
Deep in the Heart of Smalltalk

The active life is the
life for me!

Ralph E. JohnsonBob Hinkle
A   Smalltalk is an object, including
language elements like classes, methods, processes,
and contexts. Variables are a major exception to this

rule of thumb. While global and class variables are objects
in most implementations of Smalltalk, instance variables
and temporary variables are not. That’s too bad, because
instance variables have many uses as objects. (Making
temporary variables first-class seems less useful.)

For example, user interface widgets often wish to de-
pend on a particular attribute of an object. VisualWorks
has you represent these attributes with ValueHolders,
which are objects that hold a single value. If you store an
attribute in a ValueHolder, widgets can depend on the
ValueHolder and be notified when that attribute changes.
However, to change a design that doesn’t use ValueHolders
to one that does, you have to rewrite your program,
changing accesses to attributes stored in ValueHolders.
There are times when you want to keep the program as it
is, but just change the way you store the attribute. In other
words, you’d like to depend directly on a variable without
explicitly having to store a ValueHolder in it. This feature is
called active variables* and is very useful when you are
debugging and fine-tuning a program.

In this column we use VisualWorks 2.0 to implement
active variables in three steps. First, we define the class
ActiveVariable and show how to convert an object’s slots
to contain instances of it. Next, in the largest step, we
introduce a new class for an object containing one or
more ActiveVariables. Finally, we use a new kind of
MethodProducer to recompile methods in the new class.

Bob Hinkle is an independent Smalltalk consultant and writer. His
current focus is the improvement of existing tools and the cre-
ation of new tools to revitalize the Smalltalk environment. He can
be reached at hinkle@primenet.com.

Ralph Johnson learned Smalltalk from the Blue Book in 1984. He
wrote his first Smalltalk program in the fall of 1985 when he
taught his first course on object-oriented programming and
design. He has been a fan of Smalltalk ever since. He is the only
author of “Design Patterns: Elements of Reusable Object-Oriented
Software” to regularly program in Smalltalk, and continues to
teach courses on object-oriented programming and design at the
University of Illinois.
14 http://www
ACTIVE IS AS ACTIVE DOES
To our knowledge, the first language to include active vari-
ables was LOOPS. Active variables descended to CLOS in
the form of access daemons on slots. We’re not the first to
implement active variables in Smalltalk (see Messick1 for
example), and our specification is similar to what others
have done. Our implementation of ActiveVariables is new,
since we use the GenericCompiler and MethodProducer de-
scribed in our previous columns. ActiveVariables satisfy the
following high-level specification:

Class: ActiveVariable
Superclass: Object
Important instance variables:
name <String>
value <Object>
readDependents <Set of 2-argument BlockClosures>
writeDependents <Set of 3-argument BlockClosures>
Important instance methods:
value

Return the ActiveVariable’s value, and also notify
readDependents.

value: anObject

Set the ActiveVariable’s value, and also notify
writeDependents.

The read dependents are two-argument blocks, whose
parameters are the ActiveVariable and its current value.
These blocks are evaluated whenever the message #value
is sent to the ActiveVariable, as follows:

Method for ActiveVariable

value
readDependents do: [:each | each value: self value:

value].
^value

Similarly, the write dependents are evaluated whenever

* Source code for the active variables package is available by anony-
mous ftp from st.cs.uiuc.edu. Look for the file ActiveVariables20.st
in pub/st_vw.
The Smalltalk Report.sigs.com

#value: is sent to the ActiveVariable. They are three-argu-
ment blocks, whose parameters are the ActiveVariable, its
current value, and its old, over-written value:

Method for ActiveVariable

value: anObject
“This method needs to return the new (i.e., being set)
value, so the behavior is consistent when an
ActiveVariable set replaces a := expression.”

| oldValue |
oldValue := value.
value := anObject.
writeDependents do: [:each | each value: self value:
value value: oldValue].
^value

ActiveVariables are added to an object using #instVarAt:put:,
the primitive method that gives direct access to object
state. While this method is a gross violation of encap-
sulation, it’s required for Smalltalk programming tools
written in Smalltalk, such as the Inspector. We use the
phrase “activating an object” to describe the process of
adding ActiveVariables to the object’s slots, and similarly
define an “activated object” to be an object that has
ActiveVariables implicitly stored in some of its slots. Once
an object has been activated, its class must be changed,
and ideally the slot conversion and class change should
happen atomically, to prevent access errors. The object’s
new class has methods re-compiled to send #value and
#value: to access any activated slots. We show how to
create such a class in the next two sections.

