
Delivering and sharing
components using
Smalltalk link libraries

Makarand Utpat
R   frameworks1–4 depicts the advan-
tages of components and frameworks in general.
Developing a system architecture consisting of

components and subsystems is an excellent idea from the
modular design and software maintenance points of
view. In this article, I will show how construction of
Smalltalk link libraries (SLLs) aids in maintaining a devel-
oped application and delivering component-oriented
software. I will describe a way to ship a Smalltalk applica-
tion by creating SLLs. Each SLL can represent a subsystem
or a specific component in your application. The process
of Smalltalk library construction makes a developer real-
ize the framework benefits at the time of delivery.

The code examples described are based on Digitalk
Smalltalk/V Version 3.0.1 for OS/2 PM (Presentation
Manager), but the same concept can be tailored to the
Smalltalk/V Windows environment. This example also
demonstrates how Smalltalk takes advantage of host
operating system features for the application delivery.
Example code can be obtained on the World Wide Web at
http://www.objectpeople.on.ca/software.

SMALLTALK APPLICATION PACKAGING AND
MAINTENANCE
It is a well-known fact that once the learning curve barri-
er is overcome, a Smalltalk developer becomes proficient
in writing Smalltalk programs and the development task
becomes fairly easy. In large projects, a considerable
amount of time may be spent producing and maintaining
a good executable image. Full-time resources may need to
be allocated to perform this task. As the executable image
size begins growing, a Smalltalk developer may hear com-
ments about having a “fat” executable. Everybody expects
a nicely trimmed executable for application delivery.
There is absolutely nothing wrong with this expectation; it
is easier to manage a smaller executable during applica-
tion shipment. However, some momentum gained in
developing Smalltalk applications can be lost in the
process of constructing and delivering a Smalltalk exe-
cutable.

Once development is complete, the organization
begins a testing phase. As a result of code enhancements,
February 1996
code optimization, bug fixes, etc., code tuning begins as
per feedback and suggestions of users. Often, these
changes are specific to particular subsystem classes
and/or methods, and classes and/or methods in other
subsystems are not affected. Because the Smalltalk image
(which uses v.exe, change.log, and recover.log files) is not
partitioned, there is no way to focus the efforts on partic-
ular subsystem classes or methods to carry out code tun-
ing. Here, SLLs come to the rescue. The organization can
create a Smalltalk image that consists of SLLs for each of
its subsystems and use them as needed, or distribute
them appropriately to clients to satisfy client require-
ments. These SLLs are used either in a development or
runtime environment as per one’s needs. SLLs are very
handy for accelerating the overall application packaging
task and maintaining the Smalltalk application.

A REAL-LIFE EXAMPLE
Assume that an organization has developed a software
framework to satisfy its business needs. Consider a simple
situation where this framework uses a dependency mech-
anism (i.e., the user interface is dependent on a business
model) and is comprised of two subsystems including a
business model subsystem (to contain business state and
business logic) and a user interface subsystem (to display
business model data), etc. In reality, framework imple-
mentations may contain other subsystems such as a rule
model subsystem (to handle business rules), an applica-
tion model subsystem (to handle behavior related to the
application model), a communication model subsystem
(to handle message send/receive), a database subsystem,
etc. Classes in these subsystems collaborate with each
other appropriately per their responsibilities to provide
the behavior specified by the framework.

Also assume that there is a client base of this organiza-
tion that wants to use the framework-level classes (i.e.,
high-level abstract superclasses) from these subsystems to
ensure they comply with the overall organization frame-
work. In addition, they want to utilize both framework-
level and concrete-level classes in an existing business
model subsystem, and customize their user-interface
model differently than the one used by the organization.
9

Until recently, few options were available to handle this
situation. If the organization and its clients were using
just a Smalltalk (without Team/V) environment, then the
only option was for the organization to give its clients the
whole Smalltalk image, containing the base Smalltalk
image, user-interface classes (abstract superclasses), and
business model classes (framework- and concrete-level
classes). If the organization and its clients were using
Smalltalk with Team/V, then clients could access business
model subsystem classes using the individual “package
migration” technique5 or by creating specific tools (visual
or textual) on top of Team/V to handle “migrating a list of
packages.” These approaches are on the verge of obsolete
for a variety of reasons including limitations encountered
during application packaging and maintenance phases;
the Parcplace-Digitalk merger, which is resulting in a new
architecture; and an overall industry shift toward compo-
nentware.

