
Getting Real

Jay Almarode

Multi-user canonicalization
D  , it is sometimes
useful to guarantee that your code does not create

two objects that are logically equivalent. Instead,
you would like the attempt to create a new object to actu-
ally return an existing, equivalent object, if it should exist.

Otherwise, the new object can be created and registered
in such a way so that subsequent attempts to create an
equivalent object will return this one. This technique,
calledcanonicalization, makes your code more efficientby
eliminating redundant objects and allowing you to take
advantage of object identity. For example, if you know that
there will only be a single object to represent some logical
entity, you can use identity comparisons (== or ~~) when
scanning for the presence of the object in some collection.
Identity comparisons are usually more efficient to use
because they are typically in-lined by the compiler, and do
not require fetching the objects to return an answer.

Most Smalltalkers are already familiar with the concept
of canonicalization with the use of symbols. By definition,
symbols are guaranteed to be unique, so that any symbol
with the same sequence of characters will have the same
identity. This means that no matter where or how a sym-
bol is created, an identity comparison of two equivalent
symbols always returns true. In fact, the implementation
of = for class Symbol is the same as ==.

The uniqueness of symbols allows them to be used in
fast identity-based collections, such as a key in an identi-
ty dictionary, while preserving the semantics of equality
look-up. This is one reason why method selectors are
symbols rather than strings, since they are used as keys in
a method dictionary.

A common usage for canonicalization is to imple-
ment a smart cache of objects whose state is derived
from an external system. For example, if objects are
being materialized from a relational database, then a
cache typically maps a relational primary key value to its
corresponding Smalltalk object. If some part of the

Using Smalltalk since 1986, Jay Almarode has built CASE tools, in-
terfaces to relational databases, multi-user classes, and query sub-
systems. He is currently a Senior Software Engineer at GemStone
Systems Inc., and can be reached at almarode@gemstone.com.
June 1996 http://www
application needs an object with a particular key value,
the cache is consulted first. If there is already an entry in
the cache for that particular key, then the application
can avoid having to execute time-consuming code to
communicate with the relational database and perform
the relational-to-object mapping, since it has already
been done before (of course, if the relational data has
been modified since the initial caching occurred, then
the cache must somehow be updated or invalidated, but
that is a different problem).

Building your own canonicalization mechanism is fair-
ly straightforward in a single-user Smalltalk system. A typ-
ical implementation is to override the instance creation
method to check for the presence of an existing, equiva-
lent object before creating a new one. A common imple-
mentation is to maintain a dictionary in a class variable,
where the keys of the dictionary are the logical values
upon which equivalence is determined, and the values of
the dictionary are instances of the class that have already
been created. I suggest using a class variable, rather than
a class instance variable, so that creating instances of sub-
classes consults the same dictionary. Another advantage
of this implementation is that it is very easy to get all
instances of a class and its subclasses.

To illustrate this technique, here is the implementation
of an instance creation method for class Employee. In
addition to having instance variables for name and social
security number, Employee has a class variable called
“CanonDictionary” that is initialized to a dictionary. In this
model, social security number is the primary key upon
which equivalence is based, i.e. we never want object
memory to contain more than one instance of Employee
with the same social security number. Since we always
want an Employee to have a social security number, we
override the “new” method to raise an error, and require
instance creation to occur with the “name:ssn:” method
listed here:

classmethod: Employee
name: aName ssn: aSSN
“Return an instance with the given name and ssn. If one
27.sigs.com

GETTING REAL
does not exist in the canonicalization dictionary, create
a new one; otherwise, return the existing one.”

^ CanonDictionary at: aSSN ifAbsent: [| emp |
emp := self basicNew name: aName; ssn: aSSN.
CanonDictionary at: aSSN put: emp.

]

This technique works fine in single-user Smalltalk sys-
tems, since only one user is creating objects in this
image. But in multi-user Smalltalk, there may be concur-
rent users who are creating objects in a shared image.

This opens the door to the possibility that users will
experience concurrency conflicts on the canonicalization
dictionary. In addition, since each user operates with
their own transactionally consistent view of objects, there
may be more than one user who thinks he or she is creat-
ing the first instance of an Employee with a particular
social security number. This is because neither user will
see the other’s modifications until his or her transaction is
committed. At the very least, one of the users could expe-
rience a concurrency conflict, but it could be worse if
both users were allowed to create logically equivalent
instances of Employee and the application code depended
upon their uniqueness.

Fortunately, by subclassing an existing specialized
multi-user class, this situation can be handled correctly. In
GemStone Smalltalk, the class RcHashDictionary provides
concurrency semantics that are close to what is needed
(see my column in the March–April 1995 issue of the
Smalltalk Report for a description of reduced conflict
classes). This multi-user dictionary allows concurrent
updaters and removers from the dictionary to perform
their operations without conflict, as long as they are using
different keys. For example, two concurrent users who
are performing at:put: operations with non-equivalent
keys will not experience concurrency conflicts. But in our
example, concurrent users might try to create instances
with the same social security number, so they would ex-
perience conflict. What is needed is the ability to recog-
nize these conflicts, choose one of the instances to be the
canonical Employee with that social security number, and
to replace all references to the noncanonical Employee with
references to the canonical Employee (allowing the non-
canonical Employee to be eventually garbage collected).

