Managing Objects

A case for open

7

Jan Steinman Barbara Yates

development environments

WARNING: This column contains inflammatory mater-
ial. It is likely to raise the blood pressure of Smalltalk
vendors. If you are an easily inflamed person, and you
don't care much about what your customers want or
need, press “n” now (and start reading Chapter 11!)

pear, the trend is clear: Smalltalk developers need to

be protected from themselves. Those pesky devel-
opers are so demanding—they want to change every-
thing, and then have their changes supported, too! (Exit
cynic mode—we realize open environment technical sup-
port is no easy task.)

One way out of this mess is well-specified interfaces. If
Smalltalk vendors had the technical facilities to draw a
line in the sand and say “pass this, and you’re on your
own,” users and vendors could work together to deter-
mine the appropriate cost for different levels of support.
But the easy way out is to simply remove access to the
source code, without even specifying a system program-
ming interface (SPI).

Everybody is talking about “application programmer
interfaces” (APIs) these days, but they are forgetting that
not everybody is an “application programmer.” The
beauty of Smalltalk is that it works both as a systems
language and an applications language. With persistent
rumors that the new regime at ParcPlace-Digitalk is
considering “protecting developers from themselves,”
we've decided to publish some of our favorite Smalltalk
system programming examples. Most of these examples
will only work with VisualWorks today. Tomorrow, they
may not work with VisualWorks either.

n S SMALLTALK FINDS wider use and new vendors ap-

COMPILER MACROS

New users of Smalltalk often react with a sense of wonder
when they discover that all control constructs are actual-
ly implemented in the language. One of those new users
was a project leader at one of our clients.

Jan Steinman and Barbara Yates are cofounders of Bytesmiths,
a technical services company that has been helping companies
adopt Smalltalk since 1987. Between them, they have over
20 years Smalltalk experience. They can be reached at
Barbara.Bytesmiths@acm.org or Jan.Bytesmiths@acm.org.

“You know what | really miss about C,” he said, “is the
‘guestion-colon’ operator.” Upon closer questioning, we
discovered that what he really wanted was a quick and
simple way of dealing with uninitialized variables.

“Okay, let’s implement it!” we replied. “Hmmm...it
needs to be simple...don’t want a bunch of parentheses
everywhere...sounds like a binary message to me.”

Object
? block
“If I am not nil, answer myself, otherwise answer
the value of <block>.
UndefinedObject
? block
“If I am not nil, answer myself, otherwise answer
the value of <block>.
"block value

This allows you to easily protect against unwanted nils,
therefore making your systemm more robust. For example,
you might have a method that prompts the user for a String,
but you want a reasonable default:

Dialog request: message ? [‘Type something, will ya?
We're paying for this stuff!’]

This avoids having to use a conditional assignment to a
temporary variable, and is also quite easy to read. Also, it
doesn't involve any “systems” programming, yet. On the
other hand, a message send is involved, which costs a bit
more time than ifTrue:ifFalse: does.

“But why should it cost more?” our client asked. It did-
n’t take more than a few minutes of rummaging around
the compiler to come up with the answer: it needn’t
cost more. Add the method in Listing 1 to MessageNode,
keeping in mind the warnings we gave about base modi-
fications in the July issue.! (We put this and similar ex-
tensions in a separate ENVY application called
CompilationBytesmiths). Evaluate

(MessageNode classPool at: #MacroSelectors)
at: #? put: #transformIfNil

(Using ENVY, we put this expression, and other simi-
lar ones below, in CompilationBytesmiths class>>loaded,

January 1996

17

| MANAGING OBJECTS

Listing 1.

Message Node
transformIfNil
“If the receiver is nil, evaluate the argument. MacroSelectors associate this action with the selector #?.”

((arguments first isBlockWithNumArgs: 0) and: [receiver hasEffect not]) ifTrue:
[receiver := self class new
receiver: receiver
selector: #==
arguments: (Array with: (LiteralNode new value: nil)).
self makelfTrue: arguments first ifFalse: (BlockNode new body: receiver receiver)]

Listing 2.

