The Best of comp.lang.smalltalk

Principles of OO design:

or, everything | needed to know in life,

| learned from Dilbert*

(OO0) design are the hottest things since sliced bread
(and, of course, slices of bread are objects). The prob-
lem is that it's hard to agree on what exactly they are. There
have been many attempts to define principles of OO
design or coding, with varying degrees of success. In my
opinion, most of them suffer from two flaws. First, they
don't tell me enough about how to code. Reading a defini-
tion of “polymorphism” doesn't tell
me how to exploit it in my programs.
Second, and more important, is that
they’re dull. Even if the definition of
polymorphism did tell me how to
code, it's hard to stay awake long
enough to finish reading it.
Therefore, I modestly present
some of my own principles of OO-
ness, which | hope address both of
these flaws. Furthermore, | believe that these principles
relate well to the corporate environments that have seen
so much Smalltalk use recently.

EVERYONE KNOws THAT Objects and object-oriented

NEVER DO ANY WORK THAT YOU CAN GET SOMEONE
ELSE TO DO FOR YOU
This is always good advice, but it’s particularly applicable
in OO. In fact, | consider it the fundamental principle of
0O0. As an object, my responsibilities are very clearly
defined, and so are those of my co-workers. If something
is (or ought to be) one of their responsibilities, then |
shouldn't be trying to do that work myself.

Let’s look at a concrete example:

total :=0
aPlant billings do: [:each]
(each status == #paid and: [each date > startDate])
ifTrue: [total := total + each amount]].

Versus

total ;= aPlant totalBillingsPaidSince: startDate.

Alan Knight has had great success avoiding responsibility with
The Object People, 885 Meadowlands Dr. East, Ottawa, Ontario,
K2C 3N2. He can be reached at 613.225.8812 or by email as
knight@acm.org.

If you must accept a
responsibility, keep it
as vague as possible.

In the first case, we’re asking the plant for all of its billings,
figuring out for ourselves which ones qualify, and com-
puting the total. That’s a lot of work, and almost none of it
is our job. Far better to use the second option, where we
simply ask for something to be done and get a result back.
In real-world terms, the first example is like the following
conversation:

“Excuse me, Smithers. | need to know the total bills
that have been paid so far this quar-
ter. No, don’'t trouble yourself. If
you'll just lend me the key to your fil-
ing cabinet | can go through all the
records myself. I'm not familiar with
your new filing system, but I’'m sure |
can figure it out. I'll try not to make
too much of a mess.”

Smithers actually understands his
filing system, so he can probably do the work faster than
we can, and he’s much less likely to mess everything up. In
attempting to do his job for him, we're just making things
worse. Things will get worse when he switches over to that
new filing system next week. We'd be far better off acting
like a stereotypical tyrant boss.

“SMITHERS! | need the total bills that have been paid
since the beginning of the quarter. No, I'm not interest-
ed in the petty details of your filing system. | want the
total, and I'll expect it on my desk within the next half
millisecond.”

Let’s look at a simpler example, which is all too common.
somebody clients add: Client new.
Versus

somebody addClient: Client new.

There’s always a temptation to choose the first option,
because it saves writing a couple of methods that do
nothing but add and delete on the other class. But you
know it’s wrong. You're trying to do somebody’s work for

* Dilbert is a trademark of United Feature Syndicate.

February 1996

13



| THE BEST OF COMP.LANG.SMALLTALK

them, and ultimately it’s only going to cause problems.
Writing those extra methods keeps the responsibility
where it belongs and will make the code cleaner in the
long run.

This principle is close to the more conventional idea
of “encapsulation”, but I like to think it makes the idea
somewhat clearer. | often see people who are happily
manipulating the internal state of another object, but
think it's OK because they’re doing it all through mes-
sages. Encapsulation is not just
about accessing state, it’s about
responsibilities. Responsibility is
about who gets stuck doing the real
work.

AVOID RESPONSIBILITY

If responsibilities are about getting
stuck with work, it's important to
avoid them. This has some impor-
tant corollaries:

« If you must accept a responsibility, keep it as vague as
possible.

« For any responsibility you accept, try to pass the real
work off to somebody else.

Our first principle tells us to take advantage of other
objects when writing code. We also have to avoid being
taken advantage of. Any time I (as an object) am tempted
to accept a responsibility, | should ask myself, “Is this real-
ly my job?” and “Can’t | get someone else to do this?”

If I do accept a responsibility, it's important to keep it
as vague as possible. If I'm lucky, this vagueness will help
me avoid doing the work later. Even if | must do the work,
it may allow me to take some shortcuts without anybody
else noticing.

For example, I've seen CRCs with responsibilities like:

Maintain a collection of the who-
sits to be framified

This is much too specific. My job isn't to maintain a
collection, it’s to be able to report, when necessary, which
whosits need framification. That may be implemented by
maintaining a collection, or by asking
one or more other objects for their collection(s), it may
be hard-coded, or computed dynamically as Whosit
allinstances select:. Regardless of which option I choose,
there shouldn’t be any impact on my responsibilities.

