Simalltalk

= E P O R T

Editors
John Pugh and Paul White
Carleton University & The Object Peaple

SIGS Publications Advisory Board
Tom Atwood, Object Design
Frangois Bancilhon, 0, Technologies
Grady Booch, Aational
George Bosworth, Digitalk
lesse Michael Chonoles, ACC of Martin Marietta
Adele Goldberg, ParcPlace Systems
lordan Kriendler, IBM (onsulting Group
Tom Love, Morgan Stanley
Bertrand Meyer, /SE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, IBM
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

The Smalltalk Report
Editorial Board

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Systems

Reed Phillips

Mike Taylor, Digitalk

Dave Thomas, Object Technology International

Columnists
Jay Almarode
Kent Beck, First Qlass Software
Juanita Ewing, Digitalk
Greg Hendley, Knowledge Systems Corp.
Tim Howard, FH Protocol, inc.
Alan Knight, The Object People
William Kohl, RothWell international
Mark Lorenz, Hatteras Software, Inc.
Eric Smith, Knowledge Systems Corp.
Rebecca Wirfs-Brock, Digitalk

SIGS Publications Group, Inc.
Richard P Friedman, Founder, President, and CEO
Hal Avery, Group Publisher

Editorlal/Production
Kristina Joukhadar, Editorial Director
Elisa Varian, Production Manager
Andrea Cammarata, Art Director
Elizabeth A. Upp, Associate Managing Editor
Margaret Conti, Advertising Production Coordinator

Circulation
Bruce Shriver, Jr,, Girculation Director
John R.Wengler, Circulation Manager
Kim Maureen Penney, Circulation Analyst

Advertising/Marketing
Gary Portie, Advertising Manager, East Coast/Canada/Europe
Jeff Smith, Advertising Manager, Central U.S.
Michael W.Peck, Advertising Representative
Kristine Viksnins, Exhibit Sales Representative
212.242.7447 (v),212.242.7574 (f)
Diane Fuller & Associates, Sales Representative, West Coast
408.255.2991 {v),408.255.2992 (f)
Sarah Hamilton, Director of Promations and Research
Wendy Dinbokowitz, Promotians Manager for Magazines
Caren Polner, Senior Promations Graphic Designer

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
James Amenuvor, Business Manager
Michele Watkins, Assistant to the President

WSIGS

PUBLICATIONS

Publishers of JourNAL oF OBJECT-QRIENTED
PROGRAMMING, OBJECT MAGAZINE, C++ REPORT, THE
SMALLTALK REPORT, THE X JOURNAL, REPORT ON
OBJECT ANALYSIS & DESIGN, OBJECTS IN EUROPE, and
OBJEKT SPEKTRUM (GERMANY)

May 1995

Table of Contents

May 1995 Vol 4 No 7
Features
An 0-0 approach to accessing external resources 4

Yoel Newman & Michael Parvin

Extending the Smalltalk development environment with external resources is made possible by
VisualWorks and C Connect. The framework provided in this article allows for an object-oriented
integration of function libraries into Smalltalk.

Segregating application and domain: Part 1 12

Tim Howard
The complete segregation of domain information from the application information becomes
essential when an application of any merit is intended.

Columns

Getting Real 15

Managing concurrency conflicts in multi-user Smalltalk
Jay Almarode

When multiple users can both view and modify shared objects, concurrency
control is vital.

Smalitalk Idioms 18

Super + 1
Kent Beck

A pattern-influenced approach to the use of “super”in Smalltalk.

Project Practicalities 22

Model integrity through custom instantiation
Mark Lorenz

Creating intelligent object models of your business that serve your software
needs is what object technology is all about.

The best of comp.lang.smalltalk 24

Math, Part 1
Alan Knight

Floating point arithmetic can result in some surprising answers—but it'’s not a
bug, it's a feature.

Departments

Editors’ Corner 2
Product Review HP Distributed Smalltalk reviewed by Jim Haungs 27
Recruitment 32

Conference Qverview Smalltalk Solutions ‘95 reviewed by David Carr 34

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar-Apr, July-Aug, and Nov-Dec. Published by
SIGS Publications Inc,, 71 West 23rd St., 3rd Floor, New York, NY 10010. © Copyright 1995 by SIGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is Flatly prohibited. Material may be reproduced with express permission from the publisher. Second Class Postage
Pending at NY,NY and additional Mailing offices. Canada Post International Publications Mail Product Sales Agreement No. 290386.
Individual Subscription rates 1 year {9 issues): domestic $89; Mexico and Canada $114, Foreign $129; Institutional/Library rates:
domestic $199, Canada & Mexico $224, Foreign $239. To submit articles, please send electronic files on disk to the Editors at BB5
Meadowlands Drive #509, Ottawa, Ontario K2C 3N2, Canada, or via Internet to streport@objectpeople.on.ca. Preferred formats for figures
are Mac or DOS EPS, TIF, or GIF formats. Always send a paper copy of your manuscript,including camera-ready copies of your figures (laser
output is fine).

POSTMASTER: Send domestic address changes and subscription orders to: The Smalltalk Report, P.O. Box 5050, Brentwood, TN 37024~
5050. For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. For foreign
subscription orders and inquiries phone +44(0)1858.435302. PRINTED IN THE UNITED STATES.

1

Editors’ Corner

ell, we're pleased to report to you that the

inaugural Smalltalk Solutions conference

went off without a hitch (with the exception

of the hotel itself!). The conference was very
well attended, with an interesting mix of experienced
hard-line Smalltalkers and novices wanting to find out
more about the technology. The feedback we received
was that the hard-liners found the get-together to be a
very informative week, offering the chance to explore
new uses for Smalltalk and discover how others are mak-
ing use of the technology. Many of the novices with
whom we spoke were “very intrigued” with the exuber-
ance of the people attending. They seemed to sense that
the culture surrounding Smalltalk is different from other
software engineering communi-
ties. And as this community con-
tinues to grow at such a rapid pace,
it's interesting to see that it hasn't
lost this collegial aspect. From our
point of view, we found the confer-
ence to be an excellent opportuni-
ty to meet old friends and speak to
many of you. So for the two dozen or so of you who sug-
gested that you'd like to contribute to THE REPORT, let’s
hear from you <grin>! Be sure to mark next year's date
(and new hotel) on your calendar—it’s March 4-7 at the
Marriott Marquis in New York,

One of the interesting topics being discussed by many
at the conference was what documentation is necessary
for designing Smalltalk systems to be constructed, as well
as what documentation must be generated to explain the
system once it is delivered. We encounter this question
regularly in our dealings with clients, and it proves to be a
difficult one to answer. Many projects we know of are gen-
erally not following any of the Booch, Rumbaugh, or
Shlaer/Mellor methodologies, or at least not to their full
extent. In fact, it's not clear to us that the techniques used
by these approaches are necessarily a great fit to Smalltalk
development. One interesting thing about Smalltalk is its
suitability as a language for expressing and evolving a
design as well as an implementation. It's not that the nota-
tion put forward by the methodologies listed above isn't
useful, it’s just that it is often more than necessary.
Mastering the notations associated with these approach-
es is a very expensive activity, and what you are left with is
still a “paper” design. Many people find that applying a
mix of Responsibility-Driven Design along with Use Case
analysis is sufficient to deliver with their projects.

What we have seen being done by many groups is to

While Smalltalk proves
to be useful for exploring
a design, it ultimately
is just code

John Pugh

Paul White

work out a design, but not necessarily document it using
a formal notation. Instead, they work out their design as
a rough sketch, which they simply take away and con-
struct in Smalltalk. This often leads to highly successful
projects; particularly from the point of view of putting
systems together quicldy and effectively. The downside to
this approach is that without documentation describing
the design and architecture, we're still building legacy
systems that will suffer in the long run. The problem is
that, while Smalltalk proves to be useful for exploring a
design, it ultimately is just code; it is often difficult for
people who were not directly involved in the creation of
a system to extract the design of an existing implementa-
tion. The true test for any design architecture comes
when a new group takes over the
maintenance of a system, and the
original team working on it is no
longer available!

There are different approaches
to address this problem. Number
one in our minds is to put in place
an architecture that is as simple
and elegant as possible, while isolating—as much as pos-
sible—the things that aren't simple from the mainstream
developers. The idea is to make it as straightforward as
possible for the “average” maintenance developer to do
his/her job. This sounds like an oversimplification of the
problem, but in virtually all systems this separation of
complex aspects of the architecture is achievable with just
a little extra effort. Second, make sure their are lots of
examples of how the system is intended to be used. We
write example methods, which are class methods for each
class created. These methods illustrate the different ways
to interface with our classes. It's unfortunate that the ven-
dors don't do this as well, for they must have these exam-
ples for their own internal use. Third, it is important dur-
ing design for the group to set standards for building their
system, and that these be adhered to strictly. This includes
issues such as choosing names for messages that clearly
indicate their intent; being careful to choose either singu-
lar or plural names for parts and messages; making sure
similar messages are consistent with their return types;
and making sure that arguments to messages are not be
constrained by the class of object being passed, but
instead rely strictly on the behavior of the argument.
These are all little things that take an extra few minutes to
check when you're writing the class that will save weeks of
effort in the future.

Enjoy the issue.

The Smalltalk Report

Introducing Argos

The only end-to-end object development and deployment solution

All object models are managed in a shared repository,

An integrated object modeling tool provides model-driven . "
devel ¢ for se-wide applications supporting team development and traceability
o _ S R e e
| Argos _ L1 il= L oo ol
e | | (BlR] ™ £
b] tams Desesiplan Number
Of Parsona
o D . - 1| Finance Where the money la... | 0 . o |
Smalitali Domaina §_cuturs Jf [* ‘i~ o
AL R e sonrisio, RHERY crercepon FL,
H.lp‘ TDHI- P(Iil- : - . . - 3 W | F, P |
Persan : 1= PersonBrowasr L-!_J. @
¢ ¥ ¥ & ' [:g:;te] — E— ’: Person Browsar I | View ;' E' lassTool |
00 M- B BT | imal B I Age z i
= -[3 = i ‘ - ﬂu:c
new Efﬂmnn E;:; gl
[4] zdd) @i’aﬁl m—"=—==—-=bl salaryll-!i:ll;‘ry@r;hegeralaSariﬁji ;
EEF—: subordialas's | ssn: alphaNumeric_____ ot
T du rename| i
| | T [
lgﬂf.‘ﬂ R_";'U Producilon Bounded Polnt | |
- 200 —
20} - m
p i
"N 150...'..... ._'=:
- 1 120}, ..'.-. \d
: %0 < !
progs | | o0 - rarms: slphaiumer]
- — 30}-- e numbsrOfPersons:fnisgar .
e W’_ EEVTYTTIITICET | SN i
B an :

Powerful drag and drop “enzymes” make application
development intuitive

Comprehensive set of widgets, including business
graphics, multimedia, and others make application

development easy and powerful

VERSANT Argos™ is the only applicadon development
environment (ADE) that makes it casy to build and deploy
powerful, enterprise-wide object applications. Easy because
Argos features an embedded modeling tool and Smalltalk
code generation that ensure synchronization between your
models and applications. Powerful because Argos supports
full traceability and workgroup development through a
shared repository.

Argos automatically generates multi-user database applications
that run on the industry-leading VERSANT ODBMS. Argos
deals with critical issues such as locking and concurrency

VERSANT

The Database For Objects ™

control transparently. And only Argos is packaged as a
completely visual ADE built on ParcPlace VisualWorks®.

Leading organizations — in industries from telecommunications
to finance — are using Argos to deliver business-critical
applications. Find out how Argos can help you deliver your
critical applications in weeks, instead of years.

today at
t us 215

contac
1.800-VERSANT, ext-

or via e-mail @
info@versant.com

1380 Willow Road ® Menlo Park, CA 94025 = (415) 329-7500

©1994 by Versant Object Technology, VERSANT, VERSANT Argos and The Darabase For Objects are trademarks of Versant Ohject Technology Corporation. All ether company names and lopos are registered mademarks of the individual companies,

An O-0 approach to accessing
external resources

the VisualWorks development environment by allow-

ing access to external resources such as communica-
tion protocols, database access, and multimedia services.
This article will discuss the approach we have taken in
incorporating these features into VisualWorks 2.0. We will
also give a brief overview of VisualWorks' often over-
looked DLL and C Connect (DLLCC) product (referred to
as C Programmers Object Kit (CPOK) in VisualWorks 1.0).

IN THE COURSE OF OUR DEVELOPMENT, we have extended

DLL AND C CONNECT: A SIMPLE EXAMPLE
When your Smalltalk application has to communicate with
an external component, you will need to use a function
library. The function library will also provide an application
programming interface (API). The API typically contains
declarations that specify the function prototypes imple-
mented by the library. In the OS/2 environment, the func-
tion library will most probably be released as a dynamic
link library (DLL) because DLLs reduce program size and
can be shared by more than one program. We will start with
a short example showing how to use DLLCC to make an
API call from within Smalltalk. Although DLLCC has many
other capabilities, we will only demonstrate bringing a DLL
into a Smalltalk application. Remember that this example
is intended merely as a quick overview. For more complete
and extensive coverage, please refer to the DLLCC manual.
DLLCC introduces a new abstract class called
ExternalInterface. Accessing C functions requires subclass-
ing this Externallnterface class. DLLCC also extends the
Smalltalk syntax to allow C language declarations within
Smalltalk methods. This extended syntax is only available
to subclasses of Externallnterface. A sample declaration
could look like this:

RETCODE
<C: typedef integer RETCODE>
or like this:
SQLAllocEnv: handle
<C: integer SQLAllocEnv(unsigned long * handle)>.

To create an Extemnallnterface subclass, you will need access
to both the DLL files and the header files (usually .h files).
With these files, you can create an ExternalInterface subclass
either by manually entering the methods that correspond
to the C declarations, or by having DLLCC parse the C
header files and automatically generate a method for each
C declaration. There is also a Builder tool that allows you to

Yoel Newman & Michael Parvin

examine header files and selectively generate the External-
Interface subclass.

In our example, we will call the DosBeep function from
within the OS2 library. We will be using OS/2’s doscall1.dlL
The API is defined in the file bsedos.h. The first step is to
define the ExternalInterface subclass in the System Browser.

Externallnterface subclass: #DosCalls
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'STR'

This results in the following new template:

Externallnterface subclass: #DosCalls
includeFiles: "
includeDirectories: "
libraryFiles: "
libraryDirectories: "
generateMethods: "
beVirtual: false
optimizationLevel: #debug
instanceVariableNames: "
classVariableNames: "
poolDictionaries: 'DosCallsDicHonary
category: 'STR'.

Then fill in the fields as follows:

ExternalInterface subclass: #DosCalls
includeFiles: "
includeDirectories: "
libraryFiles: 'doscall1.dll'
libraryDirectories: 'e:\os2\dll'
generateMethods: "
beVirtual: false
optimizationLevel: #debug
instanceVariableNames: "
classVariableNames: "
poolDictionaries: 'DosCallsDictionary '
category: 'STR'.

The libraryDirectories and libraryFiles refer to the DLLs to be
loaded. Make sure to fill in the correct drive where the OS/2
system is installed. The includeDirectories and includeFiles
refer to the header files to be parsed. If there are includeFiles
specified and there is a “*” in the generateMethods field,
then the header files will be parsed. Since we are only call-

4

The Smalltalk Report

PICTURE THIS ...

THIS COULD BE YOUR OBJECT ORIENTED PROJECT

THIS COULD BE YOUR OBJECT ORIENTED PROJECT
WITH TRS

ANY QUESTIONS???

