
Stéphane Ducasse 4.1

A Taste of Smalltalk
• Two examples:

– ‘hello world’
– A Tomagoshi

• To give you an idea of:
– the syntax
– the elementary objects and classes
– the environment

Stéphane Ducasse 4.2

You do not have to know everything!!!
“Try not to care - Beginning Smalltalk programmers

often have trouble because they think they need to
understand all the details of how a thing works
before they can use it. This means it takes quite a
while before they can master Transcript show: ‘Hello
World’. One of the great leaps in OO is to be able to
answer the question "How does this work?" with "I
don’t care"“. Alan Knight. Smalltalk Guru

=> We will show you how to learn and find your
way

Stéphane Ducasse 4.3

Power & Simplicity: The Syntax on a PostCard
exampleWithNumber: x
“A method that illustrates every part of Smalltalk method syntax except

primitives. It has unary, binary, and key word messages, declares arguments
and temporaries (but not block temporaries), accesses a global variable (but
not and instance variable), uses literals (array, character, symbol, string,
integer, float), uses the pseudo variable true false, nil, self, and super, and has
sequence, assignment, return and cascade. It has both zero argument and one
argument blocks. It doesn’t do anything useful, though”
|y|
true & false not & (nil isNil) ifFalse: [self halt].
y := self size + super size.
#($a #a ‘a’ 1 1.0)

do: [:each | Transcript
show: (each class name);
show: (each printString);
show: ‘ ‘].

^ x < y

Stéphane Ducasse 4.4

Some Conventions
• Return Values

1 + 3 -> 4
Node new -> aNode

• Method selector #add:
• Method scope conventions
• Instance Method defined in class Node:

Node>>accept: aPacket
• Class Method defined in class Node (in the class of

the the class Node)
Node class>>withName: aSymbol

• aSomething is an instance of the class Something

Stéphane Ducasse 4.5

DoIt, PrintIt, InspectIt and Accept
• Accept = Compile: Accept a method or a class
definition

• DoIt = send a message to an object
• PrintIt = send a message to an object + print
the result (#printOn:)

• InspectIt = send a message to an object +
inspect the result (#inspect)

Stéphane Ducasse 4.6

Hello World
• Transcript show: ‘hello world’

• At anytime we can dynamically ask the system
to evaluate an expression. To evaluate an
expression, select it and with the middle
mouse button apply doIt.

• Transcript is a special object that is a kind of
standard output.

• It refers to a TextCollector instance
associated with the launcher.

Stéphane Ducasse 4.7

Transcript show: ‘hello world’

Stéphane Ducasse 4.8

Everything is an Object
– The workspace is an object.
– The window is an object: it is an instance of SystemWindow.
– The text editor is an object: it is an instance of ParagraphEditor.
– The scrollbars are objects too.
– ‘hello word’ is an object: it is aString instance of String.
– #show: is a Symbol that is also an object.
– The mouse is an object.
– The parser is an object: instance of Parser.
– The compiler is also an object: instance of Compiler.
– The process scheduler is also an object.
– The garbage collector is an object: instance of ObjectMemory.
– Smalltalk is a consistent, uniform world written in itself. You can

learn how it is implemented, you can extend it or even modify it.
All the code is available and readable

Stéphane Ducasse 4.9

Objects communicate via Messages

• Transcript show: ‘hello world’
• The above expression is a message

– the object Transcript is the receiver of the message
– the selector of the message is #show:
– one argument: a string ‘hello world’
– Transcript is a global variable (starts with an uppercase letter)

that refers to the Launcher’s report part.
• Vocabulary Concerns: Message passing or sending a

message is equivalent to
– invoking a method in Java or C++
– calling a procedure in procedural languages
– applying a function in functional languages
– of course the last two points must be considered under the light

of polymorphism

Stéphane Ducasse 4.10

Objects communicate via Messages (II)
• Message: 1 + 2

– receiver : 1 (an instance of SmallInteger)
– selector: #+
– arguments: 2

• Message: lpr nextNode: macNode
– receiver lpr (an instance of LanPrinter)
– selector: #nextNode:
– arguments: macNode (an instance of Workstation)

Stéphane Ducasse 4.11

Objects Communicate by Messages (III)
• Message: Packet send: 'This packet travelled
to' to: #lpr