ACTIVATED OBJECTS NEED ACTIVE CLASSES
Since an activated object needs specially compiled meth-
ods, it also needs a special class to store those methods.
Furthermore, this class must be distinct for different
objects, so that you can activate one of a class’s instances
without activating all of them. This kind of class, which
is distinct for individual objects, is called a lightweight
class, which we showed how to implement in Debugging
Objects.2 Activated objects are instances of ActiveClass,
which is a new subclass of LightweightClass that adds
specialized support for ActiveVariables. In addition, each
ActiveClass needs some information for each of its vari-
ables that is activated. A new object called ActiveVariable-
Specification maintains this information for the ActiveClass.
These two new classes are specified by

Class: ActiveClass
Superclass: LightweightClass
Important instance variables:
baseClass <Class>
activeVariables<Collection of ActiveVariableSpecifications>
Important instance methods:
activateObject: <Object>
Create and install ActiveVariables in slots of the Object corre-
sponding to the receiver’s ActiveVariableSpecifications.
May 1996 http://www.
activeVariables
activeVariableIndexes
Return respectively the collection of names and indexes of
this ActiveClass’ activated variables.
allActiveVariables
allActiveVariableIndexes
Return respectively the collection of names and indexes of all
activated variables in this ActiveClass and all of its transitive
superclasses.
convertInstancesTo: <ActiveClass> addedIndexes:
<Collection of SmallIntegers> from: <Behavior>
Convert any instances of the receiver to have the input
ActiveClass as their class. This involves changing their class,
adding ActiveVariables to any slots numbered in the input col-
lection, and recompiling methods that reference those slots.
noteNewActiveVariables: <Collection of

ActiveVariableSpecifications>
Stores any new ActiveVariableSpecifications in the active-
Variables instance variable and converts the receiver’s in-
stances to support these specifications.

Important class methods:
destroyAllActiveClasses
Eliminates all active classes and their instances
Class: ActiveVariableSpecification
Superclass: Object
Important instance variables:
name <String>

index <SmallInteger>
globalReadDependents <OrderedCollection of 2-argument

BlockClosures>
globalWriteDependents <OrderedCollection of 3-argument

BlockClosures>
localReadDependents <IdentityDictionary mapping

objects to 2-argument
BlockClosures>

localWriteDependents <IdentityDictionary mapping
objects to 3-argument
BlockClosures>

Important instance methods
addDependentsFrom: <ActiveVariableSpecification>
Merges the ActiveVariableSpecification’s dependents lists
into the receiver’s.
setDependentsOf: <Object>

Adds dependent blocks to the ActiveVariable in the Object’s
slot indicated by the receiver’s index instance variable. All
blocks from the global lists are added, as well as any associ-
ated with the Object in the local dictionaries.

setReadDependents: <Collection of 2-argument
BlockClosures>

setWriteDependents: <Collection of 3-argument
BlockClosures>

Respectively set the read- and write-dependent
collections for this specification.

ActiveClasses create a new distinction between two kinds of
15sigs.com

DEEP IN THE HEART OF SMALLTALK
LightweightClass. Originally, a LightweightClass acted as an
extension of an object’s original class. The LightweightClass
stood between the object and its original class, allowing
the object to inherit methods from the original class as
long as they weren’t over-ridden in the LightweightClass.
Most ActiveClasses will not be extensions of the original
class, but instead they will completely replace the original
class in the object’s look-up chain.

Figure 1 illustrates these two different arrangements.
In this example, aSet1 and aSet2 were both instances of
Set, whose superclass is Collection. An extension
LightweightClass named ExtensionToSet was created for
aSet1 and inserted between aSet1 and Set. A replacement
LightweightClass named ReplacementForSet was created for
aSet2 and inserted between it and Collection, effectively
removing Set from aSet2’s lookup chain. aSet1 responds to
#size using the method defined in Set, its original class,
since that method is not over-ridden in ExtensionToSet.
However, it responds to #isEmpty using the method
defined in ExtensionToSet (which could still refer to Set’s
method #isEmpty by a super send). On the other hand,
aSet2 responds to #size using the method from Collection.
It responds to #isEmpty using the method defined in
ReplacementForSet, which cannot access Set’s method
#isEmpty since Set is nowhere on Replacment ForSet’s
superclass chain.

