
Visual Programming

Reusable components
Wayne BeatonDwight Deugo
U   user interface builder like Visual-
Works’ Canvas tool and ObjectShare’s Window Build-
er Pro, a developer avoids the tedious task of hand

coding an application window’s layout by using a tool that
generates the code after the window is constructed visual-
ly. Using such GUI builders, developers view a window’s
appearance when opened and how it appears when re-
sized before ever executing a line of the application win-
dow’s “real” code. These tools permit a developer to iden-
tify what application methods should execute when spe-
cific events, such as the clicking of a button, occur in the
application window. Good ones will write method stubs
that developers subsequently complete to perform the
required reaction to given events. Reaction methods often
send messages to business objects to set or retrieve infor-
mation about them and may force the window to update
its views. Although these tools no longer require that
developers hand code an application window’s layout,
they still require them to implement the interaction
between the views and the underlying business domain.

The latest generation of GUI builders include tools such
as VisualSmalltalk’s PARTS Workbench and IBM’s Vis-
ualAge Composition Editor. Both GUI builders are exam-
ples of the new Construction from Parts technology called
Visual Programming. They enable developers to create
windows and other components by assembling and con-
necting reusable components, also known as parts. Rather
than hand-coding the interactions between the parts,
developers make visual connections between a source
part’s events and another part’s actions. The GUI builders
still write Smalltalk code to construct the window for the
developer, but, in addition to layout code, they also write
code connecting events on parts to the execution of meth-
ods on others. Provided that there are good parts, develop-
ers do not need to write any Smalltalkcode to develop their
application windows. They just assemble them from exist-
ing parts and say “go”. However, without guidelines, it is
now possible to paint spaghetti instead of just writing it!

Dwight Deugo and Wayne Beaton are senior members of the
development educational staff at The Object People, in Ottawa,
ON, Canada. Dwight (dwight@objectpeople.on.ca) has immersed
himself in objects for more than 10 years and has helped clients
with their object immersions as a project mentor and as a course
instructor. Wayne (wayne@objectpeople.on.ca) is the coordinator
of course construction and a software developer.
24 http://www
The success of visual programming depends on how
organizations use it and on the availability of a rich library
of reusable generic and domain-specific parts. This col-
umn will focus on visual programming tips and tech-
niques to help you become a more effective visual pro-
grammer. Future columns will cover how to manage the
number of connections in your window and describe
visual debugging techniques. We will also provide many
examples of reusable components developed using visual
programming parts and techniques, such as an advanced
factory part, a broker, a marquee, and web parts. Initially,
we will use examples derived from IBM’s VisualAge for
Smalltalk environment, but we will include examples
from ParcPlace-Digitalk’s next product release.

This column describes the building blocks for con-
structing any application window: parts and connections.
As an example, we build an Action ListWindow with IBM’s
VisualAge using only those building blocks—no Smalltalk
code. The window’s requirements are to let a user enter
any number of actions into a To-Do list and then move
them to a Completed list. Our goal is to demonstrate that,
when given the building blocks and good reusable compo-
nents, you can do a substantial amount “programming”
without writing a single line of code. Be warned that visual
programming rarely, if ever, provides a complete solution.

REUSABLE COMPONENTS (PARTS)
Before one can do any visual programming, one must
have access to, or must create, a number of reusable com-
ponents (parts). There are two different types of parts:
Visual and Nonvisual. Visual parts have visual representa-
tions and appear in a runtime application window, for
example, buttons, lists, input fields, and labels. Nonvisual
parts have no visual representation, such as a Printer, CD
player, Ordered Collection, Variable, and any domain-
specific business parts. Nonvisual parts implement ob-
jects that provide logic, storage, and resource access for
your application windows. Visual and Nonvisual parts are
simply assemblies of visual and nonvisual parts.

In VisualSmalltalk’s PARTS, all parts in the Workbench
are instances of Smalltalk classes. The part’s default inter-
face includes all the messages the Smalltalk object under-
stands and all of the events it can trigger. In IBM’s Vis-
ualAge, all parts in the Composition Editor are Smalltalk
classes. The part’s default interface is empty until the
The Smalltalk Report.sigs.com



sents the whole part.
developer decides what portion of the part’s Smalltalk
class’ interface to make public.

A part’s interface includes attributes, events, and ac-
tions. Attributes represent properties of a part, such as the
name of an employee, that other parts access. An attribute
can be any Smalltalk object, including other visual and
nonvisual parts. One can initialize a part’s attributes using
a GUI builder’s property or settings tool at development
time or can access them dynamically at runtime. Actions
are an operation that a part executes when events on other
parts trigger them. For example, a button click event (gen-
erated when the user clicks on the button in the applica-
tion window) could trigger a window’s close action. Ac-
tions correspond to Smalltalk methods or code fragments.
Events are signals that one part can send to another to
notify it that something has occurred.

CONNECTIONS
A developer specifies relationships between parts by mak-
ing connections between them. The first type of connec-
tion is an event-to-action connection. This link connects
an event of one part with the execution of another part’s
action. When the event triggers, the action executes. The
second type of connection is an attribute-to-attribute
connection, which can be viewed as a two-way event-to-
action connection. The change of one part’s attribute (the
event) triggers the setting of the second part’s attribute to
the same value (the action), and vice-versa.

