Getting Real

Configuring server Smalltalk

mance differences between client Smalltalk and server

Smalltalk. The client Smalltalk virtual machine oper-
ates as a single process that manages objects in virtual
memory. Server Smalltalk, on the other hand, operates
in a multi-process architecture where the domain of
objects can extend beyond the range of virtual memory.
Server Smalltalk must coordinate the creation, synchro-
nization, and termination of multiple processes that per-
form such tasks as: execute a user’s Smalltalk code, per-
form background garbage collection, coordinate multiple
users transaction activity, serve disk
pages to clients across a network,
and manage shared page caches. To
provide the needed performance,
server Smalltalk is implemented to
take advantage of the features of
server-class machines, such as
shared memory, asynchronous 10, raw disk partitions,
and SMP CPU configurations.

Obviously, configuring and tuning multi-user, server
Smalltalk systems is very different from tuning single-
user, client Smalltalk applications. In client Smalltalk
applications, the main considerations when tuning are
execution speed, runtime memory footprint, and image
size. When tuning server Smalltalk systems, additional
considerations are system-wide transaction throughput,
amount of data transfer to clients, and disk 10 rates. The
design of the overall system configuration must consider
different hardware and operating system parameters,
such as the amount of swap space, file system buffers,
availability of raw disk partitions, the number of sema-
phores, or the amount of shared memory.

Due to the multiprocess nature of server Smalltalk, sys-
tem designers have a number of options when configuring
applications to run in a client/server environment. One
configuration option is deciding where to execute the
behavior of server objects. Each session that is logged into
the server has its own virtual machine process to execute
server object behavior. Therefore, applications can be con-
figured to create that process on whatever machine it
wants. One option is to link the session into the same

| N THE PAST, I’'ve described major functional and perfor-

Using Smalltalk since 1986, Jay Almarode has built CASE tools, in-
terfaces to relational databases, multi-user classes, and query sub-
systems. He is currently a Senior Software Engineer at GemStone
Systems Inc., and can be reached at almarode@gemstone.com.

Without the ability to
to gather statistics, tuning
Is a shot in the dark.

Jay Almarode

process as the client virtual machine. This means that both
virtual machines are executing within the same virtual
memory address space.

Another option is to have the session reside in its own

separate process, and communicate with the client
Smalltalk through remote procedure calls. This allows a
system designer to configure the system so that some ses-
sion processes reside on client machines, some on the
server machine, and others on a third machine. Note that
none of these configuration choices impact application
code. Application code does not need to know where the
execution of server object behavior
takes place, and the configuration
can be changed with no modifica-
tions to application code.
Figures 1—3 illustrate some possi-
ble configurations for the location
of the session processes. In Figure
1, asingle session process is linked with the client process.
This makes for fast replication of server objects in the cli-
ent Smalltalk, but might cause much data transfer over
the network when many server objects are read or written.
In Figure 2, the session process is separate and resides
on the same machine as the client Smalltalk. This con-
figuration enforces data integrity because server objects
and client objects reside in different virtual memory ad-
dressspaces. Ifabugin the clientapplication should cause
random memory locations to be written with bad data
(sometimes called “wild stores”), the server objects are
protected by operating system features that prevent one
process from writing over another. Depending upon the
application, this configuration mightsufferfrom toomuch
datatransfer over the network as well.

In Figure 3, multiple session processes reside on the
same server machine. One client application has a sin-
gle session logged into the object server, while the oth-
ers have multiple
sessions logged in.
This configuration
enforces data in-
tegrity also, and
data access is faster
since the session
processes are on
the same machine
where the disks re-

Server Smalltalk
Virtual Machine

Client Smalltalk
Virtual Machine

Figure 1. Server and client virtual
machines linked.