There are two reasons why ActiveClasses are best imple-
mented as replacement LightweightClasses. First, significant
space can be saved when objects are activated from several
classes in one class hierarchy. If ActiveClasses were exten-
sions, and a DependentPart object and a CompositePart object
were activated, the DependentPart’s ActiveClass and the
CompositePart’s ActiveClass would bothhave recompiled ver-

Collection

Defines:
#size, #isEmpty

A normal Class

Set

aSet1 aSet2

Defines:
#size, #isEmpty

A normal Class

superclass

superclass

superclass

dispatchingClass

dispatchingClass

ReplacementForSet

Defines:
#isEmpty

A replacement LightweightClass

ExtensionToSet

Defines:
#isEmpty

An extension LightweightClass

Figure 1. The difference between extension and replacement
LightweightClasses.
16 http://www
sions of methods from their common superclasses. With
ActiveClasses implemented as replacements, though, the
two ActiveClasses would both inherit from an ActiveClass for
VisualPart, eliminating that method duplication. The sec-
ond justification is that extension classes must change the
way they compile methods that use super. Using the same
example, if a VisualPart method referencing super were
naively recompiled in the DependentPart’s ActiveClass, super
would refer to VisualPart and not Object. Using replace-
ments, the ActiveClass hierarchy parallels the original class
hierarchy, guaranteeing thatthemeaning ofsuperinrecom-
piled methods will remain correct.

Using replacements instead of extensions doesn’t re-
move all technical difficulties, of course. For example,
suppose three objects with the same class are activated,
only each activates a different subset of the class’s vari-
ables. How many ActiveClasses should be created? On one
extreme, we could create three ActiveClasses, one for each
object. Should another object of the same class be ac-
tivated in exactly the same slots, it could share the
ActiveClass of one of these three, but otherwise a new
ActiveClass would be required. This answer guarantees
that each ActiveClass minimally matches its instances’
needs for activation, but also has the potential to waste
space. On the other extreme is the solution we’ve adopt-
ed, which uses only one ActiveClass for every class. In the
above scenario, this ActiveClass will activate all slots need-
ed by any one of its activated instances. As a result, some
objects will have variables activated unnecessarily. This
will not cause any incorrect behavior, though it will
unnecessarily (but insignificantly, in our opinion) slow
the objects’ access to their variables. As another result, a
new instance variable named activeVersion is added to
Behavior, and thus to every existing and added class in the
system. This variable will either hold the Behavior’s
unique active version or nil if it has none. In addition,
we’ve added a number of new methods to Behavior. These
new additions are summarized by

Class: Behavior
Added instance variables:
activeVersion <nil | ActiveClass>
Added instance methods
activateObject: <Object>
variableIndexes: <Collection of SmallIntegers>
readDependents: <Collection of 2-argument
BlockClosures>
writeDependents: <Collection of 3-argument
BlockClosures

Installs ActiveVariables in all slots of the Object indicated in
the #variableIndexes: parameter. Adds the given read- and
write-dependents to these ActiveVariables. Changes the
Object’s class to an appropriate ActiveClass.

activeSuperclass

If the Behavior’s activeVersion isn’t nil, returns the active
Version’s superclass. Otherwise returns the Behavior’s
superclass.
The Smalltalk Report.sigs.com

buildActiveClassForVariables: <Collection of
ActiveVariableSpecifications>

buildActiveClassForVariables: <Collection of
ActiveVariableSpecifications>
from: <Behavior>

Do whatever work is necessary, which can sometimes be
quite a lot, to build an ActiveClass that activates all slots
indicated by the input collection.

buildActiveSuperclassForVariables:
<Collection of ActiveVariableSpecifications>

Obtains an ActiveClass for the Behavior’s superclass that ac-
tivates any variables in the input collection that are de-
fined in that superclass or higher.

