
© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.1

Refactorings

Refactoring
– What is it?
– Why is it necessary?
– Examples
– Tool support

Refactoring Strategy
– Code Smells
– Examples of Cure

Demonstration: Refactoring and
Reverse Engineering

– Refactor to Understand
Conclusion

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.2

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

issues
• Tool support
• Failure proof

(4) program transformation

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.3

What is Refactoring?

The process of changing a software system in such a
way that it does not alter the external behaviour of
the code, yet improves its internal structure
[Fowl99a]

A behaviour-preserving source-to-source program
transformation [Robe98a]

A change to the system that leaves its behaviour
unchanged, but enhances some non-functional quality -
simplicity, flexibility, understandability, ... [Beck99a]

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.4

Typical Refactorings

extract code in new method

abstract variablemove method to component

create accessorsadd parameter to method

pull variable uppush method up

push variable downpush method down

remove variableremove methodremove class

rename variablerename methodrename class

add variable to classadd method to classadd (sub)class to
hierarchy

Attribute RefactoringsMethod RefactoringsClass
Refactorings

List of refactorings provided by the refactoring browser

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.5

Why Refactoring?
“Grow, don’t build software” Fred Brooks

Some argue that good design does not lead to code
needing refactoring,

But in reality
– Extremely difficult to get the design right the first time
– You cannot fully understand the problem domain
– You cannot understand user requirements, if he does!
– You cannot really plan how the system will evolve in five years
– Original design is often inadequate
– System becomes brittle, difficult to change

Refactoring helps you to
– Manipulate code in a safe environment (behavior preserving)
– Recreate a situation where evolution is possible
– Understand existing code

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.6

Refactoring and OO

Object-Oriented Programming
– emphasize the possibility of changes
– rapid development cycle
– incremental definition

Frameworks
– family of products from the same

skeletons or kernel
– reuse of functionality

However software evolves, grows and...
dies if not taken care of

=> refactoring

New / Changing
Requirements

More
Reuse

EXPANSIONCONSOLI-
DATION

Iterative development

Consolidation is necessary to ensure next
expansion success

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.7

Examples of Refactoring Analysis

AddClass
– simple
– namespace use and static references between

class structure
Rename Method

– existence of similar methods
– references of method definitions
– references of calls

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.8

Add Class

Preconditions
– no class and global variable exists with classname in the same scope
– subclasses are all subclasses of all superclasses
– [Smalltalk] superclasses must contain one class
– [Smalltalk] superclasses and subclasses cannot be metaclasses

Postconditions
– new class is added into the hierarchy with superclasses as

superclasses and subclasses as subclasses
– new class has name classname
– subclasses inherit from new class and not anymore from

superclasses
Considerations: Abstractness

B

C D F
N

A B

C D

F

A

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.9

Rename Method: Do It Yourself

• Do it yourself approach
• Check if a method does not exist in the class and

superclass/subclasses with the same “name”
• Browse all the implementers (method definitions)
• Browse all the senders (method invocations)
• Edit and rename all implementers
• Edit and rename all senders
• Remove all implementers
• Test
• Automated refactoring is better !

BX

B b = new B();
b.blnc();

blnce()

A
blnce()

D
blnce()

C
blnce()

BX
balance()

A
balance()

D
balance()

C
balance()

B b = new B();
b.balance();

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.10

Rename Method

Rename Method (method, new name)
Preconditions

– no method exists with the signature implied by new name in
the inheritance hierarchy that contains method

– [Smalltalk] no methods with same signature as method
outside the inheritance hierarchy of method

– [Java] method is not a constructor
PostConditions

– method has new name
– relevant methods in the inheritance hierarchy have new name
– invocations of changed method are updated to new name

Other Considerations
– Typed/Dynamically Typed Languages => Scope of the

renaming

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.11

Which Refactoring Tools?
Change Efficient

Refactoring
– Source-to-source program

transformation
– Behaviour preserving

=> improve the program
structure

Programming Environment
– Fast edit-compile-run cycles
– Integrated into your

environment
– Support small-scale reverse

engineering activities
=> convenient for “local”

ameliorations

Failure Proof
Regression Testing

– Repeating past tests
– Tests require no user

interaction
– Tests are deterministic
– Answer per test is yes / no

=> verify if improved structure
does not damage previous work

Configuration & Version
Management

– keep track of versions that
represent project milestones

=> possibility to go back to
previous version

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.12

Top Ten of Code Bad Smells (i)

