
The selection channel
technique

Bobby Woolf
4

A subject channel
establishes a single point

of access to a subject.
I
n “Making MVC more reusable,”1 I talked about how
VisualWorks has improved upon classic model-view
controller (MVC). That article discussed new objects like

value subviews and value models as well as the way
“model” has been split into application model and domain
model. Its third figure shows the objects involved when the
model is split into application and domain models. When I
drew it, I threw in another object that is often involved, the
one that selects which domain model the application
model will use. I labeled this object “SelectionChannel.” In
this article, I’ll explain what a selection channel is.

Selection channel is an extension of what ParcPlace is
calling the “Slam Dunk” architecture.2 Slam Dunk uses
subject channels to greatly simplify
the code needed to connect an
application model to its domain
model. The idea is that once you set
up an application model this way,
you can insert (i.e., slam dunk) a
domain model in there and every-
thing in the application model and
its window will update automati-
cally. Selection channel takes this
idea one step further to specify
where the various domain models
are coming from and who is inserting them into the appli-
cation model.

To understand selection channel, let’s first take a look
at where graphical user interfaces (GUIs) come from. The
easiest way to produce a GUI window in VisualWorks is to
use the Painter to produce a view with a bunch of widgets
on it. Most of the widgets are value subviews, each dis-
playing some value it contains: an Input Field shows
some text, a Check Box shows whether a setting is on or
off, etc. Where do these values come from?

ValueHolder ValueHolderValueHolder

name phoneaddress

PersonUI the application model

the holders

the values

Figure 1. An application model with no domain model.
ADAPTING A DOMAIN MODEL
VisualWorks uses a revision of the MVC paradigm that
breaks the model into two parts: the domain model and
the application model. The domain model contains the
information to be displayed, whereas the application
model organizes the information so that it can be dis-
played. In the MVC, the window is the view and the appli-
cation model is its model. This macro MVC system con-
tains a number of MVC micro systems, one for each value
subview, where the subview is the view and its model is a
value model. A value model (an instance of ValueModel) is
a simplified model that has exactly one aspect. Thus the
value model contains a single value, which in this context

is the information a single widget
displays.

A window generated by the
Painter uses an application model
but, by default, does not use a do-
main model. The Painter generates
an application model (a subclass
of ApplicationModel) that is able to
open the window when told to do
so. Since the window contains wid-
gets that require value models, the
application model contains those

value models. By default, the application model initializes
those value models to be holders (instances of
ValueHolder) on default values like empty string, false, zero,
and nil (Fig. 1). All this default initialization is enough
to make the view work: the window will open, the widgets
display their values, and the widgets can be used to
change their values. This, however, is not very useful func-
tionality.

For an application model to really be useful, it should
organize information that is stored in a separate object—
a domain model. The question then is how the applica-
tion model should get the information from the domain
model. Often the first solution people discover is for the
application model to copy the values out of the domain
model and into the application model’s value holders.
This works for displaying the domain model, but if the
user edits the values in the window, the process of putting
the values back into the domain model is difficult and
redundant. It would be easier to associate each value
model with its corresponding value in the domain model.

The type of value model that knows what domain value
The Smalltalk Report



SELECTION CHANNEL TECHNIQUE
it contains is an adaptor value model. An adaptor value
model (an instance of PluggableAdaptor, AspectAdaptor, etc.)
extracts its value out of an object that contains the value.
The adaptor calls the value’s container its subject (accessi-
ble via ProtocolAdaptor>>subject). Each adaptor knows how
to pull its value out of its subject to show the value to the
user. If the user edits the value, the adaptor knows how to
put the new value back into its subject. An application
model adapts its domain model by using adaptors. The
application model initializes its value models as adaptors
instead of holders, where each adaptor’s subject is the
application model’s domain model. This way the applica-
tion model maps each widget in the window to its corre-
sponding value in the domain model (Fig. 2).

SUBJECT CHANNEL
When an application model is using several adaptors to
adapt its domain model, all the adaptors must have the
same subject. This way all the widgets in the window are
showing different parts of the same domain model. This
presents some difficulty when setting up the adaptors on
a domain model: the code must ensure that all the adap-
tors are connected to the same domain model.
Furthermore, to change to a different domain model, all
the adaptors must be disconnected from the old model
and connected to the new one. This leads to verbose,
repetitive code that is prone to flaws.

The code for connecting and disconnecting a set of
adaptors to a single subject can be virtually eliminated
using a subject channel. A subject channel (accessible via
ProtocolAdaptor>>subjectChannel) establishes a single point
of access to a subject. The subject channel is itself a value
model, typically a holder, whose value will be used as a
subject. When multiple adaptors share the same subject
channel, they are all guaranteed to share the subject. Even
if the subject is replaced with a new one, the subject chan-
nel will automatically cause all the adaptors to disconnect
from their old subject and connect to their new one. This
way the application model does not need any code for con-
necting or disconnecting its adaptors to their subject; the
subject channel feature does this automatically (Fig. 3).