A link, alsocalled connection, is a typeof part.Therefore,
it has attributes and events. The attributes of a connection
correspond to the parameters that the action at the end of
the connection requires and the action’s result. If an action
requires no parameters, the connection has only one at-
tribute: a result. Since actions just execute Smalltalk code,
theconnection stores theresult object as an attribute. Since
the setting of an attribute is equivalent to an event, it is
possible to make a connection between the result event
and other actions. One can trigger an action on another
part when a previous action finishes and returns a result.

Events may or may not generate parameter values. For
example, the clicking of a button only triggers a click
event. On the other hand, the selection of an item in a list
generates a selection event and provides the selected
object as an argument for a connection to use as one of its
parameters. Of course, one can change the value by mak-
ing a connection to the link.

VISUAL PROGRAMMING EXAMPLE
Visual programming permits developers to quickly con-
struct application windows provided the appropriate
parts are available. Using VisualAge for Smalltalk version
3.0, we quickly constructed the “ActionListWindow”
shown in Figure 1. This window allows the user to con-
struct a list of actions to do for the current day. From that
list, completed actions can be moved to a completed
action list. At the end of the day, the user should have all
of his or her actions in the completed actions list (ha ha)! 
Thisfirst-passoftheActionListWindowcontainsseveral
visual parts, two nonvisual parts, and a few connections.
The ordered collection* part, “ActionsTo Do,” is connected
to the left-most list with an attribute-to-attribute connec-
tion. The collection’s “self” attribute† is connected to the
list’s “items” attribute. This connection specifies that the
orderedcollectionstorestheitemstodisplay–if theordered
collection changes in any way, the change is automatically
reflectedin the listbox. A similarconnection linksthe“self”
attribute of the ordered collection titled “Actions
Completed” to the“items” attributeof the right-mostlist.

The “clicked” event of the push button labeled “Add” is
connected to the “add:” action of the “Actions To Do”
ordered collection through an event-to-action connection.
The “add:” action requires a parameter. We specify the con-
nection parameter with an attribute-to-attribute connec-
tion from the “anObject” continued on page 28

Figure 2. ActionListWindow Connections.

Figure 1. ActionListWindow in the Composition Editor.

* An ordered collection holds any number of Smalltalk objects in the
order in which they are added.

† In VisualAge, all parts have a “self” attribute. This attribute repre-



attribute of the original connec-
tion to the “object” attribute of the entry field. These two
connections provide the ability to add objects to the
ordered collection. Any objects added are automatically
displayed by the connected list.

Clicking the “move” button, labeled “>>,” moves the se-
lected item from the left-most list to the right-most one.
Objects removed from the “Actions To Do” ordered collec-
tion are added to the “Actions Completed” ordered collec-
tion. The order of the following connections is important.‡

The“clicked” eventofthe“move” button isconnected tothe
“remove:” action of the “Actions Completed” ordered col-

lection. This event-to-action connection requires an object
(the object to be removed) that is supplied by connecting
the “anObject” attribute of the event-to-action connection
to the “selectedItem” attribute of the left-most list box.
The “move” button’s “clicked” event is also connected to
the “remove:” action of the “Actions To Do” ordered
collection, with the “anObject” parameter supplied again
by the “selectedItem” attribute of the left-most list box.

Clearly, we require a better way of describing the con-
nections—textual descriptions are too long. A concise
connection representation is both desirable and neces-
sary. Figure 2 shows our Action List Window again, but
this time we have added line labels (unfortunately
VisualAge does not provide this facility for us) and Figure
3 shows the legend.

IN THE FUTURE
To keep this example small, we have avoided certain is-
sues. The push button is not disabled when its does not
apply. The “move” button should be enabled only when
there is a valid selection in the left-most list box. The
“Add” button should be enabled only when the user has
entered data in the entry field. Perhaps some ability to
remove items from one or both lists might prove useful.
Ultimately, the information needs to persist in some way.
These are issues we intend to address in future columns.

THE CODE
The code used in this column is available on the World
WideWeb. Our URL is http://www.objectpeople. on.ca. `

`

The Smalltalk Report28

VISUAL PROGRAMMING

http://www.sigs.com

Figure 3. ActionListWindow Legend.

Link # PartName.attribute/event/action →
PartName.attribute/event/action

1. ActionList.items → ‘Actions To Do’.self
2. ActionsCompletedList.items → ‘Actions Completed’.self
3. AddButton.clicked → ‘Actions To Do’.add:
4. inputField.object → connection3.anObject
5. >>Button.clicked → ‘Actions Completed’.add:
6. ActionsCompletedList.selectedItem → connection5.anObject
7. button.clicked → ‘Actions To Do’.remove:
8. ActionsCompletedList.selectedItem → connection7.anObject

‡ Once you remove an object from an “Action To Do” ordered collec-
tion, it is no longer in the left-most list. Therefore, it can no longer
be the selected item and cannot be moved to the “Actions
Completed” ordered collection.

continued from page 25