May 1996

http://www.sigs.com 21



| GETTING REAL

side. The key advan-
tage of this configu-
ration is that many
sessionscan take ad-
vantage of a shared
page cache of ser-
ver objects. In most
applications, a large
percentage of ob-
jects are read only,
and fewer are actu-
ally written. In many
cases, multiple users
are readingthe iden-
tical objects. Classes
and methods are prime examples of objects that are read
only during normal application execution. When multiple
sessions canshare objects in the shared page cache, it saves
space and decreases access time, since common objects
remain in the cache. A shared page cache can exist on oth-
er machines as well; a shared page cache can be created on
any machine where a session process is to execute. In gen-
eral, itisgood practice to create a shared page cache on any
machine where more than one machine will execute.
There are a number of parameters to tweak when con-
figuring the multiple processes that make up server
Smalltalk. The three main kinds of processes in which to
configure memory requirements are the server process, the
shared page cache and its monitoring process, and the ses-
sion processes. For each kind of process, various statistics
are available to monitor and observe the effects of chang-
ing configuration parameters. In GemsStone, you can get
statistics about various processes that make up the system
by executing the expression “SystemcacheStatistics:aProcess
Slot”. This message returns an array of information accord-
ing to the kind of process being described. To get a descrip-
tion of each element in the array, you can execute “System
cacheStatisticsDescription”. For statistics gathering purposes,
each process is assigned a process slot, and a process exe-
cuting Smalltalk code can get its own process slot by send-
ing System myCacheProcessSlot. Among the information that
you can retrieve for every kind of process is its process
name, process ID, session ID, page reads and writes, and

Client Smalltalk Server Smalltalk
Virtual Machine Virtual Machine N

Server Smalltalk

Virtual Machine

RPC

Client Smalltalk
Virtual Machine

Figure 2. Server and client virtual
machines separate.

Server Smalltalk ™

Virtual Machine

1l

cache hits and misses. For the remainder of this column
I will discuss the configuration parameters of the three
main kinds of processes and describe the relevant cache
statistics for tuning performance.

The server process has a number of responsibilities,
including synchronizing the transactions of the clients,
arbitrating the locking of objects, and allocating object
identifiers for clients to use when creating new objects.
As the server allocates resources such as transaction rec-
ords, locks, or object identifiers to each session, it stores
this information in its private page cache. The size of this
private page cache should be adjusted according to the
number of sessions that are typically logged into the serv-
er most of the time. If the server’s private page cache is
filled up, then it overflows into the shared-page cache,
affecting the performance of other sessions.

There are a number of statistics that help measure sys-
tem throughput. For the server process, one can look at
the #TotalCommits statistic to get the total number of trans-
actions committed since the server process started. This
can be used to measure systemwide transaction through-
put. Another relevant statistic is the #NumberOfCommit
Records. This is the number of outstanding transaction
records that are currently being maintained by the server
process. A large number could mean that there is a long-
lived transaction that is preventing the server from re-
claiming resources allocated for sessions created later.

The shared-page cache is where multiple sessions share
pages of objects. When a session process needs to access
an obiject, it first checks to see if the page containing that
objectisalreadyinthe cache. If so, it reads the page directly
from shared memory. If the page is not present, the process
reads it from the disk into the cache, where it becomes
available to other processes. When configuring the shared-
page cache, a system designer considers the total size of
the object repository, as well as the number of sessions
that will utilize the shared page cache simultaneously.

There are a number of statistics one can look at to mon-
itor the activity of the shared page cache. One statistic that
provides some indication of the utilization of the cache
is the #NumberOfFreeFrames. This is the number of unused
page frames in the shared page cache. Another statistic,
#SharedAttached, is the number of pages that are being uti-
lized by more than one process. This indicates the amount
of sharing in the cache. When pages in the shared cache are
written, they are scheduled to be written to disk when the
transaction commits. The statistic #GlobalDirtyPage Count
gives the number of pages in the shared cache that have
been modified, but are not eligible for writing to disk be-

Client Smalitalk Shared cause they have not been committed yet. If this value is
Virtual Machine Ei%ﬁe large, then large transactions that write a lot of objects may
Server Smalltalk ™ _ be taking up space in the cache, or the server’s private page
Virtual Machine L .
cache may betoosmall (soitis using the shared page cache
for the overflow). This statistic can be compared against
___ServerVM _ N | | /“Server Smalltalk™_ | #LocalDirtyPageCount, which is the total number of pages
Client VM Virtual Machine e .. L. h
that have been modified and are eligible for writing to disk.
As described earlier, each session executes the behavior
Figure 3. Server virtual machines sharing pages. of server objects with its own continued on page 28
22 http://www.sigs.com The Smalltalk Report



|CONFERENCE OVERVIEW

decide, ‘Why don't we use something less complicated,
like C++.”

The study STIC released last year found that compa-
nies adopting Smalltalk were more likely to have followed
a formal process in choosing a programming language. “If
we can get people to do real comparisons, then Smalltalk
has a significant advantage,” Phillips concluded.
“Smalltalk seems to have to fight its way into an organiza-
tion, but once it’s there, it does pretty well.” Smalltalk pro-
jects also were twice as likely to achieve their expected
goals. “The Smalltalk industry has the opportunity to
grow and prosper be cause of the successes that are there.
It's a matter of getting the word out,” Phillips said.

