
Stéphane Ducasse «ChapterNr».1

Selected Design Patterns

• Design Patterns are recurrent solutions to
design problems

• They are pros and cons

• We already saw:
– Factory, Hook, Templates

• Singleton
• Composite

Stéphane Ducasse «ChapterNr».2

Alert!!! Design Patterns are invading…

• Design Patterns may be a real plague!
• Do not apply them when you do not need them
• Applying too much or badly design patterns
makes software rot

• Design Patterns make the software more
complex

– More classes
– More indirections, more messages

• Try to understand when NOT applying them!

Stéphane Ducasse «ChapterNr».3

The Singleton Pattern

• Intent: Ensure that a class has only one
instance, and provide a global point of access
to it

• Problem: We want a class with a unique
instance.

• Solution: We specialize the #new class
method so that if one instance already exists
this will be the only one. When the first
instance is created, we store and return it as
result of #new.

Stéphane Ducasse «ChapterNr».4

Possible Design

Singleton
singletonMethod
singletonState
«shared variable»
UniqueInstance

Singleton class
uniqueInstance
new

«unique
Instance»

Client
clientMethod

UniqueInstance isNil

ifTrue:[UniqueInstance := self basicNew]

^UniqueInstance

self error: ‘....’

Singleton uniqueInstance singletonMethod

Stéphane Ducasse «ChapterNr».5

The Singleton Pattern

|aLan|
aLan := NetworkManager new
aLan == LAN new -> true
aLan uniqueInstance == NetworkManager new -> true

NetWorkManager class
instanceVariableNames: 'uniqueInstance '

NetworkManager class>>new
self error: ‘should use uniqueInstance’

NetworkManager class>>uniqueInstance
uniqueInstance isNil

ifTrue: [uniqueInstance := self basicNew initialize].
^uniqueInstance

Stéphane Ducasse «ChapterNr».6

The Singleton Pattern

• Providing access to the unique instance is not
always necesssary.

• It depends on what we want to express. The
difference between #new and
#uniqueInstance is that #new potentially
initializes a new instance, while
#uniqueInstance only returns the unique
instance (there is no initialization)

• Do we want to communicate that the class has
a singleton?

Stéphane Ducasse «ChapterNr».7

Implementation Issues
Singletons may be accessed via a global variable (ex:

NotificationManager uniqueInstance notifier).
SessionModel>>startupWindowSystem

“Private - Perform OS window system startup”
Notifier initializeWindowHandles.
...
oldWindows := Notifier windows.
Notifier initialize.
...
^oldWindows

• Global Variable or Class Method Access
– Global Variable Access is dangerous: if we reassign Notifier

we lose all references to the current window.
– Class Method Access is better because it provides a single

access point. This class is responsible for the singleton
instance (creation, initialization,...).

Stéphane Ducasse «ChapterNr».8

Implementation Issues

• Persistent Singleton: only one instance exists and its
identity does not change (ex: NotifierManager in
Visual Smalltalk)

• Transient Singleton: only one instance exists at any
time, but that instance changes (ex: SessionModel in
Visual Smalltalk, SourceFileManager, Screen in
VisualWorks)

• Single Active Instance Singleton: a single instance is
active at any point in time, but other dormant
instances may also exist. Project in VisualWorks,
ControllerManager.

Stéphane Ducasse «ChapterNr».9

Implementation Issues

• classVariable or class instance variable
• classVariable

– One singleton for a complete hierarchy
• Class instance variable

– One singleton per class

Stéphane Ducasse «ChapterNr».10

Access?

• In Smalltalk we cannot prevent a client to send a
message (protected in C++). To prevent additional
creation we can redefine new/new:

Object subclass: #Singleton
instanceVariableNames: ‘uniqueInstance’
classVariableNames: ‘’
poolDictionaries: ‘’

Singleton class>>new
self error: ‘Class ‘, self name, ‘ cannot create new
instances’

Stéphane Ducasse «ChapterNr».11

Access using new: not so good idea

Singleton class>>new
^self uniqueInstance

• The intent (uniqueness) is not clear anymore!
New is normally used to return newly created
instances. The programmer does not expect
this:

|screen1 screen2|
screen1 := Screen new.
screen2 := Screen uniqueInstance

Stéphane Ducasse «ChapterNr».12

Favor Class Behavior

• When a class should only have one instance, it could
be tempting to define all its behavior at the class
level. But this is not good:

• Class behavior represents behavior of classes:
“Ordinary objects are used to model the real world.
MetaObjects describe these ordinary objects”

• Do not mess up this separation and do not mix domain
objects with metaconcerns.

• What’s happens if later on an object can have multiple
instances? You would have to change a lot of client
code!

Stéphane Ducasse «ChapterNr».13

The Composite Pattern

• A Case study: Queries. We want to be able to
• Specify different queries over a repository
q1 := PropertyQuery property: #HNL with: #< value: 4.
q2 := PropertyQuery property: #NOM with: #> value: 10.
q3 := MatchName match: ‘*figure*’

• Compose these queries and treat composite queries
as one query
(e1 e2 e3 e4 ... en)((q1 and q2 and q4) or q3) -> (e2 e5)
composer := AndComposeQuery with: (Array with: q1 with: q2
with: q3)

Stéphane Ducasse «ChapterNr».14

A Possible Solution

^aCollection select: [:each | self holdsOn: each]
AbstractQuery
runOn: aCollection
holdsOn: anElement

AndComposite
holdsOn: anElement

MatchingProperty
holdsOn: anElement

Composite
add: aQuery
remove: aQuery

holdsOn: anElement

^ queries all:

[:each| each fulfils: anElement]

OrComposite
holdsOn: anElement

Stéphane Ducasse «ChapterNr».15

Composite

• Intent: Compose objects into tree structure
to represent part-whole hierarchies.
Composite lets clients treat individual objects
and compositions of objects uniformly

children do: [:child|

child operation]

Component
operation

Composite
operation
add: aComponent
remove: aComponent

Leaf
operation

children
Client

Stéphane Ducasse «ChapterNr».16

In Smalltalk

• Composite not only groups leaves but can also
contain composites

• In Smalltalk add:, remove: do not need to be
declared into Component but only on
Composite. This way we avoid to have to
define dummy behavior for Leaf

Stéphane Ducasse «ChapterNr».17

Composite Variations

• Use a Component superclass (To define the
interface and factor code there)

• Consider implementing abstract Composite
and Leaf (in case of complex hierarchy)

• Only Composite delegates to children
• Composites can be nested
• Composite sets the parent back-pointer
(add:/remove:)

Stéphane Ducasse «ChapterNr».18

Composite Variations

• Can Composite contain any type of child? (domain
issues)

• Is the Composite’s number of children limited?
• Forward

– Simple forward. Send the message to all the children and
merge the results without performing any other behavior

– Selective forward. Conditionally forward to some children
– Extended forward. Extra behavior
– Override. Instead of delegating