¢ Consulting ¢ Training / Immersion Programs
¢ Mentoring ¢ Reusable Components

¢ Application Frameworks ¢ Project Reviews

¢ Methodologies ¢ Coding

""Where Smalltalk Talks Big''
RS

TECHNICAL
RESOURCE
SOLUTIONS

3900 W. Alameda Ave., Suite 1700, Burbank, CA 91505, 818-972-1744, 800-801-1TRS (877), Fax 818-972-1685
WWW: http://www.primenet.com/~trsinet email: trsinet@primenet.com BBS: 818-972-1642 - 14400,8,N,1

Reuse Depends on

Quality Documentation

High

Reusable
_ Components

Code
Quality

Non-reusable
‘Components ~

Low

Low

Documentation
Quality

Synopsis Software

8912 Oxbridge Court, Suite 300, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

Maximize Reuse

Many things are needed to have reusable software.
However, if developers cannot understand
available software, it is not going to be reused.

Reusable software requires readily available, high
quality documentation.

And the easiest way for Smalltalk developers to get
quality documentation is with Synopsis. Install it
and see immediate results!

Features of Synopsis

« Documents Classes Automatically

« Builds Class or Subsystem Encyclopedias

» Moves Documentation to Word Processors

« Packages Encyclopedias as Help Files

Products ‘

Synopsis for IBM Smalltalk $295 Team $395 m
Synopsis for Smalltalk/V and Team/V $295
Synopsis for ENVY/Developer for Smalltalk/V $395

ing one function, we don't want to parse the entire header
file. We will manually add the following method on the
instance side:

DosBeep: freq with: duration

<C: unsigned long DosBeep(unsigned long freq,
unsigned long duration)>

~self externalAccessFailed

Under most circumstances we would be done here.
However, in the case of the doscalll.dll there is one final
step. This is because doscalll.dll does not export all its
functions by name, so they must be referred to by ordinal
rather than name. Therefore, we must resolve the ordinal
before we can call it from our application. There are two
ways we have found to do this. The first way requires that
you determine the ordinal of the function you need using
exemap, exehdr, or some local guru. In our case, DosBeep is
ordinal number 286. With the function ordinal , you can
execute: (DosCallsDictionary at:#DosBeep) ordinal:286. This
will cause DLLCC to resolve the function by ordinal and
not try to resolve it by name. (This handy bit of informa-
tion is in the manual under MS-Windows 3.1 platform-
specific information, but we have found that it works just
as well in 0S/2).

The second way is a bit more complicated and may be
more familiar to C programmers. You will create your own
version of the DLL that forwards the request to the actual
052 DLL.There are four steps.

1. Create a “dummy” function that looks like this in foo.c:

int foo()
{}

2. Create a DLL definition file mycall.def:

LIBRARY MYCALL

PRTMODE

EXPORTS
DosBeep

3. Compile to object code only as follows (using IBM
CSet Compiler)

icc /c foo.c
4. Link to the OS2 library to create mycall.dll:

link386 foo.obj, mycall.dll,, \ibmcpp\lib\dde4sbs.lib,
mycal.def /NOI

and use mycall.dll in the class template for the
libraryFile parameter instead of doscall1.dll

To use the function, execute:

DosCalls new DosBeep:1000 with:1000.

DLLCC is a powerful product and will have no problem
parsing ANSI-C header files. Be warned that there may be
work necessary to get your files to parse correctly. There
are, for instance, many cases where the header files must
be tinkered with to parse correctly. Also, the parser
ignores some compiler directives like #pragma and #line.

The Smalltalk Report

THE OBJECT PEOPLE

SUMMER/FALL 1995

Open Course Schedule

INTRODUCTION TO
VISUALAGE

JUNE 12-16

Jury 10-14
August 7-11
SEPTEMBER 11-15
OCTOBER 9-13
NOVEMBER 6-10
DECEMBER 48

BUILDING APPLICATIONS
WITH VISUALAGE AND

IBM SMALLTALK

JUNE 19-23

Juiy 17-21
AuGusT 14-18
SEPTEMBER 18-22
OCTOBER 16-20
NOVEMBER 13-17
DECEMBER 11-15

PROGRAMMING IN

VISUAL SMALLTALK
JUNE 5-8

August 21-24

SEPTEMBER 25-28

OCTOBER 23-26

PROGRAMMING IN

VISUALWORKS

JUNE 26-29
August 28-31
OCTOBER 2-5
NOVEMBER 20-23

OO CONCEPTS,

ANALYSIS & DESIGN
Jung 5-7

Jury 31-AuGusT 2

SEPTEMBER, 6—8

OcCTOBER 10-12

NOVEMBER 1-3

PROGRAMMING IN

IBM SMALLTALK
Ju~E 5-8

AucGust 21-24
SEPTEMBER 25-28
OCTOBER 23-26

VISUALAGE FOR

SMALLTALK

PROGRAMMERS

JUNE 26-29
AugusT 28-31
OCTOBER 2-5
NOVEMBER 20-23

The courses are presented in Ottawa, Ontario,

Raleigh, NC, and Southampton, England

THESE COURSES ARE ALSO OFFERED AT YOUR SITE. CALL FOR DETAILLS.

The Object People Inc.

509-885 Meadowlands Dr.
Ottawa, Ontario, K2C 3N2

Phone: (613) 225-8812 FAX: (613) 225-5943

E-mail: info@objectpeople.on.ca

109 Upper Shirley Avenue

Southampton, England S015 SNL
Phone: 44 1703 775566 FAX: 44 1703 775525

Introducing VisualObjects™
Professional Interface Development for VisualWorks

VisualObjects™ is an extension to the VisualWorks
environment that will allow you to build polished GUIs
without a new tool to learn. VisualObjects additional
features include: drag and drop, MDI interfaces,
containers, platform standard list boxes, spin boxes,
combo boxes, file system widgets, and more.

VisualObjects™ for Professional Interface Development
$1,000 for PC’s, $1,500 for UNIX.

Call to Order (312)-409-4281
objects @madtech.com
http://www.madtech.com/objsoft/

DO WE WANT TO USE AN Externalinterface SUBCLASS?
Once you have generated an Externallnterface subclass,
you have a class with several methods. Each method has
the ability to call one of the functions contained in your
DLL. But how should you call these functions? The easiest
approach might seem to be just calling a function direct-
ly , through its corresponding method, whenever you
needed to use one. There would, however, be several dis-
advantages to this approach.

To scatter function calls everywhere would make the
application difficult to understand. It would leave no clear
indication of what a function is being used for and how it
is being used. Also, it wrongly assumes that everyone
working on the application (now and forever after) knows
how to use the function library. We want a way to encap-
sulate the API's behavior in a way that makes it clear how
to use it and how it is being used.

There will also be many times when you will need to find
all your function calls. The vendor might release a new ver-
sion of the library, causing you to change your code, or you
might decide to go with a different vendor. You might also
need to do some system maintenance or extend the sys-
tem. In all these instances, you want to touch as few areas
of your system as possible. This will be hard if you have
your function calls in many parts of the system. We need a
way to minimize the impact of system changes.

Calling the function calls directly also breaks portabili-
ty. For example, if we have hard-coded calls that open the
0S/2 file dialog window then we can no longer run our

application unchanged on any other platform. It would be
nice to use the same call to bring up an 0S/2 file dialog
under 0S/2 and a Windows file dialog under Windows.

Finally, raw function calls within Smalltalk code will
result in ugly and non-intuitive code that tends to look
more like C than Smalltalk and will seem unnatural to the
Smalltalk programmer. Imagine a code snippet that
looked something like this:

interfaceClass := SomeExternalClass new.
retCode := interfaceClass call:parameter1 with:parameter2.
retCode == interfaceClass GOOD_RETURN_CODE
ifTrue:[self doSomeCode]
ifFalse:[DosCalls new dosBeep:parameter with:100]
What we want is a way for Smalltalk programmers to use
the functions in the same way they have learned to use
the rest of the system. This is especially true if the people
using the functions are not the same people who are
bringing them into Smalltalk.
All these problems leave us with a design dilemma.
What is the best way to use a function library in a
Smalltalk system?

ELEMENTS OF A HOST PLATFORM ACCESS FRAMEWORK:
VisualWorks

Creating a host platform access framework is an excellent
way to solve our dilemma. This can be can be done using
a multiple layer approach (see Fig. 1).

The API access layer is the lowest layer in the framework
and provides access to the API's functionality. The API
access layer is a subclass of Externallnterface. This subclass
contains the procedures, structures, typedefs, and mani-
fest constants for the API as well as the behavior necessary
to call the functions in a DLL from the Smalltalk environ-
ment. This layer contains only the essential code required
to make the function call.

The API wrapper layer provides a higher-level interface
for the API functionality. Conceptually, it is the next layer in
the host platform access framework. The layer is composed
of an abstract class and its concrete subclass implemen-
tors. The API wrapper layer wraps API function calls and

AbstractInterfuceClass
API Wrpper Layer
ConcreteSubclagsimplementor
Externalinterface
I_ API Access Layer
APIAcoessLayer
L API]

Figure 1. Object model relationships.

The Smalltalk Report

shields the Smalltalk application programmer from the
implementation details of the API itself. The separation of
the interface from the implementation allows the develop-
ment of the API wrapper layer to proceed iteratively.

The abstract class defines a generic interface for the
behavior exhibited by the “family” of APIs to be support-
ed in the Smalltalk environment. This “family” can range
from a single AP, to a group of vendor-specific database
APIs, to a group of APIs that perform the same behavior
for specific platforms. The abstract class's design should
be robust enough to support additional implementations
for other platforms or from other vendors.

Concrete subclasses implement the specifics for each
host platform or vendor-specific offering. The portability
of API functionality is possible because the subclass
implements the operations to support the abstract inter-
face. The advantage of using an abstract class to define
the interface and concrete classes to support the imple-
mentation is that users of the
framework only commit to the
interface defined by the abstract
class, not to a particular imple-
mentation defined by a concrete
class.

The concrete subclass for an
abstract API wrapper class will
have to handle the following items in its implementation.

* Memory allocation and deallocation.

e Structure allocation, deallocation and member
accessing.

* Exception handling.

* Maintaining and enforcing the state of the API.

MEMORY ALLOCATION AND DEALLOCATION

The concrete implementors will handle the allocation and
deallocation of memory on the external heap. Typically,
API calls will require parameter passing. In Smalltalk, this
means that the API parameters need to reside in memory
explicitly allocated on the external heap, i.e., memory that
is not managed by the Smalltalk memory manager.
Initially, the internal implementation of a concrete sub-
class could use gcMalloc and gcCopyToHeap to allocate
memory on the external heap. The “gc” refers to the
garbage collectible nature of the memory pointers on the
external heap. When a garbage collectible pointer is no
longer referenced, its finalization mechanism frees the
memory on the external heap. This finalization mecha-
nism takes care of any implementation memory leaks
associated with allocating and deallocating memory. Later
in the development process, more advanced memory allo-
cation techniques could be used such as allocating and
deallocating the memory explicitly for more performance.
Even though gcMalloc and gcCopyToHeap facilitate the
development of the API wrapper layer by providing auto-
matic allocation and deallocation of memory, they do so at
a high performance cost. Explicitly allocating and deallo-
cating memory will increase the overall performance of

What is the best way to use a
function libraryin a
Smalltalk system?

the framwork by removing the overhead of the garbage
collectible pointers finalization mechanism.
Memory allocation technique.

["Begin unwind block"
ptr1 := CIntegerType unsignedLong malloc.
ptr2 := CIntegerType unsignedChar malloc.

"End unwind block"] valueNowOrOnUnwindDo:
[ptr1 notNil ifTrue: [ptrl freePointer].
ptr2 notNil ifTrue: [ptr2 freePointer]].

The use of valueNowOrOnUnwindDo: to handle the API call is
an example of a memory allocation technique for explicit-
ly allocating and deallocating memory on the external
heap. The handler code will be evaluated whether or not
an exception occurs. An inter-
esting aspect of the code is that
the message freePointer is being
sent to the CPointer rather than
free. The freePointer method is
faster than free if it is known the
pointer is not garbage collec-
table.

Another performance item to take into consideration
in the internal implementation is the allocation and deal-
location of large memory regions. The environment is
incurring a performance penalty with every function call
with no discernible gain. Instead, the CPointer could be
stored in a concrete subclass instance variable and reused
in place of memory pointers with a local scope.

A key point to mention here is that the actual imple-
mentation details of memory allocation and deallocation
remain hidden and separate from the interface. Tweaking
for performance and style can take place later in the
development process without breaking the interface, and
should not be the primary concern when initially devel-
oping the implementation.

STRUCTURE ALLOCATION, DEALLOCATION, AND
MEMBER ACCESSING

Structures are one type of parameter passed in an API
function call. From the previous discussion, this implies
that a structure will need to be allocated on the external
heap. The concrete subclass is responsible for allocating
the structure, filling in the necessary members, and
retrieving the data from the members after the function
call returns.

In Smalltalk, we do not want to require the application
programmer to allocate a structure, fill in the members,
and deallocate the structure when it is no longer needed.
For instance, funcX, an API function, requires as a parame-
ter a structure containing three members. To use funcX an
application programmer would require implementation-
specific knowledge to allocate the correct structure and fill

May 1995

| ACCESSING EXTERNAL RESOURCES

in the correct members to satisfy the requirements of the
function call. In contrast, a more object-oriented interface
would provide a keyword message taking as arguments any
additional information not already known to the imple-
mentation. The concrete implementation would convert
this information into the format required to make the func-
tion call. The keyword message is specified by the abstract
class and is only implemented by the concrete subclass. A
different concrete subclass may not convert the informa-
tion into a structure but rather may pass each parameter to
a function call. The differing implementation details would
have no impact on the user of the API wrapper layer
because the interface for the concrete subclass implemen-
tors is always the same. In addition to separating the API
functionality from its implementation, the abstract class
defines an interface that provides more insight into the
behavior performed by the concrete implementors.

EXCEPTION HANDLING

The concrete implementors not only
have to handle exceptions when they
occur, but must also provide a hierar-
chy of exception handling signals to
resolve any API call failures. These
signals will provide a portable way of
handling exceptions. For example,

The portability of API
functionality is possible
since the subclass
implements the operations

exception handling hierarchy can be enhanced with
information returned by the APIL; however, users of the
framework should not rely on API-specific error informa-
tion in their implementation. The specific API error infor-
mation should only be used as a troubleshooting tool dur-
ing development. More importantly, reliance on API-spe-
cific error code information in a client implementation
will break portability across multiple platforms and
across different vendor implementations.

Maintaining and enforcing the state of the APl

The API wrapper layer has a responsibility to maintain a
representation of the state of the API. This is only necessary
if the API functionality is dependent on its current state. For
instance, in a hypothetical communications protocol, the
flow of communication verbs needs to be Allocate, Send,
Receive, check Receive for more data flag, if it exists then
Receive, if it doesn't then OK to Send,... , Reset. This hypo-
thetical protocol is highly dependent
on the state of the session because
issuing a Send verb before an
Allocate verb would cause a commu-
nications exception. On the other
hand, an API that only contains func-
tions that display various file dialogs
would have little need for the con-

an exception handling hierarchy for cept of state. However, for those APIs
a communications interface would to Supp ort the abstract that rely on state to dictate the action
contain at the highest level a interface_ taken during a function call, the API

communicationsErrorSignal, and then

lower in the Thierarchy a

connectionErrorSignal and a stateErmrorSignal. Each subclass
implementor will generate these exceptions for a given set
of error criteria. As with the design of the abstract interface,
the exception handling hierarchy needs to be designed as a
set of generic exceptions that support the common func-
tionality contained within the family of APIs. Even if this
“family” is made up of a single AP! library, specific refer-
ences to platform, vendor, and product should be avoided,
e.g., an exception called databaseErrorSignal would be a bet-
ter design choice than an exception entitled db2EmrorSignal.
As an example, the VisualWorks External Database
Interface, which will be discussed later, includes the follow-
ing exception hierarchy:

externalDatabaseSignal
connectionExceptionSignal
authenticationFailureSignal
connectionNotOpenSignal
unableToConnectToSQLserverSignal
unableToConnectToSQLenvironmentSignal

The exception handling hierarchy provides the primary
source of error detection information to the client. It
should be the only source of exception information avail-
able to the client of the API wrapper layer. The failure
information returned by the API should only be used in
the internal implementation of the API wrapper layer. The

wrapper layer needs to maintain an

accurate representation of its state,
perform state transitions when necessary, and raise an
exception when an attempt to call a function that does not
support the current state is executed.

