The Design in Question

- The Basic Idea behind Frameworks
- Subclassing vs SubTyping

- Design Heuristics

- Design Symptoms

Stéphane Ducasse «ChapterNr».1

Inheritance as Parameterization

- Subclass customizes template method by
implementing (abstract) operations

- Any method acts as a parameter

- Methods are unit of reuse

- Abstract class -- one that must be
customized before it can be used

Stéphane Ducasse «ChapterNr».2

Methods are Unit of Reuse

- self send are plans for reuse

r Z'D

- () can be abstract or not

Stéphane Ducasse «ChapterNr».3

Frameworks vs. Libraries

- Libraries
-You call them
- Callback to extend them
- Framework
- Hollywood principle: Don't call me T will call you
- Three applications before a framework!

Stéphane Ducasse «ChapterNr»_.4

You remember self...

- self is dynamic

. self acts as a hook

- A
foo-
bar{._

foo-

Stéphane Ducasse «ChapterNr».5

You remember super...

- super i1s static

_—

- super forbid extension

Stéphane Ducasse «ChapterNr» .6

By the way...

- Frameworks design
-Need at least 3 applications to support the
generalization

- Smile if somebody tell that they start
implementing a framework

Stéphane Ducasse «ChapterNr».7

RoadMap

- The Basic Idea behind Frameworks
- Subclassing vs SubTyping

- Design Heuristics

- Design Symptoms

Stéphane Ducasse «ChapterNr» .8

Inheritance and Polymorphism

- Polymorphism works best with standard
interfaces

- Inheritance creates families of classes with
similar interfaces

- Abstract class describes standard interfaces

- Inheritance helps software reuse by making
polymorphism easier

Stéphane Ducasse «ChapterNr».9

Specification Inheritance (Subtyping)

- Reuse of specification
- A program that works with Numbers will work with
Fractions.
- A program that works with Collections will work
with Arrays.

- A class is an abstract data type (Data +
operations to manipulate it)

Stéphane Ducasse «ChapterNr».10

Inheritance for code reuse (Subclassing)

- Dictionary is a subclass of Set
- Semaphore is a subclass of LinkedList

- Subclass reuses code from superclass, but
has a different specification. It cannot be
used everywhere its superclass is used.
Usually overrides a lot of code.

- ShouldNotImplement use is a bad smell...

Stéphane Ducasse «ChapterNr».11

Inheritance for code reuse (Subclassing)

Inheritance for code reuse is good for
* rapid prototyping
- getting application done quickly.

Bad for:

* easy to understand systems

- reusable software

- application with long life-time.

Stéphane Ducasse «ChapterNr».12

Quizz

- How to implement a Stack and a Queue?
- Subclass of OrderedCollection?
- Using an orderedCollection?

. Circle subclass of Point?

- Implement Stack and Queue

Stéphane Ducasse «ChapterNr».13

How to Choose?

- Favor subtyping

- When you are in a hurry, do what seems
easiest.

- Clean up later, make sure classes use "is-a"

"

relationship, not just “is-implemented-like".

- I's-a is a design decision, the compiler only
enforces is-implemented-likelll

Stéphane Ducasse «ChapterNr».14

Subclassing vs. Composition

- Subclassing is not a panacea

- Require class definition

- Require method definition

- Extension should be prepared in advance
- No run-time changes

- Composition: basis of Design patterns
- Strategy,

Stéphane Ducasse «ChapterNr»_.15

The idea: Delegating to other objects

A A
foo X: X x fooAndBar
foo——1
/N ?227?
X
B fooAndBar
foo T
Z
fooAndBar

Stéphane Ducasse «ChapterNr»_.16

Composition Advantages

- Pros
-Run-time change
- Clear responsibility

- No blob
- Clear interaction protocol

- Cons
- New class
- Delegation
- New classes

Stéphane Ducasse

«ChapterNr» .17

Example of Parametrization Advantages

DialectStream>>initializeST80ColorTable
"Tnitialize the colors that characterize the ST80
dialect"

ST80ColorTable _ IdentityDictionary new.
#((temporaryVariable blue italic)
(methodArgument blue normal)

(setOrReturn black bold)) do:
[:aTriplet |
ST80ColorTable at: aTriplet first put: aTriplet
allButFirst]

- Color tables hardcoded in method

Stéphane Ducasse «ChapterNr».18

Still Require Subclassing & Compilation

DialectStream>>
ST80ColorTable _ IdentityDictionary new.
self description do:
[:aTriplet |
ST80ColorTable at: aTriplet first put: aTriplet
allButFirst]

