
Stéphane Ducasse 9.1

Inheritance Semantics and Lookup

Stéphane Ducasse 9.2

Inheritance
• Do not want to rewrite everything!
• Often times want small changes
• Class hierarchies for sharing of definitions
• Each class defines or refines the definition of
its ancestors

• => inheritance

Stéphane Ducasse 9.3

Inheritance
New classes

– Can add state and behavior
– Can specialize ancestor behavior
– Can use ancestor’s behavior and state
– Can redefine ancestor’s behavior

to existing ones

Stéphane Ducasse 9.4

Inheritance in Smalltalk
• Single inheritance
• Static for the instance variables.
• At class creation time the instance variables
are collected from the superclasses and the
class. No repetition of instance variables.

• Dynamic for the methods.
• Late binding (all virtual) methods are looked
up at run-time depending on the dynamic type
of the receiver.

Stéphane Ducasse 9.5

Remember...

Node

WorkstationPrinter

name
accept: aPacket
send: aPacket
hasNextNode

originate: aPacket
accept: aPacket

print: aPacket
accept: aPacket

nextNode

accept: aPacket

send: aPacket

nodePrinter aPacket node1

isAddressedTo: nodePrinter

accept: aPacket

print: aPacket

[true]

[false]

Stéphane Ducasse 9.6

Node

Object subclass: #Node
instanceVariableNames: 'name nextNode '
...

Node>>accept: aPacket
 "Having received the packet, send it on. This is the default behavior

 subclasses will probably override me to do something special."

self hasNextNode ifTrue: [self send: aPacket]

Node>>send: aPacket
 "Precondition: there is a next node. Send a packet to the next node."

self nextNode accept: aPacket

Stéphane Ducasse 9.7

Workstation
Node subclass: #Workstation

instanceVariableNames: ''
...

Workstation>>accept: aPacket
 “when a workstation accepts a packet addressed to it, it prints

some trace on the transcript”
(aPacket isAddressedTo: self)

ifTrue:[Transcript show: 'A packet is accepted
by the Workstation ', self name asString]

ifFalse: [super accept: aPacket]

Workstation>>originate: aPacket

aPacket originator: self.
self send: aPacket

Stéphane Ducasse 9.8

Message Sending & Method Lookup
receiver selector args

• Looking up a method: When a message (receiver selector args) is
sent, the method corresponding to the message selector is
looked up through the inheritance chain.

• The lookup starts in the CLASS of the RECEIVER.
• If the method is defined in the class dictionary, it is returned.
• Otherwise the search continues in the superclasses of the

receiver's class. If no method is found and there is no
superclass to explore (class Object), a new method called
#doesNotUnderstand: is sent to the receiver, with a
representation of the initial message.

Stéphane Ducasse 9.9

In Smalltalk
• If no method is found and there is no superclass to

explore (class Object), a new method called
#doesNotUnderstand: is sent to the receiver, with a
representation of the initial message.

Stéphane Ducasse 9.10

Method Lookup starts in Receiver Class

A
foo
bar

^ 10

B
foo

self foo

aB

Is a

aB foo
(1) aB class => B
(2) Is foo defined in B?
(3) Foo is executed -> 50

^ 50

aB bar
(1) aB class => B
(2) Is bar defined in B?
(3) Is bar defined in A?
(4) bar executed
(5) Self class => B
(6) Is foo defined in B
(7) Foo is executed -> 50

Stéphane Ducasse 9.11

Method Lookup Examples
• node1 accept: aPacket

– node1 is an instance of Node
– accept: is looked up in the class Node
– accept: is defined in Node => lookup stops + method executed

• macNode accept: aPacket
– macNode is an instance of Workstation
– accept:
is looked up in the class Workstation
– accept: is defined in Node
=> lookup stops + method executed

Node
name
accept:
send:
hasNextNode

Printer
accept:
print:

Workstation
accept:
originate:

Stéphane Ducasse 9.12

Method Lookup Examples (II)
• macNode name

– macNode is an instance of Workstation.
– name: is looked up in the class Workstation
– name is not defined in Workstation => lookup continues in

Node
– name is defined in Node => lookup stops + method executed

• node1 print: aPacket
– node is an instance of Node
– print: is looked up in the class Node
– print: is not defined in Node => lookup continues in Object
– print: is not defined in Object => lookup stops + exception

Stéphane Ducasse 9.13

Graphically…

Node
name
accept:
send:
hasNextNode

Object

node1

print:

1

2

Error!!!