The state of the API can be maintained using a concrete
subclass instance variable storing a symbol representing
the current state. The concrete subclass would use case-
style statements to check the state before executing a func-
tion call. Another approach would be to create a State class
that not only maintains state but can be instantiated and
initialized with a lookup table that specifies the messages
that can be sent for a specific state. The API wrapper layer
will still be responsible for making the state transitions, but
the proliferation of case-style statements can be avoided.

FRAMEWORK CONSIDERATIONS
With the framework approach, we have solved the prob-
lermns mentioned above. We have a common interface that
can be called from anywhere in the application.
Programmers can use the framework knowing only the
interface. They do not need to know the API itself because
we are masking the implementation details. With this
arrangement, users are committing only to the imple-
mentation and not to the platform. Separating the inter-
face from the implementation will allow us to subse-
quently change platforms without breaking the code.

We have also localized all access to external resources.

10

The Smalltalk Report

We are only calling the functions directly in the API wrap-
per layer, which masks the actual implementation. This
makes maintenance and upgrades easier because we can
change the implementation without affecting the users of
the interface. Also, because we will be allocating space on
the external heap, we can keep track of these allocations
to avoid problems such as memory leaks.

There are some things to keep in mind when creating an
external access framework. Users will be tied to the imple-
mentor’s view of what the interface should be. The frame-
work needs to define an interface for all implementations,
but it can be hard to create an abstract interface that can
account for all the differences across implementations. It is
possible that the framework implementors only know one
platform. Also, there will be situations where some features
are only available on certain platforms and a decision
needs to be made whether to exclude these extensions in
the framework and keep the interface uniform or to extend
the implementation class and give it a larger interface.
Finally, the framework needs to encompass future prod-
ucts as they become available. It is important to commit
some time and effort to creating a truly robust framework.

THE EXTERNAL DATABASE INTERFACE EXAMPLE

An excellent example demonstrating the above approach
is found within the VisualWorks system itself. VisualWorks
needed the ability to communicate with several database
management systems. However, each DBMS is different
and each DBMS requires the use of a separate API. We will
look at how database connectivity is implemented in
VisualWorks to see how it fits our model.

At the highest layer we have an abstract implementation
to which we should program. This layer is included in every
VisualWorks system and is contained in the External
Database Interface (EXDI) classes. These classes are found
in the category “Database-Interface” and include such
classes as ExternalDatabaseSession and ExternalDatabase-
Connection. These are abstract classes representing a frame-
work for external relational database access. All behavior
necessary to interact with a database (such as connecting,
disconnecting, executing an SQL statement, or initiating a
transaction) is defined in these classes and documented in
Chapter 13 of the user's guide. These classes provide the
framework for all database access but do not provide
access to any database in particular. There is also a com-
plete error handling hierarchy defined. The framework
relies on concrete subclasses to provide the implementa-
tion details specific to each database platform. The con-
crete classes are provided for both Oracle and Sybase and
are packaged as separate Database Connect products. If
you have these products installed, then the classes can be
found in the “Database- Sybase” or “Database-Oracle” cat-
egories. If we examine these classes, we will find that each
maintains the interface of its superclasses but implements
the specifics for its specific DBMS. For example, the
SybaseSession class provides the behavior necessary to
maintain a Sybase session. When we initialize a

SybaseSession, or ask to prepare an SQL statement, the
SybaseSession knows how to allocate the correct structures,
make the correct calls, and interpret the results. These
classes represent the API wrapper layer.

Finally, we have the ExtemalInterface classes called by
the wrapper layer. These classes are found in the category
“Database-External-Libraries.” These classes represent the
actual function libraries and provide the means to make
the function calls. These methods are called only by the
API wrapper layer. Many of the benefits discussed earlier
can be seen in this example. There is a common interface
to all database systems. The programmer does not need to
know the DBMS implementation details to access a data-
base. Furthermore, the database access interface remains
the same for all databases, so once the user is familiar with
the interface there is nothing to relearn. Exception han-
dling is taken care of by the EXDI classes, with standard
errors defined that can be trapped and handled by appli-
cations. The database behavior is properly encapsulated.
System changes are localized. Database differences are
accounted for while nothing is hardcoded. The Smalltalk
programmer can be comfortable with the implementa-
tion. We also realized an even greater benefit when we
needed to access DB2 data. We did not have to write the
DB2 access code from scratch because it fit nicely into the
provided framework We were able to achieve DB2 access
by creating an ExternalInterface class and then writing the
API wrapper Layer classes (DB2Connection , DB2Session, and
DB2Transaction) to take care of DB2-specific implementa-
tion details. The rest of the implementation we got for free.
To top it all off, we did not even need to document the sys-
tem. All the documentation was already written and pub-
lished (a programmer’s dreamy).

SUMMARY

We have shown the approach we take when bringing
external resources into the Smalltalk environment. This
approach will be useful when you need to bring in any
external functionality, especially if you plan on doing so
for more than one platform. We have already used it for
database access, APPC communication, and to make calls
out to the OS/2 environment. There are a few other areas
where we see potential for this idea. One could imple-
ment a multimedia framework, similar to the EXDI frame-
work. This framework would mask the underlying multi-
media implementation and allow subclasses to imple-
ment multimedia under both 0S/2 and Windows. Other
areas of interest might include file dialogs, host menus
and widgets, and IBM System Object model (SOM). In our
next article we will present a full implementation follow-
ing the approach we have outlined.

Yoel Newman is a Senior Systems Consultant with American
Management Systems (AMS). He can be contacted by email at
yoel@aol.com. Michael Parvin is Senior Systems Consultant with
Metropolitan Life Insurance. He can be contacted by email at
mparvin@tiggerjvnc.net.

May 1995

1

Segregating application
and domain: Part 1

o the topic of application and domain segregation
in VisualWorks application development. This first
article presents the case of why it is essential that an
application have a strict segregation between its applica-
tion information and its domain information. The second
article will discuss the implementation of domain objects,
the keepers of the domain information. The third article
will cover the application classes that provide the user
interface for the domain objects.

We begin with a review of MVC fundamentals, includ-
ing definitions for application and domain information,
followed by a brief history of application development in
Smalltalk. Considering this background, it is argued that
any VisualWorks application of merit—primarily those
with a persistent store—should be designed and imple-
mented with a strict segregation between the application
information and the domain information.

Tms ARTICLE IS THE FIRST IN A SERIES of three dedicated
t

MVC FUNDAMENTALS

Before launching into the discussion at hand, it is prereq-
uisite that we back up and cover some MVC fundamen-
tals. The MVC perspective is a way of breaking an applica-
tion, or even just a piece of an application’s interface, into
three parts: the model, the view, and the controller. In this
context, the term application is used to mean one or more
windows working In a coordinated and related effort to
provide a service to a user community. A word processor is
an example of an application—its printer driver is not.

Figure 1. Application model object diagram.

Tim Howard

A model is an object that manages information. It cal-
culates, sorts, stores, retrieves, simulates, emulates, con-
verts, and does just about anything else you can think of
doing to information. As the MVC architecture has
matured, it has become apparent that the model’s infor-
mation can be divided into two categories—domain infor-
mation and application information. A model’s domain
information includes information concerned with the
problem space. For example, if we have an airline reserva-
tion application, the flight schedules, prices, seating
arrangements, and credit card numbers would all be
domain information. Each identifiable piece or subset of
the model’s domain information is called an aspect. An
aspect can be as simple as a single string or number, or as
complex as a subsystem of other interrelated objects. A
model’s application information is any information that is
used by the application but is not part of the problem
space. In the airline reservation example, error messages,
icons, and menus would be part of the application infor-
mation. A model by itself has no visual representation, nor
does it interact with the user or receive any user input.

The view provides a visual interpretation of the infor-
mation contained in the model, which suggests, quite cor-
rectly, that there can be more than one view per model. As
the information in the model changes, the view should
automatically redraw itself to reflect those changes. A view
depends on the information contained within its model to
fullfill its duties. The controller works in conjunction with
view and accepts user input—usually keyboard and
mouse input. The controller can process this input itself or
pass it on to the model or view for processing.

There are certain objects, called dependents, that are
interested in the information contained within the model
and especially interested in changes to that information. A
model maintains a collection of its dependents and when-
ever the model changes any aspect of its internal state, it
broadcasts a notification of that change to all these depen-
dents. It is then up to each dependent to decide for itself if
it is interested in the particular change or not. Any object
can be a dependent, but the most common dependents are
views, windows, and other models (and since the introduc-
tion of VisualWorks, DependencyTransformer objects, which
do not fit into any of the aforementioned categories).

Any object can be a model because the basic model
behavior is implemented in Object. The Model class, how-
ever, improves upon this implementation and therefore
most models are an instance of some subclass of Model.

12

The Smalitalk Report

Some examples of model classes are ApplicationModel,
UlIPainter, ValueHolder, PluggableAdaptor, and Browser.

HISTORY OF SMALLTALK APPLICATION ARCHITECTURES
Before VisualWorks, Smalltalk applications employed an
architecture often referred to as the classical MVC archi-
tecture. In this architecture, a single monolithic model (or
very few models) assumed most of the model type
responsibilities and managed several aspects of informa-
tion. Such a model had several dependents—a window,
other models, and usually a view for each of the aspects.
Also, the model’s class typically assumed the responsibil-
ity of creating the window interface for the model. The
System Browser, implemented by the Browser class, is a
good example of an application developed with this type
of architecture. The main problem with the classical MVC
architecture is that a single model manages both applica-
tion and domain information, and tries to manage the
user interface at both the window and component level,

VisualWorks has enhanced the MVC architecture in
several ways. Chief among these is the realization that
standard model behaviors (i.e. those
described in the classes Object and
Model) are insufficient for running
applications. To manage an entire
application, or at least an entire win-
dow, a specific type of model is
required called an application
model. The abstract implementa-
tion for such a model is described in the ApplicationModel
class. An application model manages the application
information and leaves the domain information to its
aspect models. An aspect model manages a single aspect
of information and is usually associated with a single
interface component. Much of the application informa-
tion is referred to as interface resources and includes such
things as menus, icons, labels, and interface specifica-
tions. An application model also delegates interface con-
struction to an object called the builder. While applica-
tion model architecture is a great improvement over clas-
sical MVC architecture, the domain information con-
tained within the various aspect models is loosely distrib-
uted throughout the application, making it difficult to
manage. Thus, the domain information is not fully inde-
pendent of the application model. Figure 1 is an object
model of a generic application model.

THE NEED FOR DOMAIN SEGREGATION

The complete segregation of domain information from
the application information becomes essential when an
application of any merit is intended. This is especially
true in a client server architecture where the application
resides on a client machine but the data, or domain infor-
mation, resides on a server or is even distributed among
several machines. The reasons for such a strict segrega-
tion of application and domain information are listed
below and subsequently discussed in detail.

A model’s domain
information includes that
information concerned llﬂth tion model. It is contained in various
the problem space.

» Facilitates persistent storage.
* Provides domain cohesion and logical arrangement of
the domain information.

» Keeps application information out of persistent store,

» Keeps dependents out of persistent store.

e Facilitates and abstracts the analysis and design

processes.

The application information typically resides on the client
machine and has no need to persist outside the virtual
image. For all but the most trivial applications, however,
the domain information must persist in a database. A
Smalltalk virtual image, regardless of the client machine'’s
available resources, soon becomes inadequate as a persis-
tent store for domain information. Furthermore, a virtual
image does not offer traditional database facilities such as
concurrency control, security, locking, transactions, roll-
backs, recovery, and multiuser access. Therefore, the
domain information should reside in some kind of persis-
tent store, presumably located on a server machine, where
it can be managed by a database management systermn and
be available to several client machines.

The problem with making domain
information persist under the cur-
rent application architecture is that it
is scattered throughout the applica-

ValueHolders, SelectionInLists, and
even within additional, embedded
application models in the case of
subcanvases or satellite windows. In fact, an application
model, by design, is nothing more than a loose confedera-
tion of independent models, each operating on its own
piece of domain information. As an illustration, suppose
we have an application for maintaining employee informa-
tion for a corporation. Such an application could be filled
with all sorts of domain information about the employ-
ees—names, social security numbers (SSNs), salaries,
supervisors, addresses, dates of birth, etc. Each time we
want to store the information for a single employee, we
have to traverse all the input fields, lists, text editors, and
subcanvases, collect all the relevant domain information
for that employee, and ship it all to the database. In the
event that we want to fetch the information for a given
employee from the database for viewing or editing, we have
to access several pieces of information and target each one
for its particular aspect model. It would be nice if we had a
single handle, or reference point, for all this information.
We would like to bundle all the relevant domain informa-
tion into a single cohesive object—perhaps something like
an Employee object that contains all the domain informa-
tion for a single employee of the company. Ideally, we
would like to hand this single domain object to the data-
base for storing, or hand it to an application model for
viewing and editing.

One might argue that the application model references
all the pertinent domain information, so why not just have
it persist in the database. While this is true enough, and

May 1995

13

Objectifying
Real-Time Systems

by John R. Ellis
contains over 500 information-

F-.,I-_ acked pages on capturing the
Objecti P P

ng requirements of object-based

Objectifying Real-Time Systems

Real-Time real-time systems. Ellis offers
Systems leading-edge information in-
g cluding more than 100 helpful

figures and examples to expertly
guide readers through the steps
of applying object-oriented tech-
niques to their daily projects.
The accompanying diskette con-
tains the source programs used
throughout the book, enabling

"’.‘

{ISBN: 0-9627477-8-5)

$44 including diskette the reader to experiment and
To order a copy of verify executions without having
Objectifying to l(ey in code.
Real-Time Systems Anyone interested in developing
call (212) 242-7447 object-based real-time systems
Customer Service Dept. should read this book.

SIGS

BOOKS Available at selected book stores. Distributed by Prentice Hall.

quite appealing at first, upon closer scrutiny we can see
that this idea has two serious flaws. First, application
information usually does not need to persist in a database.
We do not need a copy of the same menu to accompany
each Employee object stored in the database. Second, the
domain information is very loosely affiliated within the
application model. There are too many intermediaries
from one piece of domain information to the next.

It is conceivable that certain types of application infor-
mation might be so large that it is inconvenient, or impos-
sible, to burden each client machine with a copy. A mature
help environment is a good example. Such cases require a
change in perspective. The help facility becomes an appli-
cation in and of itself and its domain information is the
text and bitmaps comprising the help information. This
example is a good illustration of the fact that there is often
a gray area between what constitutes domain information
and what constitutes application information. It is essen-
tial, however, that the design process clearly resolve what
is part of the application and what is part of the domain.
For example, error codes might be part of the application
in one project and part of the domain in another. In either
case, however, this must be resolved before implementa-
tion. The acid test is “What information must persist?”

