
S’rn511talk

Miters
John Pugh and Pmd W71~

I%rmm llniiws~ b Trm Objmr P6vpla

NGSPrrbliintiorrs Advisory Board
Tom Alwnod, Ohjact Deskn

FranFois Bancilhon, 02 Technnlngins

Grady Bovch, FrWimwl

Gamge Boswoti, Oigifdfr

Jam Michael Chormles, AIX of Mmtin Merietta

Adele Goldberg, Parcpfam Systems

Tom I.mm

Bertrand Mayw, ISE

Maifir Psga-.fmres, W@and Systams

Cliff Flawas, IBM

Bjeme Stmuctmp, ATfiT Bell IAM

Osva Tfmmes, Object Tmfmnlogy Intcrnatinnal

“HESMAJUWREPGST Edtirisl errsfd
Jim Andwwn, Oigitslk

Pdele Goldberg, PCICPIOCE Systems

Fread Philfipc

Mike Tayfm, Oigildh

Dcvs Tfwmas, Ol@TadvmbBY Incamatkmnl

)olumnists
Jay Afmamde

Kant Back First fle~ Softwwa

JumIita Ewing, Oigitalk

Grag Hendlay, Kncwdndge S@ams Corp.

7im Hmvmd, RothWall lnternstiond

Arm Srrighr, Tfw Object Patrpfe

Wlffiam Knhl, FfnthVkll lnt~melional

Madr km.? Hsttems %ftwere, Inc.

Eric Smkh, ftrrnwladg~ Systems Corp.

Ffebecca WrfsBrmk, Digiialk

;IGS PUBLICKI’IONS GtlOUP, INC.
Sicherd P. Friadmerr, President

Hal Avary, Group Publisher

iiiitorial/Pmduction
Kristina Jmrkhadw, Ed~rial Oktnr

Efisa Vwiwr, Production Manager

Brian Skbar, Art Ohm

Sath J. Boofwy, Production Editor

MaWaret Cmdi, Advwdsing Production Cmmfinatm

Dan Olawski, Editorial Production Axicrant

tircrrlstion
Bmca Shrivar, Jr., Circulation Oiractor

John R. Wangler, Circulation Mamrgar

Sim Mauraan Penney, Circulation Analyst

irtvortisirrg/Msrlrsting
Gmyhrtia,Adva&ingManager, Essl Caaat/Canadn/Eumpe

Jaff Smith, Advertising Mnnagar, Cenkal U.S.

Mkhad W. pack, Advertising Fleprasmdative

Krisdrw Viksnins, bdribh Salns Reprasantctii

212.242.7447 Iv). 212.242.7574 IFl

40Ei.255.2Ef9i (v), 40S.255,2992 (f)

Ssmh Hamilton, Diractm of Pmmticms and Rssaarch

Caran Pnlnar, Saninr Pmmotimrs Graphic Ossigner

uiministrstion
Mwgharita R. Mcmck, Genaral Manager

Dcvid ch~mpaul, Senim Accounting Manager

.fBMM Amemwnr, Business Mannger

Michala Welkins, Axcicmnt tn ti President

BSIGS
PUB I. ICAT1ONS

hblishersofJOURNALOFOBJECT-ORIENTED
ROGSAMMING,OiIIECTMAGAZINE,C++ REPORT,
‘HESMALLTALKREPORT,THEXJOUTWAL,REPORT
N OBJXmANALYSISk DF,EIIZN,OBJECTSIN
:UILOPE,and OBJEKTSPEKTFIUM(GERMANY)

February1995

February 1995 Vol 4 No 5

Features

A sample pattern language–
concatenating with streams 13
Bobby Woolf
Software design and implementation techniques can be documented thoroughly and con-
cisely using the pattern format, Individual patterns can be combined into an even more
powerful whole as a pattern language, In this article, Bobby describes what a pattern and a

pattern language are, and provides a sample pattern language,

Processes 18
Alec Sharp & Dave Farmer
Smalltalk allows you to create separate processes so that your application can do several

things in parallel. These processes all run on a single Smalltalk image.

MathPacldV 23
David Buck
MathPack can handle almost any numerical operation you have ever wanted to perform
and even a bunch that you have never heard of,

Columns

4GettingReal Transactions in Smalltalk
Jay Almamde
The key characteristic of multi-user Smalltalk is that a single object

identity domain is accessible by multiple, concurrent users.

Smalltalk Idioms Garbagecollection revealed 9
Kent Beck
All of the commercial Smalltalks provide some ability to tuna the

garbage collector, but without knowing what’s going on and why, you

are unlikely to be able to know when these features are applicable or

how to use them.

ProjectPracticalities Architecting large 00 projects 28
Mark Lorenz
Managing the complexity of most commercial 00 projects requires

planning for and controlling an architecture for your business object

model,

The Bast of comp.lang.smalltalk 32
AIan Knight
High-speed modems have paved the way for better performance with

graphically based network applications. The World Wide Web, one of

the best known of these, is explored by Alan this month,

Departments
Editors’Corner 2
Recruitment 30

7hc Snmllmfk F!nml (ISSN# 105WLI7GI is puhhshmrl 9 ha! a yam nmnrhly MI@ in Mar-Apr. JUWJILL and NW-MC. Pubfkhcd by SfGS Puhhcticms Inc, 71 W

23rd S2. W Floor, Ncw Vmk, NY 10010. IQ Capwighl lW5 bv SIGS Publ!-xdmns. PJI rigtm rmwd. Repmducdon cd UIw mtirial by dmironit tran.smis.!mn. Xum m

any tihnr mdhml WN bE treamd as a willhd tiolalion IJI rhe US CupwiIShl law urd is FfcilY pmhili@d. Mnmid maq be mpmthcod Ah EUPEW permission hom Uw @ishct

Second CliIss hcafle Pending 61 NY NY md addidonal Mailing offices, Canmln hi Inmmaiimnal Publirndons Mail hodti Salss Anreemnnt N.. 2N3W3.

Individual Sub.wripdon r’dtm 1 ynar (a ikwm) dnmmlic S7S; Mmico ml Canada $104, hrniw! S11$ Insdludondllibfary rare..!domesdc $119, Cnnada k Mmico SM.!,

Fcminn $15N To suimir arddos, PI- sand #kcunnk films❑n dti b dw Ediims m SS5 M,mlowlnwh WE ?150$ Orlu.m, Ontario N2C 3Nz kmwla, u ria Inlmel to

srmport@$@@mrlnon.ca. Prehmd krmars fur finums am Mac or 00S EFS. TIF. m GIF hrmti. PJWWS swsl a papm mpy of Wr mmumall imludino camm-dy

mpiis cdWr figures (Iasw mipul is fine),

FQ37MASTEN: Send nddrnss changm and sub,cripdon mdmc m The Smalllalk Flq.at FO. BDa 2027. Ianflhorne. W 19047. For snwim on curmm subxdpiims cdl

215.7r35.5WG, 215.7 E15.6073 (lox), POOa7G@psilink.mm (#mail). FWCIEO IN TNE lfNffEO 37A7SX

1

!

we’vespokena number of times of the different~s of

applications that you are solving with SmalltalkTire
major vendorshavemade it abundantlyclearthattheir

targetmarketis the professionalMISmmketof the so-called Fortune
5(K)companies.The othertkng thattheyhavemade clew is that they
no longerseeC++ asthe major competitorof Smalltalk Clearly,it is

thePowerBuildersand VkaIBasics of the world thattheyarecompet-
ing againstin the corporateboard rooms.