"If it stinks, change it" Grandma Beck
• Duplicated Code
• Long Method
• Large Class (Too many responsibilities)
• Long Parameter List (Object is missing)
• Case Statement (Missing polymorphism)
• Divergent Change (Same class changes differently

depending on addition)
• Shotgun Surgery (Little changes distributed over

too much objects)

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.13

Top Ten of Code Bad Smells (ii)

• Feature Envy (Method needing too much information
from another object)

• Data Clumps (Data always use together (x,y -> point))
• Parallel Inheritance Hierarchies (Changes in one

hierarchy require change in another hierarchy)
• Lazy Class (Do not do too much)
• Middle Man (Class with too much delegating methods)
• Temporary Field (Attributes only used partially under

certain circumstances)
• Message Chains (Coupled classes, internal

representation dependencies)
• Data Classes (Only accessors)

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.14

Two Low-Level Cures

Long methods
• A method is the smallest unit of overriding
• Extract pieces as smaller method
• Comments are good delimiters

Not Intention Revealing Methods
• Rename Method

setType: aVal
"compute and store the variable type"
self addTypeList: (ArrayType with: aVal).
currentType := (currentType computeTypes: (ArrayType with: aVal))

=>
computeAndStoreType: aVal

self addTypeList: (ArrayType with: aVal).
currentType := (currentType computeTypes: (ArrayType with: aVal))

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.15

One High-Level Cure: Duplicated Code

“Say everything exactly once” Kent Beck
Makes the system harder to understand and to

maintain
• In the same class
• Extract Method

Between two sibling subclasses
• Extract Method
• Push identical methods up to common superclass
• Form Template Method

Between unrelated class
• Create common superclass
• Move to Component
• Extract Component (e.g., Strategy)

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.16

Other High-Level Cures

God Class
• Find logical sub-components (set of working

methods/instance variables)
• Move methods and instance variables into

components
• Extract component
• If not using all the instance variables
• Extract Subclass

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.17

Nested Conditionals

New cases should ideally not require changing
existing code

May apply the State / Strategy / NullObject
pattern

Use dynamic dispatch
• Define classes if not created
• Define abstract method in superclass
• Define makeCall methods
• Extract Methods

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.18

Refactor and Reverse Engineerging

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

issues
• Tool support
• Failure proof

(1) Model capture

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.19

Refactor To Understand

The Obvious:
• Programs hard to read => Programs hard to understand =>

Programs hard to modify
• Programs with duplicated logic are hard to understand
• Programs with complex conditionals are hard to understand
• Programs hard to modify

Refactoring code creates and supports the
understanding

• Renaming instance variables helps understanding methods
• Renaming methods helps understanding responsibility
• Iterations are necessary

The refactored code does not have to be used!

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.20

Obstacles to Refactoring
Complexity

• Changing design is hard
• Understanding code is hard

Possibility to introduce errors
• Run tests if possible
• Build tests

Clean first Then add new functionality
Cultural Issues

• Producing negative lines of code, what an idea!
• “We pay you to add new features, not to improve the code!”

If it doesn’t break, do not fix it
• “We do not have a problem, this is our software!“

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.21

Conclusion: Tool Support

+++version & configuration
management

+++regression testing

+-+-+-reverse engineering facilities

+--++rapid edit-compile-run cycles

+- (?)++refactoring tools

JavaC++Smalltalk

Refactoring Philosophy
combine simple refactorings into larger restructuring
=> improved design
=> ready to add functionality

Do not apply refactoring tools in isolation

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.22

Obstacles to Refactoring

• Performance issue
• Refactoring may slow down the execution
• The secret to write fast software:

“Write tunable software first then tune it”
• Normally only 10% of your system consumes 90% of

the resources so just focus on 10 %.
• Refactorings help to localize the part that need change
• Refactorings help to concentrate the optimizations

• Development is always under time pressure
• Refactoring takes time
• Refactoring better after delivery

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz 6.23

Conclusion: Know-when & Know-how
• Know when is as important as know-how

• Refactored designs are more complex
• Use “code smells” as symptoms
• Rule of the thumb: “Once and Only Once” (Kent Beck)

=> a thing stated more than once implies refactoring

• More about code smells and refactoring
• Book on refactorings [Fowl99a].
• http://www2.awl.com/cseng/titles/0-201-89542-0/refactor/

Wiki-web with discussion on code smells
• http://c2.com/cgi/wiki?CodeSmells

Refactoring Browser
• http://wiki.cs.uiuc.edu/RefactoringBrowser
• http://st-www.cs.uiuc.edu/~brant/RefactoringBrowser/