DYNAMIC LINK LIBRARIES AND SLLs
OS/2 provides a powerful way of bundling your applica-
tion program into a coherent unit called a dynamic link
library (DLL). As the name suggests, a DLL provides ser-
vices that are accessed and linked dynamically by differ-
ent application programs. It provides a way for an appli-
cation program to dynamically reference and access func-
tions and resources outside its own executable environ-
ment.6 Such resources might be icons, bitmaps, or point-
ers, etc., whereas functions could be the PM application
programming interface (API) calls for handling window
management, graphics, device driver routines, or access-
ing OS/2 executable programs, etc. Smalltalk/V PM with
the use of SLLs takes this concept one level higher, allow-
ing one to access the services provided by individual sub-
systems. By tapping the power of OS/2’s DLL mechanism
underneath it, Smalltalk/V PM allows one to create SLLs
of classes, methods, and metaclasses that can be shared
by different teams within an organization. Object libraries
were a common means of building DLL files in Digitalk
Smalltlalk previous to Version 3.0.1. SLLs are those object
libraries with a new face.

DELIVERING A SMALLTALK APPLICATION
In Smalltalk/V PM, the Smalltalk image consists of the
executable environment (v.exe file, change.log file, recov-
er.log file), one or more DLL files, and one or more SLLs.
DLLs are divided into base class DLLs and development
class DLLs. Base class DLLs contain classes such as collec-
tions, streams, windows, etc., whereas development class
DLLs contain the Smalltalk compiler, debugger, etc.6 A
Smalltalk programmer uses the development classes to
create a Smalltalk application program. As development
progresses, the code created by the programmer (once
saved) is added into the v.exe file, which begins to grow.
Typically a programmer uses the v.exe file to deliver
the application. This approach works well whether the
design contains a relatively small or large number of
classes. Then, by making appropriate changes in the
10
#startUpApplication method in the NotificationManager
class, the programmer uses v.exe to start the application.
This standard approach always works.

Another way to deliver a Smalltalk application is filing
out all the classes from one programmer’s image and
installing them on another programmer’s image.

Both approaches are cumbersome from the applica-
tion maintenance point of view. A better way is to build
Smalltalk libraries of classes to provide flexibility in deliv-
ering Smalltalk applications.

DIFFERENT WAYS TO CONSTRUCT SLLs
Before transferring the executable to users, programmers
test their applications to confirm that they meet require-
ments. It might be a good idea to start building SLLs at the
initial application development phase, to ease the future
maintenance task. Such SLLs can be loaded in a develop-
ment or runtime environment. Here, the task of Smalltalk
library construction can be accomplished in a variety of
ways. One could categorize it based on different aspects
such as the existing services, different subsystem frame-
works, or available standalone classes (explained next).
Referring back to our example, assume that a simple busi-
ness model for the organization consists of classes such as
Person, Address, HomeAddress, BusinessAddress, Phone,
HomePhone, BusinessPhone, etc., while the user-interface
model consists of classes such as UserInterfaceModel,
UserInterfaceModelForOrganization, and Person
InformationWindowDialog (to display Person information).
Combined, these different classes could provide a “view”
service that enables one to view information about persons.

Construction based on the service behavior
The organization could treat the aforementioned busi-
ness model and user-interface classes as one entity, and
construct a single Smalltalk library representing a Person
information “view” service, i.e., construct one Smalltalk
library that contains business model subsystem classes
(abstract and concrete) and user-interface subsystem
classes (abstract and concrete) to provide this specific ser-
vice. If the organization needs a “change” service, consist-
ing of additional user-interface classes such as
ChangePersonInformationDialog (to change the Person infor-
mation) and other business objects created to handle
the changes, the organization could then construct
another Smalltalk library representing a “Person informa-
tion change service.” In general, this approach facilitates
development efforts within the organization.