This does leaveout many other significantdomains in which
Smalltalkhasbeen, and continuesto be, used.There arenumerous
engineetig shops thataremakinguse of Smalltalkboth for modeling
and for developmentof actualproduction systems.Smalltalkhasbeen
used in many researcharenasbecauseof the power it offers.One area
thatwe know hasbeen using Smalltdk for some time is in the devel-

opment of red-hme sptems. In thesemarkets,Sms.lltslkis wry mud
stillcompeting directlywith C++. And the knocksagainstusing
Smalltdk seem to remainconstant.Comments that it is too slow to
use,or the image size is too largeto be used areSW the complaints,
eventhough most of them areno longerjustified.In fact,while
attendinga talka fm weeksago we were astoundedto hew one
member of the audiencepose to the speakerthe comment “havinga
garbagecollectormakesSmaJltzlkuseless”!Thk to us saysSmalltalk

has an image problem.
These comments seem to be the right answerto the wrong ques-

tion, Many haveproven that Smalltalkcan be used in real-timesys-

tems.That SmaUtaJkruns slowerthan equivalentcode writtenin
Assembler or C is a given. But surelythis doesn’tlead to the conclu-
sion “thereforeit isn’tappropriateto everuse it.” It just means if you
need blinding speed useAssembler.Whale some real-time systems
requireexceptionallyquick responsetime, what they all need is pre-
dictabfi~, which can definitelybe achievedusing Smalltalk.Yes,we
need performance,but predictableperfonrsance.Tming Smalltalk
systemsis definitelypossible.There area number of tools available

for doing just that.What’s more, tuning many applicationscan be
acl-ievcd by findhg flmdamentallybetterapproaches,ratherthan
making a poor design run faster.Since we can build solid, under-

standablemodels of ou domains, it should be possible to find signifi-
cant improvementsto them, a taskthat is difficult using traditional

approaches-what’s mom) if YOUfind a PartOfyour sm~t~k ~tem
that doesn’tperform acceptably it is alwayspossible to reworkthat
partusing anotherlanguage.As for the gwbage collector being a

problem, we’re no expertsin the field, but as has often been explained
to us, the garbagecollector ordyworks as hard asyou make it.That
is, though it is not controllable,it is certainlypredictable.If you know
the garbageyou’recreating,it should be possible to predict how the
garbagecollector will behave.What’s more, featuressuch as the one

ParcPlacehas included for controlling the garbagecollector’sbehavior
area step in the right direction. (We’ll ~ to get someone who
knows this areabetterthanwe do to write about thk soon).

As we’rejust coming back to the realityof facinganothercold
Januaryherein the“GreatWhite North” it is tine for our traditional
post-Chri~as wishlist for the Smalltalkworld. Some itemsarenew,
somehavebeen on the listforever.But heregum
1. Build a betterbrowser.Thk has been number one on our list for

msny yearsnow, but to little avail.What is requiredis not just
2

minor changes,but a radicalreworkof
the browser from the ground up. Wkh
no good reason,Smalltalkhas lost the

edge in terms of development environ-
ments. It is time to reclaim thattitle.

2. Fix the name space problem. Classes
should not be global. We’ve argued in
the past that this problem is at best an
annoyance and at worst a real impedi-

ment to building large Smalltalk

applications. In particular, the lack of
proper name spaces is going to inhibit
the growth of thkd party libraries

coming to market. The solution of just
adding prefmes to the front of all class
names is just a patch rather than a

JOHN PUGH

l!!,.

,,z
,,,

,,-,

PAULWHITE
solution to a deficiency in the lan-
guage. It would be nice if the ANSIcommittee would have
something to say about this one, but the chances of this are
extremely slim.

3. Support privatemethods. In large systemdevelopment, it is
mandatorythat the languageitself support trueprivatemethods.

Again, hopefully the committee will solve thk one.
4. Provide testingtools. Thk wish is still fizzy in our minds. It is

clearthat testingmechanisms arebeing createdby different orga-
nizations using Smalltal~ but thk seems to be inappropriate.It

certainlygoes againstthe goal of Smalltalkthat is to achieve reuse
and stop people from reinventingthe wheel.The vendors must
have testingmechanisms they use themselves,as do many of their

customerswith which theywork closely.Hopefully, these took
(or at least theirstrategies)will be included in their products.

5. Provide documentation tools. Again, most organizationsusing

Smalltalkrealizethere is a need to do a betterjob of document-
ing what is being constructed,but it is being done for the most
part in a haphazardway.Certtinly the vendors themselveshave
not led the way in terms of showing us how classesshould be
describedwithin SmaUtalk.We need to capturenot just the
descriptionsof each of the methods, but the actualdesign of the

class.As has been discussedmore and more lately it is more
important that the designerof a class describe how they intended
for the classto be used, ratherthan providing a description of

how it was built.
6. Make availablea “Smslltalk Lite.” We continue to hope that

someone will come forward with a $199 Smalltalkfor the masses.
This version could be nothing more than a returnto the original
style Smalltalkswe had in the past.There is no denying we need

the featuresthat each of thevendors have been working so hard
to include so that businesscan get theirjob done, but the individ-
ual working at home in their basementwho wants to ~
SmaUtaUcout needsvery little in terms of features.The impor-
tance of such people to the growth of Smslltalk should not be
underestimated.

Enjoy the issue, and we hope to see many of you at the Smrdltalk

Solutions conference at the Omni Park Central Hotel in New
York at the end of thk month.
TheSmalltalk Report

Introducing Argos
The onlyend-to-endobjectdevelopmentanddeploymentsolution

An integratedobjectmodelingtadprovd.esrndel-driven
de+711Entfor enkrp7is&wi&appktions ,

--r ..-..—-----–-—----
- I I I

‘Jii I

r

P‘IziE1.,.1...,L
I Pmductrul

at124
~

,., . .

Boundd Pdnl I

a240.

210 - --9 .

lmm “
1s0;. -- ~“:~
la . .

. .-
m
69

ao -..---.-.9....-- ----o~
112345 E78B1OI

,

AUobjectmodekaremanqd ina sharedrepository,
supportingteamdfweloprnentandtmeeability

I

L“~

1:

i
Powerfddraganddmp “enzymes”mdz uppl.ication
develuprnentintuitiwe ~11 11

VERSANT ArgosT”

environment (ADE)

&vebptnmteasyandpowerful

is the only application development

that makes it easy to build and deploy

powerfil, enterprise-wide object applications. Easy because

Argos features an embedded modeling tool and Smalltalk

code generation that ensure synchronization between your

models and applications. Powerfld because Argos supports

fill traceability and workgroup development through a

shared repository.

Argos automatically generates multi-user database applications

that run on the industry-leading VERSANT ODBMS. Argos

deals with critical issues such as locking and concurrency

VERSANT
The Database For Objects ~

control transparently. And only Argos is packaged as a

completely visual ADE built on ParcPlace VkualWorks@.

Leading organizations — in industries from telecommunications

to finance — are using Argos to deliver business-critical

applications. Find out how Argos can help you deliver your

critical applications in weeks, instead of years.

1380 WNOWRoad ● Menlo Park,CA 94025 _ (415) 329-7500

JAY
ALMARODE

Transactions
in Smalltalk
I
N MY PREVIOUS column, I described the archkec-
ture and advantages of multi-user Smalltalk. The key
characteristic of multi-user Smalltalk is that a single

object identity domain is accessible by multiple, concurrent
users. Users share the same objects, not proxies to a remote
system or duplicate copies mapped from a persistent store.
This means that users share object behavior, as well as
state. Rather than duplicating the same behavior in each

application (and having to update each application when
the behavior changes), the application sends messages to
objects that reside in a single, globally shared image.

Since multiple users may be reading and modif@g
shared objects, the underlying Smalltalk system must make

sure that a single user’s view of objects is consistent. When
a user reads or modlfles an object, the user’s operations

must not be invalidated by other user’s changes. For exam-
ple, suppose an application maintains financial accounts

with objects that encapsulate the account balance. A user
that wants to transfer funds from account A to account B

would cause the value in the account object for A to be
decremented by some amount, and the value in account B
to be incremented by the same amount, Since multiple

users may be allowed to view the account balance in
account A, it is important that concurrent users are not
allowed to transfer funds based upon a view of the account
that has since been decremented (unless we are allowed to
make money out of thin air).

The way that a multi-user system maintains a consistent

view of objects is with the notion of a transaction. A trans-
action is a bounded sequence of operations such that either
all of the operations are executed to completion, or none of
them are executed. This is called atomicity. In the example
above, when transferring money between accounts, both

the debit of account A and the credk of account B must
occur, or neither must occur. Otherwise, the account bal-
ances may become logically inconsistent. In .a transaction-

based system, when a user invokes the “commit” operation,
the underlying system guarantees that either all modifica-
tions that occurred since the transaction began are made
4

persistent, or none of them are. If a user wishes to discard
all modifications, then he or she invokes the “abort” opera-
tion, In a limited sense, single-user Smalltalk systems sup-

port the notion of a transaction with the operation to save
the image (by writing all of object memory to a file).

