
Managing Objects

SmallDoc Web Serving
Barbara YatesJan Steinman
I
n our June and September 1995 columns, we intro-
duced a hyper–literate programming system we call
“SmallDoc.” In the last two issues, we sketched out how

to turn SmallDoc into HTML, and how to build a generic
TCP/IP server framework. This issue ties it all together so
you can begin serving your Smalltalk project documenta-
tion to anyone with a Web browser.

The generic TCP/IP server described earlier needs only
one or two blocks of Smalltalk code in order to implement
a complete server. A message is sent to the class that asso-
ciates a “service” block with a port number, and a second,
optional (but strongly encouraged!) message is sent to the
class to associate an “exception” block with the same port
number.

For example, a simple hypertext service can be imple-
mented by adding the following method to the TcpServer
class that we presented last month:

TcpServer class:
initializeForHttpd
“Set up a service and exception handler suitable for

servicing World Wide Web requests.”

selfdefaultHandlerFor: 80 is: [:exception :stream|
stream httpChattyHandle: exception];

defaultServiceFor: 80 is:[:stream |
stream htmlForSmallDocRequest]

httpd
“Answer the default hypertext transport protocol server.”

^self onPort: 80

Now, to start up a Hypertext Transfer Protocol server all
you need to do is evaluate “TcpServer httpd.” Of course,
if you do that right now it will crash, because we haven’t
really written the handler or service blocks yet.

If you are on a UNIX machine, remember that port 80
is privileged — you will have to run Smalltalk as root to

Jan Steinman and Barbara Yates are co–founders of Bytesmiths,
a technical ser vices company that has been helping companies
adopt Smalltalk since 1987. Between them, they have over 22
years Smalltalk experience. They can be reached at
Barbara@Bytesmiths.com orJan@Bytesmiths.com, or at their
website at http://www.bytesmiths.com.
22 http://www
run this service. If that is not possible, choose some other
port above 1024, such as 8080.

When an error is encountered in the server, it should
alert the client so that things can be fixed. Our
httpChattyHandle:for: method assumes the person using the
Web browser might know something about Smalltalk, and
so it sends contextual information back to the client. For
non-developers, you might want to simplify this by report-
ing only that an error occurred.

PositionableStream
httpChattyHandle: exception
“Upon trouble with the request, attempt to send

back a contextual information from <exception> in HTML
format on <stream>.”

| ctx |
self

cr; nextPutAll: ‘HTTP/1.0 500’; cr;
nextPutAll: ‘Server: ‘; nextPutAll: (TcpServer

signatureIn: TcpServer controller); cr; cr;
nextPutAll:’<HTML><HEAD><TITLE>Unhandled

exception!</TITLE></HEAD><BODY><H1>’;
nextPutAll: exception errorString;
nextPutAll: ‘</H1><P>Your request had a

problem. Please copy the following stack and mail it to
the<A HREF=”mailto:’

nextPutAll: (EmUser called:’Supervisor’)
networkName;

nextPutAll: ‘“>ENVY Library
Supervisor.</P>’.

ctx := exception thisContext.
5 timesRepeat:

[ctx == nil ifFalse:
[self print: ctx;cr]].

self nextPutAll:’</BODY></HTML>’; cr; flush

Also, this example relies on ENVY repository information to
report the server version information, and to obtain the
email address of the repository supervisor. You should use
suitable substitutes if you use a different code manage-
ment system.

SERVICING REQUESTS
Now that we can handle failed requests, we should think
The Smalltalk Report.sigs.com

g
a
m
m
m

about servicing real requests! When the TcpServer sends
htmlForSmallDocRequest to the socket stream, the stream
may contain “GET” a space, and the URL the user entered
or clicked.

There is much more information in the typical HTTP
request, and this method can easily become complex. If
you want to process more of the request information, be
sure to factor this method into smaller methods that han-
dle particular request information.

In particular, this method only attempts to deal with
“GET” requests, which is the normal way a Web browser
passively requests a Web page. This method does not han-
dle “POST” requests, which is how a Web browser passes
information entered by the remote user.

PositionableStream
htmlForSmallDocRequest
“Assume I am a bi-directional stream on a socket

that is connected to a web browser. Process an incoming
SmallDoc GET request.”

| line path |
[(line := self nextLine) size > 0]whileTrue:

[(‘GET ‘ occursIn: line at: 1) ifTrue:
[path := line copyFrom: 5 to: line size]].

self nextPutAll: ‘HTTP/1.0 200’;
nextPutAll: ‘Server: ‘;nextPutAll: (TcpServer

signatureIn: TcpServer controller); cr; cr;
(path size = 0 or: [path = ‘/’])

ifTrue: [self httpHomePage]
ifFalse: [self htmlSmallDocGet: path]

This method looks for a line in the socket stream that
begins with GET, and saves the rest of the line as the URL
to fetch. If the URL is empty or if it is a single slash, then
some form of home page information should be sent back
to the Web browser, followed by closing the stream, which
lets the Web browser know the request is complete.