You activate an object by sending it #activateVariables:
readDependents:writeDependents:. The first parameter is a
collection of variable names to be activated, and the last
two respectively are collections of read- and write-depen-
dent blocks to be registered for all the slots being activat-
ed. The implementation in Object forwards the message to
Behavior, which implements it as:

Method for Behavior
activateObject: object variableIndexes: indexCollection
readDependents: readBlocks writeDependents:
writeBlocks

| specs activeClass names |
names := self allInstVarNames.
specs := indexCollection collect: [:each |

self activeVariableSpecClass new
name: (names at: each) index: each;
setReadDependents: readBlocks for: object;
setWriteDependents: writeBlocks for: object].

activeClass := self buildActiveClassForVariables: specs.
activeClass activateObject: object

This method has three major steps, corresponding to its
last three statements. The #collect: loop creates an Active
VariableSpecification for each slot. A dependent registered
with an ActiveVariableSpecification can be associated with
one particular activated object, as is done above, or it can
be registered globally. With the latter option, you can
monitor all accesses to a particular variable across a
group of activated objects. The second step sends
#buildActiveClass ForVariables: to create an ActiveClass that
re-compiles all methods referencing variables in index
Collection. The final statement sends #activateObject: to the
active class, which is defined as:

Method for ActiveClass
activateObject: object

| oldActiveVariableIndexes newActiveVariableIndexes
names |

oldActiveVariableIndexes := object dispatchingClass
allActiveVariableIndexes.

(newActiveVariableIndexes := self
allActiveVariableIndexes)
May 1996 http://www
removeAll: oldActiveVariableIndexes.
names := baseClass allInstVarNames.
newActiveVariableIndexes do: [:each |

object instVarAt: each put:
(self activeVariableClass

name: (names at: each)
initialValue: (object instVarAt: each))].

object changeClassToThatOf: self basicNew.
self allActiveVariables do: [:each |

each setDependentsOf: object]

The bulk of this message (up to the #changeClassToThatOf:
send) creates and installs ActiveVariables in the newly acti-
vated slots of the input object. It’s important to install
ActiveVariables only in newly activated slots, since other-
wise the code could produce limitless chains of nested
ActiveVariables. The initial value for each new ActiveVariable
is the old (non-active) value for the corresponding slot.
After the ActiveVariables are installed, the receiver be-
comes the activated object’s new class (and, as we men-
tioned before, this should ideally happen atomically with
the slot conversion).Finally, the ActiveVariableSpecifications
help initialize the newly activated object by copying their
read- and write-dependents for that object, as well as all
global dependents.

Behaviors respond to the #buildActiveClassForVariables:
message used above by sending themselves #buildActive
ClassForVariables:from: with the second parameter equal to
self. This method constructs an ActiveClass for a given set
of ActiveVariableSpecifications, which may require creating
ActiveClasses for superclasses or converting existing
ActiveClasses to support newly activated slots. Converting
an existing ActiveClass may require work on its subclasses,
since newly activated slots require the installation of
ActiveVariables and the re-compilation of all referencing
methods in the class’s instances and also in the instances
of any classes that inherit from it. Thus, the method that
does the conversion (which has the longish name
#convertActiveClassWithSuperclass:addNewActiveVariables:fr
om:) calls back to #buildActiveClassForVariables:from: again.
The sendingClass is passed in to ensure that every class
gets converted only once.

Method for Behavior
buildActiveClassForVariables: variableSpecs from:
sendingClass

| newActiveSuperclass |
newActiveSuperclass := self buildActiveSuperclass

ForVariables: variableSpecs.
self activeClass notNil

ifTrue: [self convertActiveClassWithSuperclass:
newActiveSuperclass
addNewActiveVariables: variableSpecs
from: sendingClass]

ifFalse: [self buildActiveClassWithSuperclass:
newActiveSuperclass

withVariables: variableSpecs].
^self activeClass
17.sigs.com

DEEP IN THE HEART OF SMALLTALK
#buildActiveSuperclassForVariables: generates an ActiveClass
for the superclass if it defines any of the activated slots. It
does so with another send of #buildActiveClassForVariables:
from:, passing in the receiver as the sendingClass. The
superclass needs to know who originated the recursive
message to eliminate redundant operations during its
activation.

Method for Behavior
buildActiveSuperclassForVariables: variableSpecs

| superclassActivatedSlots |
superclassActivatedSlots :=

variableSpecs select: [:each | each index between:
1 and: self superclass instSize].

^superclassActivatedSlots isEmpty
ifTrue: [

self activeSuperclass]
ifFalse: [

self superclass
buildActiveClassForVariables:

superclassActivatedSlots
from: self]

The method #convertActiveClassWithSuperclass:addNewActive
Variables:from: is called from #buildActiveClassForVariables:
from: when the receiver already has an activated version.
It builds a new ActiveClass, figures out exactly which var-
iables are newly activated, and then converts instances
of the old ActiveClass to the new format using #convert-
InstancesTo:addedIndexes:from:.