When the image is saved, all modifications that occurred
since the last save operation are made permanent, analo-

gous to a commit operation. Correspondingly, if the user
quits the image without saving, it is equivalent to the abort
operation. If you’ve ever made low level changes to the user
interface or kernel classes, you know the practicality of
being able to quit the image without saving, It is a conve-
nient way to back out of changes that have made the sys-
tem inoperable.

The notion of a transaction has another important ram-
ification concerning object visibility. When a user begins a
transaction, the user is presented a view of the world of
objects that is based upon the last committed state. This is
sometimes called a “transaction’s point of view.” As a user

modifies objects, these changes are not visible to other
users until these changes are committed. In addition, any
new objects that a user creates are not visible to other users
until the transaction is committed. There is another model
of object visibility where a user is allowed to see uncom-

mitted modifications performed by other concurrent trans-
actions. In this model, when a transaction views an uncom-

mitted modification to an object, the transaction becomes
dependent upon the committal of the other transaction. If
the other transaction should abort its changes, then the
current transaction must be aborted as well. With this

model of object visibility in a transaction, the application
may not get “repeatable reads” of an object. Accessing the
state of an object depends upon the time that it is accessed

within the transaction, and may not yield the same result
every time the object is accessed, This is problematic in
object-based systems, since complex (and side-effect caus-
ing) behavior may be executed based upon the state of an
object. This model also leads to the potential problem of

‘cascading aborts,” where the aborting of one transaction
causes a domino effect by requiring dependent transactions
to abort.

In multi-user Smalltalk, the underlying system is
responsible for managing transactions and maintaining log-
ical object consistency. Since objects reside in a single
object memory, this task is greatly simplified, The internal

object manager has knowledge of which objects have been
read or written, and directly coordinates the updating of

object memory that is sharable by all users. In
SmalltaIkDB, the data definition and manipulation lan-

1 he underlying system uses shadow-guage for GemStone , t
ing techniques to provide a transaction’s point of view.

When a transaction begins, the user is presented a view of
objects based upon the last committed state of object
memory. This view appears to the user as a private copy of
all of object memory. Any modifications that the user
makes are not seen by other users. When the user modifies
an object, the modification is actually performed on a
shadow copy of the object. When the transaction is suc-
TheSmalltalk Report

“ TheDifferenceBetweenSuccessandFailureinIBMSmalltalk”

m WindowBuilderm Pro is an interactivetoo]
that lets you build polished user interfaces fast

in Smalltalk from Digitalk and IBM. Window-
Builder Pro (WBPro) saves you from ~e job of building UISin
code. It helps simplify maintenanceand increase consistency.

Like VB, with Real Objects
Select controls from a palette. Place and edit them interactively.
Integratethe controls with your app easily. Build composites of
controls to create your own reusable UI components. Place and
edit themin WBPro just like the native controls. Get portability of
your UISacross all the supportedplatforms of a Smalltalk family.
Includes autosizing, automatic alignment, control of fonts,
menus, colors, and more.

Building user interfaces is eafy

High-Level Controls for WBPro
When you use the high-level add-on controls like spreadsheets,
business graphics, and others, your apps will be more powerful
and polished. And you’ll save even more time and effort. Inquire
about specific offerings and platform availability.

‘For most Smalltalkflprogrammers, WindowBuilder Pro/V
is a survival tool—the difference between success and failure.%

— MilanSremac,President, Medicel Softwa@ Sys?mm - ~- -

~
For Smalltalk/V Win16 (WBPro/V var 1) S295

= Un/ess you’re tots//y comforfab/e with the Motif API, a too/ /ike
WindowBuilder Pro is the difference between success

and failure in IBM Smalltalk.m
— Gordon Shepperd, Senior Techmdogi$

American Management Systems

0S/2 std. $495 Team.................. $695
Windows std. $495 Team.................. $695

No runtime fees are required for applications developed with WBPro. Free support for

the first 90 days. All products include complete documerrtetion. Support subscription

available. WindowBuilder Pm/V is compatible with Team/V. Code generation in IBM
SmalltalkistotellvMotifcompliant.0 ObjectshareSystems,Inc.1994

VisualSmalltalk
WkdowBuilder’M ProAf lets you build UISinteractively,save
time, simplify maintenance.Version 2 is fully compatible with
Visual Smalltalk and Vkual Smalltalk Enterprise.Generate
ViewManager subclasses, ApplicationCoordinator subclasses, or
PARTS windows.

Whdows $495 0s/2...................... $495
Upgrade WindowBuilder Pro/V to version 2. We have special upgrade
pricing to registered users. Please inquire.

Subpanes/V provides columnar list box, hierarchal list box,
table pane, bitmap pane, bitmap button, 3-D frames, and more.
Requires WindowBuilder Pro/V ver 2 and Vkual Smalltalk or
Visual Smalltalk Enterprise.

I Windows- $235 0S/2 $235

VisualAge
Spreadsheets,business graphics, and other high-level components
are easy to add to your VisualAge”r”based applications.

WldgetKitWrofessional has powerful spreadsheetsand
more. You get virtual spreadsheets,multi-column list boxes, table
editor, graphic viewers for BMP, PCX, and GIF, input validation,
file system widgets, and more.

Windows std. $495 Team.................. $795

WidgetKit/Business Graphics has versatile graphs and
charts.You get bar, pie, area, line, gantt,high-low-close, scatter,
and more basic types. Options include 2-D and 3-D, fonts, colors,
control of printing, and more.

I 0S/2 std. $495 Team.................. $795
Whdows std. $495 Team.................. $795

SHARE

fin*, Objects/rareSystems,/m.
~ 5 TowrI & Country Vi//age

~ ~ Suite 735 Call to order (408) 970-7~
~ ;;;;:;:g;A;8~8-2026Or call for free info. 9AM to 5 PM PST M-E 30-day money-back guarantee

INc. CompuServe 76436,1063

cessfully committed, the shadow copy is merged into
shared object memory by the underlying object manager.

At this time, other users gain visibility of the transaction’s
modifications and any new objects that were created dur-
ing the transaction. In addition, the user’s view of objects
is refreshed to include any modifications committed by

other transactions in the interim. When a transaction is
aborted, any modifications that were made to objects are
lost, and the user’s view of objects is refreshed. However,

the user does not lose any new objects that were created
before the abort occurred. As long as the application
retains a reference to the newly created objects, it can con-
tinue to access them, and possibly commit them at a later
time.

The task of maintaining logical object consistency is
slightly more complex for other architectures where a rela-
tional database (or other persistent store) or remote object

messaging is used to share objects in single-user Smalltalk
systems. In applications where a relational database is used
to store an object’s state, the application must transfer

modifications that are performed on an object into updates
to a relational table. Since the Smalltalk image exists inde-

pendently from the database, an application developer

& The underlying system

manages transactions and

maintains logical object consistency in
mu[ti-user smalltalk. Objects reside

in a single-object memory and

tfuk task is greatly simplified.
w

must decide upon some means to keep object memory in
synch with that state of the database. This problem is
commonly called the “two-space problem.”

When using a relational database or other persistent
store to share objects, the Smalltalk application must make
sure that when modifications are flushed to the database
(for example, by causing the execution of SQL update com-

mands), the modifications are atomic. This usually means
utilizing whatever transaction mechanism is provided by
the database. In the earlier example where the Smalltalk

application has objects that represent account A and
account B, there are corresponding rows in a relational
table that holds the account balances for both of these

objects. An application developer must make sure of at
least two things when the modifications to the two objects
are flushed to the database: 1) the state of the correspond-
ing rows have not changed from the time they were initial-
ly read when constructing the account objects (or at least

have not changed in such a way as to invalidate the fund
transfer), and 2) the two SQL update operations are per-
TheSmalltalk Report

AND COUNTING
As we rapidly move beyond the 20,000 mark in the number of

students we’ve enrolled, more and more people like you are

choosing Semaphore as their primary source for object technology

training and consulting. It’s a record no one can match.

