructions
]

Blocks can have arguments

• Each argument name is specified after a colon, at
the beginning of the block. A vertical bar ends the
argument list. Example:

• A block is evaluated by sending it an appropriate
value... message.

[:a | a class] value:'aString' => String

[:a :b | a + b] value:2 value:4 => 6

['hello'] value => 'hello'

[:a :b | a + b]

Repetitive evaluation

• Integers implement to:do:, a method that
takes a number and a block as arguments.

• The block is evaluated for each integer between
the receiver and the first argument (both
included).

Objective-C Smalltalk

 for (i = 1; i <= 100; i++)
 {
 instructions using i
 }

 1 to:100 do:
 [:i|
 instructions using i
]

do:

• Collections implement do:, a method that
takes a block as argument.

• The block is applied to each element of the
collection.

• Example - Increase the volume of each song
by 10%:

 songs do:[:s| s raiseVolume:s volume * 0.1]

select:
• Collections implement select:, a method

that takes a block as argument.

• This method returns a new collection
containing only the elements in the receiver
which cause the block to evaluate to true.

• Example - Creates a new collection containing
the songs whose length is greater than 240
seconds:

 songs select:[:s| s length > 240]

fork

• Blocks implement fork, a method with no
arguments.

• This method evaluates the receiver in a new
thread.

• Example - Play a song in a new thread:

 [mySong play] fork

Other control structures

• Smalltalk provides many other powerful
block-based methods in order to deal with
collections, exceptions, multi-threading etc.

• Because no specific syntax is required, you
can very easily implement your own “control
structures” in terms of messages and blocks.

On Mac OS X

• Squeak

• VisualWorks

• Ambrai Smalltalk

• GNU Smalltalk

• JVM based Smalltalks

• F-Script

Ambrai Smalltalk

BSD

Classic Carbon Cocoa Java

FreeBSD Kernel

Core Services

Application Services

Ambrai Smalltalk

F-Script

• A lightweight open-source interactive and
scripting layer using Smalltalk syntax and
concepts.

• Built from the ground up for Cocoa.

• Let you interactively instantiate, explore and
send messages to your Objective-C objects.

• Powerful graphical object browsers: explore
and manipulate objects without writing code.

F-Script
• Integrated object query language capacities.

• The F-Script object model is the Cocoa object
model. No bridging involved.

• Easy to embed into your own Cocoa application
(framework + IB palette are provided).

• Can be dynamically injected into any existing
Cocoa application.

http://www.fscript.org

Q & A
Philippe Mougin - pmougin@acm.org

http://www.fscript.org

IT Management & Consulting