Method for Behavior
convertActiveClassWithSuperclass: newSuperclass
addNewActiveVariables: variableSpecs from: sendingClass

| myActivatedSlots activeClass newActiveClass
addedIndexes |

myActivatedSlots :=
18 http://www
variableSpecs select: [:each | each index between:
self superclass instSize + 1 and: self instSize].

activeClass := self activeClass.
myActivatedSlots := myActivatedSlots, (newSuperclass

variableSpecsNotIncludedIn: activeClass superclass).
newActiveClass := activeClass copy.
newActiveClass

assignSuperclass: newSuperclass;
noteNewActiveVariables: myActivatedSlots.

addedIndexes := myActivatedSlots asOrderedCollection
collect: [:each | each index].

addedIndexes removeAll: activeClass
allActiveVariableIndexes ifAbsent: [].

activeClass
convertInstancesTo: newActiveClass
addedIndexes: addedIndexes
from: sendingClass.

activeVersion := newActiveClass

The variable myActivatedSlots contains the activated vari-
ables that are defined in the receiver, plus any newly
activated slots in newSuperclass. We need to allow for
active superclasses that activate more variables than we
request since every Class has just one ActiveClass version.
For example, suppose we activate the variable “icon” in
a ScheduledWindow and later activate the variables
“application” and “label” in an ApplicationWindow.
ApplicationWindow defines “application”, but its superclass
ScheduledWindow defines “label”, so the activation
process has to obtain an ActiveClass for ScheduledWindow
using #buildActive SuperclassForVariables:. This ActiveClass
will activate “label”, as desired, but it will also activate
“icon” because of the previous request. This technical
point is an easy one to overlook in an implementation.
(Or so we’d like to think, since we missed it in our earli-
est efforts!)

Figure 2 illustrates how activation spreads around the
.sigs.com
class hierarchy and why it’s important to
identify the source of the
#buildActiveClassForVariables:from: mes-
sage. In the diagram, the dashed arrows
represent the superclass relationship, and
the thick arrows represent message sends.
If “widgetFlags”, “components”, and “con-
tainer” are activated for aBorderDecorator,
activation must spread up from
ActiveBorderDecorator to
ActiveCompositePart, where “components”
is defined, and to ActiveVisualPart, where
“container” is defined. When
ActiveCompositePart recompiles methods
to activate “container” and “components”,
it must also update all of its instances and
all of its transitive subclasses’ instances.
However, these activation echoes must
spread away from the
ActiveBorderDecorator ActiveCompositePart-
ActiveVisualPart branch, since their meth-
ods and instances will be converted as a
Defines variables:
model

ActiveDependentComposite
Defines variables:

controller

ActiveView

buildActiveClassForVariables:
from: ActiveCompositePart

buildActiveClassForVariables:
from: ActiveBorderDecorator

convertVarsToActive: convertVarsToActive:

convertVarsToActive:

buildActiveClassForVariables:

Defines variables:
container

ActiveVisualPart

Defines variables:
component, widgetFlags,

policy

ActiveBorderDecorator

aBorderDecorator

Defines variables:
components,

preferredBounds

ActiveCompositePart

Defines variables:
model

ActiveDependentPart

Figure 2. How activation spreads throughout the class hierarchy.
The Smalltalk Report

result of #buildActiveClassForVariables:from: sends active for
each of them. Thus, when ActiveCompositePart activates
“container” and“components”, it will send #convertVarsToA

ctive: to ActiveDependentComposite but not to Active-
BorderDecorator. Similarly, when ActiveVisualComponent
activates “container”, it will send #convertVarsToActive: to
ActiveDependentPart (and thus indirectly to ActiveView) but
not to ActiveCompositePart.

The method #convertInstancesTo:addedIndexes:from: is
used when an existing ActiveClass is changed by the addi-
tion of new ActiveVariables. It converts all the instances of
the old ActiveClass to the new one. The argument index-
Collection indicates the newly activated variables.