MessageNode
transformlfinDevelopment
“If the system is not in development, remove this message. If the system is in development, insert the argument
block’s statements. MacroSelectors associate this action with the selector #iflnDevelopment:.”
“self halt. self ifinDevelopment: [Transcript cr; show: ‘Yup, I'm in development.’]. 27 = 27"

ifTrue: [receiver := arguments first body]

"((self respondsTo: #isInDevelopment) and: [self isinDevelopment])

ifFalse: [receiver := SequenceNode new statements: #()]

Listing 3.

MessageNode
transformRuntimeNoOp

“If the system is not in development remove this message. If the system is in development, generate the message.
MacroSelectors associate this action with the selectors #debug, #debug:, and #halt.”

~((self respondsTo: #isInDevelopment) and: [self isinDevelopment])
ifFalse: [receiver := SequenceNode new statements: #()]

and also added a removing method to get rid of these
new “macro selectors” when CompilationBytesmiths is
removed).

Now when ? appears in your code with a simple receiv-
er, the compiler “in-lines” it into a test for nil and a condi-
tional branch, the same way it deals with ifTrue: and other
“fake” messages—no message sends involved. Some sim-
ple timings show it to be about 30% faster without the
message sends.

This is kind of cute, but the few microseconds it saves
is hardly going to make or break a project. However, this
basic mechanism can be exploited to strip your code of
debug statements and assertions.

Assertions are like bran cereal—everybody agrees it’'s
good for you, but nobody really likes the taste. Smalltalk
assertions typically steal cycles from you even beyond the
development phase where they’re needed. What assertion
writers really want is the C preprocessor, so that when you
hit “#ifdef DEBUG” on your final compile, the assertion
code simply goes away. Well, we've got access to the Visu-
alWorks compiler, so let’s do it!

First, establish a predicate for all manner of develop-
ment-only code. We define an ENVY application called
TestingBytesmiths that olds our test management frame-
work; its presence is an ideal development predicate:

Object
isinDevelopment
“Is this a development image? Since this consumes
runtime, avoid using this in performance critical
code.”

Smalltalk includesKey: #TestingBytesmiths

As the comment indicates, a dictionary look-up is a rather
heavy price to pay to find out you don't want to print a
Transcript message in a production environment! To fur-
ther encapsulate this, we also have a conditional action:

Object
ifiInDevelopment: block

“If this image is in a ‘development’ state (whatever
that means), do <block>, otherwise do nothing. In
either case, answer self. Since this consumes
runtime in either case, avoid using this in
performance
critical code.”

self isinDevelopment ifTrue: [block value]

In fact, the greater encapsulation of the conditional action
is much preferred, as you’ll see shortly—the predicate
method isInDevelopment should be considered private.

18

The Smalltalk Report

Listing 4.

ifFalse:
tabs := 1.
replacement := ‘| ‘, name, ‘ |',
(tabs=1
ifTrue: [*]

“*xxxxend addition/modification®****"],
editor selectAt: endTemps.

“No temp declarations yet; have to insert whole line”
[‘Added/modified by Bytesmiths, on 7 October 1995: figure out how many tabs to insert.”

[(editor text at: endTemps — tabs) == Character tab] whileTrue: [tabs := tabs + 1].

ifFalse: [(String new: tabs withAll: Character tab) at: 1 put: Character cr; yourself])

Listing 5.

CompiledMethod
setSpecificationFromSource: source

source code.”

| comments comment args charSet |

comments := Compiler preferredParserClass new
parseMethodComment: source setPattern: [:x |].

comments size > 0 ifFalse: ["self].

comment := TextStream on: (String new: 100).
args := (Compiler preferredParserClass new
parseArgsAndTemps: source
notifying: nil) readStream.
self selector numArgs =0

ifFalse:
[self selector keywords do: [:kw |
comment
emphasis: #bold; nextPutAll: kw; space;

comment emphasis: nil.

charSet :=

comments do: [:cmt | | cmtStream |
cmtStream := cmt readStream.

comment cr; tab.
[cmtStream atEnd] whileFalse: [| pair |

(args includes: pair first)

“Set my comment user field to the comment contained in <source>, my

ifTrue: [comment emphasis: #bold; nextPutAll: selector]

emphasis: #italic; nextPutAll: args next; space]].
args := args contents copyFrom: 1 to: self selector numArgs.