Another problem in trying to store the application
model in the database is that the application model has
dependents, and also references other models—each with
its own dependents. We do not want to store anything in
the database that has dependents! This is a cardinal rule of
persistent objects, the reasons for which are as follows:

* Dependents exist primarily for purposes of the user
interface and therefore constitute application infor-
mation.
* Dependents do not desctibe domain information. A
model does not care how many dependents it has, who
its dependents are, or what they are. This relationship
has no translation into the domain and therefore does
not constitute domain information.
« Dependents exist solely to provide a means of notifica-
tion during interface operation; they would have no
meaning to a persistent object.
» Dependents have a way of compounding the relation-
ships among objects such that a single application
model can end up referencing a sizable portion of the
virtual image.
* Dependents inevitably reference aobjects that are known
to the virtual machine. Another cardinal rule for persis-
tent storage is to never make an object persistent if it is
referenced by the virtual machine. Such references are
specific to the client machine, have no meaningin a per-
sistent media, and cannot be accurately reconstituted
when the persistent object is fetched from the database.
For the reasons listed above, it is best to leave models and
any other objects with dependents out of the database.

Describing the application strictly in terms of the
domain information facilitates the analysis and design
processes and removes any unnecessary details of inter-
face development. In fact, a good design should exclude
application-specific information as much as possible,
and concentrate strictly on the domain. Such a design is
largely independent of the actual application develop-
ment and can even be independent of the language of
implementation.

SUMMARY

Before we embark on all the work required for adequately
segregating the domain information from the application
(the following articles in this series), it is important that
you understand exactly why we want to do this. The main
reasons for segregating the domain information from the
application are summarized below.

* Domain information usually resides in a database
while application information should stay in the client
machine’s virtual image.

* Domain information should be bundled into conve-
nient container objects relevant to the problem space.

* Domain information should be clear of any dependent
objects and should be completely clear of any ties to
the virtual machine.

* Domain information represents the problem space,
and design issues should relate as much as possible to
the domain information and exclude as much as pos-
sible the application information.

Tim Howard is the President and Cofounder of FH Protocol, Inc. He
is interested in application development using O-O technologies in
general, and using the language of Smalltalk in particular.He can be
reached at thoward@fhprotocol.com or by phone at 214.931.5319.

14

The Smalitalk Report

Getting Real

Managing concurrency conflicts

Jay Almarode

in multi-user Smalltalk

users access shared objects in a single object space:

Users share behavior as well as object state, devel-
opers do not have to write mapping code between
Smalltalk and a persistent store, and delivering and updat-
ing applications is simply a matter of making the changes
public. However, when multiple users can view and mod-
ify shared objects, there is a potential for conflict.

Concurrency conflicts occur when one user reads an
object that another user has modified, or when two users
modify the same abject. For example, if one user reads
an account balance that has been modified and commit-
ted by another user, it is imperative that the transaction
experience a conflict. This is because any decision made
and subsequent code executed is based upon a value
that is no longer valid. When the transaction attempts to
commit, the attempt is unsuccessful due to the concur-
rency conflict.

When building applications in single-user Smalltalk
systems, developers do not have to consider the possibility
of concurrency conflicts on their Smalltalk objects because
they can treat all of object memory as their own private
domain. Instead, they must map the application’s concur-
rency requirements onto the concurrency control mecha-
nisms provided by some persistent store. In multi-user
Smalltalk, the underlying execution engine and transac-
tion manager provide the concurrency control mecha-
nisms. This column will describe the mechanisms for con-
currency control in multi-user Smalltalk and describe
some techniques for resolving concurrency conflicts.

There are two approaches to concurrency control. One
approach is to acquire locks on objects. This approach,
called “pessimistic,” allows a user to prohibit other users
from reading or writing a particular object. Acquiring a
lock on an object guarantees that at commit time, certain
kinds of conflict will not occur on that object. Locking has
its drawbacks, though. When an object is locked, its avail-
ability is reduced for other users. Acquiring a lock typical-
ly requires the arbitration of a centralized lock manager,
which may involve additional network communication in
a client/server architecture. And using the pessimistic
approach requires that application developers under-
stand which objects will be read or written. For single

HERE ARE A number of advantages when multiple

Jay Almarode can be reached at almarode@slc.com.

objects, this might not be too difficult to do. But for net-
works of objects, it might not be obvious which object will
eventually be written when an operation is invoked on the
root node in the network.

A second approach to concurrency control, called
“optimistic,” does not use locking, but instead determines
concurrency conflicts when a transaction attempts to
commit. With this approach, an application reads and
writes objects without explicitly worrying about other
users. At commit time, the systemn determines if any of the
objects read or written by this transaction were also read
or written by other committed transactions. If so, then a
conflict occurs and the attempt to commit fails. This
might sound drastic, but in many cases, applications are
only reading the majority of objects anyway, so the chance
of conflict may not be too high. If an application knows
that it will be writing objects also accessed by other appli-
cations, it can always acquire locks on the object. The two
approaches are not mutually exclusive. If a conflict should
occur at the time of commit, the user can find out which
objects experienced the conflict and perhaps take steps to
resolve the conflict. In SmalltalkDB, the data definition
and manipulation language for GemStone, a user can find
out which objects experienced conflict by sending the
message System transactionConflicts. This message returns
a dictionary whose keys are symbols indicating the kind of
conflict, and whose values are arrays of objects that expe-
rienced the conflict. Using this information, an applica-
tion can take steps to save information that might be lost
when the transaction is aborted (for example, by writing
information into a newly created object or by writing data
to a file).

In discussing concurrency conflicts on objects, I've dis-
cussed conflicts in terms of reading and writing an object
at the physical level. Most persistent object-based systems
detect conflicts by recognizing when concurrent transac-
tions have read or written the same objects, irrespective of
the logical operations that caused those reads or writes.
There has been much work in concurrency control for
abstract data types that is applicable to object-based sys-
temns.!~3 The main thrust of this work is that even though
there may be conflict on the physical level, the logical
specification of an object and its operations may allow the
physical conflicts to be resolved. For example, two con-
cuirent transactions may add some objects to an instance

May 1995

15

| GETTING REAL

#'Read-Write' My transaction read an object
that another transaction wrote

#Write-Read' My transaction wrote an object
that another transaction read

#'Write-Write' My transaction wrote an object

that another transaction wrote
My transaction read an object on
which another transaction
acquired an exclusive lock

My transaction wrote an object
on which another transaction
acquired an exclusive lock

#TRead-ExclusiveLock'

#Write-ReadLock'

#Write-WriteLock' My transaction wrote an object
on which another transaction
acquired a write lock

#'Re-Write-Write' My transaction wrote an RC

object that another transaction
wrote, and the conflict could not
be logically resolved.

Table 1. describes the various kinds of conflicts that can occur.

of Bag. The second transaction that attempts to commit
will experience conflict since the first transaction wrote
the same bag (this is a write-write conflict). However,
there is no logical reason why two concurrent transactions
cannot add objects to the same bag. If the underlying sys-
tem can resolve these physical conflicts so that the end
result is that the bag contains both transaction’s additions,
then the second transaction should be allowed to commit
successfully. Some systems solve this problem by using

multiple adders to the queue will not
conflict

a single remover from the queue will
not conflict with adders

multiple removers from the queue
will conflict

multiple adders to the bag will not
conflict

a single remover will not conflict with
adders

multiple removers of disjoint objects
will not conflict

multiple remaovers of the same object
will conflict if they attempt to remove
more than the number of occur-
rences in the bag

multiple updaters of entries with dis-
joint keys will not conflict

multiple updaters of an entry with
the same key will conflict

multiple removers of entries with dis-
joint keys will not conflict

multiple removers of an entry with
the same key will conflict

readers of an entry will not conflict
with updaters of the same entry
multiple incrementers or decre-
menters will not conflict

readers of the counter value will not
conflict with modifiers of the value

RcQueue

ReBag

RcHashDictionary

RcCounter

Table 2.Various RC classes and their semantics.

Listing 1. Example using optimistic concurrency control.

“The Bag and The Object are global variables for the
purpose of this example"

| addToBag |
addToBag := true.
[addToBag] whileTrue: [
" add the object to the bag "
TheBag add: TheObject.
" attempt to commit the transaction "
System commitTransaction
" if commit was successful, exit the loop "
ifTrue: [addToBag := false]
" if unsuccessful, abort the transaction and try again "
ifFalse: [System abortTransaction]].

Listing 2. Example using locks.

| tryAgain |
tryAgain := false.
[
" Attempt to acquire a write lock on the bag "
System
writeLock: TheBag
" if lock was denied, keep trying "
ifDenied: [tryAgain := true |
" if lock is dirty, abort the transaction to update your view "
ifChanged: [System abortTransaction].

tryAgain
] untilFalse.
" at this point, we've acquired the lock on the bag "

TheBag add: TheObject.
System commitAndReleaseLocks

locking protocols, but this reduces concurrency by making
the bag unavailable for concurrent modifications.

In using objects in a multi-user setting, a developer
must not only think about the functional semantics of an
object (what an operation does to an object), but also its
concurrency semantics (what concurrent operations are
allowed on the object). In SmalltalkDB, the kernel class
library has been extended to include classes particularly
tailored to multi-user access. These ‘reduced-conflict’
classes (called RC classes, for short) have functional
semantics the same as their single-user counterparts, but
have been specifically implemented to provide more con-
currency. The cost of this additional concurrency is
greater memory usage per object, and potentially slightly
longer time to commit. Table 2 lists the reduced-conflict
classes and their concurrency semantics.

In SmalltalkDB, programmers have a number of ways
they can manage concurrency conflicts. They can lock
objects to ensure a successful commit; they can abort their
transaction when a conflict occurs and retry operations;
they can utilize RC classes when appropriate in their appli-

16

The Smalltalk Report

Oddly enough, a company with possibly the largest
and most deployable Smalltalk/OO workforce is
virtually unknown - Until Now.

Over 400 Experienced Smalltalk/00 Developers,
Mentors & Trainers Available Today.

Object/nteligence

The Object Services Company

¢ On-Site Smalltalk/OO Programming & Mentoring
o On-Site Customized Smalltalk/OO Training

o OODBMS Development ObjectStore, Gemstone & Versant

o GUI Front-End Design/Build to Legacy Systems
o Object Modeling, Analysis & Design
o Smalltalk/Object Mapping to Sybase, Oracle & DB2

Call (91 9) 859-7384 or e-mai: infoeobjectint.com

Objectinfelligence Corporation « 6300-138 Creedmoor Rd., 5te. 196 « Raleigh, NC 27612 « (919)848-0045 Fax

cations. The following code examples illustrate these three
approaches for adding an object to a shared bag. The exam-
ple in Listing 1 illustrates the optimistic approach. After
adding the object to the shared bag, we attempt to commit
the transaction. If another transaction has modified the
bag, we may get a concurrency conflict, and the attempt to
commit will fail. In this case, we abort the transaction,
causing the view of the bag to be updated. We can then add
the object to the bag and attemnpt to commit again.

The example in Listing 2 shows one way to acquire a
lock on an object. It attempts to acquire a write lock since
we know we will be modifying the bag by adding an object
to it. It is possible that the lock may be denied because
another transaction has already acquired a lock on the bag
or because we do not have write authorization for the bag
(object authorizations will be the subject of a future col-
umn). For this example, we assume we have authorization
to modify the bag; otherwise we would add code that
checks our authorizations and takes some other course of
action. If the lock is denied, we set a boolean flag so that
we continue trying to acquire the lock (presumably until
another transaction releases its lock). It is possible that the

" TheBag is now an instance of class RcBag "
TheBag add: TheObject.

"by the concurrency semantics of ReBag, this transaction can
successfully commit "
System commitTransaction

Listing 3. Example using RC Bag.

lock may be acquired but a modification to the bag has
been committed by another transaction since this trans-
action began. This is called a “dirty” lock. In this case, we
abort the transaction to update our view of the bag, then
proceed with our addition to the bag since we continue to
hold the lock after the abort operation.

The final example in Listing 3 illustrates the ease of use
of RC classes in SmalltalkDB. Since an adder to the RcBag
will not conflict with other adders, removers, or readers of
the bag, the transaction will not conflict. The implemen-
tation of RcBag uses various strategies to avoid physical
conflict on the bag. When a physical conflict does occur,
the underlying system attempts to resolve those conflicts
if they are determined not to be logical conflicts.

Hopefully this column has given you some insight into
managing concurrency in multi-user Smalltalk applica-
tions. When multiple users share objects, the application
programmer must be aware of the potential for conflict.
There are a number of techniques for avoiding concur-
rency conflicts and when they do occur, the application
can take steps to resolve those conflicts.

References

1. Weihl, W. Local atomicity properties: Modular concurrency con-
trol for abstract data types, ACM TRANSACTIONS ON
PROGRAMMING LANGUAGES AND SYSTEMS, 11(2), 1989.

2 Herlihy, M. Apologizing versus asking permission: Optimistic
concurrency control for abstract data types, ACM TRANSACTIONS
ON DATABASE SYSTEMS, 15(1), 1990.

3. Schwarz, P, and A. Spector, Synchronizing shared abstract
types, ACM TransacTIONS ON COMPUTER SYSTEMS, 2(3), 1984.

May 1995

17

Super + 1

paying the bills, so I haven't had a change to look

in detail at the garbage collectors in the various
Smalltalks. I'll get to it, but those college educations have
to come first.

Smalltalk Solutions was a blast! Four hundred people
packed into the hotel, giving the whole get-together quite
a buzz. Of course, that could be because of the hordes of
European and Asian tourists. I don't think I got onto an
elevator and heard less than three languages the whole
four days. Mark this one on your calendar for next year.

I had a great time talking on Wednesday of the confer-
ence. My performance-tuning talk was full, with lots of
great give-and-take about performance issues. I gave a
talk about patterns in the afternoon, and somehow we
crammed even more people in. One thing [was uniform-
ly surprised by during my talks was how open everyone
was. It's hard to stand up in a room of 250 people and say,
“I screwed up thus-and-so; how can I avoid it in the
future?” The other thing I appreciated was how much
dialog resulted. It wasn't me bringing down the stone
tablets, it was more experienced and less experienced
people sharing problems and solutions.

The best part of the whole thing was that when I got
tired of talking and crowds, I went up to my hotel room
and really cranked on code. It's been awhile since I've
single-mindedly worked on something just for me. Now I
remember why I love programming.

Well, the really best best thing about it was the cheese-
cake across the street. 1 must have consumed 10 Kcals
having great talks with new friends and old.

And now, some content.

O NCE AGAIN, NO GARBAGE COLLECTORS. I've been busy

SUPER

A couple of years ago, I published a column about how to
use “super” in Smalltalk. It turns out there are only a few
legitimate uses, and several common mistakes. I've
always liked that column, but I always thought it a shame
that I wrote it before I was any good at writing patterns.
I'm here to change all that. Because my pattern skills have

Kent Beck has been discovering Smalltalk idioms for ten years at
Tektronix, Apple Computer, and MasPar Computer. He is the
founder of First Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek, CA 95006-0226,
408.338.4649 (voice), 408.338.3666 (fax), or by email at
70761,1216 (Compuserve).

Smalltalk Idioms

improved, and because the readership of THE SMALITALK

Report has increased so dramatically in the last two years,

I'll take another whack at talking about super, this time in

terms of patterns. At the end, I'll throw in one more pat-

tern that came up and smacked me in the face recently.
Before I jump in, let me first say that I think inheritance

is vastly overrated. It is the least useful feature of the big

three (encapsulation, polymorphism, and inheritance). If

I'had to do without one, inheritance is the one I drop.
However, inheritance is there, and when it is working

well it is a joy to use. It results in code that is so highly

compressed it is almost like reading poetry. I introduce
these three methods and, voila, I have an object that
responds to 30 messages in a new and interesting way.

This is the strength and weakness of inheritance. If you

don't speak the language of the superclass, there is no

way you will understand the subclass.
Three simple rules will keep you out of most of the
trouble inheritance can cause:

1. Keep it in the family. This is Rick DeNatale’s Law of
Inheritance. If you are going to subclass, make sure
that the superclass is either rock stable or the
providers of the superclass are committed to bringing
you forward as changes occur. It works best if you own
both classes.