To solve this problem, I created a subclass of RcHash-
Dictionary, called RcCanonicalDictionary. This class only
needs to override one method to provide the desired
behavior; however, to implement this method requires an
understanding of how reduced conflict behavior is
achieved. When a user attempts to commit a transaction,
the underlying system detects if there are physical con-
flicts on objects, for example, checking if this transaction
wrote an object that another concurrent transaction had
already written and committed. For most objects, a phys-
ical conflict means the transaction cannot succeed.
However, for special reduced conflict objects, they are
given a second chance to determine if the physical con-
flict can logically be resolved.
28 http://www
This involves selectively updating the view of these
objects so that the committed modifications of other
users are visible, and then replaying the modifications of
the current transaction on the reduced conflict objects. If
the modifications can be replayed without failing, then
the transaction is allowed to commit successfully.

For RcHashDictionaries, the method that replays up-
dates to the dictionary is _replayAt:put:oldValue:. This
method is similar to at:put:, except that the third argu-
ment is the original value at the given key before the
update occurred (this argument is nil if the entry was
added for the first time).

This allows the replay method to check if the value
before the update is the same during replay as it was
when the operation was originally invoked during the
transaction. When the operation is replayed, if the current
value is not the same as the old value, then we know some
concurrent user has updated the dictionary at this key
and we should fail the attempt to commit the transaction.

For our new RcCanonicalDictionary, rather than fail the
transaction when another user commits a new entry at
the same key, we would like to forget the value we were
going to insert, and use the value that another user
already inserted. This involves swizzling all references to
the value we were about to insert to the new value insert-
ed by a concurrent user. Fortunately, this is not very hard
to do, since we can get a collection of all objects that were
written during the transaction, and scan them to find ref-
erences to our value. This avoids having to scan all of
object memory to find references, which is prohibitive for
a large scale number of objects.

One thing that must be accounted for when swizzling
object references is to correctly update collections where
the position of an object in the collection is dependent
upon the identity of the object.

In GemStone Smalltalk, Bag and its subclasses use the
identity of its elements to determine their positions in the
internal implementation structures. Consequently, rather
than overwriting the reference to the old value in these
collections, the swizzling method first removes the old
value and then adds the new value to the collection.
Below are the methods to replay the insertion into an
RcCanonicalDictionary when a physical conflict is detected,
and the methods to swizzle references in general objects
and for Bags.

method: RcCanonicalDictionary
_replayAt: aKey put: aValue oldValue: oldValue
“Stores the key/value pair in the dictionary. If there is
already a value for the given key, then this method
swizzles references to refer to the existing value.”

| existingVal |
“see if there is now an existing entry (added by a
concurrent user) “

existingVal := self at: aKey otherwise: nil.
“if there is no existing entry, update the dictionary;
otherwise swizzle “

existingVal isNil
The Smalltalk Report.sigs.com

ifTrue: [self at: aKey put: aValue]

ifFalse: [
“ for each object written during this transaction,
swizzle references “

(System _hiddenSetAsArray: 9) do: [:obj |
obj _swizzleReferencesFrom: aValue to:
existingVal

]
].

“ return true to indicate that the transaction can proceed “
^ true
%

method: Object
_swizzleReferencesFrom: obj1 to: obj2
“Scan the named instance variables and indexable portion
of the receiver, looking for references to obj1. For any
that are found, replace the reference with obj2.”

“ first scan named inst vars “
1 to: self class instSize do: [:j |

obj1 == (self instVarAt: j)
ifTrue: [self instVarAt: j put: obj2]
].
“ scan indexable portion if necessary “
self class isIndexable

ifTrue: [
1 to: self _basicSize do: [:j |
June 1996 http://www.s
obj1 == (self _at: j) ifTrue: [self _at: j put: obj2]
]

]
%

method: Bag
_swizzleReferencesFrom: obj1 to: obj2
“If obj1 is contained in the receiver, remove all
occurrences of it, and add the same number of
occurrences for obj2.”

“ invoke superclass method for named instance variables “
super _swizzleReferencesFrom: obj1 to: obj2.

(self includes: obj1)
ifTrue: [

(self occurrencesOf: obj1) timesRepeat: [
self remove: obj1.
self add: obj2.

]
]

%

Canonicalization of objects is a useful technique with
many applications. In a multi-user environment, canoni-
calization mechanisms must take into account concur-
rent users creating equivalent objects.

This column has demonstrated one approach for solv-
ing this problem using the power and extensibility of
multi-user Smalltalk. `
31igs.com

`

