
Smalltalk Coding Patterns

mostly from
Smalltalk Best Practice Patterns

Kent Beck
Prentice-Hall, 1997

Stéphane Ducasse «ChapterNr».261

Coding Standards

• Standards
– improve communication
– let code be the design
– make code more habitable
– change

Stéphane Ducasse «ChapterNr».262

Coding Standards for Smalltalk

• Variables have no types
• Names can be any length
• Operations named with keywords
• Pretty printer

Stéphane Ducasse «ChapterNr».263

Names

• Names should mean something.

• Standard protocols
– Object (printOn:, =)
– Collection (do:, add:, at:put:, size)

• Standard naming conventions

Stéphane Ducasse «ChapterNr».264

Intention Revealing Selector

• Readability of message send is more
important than readability of method.

• Name should specify what method does, not
how.

Stéphane Ducasse «ChapterNr».265

Method Names

• If there is already a standard name, use it
instead of following these rules.

• Three kinds of methods
– change state of receiver
– change state of argument
– return value from receiver

Stéphane Ducasse «ChapterNr».266

Change state of receiver

• method name is verb phrase
– translateBy:
– add:

Stéphane Ducasse «ChapterNr».267

Change state of argument

• Verb phrase ending with preposition like on or
to.

– displayOn:
– addTo:

Stéphane Ducasse «ChapterNr».268

Return value from receiver

• method name is noun phrase or adjective, a
description rather than a command

– translatedBy:
– size
– topLeft

Stéphane Ducasse «ChapterNr».269

Method Names
• Specialized names for specialized purposes.

– Double-dispatching methods
– Accessing methods
– Query methods
– Boolean property setting
– Converter methods

Stéphane Ducasse «ChapterNr».270

Accessing Methods

• Many instance variables have accessing
methods, methods for reading and writing
them.

• Same name than the instance variables
• Accessing methods come in pairs.

• name, name:
• width, width:
• x, x:

Stéphane Ducasse «ChapterNr».271

When to use Accessing Methods

• Two opinions:
– Always, including an object’s own instance variable

• lazy initialization, subclassing is easier
– Only when you need to use it.

• better information hiding
• With the refactoring browser it is easy to transform the

class using or not accessing

Stéphane Ducasse «ChapterNr».272

Query Method
• Methods that return a value often describe the

type of the value because they are noun phrases.
• Query methods are not noun phrases, but are

predicates. How can we make the return type
clear?

• Provide a method that returns a Boolean in the
“testing” protocol. Name it by prefacing the
property name with a form of “be” or “has”- is,
was, will, has

Stéphane Ducasse «ChapterNr».273

Query Method by Example

• Instead of:
Switch>>makeOn
 status := #on
Switch>>makeOff
 status := #off
Switch>>status
 ^status
Client>>update
 self switch status = #on ifTrue: [self light makeOn]
 self switch status = #off ifTrue: [self light makeOff]

• It is better to define
Switch>>isOn, Switch>>isOff

• Switch>>on is not a good name... #on: or #isOn ?

Stéphane Ducasse «ChapterNr».274

Testing Method

• Prefix every testing method with "is".
– isNil
– isControlWanted
– isEmpty
– hasBorder

Stéphane Ducasse «ChapterNr».275

How do you set a boolean property?

Switch>>on: aBoolean
 isOn := aBoolean
• Expose the representation of the status to the

clients
• Responsibility of who turn off/on the switch: the

client and not the object itself

• Create two methods beginning with “be”. One has the
property name, the other the negation. Add “toggle”
if the client doesn’t want to know about the current
state

• beVisible/beInvisible/toggleVisible

Stéphane Ducasse «ChapterNr».276

Boolean Property Setting
• Don't make accessing methods whose only
argument is a boolean.

• Create two methods beginning with "make".
Add "toggle" if necessary.

– • makeVisible / makeInvisible / toggleVisible
– • makeDirty / makeClean

Stéphane Ducasse «ChapterNr».277

Converting Method
• Often you want to return the receiver in a
new format.

• Prepend "as" to the name of the class of
object returned.