Smalltalk library for view service:

BusinessModel Subsystem (abstract and concrete
classes) and UserInterfaceModel Subsystem Smalltalk
Library (abstract and concrete classes related to view-
ing the person)

Smalltalk library for change service:

BusinessModel Subsystem (abstract and concrete
The Smalltalk Report

February 1996
The task of Smalltalk
library construction
can be accomplished
in a variety of ways.
classes) and UserInterfaceModel Subsystem Smalltalk
library (abstract and concrete classes related to chang-
ing the person information)

Construction based on framework implementation
In construction based on framework implementation, the
organization treats the aforementioned business model
classes and user-interface classes as two different entities
and constructs two separate SLLs. Thus, by constructing
two SLLs for business model subsys-
tem classes (abstract and concrete)
and user-interface subsystem classes
(abstract classes), the organization
creates a server environment that
provides services such as knowing
the state of the business objects and
providing user-interface protocols to
display the current state of the busi-
ness objects. The organization and its
client base use this server environment to customize
user-interfaces appropriately. In general, this approach is
best used when the organization has to satisfy client base
requirements.

Server SLLs:
BusinessModel UserInterfaceModel

Subsystem Subsystem
Smalltalk library Smalltalk library

Client SLLs:
UserInterfaceModel Subsystem Smalltalk
library (concrete classes for organization)

UserInterfaceModel Subsystem Smalltalk
library (concrete classes for clients)

Construction based on standalone classes
One can construct a Smalltalk library of standalone class-
es that don’t belong to a particular subsystem but are
required by different subsystems, such as classes for man-
aging application configuration, setting application envi-
ronment, other helper classes, etc. This Smalltalk library
can then be treated as a standalone component in the
application.

CREATING A BUSINESS MODEL SMALLTALK LIBRARY
Assume that the organization follows the second ap-
proach to constructing a Smalltalk library, which results
in their having two DLLs—one for business model classes
and one for user-interface classes.

The typical steps to create a business model Smalltalk
library are described below:
1. Open the Library Builder dialog. Select the package

containing business model subsystem classes. Select
the following menu option: Module —>Build Library.

2. The Library Builder dialog offers two options. Customize
the classes that you would like to add into the library by
clicking on the Customize option or just let create an SLL
for the classes contained within the selected pack-
age/cluster. Also, one can optionally include the source
code for classes not in SLL one is creating.

BINDING SLLs TO A SMALLTALK IMAGE
The Digitalk help manual describes three ways to package
Smalltalk application using SLLs; these approaches let the
developer bind SLLs statically or dynamically.

The first approach is to bind SLLs during startup by
including their names in an autobind ascii file, e.g.,
app.bnd (during development image, it looks for

vdevo.bnd file). This approach per-
mits one to save the image without
binding it with the SLL, thus avoiding
having to bind the SLL to a specific
version of v.exe.
The second approach is to bind the
SLL dynamically. The developer can
then bind and unbind SLLs on
demand, which results in low memo-
ry overhead.

Finally, one can bind SLLs in a hybrid way using a com-
bination of the aforementioned two approaches: binding
some SLLs to the image and binding others dynamically.

ADVANTAGES OF USING SLLs
1. Data sharing—Multiple applications access and share

subsystem SLLs. A server environment is created by
storing different SLLs on the network. All teams within
the organization would then have ready access to it so
that consistent access is maintained. Thus, SLLs make
data sharing a transparent process across multiple
applications.

2. Pluggability—Modular components are created to
enhance reusability. Thus, the maintenance task
becomes flexible. This aids easy replacement and
shipping of appropriate subsystem DLLs.

3. Application of the producer/consumer concept—This
key concept of componentware (producing and con-
suming the components) is easily adopted and applied.
Referring to the example at the beginning of this article,
the organization becomes a producer of SLLs and the
client base becomes a consumer of SLLs.

