Tactical patterns for the
real world: Validation
and informational patterns

efficiently implementing and managing domain

models we looked at a family of patterns for dealing
with instantiation issues. Interior Decorator showed how
to share a set of useful behaviors that may be selectively
needed throughout a family of classes in a broad hierar-
chy. Epitome showed how to consolidate and share the
default values for an object’s attributes. Actuator showed
how to convert a constant attribute of an object to one
that can vary during the lifetime of the object.

In this issue we explore two additional families of pat-
terns: the first dealing with validation issues—checking
and protecting domain objects, and the second dealing
with informational issues—managing status and valida-
tion messages.

P REVIOUSLY IN THIS series of articles on patterns for

VALIDATION PATTERNS
Safeguard (Delayed Validation)

Problem. Where do you put complex validation logic; and
how do you prevent invalid domain objects from being
used?

Motivation. You want to allow user editing of a slope ob-
ject that represents the simple equation

slope=(elevation2—-elevationl) / length.

You wish to encapsulate in the slope class the domain val-
idation rule thatlength may not equal zero, yet this means
allowing some domain models to take on illegal values for
length temporarily, so that it may be validated. You estab-
lish an overall domain model validation method, a
Safeguard, to be checked before any attempt is made to
calculate the model.

Applicability. Use this pattern when you need to validate
domain objects to catch data-entry errors or other logi-
cal errors that would prevent correct calculation, and
when the validation logic requires intimate knowledge

Darrow Kirkpatrick

of the domain. It is particularly appropriate for top-level
validation of complex models with many interrelated
parts.

Solution. Associate complex validation logic with domain
classes by writing validation methods. Allow data that
may be invalid into the domain, but guard calculations
with a validation method.

Implementation. Write a public validation method called
#isvalid for use by clients, delegating to a private #validate
method that may be overridden by domain subclasses.
The public method should reset error flags as necessary
before the specific validation is invoked, and answer the
result of the validation:

isvalid
“Answer a Boolean, whether this object is currently valid.”
Nself
clearErrorFlag;
validate;
isErrorFlagSet

validate
“Test all aspects of this object for validity and if any
fail set the error flag.”
length > 0 ifFalse: [
self setErrorFlag]

Consequences. This pattern encourages the programmer
to keep validation code near the domain state that it pro-
tects, improving encapsulation. But to maintain valida-
tion logic in the domain means you must allow bad data
into the domain temporarily, and validate it later. A
benefit of applying this pattern is that expensive valida-
tion occurs only on demand, rather than whenever there
is a change to the model (which can be slow), or when
indicated by a modified flag (which can be hard to main-
tain). A drawback is that clients must remember to check
for validity before using the model.

4 http://www.sigs.com

The Smalltalk Report

| TACTICAL PATTERNS FOR THE REAL WORLD

NumericRange
Validater

StringLength
Validater

DomainModel subclasses

subclasses

validates using

Validater

Figure 1. Validater class hierarchy.

Related Patterns. An alternative to this pattern is to use a
Memento! to copy the domain object and make that
Memento instead of the object available for editing. The
Memento can then be validated before it is applied to the
domain object. The drawback to this approach is the ten-
dency of validation code to drift out of the domain into
interface or broker classes.

See Verdict for more discussion of how the messages
that result from validation may be managed. The #isValid
method is an example of Template Method.

DEFLECTOR (DEFENSIVE SETTER)

Problem. How do you prevent attributes of certain classes
from ever taking on illegal values?

Motivation. You maintain a global help level that user
interface elements check to determine how much help
and functionality they should reveal. Rather than require
those clients to deal with illegal values, it is convenient to
force the help level to remain within a certain range. To
guarantee this range you implement a help level setter
method that rejects illegal values, and you require all
clients to use it.

helpLevel: aninteger
“Set the help level for the system to the passed integer,
if it is valid.”
(anlnteger between: 1 and: 3)
ifTrue: [helpLevel := aninteger].
"helpLevel

Applicability. Often in a running system an attribute can be
set from many different sources, such as the user interface,
client code, or an initialization file. Some of these sources
may be unreliable, yet the attribute must never become
invalid. Use Deflector when attributes of critical objects
mustnever take on illegal values and there is no opportuni-
ty to perform interactive validation before the value takes
effect. The client that is setting the attribute does not
require thatthe operation succeed for the system to remain
stable, and is not prepared to handle an exception.

Solution. Perform validation against the passed value in
the setter method itself. If the value is invalid, simply do
not set it. There is no exception or error return. The cur-
rent value of the attribute is always returned.