Note that in VisualWorks 2.0, PluggableAdaptor does not
support subject channel because it is not a subclass of
ProtocolAdaptor.

The application model, instead of connecting its adap-
tors to their subject, has to connect them to their subject
channel. First it must set up its domain model for use as a
subject channel. Then it must connect the adaptors to
their subject channel.

There are two ways an application model can set up
the subject channel. One alternative is for the application
model to obtain a value model that contains the domain
model. The other alternative is for the application model
to obtain the domain model and wrap a value model
around it. Either way, once the application model has its
domain model in a value model, it stores the value model.
This value model becomes the application model’s
domain model channel, which means that the value
model is the application model’s single point of access to
its domain model. The application model will go through
its domain model channel to get its domain model. Once
the domain model channel is established, the channel
object (the value model) should never be replaced with
another.

The application model uses its domain model channel
to connect all its adaptors to the same domain model. As
the code in the application model creates its adaptors,
rather than setting each adaptor’s subject to be the do-
main model, it sets each one’s subject channel to be the
domain model channel. This way the subject channels
and the domain model channel are all the same object.
Each adaptor sees this domain model channel as its sub-
ject channel and will connect itself to its subject via the
subject channel. This way, if the domain model is re-
placed with a new one, all the adaptors will attach them-
selves to the new one.

SELECTION CHANNEL
Subject channel does not specify where the subject comes
from, just that it will become available by being inserted
into the subject channel. However, somebody must be
setting the subject channel to contain a new subject.
Selection channel considers not only that the subject is
being replaced with a new one, but what object is making
the replacement and where it’s getting the new subject
from. Whereas a subject channel just specifies how the
subject can be accessed, selection channel also specifies
where new subjects come from (Fig. 4).

AspectAdaptor
#name

AspectAdaptor
#phone

AspectAdaptor
#address

PersonUI

Person

name phoneaddress

the application model

the adaptors

the domain model

the domain values

Figure 2. An application model adapting a domain model using
adaptors.

AspectAdaptor
#name

AspectAdaptor
#phone

AspectAdaptor
#address

PersonUI

Person

name phoneaddress

ValueHolder

the application model

the adaptors

the subject channel

the domain model

the domain values

Figure 3. An application model adapting a domain model via a subject
channel.
The Smalltalk Report



Considering how new subjects are obtained is impor-
tant for setting up the subject channel correctly. For two
objects to share the same value using a value model, they
must share the same value model.3 Thus the object
obtaining the new selection and the objects using the
selection must share the same value model. The selecting
object, the one choosing a new subject from a list of pos-
sibilities, must store its selection in a value model. This
selection value model will be shared by the other objects
using the selection.

VisualWorks already includes an object that is per-
fectly suited for use as a selection channel, the selection
in list (an instance of SelectionInList). A selection in list
itself is not a selection channel, but it contains one. In
VisualWorks 1.0 you had to create your own selection
channel on a selection in list using a pluggable adaptor.
VisualWorks 2.0 has an enhanced aspect adaptor and a
new method, SelectionInList>>selectionHolder, which
returns an adaptor that is perfect for use as a selection
channel. Selection channel does not require a selection
in list, but that is the object most commonly used for
this task.

AspectAdaptor
#name

AspectAdaptor
#phone

AspectAdaptor
#address

PersonUI

Person

name phoneaddress

AspectAdaptor
#selection

SelectionInList

the application model

the adaptors

the selection channel

the domain model

the domain values

Figure 4. An application model adapting a domain model via a selection
channel.
February 1996
An application model that will use a selection channel
must obtain it from the selection object so that they will
be sharing the same one. When an application model is
establishing its domain model channel, it can either
obtain that channel or obtain the domain model and cre-
ate the channel itself. However, if the domain model
channel is a selection channel, they must be the same
object, so the application model must not create a new
channel. If it does, the application model will not be noti-
fied when the selecting object changes the selection.

CONCLUSION
In a nutshell, here’s what the article said:

• An application model organizes a group of values so
that they can be displayed by the widgets in a window.

• The group of values should be stored in a domain model.
• An application model adapts its domain model using

adaptor value models.
• An application model should use a domain model

channel to set its adaptors’ subject channels; this is a
simple way to force them all to adapt the same
subject/domain model.

• This domain model channel should be a selection
channel from a selecting object such as a selection in
list; this way the window will automatically display the
item selected in the list.

Hopefully this explains what that object labeled
SubjectChannel is all about. 

References
1. Woolf, B. Making MVC more reusable, T S R

4(4):15–18, 1995.
2. Robicheaux, M. Visual Slam Dunk tutorial, T PP

I U C, 1994.
3. Woolf, B. Understanding and using the ValueModel framework

in VisualWorks Smalltalk, P L  P

D, Coplien, J.O. and D.C. Schmidt, Eds., Addison-Wesley,
Reading, MA, 1995.

Bobby Woolf is a Member of Technical Staff at Knowledge Sys-
tems Corp. in Cary, North Carolina. Comments and questions are
welcome at woolf@acm.org.

`
`

7


