
Stéphane Ducasse 2.1

OOP?

• What is OOP?
• Why?
• OOP in a nutshell

Stéphane Ducasse 2.2

Reality on Software Development

What is important?
maintainability
extensibility
understandability

Analyze

Design

Construct

Test

Maintain

Stéphane Ducasse 2.3

Maintenance = Evolution

17.4% Corrective
(fixing reported errors)

18.2% Adaptive
(new platforms or OS)

60.3% Perfective
(new functionality)

The bulk of the maintenance cost is due to new functionality
=> even with better requirements, it is hard to predict new functions

data from [Lien78a]

4.1% Other

Stéphane Ducasse 2.4

The Waterfall Model is dead

Stéphane Ducasse 2.5

Iterative Development

Stéphane Ducasse 2.6

Lehman’s Laws of Software Evolution

Continous Change: “A program that is used in a real-
world environment must change, or become
progressively less useful in that environment.”

Software Entropy: “As a program evolves, it
becomes more complex, and extra resources are
needed to preserve and simplify its structure.”

Stéphane Ducasse 2.7

The Old Way

Computer system consists of data and
programs.

Programs manipulate data.
Programs organized by

– functional decomposition
– dataflow
– modules

Stéphane Ducasse 2.8

New Paradigm

• Computer system consists of a set of objects.
• Objects are responsible for knowing and doing
certain things.

• Objects collaborate to carry out their
responsibilities.

• Programs organized by classes, inheritance
hierarchies and subsystems

Stéphane Ducasse 2.9

Accidental vs. Essential Complexity
• Assembly is perfect to write 8k programs!
• But we need abstraction tools to model the
complexity of the world

• Object-oriented programming in only one way
– Reactive languages,
– Relational languages,
– Logic Languages, … are others

• OOP helps reducing the accidental complexity
not the essential

• Bad OO programs are also difficult to
understand, extend, and maintain

Stéphane Ducasse 2.10

What is an object, anyway?

Mystical view
Computing systems are made up of objects that

communicate only by sending messages between
each other. All computation is message sending.

Stéphane Ducasse 2.11

What is an object, anyway?

Scandinavian view
A program is a simulation. Each entity in the system

being simulated is represented by an entity in the
program.

Stéphane Ducasse 2.12

What is an object, anyway?

Programming language view
An object-oriented system is characterized by

• data abstraction
• inheritance
• polymorphism by late-binding of procedure calls

Stéphane Ducasse 2.13

Modeling

All phases of software life-cycle are modeling
• analysis - modeling of problem
• design - modeling of solution
• implementation - making model run on a computer
• maintenance - fixing/extending your model

Stéphane Ducasse 2.14

Modeling

Claim: people model the world with "objects"
• objects
• classes
• relationships between objects
• relationships between classes

Stéphane Ducasse 2.15

Modeling

Advantages of object-oriented software
development

• more natural - matches the way people think
• single notation - makes it easy to move between

software phases

Stéphane Ducasse 2.16

Objects and Relationships

John is Mary's father.
Mary is John's daughter.
Bob is Mary's dog.
Mary is Bob's owner.
Ann is John's employer.
John is Ann's employee.

Stéphane Ducasse 2.17

Objects and Attributes

John's name is "John Patrick O'Brian".
John's age is 27.
John's address is 987 N. Oak St, Champaign IL
61820

What about John's employer? John's wife?
What is an attribute, and what is a
relationship?

Stéphane Ducasse 2.18

Objects and Behavior

John goes on a trip.
John makes reservations.
John buys tickets.
John travels by airplane.
John checks into hotel.

Stéphane Ducasse 2.19

What is really an object?

• Anything we can talk about can be an object,
including relationships ("the husband of the
first party", "first-born son").

• What are we trying to model?
• Models should be as simple as possible, but no
simpler.

• Models are dictacted by domains

Stéphane Ducasse 2.20

Object

Data

Messages

Methods

Stéphane Ducasse 2.21

Object: Behavior + State + Control

• What: Messages
– Specify what behavior objects are to perform
– Details of how are left up to the receiver
– State information only accessed via messages

• How: Methods
– Specify how operation is to be performed
– Must have access to (contain or be passed) data
– Need detailed knowledge of data
– Can manipulate data directly

Data
Methods

Messages

Stéphane Ducasse 2.22

Classification

We naturally put objects into classes that have
similar characteristics.

• John is a man.
• Mary is a woman.
• Bob is a dog.
• All women are people.
• All people are mammals.

Stéphane Ducasse 2.23

Classes: Factory of Objects

• Reuse behavior
=> Factor into class

• Class: “Factory” object for creating new objects
of the same kind

• Template for objects that share common
characteristics

Stéphane Ducasse 2.24

Class: Mold of Objects

• **Describe** state but not value of all the
instances of the class

– Position, width and height for rectangles
• **Define** behavior of all instances of the
class

area
^ width * height

Rectangle
position
width
height
area
translatedBy: aPoint

Stéphane Ducasse 2.25

Instances

• A particular occurrence of an object defined
by a class

• Each instance has its own value
for the instance variables
• All instances of a class share
the same methods

Rectangle
position
width
height
area
translatedBy: aPoint

400@10
100
20

300@20
10
140

Stéphane Ducasse 2.26

How to Share Specification?

• Do not want to rewrite everything!
• Often times want small changes
• Class hierarchies for sharing of definitions
• Each class defines or refines the definition of
its ancestors

• => inheritance

Stéphane Ducasse 2.27

Inheritance

• New classes
– Can add state and behavior
– Can specialize ancestor behavior
– Can use ancestor’s behavior and state
– Can hide ancestor’s behavior

To existing ones

• Direct ancestor = superclass
• Direct descendant = subclass

Stéphane Ducasse 2.28

Comparable Quantity Hierarchy

Stéphane Ducasse 2.29

Summary

Objects
• have identity
• have attributes
• have behavior
• have relationships with other objects

Stéphane Ducasse 2.30

Summary

Classes
• **Describes** the attributes, and
relationships of a set of objects

• Define the behavior of a set of objects
• Reuse, extend, specialize behavior from other
classes

• Subclasses/superclasses form graph of
generalizations