2. Follow the rules. Factored Superclass tells you to make
superclasses only when forced to do so by duplicated
concrete implementation, not merely speculation
about the nature of the universe. The “super” patterns
that follow help reduce coupling. Composed Method,
when used in the superclass, ensures that subclasses
needn'’t duplicate code.

3. Never refactor a hierarchy twice in a row. Early in my
career [wasted more time twisting inheritance hierar-
chies this way and that, trying to share one or two
more lines of code. If you do refactor an inheritance
hierarchy, live with it for a while the new way. Be pre-
pared to dump the refactoring if it doesn’t go well.

PATTERN: SUPER

How can you invoke superclass behavior?

An object executes in a rich context of state and behavior,
created by composing together the contexts of its class and
all its class’ superclasses. Most of the time, code in the class
can be written as if the entire universe of methods it has
available is flat. That is, take the union of all the methods up

18

The Smalitalk Report

BY CO

variable declaration:
auvto-suggests solutions

R ontypos, and even hunts
the superclass chain and that's what you have to work with. down pool dictionaries

Working this way has many advantages. It minimizes
any given method's reliance on inheritance structure. If a
method invokes another method on self, as long as that
method is implemented somewhere in the chain, the
invoking method is happy. This gives you great freedom to and references have
refactor code without having to make massive changes to repluce capability and
methods that assume the location of some method. configurable scope

There are important exceptions to this model. In par-
ticular, inheritance makes it possible to override a
method in a superclass. What if the subclass method
wants some aspect of the superclass method? Good style JEEPSEFTREFRREIEPSS
boils down to one rule: say things once and only once. If functions for text:
the subclass method were to contain a copy of the code |t st
from the superclass method, the result would no longer | ttisiash
be easy to maintain. We would have to remember to
update both (or potentially) many copies at once. How
can we resolve the tension between the need to override,
the need to retain the illusion of a flat space of methods,
and the need to factor code completely?

undo/redo: mista
can be undone a
redone without |}

senders, implementors
even over metho

you to creat
and switch b
code format

code-aware editing:
auto indent, variable

Invoke code in a superclass explicitly by sending a completion, block indent,

message to “super” instead of “self.” The method corre-
sponding to the message will be found in the super-
class of the class implementing the sending method.

and comment filling

context-sensitive
hypertext on sen
Always check code using “super” carefully. Change JEEEE—————E—_——— implementors, a
“super” to “self” if doing so does not change how the code TRV LA LT
executes. One of the most annoying bugs I've every tried CELIUEIRI LR SILEE
to track down involved a use of super that didn't do any- of just one method
thing at the time I wrote it, and that invoked a different
selector than the one for the currently executing method.
I later overrode that method in the subclass and spent
half a day trying to figure out why it wasn’t being invoked.
My brain had overlooked the fact that the receiver was assign key bindings
“super” instead of “self,” and I proceeded on that assump- to any public edalt
tion for several frustrating hours.

Extending super adds behavior to the superclass.
Modifying super changes the superclass’ behavior.

references searc

method for more direct

use of the keyboard configurable
highlighting:
readability a

feedback on

PATTERN: EXTENDING SUPER
You need to extend superclass behavior.

How do you add to a superclass’ implementation of a
method?
Any use of super reduces the flexibility of the resulting code. Free
You now have a method that assumes not just that there is
an implementation of a particular method somewhere, but
that the implementation has to exist somewhere in the
superclass chain above the class that contains the method.
This assumption is seldom a big problem, but you should
be aware of the trade-off you are making.

If you are avoiding duplication of code by using super,
the trade-off is quite reasonable. For instance, if a super-
class has a method that initializes some instance vari-

™
ables, and your class wants to initialize the variables it
has introduced, super is the right solution. Rather than
have code like:

May 1995

CIS 71571,407

For your demo, contact us today.

PH 303-546-6828

2525 ARAPAHOE STEEE4285 BOULDER - Go-d030z6720 "F@ programmer’s editor For Ssmalitalk

| SMALLTALK IDIOMS

Class: Super
Superclass: Object
Variables: a
Super class>>new
~gelf basicNew initialize
Super>>initialize
a := self defaultA
Class: Sub
Superclass: Super
Variables: b
Sub class>>new
~self basicNew
initialize;
initializeB
Sub>>initializeB
b := self defaultB

where the subclass has to invoke both initializations
explicitly, using super you can implement:
Sub>>initialize
super initialize.
b := self defaultB

and not have Sub override “new” at all. The result is a
more direct expression of the intent of the code—make
sure Supers are initialized when they are created, and
extend the meaning of initialization in Sub.

When you want to extend the meaning of a superclass
method, override the method and invoke “super” as
either the first or last statement of the method.

PATTERN: MODIFYING SUPER
You need to modify a superclass’ behavior.

How do you change the part of the behavior of a super-
class’ method without modifying it?

This problem introduces a tighter coupling between sub-
class and superclass than Extending Super. Not only are
we assuming that a superclass implements the method
we are modifying, we are assuming that the superclass is
doing something we need to change.

Often, situations like this can best be addressed by
refactoring methods with Composed Method so you can
use pure overriding. For example, the following initializa-
tion code could be modified by using super.

Class: IntegerAdder
Superclass: Object
Variables: sum, count
IntegerAdder>>initialize
sum = 0.
count :=0
Class: FloatAdder
Superclass: IntegerAdder
Variables:
FloatAdder>>initialize

super initialize.
sum := 0.0

A better solution is to recognize that IntegerAdder>>ini-
tialize is actually doing four things: representing and
assigning the default values for each of two variables.
Refactoring with Composed Method yields:

IntegerAdder>>initialize
sum := self defaultSum.
count := self defaultCount

IntegerAdder>>defaultSum
A

0

IntegerAdder>>defaultCount

oY
0

FloatAdder>>defaultSum

~0.0

However, sometimes you have to work with superclasses
that are not completely factored. You are faced with the
choice of either copying code, or using super and accepting
the costs of tighter subclass/superclass coupling. Most of
the time the additional coupling will not prove to be a
problem. Communicate your desired changes with the
owner of the superclass. In the meantime:

When you want to modify the meaning of a superclass
method, override the method and invoke “super” as
either the first or last statement of the method.

COMMENTS

Here is where an interesting point about patterns comes in.
Notice that these two patterns only tell you to invoke “super”
with the same selector as the currently executing method.
The original article discussed a couple of cases where it was
marginally useful to invoke super with something other than
the currently executing message selector. In trying to trans-
late them to patterns, I wasn't convinced that they were
actually good style, and they were terribly rare. Rather than
write poor patterns that wouldn't be used often, I chose to
leave them out (go browse all users of super in any stock
image if you want to find how super is misused).

PLUS ONE

Here is a pattern morsel I'll throw in, mostly because I was
so embarrassed recently when I missed it, and it took my
clients to point out how much easier life would be once I
reintroduced it.

Let me set the stage. I am writing a framework for this
client that invokes one of many subclasses that they are
writing. The protocol has been pretty unstable for a
while, with names changing and parameter lists chang-
ing as we matured the framework. This resulted in the
need for more communication than is productive, and
slowed their development.

Now me, I'm willing to go through lots of pain to get to
the right solution. If I have to go change 25 selectors
because I found a better word for something, I'll do it. My

20

The Smalitalk Report

assumption is always that the improved communication
and resulting reduction in lifecycle cost is always worth
the effort. In this case, my “self sacrifice” got the best of me.
If I'd used Parameters Object about two months ago, the
whole project would have sped up by about a week.
Sigh...If only my computer would quit reminding me how
little I really know.

PATTERN: PARAMETERS OBJECT
How can you best write methods with many parameters?

Reducing the coupling between objects is good.
Eliminating direct references from one object to another
lets you use the two objects more independently. You can
replace most direct references by passing extra parameters.

Going too far down this road leads you to code that
doesn't communicate well. There are times when the com-
munication between two objects is so pervasive, such an
important part of your conception of the program as a
whole, that you can’t imagine not having a reference one to
another. A Rectangle needs its Points. Further, even where
you might be able to replace a direct reference with a para-
meter, passing extra parameters leads to difficult format-
ting and naming decisions and obscures the intent of the
methods behind the host of keywords required.

If you have decided that you don't want a direct refer-
ence, but you still need several parameters, what do you
do? The problem becomes worse if there are many imple-
mentations of the selector. During development, as you
discover the need for more or fewer parameters in certain
cases, you have to go around adding and deleting keywords
from selectors in many classes.

In a collaborative environment, this redesign is unlikely
to ever take place. One strategy is to pass every possible
parameter everywhere on the off chance that it might be
useful some day. This results in many messages being more
complex than they need to be, obscuring the true intent of
the code for later refinement or communication to others.
The other strategy is to use global variables to short-circuit
disciplined communication, thereby reducing the possibil-
ity that the code will ever be valuable on its own.

We need a way to decouple instability in the parameter
list from instability in the protocol. As protocols change,
they should change because of changes in intent. As the
list of parameters change, the protocols shouldn't change
just to accomodate the need of some particular imple-
mentation for extra information.

If you have three or more parameters that are passed
three or more levels, or that are passed to five or more
implementations of the same selector, create an object
with one variable per parameter. Create an instance of the
object in the highest-level sender and pass it around.

You may be able to use Composed Method to move
computations into the Parameters Object. Do so without
regard to whether it “makes sense.” If you send two or more
messages to the Parameters Object in a single method and
then compute with the results, move the computation.

For example, suppose we didn’'t have Rectangles.

Database Solution for Smalltalk/V

A class library for ODBC Database Access

® ODBC 2.0 support for 50+ databases

® 0O to RDBMS mapping

u Native data type support

® Online help, source included, no runtime fees

F T
ODBTalk

Available for Winl6, Win32s, Win-NT, OS/2 and VST
".. simple but elegant ..." - Australian Gilt Securities

Client Server Solution for Smalltalk/V
A class library for Windows Sockets Development

s UDP and TCP Sockets

m Synchronous and asynchronous supporl

m Ssample code for remote disk browser app

® Online help, source included, no runtime fees

Tel: 416-787-5290

Available for Winl16, Win32s, Win-NT
Fax: 416-797-9214
CompuServe: 73055,123

Consulting Services
Tl e o Sabisd e Internet: lucc@tor.hookup.net

e ———

Everywhere we compute with Rectangles we have to pass
four parameters:

...boundsTop: topInteger left: leftInteger bottom:
bottomInteger right: rightInteger...

...area := bottom - top * (right - left)...
Introducing Rectangle as a Parameters Object, we now
have:

...bounds: aRectangle

...area := aRectangle bottom - aRectangle top *

(aRectangle right - aRectangle left)...

Far better to move the computation close to the data:

Rectangle>>area

“bottom - top * (right - left)
...bounds: aRectangle...

...area := aRectangle area

The resulting code is much more flexible, because we can
change the implementation of area computation to suit the
needs of the client without having to touch the client’s code.

Another common implication of this pattern is that
the method may be relying on sending messages directly
to the parameters before you introduce the Parameters
Object. Use Simple Delegation in the Parameters Object
to hide its existence from the method.

Between these two techniques, you will often find that
the Parameters Object takes on an important role in the
whole computation. These are the kinds of objects that
thoughtful analysis will never reveal. As valuable as they
are, you will only find them if you listen to what your pro-
gram tells you.

May 1995

21

Model integrity through MarkLore
custom instantiation

REATING INTELLIGENT OBJECT MODELS of your busi-

ness that serve your software needs is what object

technology is all about. We would like these models
to be as robust as possible. One technique to ensure the
integrity of your object model is by instantiating your
objects with their essential relationships already estab-
lished. You do this by defining custom instantiation class
methods—a technique I call instantiation integrity.

A MODEL...

Let's say we decide Figure 1 represents a portion of our
business’ objects and their important relationships. A
SalesTransaction has one Person associated with it and
contains one or more Lineltems. A Lineltem is associated
with one kind of Product.

In particular, let’s assume that our business rules
require that:

« a SalesTransaction cannot exist without a related cus-
tomer (a Person), because a customer of the Store
must purchase something to have a SalesTransaction.
We'll ignore complications such as other businesses
buying from our Store for now.

SalesLineltems cannot exist without a related Product,
because their reason for being is to document the quantity
and price of a certain Product being sold within a particular
SalesTransaction. We will not discuss the many implications
and complexities of something seemingly as simple as fig-
uring out a price, such as price groups and sales events.

Listing 1 shows some possible client code that creates
Lineltems and adds them to a SalesTransaction.

What happens if one of our clients forgets to set new-
Lineltem’s product? Our model would be in an invalid
state, according to our business rules. All clients are also
required to write more code to create a SalesLineltem. Let’s
see how we can ensure these relationships exist upon cre-
ation of our object instances.

...WITH INTEGRITY
As you know, the new class method exists to instantiate

Mark Lorenz is Founder and President of Hatteras Software Inc, a
company specializing in O-O project management, design quali-
ty metrics, rapid modeling, mentoring, and joint development to
help other companies use object technology effectively. He wel-
comes questions and comments via email at mark@hatteras.com
or voice mail at 919.319.3816.

Project Practicalities

i
) k
[

Listing 1. Sample client code without instantiation integrity

newLineltem := Lineltem new.
newlineltem product: self selectedProduct.
mySalesTransacton addLineltem: newLineltem.

objects in our image. We can use this method to get an
“empty” instance—one that has all state initialized to nil.
What we want to create are instances that have valid
state immediately set for all clients of a class. We do this
by defining custom class instantiation methods.

Listing 2 shows an example method to create Sales-
Transactons that have their related customer set immedi-
ately upon instantiation.

Client code might look like:

newOrder := SalesTransaction for: myCustomer,.

Notice that the instance of SalesTransaction is in a valid
business state immediately, in this case by having a relat-
ed customer. It is likely that we will have fewer problems
in developing and maintaining a system built using this
design strategy. Clients also have less work to do.
Similarly, Listing 3 shows an example of how we can

SalesTransaction Person
lineltems name
customer address
totalPrice
addLineltem

B —

SalesLineltem Product
quantity number
product
price deplete

Figure 1.Object model relationships.

22

The Smalltalk Report

Are you maximizing your Smalltalk class reuse? Now you can with...

MI - Multiple Inheritance for Smalltalk

MI™ from ARS

* adds multiple inheritance to VisualWorks™ Smalltalk

* provides seamless integration that requires no new syntax
* installs into existing images with a simple file-in

» is written completely in Smalltalk

Leading methodologies (OMT, CRC, Booch, OOSE)
advocate multiple inheritance to facilitate rouse. Smalltalics
lack of muiltiple inheritance support impedes the direct
application of these methodologies and limits class reuse.
M| is a valuable tool which enables developers to apply

advanced design techniques that maximize reuse.

Introductory Price: $195

To order MI or for more information on ARS's family of products and
services, please call 1-800-260-2772 or e-mail Info@arscorp.com.

Applled Reasoning Systerns Corporation (ARS) Is an Innovative developer of high ;
quality Smallialk development tools, application frameworks, intslligent software A\ MISBEIF SISV ASIIEN
systems, and related services that provide advanced solutions to complex problems.

Smalitalk Products Consulting ¢ Education * Mentoring

Listing 2. Custom instantiation class method for the customer relationship.

Phone/Fax: (919) 781-7997 « E-mall: info@arscorp.com

Listing 3. Custom instantiation class method for Product relationship.

SalesTransaction class

for: aPerson
"return an instance of myself with my customer
set to aPerson"”

~self new
customer: aPerson;
yourself

Orderlineltem class
for: aProduct

"return an instance of myself with my product set
to aProduct"

Aself new
product: aProduct;
yourself

create SalesLineltems with a class method that establish-
es the relationship to a Product.

The name of the instantiation method depends on the
relationship(s) being established. For example, an Amount
instance of a Currency might be initialized by:

amount := Amount value: aFloat of: aCurrency.