– receiver: Packet (a class)
– selector: #send:to:
– arguments: 'This packet travelled to' and #lpr

• Message: Workstation withName: #mac
– receiver: Workstation (a class)
– selector: #withName:
– arguments: #mac

Stéphane Ducasse 4.12

Tomagoshi
• Small entity

– Its own night and day cycle
– Eating, sleeping, been hungry, been satisfied
– Changing color to indicate its mood

Stéphane Ducasse 4.13

Tomagoshi

woken up
sleeping

satisfied

hungry
fallAsleep

wakeUp

night isSatisfied

eat

day

isHungry

Stéphane Ducasse 4.14

Instantiating…

• To create a tomagoshi:
Tomagoshi newStandAlone openInWorld

Stéphane Ducasse 4.15

How to Define a Class
Fill the template:
NameOfSuperclass subclass: #NameOfClass
instanceVariableNames: 'instVarName1'
classVariableNames: 'ClassVarName1
ClassVarName2'
poolDictionaries: ''
category: ’TOMA'

Stéphane Ducasse 4.16

Tomagoshi
For example to create the class Tomagoshi
Morph subclass: #Tomagoshi
instanceVariableNames: ‘tummy hunger
dayCount isNight'
classVariableNames: ''
poolDictionaries: ''
category: ’TOMA'

Stéphane Ducasse 4.17

Class Comment!
• I represent a tomagoshi. A small virtual animal that

have its own life.

• dayCount <Number> represents the number of hour
(or tick) in my day and night.

• isNight <Boolean> represents the fact that this is the
night.

• tummy <Number> represents the number of times you
feed me by clicking on me.

• hunger <Number> represents my appetite power.
• I will be hungry if you do not feed me enough, but I'm

selfish so as soon as I' satisfied I fall asleep because
I do not have a lot to say.

Stéphane Ducasse 4.18

How to define a method?
message selector and argument names
"comment stating purpose of message"

| temporary variable names |
statements

Stéphane Ducasse 4.19

Initializing
Tomagoshi>>initializeToStandAlone
“Initialize the internal state of a newly
created tomagoshi”

super initializeToStandAlone.
tummy := 0.
hunger := 2 atRandom + 1.
self dayStart.
self wakeUp

Stéphane Ducasse 4.20

dayStart
Tomagoshi>>dayStart

night := false.
dayCount := 10

Stéphane Ducasse 4.21

Step
step
 “This method is called by the system at regurlar time interval. It

defines the tomagoshi behavior.”
self timePass.
self isHungry

ifTrue: [self color: Color red].
self isSatisfied

ifTrue:
[self color: Color blue.
self fallAsleep].

self isNight
ifTrue:

[self color: Color black.
self fallAsleep]

Stéphane Ducasse 4.22

Time Pass
Tomagoshi>>timePass

"Manage the night and day alternance"
Smalltalk beep.
dayCount := dayCount -1.
dayCount isZero

ifTrue:[self nightOrDayEnd.
 dayCount := 10].

self digest

Tomagoshi>>nightOrDayEnd
 "alternate night and day"

night := night not

Stéphane Ducasse 4.23

Digest
Tomagoshi>>digest
"Digest slowly: every two cycle, remove one from the

tummy”

(dayCount isDivisibleBy: 2)
ifTrue: [tummy := tummy -1]

Stéphane Ducasse 4.24

Testing
Tomagoshi>>isHungry
^ hunger > tummy

Tomagoshi>>isSatisfied
^self isHungry not

Tomagoshi>>isNight
^ night

Stéphane Ducasse 4.25

State
Tomagoshi>>wakeUp

self color: Color green.
state := self wakeUpState

Tomagoshi>>wakeUpState
 "Return how we codify the fact that I sleep"

^ #sleep

Tomagoshi>> isSleeping
^ state = self wakeUpState

Stéphane Ducasse 4.26

Eating
Tomagoshi>>eat
tummy := tummy + 1

Stéphane Ducasse 4.27

Time and Events
Tomagoshi>>stepTime
 "The step method is executed every steppingTime

ms"
^ 500

Tomagoshi>>handlesMouseDown: evt
"true means that the morph can react when the

mouse down over it"
^ true

Tomagoshi>>mouseDown: evt
 self eat