Implementation. Move validation code to the lowest level
in the object implementation. If extra performance or
bypassing validation are sometimes required, consider
implementing a second, low-level, “basic” accessor that
performs no validation before setting the attribute.

Consequences. This pattern leads to robust but possibly
obtuse behavior. Because there is silent validation of
attributes, users will be protected from—but not notified
of—error conditions. Because there is some overhead to
perform validation in accessors, this pattern is not appro-
priate for performance-critical code.

Related Patterns. Deflector is an example of early valida-
tion; Safeguard is an example of late validation.

VALIDATER (CONFIGURABLE VALIDATION)

Problem. How do you provide default validation of do-
main attribute values, while allowing end users to modify
default validation logic safely?

Motivation.Youare designingasystemthatmodelsthe flow
of water, requiring a specific gravity to characterize the
water. In certain situations it may be possible for an expert
to use the system to model the flow of other kinds of fluids.
To protect novice usersyou implementadefaultvalidation
tocheckvaluesenteredforspecificgravityagainsttherange
of legal values for water. However you objectify that valida-
tionasapersistent, editable objectso thatexpertusers may
configure the systemto acceptvaluesfor otherfluids.

Applicability. Use the Validater pattern when you wish to
implement domain validation rules that can be relaxed or
adjusted by the end user. The user-configurable portion
of the rules must be represented by values that can be
edited in a running program. The pattern as described
here is for field-level attribute validation, such as range-
checking, that requires no external context to perform.

Solution. Create an abstract validater class with concrete
subclasses embodying state and behavior for different
validation strategies.

Implementation. One approach to managing validaters
is to have domain classes maintain symbolic names to spec-
ify the type of validation each of their attributes should
receive. These symbolic names are keys into a global or pro-
ject-level dictionary of available validaters. Have the object
that is responsible for accepting edited attribute values—
perhaps an Adapter—pass those values to the associated val-
idater object for approval before being committed.

It may be convenient to have validaters share the same

6 http://www.sigs.com

The Smalltalk Report

protocol as code blocks, so they can be used interchange-
ably. This way the same client code can perform valida-
tion with runtime-specified validaters, or with more com-
plex logic specified at development time via a block.

Consequences. This pattern assumes a more complex in-
teraction with the user. A view should be in control of the
validation process so the user can be notified and given
the opportunity to correct domain attributes that fail val-
idation. Also, you may need to provide separate editors
for each validater subclass that can be configured by the
user. The subtleties of editing validation parameters may
confuse some end users.

Related Patterns. Validaters are an example of the Strategy
pattern. They objectify different algorithms for perform-
ing validation, and make them interchangeable. Often a
Validater will be used by an Adapter that has responsibility
for interfacing between an editor and domain model.

Reviewing the three validation patterns, Validater is
another example of early validation, while Deflector is an
example of the earliest possible validation, and Safeguard
is an example of late validation. You might use Validater to
support editing domain attributes from dialogs where
field-level validation is required. You would use Deflector
to protect attributes which are subject to change from any
source, including other application code. And you would
use Safeguard when performance is critical, or more con-
text is needed to perform validation than is available from
the attribute value alone.

INFORMATIONAL PATTERNS

Verdict (Visitor Message Token)

Problem. How do you manage the results of a complex and
expensive validation across a series of domain objects so
that their status or validity may be queried at a later time?

(1) logFor: aBlock
 —

aStreaming
StatusLog

aNetworkModel

-—

(2) watch: aNodeModel

(4) putLine: aString
—_—

(3) calculate

aninteractive

5) putLine:
StatusLog G

-~

~~
(5) putLine:

aNodeModel

Figure 2. Ticker Tape object messages.

Motivation. You are designing the solution of a large net-
work model. Each node in the network has associated
constraints that must be met in order for the solution to
be considered valid. If a node fails constraints the solu-
tion should proceed, but the failure must be stored so
the user can be notified. To accomplish this you design
the constraint checking algorithm to set a message sym-
bol, a Verdict, into any node that fails constraints. Later,
when the user inspects the node, the symbol is discov-
ered and converted into a message for display.

Applicability. Use this pattern when it is not possible to
interrupt validation, for example when validating domain
objects requires context from an external object during an
expensive traversal. And use it when the results of the val-
idation must be stored for later use, for example when dis-
play of result strings may needto happeninadialog during
later editing of a domain object.

Usually it is an external, visiting object that leaves a to-
ken to be interpreted later. But rather than the visitor be-
ing another object, it might be a subclass that is providing
validation behavior to add a Verdict into the object’s mes-
sage collection as validation proceeds.

