Getting Real

Fault Tolerance

the possibility of catastrophic failure. Disks fill

up...hardware fails...operating systems crash... net-
works go down...but with proper foresight these situa-
tions do not have to lead to a loss of objects. This column
describes mechanisms to achieve fault tolerance and how
to recover when the bad things happen.

There are at least two ways in which systems achieve
fault tolerance. One is to prevent the system from going
down in the first place; the other is to bring the system
back to a consistent state if it does go down. The typical
way to avoid a system from going down is to duplicate, or
mirror, the state of the object repository on different hard-
ware, so that if the primary piece fails, the system will
automatically switch over to the duplicate. To bring the
system back up when it goes down, most transaction-
based systems employ backup files and transaction logs
to help the system recover to a consistent state. These
same approaches apply to Smalltalk applications.

In multi-user Smalltalk, the object repository is mani-
fested by one or more files (or possibly raw disk parti-
tions) called extents. These are where the state of objects
ultimately reside. For fault tolerance, as well as perfor-
mance reasons, information about objects may first be
written to other files, called transaction logs. Transaction
logs contain information to re-do transactions that have
been committed to the repository.

When a transaction is committed, all that’s necessary is
to completely write the transaction log records to consid-
er the transaction complete. The extent files do not have
to be updated with new or changed objects immediately,
which can improve overall system performance and
transaction throughput.

To avoid a multi-user Smalltalk system from going
down, the system administrator can specify that the
extent files are to be replicated. In addition to allocating
extent files across multiple disk drives on different
machines for performance and clustering reasons, the
system administrator can allocate the replicated extents

Production applications need to be protected against

Using Smalltalk since 1986, Jay Almarode has built CASE tools, in-
terfaces to relational databases, multi-user classes, and query sub-
systems. He is currently a senior software engineer at GemStone
Systems Inc.,and can be reached at almarode@gemstone.com.

:
Jay Almarode

on multiple disk drives as well. While the system is run-
ning, if a client or server process should encounter a read
error on a primary extent file, the corresponding replicat-
ed extent file is automatically used instead.

In GemStone, the system administrator creates repli-
cated extents in two ways. One way is to specify them in
the configuration file used by the server process at startup
time. Another way is to dynamically create new replicates
at runtime by sending the message SystemRepository
createReplicateOf: extentFilename named: replicateFilename. In
both cases, you are mapping a primary extent file to a cor-
responding replicated extent. The replicated extent
should be located on a different disk spindle to reduce 10
contention, as well as to provide fault tolerance.

Even if the object repository is replicated for automat-
ic switchover, it is still good practice to plan for recovery if
the system goes down entirely. This planning involves
deciding how often to back up the system, and how quick-
ly the system must be back online. For 7 x 24 production
applications, it is imperative that backups be performed
while the system is online and other users are logged in.
Since backups may require considerable resources for
large object repositories, it is desirable to limit the 10 rate
of the process performing the backup to reduce its inter-
ference with other sessions.

To plan for backups and recovery, it is necessary to
understand how transaction logging works. As mentioned
earlier, transaction logs contain the information to re-do
transactions that have been committed. Transaction logs
are used to recover from an unexpected shutdown or to
roll forward from a backup file. When configuring a sys-
tem, an administrator supplies multiple locations where
transaction logs are to be written. Therefore, if one disk
becomes full, the system can automatically switch over to
the next location. It is also possible to configure the max-
imum size of each transaction log file to balance the uti-
lization of the disk resources. Transaction logs can be
replicated to provide the same benefits as replicated
extents.

Recall that objects may not be written immediately to
extent files. To force the information in transaction logs to
be written to the extent files, an administrator performs a
checkpoint. Performing a checkpoint reduces the number
of transaction logs that have to be applied when the sys-

September 1996

http://www.sigs.com 25



| GETTING REAL

tem recovers from a crash, where the extent files are not
damaged.

Transaction logging can be set up to handle two kinds
of recovery situations. In the first situation, the system has
unexpectedly shut down, but the extent files are not cor-
rupt. To recover the object repository to the last commit-
ted state, only transaction log records that were written
since the last checkpoint are applied. This mode of trans-
action logging is called partial logging, since not all trans-
action logs are needed to recover. To free up space, an
administrator can remove any log files written prior to the
most recent checkpoint, usually leaving the current log
and the one immediately before.