4. Decreased image size—This conserves hard disk space
and reduces v.exe size, resulting in less overhead.

5. Flexibility of use for the organization and its clients—
Once the business model Smalltalk library is created, it
is ready for distribution to the client base, as well as use
by the organization itself. The client base, which is
uninterested in the user interface Smalltalk library
(containing classes such as UserInterfaceForOrganization,
its subclasses, composite panes used in dialogs, etc.),
can load the business model Smalltalk library in their
development/runtime environment and begin using it
alone.

6. Creation of standalone class libraries—Components
consisting of standalone classes are constructed and
distributed appropriately.

7. Realization of the framework benefits—During the
11

12

SMALLTALK LINK LIBRARIES
Classes are logically

grouped to form a subsystem

based on the intended

behavior that a subsystem

is supposed to perform.
design phase, classes (both framework- and concrete-
level) are logically grouped to form a subsystem based
on the intended behavior that a subsystem is supposed
to perform. The correct decision to group a certain
class in a particular subsystem aids the task of building
and maintaining SLLs.

8. Construction simplicity—Previous Digitalk Smalltalk
versions used the concept of object libraries, and
Smalltalk developers spent a lot of time constructing
them. On the other hand, SLLs are constructed simply
and quickly.

9. Platform portability between OS/2 and Win32 operating
systems—SLL uses a unique and system-independent
format.7 Hence, it is easier to
create applications that are port-
able between these two
platforms.

10. Use in runtime and develop-
ment environments—Works
excellently in both runtime and
development Smalltalk
environments.

11. Scripting—During a release
phase, a particular Smalltalk
library may have to be reconstructed many times. By
taking advantage of scripting facilities,7 the task of
constructing SLLs is simplified by creating scripts to
reconstruct SLLs.

DISADVANTAGES OF USING SLLs
1. Difficult to use in a Team/V development environ-

ment—If you load a Smalltalk library in a Team/V
development environment, it loads all the classes in the
“unpackaged” package and not where they belong.
Because most of the source code related to Team/V
classes is hidden, it is difficult to ascertain how to
replicate the “Load/Migrate” action (which loads all
the classes in a particular package/cluster in one’s
Smalltalk image) during Smalltalk library loading so
that classes included in the Smalltalk library will fall into
packages where they belong.

2. Inability to extend existing Smalltalk library envir-
onment—To build a Smalltalk library, Digitalk uses a
few classes (SmalltalkLibrary, SmalltalkLibraryBind,
TeamVLibraryInformation, TeamVInterface, etc.) whose
implementation is hidden to the developers. Because
they cannot access the code associated behind the
methods, they cannot add any enhancements to base
Smalltalk library classes.

CONCLUSION
This article reviewed different approaches to constructing
SLLs and described advantages to facilitate the Smalltalk
application delivery task. It provided shared transparent
access to different teams by conserving hard disk space.

I found that the ability to create
SLLs provides a pluggable
approach that facilitates applica-
tion maintenance tasks. The article
also showed how with this
approach, the momentum gained
in developing Smalltalk applica-
tions is retained while delivering
Smalltalk applications.

Acknowledgment
The author thanks Anne Marie Frederick at Prudential
Insurance Corporation in New Jersey for encouraging him
to write this article.

References
1. Johnson, R. and B. Foote. Designing reusable classes. J

 O O P 1(2):22–35, 1988.
2. Taligent. B O-O F, 1993.
3. Harris, J. Object Insider: Breaking out of the object ghetto,

O M 4(8):12–14, 1995.
4. Johnson, R. How to develop frameworks, T N 

OOPSLA’93, 1993.
5. Digitalk Inc. D P R 

S/V  OS/2, 1993.
6. Petzold, C. P  OS/2 P M,

Microsoft Press, 1989.
7. Digitalk Inc. D O H M  S/V

 OS/2, 1995.

Makarand Utpat is a Senior Consultant at Envision in St. Louis, MO.

`
`

The Smalltalk Report

