
Getting Real

Jay AlmarodeThe three-tier architecture
and server Smalltalk
I  , I have described the features that
make up multi-user Smalltalk. These features include
support for transactions, concurrency control and

locking, versioning and instance migration, and security.
These are but a few of the features required for a Smalltalk
system to function as a server. In addition to these fea-
tures, a server Smalltalk system must also provide persis-
tence of objects, fault tolerance, and scalability. This col-
umn is the first of two that describe how multi-user
Smalltalk fits in the emerging 3-tier architecture, and how
partitioning Smalltalk applications between clients and
the server overcomes performance bottlenecks and
allows the implementation of shared business objects in a
server Smalltalk environment.

There are three kinds of objects that exist in a typical
application: presentation, application, and business ob-
jects. Presentation objects are the widgets, forms, and
windows that present information to the end user.
Application objects are the objects responsible for the
sequencing of tasks and the management of how busi-
ness objects are used by the end user to achieve a specif-
ic task. Business objects are general-purpose objects that
model the processes and basic concepts of the business.
Business objects are a hot topic these days, as companies
undergo business process reengineering to better model
the basic functions of the company. (See Rymer1 for a
detailed discussion of business objects.) There is even a
Business Object Management Special Interest Group that
was founded by the OMG.

When Smalltalk is used as the implementation lan-
guage on the client machine only, the objects that imple-
ment the application and business logic, as well as the
objects that implement the presentation logic, must all
reside in the Smalltalk image on the client machine.
Typically, when the application starts up, it connects to
either a relational or object database and transfers the
object state needed to run the application to the client
machine. If the database is relational, the tabular data in
the database must be mapped to objects in the image.

Using Smalltalk since 1986, Jay Almarode has built CASE tools,
interfaces to relational databases, multi-user classes, and query
subsystems. He is currently a Senior Software Engineer at
GemStone Systems Inc., and can be reached at almarode@slc.com.
January 1996
The application may take advantage of the query capabil-
ity of the database to selectively choose which objects are
manifested in the client. However, to execute any busi-
ness logic, the objects must be present in the client
Smalltalk image. This is how Smalltalk is used in a pure
client/server architecture.

The pure client/server architecture works well on a
small scale, but has a number of drawbacks that hinder its
ability to implement enterprise-wide, shared business
objects. In this architecture, the server does not have the
ability to execute complex business logic. The database
may provide some query capability or stored procedures,
but does not provide an object model or a computation-
ally complete language like Smalltalk. Consequently, to
execute any complex business or application logic, much
data must be transferred to the client Smalltalk to be
turned into objects that can execute behavior. As the
number of client workstations increases, the network
becomes overloaded. As applications execute more com-
plex business logic, requiring more objects to be trans-
ferred to the client, the client machines need more mem-
ory and processing power. Increasing network bandwidth
and CPU/memory capability for thousands of client
workstations can become an expensive proposition.

There are business drawbacks to the pure client/server
architecture as well. Transferring sensitive data to the
client machine to execute application behavior can pose
a security risk. Client machines are inherently insecure,
and none of the client Smalltalk systems currently imple-
ment security features in the virtual machine. When the
business logic is duplicated across thousands of clients,
maintenance is expensive, and this discourages frequent
updates to the application. The logic and algorithms
implemented within business objects are a strategic asset
to the company and should be a shared resource under
centralized control. For example, consider the algorithm
by which a portfolio management application distributes
a customer’s funds among stocks with different risks. The
better that the application can evaluate market condi-
tions and risk, the better the rate of return. The applica-
tion’s risk assessment algorithm needs to be shared by
multiple clients, may need to be updated frequently
based upon new strategies, and needs to be protected by
theft from competitors.
15