Be careful to include yourself at the end of your cascad-
ed initialization messages. This will ensure that you
return an instance of the proper type of object, instead
of the last object returned from your initialization meth-
ods. In Listing 3, if yourself had been left off, a Product
instance would be returned instead of a SalesLineltem
instance.

SUMMARY
We have discussed a useful technique for helping to

ensure the integrity of our object models. The technique
uses custom instantiation class methods to create our
objects with their essential relationships immediately
established. While this technique does not prevent bad
object model states, such as are caused by passing bad
parameters, it goes a long way toward placing the busi-
ness knowledge where it belongs—with the key model
classes. This helps each and every client use the model
services more safely and effectively.

Terminology
* Class method: a method defined for and used by a
class instead of an instance.
e Instantiation: the allocation of memory for the
unique and private state of an instance of a class.
* Object model: classes and their relationships as
defined by the business requirements.

May 1995

23

Math, Part 1

HERE ARE A NUMBER OF MATHEMATICAL ISSUES that
Tcome up very frequently on comp.lang.smalltalk.
Most of these issues are language-independent, but
because so many people are asking these questions in a
Smalltalk context, I think it’s important to address them.
I'm not a mathematician, so I'm going to try and stay
with the simple stuff, and with things that are Smalltalk-
specific whenever possible.
I've made this a two-part column. The first explains
some of the problems and the second attempts some
solutions.

THERE'S A SERIOUS ARITHMETIC BUG...
It seems that every few months there's a post like the fol-
lowing, from Xavier Alvarez (alvarez_x@jpmorgan.com):

In VisualWorks, if you enter the following in a work-
space
100.9 - 100.0
and evaluate it, you will get a fabulous result
0.900002
If you have a solution please tell us! We are building a
critical application and need to subtract correctly. I
think this is a very serious flaw in PP Smalltalk. Is
there a patch for this?

Although Smalltalk doesn't agree with basic arithmetic in
this case, it isn't a flaw in ParcPlace’s products, it isn't a
problem with Smalltalk in general, and it's not a bug. It's
a feature. This is the way floating point calculations work
on digital computers. The misunderstanding arises
because floating point numbers use a limited number of
bits to implement the infinite-precision abstractions we
learned in school. Most of the time they look the same,
but sometimes the limitations show through.

Representing numbers

Integers work. We can exactly represent any integer in the
computer and we can manipulate them without introduc-
ing any errors. Some of them may take a bit of space and be
a little slow to manipulate, but there are no absolute restric-
tions. Unlike many languages, Smalltalk doesn't impose a
maximum size on integers. We can write expressions like

60 factorial / ((60 - x) factorial * x factorial))

Alan Knight battles the forces of numerical instability with The
Object People, 509-885 Meadowlands Dr., Ottawa, Canada, K2C 3N2.
He can be reached at 613.225.8812 or by email as knight@acm.org.

The Best of comp.lang.smalltalk

Alan Knight

and get the right answer even though the intermediate
results don't fit in 32 bits, or even 32 bytes.

Fractions work, because we can represent them with an
integer for the numerator and another for the denominator.

With integers and fractions, we have most of the num-
bers we need. There are still lots of numbers (infinitely
lots) that we can't represent, but these are numbers like T,
e, and the square root of 2. These generally don't arise if
we stick to simple arithmetic, so we'll ignore them for
now. We have bigger problems.

Although Smalltalk allows arbitrarily large integers, it
has to run on digital computers, which are optimized for
dealing with small numbers. Operations on very large
numbers are much slower.

How small? About 4 billion on most machines, and
nowadays many can comfortably handle 18 sextillion.
That may not seem small, but it's very easy to exceed that
limit, particularly if you're using fractions. It doesn't take
many operations before the numerators and denomina-
tors get very large, and the operations are particularly
slow because the fractions need to be reduced.

How slow? I did a couple of very crude benchmarks in
Digitallk’'s V/Win32, and for a simple addition test I found
LargeIntegers to be about 100 times slower than Small-
Integers and Fractions with LargeInteger components to be
about 25,000 times slower than Smalllntegers. These aren’t
very reliable benchmarks, and I wouldn't put any faith in
the details of the results, but they do indicate that the slow-
down is very significant.

Floating point

There’s an alternative, which is to use floating point num-
bers. These use a fixed number of bits, but have an addi-
tional exponent which gives the scale of the number.
These mirror the scientific notation for numbers, e.g.
1.356 * 10™2. With floating we can represent both 1.5 and
1.5 sextillion with perfect accuracy. We can also manipu-
late these numbers very quickly, particularly if we have a
floating point co-processor.

The drawback is that we’ve given up absolute accura-
cy. We have a fixed number of digits, and although we can
represent 1.5 sextillion perfectly, we can't handle 1.5 sex-
tillion and 1. There’s an even worse limitation on accura-
cy to do with repeating decimals. These are fractions that
can't be represented in any finite number of digits. The
most common example is one-third, whose decimal rep-
resentation is 0.333333... with an infinite number of 3’s.
If we actually write the decimal form or represent it in a

24

The Smalltalk Report

June 5-9
1995

THE NATIONAL CONFERENCE & EXPOSITION New York City

setting New Strategies — Reaching New Goals

Management Strategies Symposium
This separate 1/2 day event is
geared for upper-level software
managers exploring the benefits

of OT adoption and
implementation.

s O

Object Expo returns to New York
in 1995. It brings together the
most respected experts and leading
companies in the object technology
industry. Whether you’re just
exploring possibilities, or are a
seasoned professional, don’t miss

this once a year conference. It’s Spedal Educational Events Inciude:
the best place to learn the latest A Keynote Speeches
techniques, develop new strategies, A Walk-In Clinics . . i
and stay up-to-date on break- A Product Education Sessions I j R ‘
throughs in object technology. A User Group Meetin, H .
Edacational tracks Incle 4 User Group Meetings __{ - lease send me more information on Object Expo
oy 3 A Panel Discussions E a Atterf\ding Technical [Mgmt.Strategies [Exhibiting 0 R:xﬁévmgp Free
« Fun entals Bea part of the most high_Pow_ : Conference Symposium E its Pass
* Management ered OT event on the East Coast! E Name
* Databases Don’t miss this conference and 1 Company
* Analysis and Design exhibition dedicated to setting new i
« Smalltalk strategies with object technology. ! Address
1
* NEW-Client/Server Sponsored by: 1 Ciy State Zip
Development 1oumALGF !
OB OBRCI-ORENIED | Do Phose
Presented by: e M -
1
S I G S o= | SMTK6/95 Mall or Fax coupon to: Object Expo
IIl1D -4-REPORT : pon to: D
. CONFERENCES C—— Smalltalk | Fax:212/22-7578 Mall: 1 West 23rd Street, New York, NY 10010
'
1
1

tion should yield an exact or easily checkable result, peo-
ple react very badly to small errors. They may not notice
if the cosine of 45 degrees comes out as 0.7072103
instead of 0.70710678, but they're not happy if the cosine
of 90 degrees comes out 0.99986452 instead of 1.

For this reason, people designing mathematical soft-

computer we will have to truncate it to a finite number of
digits, introducing inaccuracy.

One-third is a repeating decimal in base 10, but com-
puters operate in base 2, which has some other problem
numbers. In particular, one-tenth cannot be represented
with a finite number of binary digits. This is a problem if

we want to do really accurate base 10 arithmetic because
0.1 or 100.9 can only be stored as
approximations,

For a lot of calculations these
inaccuracies are quite acceptable.
We're often dealing with input data
that is uncertain, and a small loss of
precision in exchange for an enor-
mous speed-up can be a good

Using double-precision to
represent money just
means the errors won'’t
show up until the

ware work very hard to make the errors invisible. One
way to do this is to adjust the approx-
imations so that the exact answers
come up in places that people are
likely to notice. Pocket calculators
use approximations for functions
like sine and cosine, but they are
carefully tuned to give the exact
answers at places where they're well-

trade-off. This is particularly true in amounts of money are known, even at the cost of slightly
scientific and engineering compu- greater inaccuracy in other places.
tations, where floating-point num- very large- The other thing systems do to look

bers are widely used. It's probably

not true in applications dealing with

money, where accuracy is extremely important. A good
rule of thumb is:

Don't use floats to represent money.

Hidden errors
Although most people accept the idea of using approxi-
mations, they don't like to be reminded of it. If a calcula-

more accurate than they are is to
round numbers so that errors in the
last few digits aren't visible when the number is displayed.

All systems do this to some extent, which is why numbers

like 0.1 print properly, even though they cannot be exact-

ly represented in the computer. In fact, with double preci-

sion floats, most Smalltalks print a maximum of 8 digits

when there are 14 or more available, potentially masking

quite a lot of round-off error. If your calculations are

numerically stable, the errors may never show up in the

May 1995

25

| THE BEST OF COMP.LANG.SMALLTALK

printed representation at all. Unfortunately they’re still
there, and can show up in more subtle ways.

Equality tests

One place that problems arise is comparing floats for
equality. Expressions that you'd expect to be equal proba-
bly aren’t. For example:

0.1+0.1=0.2 ==>true
0.1+0.1+0.1=0.3 ==>false

The reason is that floating point equality tests that both
numbers are exactly equal. If even a single bit is different
the comparison will return false.
In the case above, adding 2 floats

| never noticed this in...
Even though these principles apply to all languages, they
may be more or less noticeable depending on character-
istics of the platform and the environment. One charac-
teristic is the size of floats. Floats come in two main sizes,
single-precision (32 bits) and double-precision (64 bits),
with Macintosh also supporting extended precision (80
bits). C, the language most commonly used for imple-
menting Smalltalk, uses mainly doubles, with some half-
hearted support for single-precision. Perhaps inspired by
this example, most Smalltalks only support one preci-
sion, the highest available on the machine. As far as I
know, ParcPlace is the only
Smalltalk implementation to

together doesnt introduce support both single and double-

enough error, but adding 3 floats precision floats, with single-pre-
together does. Another good Smalltalk doesn’t agree cision the default.

rule of thumb is: If there’s a bug here, it's a pub-
, with basic arithmetic in this ;__ .j.tions bug on the part of

Don't compare floats for but it’ tab ParcPlace. By making single-pre

i case,putit’s nota ou : e
equality. ’ . & cision the default, they’'ve made
What you usually want to know it'’s afeature. these errors much more evident

is if two floats are close enough
together that they can be consid-
ered equal. We can find this out
by testing a range. For example,
we might define a float operation:

closeEnoughTo: aFloat
~(self - aFloat) abs < 0.00001

This works well as long as the precision of the numbers is
much larger than the range we're testing against. It does-
't solve all the problems, however. This is not an equali-
ty operation in the traditional mathematical sense, and
standard assumptions may not hold. For one thing

(a closeEnoughTo: b) and: [b closeEnoughTo: c]
does not imply

(a closeEnoughTo: c)

Subtraction

Equality testing exposes minor numerical errors in calcu-
lations. Far worse than this is subtraction, which can
make calculations very numerically unstable. In particu-
lar, subtraction of nearly equal quantities is bad. In
numerical analysis, a lot of effort is devoted to re-arrang-
ing equations to avoid these kind of subtractions.

The problem is that these subtractions throw away
lots of significant digits, magnifying the existing errors.
The error in 1.000032 is inconsequential, but if we sub-
tract 1.0 we have nothing left but error. This is what hap-
pened in the original post, where subtracting 100.0 from
100.9 multiplied the existing approximation error by 100,
making it visible in the final result.

than in other dialects. In fact,
representatives of two different
Smalltalk vendors posted arti-
cles saying that their implemen-
tation got the right answer, the implication being that it
was indeed a bug in VisualWorks. This is, of course
impossible. What actually happened is that these imple-
mentations used large enough floats that the printed rep-
resentation of the answer looked right. That is

100.9 - 100.0 ==> 0.9, but
100.9 - 100.0 = 0.9 ==> false

More precise floating point representations can certainly
help the accuracy of calculations, but they can also lead to
dangerous complacency, because more sophisticated
testing may be needed to catch numerical problems.
Using double-precision to represent money just means
the errors won't show up until the amounts of money are
very large. Susan Stepney (susan@logcam.co.uk) writes:

... I'd like to pick up on the word “critical” in the origi-
nal post. I was taught by an old hand at numerical
analysis that “double precision is a crutch used by peo-
ple who don't do their numerical analysis properly”

If your application is *critical*, make sure your
numerical algorithms are so *robust* that it doesn’t
matter that you've got 6 figure accuracy.

What to do about it

It’s all very well to talk about the problems with floating
point arithmetic, but what we really need are solutions.
How do we represent $12.53 if we can't use floats for
money? Fortunately, there are a variety of ways to work
around these problems, and I'll talk about them in the
next issue.

26

The Smalitalk Report

Product Review

HP Distributed Smalitalk:
CORBA-compliant distributed objects

Jim Haungs

a set of extensions to ParcPlace’s VisualWorks that

enable cooperative processing among objects dis-
tributed over a network. Release 4.0 makes DST compati-
ble with VisualWorks Release 2.0. It is fully compliant with
the Common Object Request Broker Architecture
(CORBA) Release 1.1 adopted by the Object Management
Group (OMG), and it supports release 1.0 of OMG's
Common Object Services (COS).

DST is composed of several distinct functions orga-
nized into three somewhat indistinct layers: the remote
procedure call (RPC) transport layer; the CORBA compli-
ance layer, consisting of the Interface Definition
Language (IDL), Object Request Broker (ORB), and
Common Object Services (COS); and, finally, the HP
Desktop layer. I'll discuss each of these in turn.

HEWLE’I‘I‘-PACI(ARD'S DISTRIBUTED SMALLTALK (DST) is

RPC LAYER

The most basic layer provides remote procedure calls
(RPCs) between Smalltalk images. Any Visual Works plat-
form that supports sockets and a TCP/IP stack can be
used with DST. Howevet, the current release requires its
host to have a fixed IP address, which makes it difficult to
use on machines with SLIP or PPP connections; this limi-
tation may be remedied in a future version.

The images may be on the same machine, or they may
be distributed over multiple machines in a network. A
remote procedure call, or in Smalltalk parlance remote
message passing, is somewhat more complicated than a
normal method invocation because the parameter values
must be passed between address spaces. It is not suffi-
cient to push the values on the stack, assuming that both
sides of the call can access the same memory. Instead, the
parameters must be marshalled for transmission, i.e., the
objects are traversed and their contents converted into a

objects are transitively unraveled, converted to a byte-
stream, and written to the file; when the contents are
retrieved, the opposite occurs.) On the receiving side of
the call, the RPC layer must reconstitute the arguments,
then effect a local dispatch to the target method, passing
it the reconstituted parameter values. When the method
has completed, the return value must then be marshalled
and sent to the calling machine, where the return value is
unmarshalled, reconstituted, and returned to the caller of
the remote method.

THE OBJECT REQUEST BROKER LAYER

The next layer of DST is the CORBA implementation. The
CORBA specification is quite intricate because it address-
es a number of complex issues without restricting the
style and form of a compliant implementation. Release
4.0 of DST is fully compliant with Release 1.1 of the
CORBA specification, and Release 1.0 of the Common
Object Services. I'll briefly discuss each of these standards
and describe their implementation in DST.

At its most basic level, the ORB architecture is designed
for interoperability between languages. To this end, OMG
specifies an IDL that describes abstract interfaces for sets
of procedure calls. The syntax of IDL is patterned after the
declaration syntax of C++, with some additional informa-
tion provided for distribution, exceptions, and inheri-
tance from other interfaces. At first glance, one might
question the value of statically typed interfaces for
Smalltalk, but the purpose of the IDL is to describe inter-
faces in a language-independent way. There is no more
need for IDL between two Smalltalk clients than there is
between two C clients—they each speak their native lan-
guage, and barely understand the other. However, sharing
an IDL interface enables a CORBA-compliant C program
to communicate with a CORBA-compliant Smalltalk pro-

stream of bytes suitable for trans-
mission over a network, On the
other side of the call, the parame-
ter values must be unmarshalled
and the objects they represent
must be reconstituted. (This is
analogous to the processing that

takes place for BOSS files: the The ORB Control Panel.