Method for ActiveClass
convertInstancesTo: newActiveClass addedIndexes:
indexCollection from: sendingClass

| templateObject instances |
(instances := self allInstances) isEmpty

ifFalse: [
templateObject := newActiveClass basicNew.
self convertIndexesToActive: indexCollection in:

instances.
instances do: [:each |

each changeClassToThatOf: templateObject].
newActiveClass updateInstanceDependentsIn:
instances].

self subclasses do: [:each |
each baseClass == sendingClass

ifFalse: [
each assignSuperclass: newActiveClass.
each withAllSubclasses do: [:sub |

sub updateInstancesForActivatedIndexes:
indexCollection]]]

The message #convertIndexesToActive:in: cycles through
the passed-in collection and creates an ActiveVariable for
each newly activated slot. Each instance then has its class
changed to the new ActiveClass. The #updateInstance-
DependentsIn: message iterates over the old ActiveClass’s
instances and adds the dependents from its ActiveVariable
Specifications. Finally, the old active class moves its sub-
classes (except for sendingClass) to the new ActiveClass. It
changes their superclass, and then has them and all of
their subclasses acti-vate the appropriate slots and
recompile methods that reference any newly activated
slots. This step, finally, is where the sendingClass parame-
ter is used. The sendingClass shouldn’t be converted, but
only other subclasses of the old ActiveClass. The
sendingClass subclass itself is processed in a
#activeClassForVariableSpecs:from: context lower down in
the execution stack. When that context resumes, that
sendingClass will be converted appropriately, so it’s vital
(to avoid duplicate ActiveVariables, for example) that it not
be converted here. Thus, as figure 2 showed, when class
activation flows up the class hierarchy, any activation
echoes flowing back down the hierarchy must flow away
from classes passed up as sendingClass parameters.
May 1996 http://www
The method #buildActiveClassWithSuperclass:withVariables:
is called from #buildActiveClassForVariables:from: when the
receiving Behavior doesn’t already have an active version.

Method for Behavior
buildActiveClassWithSuperclass: newSuperclass
withVariables: variableSpecs

| myActivatedSlots |
myActivatedSlots := variableSpecs select: [:each |

each index between: self superclass instSize + 1
and: self instSize].

activeVersion := (ActiveClass newWithBase: self)
copyAllMethods.

myActivatedSlots := myActivatedSlots, (newSuperclass
variableSpecsNotIncludedIn:
activeVersion).

activeVersion
assignSuperclass: newSuperclass;
noteNewActiveVariables: myActivatedSlots

In ActiveClass>>copyAllMethods, the new ActiveClass copies
all methods defined in the receiving Class, which is its
base class. The new ActiveClass inherits from the super-
class determined earlier. In #noteNewActiveVariables:, the
newActiveClass stores ActiveVariableSpecifications in its
activeVariables instance variable and recompiles methods
accessing activated slots to use #value and #value:.

THE ACTIVE COMPILER
The process of converting active classes relies on the
#recompileMethodsReferencing: message, which is called
whenever an ActiveClass’ set of ActiveVariableSpecifications
changes.

Method for ActiveClass
recompileMethodsReferencingAny: indexCollection

| m |
self selectors do: [:each |

m := self compiledMethodAt: each.
(m usesAny: indexCollection)

ifTrue: [self recompile: each]]
This method recompiles any method of the receiver that
uses, by reading or by writing, any named slot whose
index is in the parameter indexCollection. This recompila-
tion ensures that all activated slots are accessed only by
#value and #value: sends. These #value and #value: access-
es are inserted by a special object called ActiveProducer.

ActiveProducer subclasses from the MethodProducers we
discussed in our previous two columns. It introduces a
new name scope, ActiveNameScope, which in turn creates
an instance of ActiveLocalScope for any ActiveClass. During
compilation, local name scopes create instances of sub-
classes of class Variable for each name in a parse tree. The
choice of subclass affects the code generated to access
the variable. For example, InstanceVariable emits primi-
tive bytecodes for direct instance access. StaticVariable,
which is used for global names, emits more specialized
code. When the compiler encounters a write to a vari-
able, it sends #emitStorePop:value:from: to the corre-
19.sigs.com

DEEP IN THE HEART OF SMALLTALK
sponding Variable object. StaticVariable implements this
method as:

emitStorePop: codeStream value: value from: assignment
“Emit code to assign a value to the variable.”

self checkStore: codeStream from: assignment.
codeStream pushConstant: binding.
value emitValue: codeStream forAssignment:
assignment.
codeStream noteSourceNode: assignment.
codeStream sendNoCheck: #value: numArgs: 1.
codeStream pop