DialectStream>>description
" #((temporaryVariable blue italic)
(methodArgument blue normal)

(setOrReturn black bold))

Stéphane Ducasse «ChapterNr».19

Composition-based Solution

DialectStream»>>initializeST80Color TableWith: anArray

ST80ColorTable := IdentityDictionary new.
anArray
do: [:aTriplet | ST80ColorTable at: aTriplet first
put: aTriplet allButFirst]

In a Client

DialectStream initializeST80Color TableWith:
#(#(#temporaryVariable #blue #normal) ...
#(#prefixKeyword #veryDarkGray #bold)
#H(#setOrReturn #red #bold)).
DialectStream initialize

Stéphane Ducasse «ChapterNr».20

Type Checking Verses Runtime Checking

A number of people believe that large programs can not be written in
languages without typing, preferable strong type checking. They
believe that without the compiler checking type usage programmers
will make too many type usage errors. This will slow the development
of programs and result in too many errors. Programmers using
Smalltalk, Lisp, Perl, APL, Python or Ruby (to name a few) tend to
believe that type usage slows program development. Mixing these two
groups of people in newsgroups results in many flame wars. These
flame wars are a waste of emotional energy. Try Smalltalk and see for
yourself. You might find that for you type checking is very important. If
so then you know it by experience rather than repeating what you
were told in a course. You might find that you do just fine without type
checking.

Stéphane Ducasse «ChapterNr».21

Behavior Up and State Down

- Define classes by behavior, not state

- Implement behavior with abstract state: if you need
state do it indirectly via messages. Do not reference
the state variables directly

- Identify message layers: implement class's behavior
through a small set of kernel method

Stéphane Ducasse «ChapterNr».22

Example

Collection>>removeAll: aCollection
aCollection do: [:each | self remove: each]
™ aCollection

Collection>>remove: oldObject
self remove: oldObject if Absent: [self notFoundError]

Collection>>remove: anObject if Absent: anExceptionBlock
self subclassResponsibility

Stéphane Ducasse «ChapterNr».23

Behavior-Defined Class

- When creating a new class, define its public protocol
and specify its behavior without regard to data
structure (such as instance variables, class variables,
and so on).

- For example:
Rectangle

- Protocol:
area
corners
intfersects:
contains:
perimeter
width
height
insetBy:

Stéphane Ducasse «ChapterNr».24

Implement Behavior with Abstract State

- The public behavior of a class is identified but the actual
implementation of this behavior is undefined.

- If implied state information is needed in order to complete the
implementation details of behavior, identify the state by
defining a message that returns that state instead of defining a
variable.

- For example, use
Circle>>area
“self radius squared * self pi

- hot
Circle>>area
“radius squared * pi.

Stéphane Ducasse «ChapterNr».25

Identify Message Layers/Encapsulate Concrete

ate

St

How can methods be factored to make the class both efficient
and simple to subclass?

- Identify a small subset of the abstract state and behavior

methods which all other methods can rely on as kernel methods.

Circle>>radius
~??
Circle>>pi
~??
Circle>>center
~??
Circle>>diameter
“self radius * 2
Circle>>area
“self radius squared * self pi

Stéphane Ducasse «ChapterNr».26

Simple Coding Practices Promoting Design

Stéphane Ducasse «ChapterNr».27

Same Level of Abstraction

Controller>>controlActvity
self controlInitialize.
self controllLoop.
self controlTerminate

Stéphane Ducasse «ChapterNr».28

About Methods

- Avoid long methods

- A method: one task

- Avoid Duplicated code
- Reuse Logic

Stéphane Ducasse «ChapterNr».29

Tell, Don't Askl

MyWindow>>displayObject: aGrObject
aGrObject displayOn: self

And not:
MyWindow>>displayObject: aGrObject

aGrObjectisSquare if True: [...]
a6rObject isCircle if True: [...]

Stéphane Ducasse «ChapterNr».30

Don't Check Results of Actions

MyStuff>>doit
self countDays.
dayCount status =~ 0

if True: []
ifFalse: [dayCount Status =1
ifTrue:[....]
MyStuff>>doit

[self countDays] on: Error do: [:ex] ...]

Stéphane Ducasse «ChapterNr»_31

Good Signs of OO Thinking

- Short methods

- No dense methods

- No super-intelligent objects
- No manager objects

- Objects with clear responsibilities
- State the purpose of the class in one sentence

- Not too many instance variables

Stéphane Ducasse «ChapterNr».32