May 1995

27

| HP DISTRIBUTED SMALLTALK

gram. In actual use, DST requires you to describe an IDL
procedure interface for every method call that can be exe-
cuted remotely; in practice, this represents a high degree
of programming overhead, and is overkill for Smalltalk-
to-Smalltalk communication. But as more CORBA imple-
mentations are developed, it will become increasingly
important to support interlanguage communication. As
the tools improve and the need increases, this overhead
will decrease with time.

CORBA Interfaces are contained in modules; a CORBA
module can contain any number of interfaces. Within an
interface, you can define any number of procedure calls.
An interface corresponds roughly to a protocol in
Smalltalk; it represents a group of related procedure calls
that can or should be grouped logically as a unit. Interfaces
can be shared among classes, provided the selector names
are the same and the parameter types match.

DST has a very nice implementation of the CORBA
repository idea, where interfaces can be browsed and
edited with the normal Smalltalk source code browser.
Even though the IDL syntax is different from Smalltalk,
normal editing and compiling is supported by
VisualWorks' flexible compilation framework. The
DSTrepository class contains one module per method;
accepting the source code in a browser invokes the IDL
compiler instead of the Smalltalk compiler. Errors are
highlighted one at a time, just as in Smalltalk, and ulti-
mately, when the compilation is successful, the IDL mod-
ule is compiled into Smalltalk.

There are a few things about building cross-platform
interfaces that are not so simple. DST relies heavily on the
notion of a universally unique id (UUID) that is an encod-
ing of the host IP address and the current date and time.
Every interface has a UUID, and inter-machine commu-
nication depends on these IDs matching. If you want to
invoke a remote procedure in an interface, you must have

syntactically correct and semantically
matching interfaces on both machines,
and their IDs must match.
Unfortunately, the implementation of
UUIDs leaves much to be desired. Their
format is a 34-character string of hexa-
decimal numbers. To create a new one
while editing an interface module, you
must type the text “ORBObject newld,”
highlight the text, select Print It, and
then paste the resulting text into your
interface definition. One of the most
common errors is getting the UUID
wrong. I would like to see this process
automated and made invisible to the
programmer; it is far too error-prone.
The design of a class and the design of its
interfaces go hand in hand. Once the
class is designed and the methods are
coded, you can execute the text
“yourClassName asIDLDefinition,” which will create a skeletal
interface module with an IDL procedure definition for
each method on the class. Once the methods are coded,
you must create a couple of methods for your class that
identify it to the ORB. The CORBAName method returns a
Symbol that identifies the module/interface pair that inter-
faces with the class. The abstractClassId method returns a
UUID that uniquely identifies the class. Abstract class IDs
are used to create remote instances of a class. All interface
UUIDs and class UUIDs must be different from each
other, and the corresponding interface IDs and class IDs
must match on all the machines that will be communicat-
ing.

The next layer up from the basic RPC mechanism is the
Object Request Broker. The ORB is an active entity that
manages the RPC flow into and out of an image. It runs as
a background process in every image that communicates
with other images. It is the ORB that first receives a com-
munication from another image, looks up the interface
ID, and routes the message to the appropriate object.

In addition to routing messages, the ORB also provides
the CORBA Naming Services (NS). Naming is a directory
service used to locate remote objects. Names are complex
entities composed of a sequence of components and a
fixed name. The sequence can be arbitrarily long, and can
represent naming schemes from the application domain,
machine names, directory paths, database traversal paths,
or any arbitrary means of locating an object. Application
developers can easily design their own naming services to
locate itemns of interest on remote machines.

An important distinction in the CORBA spec is
between basic services and implementation enhance-
ments. One of the DST enhancements is a clean separa-
tion between the semantics of an application and its pre-
sentation. This split is similar to the MVC paradigm in
Smalltalk, in that it provides for multiple presentations on

28

The Smalltalk Report

Directory of
Object Technology

» Up-to-date and complete
» Detailed yet easy-to-read

» International in scope

Divided Into 5 User-Friendly Sections

— 2,500 Total Entries

Products — 1309 alphabetized listings by
product category. Each entry is carefully
described including language and platform.

Services — 731 alphabetized entries by
category. Includes organization name and
service offerings.

Training & Mentoring — 200 alphabetized
contact entries by primary focus and
specialization.

Books — neatly 500 titles published during
the past decade.

Company Listings — contact, description,
pricing, and platforms of 330 OT-related
companies worldwide.

-~ I~

e OF morketplace of your fingetys. ..

, Just Published!.
~ Directory of
Object Technology .

o g
i

T A o180 iea D res.
Distributed by Prentice

Hall

The Directory of Object Technology is the
one complete resource guide available. Priced at just
369, this much-needed sourcebook presents detailed
information on every O-O related company, product,
and service currently on the market. It contains every-
thing you need to contrast and compare products —
helping you make well-informed purchasing decisions.

[Yes! Please rush me the Directory of Object Technology ‘95
(ISBN: 1-884842-08-9) at the following rate:

Individual Rare: Just $69 each

Corporate Library Rate: $169 each

Method of Payment

3 Check enclosed (Payable to SIGS Books)

J Bill me/My company

3 Charge my: dVisa 2 MasterCard 1 Amex
Card#:

Eaxp. dare:

Signature:

Postage and handling: U.S. orders add $5 for shipping/handling; Canada and
Mexico add $10; Qutside North America add $20.

Note: New York State residents must add applicable sales tax. Please allow 2-3 weeks
for delivery.

If you are not completely sarisfied with this product, you may
return it within 14 days and receive a complete refund.

Name,

Title

Company,
Address

City/Stare/Zip
Country/Postal Code

Phone Fax

Return this coupon by

FAX: 609.480.6188

MAIL: SIGS Books P0. Box 99425, Collingswood, NJ 08108-9970
or order by PHONE: 609.488 9602

SIGS

BOOKS

195FPDRA

| HP DISTRIBUTED SMALLTALK

a common model. HP has taken the MVC paradigm a bit
further by allowing presentations and semantics to exist
on separate machines. Because the coordination this
entails is considerably beyond the MVC change mecha-
nism, HP introduces two new class frameworks for dis-
tributed applications: the DSTapplicationObject class sup-
ports the application domain model, and the DSTpresenter
class supports the presentation layer. By convention,
domain models inherit from DSTapplicationObject, and
their class names end with the letters SO (for semantic
object); similarly, presentations inherit from DSTpresenter,
and their names end with the letters PO (for presentation
object). The HP Shape example uses two classes: ShapeS0
and ShapeP0. It is possible to implement remote updates
using the standard Smalltalk MVC messages, but it is con-
siderably less efficient than the DST framework, because
MVC messages take two roundtrips, one for the #changed
message and one for the #update messages. The DST
framework accomplishes this more efficiently, but at a
cost of having to learn yet another MVC-like framework.

OBJECT SERVICES LAYER

The next layer up from the ORB is the Common Object
Services layer. The standards for these services are not as
rigorously defined as the IDL interface. HP calls these ser-
vices the Object Lifecycle services; they provide a frame-
work for relating objects via links. Links are used to create
compound objects, i.e., graphs or networks of related
objects that can be manipulated as a unit. Compound
objects can be copied and moved between machines, and
they can be destroyed as a unit. There are four types of
links, in order of descending strength: containment links,
used to represent concepts like files contained in a direc-
tory; reference links, which guarantee the existence of
linked objects; designation links, which don't guarantee
the existence of linked objects; and weaklinks, in which an
object points to a target object but the target is unaware of
the link. The strength of the link is inversely related to
fault-tolerance and flexibility. Containment links are the
strongest, and they force all the objects in a containment
relationship to be collocated, i.e., on the same machine;
containment links are strictly hierarchical. The other link
forms can represent inter-machine references whose exis-
tence is not guaranteed, and which rely on the stability of
the underlying network. All objects in a containment rela-
tionship can be expected to be accessible if any of them
are. The same cannot be said of the other types of rela-
tionships. Depending on the nature of the application, the
link hierarchy provides for nearly any combination of
strength and flexibility the application requires.

The OMG recently approved a new service specifica-
tion called Relationship Services, which completely sub-
sume the functionality currently provided by links, but in
a much more general way. Unfortunately, it is more of an
entity-relationship model than an object model; but nev-

ertheless, it is much better than the current Link Services
specification.

Another CORBA service is the Event Service. Events rep-
resent a simpler information flow than procedure calls,
but can be configured in more complex ways. Events are
triggered by an event supplier, and are received by an
event consumer. Orthogonally, consumers and suppliers
can either push or pull events. A push event is unsolicited,
similar to an interrupt; a pull event must be explicitly
requested by the consumer, which is similar to polling.
Unlike remote procedure calls, which simply fail if a con-
nection is broken, events are stored when they cannot be
delivered, and are forwarded when the connection is
reestablished. Moreover, if a single supplier is connected
with multiple consumers, only a single event needs to be
supplied, and all consumers will eventually receive the
event. With a little additional coding, perhaps 30 lines of
Smalltalk, an application that already uses the Smalltalk
MVC update mechanism can be made to transmit events
on a change notification and interpret the sent events as
update notifications. Several examples of this are supplied
with DST, and can be used to effect the initial distribution
of a existing application. Ultimately, the application
should be converted to the SO/PO split, which takes better
advantage of the RPC transport to minimize network traf-
fic generated by change notifications.

DESKTOP LAYER

The topmost layer in the DST system is the HP Desktop.
This is a completely distributed graphical application
that, although incomplete, serves as an example of the
power of a well-distributed application, and provides a

II sysadmtn] Ofﬂca

sysadmin Books Desk Files

I

Agent Waste Orphans

Notebook Demo

The main Office folder.

30

The Smalltalk Report

At T S e e

SIGS Publications is proud to announce SIGS Interactive,

the on-line resource for object technology.

Look for these current and upcoming features on the SIGS Interactive Home Page:

* Upcoming Conferences
* New Books
* The 0-0 Resource Index

TR R i ok L S . L. S
VUl WOriz s¥ivc weir

T { NI

B
&N@#ﬂ&m‘“ﬁ?{ﬂr‘ﬂ“ﬂ&@ﬁmvﬂmm S s

3
&

* Sneak Previews of
Upcoming Articles
* Object Buyer's Guide

« Virtual Exhibitions
* Spedial Offers
* Free Software

reasonable user-interface framework in which to develop
such applications. The contents of the Desktop are not
part of the CORBA spec, nor are they necessary for the
implementation of distributed applications.

The desktop metaphor is a spin-off from the HP
NewWave project. NewWave was considerably ahead of
its time, both in its pervasive use of objects and its
advanced notions of application distribution and reliance
on loosely coupled components. The DST desktop uses a
building metaphor to refer to other machines on the net-
work and an office metaphor to represent the desktop of
a single user. Using reference links, it allows you to place
a link to another user’s office on your desktop, and, from
there, access any of the information in the other user’s
simulated office. The openness of the office metaphor
can be more precisely controlled through the use of login
IDs and access control lists (ACLs). For instance, you can
allow read-only access to your desktop, and write access
to documents on which you are collaborating with your
colleagues.

There are several clever applications on the desktop
that are genuinely useful tools in their own right. The
Forum tool places a shared window on several desktops
for participation in a shared discussion. Any object on the
desktop can be dropped onto the forum, where it is then
graphically rendered on each machine. Each participant
is assigned a different color paint, and marks made with
anyone’s mouse are seen simultaneously on each

machine. Coupled with an audio or video hookup, the
Forum provides a ready-made groupware facility.
Because the source code for everything is shipped with
the system, you could take off in many different direc-
tions to enhance such a tool.

SUMMARY

Due to the complexity of the CORBA spec, the large vol-
ume of the DST classes, and the generally more difficult
nature of distributed concurrent programming, the
learning curve for DST can be quite steep. HP offers a
one-week DST course that assumes a minimal under-
standing of Smalltalk and object concepts, but, after tak-
ing it, I don't see how anyone who has not done signifi-
cant programming in Smalltalk would get much out of
the class. Understanding objects is hard enough; under-
standing proxy objects and remote message passing
seems to require more than mere exposure to Smalltalk
concepts.

DST represents to me one side of an important triad of
software development technology: Smalltalk, an object
database, and distributed computing. Large object-
oriented client/server applications are difficult to build
without a productive programming language with decent
screen-design tools, a persistence system that is closely
coupled to the programming language, and a means for
efficient communication over a network. The lack of any

continued on page 33

May 1995

3

Recruitment Center

the

REVOLUTION

For more than 21 years HBO & Company (HBOC) has been pio-
neering the development, delivery and support of fully integrated
software solutions for all aspects of the healthcare industry.
Growing In excess of 25% a year, our current revenues are over
$327 mlllion and reflect our commitment to reach—and
exceed—our most ambitious technological goals.

MAJOR DEVELOPMENT CENTERS

Atlania, GA » Amhersi, MA = Minneapolls, MN
Eugene, OR « Salt Lake City, UT » Orlando, FL

We have challenging opportunities for innovative software pro-
fessionals to analyze, design, develop and implement our highly
progressive healthcare information systems. Requires experlence
in one of the following:

SmaliTalk ® C++ ¢ Visual Basic
SQOL Windows * C/UNIX * Sybase

A Your expartise will be rewarded with an exceptional
compensation and benefits package. For consid-
A A eration, forward your resume to; Corporate

‘v‘ Recrulling LHP/SR/0495, HBO & Company,

301 Perimeter Center Norlh, Atlanta, GA

AR 30356. FAX: (404) 393-6063. E-Mall:

HBO&Company sharon.hay@hboc.com EOE M/F/DNV.

COLORADO
CAREER
/> OPPORTUNITIES!

I cated at the foot of the Rocky Mountains
outside of Denvar, Colorado, Antalys is a growing

and progressive software development and consulting
company where creatlve and responsible individuals
thrive. We are continually searching for qualified objact
oriented deviopers, designers and architects.

We would like to talk to you if you have experlence in the
following areas:

® Smalltalk ® C++ ® O0A/00D

Most positions require travel.

For immediate consideration, please send your resume
In confidence to:

Antalys, Inc.

1697 Cole Boulevard, Suite 100
Golden, CO 80401
Fax: (303) 274-3030

We are an equal

opportunity employer.

Am‘alys

See Our ANNOUNCEMENT A5 CERTIFIED PARCPLACE CONSULTANTS.

SMALLTALK DEVELOPERS

HCm, Inc. the leader in providing Decision Support
Systems and services to the healthcare industry is
seeking several Smalltalk developers to join our
growing team of professionals. We are an extreme-
ly dynamic software development company com-
mitted to full-scale OBJECT-ORIENTED develop-
ment. Coad Yourdon is the methodology of choice
with both Digitalk Smalltalk and C++ as the
'implementation OOPL’s. If you have a proven
history in designing and implementing objects,
we’d like to talk to you!

At HCm, our values include integrity, professional-
ism, respect for others, and an enjoyable work
environment. If your values match and you are
seeking a challenging opportunity to work with a
leader, send your resume and salary history in
confidence to: W. Buchanan, HCm Inc., 3655
Torrance Blvd., Torrance, CA 90503. FAX (310)
316-3781. EOE

Smalltalk RothWell Smalitalk RothWell

SMALLTALK
PROFESSIONALS

This is your opportunity to join
the finest team of Smalltalk
professionals in the country!