In partial logging mode, the frequency of performing a
checkpoint helps control how long it takes to recover the
system. In GemStone, the system can be set up to auto-
matically perform checkpoints at specific intervals by set-
ting a configuration parameter; or, a checkpoint can be
performed explicitly by sending
System checkpoint. When the system
is in partial logging mode, a check-
point is also triggered when any
transaction writes a log record
whose size is greater than some
configurable threshold.

The second kind of recovery situ-
ation occurs when the system
crashes and the extent files are cor-
rupt. In this case, the object reposi-
tory must be recovered from back-
up files. To recover from this situa-
tion, all transaction logs that were written since the back-
up are needed. This type of recovery is supported by con-
figuring the system to be in full logging mode. Full trans-
action logging should be used for production applica-
tions, to guarantee recoverability in the face of media fail-
ure.

One factor determining the time to recover from a
backup is the frequency of backups performed. To per-
form a backup of the object repository in GemStone, a
user performs the message: SystemRepository fullBackupTo:
aFileOrDevice Mbytes: aByteLimit. The first argument specifies
the file, raw partition, or device where the backup is to be
created. The second argument specifies a byte limit so
that you can create multiple backup files by limiting the
size of each part.

When the first backup file is finally written, you con-
tinue writing the next part of the backup with the message
SystemRepository continueFullBackupTo: aFileOrDevice Mbytes:
aByteLimit. Since the backup procedure may consume sys-
tem resources, a user can control the 10 rate of the cur-
rent backup session by sending System configurationAt:
#GemlIOLimit put: 10. This example allows a maximum of 10
10s per second.

To restore the object repository, a system administrator
first starts a server process on a new object repository.
Then the restore operation is performed by sending
SystemRepository restoreFromBackup: backupFilename. At this

“One factor determining the
time to recover from a
backup is the frequency
of backups performed..”

point, the state of the repository is the same as when the
backup file was created. Now the administrator can apply
transaction logs to roll forward from the state of the back-
up to the state of the last committed transaction.

To find out the first transaction log file needed, the

administrator sends SystemRepository restoreStatus to get
the file id of the log file. When transaction log files are cre-
ated, they are given a filename that includes an increas-
ing numerical file id so that the sequence of file creation
is evident. This helps in determining which transaction
log files to archive (i.e. move somewhere else), and which
are needed for restoration. If the needed transaction log
files have been archived, the administrator sends
SystemRepository restoreFromLog: aTranLogFilename to explic-
itly specify their location. If the remaining log files are
located in their original location, then the administrator
performs SystemRepository restoreFromCurrentLogs. The
administrator sends the message SystemRepository
commitRestore to finish the restora-
tion and allow other users to log in.
It is also possible to restore to a
specific point in time, by sending
SystemRepository timeToRestoreTo:
aDateTime, before restoring from
transaction logs.
Using transaction logs, a ‘warm’
backup system can be built with
the mechanisms described above.
A ‘warm’ backup system is a dupli-
cated object repository not kept in
sync with the primary repository in
real time by the underlying system. Instead, the duplicat-
ed object repository is explicitly synchronized with the
primary repository at specific time intervals. The advan-
tage of a warm backup is that it places no burden on the
primary system to perform 10 to multiple locations; the
disadvantage is that the warm backup is only up-to-date
based on the last time it was explicitly synchronized with
the primary system.

To build a warm backup system, a server process is
started up on a copy of the primary object repository (or
it could be started up on a new repository, then restored
from a backup file of the primary repository). This is the
warm backup server. Next, a process is spawned that con-
tinually looks for new transaction logs being created by
the primary server.

When a new transaction log file is created, this process
can copy the previous log file to the backup site and per-
form SystemRepository restoreFromLog: aTranLogFilename. If
the primary repository goes down, the warm backup site
performs SystemRepository commitRestore, and it is ready for
duty.

Fault tolerance is a necessary consideration for pro-
duction applications. System administrators need to plan
for disaster and have the mechanisms in place to recover.
Duplicated object repositories and transaction logging
are two mechanisms that provide the functionality need-
ed for 7 x 24 applications.

26 http://www.sigs.com

The Smalltalk Report