Focused on object technology and only object technology,

Semaphore’s staff of more than fifty highly effective real-world

specialists train you to maximize your object skills. No matter what

your level of experience, no matter where you are in your software

development, Semaphore can help you reach your goals.

Semaphore offers over thirty courses, on-site and open

enrollment programs, worldwide training, and comprehensive

consulting that supports your entire software development cycle. $Ia 4$!!~
The bottom line? Semaphore is achieving the most impressive @ 9&$ be
numbers in the field. o ~

&

u

Q

$
● :

allow +$
● . b ‘amh21.+,%5~%n=~ co

‘%on, 44
‘V%oo ~=nr=r

Object Technology Specialists

IEISEMAPHORE
Semaphore, 800 Turnpike Street, North Andover, MA 01845, USA

(508) 794-3366” Toll Free: (800) 937–8080 ● Fax: (508) 794-3427” Email: 505.4433 @mcimail.com

Coding

Without
~Synopsis ~

A

Automatic Documentation - Easier Than Ever
With Synopsis for Smal[talWVDevelopment Teams

Development Time Savings

synopsis plulucee high quality class documentation
automatically. With the combination of Synopsis and

‘SmallW, you cutdevelopment time and eliminate the

I

Lzg between the production of code and the availability
o~dacumenkztion.

Synopsis for Smalltalk/V
. DcwumentaClasses Automatically

● provides classSummariesd SourceCodeListings

● Builds Class or Subsystem ~CyC@R&lS

● publishes Documentation on Word Prmewmx

Packages Documen
Products

tation as Encyclopedia Files or
Synopsis fm Smalltalk/V and T-

●

as Help Files for Distribution
Synopsis for ENVY/Developer

, supports Personalized Documentation end
lbironments: Windows, Win32, 0S/2

Cmlillg conventions
Pricing Smalltalk/V S295, ENVY S395

Site licenses available.

Working with Synopsis is easy, Install Synopsis and see

%

Synopsis Softwareimmediate resulti --- without changing a thing about the =
way you write Smalltalk code!

8912 Oxbridge Cm@ RaleighNC 27613
Phone 919-S47-2221 Frm 919-S47%650

with
Cuding

Synopsis
formed atomically. The first problem is solved by acquiring
locks on the rows of the table or by re-reading the rows
prior to the update to validate that they have remained
unchanged, The second problem is solved by placing both

update operations in a database transaction.
In applications where objects in one Smalltalk image

can send messages to remote objects in another Smalltalk
image, these same issues must be addressed. The develop-
er must design the application so that when changes are
committed in one Smalltalk image (i.e. the image is
saved), any modifications that occurred to remote objects
in other images are also committed. For example, if the
object for account A resides in one Smalltalk image, and
the object for account B resides in another, both images
must commit their changes, or the objects may become
logically inconsistent. If both account objects reside in
the same image, but their modifications are caused due to
a message sent from a remote image, their changes cannot
be committed unless the remote sender notifies them that
it expects them to commit. This is because the remote
sender may have determined that the changes should not
occur after all. This problem is solved using two-phase
commit protocols. In this scheme, a Smalltalk image must
ask all remote images in which it caused modifications if
they can commit their changes. If a remote image answers
yes, then it must guarantee that if asked to do so, it can

commit its changes, even in the face of hardware failure,
8

This is typically done by writing some logging informa-
tion to disk before answering affirmative to the request. If
all remote images answer yes, then the coordinating
Smalltalk image can send a second command to the
remote images, telling them to commit their changes.
Note that this scheme does not allow a Smalltalk image
to execute messages from more than one remote transac-
tion at a time and maintain logical object consistency.
This is because one remote transaction may request that
the local Smalltalk image commit its changes, while
another remote transaction might request it to abort.

Since a save operation will write all of object memory, an
image cannot selectively commit modifications to some
objects and not others.

To build industrial strength multi-user applications in

Smalltalk, the system must support the notion of transac-
tions. Sometimes a transaction may not be allowed to

commit to ensure that objects remain logically consistent.
The inability to commit a transaction is necessary when
other transactions have performed operations that invali-
date the operations in the current transaction. My next

column will discuss concurrency conflicts in multi-user
Smalltalk and how application developers can avoid them.

Referemce

1 Bretl, B., et al. The GemStone Data Management
System, OBJECT-ORIENTEDCONCEPTS, DATABASES,
AND APPLICATIONS,W. Kim and F. LochovskY, Eds.,

ACM Press, 1989.
TheSmal[talkReport

KENT ❑ ECK

Garbage
Collection
Revealed
T HIS MONTH I’LL talk about garbage collection. To
paraphraseMark Twain, everybody talks about the

garbage collector, but nobody does anything about it.
All of the commercial Smalltalkaprovide some abfity to tune
the garbage collector, but without knowing what’s going on and

why, you are unlikely to be able to know when these features
are applicable or how to use them. Thk article dkusses the

common vocabulary of modern garbage collection. Later, we’ll
explore what you can do to tune the garbage collector in the

various Smalkalks.

THE IIIEA

In the early days of programming languages, programmers had
to decide at compile time how much memory they needed.
Languages like FORTRAN and COBOL had a simple run-
time model as a result, but they aren’tvery flexible. Along came
LISP, which let you allocate storage at runtime. LISP was very
flexible, but what got sllocated needed to get deallocated. The
first LISP implementations would run until they filled memory,
then die. It was clear that when the system fled memory,
much of the storage was no longer in use. It had been used for
a while, but then it could be safely reused, because it would
never be used by the program again. Rather than make the pro-
grammer responsible for deallocation, early Lispera decided to
have the system deaUocatememory for them.

At first, automatic storage deallocation was considered an
artificial intelligence problem. After all, how could you possibly
know that a piece of memory would never be accessed again?
Ordy a trained programmer could tell with any certain~, and
even they weren’t very accurate.

It wasn’t long before someone noticed that in a type safe
language (that is, one where you can’t arbitrarilycreate pointers
to memory) the problem is conceptually quite simple. Once the
last pointer to an object is lost, there is no way to get another
pointer to it. Therefore, you can’t possibly harm the execution
of the program by reusing that memory.
I I

Figure 1. ObjectB’smemorycanhesafalyreused.

In Figure 1, since there are no references to object B, the
program is free to reuse the memory it occupies, safe in the
knowledge that no part of the program can possibly refer to it

a~n- Object C cannot be reclaimed, because it is refereed to
by object A. Object A cannot be reclaimed because it is
referred to from outside the object memory.

The code that finds objects that are no longer referenced is
called the “garbage collector.” Your Smalltalk contains a garbage
collector. While most of ita workings are beyond your control,
it will occasionally become a most important part of your life.

When you are trying to squeeze performance out of a running
system, or reduce its memory footprint, you wiU have to under-
stand what’s going on ‘under the hood.”

One common mistaken impression is that the garbage col-
lector runs “occasionally” almost of its own volition. The
garbage collector always runs in response to a request for mem-

ory it cannot i%lfd. The memory allocator looks for the
requested memory, but can’t find it. It invokes the garbage col-
lector, which reclaims some memory The memory allocator
runs again, returning some of newly freed memory.

The presence of a garbage collector is an integral part of the
Smalltalk programming experience. When you have to explicit-
ly deallocate memory, you program in a very diEerent style.
The hard cases are where several parts of the system share an

object, and all of them must agree before it can be deallocated.
This introduces a pattern of communication to the system that
likely wouldn’t exist if not for the deallocation problem. A
garbage collector, because it needs to have a global view of the
system, fkeesyou from having to take a global view. The con-

nections between the parta of a program can be much looser,
because they never have to communicate about deallocation.
You never have to write otherwise irrational code just to make
sure memory geta deallocated correctly.

Your Smelkalk implementation (the virtualmachine) provides
you with two main resources- message sending and object alloca-
tion (and hence garbage collection). The right attitude95% of the
time is to assume that botb are free.The right time to stop this
charadeis when you have gotten the design as clean asyou possi-
bly can at the moment and it is obvious that limited machine
resourcesaregoing to pose a problem for your user.Then you
need to have a model in your head of what is going on.