:

=

e

-~

o

3

=

2

=~ RothWell International

E has challenging projects
= across the US and abroad.
)

; Excellent compensation and
T

E
A
:
%
-7

immediate participation in the
Employee Stock Plan.

BOX 270566 Houston TX 77277

(713) 660-8080;Fax (713) 661-1156

(800) 256-9712; landrew@rwi.com
Smalltalk RothWell Smalltalk RothWell

ABMNEWS [IPAPOY HBjemS [PAAYIOA Yelews

To place an ad in this section,

call Michael Peck at 212.242.7447

Smalltalk Engineers

objectWare Corporation is a Chicago-based
software consulting company with nationwide
presence in the telecommunications industry.
Qualified individuals will have hands-on
Smalltalk experience and familiarity with OMT.
Experience with UNIX and ODBMS are pre-
ferred.

We will challenge you to enhance your skills,
while providing you an opportunity to grow.
objectWare offers salaries commensurate with
your experience. For further consideration please
submit your resume with salary requirements to:

Sam Cinquegrani

objectWare Corporation

1618 N. Orchard Street

Chicago, Illinois 60618
e-mail: fida@interaccess.com

objectWare Corporation

At QSYS we have successfully
provided Object Oriented consulting
leading edge, mission critical assignments with g
our Fortune 1000 clients.
we would like to hear from you!
For further information, contact

services to our customers for over
If you have demonstrated experience implementing
Elspeth Koor at 1-800-999-9776.

seven years. This has created opportunities
large 00 systems using IBM Smalltalk or Visual
1 Yonge Street, Suite 1801, Toronto, Canada

With 5 %
Smalltalk Developers
for Smalltalk Specialists to participate in
Age™ ParcPlace VisualWorks,” Digitalk Smalltalk/V.®
MSE1W7 Fax:(416)369-0515

90 Park Avenue, Suite 1600, New York, NY
10016 Telephone: (212) 9840715

Email: 72072.2575@compuserve.com

continued from page 31

of these three technologies makes any client/server appli-
cation unnecessarily difficult to build. VisualWorks pro-
vides the rapid development language and reasonable,
portable screen design, but no persistence and no commu-
nication facilities; an object database
management system (ODBMS) such
as GemStone provides object storage
tightly coupled to the language itself,
but has no simple and efficient means
of notifying client applications of
changes in the database state; DST
effects rapid, dependable communi-
cation among clients, but no persis-
tence. Using these three key technolo-
gies, a Smalltalk client can store information for another
client in the database, and, using DST, notify the relevant
client of the update. Because the transmission of large
objects over the network is not very efficient, the database
manages the voluminous information while the network
serves merely to notify clients. Using store and forward
events, the application can continue to function even in
the presence of network faults. I cannot imagine many
applications that could not be built using this combination

the only way to handle
the increasing workload
is to distribute it over
multiple computers.

of technologies.

CONCLUSIONS

As applications become more and more complex, and the
demands for inter-application communication become
more pronounced, distributed com-
puting is clearly the next big thing. As
machines become cheaper and more
interconnected, and as we reach the
physical limits of computing technol-
ogy, the only way to handlie the
increasing worldoad is to distribute it
over multiple computers. DST is an
elegant solution to many of the prob-
lems of distributed computation and,
as the CORBA spec becomes more widely implemented,
DST will enable the distribution of a wide variety of cross-
platform and language-independent applications.

Jim Haungs is the founder of TeamTools, Inc. He specializes in
Smalltalk consulting, training, project management and software
development. He has a BSCS from RIT, an MSE degree from Wang
Institute, and is an HP-certified DST consuitant. Jim lives in Boston,
and can be reached at jhaungs@teamtools.com.

May 1995

33

Smalltalk Solutions '95

was a coming of age

David Carr

avid W. Curry came to Smalltalk Solutions ‘95

knowing he wanted to recommend Smalltalk to his

bosses at Entergy Services Inc. Although the offi-
cial decision remained to be made, a trip to OOPSLA had
convinced him of Smalltalk’s value. Curry was one of
many who saw Smalltalk Solutions "95 as an opportunity
to find out more. Held Feb. 21-24 in New York City, the
conference was the first large gathering devoted solely to
Smalltalk. In particular, Curry was seeking to close in on
the choice of a vendor. He returned to New Orleans hav-
ing made all the right contacts. “To me, every minute of
this conference was valuable,” Curry said.

Entergy, which owns a string of Southern electric util-
ities, stands to be a major new customer for Smalltalk.
Curry made sure to show the vendors his company’s
position on the INFORMATION WEEK 500 (number 218) and
the program from the company’s annual Information
Technology Conference, which he said is larger than the
entire Smalltalk Solutions show.

Curry’s experience typifies a trend that Smalltalk
Solutions ‘95 made obvious—the coming of age of the
“One True” object-oriented language after almost 25
years. Suddenly, it seems that every major corporation
has at least a pilot program for Smalltalk development.
Ray Wells, the director of IBM’s Object Technology
Practice, testified that many corporations are going far
beyond that. “We are finding more, and more, and more
that major corporations are using Smalltalk and betting
the business on it. That takes a lot of guts,” Wells said.

They are doing it because Smalltalk programmers can
produce fast results instead of the usual string of excus-
es. “When the businesses come in and say, ‘can you? we
say, ‘certainly!’ When they say ‘how long?’ we say, ‘when
do you need it? We are the implementors of change, not
the impediments to change,” he said.

Still, it takes guts because major problems remain
unsolved—prime among them a drastic shortage of
trained and experienced Smalltalkers.

It's supposed to be nearly impossible to write proce-
dural code in Smalltalk, but the untrained and inexperi-
enced somehow find a way, Wells said. “We find that 60%

David Carr is Manager of Editorial Services at Digital Communi-
cations Services, which provides a variety of technical communica-
tions services, including documentation of Smalltalk frameworks.He
can be reached at davedcs@pcnet.com.

of the Smalltalk we look at is really COBOL—hard to
believe, isn’t it?”

Yet the mere existence of a large conference devoted
to Smalltalk—with attendance running double what the
organizers expected—was a promising sign to many.

“To me, this is a historic moment,” said William Woo,
who is in charge of the Distributed Smalltalk project at
Hewlett-Packard. “This is really a healthy start-up.” Woo
didn't give a presentation because, until the last
moment, he didn't expect to be able to attend. He came
because he wanted to meet other movers and shakers.
“Most of the key players I'm aware of have some repre-
sentation here,” he said.

Trevor Hopkins said he knew Smalltalk Solutions was-
n't the first industrial Smalltalk conference. He organized
one himself when he was on the faculty of the University
of Manchester, although it only drew 70 or 80 people. “I
think it’s fair to say this is a significant development. It's
got a little more international flavor, and it's certainly on
a much larger scale. It's clear SIGS and the vendors
pulled out quite a few stops,” he said.

As a new member of IBM OTP, Hopkins said he used
the conference as “a good opportunity to impress on
some of these damn Americans that there is a fair
amount of Smalltalk expertise on the other side of the
Atlantic.”

Object Technology International (OTI) President
David Thomas said the conference turnout didn’t sur-
prise him at all, because he has seen how fast his client
list is growing. “Smalltalk is the best-kept secret.
Everybody is using it. All you have to do is look at the job
market. You just can't hire people who know it, and that'’s
been true for the last three years.”

Thomas, who got equal billing with Wells and Object
Design International (ODI) President Thomas Atwood as
a keynote speaker, argued that Smalltalk is capable of
solving every challenge faced by large-scale object devel-
opment. He has demonstrated it running on a main-
frame, plans to have a PDA version by the end of the year,
and envisions that by the end of the 1990s it could be the
basis for a pure O-O distributed operating system that
would dispense with all the communication protocol
hassles of contemporary systems. “Folks, we made it to
Main Street. We have an obligation now to make it useful
to others,” he said.

Atwood said objects are moving onto the same growth

34

The Smalitalk Report

~ “Excellent —

great first conference...”

Bob Moore, President, MCS Dita Services, Pahu By, FL

oo s WAS the overwhelming
consensus of the [
1,000 Smalltalk
enthusiasts who
attended Smalltalk Solutions ‘95 in New York City
in February. Attracting an international audience
of Smalltalk programmers, developers, technical
managers, and consultants, this event marked the
first large-scale, vendor-independent conference
and exhibition devoted exclusively to Smalltalk.

Registered delegates attended classes taught by
such Smalltalk leaders and innovators as Kent
Beck, Rebecca Wirfs-Brock, Kenny Rubin, John
Pugh, Wilf LaLonde, and Sam Adams. Offering
over 30 technical classes, panel discussions, and
hands-on workshops, Smalltalk Solutions deliv-
ered training for all levels of Smalltalk users. Case
studies were also incorporated directly into the
program, bringing classroom theory to life.

In the Exhibit Hall, Smalltalk vendors provided a
view of the future of the language. Smalltalk users
making serious purchasing decisions could
demonstrate and compare different Smalltalk
products first-hand, and have questions answered
personally by knowledgeable representatives.
Useful product information and training was
gained through in-depth Product Education
Sessions from Knowledge Systems, IBM, Digitalk,
Easel, Mark Winter, The Object People, and QKS,
as well as a Technology Briefing on NEXTSTEP
from NeXT Inc.

Attendees took advantage of other special events
throughout the week, including the NY Smalltalk
Users Group meeting and other peer group dis-
cussions, informal walk-in clinics with the speak-
ers, and keynote presentations by Dave Thomas,
Thomas Atweod, and Ray Wells on present and
future uses of Smalltalk.

The premiere of Smalltalk Solutions ‘95 was an
exciting and educational event for anyone involved
in the fast-growing Smalltalk community. Be sure
to mark your calendar for next year’s event:

Smalltalk Solutions ‘96

March 4-7, 1996
NY Marriott Marquis, New York, NY

To be sure you receive the most up-to-date conference
information, please contact the Conference Registrar at:

SIGS CONFERENCES
71 West 23rd Street

New York, NY 10010
Phone - 212.242.7515
Fax - 212.242.7578

email - info@sigs.com

or check the SIGS Home Page for the latest offerings from
SIGS Conferences, SIGS Publications, and SIGS Books:

WWW - http://www.sigs.com

| CONFERENCE OVERVIEW

curve that relational database technology followed, with
analysts “projecting some pretty good numbers by the
end of the decade—enough to attract a lot of venture
capital into this market.”

Object databases like his company’s Object Store are
also moving into primetime. That will simplify the lives of
Smalltalk developers by eliminating the need to map
objects to relational database tables. That conversion
makes relational databases two to three orders of magni-
tude slower at operations involving objects, Atwood said.
With object databases, he said, “Objects in Smalltalk are
objects in the database—there is no translation. Access
to objects in the database is nearly as fast as access to
objects in Smalltalk memory.”

Better yet, the methods for querying objects in the
database are the same as the methods for querying
objects in memory. Atwood contrasted that to the rela-
tional approach by showing a screen of cryptic SQL next
to one sentence-like line of Smalltalk. “This, my mother
could read. That difference is worth tens of millions of
dollars to large organizations,” he said.

One of the conference’s case studies echoed the grow-
ing acceptance of object databases, albeit in praise of one
of ODI's competitors. Texas Instruments (TI) Fellow John
McGehee said his team felt it had no choice but to chose
an object database when it selected Servio’s Gemstone.
McGehee acknowledged that object databases are widely
considered to be unproved on a large scale. “We were
leery, too, and we’re going way out on a limb. But we have
not seen one area where Gemstone as a product or a
company has not come through,” he said.

As part of a larger mechanical process reengineering
effort, TI built a set of Smalltalk frameworks designed to
move chips through its semiconductor factories more effi-
ciently. The language allowed McGehee’s team to finish its
pilot project ahead of schedule and under budget. One of
the frameworks proved so flexible TI is now selling it to
other semiconductor manufacturers as ControlWORKS.
Commercialization of other frameworks is also planned,
McGehee said. “We like to think we're moving in the direc-
tion of making every application in the building a frame-
work,” he said.

For all the good news, any number of unsolved prob-
lems cropped up repeatedly in the course of the confer-
ence. For instance, the garbage collection mechanism for
removing unused objects from memory—thereby elimi-
nating the memory management problems that tend to be
so burdensome in C++—is one of the most frequently cited
advantages of Smalltalk. Yet its basic assumption that most
objects expire shortly after they are created means objects
that make it into long-term memory don't get the same
kind of close scrutiny. This can be disastrous when objects
survive just long enough to evade the garbage collector.

Atwood said every variety of Smalltalk fails this test “in
the face of consistent, high-volume database use.” The
same issue dominated Kent Beck’s lecture on “Building
High-Performance Smalltalk Applications,” with Beck

offering advice on how to tune the garbage collector to
control the number of objects that make it into “tenured”
memory.

The more controversial aspect of Beck’s talk centered
on his argument against the supremacy of object dia-
gramming techniques. Beck said he always suspects that
“people who write stacks and stacks of diagrams are
afraid to program.” Those who fail to make use of rapid
prototyping are forsaking one of Smalltalk’s greatest
strengths, he said. Using that power is like drawing on a
line of credit, which is longer in Smalltalk than in other
languages. “I call this the ‘Smalltalk gives you more rope’
phenomenon,” he said. Just as a business incurs interest
costs when it draws on a line of credit, rapid develop-
ment is not without costs, Beck said. The trick is to
remain alert for the point where the cost becomes too
high, he said.

“A lot of performance tuning really comes down to
confidence,” Beck said. “First, get the program running,
figure out what the structure ought to be. Once you get
the structure right, you can fix the performance prob-
lems. Every object becomes a point where you can tweak
your screwdriver and improve performance.”

Several audience members challenged Beck's
approach of designing on the fly as part of development,
which they said wouldn't work in systems requiring dis-
tribution or concurrency. Beck said he didn't want to
minimize that problem. “But my response to that is not
to sit down and draw bubbles and arrows but to develop
a system.”

Anyone who fails to get their hands on such a major
problem in the first week ought to be fired, Beck said. ‘I
do have a CASE tool, and I call it Smalltalk. It works bet-
ter than any specification language I know.”

Ted McKnight, president of the New York Smalltalk
Users Group, said the conference was very effective at
“introducing a lot of people to a subject that they'd been
considering but didn’t know how to get into.” Many of the
attendees he met were still preparing to take the plunge,
he said. “Most of them are probably departing with more
questions than they started with.”

“People have a lot of questions about Smalltalk,”
agreed Terry Montlick, a consultant from Bethlehem, CT.
“They suspect there must be a better way of doing things,
and they're right. I was first exposed to Smalltalk a dozen
years ago, and I have to admit I didn't get it then.” Only
after trying C++ did he appreciate Smalltalk as a no-com-
promise O-O environment, he said.

Meanwhile, Curry felt he was going home with a fair
number of answers, although he expects several of the
vendors to pay a follow-up visit to New Orleans before he
makes a recommendation.

Will Entergy bet its business on Smalltalk? “I don't
want to say that because that’s not the official goal,”
Curry said. But he is gearing up for the proof-of-con-
cept—and a chance at bigger and better things for
Smalltalk.

36

The Smalltalk Report

	By Article Title
	An O-O approach to accessing external resources
	Conference Overview: Smalltalk Solutions '95
	HP distributed Smalltalk: Corba-complaint distributed objects
	Managing concurrency conflicts in multi-user Smalltalk
	Math, Part 1
	Model integrity through custom installation
	Product Review: HP Distributed Smalltalk
	Segragating application and domain: Part 1
	Super + 1

	By Author Name
	Almarode, Jay
	Beck, Kent
	Carr, David
	Haungs, Jim
	Howard, Tim
	Knight, Alan
	Lorenz, Mark
	Newman, Yoel
	Parvin, Michael

	By Topic
	comp.lang.smalltalk
	Getting Real
	Product Review
	Project Practicalities
	Smalltalk idioms