PositionableStream
httpHomePage
“An empty GET request is received,so give a hearty

welcome.”

self
nextPutAll: ‘This is an exercise for the reader.

Put some literal HTML here (or some Text asHtml!)that
explains how to navigate through your Smalltalk
documentation repository.’;

close

If the URL is not empty, there’s more work to do. We fol-
low ENVY’s existing structure for navigation; if you are
using some other source code management system, you
will have to implement a navigation strategy for your
repository.

We expect the first component of the URL to be a nam-
ing root that serves as a dispatcher for the remainder of
the URL.
September 1996 http://www.s
PositionableStream
htmlSmallDocGet: pathString

“Place on myself valid top-level HTML for the given
<pathString>, which must begin with a slash ($/), and
therefore must have a size greater than zero, and must
consist of URLized path from some naming root, separated
by slashes.
Valid roots are:

1) Smalltalk,
2) EmUser,
3) EmConfigurationMap,
4) Application, or
5) SubApplication.

The second component of the path is always one of
the names that a root knows about. What follows is
dependent on processing by the root, which is sent the
rest of the path to play with.

A new root must either be handled by this method,
or it must be a global, and it must supply the methods
#htmlAsRootOn:, and #htmlForPath:on:.

This does minimal error checking —it assumes a
handler will catch exceptions.”

| path root |
“Parse the path, keeping the result.”
path := pathRequest splitOn: $/.
root := Smalltalk at: path first asSymbol.
1 = path size

ifTrue:
[self nextPutAll: ’Pragma: no-cache’; cr; cr.
root htmlAsRootOn: self]

ifFalse:
[root htmlForPath: path on: self]

Now we have a “naming root” that can be used for navi-
ation, and all that is left to do is implement htmlAsRootOn:
nd htmlForPath:on: so that any global can serve Web infor-
ation. For example, a simple inspector can be imple-
ented by making “Smalltalk” a naming root by imple-
enting htmlAsRootOn:.

SystemDictionary
htmlAsRootOn: stream

“Place on the given <stream> HTML links for my
distinguished instances.”

stream htmlTitleAndH1: ‘Smalltalk Globals’.
^(self keys asSortedCollection

inject: stream
into: [:stream :globalName | |global |

global := Smalltalk at: global Name.
stream

nextPutAll: ‘<A HREF=”/Smalltalk/’;
nextPutAll: globalName; nextPutAll: ‘“>’;

nextPutAll: globalName; nextPutAll: ‘ ‘.
global class isMeta

ifTrue:
[stream nextPutAll: ‘(a class’.
23igs.com

MANAGING OBJECTS
(global class instSize > Object class
instSize or: [global classPool size > 0])ifTrue:

[stream nextPutAll: ‘ with state’].
stream nextPutAll: ‘)
’]

ifFalse: [stream nextPutAll: ‘(an instance
of ‘; print: global class; nextPutAll:’)
’].

stream]) htmlCloseBody

Now if htmlForPath:on: is implemented in Object, you can
inspect arbitrary objects from a Web browser. This
method uses a number of stream utility methods that
make the task easier, by providing pre-assembled snip-
pets of commonly used HTML.

PositionableStream
htmlBody: anObject

“Place on myself the proper HTML to make
<anObject> appear as body text. This must be preceded by
a ‘title’ statement. Answer myself.”

self nextPutAll: ‘<BODY>’; htmlFor:an Object;
htmlCloseBody

htmlCloseBody
“Place on myself the proper HTML to close off a

‘body’ statement. Answer myself.”

self nextPutAll: ‘</BODY></HTML>’

htmlTitle: string
“Place on myself the proper HTML to make <string>

a title. This must be followed by a ‘body’ statement.
Answer myself.”

self nextPutAll:’<HTML><HEAD><TITLE>’;
nextPutAll: string; nextPutAll:’</TITLE></HEAD>’

htmlTitleAndH1: string
“Place on myself the proper HTML to make <string>

a title, followed by a ‘body’ statement and <string> as a
top-level heading. Answer myself.”

self
htmlTitle: string;
nextPutAll: ‘<BODY><H1>’;
nextPutAll: string;
nextPutAll: ‘</H1>’

It would be easy to slip into gratuitous serving of all sorts
of objects over the Web at this point, but we’d neglect our
primary purpose: to serve Smalltalk project documenta-
tion over the Web. To do this, we need to allow
SubApplication to function as a naming root. (Since
Application is a subclass of SubApplication, this also
allows Application to serve as a naming root.)