‘abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' asSet.

pair := cmtStream nextWordAndNonWordDefinedBy: charSet.

od, and step through the halt, you will see
the following decompiled code in a
“development” image:

self halt.
Transcript cr; show: ‘Yup, I'm in
development.’.
27=27
and if you temporarily redefine
Object>>isInDevelopment to answer false,
the decompiled code will look like

self halt.

27 =27
all without a single “#ifdef”! We also in-
line other conditional development-time
messages using the code in Listing 3. This
works because there is no “ifTrue:” part,
so it returns nil when not in develop-
ment, which tells the sender to generate
the original message send, instead of
generating an in-line bytecode sequence.
We can hear some of the Smalltalk ven-
dors who hide their compiler mumbling
something in the background like “we
can provide ‘hooks’ to do things like
that.” Great—we're happy they can per-
fectly anticipate all the potential uses one
might make of the compiler! But what
about their compiler bugs? (No, they
don't have compiler bugs!)

Remember the ? example? It pays back the effort it took
to understand it when used as a pattern for stripping out
development-specific code (see Listing 2).

Let the compiler know you’ve defined a new macro.
If you're using ENVY, remember to put this in your loaded
method, and to remove your macro selector in your
removing method.

(MessageNode classPool at: #MacroSelectors)
at: #iflnDevelopment put:
#transformIfinDevelopment

Now if you do the comment expression in the above meth-

COMPILER BUG FIXES
Some of these are controversial, and some may well be a
minority opinion, but our point is that without compiler
source code, we would not even have a choice about deal-
ing with, shall we say, “undesired compiler behavior.”
Most Smalltalk dialects have block temporary vari-
ables, and using block temporary variables whenever
possible can have an important performance benefit. For
simple cases, we’ve measured a 100% speed penalty when
using method temporaries instead of block temporaries.
Yet the “helpful” VisualWorks compiler always places
undeclared temporaries in the method context. This often
causes what could be a “clean” block to be a “copying”

January 1996

19

| MANAGING OBJECTS

INFO@SIGS

SIGS Publications, Inc., 71 West 23rd Street, 3rd Floor,
New York, NY 10010; 212.242.7447; Fax: 212.242.7574

ARTICLE SUBMISSION

To submit articles for publication, please contact:
John Pugh & Paul White, Editors, 885 Meadowlands Dr.
#509, Ottawa, Ontario, K2C 3N2 Canada; email:
streport@objectpeople.on.ca

PRODUCT REVIEWS AND ANNOUNCEMENTS

To submit product reviews or product announcements,
please contact the Editors at the address above.

CUSTOMER SERVICE

For customer service in the US, please contact PO Box
5050, Brentwood, TN 37024-5050; 800.361.1279; Fax:
615.370.4845; in the UK, please contact Subscriptions
Department, Tower Publishing Services, Tower House,
Sovereign Park, Market Harborough, Leicestershire, LE16
9EF, UK; +44.(0)1858.435302; Fax: +44.(0)1858.434958

SIGS BOOKS

For information on any SIGS book, contact: Don Jackson,
Director of Books, SIGS Books, Inc., 71 West 23rd Street,
New York, NY 10010; 212.242.7447; Fax: 212.242.7574;
email: donald_jackson@sigs.com

SIGS CONFERENCES

For information on all SIGS Conferences, please contact:
SIGS Conferences, 71 West 23rd Street, 3rd Floor, New
York, NY 10010; 212.242.7515; Fax: 212.242.7578; email:
info@sigs.com

BACK ISSUES

To order back issues, please contact; Back Issue Order
Department, SIGS Publications, 71 West 23rd Street, 3rd
Floor, New York, NY 10010; 212.242.7447; Fax:
212.242.7574

REPRINTS

For information on ordering reprints, please contact:
Reprint Management Services, 505 East Airport Road,
Box 5363, Lancaster, PA 17601; 717.560.2001; Fax:
717.560.2063

ADVERTISING

For advertising information, please contact: Advertising
Department, SIGS Publications, 212.242.7447; Fax:
212.242.7574

SIGS HOME PAGE

To access the SIGS Home Page on the
World Wide Web: http://www.sigs.com.

block instead. But we have the source—lets fix it! In
InteractiveCompilerErrorHandler>>declareTemp:from: change

endTemps := codeStream homeStream topNode body
sourcePosition first.
to
endTemps := codeStream topNode body sourcePosition
first.