My preference for phrasing a responsibility of this
kind is:

Know which ...

but I’'m flexible as long as the phrasing is suitably vague.
I'd probably be even happier with

“Be able to report which ...”

Never do any work
that you can
get someone else
to do for you.

Carried to the extreme, it seems this could lead to the sit-
uation where everyone passes information around and
nothing ever gets done. Exactly. Object bureaucracy at it’s
finest.

Seriously, agood OO system can actually approach this
state. Each object will do a seemingly insignificant
amount of work but somehow they add up to something
much larger. You can trace through the system, seeking
the place where a certain calculation happens, only to
realize that the calculation is fin-
ished and you just didn't notice it
happening.

POSTPONE DECISIONS

The great virtue of software is flexibil-
ity. One way we achieve flexibility is
through late binding. We most often
discuss late binding between a
method name and the method it
invokes, but it’s also important in other contexts. When
faced with a decision, we can gain flexibil-
ity by postponing it. The remaining code just needs to be
made flexible enough to deal with any of the possible
outcomes.

The ideal is when we can avoid making the decision at
all, leaving it up to someone else (the end user, other
objects). For example, consider the question of how to
implement dictionaries. The standard thing to do is use
a hash table. That works well for medium-sized collec-
tions, but it's a waste of space and effort for very small
collections. For very large collections, it may also be
wasteful, particularly if the number of elements exceeds
the resolution of our hash function. We must make a deci-
sion here, so we'd like to postpone it or pass it off to some-
one else.

Some implementations of the collection classes do pre-
cisely this. The collections transfer much of their behavior
to an implementation collection that actually does the
work. Depending on the size, the nature of that collection
can change. In VisualAge 2.0, small dictionaries were
stored as arrays because the overhead of hashing was
more than the cost of a linear search. Larger dictionaries
could be represented as either normal or bucketed hash
tables. This seems to have disappeared in 3.0, so | suppose
the overhead of this mechanism became more than the
cost of using a single representation. Visual Smalltalk also
has dictionaries that are capable of switching between
normal and bucketed hash tables.

Be careful in applying this principle because it’s possi-
ble to take it too far. Decisions aren't just sources of prob-
lems, they give us the power to solve problems. Because
we cannot solve all the problems of the world at once, we
make the decision to limit ourselves, and we make
assumptions about the problems we’ll be given. The
problem arises when our decisions were poor, or our
assumptions don’'t hold any more. The trick is to make

continued on page 28

14

The Smalltalk Report



THE BEST OF COMP.LANG.SMALLTALK

continued from page 14

enough decisions to be able to work, but few enough that
our code doesn’t become brittle. That’s one of the things
that makes software difficult.

Passing off decisions to another object is often referred
to as using policy or strategy objects. This is discussed in
DESIGN PATTERNS! as the Strategy pattern.

Other related ideas are “Open Implementations,” which
can allow important decisions to be postponed so far that
even the end user of the module can control them. | can’t
do justice to this topic here, but there’s a web page avail-
able at http://www.xerox.com/PARC/spl/eca/oi.html

Because web pages change so rapidly, I'll also mention
that | found it using the search terms open implementa-
tion and Gregor Kiczales (the project leader).

POSTSCRIPT

Although there is a significant element of humor in these
principles, | do take them quite seriously and urge you to
do the same. They illustrate some very important aspects
of OO design and coding. I’'ve even come up with enough
of them to fill another column, so the next issue will con-
tinue this theme. §

Reference

1. Gamma, E. et al. DESIGN PATTERNS: ELEMENTS OF REUSABLE
OBJECT-ORIENTED SOFTWARE, Addison-Wesley, Reading, MA,
1994.

MANAGING OBJECTS

continued from page 17

person can cause damage more quickly on a Smalltalk
project than they can on a traditional project, and corpo-
rate cultural checks that normally help such people, such
as peer reviews, management one-on-one meetings, and
performance reviews, are tuned to the slower beat of the
traditional project.

Beginning a Smalltalk project offers the opportunity
for a “behavioral context switch,” in which old patterns
can be broken. By catching behavioral difficulties early,
you can keep them from becoming established patterns.
Once behavioral patterns are established, their impact
on productivity must be carefully monitored and hu-
manely dealt with. S

References

1. Kroeger, O. and J.M. Thuesen. TYPE TALK AT WORK, HOw THE 16
PERSONALITY TYPES DETERMINE YOUR SUCCESS ON THE JOB, Tilden
Press, New York, 1992. [This book concentrates on applying
Jungian personality type theory in the workplace, and is much
more approachable than defining works on the topic.]

2. Bramson, R.M. CorinG wiTH D1rrFicurLr PEOPLE, Anchor
Press/Doubleday, Garden City, NY, 1981.

3. Brooks, Jr., FP. THE MyTHICAL MAN-MONTH (20th anniversary
ed.), Addison-Wesley, Reading, MA, 1995. [A wonderful classic.

28

The Smalltalk Report