16

GETTING REAL
b
g
t
m
t
c
a
t
o
t
n
f

Trying to build a server

using a client Smalltalk

system will not provide the

performance or functionality

required for large-scale

applications.
To overcome the drawbacks of the client/server archi-
tecture, the 3-tier model has emerged. The 3-tier architec-
ture is an evolution of the client/server architecture that
defines a middle tier, called an application server,
between multiple client workstations and the data server
(a relational or legacy database). For a more complete
description of the 3-tier architecture, see Lozinski.2 The
middle tier is where shared business objects are imple-
mented in multi-user Smalltalk. This architecture reduces
the amount of data transmitted to the client, because
business logic can be executed in Smalltalk on the middle
tier rather than transmitted to the client for execution.
With this architecture, only a single, high-bandwidth con-
nection from each legacy relational database to the appli-
cation server is needed, and the rela-
tional-to-object mapping is per-
formed in one place, and only when
needed. The Smalltalk objects on the
middle tier can be thought of as an
objectified view of the legacy data,
ready for each client when needed.
This allows for easier integration of
legacy data, live data feeds, or other
external data sources into Smalltalk
applications because each client
only sees objects in the application
server. Clients do not have to know where the server
objects came from, and are insulated from changes to the
source of these objects.

Having the shared Smalltalk business objects in the
middle tier also provides a central point of control for
updating business logic, defining security policy, and pro-
viding fault tolerance of important objects. In the previ-
ous example, the risk assessment algorithm of the portfo-
lio management application should be implemented as
functionality provided by a business object. This business
object is available to clients through a message interface,
but the implementation of the business object is located
on the server. The methods that implement the algorithm
can be updated in one place, and new implementations
can be made available to clients immediately (after ade-
quate testing, of course). The server Smalltalk objects de-
fine security policy so that only certain clients, say, those
who have paid to use this service, are allowed to execute
the risk assessment methods. Finally, the server Smalltalk
provides a central repository of objects that can be backed
up to tape for archival purposes or recover from hardware
failure.

Because of the different roles played by client applica-
tions and the application server in the 3-tier model, the
requirements for server Smalltalk are quite different than
those of client Smalltalk systems. Client Smalltalks operate
in a single-user environment. They provide an extensive
GUI and graphics class library, and are integrated with the
windowing environment of the client workstation. The vir-
tual machines of client Smalltalks are tuned for virtual
memory access. A Smalltalk on the server, on the other
hand, operates in a multi-user environment. It must pro-
vide a model of transactions and concurrency control, and
provide a class library designed with multi-user access in
mind. The virtual machine of server Smalltalk is tuned for
disk access, and must be able to handle very large objects
and a very large number of objects. This Smalltalk is tai-
lored to operation on server-class machines to take advan-
tage of shared memory, asynchronous IO, and raw parti-
tions on disk. Server Smalltalk is built with transaction
throughput and client communication as chief considera-
tions. Trying to build a server using a client Smalltalk sys-
tem will not provide the performance or functionality
required for large-scale applications.

By using multi-user Smalltalk as the application server
in a 3-tier architecture, developers can implement shared

usiness objects with the same lan-
uage used to build client applica-
ions. This enables developers to

ove behavior easily from the client
o the server, an activity called appli-
ation partitioning. See Wadhwa3 for
 description of application parti-
ioning issues. With a common
bject model on both the client and

he application server, objects do not
eed to be transformed from one

orm to another. Because the same
code can execute in either the client or the application
server, the developer can initially build the application
entirely on the client, then move portions of it to the serv-
er as needed. This might be done to share objects, opti-
mize performance, enforce security, or backup important
data. In addition, these partitioning decisions are easily
changed as new hardware or software is added to the sys-
tem. Having a common object model and language
between the client and the server makes the repartition-
ing of an application much simpler, since there is little if
any code to rewrite.

When partitioning an application, how does a develop-
er determine where certain objects should reside, i.e., in
the client or in the server? Here are some general rules-of-
thumb to help in this process. The following kinds of
objects belong on the server: business objects, sensitive
objects requiring security, large collections of objects
requiring optimized query capability, objects requiring
shared access, objects requiring fault tolerance, and “gate-
way” objects (i.e., objects that provide a view of raw data
on the data server). The following kinds of objects belong
on the client: window or GUI objects, application-specific
objects, and “view” objects (i.e., objects that provide a view
of a server object). My next column will discuss the imple-
mentation techniques for application partitioning. 

References
1. Rymer, J.R. Business objects, D C M,

10(1), 1995.
2. Lozinski, C. T-T C-S A, Berkeley

Productivity Group, 1995.
3. Wadhwa, V. Partitioning apps: What are the issues? UNIX

R, May 1995.

`

`

The Smalltalk Report