Solution. Create a facility for storing within each domain
objectacollection of zero or more symbolsthatindexintoa
global map of validation, warning, and error messages.
When a validation is performed—and problems are
found—add the appropriate symbols to the domain ob-
ject’s message collection. If there are no validation prob-
lems, removetheappropriatesymbolsfromtheobject’scol-
lection,ifthey have beenadded duringaprior validation.

Implementation. A more flexible solution for managing
messages is to allow multiple categories by maintaining a
dictionary in the domain object whose keys are types of
messages (constraint, warning, and error for example),
and whose values are sets of symbols representing
specific messages. If a message dictionary is used, sub-
classes and clients can add their own message categories.

Consequences. This pattern moves validation behavior out
of low-level domain objects into higher-level objects.
Because of the threat to encapsulation this may not
always be desirable, though it can be essential if addition-
al context is required to perform the validation.

Applying this pattern throughout a domain hierarchy
may result in wasted space if many objects don't need to
maintain validation messages, especially if message cate-
gory dictionaries are used. Consider applying the Interior
Decorator pattern to save space. Note that the need to re-
move message tokens once objects are valid requires ad-
ditional logic and can be prone to subtle bugs.

Related Patterns. A Verdict may be left by a Visitor perform-
ing validation. Or, subclasses may add Verdict messages by
overriding portions of a validation implemented by a
Template Method. A Safeguard method may use the pres-

May 1996

http://www.sigs.com 7

| TACTICAL PATTERNS FOR THE REAL WORLD

ence of a Verdict message to indicate that the domain
object is not valid.

TICKER TAPE (STATUS MESSAGE LOG)

Problem. How do you collect status information from a
lengthy domain operation involving thousands of objects,
none of which have visibility to the user interface?

Motivation. You are designing a com-
plex network calculation. When
standalone test suites are run during
development, no status information
is desired. However, when a user
interface is present and calculations
are occurring
at runtime, feedback to the user is
essential. Therefore you implement a
publish and subscribe mechanism
for domain model messaging. Domain models trigger
messages as they calculate. Clients may subscribe to, col-
lect, and present those messages if they wish.

Applicability. Use this pattern when one or more domain
objects must perform a lengthy or complex operation for
which status information may not always be desirable,
and the formatting of the status information is a function
of individual domain objects.

This pattern is also useful for debugging and tracing,
and any time that status information must be collected
for filtering or presenting later. It is not appropriate when
heavy formatting or graphics are required—such as for
WYSIWYG reporting.

Solution. Create a simple low-level protocol in domain ob-
jects for outputting formatted strings. The protocol should
simply trigger an event with the string as argument. Create
a family of status log classes that can subscribe to these
events and present the status information with various
levels of formatting and interactivity.

Implementation. The fundamental methods required are:

Model >> #logFor: aBlock to establish a status log for the
duration ofaBlock. This method isimplemented in the top
level domain object, which is performing the lengthy

This pattern moves
validation behavior
out of low-level domain
objects into higher-level
objects.

operation. The method is responsible for instantiating the
status log, traversing all the lower-level domain models so
the log can subscribe to their events, evaluating the block
(causing the lengthy operation to proceed), and then tra-
versing again so the log can drop the models.

StatusLog >> #watch: aModel and StatusLog >> #drop:
aModel in the status log object to subscribe to and cancel
receiving the status events triggered by a domain model.
Model >> #putlLine: aString to trigger
the status event from the domain
object. (Use a method of the same
name to output the text in the status

log.)

Consequences. Note that hooking up
numerous domain object events to
handlers in the status log object and
releasing them afterwards may be
expensive, but is relatively fast com-
pared to the long operations for which this pattern is
appropriate.

Related Patterns. Ticker Tape uses the Observer pattern to
implement a publish and subscribe mechanism: the do-
main models are the subjects and the status logs are the
observers.

COMING UP

The concluding article in this series presents a family of
patterns for dealing with optimization issues—imple-
menting domain models that must perform well even
though they incorporate extra levels of indirection to be
persistent or transient.

Reference
1. Gamma, E. et al., Design Patterns, Addison-Wesley, Reading, MA,
1994.

Darrow Kirkpatrick is Vice President of Research and Develop-
ment at Haestad Methods, Inc., which specializes in numerical
modeling for hydrology/hydraulics, and has pioneered using
Smalltalk for shrink-wrapped Windows applications. Darrow
enjoys hunting for patterns while leading a team of software
engineers who have become experts at coaxing Smalltalk to per-
form in the real world. He can be contacted by phone at
203.755.1666 or by email at 75166.525@compuserve.com.

8 http://www.sigs.com

The Smalltalk Report