BAKER TWO SPACE

Here’s a simple garbage collection rdgorithm: allocate twice as
much epace for objects as you think you’ll need. Divide the
memory in two equal sections, called Old and New.When you
allocate an object, allocate it in Old space. (See Fig. 2.)
9

gum 2. Allocatingobjectsin old spece.

I 1 1

Old New

gors 3. Copying a known objact to new specs.

I I

m.“.’kA
I f

I

Old ‘ New

igure 4. Copying e refersckto object to new spece,

When you want to allocate an object, but Old space is out of
room you have to invoke the garbage collector. The collector—
runs by starting with a known live object in Old space (in this
case A) and copying it to New space. (See Fig. 3.)

Any object that gets copied to New space has all of its
objects copied to New space, too (in this case C). (See Fig. 4.)

When no more objects remain to be copied, any objects
remaining in Old space are not referenced anywhere. In this
example, B can be safely ignored. Swap the identities of Old
and New space. New objects wiU be allocated in the same space
as the surviving objects. (See Fig. 5.)

Thk algorithm is called Baker Two Space after its inventor,

Henry Baker. It advantages are
“ it is simple
- it automatically compacts surviving objects together, leaving

the remaining free space in one big chunk

Its dkadvantages are:
■ it takes twice as much memory as the object actually occu-

pies
. the copying operation takes time proportional to the num-

ber of surviving objects
10
r 1 I

I 1
J

Old ‘ New

Figure 5. Objectsere ellocatedin old epace.

.

Figure 6. Mark and sweep objests in e singla spece.

I ,

Figure 7. After merkirrg.

MARK AND SWEEP

The mark and aweep algorithm addresses the disadvantages of
the Baker Two Space algorithm (it actually appeared many
years before Baker Two Space). All objects are allocated in a
single space. (See Fig. 6.)

As before, when the allocator runs out of space, it invokes
the garbage collector. Thk time, instead of moving surviving
objects, they are merely marked as being alive. Objects referred
to by marked objects are also marked, recursively until all the
objects that can be marked have been. (See Fig. 7.)

Mter all the surviving objects have been marked, the sweep
phase goes through memory from one end to the other. Any
object that isn’t marked is put on a list of memory available for
allocation. While sweeping, the marks are erased to prepare for

the next invocation of the garbage collector. (See Fig. 8.)
The mark and sweep algorithm has the following advan-

tages:
=it doesn’t require extra memory
■ it doesn’t need to move objects

However, it hae some serious shortcomings:
~the marking phase takes time proportional to the number of

surviving objects
“ worse, the sweeping phase takes time proportional to the

size of memory
TheSmalltalk Report

Oddly enough, a company with possibly the largest

and most deployable Smalltalk/00 workforce is

virtually unknown - Until Now.

● On-Site SrnaUidk/00 P-I &Memoring ● GUIFtantZnd&@Build to~cy Systems
● Or&e CustomizedSrnelltdk/00 Training ● O&ct Maleling, Am&ii & Design

● 00DBMS Developmem @edtme, Gemstone &Versant ● SrnaUmlk/ObjectMapping to Sybase,Oracle & DB2

Iill!Bl..●

,~. Call (919) 859-7384●

or e-mail: info~objectint.com
.

Object/nte//@ence Corporation. 6300-138 Creedmoor Rd,, Ste, 196. Raleigh, NC 27612. (91 9]848-0045 Fax

G
E!!!
c

avai Ie

A

Figure R Afhrr sweeping.

● the resulting available memory is fragmented, possibly
requiring a separatecompaction step to pack the surviving
objects together

GENERATION SCAVENGING

While a graduatestudentat Berkeley,David Ungar combined the
two space and markand sweep algorithmsto mate a ecdlector
which usuallyahibi~ none of the weaknessesof either,and has
some important new properties.He called it generationscavenging.

The observation that makes generation scavenging work is
that as a rule objects die young or live forever.That is, many
objects are used temporarily during computations. For example,
here a Rectangle creates a Point to calculate its extent.

Rectangle>>extent
‘self comer- selforigin

Similarly a Point creates a new Point to hold the maximum of
its coordinates and the parameters coordinates.

Point>>maxaPoint
Februay 1995
mm

IB21

Old New

Figure 9. D and E are old; ~ B, and C are recent.

‘(selfx mm apointx) @ (selfy mu aPointy)
A client might use extent to compute the merged size of sever-
al Rectangles.

Oient>>extent
“eelfrectangles

inject O@O

kh: [:sum:eachI summa.x:each extent]

The Points created by invoking extent only live long enough to
get passed as pmameters to Point>>max. The Points created by
Point>>max: live over two invocations of the block one where
they are created, the next when they are replaced. If Clienthas a
100 Rectangles, Clienb>extent creates 200 Points which are all
garbage even before the answer is returned.

Generation scavenging uses the demographics of objects to
11

S’rn511talk
is seeking e~ert reports, tuton”ak,

and technicalpapers. Articles
shouldbe instructive,product

neutral and technical.

Editorial topics include:

“ Applications
“ Projectmanagement
“ Tools
u Languageissues

l’osubmit papers, discuss story ideas,
)r request Writers’ Guidelines, contact

John Pugh and Paul White, Editors,
THESMALUTALKREPORT

855 MeadowlandsDr.#509,
Ottawa,ONK2C 3N2
613.225.8812 (V), 613.225.5943 (f)
streport@objectpeople .on.ca

CallforWriters

continued on paua 30
advantage.The relatively expensive two space collector is lav-
ished on newly created objects. The copying operation of the
two space collector is crdled a “scavenge.”

The generation scavenger keeps track of the age objects by
incrementing a count every time an object is copied by the two
space collector. When the count exceeds a threshold, the objecl
is copied not into New space, but into Tenure space. Tenure
space is managed by a mark and sweep collector,

This haa the effect of concentrating the collector’s efforts on

newly createdobjects, the ones that arc likeliestto be collectable.
After an object has demonstrated a little longevi~, the collector
effecdvcly ignores it. Only when tenurespace fills or you take a
smpahot, will the mark and sweep collector examine tenurespace

By concentrating ita efforts where garbage is most likely to
be found, generation scavenging garbage collectors end up tak-
ing only a small fraction of the total time of the system. In gen
eral, the collector only takes a few percent, compared with

20-30% for earlier algorithms.
The other valuable prope~ of generation scavenging is that

it is insensitiveto the number of objects in the system. Recall
that the two space algorithm takestime proportional to the
number of survivingobjects. Since most of the objects in the ep
tern are in tenure space, generation scavenging takestime pro-

portional to the number of recently meated surviving objects.
Limiting the size of Newand Oldspace keeps that number small.

A TENURING MONITOFf

All of thk is fine in theory, but what about practice? The col-
lector is like a pair of shoes. You don’t really notice it unless it i!
12
Old New

FiWS 10. B and C hsvo been tenursd.

causing you pain. Then you have a serious problem.
I’m running out of space this month, so I’ll have to cover

garbage collection tuning in future columns. I’ll leave you with
a little utility that will to help you begin to understand the
interaction of your program with the collector.

The most serious breakdown of a generation scavenger is

when it acts like a mark and aweep collector. If objects live just
long enough to be tenured, then die, all the efforts spent on
scavenging are wasted.

In old versions of SmaUtaWV the execution of the mark
and aweep collector was accompanied by a cursor shaped like a
vacuum cleaner.This lead to the use of “hoover” as a verb, “I

w creating lots of objects, and boy, was I getting hoovered.”
The new version of Smalltalk/V, Vkual Smalltal~ provides

hooka for watching the collector. In particular, the global object
Processor posts the event flip when a scavenge takes place. You
can send the message bytesTenured to find out how many bytes
worth of objects were moved to tenure space.

I built the tenuring monitor with Parts.I know of no good

way to typeset a Parts application, so I’ll just try to sketch it out
well enough for you to reproduce it if you want to.

The design of the user interface is a window with a static

text in it. The text displays the number of bytes tenured with
every scavenge.