The underlined statements are the ones that actually gen-
erate code. The first generates bytecodes to push the
StaticVariable’s binding, which will be an Association, onto
the stack. The next causes the assigned value to generate
its own bytecodes. The third statement generates a #value:
message send, which will store the assigned value into the
Association’s value instance variable. ActiveLocalScope in-
stantiates a new class, ActiveInstanceVariable, to represent
active named slots. ActiveInstanceVariable overrides the
load- and store-emitting messages in a way similar to
StaticVariable. For example:

emitStorePop: codeStream value: value from: assignment
“Emit code to assign a value to the variable.”

self checkStore: codeStream from: assignment.
codeStream putLoadInst: index scope: scope.
value emitValue: codeStream forAssignment:

assignment.
codeStream noteSourceNode: assignment.
codeStream sendNoCheck: #value: numArgs: 1.
codeStream pop

This is the same as StaticVariable’s implementation except
for the underlined statement. In contrast to the Static-
Variable above, the ActiveVariable is accessed using the nor-
mal load for an instance variable. Since this method gen-
erates a #value: send, the #value: message will be sent
to the ActiveVariable at run-time, allowing it to store the
new value in its value instance variable and to alert its
writeDependents.

Because StaticVariables are compiled specially, they also
require special handling in the Decompiler. ActiveInstance-
Variables don’t require this as implemented, since they are
only supported by ActiveClasses, which never decompile
their methods. If you are interested in supporting
ActiveVariables on Classes, you will have to add analogous
special handling for ActiveVariables to the Decompiler.

CONCLUSION
The implementation we’ve described can be used to mon-
itor instance variable accesses on a per-object basis. That’s
useful in its own right, and in addition we’ll use active vari-
20 http://www
ables in our next column to implement watchpoints. Our
watchpoints will be arbitrary expressions you can enter
into a Debugger, which will then alert you if and when the
value of the watchpoint expression ever changes.

There are a few limitations of our implementation
that bear further investigation. Most notably, once an
active version of a class is created, there is no connec-
tion between methods in the Class and its ActiveClass.
Thus, you might change methods in or add methods to
the class, but these changes would not be reflected in
the ActiveClass. As a result of this limitation, you will
have to purge ActiveClasses periodically after you’ve
made programming changes. Some day we hope there
will be a detailed dependency mechanism that would
alert interested parties whenever a class’ definition
changes. (In fact, such a mechanism is one of the many
potential projects for a future column.) In that case, we
could use the dependencies to keep ActiveClasses in
synch with their base class. Another extension that you
may find interesting to attempt is to support the activa-
tion of indexed instance variables as well as named
instance variables. In some ways this is an easier prob-
lem, since indexed variables can only be accessed via
messages, but there are still some interesting issues
that must be resolved to integrate indexed variables
into our scheme.

We have three main goals when writing these columns.
First, we try to present projects that can help improve the
quality and productivity of Smalltalk programmers, and
we hope that you find these ActiveVariables useful for ex-
ploring and debugging your code. Second, we try to do
some interesting and perhaps unusual Smalltalkprogram-
ming, to give you an idea of the things that are possible. In
this column we leveraged the LightweightClasses and
MethodProducers of our previous articles to implement
ActiveVariables. We also showed another way to specialize
the compilation process for a very particular need. We
want to delve into the heart of the Smalltalk environment
to help you understand it better and see possible ways to
extend it for your own benefit. This month we spent most
of our time discussing new code, but in the process we
hope you learned a little about Behaviors and the compila-
tion process. Finally, we are interested in hearing from you
if you have comments or questions. Are we achieving our
goalsas far as you are concerned? Are there particularareas
of the environment you’d like to understand, or advanced
projects you’d like to see implemented? If you have any
thoughts or feedback, please send them to Bob Hinkle by
email at hinkle@primenet.com.

References
1. Messick, S. L. and K. L. Beck. “Active Variables in Smalltalk-80.”

Technical Report CR-85-09. Computer Research Lab, Tektronix,
Inc. 1985.

2. Hinkle, B., V. Jones, and R. E. Johnson. “Debugging Objects.” The
Smalltalk Report, (2) 9, July-Aug. 1993.

`

`

The Smalltalk Report.sigs.com