Stéphane Ducasse 9.14

…in Smalltalk
• node1 print: aPacket

– node is an instance of Node
– print: is looked up in the class Node
– print: is not defined in Node > lookup continues in Object
– print: is not defined in Object => lookup stops + exception

– message: node1 doesNotUnderstand: #(#print aPacket) is
executed

– node1 is an instance of Node so doesNotUnderstand: is
looked up in the class Node

– doesNotUnderstand: is not defined in Node => lookup
continues in Object

– doesNotUnderstand: is defined in Object => lookup stops
 + method executed (open a dialog box)

Stéphane Ducasse 9.15

Graphically…

Node
name
accept:
send:
hasNextNode

Object
doesNotUnderstand:

node1

zork

1

2
doesNotUnderstand: #zork

3

4

Stéphane Ducasse 9.16

self **always** represents the receiver
A new foo
-> 10
B new foo
-> 10
C new foo
-> 50
A new bar
-> 10
B new bar
-> 10
C new bar
-> 50

A
foo
bar

^ 10

C
foo

B

^ 50

self foo

Stéphane Ducasse 9.17

How to Invoke Overridden Methods?
Solution: Send messages to super
When a packet is not addressed to a workstation, we just want to

pass the packet to the next node, i.e., we want to perform the
default behavior defined by Node.

Workstation>>accept: aPacket
 (aPacket isAddressedTo: self)
 ifTrue:[Transcript show: 'Packet accepted by the

Workstation ', self name asString]
 ifFalse: [super accept: aPacket]

Design Hint: Do not send messages to super with different
selectors than the original one. It introduces implicit
dependency between methods with different names.

Stéphane Ducasse 9.18

The semantics of super
• Like self, super is a pseudo-variable that refers to

the receiver of the message.
• It is used to invoke overridden methods.
• When using self, the lookup of the method begins in

the class of the receiver.
• When using super, the lookup of the method begins in

the superclass of the class of the method containing
the super expression and NOT in the superclass of
the receiver class.

• This means, super causes the method lookup to begin
searching in the superclass of the class of the
method containing super

Stéphane Ducasse 9.19

super changes lookup starting point
A new bar
-> 10
B new bar
-> 10 + 10
C new bar
-> 50 + 50

A
foo
bar

^ 10

C
foo

B
bar

^ 50

self foo

^ super bar
+ self foo

Stéphane Ducasse 9.20

Why super is **not** the superclass of
the receiver class?
• Let us suppose the WRONG hypothesis: “The

semantics of super is to start the lookup of a method
in the superclass of the receiver class”

agate accept: aPacket
• agate is an instance of DuplexWorkstation.

accept: is looked up in the class DuplexWorkstation
• accept: is not defined in DuplexWorkstation,

so the lookup continues in Workstation

Stéphane Ducasse 9.21

Yes Why?
• accept: is defined in Workstation,

so the lookup stops, and the method
is executed

• Workstation>>accept: does a
super accept:

• Our hypothesis: super = start the
lookup in the superclass of the receiver

 class. The superclass of the receiver
 class is Workstation

• This will result in a loop,
 therefore the hypothesis is WRONG

Node
accept:

DuplexWorkstation

Workstation
accept:

agate

accept: aPacket
 super accept

Stéphane Ducasse 9.22

What you should know
• Inheritance of instance variables is made at
class definition time.

• Inheritance of behavior is dynamic
• self **always** represents the receiver
• Method lookup starts in the class of the
receiver.

• super represents the receiver but method
lookup starts in the superclass of the class
using it.

• Self is dynamic // super is static