First, we create a window and put a static text into it. Then
we need to have the static terrtnotified when a scavenge haP-

pens. Give the static text the following script (Digitalk csls
them flips) and link it to the open event of the window:

SetDependencies
Roceaaor

wher-cMip
send:#UpdateBytes
to: self

When the window closes, the static text should stop getting
notified, so define the following script and link it to the
aboutToClose event of the window:

BreakDependencies
Rocessor

removeAclionaWithReceivecself
forEventHip

FMly when the static text gets UpdateBytes, it needs to dis-
play the number of bytes tenured by the latest scavenge. It geta
TheSmalltalk Report

A sample pattern [anguage—
Concatenating withStreams
Bobby Woolf
~ WOULD LIKE to elaborate on Alan Knight’s

1“Performance Tips” article in THE SMALL&K REPORT,
4(1). In hk article, Alan briefly dkcussed using streams as a

more efficient technique for performing concatenation.* I
would like to show how to document thk technique more thor-
oughly using patterns.This example will also show how one
pattern can easily lead to others and forma pattern language.

WHAT ISA PAllEFIN?

Regular readers of THE SMALLTALKREPORThave seen numer-
ous pattern examples in Kent Beck’s “Smalltalk Idioms” col-
umn. In each column, Kent describes at least one commonly
used technique and documents it using a pattern.

A PAllEFIN DOCUMENTS EXPERTISE

The concept of patterns was first described by Ch.rktopher
Alexander, an architect who theorized about how best to design
buildlngs and towns. He describes afattern as the documenta-
tion of a common problem and its solution.+This can also be

phrased as “a solution to a problem in a context.”* It is a mech-
anism through which an expert in a field can document hk
expertise, the various tricks and techniques he has learned
whkh make hlm an expert. Thus a pattern is only as good as
the person who wrote it. In fact, a pattern is frequently less
complete than the author’s understandkig of the problem
because even an expert is often unable to completely express in
words all of hk understanding.

A pattern is much like a scientific theo~ As its accuracy is
confirmed through repeated use, its acceptance grows. But

when it fails to accurately predict results, it must be revised to
include these new circumstances. A theory can never be proven
to be fact, and a pattern can never be proven to be right. For

this reason, a pattern is never really finished. It evolves to
reflect further experience gained through ita use.s A pattern can
only be considered finished when the writer understands a

problem completely and documents it perfectly.
A number of people in the computer software indus~ have

discoveredAlexandeA work and found his concepts of patternsto
be usefulwhen applied to soi%vareengineering tasks.The
Hflside Group formed a few yearsago to investigateand pr-
omotethe use of patternsin the software industry11It recently

● I firri saw this tschniqua documsntad in Ken Aum’s “Efficient Smalltelk Programming”
tutorial al 00PSLA ’92 in Vancouvar, EC, Canada,

t Sae paga x of Alexendar.’

+ sae l%ad~

Sae page w of Alaxandar.l
February1995
held a cotierence, PLoP ’94 (The Firatkmual Conference on
the PatternLanguages of programs) to further coordinate thk
effort.#

A PAllEFIN FOLLOWS A FORMAT

There is considerable debate among software engineers about
what the format or template for a pattern should be. Alexander
describes a format for his architecture patterns,mbut it is not
easily applied to software patterns.Whatever format is used, a
pattern consists of at least four dkcrete parts++:

“ A title.Thk is WAOthe pattern is, a name for easy reference.

Whiie many authors prefer to give each pattern a name that
describes the overall pattern, I prefer a name that summa-
rizm the solution in a sound bite.

■ An explicit problem statement. This describes whzt the
entire pattern is about, what problem it wiU demonstrate

how to solve. The problem statement is specific enough to
accurately describe the dilemma, but general enough to

apply to the widest possible range of examples.
■ A discussion of theforcer or con~traints. This section

describes Z@ the problem is dificult to solve. It defines the
various obstacles that must be overcome and explores alter-

natives for doing so. The forcee/constrainte set the bound-

aries of the problem and guide the reader to the solution.
=An explicit mfution.Thk shows how to solve the problem. It

is stated as a clear recommendation of a course of action to
be taken by the reader.The solution has the same level of

specificity as the problem.
It is possible ersdoften preferable for a pattern to have addi-
tional parts, but only the four listed previously are required. I
prefer to combine the forces and constraints together into a

Context section. I also include an Example section in my pat-
terns, but that is not a requirement a pattern must meet.

The tide should be just a few words that name the pattern,

one that people will easily associatewith the pattern.The prob-
lem statement should be short and simple. It is what the reader

I I Back2 contains da~aila about the Hillside Group-a origins.

A book by Tha Hillside Group,E due this year, will contain 30 pettem Ianguagas from the
pmcaadings of PLoP ’94, tha first annual Pattern languages of Programs conference, P1oP
’95, which will be held Saptember 6–B, 1995, in Monticello, IL, has issued its preliminary
call for papars. For more information, contact Richard Gabriel at rpg@parcplace.com.

● * Sae pagaa ~xi of Alamrder.’

tt The four parts I hava listed ara my opinion. Other opinions on which sactions are key
include 1) Gamma ef s/? lisIs four alamants-patlam nama, problem, solution, and consa-
quances; 2) Back, paga 20,2 lists thraa parte-problam, contasl, and solution; 3) Coplian’
discusses four parts tha problem tha pattern solves, tha traddts it rasolvas, tha contaxl
in which it applias, and tha particulars of its implementation, There appaara 10 ba lass
debate about whethar tha section/parts should ba explicitly labeled. Although Alaxandar
did not Iabal his sections, the aforementioned authors and I all do.
13

will review to quickly find whether a pattern mee~ hk current
needs.The solution should also be concise, but long enough to
describe all of the steps the readershould takeand any excep-

tions to the rule that he may encounter.The real meat of the pat-

tern is the discussion of forcedconstraints. Thk section teaches
the readerabout the problem and documents the writer’s concep-
tualization of it. It considers alternatesolutions and shows why
they were rejected. In the end, it justies the solution.

For a couple of examples of patterns, see the sample pattern
language included in thk article.

A PATTERN IS REUSABLE

Ideally a pattern describes a solution to not just one problem

but rather a range of related problems. Thus the reader can
encounter several seemingly unassociated problems that fall
into this range. The context section will show that the pattern
applies to each of these “different” problems such that all of
them have the same solution. In this way the solution to one
problem can in fact be reused to solve many.

Because patterns have this reusabihv, once an author has
documented the solution to a problem using a well-written pat-
tern, he should never have to document that solution again,
(On the other hand, as mentioned earlier,a pattern is never
really finished. Both the author’s understandhg of the problem
and his abiLityto express his understanding will evolve. As they
do, he should update the pattern accordingly. However, the pat-
tern is available for reuse throughout its evolution.) Any time

another problem touches upon thk one, he will be able to sim-
ply refer back to this pattern as the ready-made solution.

A PAlTERN ENCAPSULATES A SOLUTION

Each pattern must be a small, self-contained chunk that is rela-
tively easy to understand on its own. If a pattern becomes too
long and complex, it will lose its focus of presenting a specific—
solution to a specific problem. Should this happen, the pattern
must be refactored into a series of smaller patterns.

Thus a complex problem requiresmore than one pattern to
deriveits solution. Each patternwill desuibe a specific problem
and its solution, and the patternswill build on and retiorce each
other.The solution offered by the patternfamily whole is greater
than the sum of its patternparts,thereforethe family will presenta

more elaboratesolution to the complex problem. Alexander called
such a collection of collaboratingpatternsa patternlanguage.

WHAT ISA PAllERN LANGUAGE?

Individual patterns document indhidual techniques, but an
expert in a topic has numerous techniques at his dkposal. His
art is knowing how to combine these techniques to form a
methodology for solving a range of problems within a domain.
When coupled in certain ways, his techniques form a structure
of solutions far more usefil than the sum of the individual
parts. Yet when mixed together haphazardly the guidelines
cancel out each other’s value. This can leave the reader at a loss
as to how to apply small patterns to solve large problems.