That's right, simply remove “homeStream.”

Now if you let the compiler declare your temps for you,
it will put them where they usually belong, in the inner-
most scope. (If the variable is used after the block, it will
complain that you've redeclared it, thus clueing you that
you really need it in the outer scope, and perhaps clueing
you that you should consider redesigning the method so
that it won’t have a full block!)

The only problem we've discovered with this “bugfix”
is that the formatting is a little weird—try further modifying
the above method as shown in Listing 4 (first and last lines
are from the original method), which makes things pretty
again. We desperately needed this for a block editor we
were building for a hypertext system—temps automatical-
ly declared outside the block were simply unacceptable in
this case.

A less controversial change for anyone who has needed
the compiler in a “headless” environment is its insistence
on interacting with someone when syntax errors are
detected. We mentioned in our September column? that we
found it necessary to implement silentEvaluate:, which al-
ways raises an exception when evaluation fails for any rea-
son, rather than bringing up a syntax error dialog. This
“bugfix” would not have been possible without the compil-
er source code.

COMMENT PULLING

Access to the Smalltalk parser simplifies many tasks, par-
ticularly for tool builders. For example, our SmallDoc
system (partially described in our June® and September?
1995 columns) pulls method comments out of the
source code and pastes them as styled Text into the little-
used ENVY comment field (Listing 5), where they are
easily accessed for a variety of documentation pur-
poses. This method is conditionally sent from
ClassDescription>>insert:withSource:classified:ifNewAddTo:
so that every “accept” updates the ENVY comment field.

METRICS

Interest in measurement is rapidly increasing, yet no stan-
dard solution exists. The Smalltalk vendors will probably
give developers some sort of metrics capability someday,
but will it be right, and will those early adopters who have
implemented their own metrics be willing to give them up?
Will emerging third-party products be rewarded for their
risk by being stranded without sufficient SPIs?

We've implemented some code quality metrics for our
clients that rely on “deep” access to compiler and parser
classes. At the OOPSLA 95 Smalltalk Testing Workshop

continued on page 32

20

The Smalltalk Report

MANAGING OBJECTS continued from page 20

we hosted, John Brant presented a code quality tool he is
working on at University of Illinois, Urbana-Champaign
that goes far beyond what we have done. He expects to
make it widely available when completed, but if the sys-
tem-level classes he exploits become “protected,” such a
thing might not be possible. Emerging coverage tools that
do bytecode manipulation might also be threatened.

CONCLUSION

As Smalltalk enters mainstream management information
system shops, Smalltalk vendors claim there is a need to
“protect developers from themselves.” They propose to do
this by removing source code and by supplying “hooks” to
anticipated “APIs.” This flies in the face of conventional
wisdom about reuse. Reuse often involves modifications
and extensions; it usually is discovered, harvested, reengi-
neered, and sought out, but it is rarely anticipated.

~ We feel this argument is a thinly disguised way of re-
ducing support costs, which is better addressed by clearly

defining SPIs in such a way that both system and applica-
tion programmers know when they’ve overstepped their
limits (and their support contracts!)

The power of Smalltalk comes from many different
aspects and trying to be more like Visual Basic, Pow-
erBuilder, or Hot Java by reducing access to “dangerous”
(i.e., “hard to support”) system features in the name of
making things “safe” for application programmers is like-
ly to have a detrimental effect.

If you want to do some of the things in this column, but
your Smalltalk dialect doesn’t have the proper hooks, let
your vendor know you need the full source to discover what
you need to reuse. If your Smalltalk vendor currently gives
you all the source you need, call them and thank them,
then tell them you expect the situation will not change if
they don’t want you running off to Hot Java!

References

1. Steinman, Jand B. Yates. A case for open development environ-
ments, THE SMALITALK REPORT 4(9):26-27, 31, 1995.

2. Steinman, J. and B. Yates. Managing project documents, THE
SMALLTALK REPORT 5(1):23-30, 1995.

3. Steinman, J. and B. Yates. Managing project documents, THE
SMALLTALK REPORT 4(8):25-28, 1995.

32

The Smalltalk Report