SubApplication class
htmlAsRootOn: stream

“Place on the given <stream> HTML links for all
24 http://www
subapps or apps.”

stream htmlTitleAndH1: self name, ‘s’.
^(self allNames asSortedCollection

inject: stream
into: [:stream :appName |

stream
nextPutAll: ‘<A HREF=”/’; print: self;

nextPut: $/;
nextPutAll: appName; nextPutAll: ‘“>’;
nextPutAll: appName; nextPutAll:

‘
’.
stream]) htmlCloseBody

Now when a URL with a naming root, such as
<http://yourhost/Application>, is entered into a
Web browser, a page is returned that lists all Applications in
the repository, together with links that have the next path
component filled in. When one of the listed Applications is
clicked in the Web browser, the following method is sent in
the SmallDoc server:

SubApplication class
htmlForPath: path on: stream

“Place HTML for my components described by
<path> on the <stream>.”

| component |
2 = path size ifTrue:

[“This is dynamic information — do not cache it
in the client.”

stream nextPutAll: ‘Pragma:no-cache’; cr; cr.
self htmlEditionsForName: path last on: stream]

ifFalse:
[(path last conform: [:ch | ch isDigit]) ifTrue:

[path at: path size put: (Integer readFrom: path
last readStream)].

component := (Smalltalk classAt: path first)
hrefToLibraryComponentFor: path.

component isVersion ifFalse:[stream nextPutAll:
‘Pragma: no-cache’; cr].

stream cr.
3 = path size ifTrue:

[stream htmlBody:
(component commentOrTemplateIn: component)] ifFalse:

[4 = path size ifTrue:
[stream htmlBody: (component

commentOrTemplateIn: component application)] ifFalse:
[5 = path size ifTrue:

[stream htmlBody: component comment] ifFalse:
“path size > 5 ifTrue:”

[stream error: ‘bad URL’]]]]

This method is a case statement. Only one of the “path
size” cases will be evaluated in any given invocation. Also
note that if the last component of the path consists of
digits, it is converted to an Integer.

This sends two methods that we’re going to have to
continued on page 36
The Smalltalk Report.sigs.com

MANAGING OBJECTS
continued from page 24
leave you to implement yourself, due to space constraints.
The SubApplication method htmlEditionsForName:on: needs
to obtain all the editions for the SubApplication named by
the second part of the path, and render them into the
proper HTML so they will appear as links in the Web
browser. For example, if the Web browser user typed or
clicked <http://yourhost/Application/Kernel> ,
the server should place links for each edition of Kernel on
the socket stream.

The more interesting method to complete is
hrefToLibraryComponentFor:, which takes a collection of com-
ponent parts and fetches the proper component out of the
repository. For example, the URL <http://yourhost/
Kernel/Object/at:put:/3016057369> should cause
the comment for the Object method at:put: with the edition
time stamp of July 29, 19961:42:49 am to be placed on the
socket stream.

As hinted by the code, our treatment of the URL
depends on its number of path parts. For an individual
repository component, such as an app, subapp, class,
class extension, or method, the last part of the URL path
is always a second count from the component’s time
stamp, thus allowing you to browse version history from a
Web browser. These integers are meant to be “opaque ref-
erences” — the user should never have to type them in;
rather, they should be part of anchors that were generat-
ed from lists of editions.

Following the example of SubApplication, you can now
easily add htmlAsRootOn: and htmlForPath:on: to EmUser
and EmConfigurationMap, as well as any other global that
you want to use as a “naming root” for serving arbitrary
information from Smalltalk over the Web.

SATISFYING WITHOUT COMPROMISING
This completes our series on putting your Smalltalk project
documentation on the Web. This series enables our princi-
ples of hyper-literate programming by ensuring that:

1) the documentation for a thing is on the same
conceptual level as that thing;

2) the documentation for a thing constantly and
accurately describes that thing;

3) the documentation for a thing is accessible by
creators, their peers, re-users, reviewers, end-user
documenters, and the merely curious; and

4) the documentation for a thing is measurable,
quantitatively and especially qualitatively.

In addition, we hope we’ve shown you a few useful things
about developing frameworks and automatically generat-
ing HTML.

Maintaining your documentation in your Smalltalk
repository while exporting it “live” to Web browsers will
satisfy the needs of external parties without compromis-
ing the efficiency of your development team.

Next month, we’ll explore a topic close to our hearts —
the use and abuse of Smalltalk mentors. S