A pattern language is a collection of patterns that reinforce

each other to solve an entire domain of problems. Each pattern
14
in a language leads to others. Large, broad patterns contain
smaller, specific patterns,A language’s shape is a multidimen-—
sional web of patterns referring to one another. But paper is

two-dimensional and a reader’s attention is one-dimensional, so
a pattern language is written as a list. Thk list guides the read-

er, starting with an overall problem, through subsequent pat-

terns, the language explores the various issues involved and dis-
covers the specific solutions that will be required.

Pattern languages can be nested, forming a language con-
sisting of sub-languages consisting of sub-sub-languages. Each
of these is a pattern language of its own that just so happens to

be part of a broader pattern language. Just as a tiee may actually
be a branch in a larger tree, a pattern language is a sub-lan-
guage in one or more larger languages. In theory, a pattern lan-
guage describing a feature in Smslltalk is part of “the”

Smrdltalkpattern language. The Smalltalk pattern language is
part of the object-oriented pattern language (as would be paral-
lel languages for C++ and other object-oriented languages).
Furthermore, the object-oriented pattern language is, in turn,
part of the software engineering pattern language.

A SAMPLE PAlTERN f.ANGUAGE CONCATENATING WITH STREAMS

This is an example of a simple pattern language. It is very

Smalltalk specific. As in the “Performance Tips” article, it
teaches the reader that it is more efilcient to use streams for
string concatenation than to use the concatenate message.

Because it is written in pattern form, it clearly describes why
the solution works and when to use it. For example, it notes
that streams can be used to concatenate any -
SequencableCollection, not just Strings.

What makes thk a language is that the overall solution is
presented not in one pattern but in three. The first pattern is
the main one and discusses the most important issues docu-
mented by the pattern language. In the process, it touches on
two other problems and refers the reader to other patterns that
resolve them. Because the other two patterns are referred to by
the main pattern, they are included in the language (otherwise
it would be a one-pattern “language”).

Notice that these three patterns could also refer to even
more patterns,The reader might not know Smalltalk and thus—
would need patterns describing problems that are solved using
strings, streams, and concatenation. Pattern 2 refers to unneces-

SZI-Yg~bage co~ectio~) the reader maY req~re a whole separate
pattern language on problems encountered in memory manage-
ment and why Smrdltalk’sdynamic garbage collection is a good
solution. The reason these patterns are not included in thk lan-
guage is that I, the author, decided that they were outside the

scope of this language. Although they probably belong in a
larger-context language that describes Smalltalk in general, they
do not belong in a specific sub-language that discusses concate-
nation using streams.

CONCATENATING WITH STREAMS
Pattarn 1: Use a straam for multipla concatenations

Problem: What is an eKicient way to concatenate together a
number of strings (or other collections) into a larger string?

Context: Concatenation (which is implemented in ParcPlace
The SmalltalkReport

Are you maximizing your Smalitalk class reuse? Now you can with...

Mlw from ARS

Applleti Reasoning Syelams Coporst/on (ARS) Is an innovativedevdqw of high
qualify Smallfa/k devakprnenl tools, applketion hamaworks, intallbenf sdwst’a .mm

systems, and related semleas thaf pmWs advancedsolutloneto complexproblems.

Smalltalk Produotas Consulting ● Edueatlon ● Mantorlng ~

th@smenfacicmh Viausl.qge”mdsmalhnuwamIbJthmmmi
Phone/Fax (919) 781-7997¤ E-mail: info@ aramrp.com
SmaUtalkby the method in SequenceableColleciion whose

name is a comma) is convenient, but somewhat ineffkient. To
concatenate two lists (a list being some kind of sequenceable
collection), a and b, a third list, C,is created, then a and b are

copied into it. To then concatenate c and d, a new list e is creat-
ed to hold copies of c and d. Thus each concatenation requires
creating one new object plus iterating through and copying
each of the elements in both of the arguments. This is neces-
sary for the first concatenation, but a series of concatenations
creates a number of intermediate objects and involves copying
the same sublists repeatedly.

A better solution would create fewer new objects and copy
the sublists as few times as possible. The solution should work

for any pair of sequenceable collections, but will most common-
ly be used to concatenate strings.

To quickly concatenate a couple of short lists, the comma
message is simpler. A more complex technique would be appro-
priate for concatenating together numerous and/or long lists.
Solution: Use a WriteStreamto perform multiple concatena-
tions. Create a stream that contains what will be the result list,
add each of the lists to be concatenated into the stream, and
then return the resulting list.

A tip when concatenating strings: One common source of
strings to concatenate is the method printWing. Pattern 2 sug-
gests using printOn: instead of printShing, and Pattern 3 gives
preference to pfik over printOn:. So use print: instead of
printihi.rlg.

Examples
Februay 1995
Here’s a simple way to concatenate several strings:
descriptiontig

“ ‘I ama‘, self class name, ‘ whose name is ‘,

seff name, ‘ with a value of’, self value

printString,‘.’

Using a stream is a more efficient way to compute the same
string. The general technique is to replace every concatenation
comma message with neatPutAlt, which will add the string to
the stream. Other WriteStieam messages, such as prink and
netik, are also helpfid:

descriptionShing
I streamI
stream:=(Stringnew 100)writeStieam.

selfdescriptionOmsbesm.
“ *earn contents

descriptionOnaWriteStream
aWriteStresm

nextPutAlh‘I ama‘;

ne8tPutAlKseffclassnsm~
nextPutAIL‘ whosenameis ‘;
nextputilhsetiname;
nextputilt ‘ withavalueof’;
ptiti selfvalue;
nextluti$.

Notice that I broke the implementation into two methods. Thk
way, if the description string is going to be concatenated with
another string, a stream can be used directly.

Some subtle effkiencies to note in the transformed method
15

The message nextput was used to add a single character; that is

more effkient than using nextPutAlk to add the one character
string ‘.’. And, as mentioned in the solution, I used “prirtk self
value” instead of “nextputil~ self value prhtshing”.

Thk example shows strings being concatenated but thk
technique can be used to concatenate any series of

SequenceableColleciions.

Pattern 2: Avoid creating intermediate objacts

Problem.- How can I avoid creating intermediate objects-
ones that are not needed by the methods that obtain them-in
my code?

CrmtexfiIntermediate objects waste memory by taking up
space. They waste CPUtime, first when being created, then
when their memory is reclaimed (during garbage collection).

Often the reason a method receives an intermediate object is
because what it really wanted was a similar object, so it takes
the one it received and converts it into the one it wanted. The

method should be more specific and ask for the object it wants
so that it will not need to convert it.

Code with a series of message sends is less encapsulated
because each message send assumes it will be understood by the
answer returned by the messsge before it. By replacing a series
of message sends with a single one, the code is both better
encapsulated and easier to read.

A aiigle messagesend is not alwaysmore efficientthan multiple
ones becausethe singlemessage’simplementor may meatemore

intermediateobjects than multipleexpliat messagesendswould.

Solution: Avoid creating intermediate objects by sending an
object a message that will return the answer object you want,
rather than an intermediate object to which you have to send
fim-thermessages to get the object you want. If the message

you’re sending returns an object that requires conversion, look
for and use another (usually in the same receiver’spublic proto-
col) that will return the final resulting object.

Be aware,however,that the implementor of the messagethat
returnsyou the object you want may in turn aeate numerous
intermediateobjects. It may createthose unwanted objects itself or

use other messagesthat createthem. The goal is not just for your
code to createas fm unwanted objects as possible, but for your
code and all of the code it uses to minimize such objects In gener-
al, ~ough, if everyonewrites effident methods that rnininize
intermediateobjects, sll code that usesthose methods benefits,

Another technique: It is often tempting to ask an object to
return an answer so that you can use it to perform a certain

task, Instead, ask the object to perform that task for you. To do
so, it can use the answer you would have received without cre-
ating a new object to return the answer to you.

When you make thesesimplificationsto your code, it will
become more efficien~and will oflen make it easierto readaswell.