To Adele Goldberg, the issue is not just teaching
Smalltalk, but teaching systems building as opposed to
programming. “Too many university computer science
curriculums stop at teaching data structures and algo-
rithms,” she said. It’s not surprising it so hard to recruit
people capable of building extensible, adaptable sys-
tems. “The most significant part about a system is that
once we start it up, there’s a maintenance issue. You want
it to run indefinitely.” And while people can learn the
syntax for programming in Smalltalk in an afternoon,
“they don’t get the systems building part,” Goldberg said.

Her solution is LearningWorks, a modified version of
the Smalltalk implementations she used to teach pro-
gramming to 12-year-olds. Its interface is organized into

a neat binder of several “books” used for system plan-
ning, experimentation, and development, and it feeds
students the modern Smalltalk class library a little at a
time. Using the internet as a medium for distributing
this free tool, she plans to have Open University students
collaborate on building LearningWorks systems as class
projects.

Students can start by experimenting with rehearsal
worlds that illustrate key concepts and provide a context
for exercises in organizing behaviors and allocating re-
sponsibilities, Goldberg said. Businesses could train their
employees by having them create LearningWorks books
that represent the essence of the company’s framework.

Reg Krock of the Ontario manufacturing firm Maksteel
was one of the people who approached Goldberg after her
talk to express interest in obtaining a copy of Learn-
ingWorks. “One reason is that we have a 67-year-old pres-
ident of our company. | could give that to him, and he
would actually play with it.”

Computer systems are the only part of the business that
Maksteel’s president doesn’t fully understand, which makes
it harder for him to manage, Krock said. “There’s always
been a language gap between the CEO and the CIO. What
Id like to do is take some of the mystique out of it.” 5

David Carr is a freelance writer specializing in the object-oriented
programming industry.He can be reached at davecarr@pcnet.com.

GETTING REAL

continued from page 22

virtual machine. Each session process has two caches in
which to access objects, in addition to the shared page
cache. One cache, called the temporary object cache, is
where new objects are created. As the execution of server
Smalltalk code causes new objects to be created, they are
created in a section of memory carved out just for that
purpose. This area of memory is garbage collected by gen-
erational scavenging techniques, since many newly creat-
ed objects die early and can be garbage collected soon
after their creation. If this cache should become full, then
some objects from it must be written to disk, where gar-
bage collection is more expensive. To determine the ap-
propriate size for the temporary object cache, a system de-
signer must consider the total size of all new objects
created during a single transaction.

The other cache utilized by the session is the private
page cache. This cache is a private area in which to read
and write pages of objects. This cache is usually small, since
the session primarily uses the shared page cache to read
and write objects. If the system is configured not to allocate
a shared page cache on the machine where a particular ses-
sion is executing, then its private page cache size should be
increased accordingly.

A session’s process can get a variety of information
about itself. To monitor garbage collection activity in
the temporary object cache, a session can get the #Time

InScavenges statistic to find out the CPU time spent per-
forming in-memory garbage collection, #NumberOf
Scavenges to find out the number of times the in-memory
garbage collector has been executed, or #NumberOfMake
RoomInOld Space to find out the number of times the oldest
generational space filled up (a large number may indicate
that the session’s temporary object cache size is too small).
A session can also find out how well it is using the shared
page cache. It can get the #NumberAttached statistic to find
out the number of pages that the process is currently using
in the shared page cache, and #LocalPageCacheHits and
#LocalPageCache Misses to find out how many times a page
was found or not in either the shared page cache or the
private page cache. A session can measure its transaction
activity by looking at the #NewObjs Committed statistic to
find out the number of newly created objects committed
by the mostrecenttransaction, and #NumberOfCommits and
#NumberOffailed Commits to get a cumulative number of
successful or failed transactions since the session began.
The statistics described above are but a sampling of the
kinds of information to look at when configuring a multi-
user Smalltalk system. The key to successfully configuring
and tuning such systems is understanding the multi-
process nature of clients and servers, and how different
memory spaces and caches are used. Fortunately, tools
are available to gather these statistics over long periods of
time and then graph the results to analyze overall system
performance. Without the ability to gather statistics about
each process in system, tuning is a shot in the dark. &

28 http://www.sigs.com

The Smalltalk Report