– asSet (in Collection)
– asFloat (in Number)
– asComposedText (in Text)

Stéphane Ducasse «ChapterNr».278

Complete Creation Method
• Class methods that create instances are in
category "instance creation methods".

– Creation followed by initialization is the most
flexible.

• Point new x: 0; y: 0
– Important to preserve invariants and avoid ill-

formed objects.

Stéphane Ducasse «ChapterNr».279

Complete Creation Method
• Instance creation methods should create
well-formed instances. Pass all required
parameters to them.

• Point x: 0 y: 0
• SortedCollection sortBlock: aBlock
• Set new

Stéphane Ducasse «ChapterNr».280

Creation Parameter Method
• How should a Complete Creation Method
initialize new object?

– Separate setters are most flexible

x: aNumber y: anotherNumber
^self new

x: aNumber;
y: anotherNumber

Stéphane Ducasse «ChapterNr».281

Creation Parameter Method
• Provide a single method that sets all the
variables. Preface its name with "set", then
the names of the variables.

• Forces the client to specify all arguments
• Place to check semantics constraints

 x: aNumber y: anotherNumber
^self new setX: aNumber y: anotherNumber

Stéphane Ducasse «ChapterNr».282

Composed Method
• How big should a method be?
• Write methods that perform one identifiable
task.

– Few lines per method.
– Consistent level of abstraction.
– Minimizes number of methods you have to change in

subclass.
– Minimizes code copying in subclass.

Stéphane Ducasse «ChapterNr».283

Composed Method Usage
• Top down

 self input; process; output
• Bottom up

– common expressions
– long loop bodies
– comments
– From client - two or more messages to another

object is suspicious

Stéphane Ducasse «ChapterNr».284

Methods from Comments
• Comments indicate "identifiable task"
• If you need to comment a block of code, it
probably should be a separate method.

• Turn method comment into method name.

Stéphane Ducasse «ChapterNr».285

Simple Superclass Name
• What should we call the root of a
hierarchy?

– Complex name conveys full meaning.
– Simple name is easy to say, type, extend.
– But need to show that subclasses are related.

Stéphane Ducasse «ChapterNr».286

Simple Superclass Name

• Give superclasses simple names: two or
(preferably) one word

– Number
– Collection
– VisualComponent

Stéphane Ducasse «ChapterNr».287

Qualified Subclass Name
• What should you call a subclass that plays a
role similar to its superclass?

– Unique name conveys most information
– Derived name communicates relationship to

superclass

Stéphane Ducasse «ChapterNr».288

Qualified Subclass Name
• Use names with obvious meaning. Otherwise,
prepend an adjective to most important
superclass.

– OrderedCollection
– UndefinedObject
– CloneFigureCommand, CompositeCommand,

ConnectionCommand

Stéphane Ducasse «ChapterNr».289

Variables: Roles vs. Types
• Types are specified by classes

– aRectangle
– aCollection
– aView

• Roles - how an object is used
– location
– employees
– topView

Stéphane Ducasse «ChapterNr».290

Role Suggesting Instance Variable
• What should you name an instance variable?

– Type is important for understanding
implementation. But class comment can describe
type.

– Role communicates intent, and this harder to
understand than type.

Stéphane Ducasse «ChapterNr».291

Role Suggesting Instance Variable

• Name instance variables for the role they
play. Make the name plural if the variable is a
collection.

– Point: x, y
– Interval: start, stop, step
– Polyline: vertices

Stéphane Ducasse «ChapterNr».292

Type Suggesting Parameter Name
• Name of variable can either communicate
type or role.

• Keywords communicate their parameter's
role, so name of variable should give new
information.

Stéphane Ducasse «ChapterNr».293

Type Suggesting Parameter Name
• Name parameters according to their most
general expected class, preceded by "a" or
"an". If there is more than one parameter
with the same expected class, precede the
class with a descriptive word.

Stéphane Ducasse «ChapterNr».294

Temporaries
• Name temporaries after role they play.
• Use temporaries to:

– collect intermediate results
– reuse result of an expression
– name result of an expression

• Methods are simpler when they don't use
temporaries!