Examplea

Emample I.- One way to determine the height of a rectangle
is:
16
red extent y

However, extent computes and returns an intermediate object, a
Point, which is then sent y and thrown away.To avoid creating
this unneeded object, do thk:

rectheight

where height is implemented as:
Rectangle>>height

“ comery - origin y

This message will perform two accesses and a simpler calcula-
tion than extent performed (subtracting Numbers instead of
Points). It wiU return the object you want, with no more access-
ing or conversion required.

Example Z: Similarly when adding strings to a stieam, the

intermediate string is usually avoidable. This will print an
object on a stream

mysheamnextPutAILanObjeetprintStig

The problem is that printString returns a String tha4t is thrown
away after nextputkdl: is through. Thk is unnecessiuy

ptintihing is implemented to use printOn: which takes a stream
as a parameter.To accomplish the same task without creating
the unwanted string, ask the object to do it

anObjectprintOn: mystream

Whenever practical, use transformations like these on your
code to avoid intermediate objects.

pattern 3: Uae caecading to incraasa raadebility

Problem: When one object is being sent a series of messages,
how can I format my source code to make thk obvious to the
reader?

Context: A message expression has at least two parts: the
message and the receiver.Thus to understand an expression, the
reader must digest not only what the message is but what object

it’s being sent to. When multiple messages are being sent to the
same object, it simplifies the reader’sunderstanding to explicitly
show that all of these messages are being sent to the same

object. That way, the reader need only determine the receiver
once, and can then concentrate on the messages being sent.

Separate code statements are divided by periods. Each is

usually placed on a separate line to clearly show the reader that
they are separate statements, When multiple statements are

appended together into a single sequence, it is temptingto
place them all on the same line as one statement. This, howev-
er, makes it difficult for the reader to recognize that the state-
ment is really a series of separate sub-statements.

If a substatementstartsin the first column of a line, it is dM-

cult for the readerto recognize that this is a sub-statement (a con-
tinuation from the previous line) and not a complete statement.

Solution: Use message cascading to send multiple messages
to the same object. Cascading will explicitly show the reader
that all of the following messages are being sent to the same
receiver.

Ti-y to avoid interrupting the cascade to send a message to
another object. The more pieces you break the cascade into, the
less helpful it will be to the reader.

Format a cascade to indicate to the reader that this is a cas-
The Sma[ltalkReport

Hhe 405 El Carnino Reaf, #106
Menlo Parlq CA 94025, U.S.A.

Mmalltalk o,~:~~~f~::~~
Mtore

& 1-415-854-2557
BBS: 1-415-854-5581

emaif: info~malltrdk.com
CompuServe:75046,3160

The Srnalltzdk Store carries over 75
Smallta.lk-related items: compilers, class
libraries, books, and development tools. Give
us a call or send us an email - we’ll put you
on the mailing list and send you a copy of
our combination newsletter-catalog. It’s
infonriative and entertaining.

When you get the
chance, check out our new

v

\\’1 ,
dialect-neutral SmaUtalk \l
bulletin board system at ‘v\,//
415-854-5581, 8N1.

Send For Our Free Catalog!
cade. Put the receiver on the first line in the firat column. Then

put each sub-statement sent to the receiver on ita own line,

indented a set amount from the first column (such as one tab).
Cascading won’t make your code any more efficient, but it

will make it easier to read.

Examples

Example 1: Thk code is typical for creating a new objecfi
I layoutI
. . .
layout:=LayoutFramenew,

layoutlefiratiom Ooffset 10.

layouttopFraction:0.1.
layoutrightFraciion:1 offsek-10.
layoutbottomFractiom0.9.
,..

To create the same object the same way, but make the code eas-
ier to read, use cascading

IlayoutI
. . .
(layout:=LayoutFramenew)

IeftFration:Ooffseb10;

topFraction:0.1;
rightFraction1 offseti-10;
bottoreRactiomo.g.

. . .
The cascading shows the reader more clearly that all four mes-
sages are being sent to the same object.

Examfle 2: Be carefid not to assume that all messages return
sew, many don’t, and they could cause you to set your variables
incorrectly.Thk code:

“ (Set new)

add:1;
add z

will return 2, not a SX use the message yourseff to fm this
problem:

“ (Setnew)
add 1;

add Z;
yourself

Example 3: Avoid writing code that interrupts the cascade.

The code:
writeStieamnerrtputfdk‘Myclasshas’.
selfclasssubclassessizeprintOnwriteStieam.
writeStreamnextPutAlk‘subclasses.’.

can be written to use cascading without interruption as:
writeStream

nesrtPutAlb‘Myclasshad’;

print:selfclasssubclasses size;

nextPutAL ‘subclasses,’.

Rafarancas

1. Alexander, C., et al A PATTERNLANGUAGE, Oxford
University Press, New York 1977.

2. Beck, ~ Patterns and software development, DR. DOBB’S
Februay 1995
3.

4.

5.

6.

JOURNAL,19(2): 18-20 and 22, Feb. 1994.

Coplien, J,O., Pattern languages for organization and
process, OBJECTMAGAZINE,4(4): 46-51, July/Aug. 1994.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. DESIGN
PATTERNS:ELEMENTSOFREUSABLEOBJECT-ORIENTED
SOFTWARE,Addison-Wesley Reading, MA, 1994.

Coad P., D. North, and M. Mayileld, OBJECTMODELS:
STRATEGIES,PAnERNS, ANDAPPLICATIONS,Prentice
Hall, forthcoming.

The HiJlsideGroup, PA~ LANGUAGESOF
plU3GRAMMlNGJhdiaon-wedey Reading,M& fbrthmrnirrg.

Furthar Reading

7.

8.

9.

10.

Alexander, C. THE TIMELESSWAY OF BUILDING, Oxford
University Press, New York, 1979.

Johnao~ R E. Documenting i%arneworksusingpatterns,
00PSLA ’92 CONFERENCEPROCEEDINGS,The Association
for Computing Machinery NewYor~ 1992,63-76.

Gabriel, R.P. The bead game, rugs, and beauty,JOURNAL
OF OBJECTORIENTEDPROGRAMMING,Part 1—7(3):
74-78, June 1994, and Part 2—7(5):44-49, Sept. 1994.

Beck K. A short introduction to pattern language,
SMMLTALKREPORT,2(5): 17-18: - -

Bobby Woolf is a memlsor of the Technicel Steff et Knowledge Systems

Corp., where he is developing petterns and pattsrn Iangueges on topics

such as VisualWorks fremewerks and Smalltalk sonfiguretion management.

He also patiicipated in PLoP ’84, the first annual Pattsrn Languages of

Programs cenferance. Cemments am welcome at woolK@acm.erg.
17

Processes

Alec Sharp and Dave Farmer
T HIS ARTICLE TALKS about SmaUtalkprocesses,
the threadsafeness of shared resources, and communi-
cation between processes. Because the implementation

of processes varies quite a bit between Smalltslk vendors, we
want to note up front that in thk article we are describing
VisualWorks 2.0 from ParcPIace Systems.

CREATING PROCESSES

Smalltalk allows you to create separate processes so that your

application Cm do several things in parallel. For example, our
. .

app~catlon creates a process for handling input from sockets,
another process for handling output to sockets, and separate
processes to handle 1/0 to each robot tape library that is con-
nected to our UNIX server.These processes all run in a single

SmaJltalkimage.
The Smalltdk image is a single process being run by the

operating system, but internal to Smalltrdkis another process
scheduler that allocates time among the various Smalltslk
processes. So the operating system scheduler allocates time to
Smalh~ and the SmaUtalkscheduler allocates time to the
various Smalltslk processes.

Smalltrdkprocesses can be forked at different priorities, with
higher priority processes being given preferential treatment if
they have anything to do. To fork a process, you send a fork or
forkAh message to a BlockClosure, For example,

[SocketInputnewstart]forkAtiProcessoruser.%heduhngpriority.

When assigning priorities, it’s a good idea to use names to—
avoid problems when values change in new software releases.

For example, in VisualWorks 1.0, user background priority was
3, but in VisualWorks 2.0 the number of priorities has been
significantly increased and user background priority is now 30.
The priori~ names can be found in the “priori~ names”

instance protocol of ProcessScheduler.
You can also create a process that does not immediately run,

using the newprocess or newProcessWitttArguments:message to
a BlockClosure.A process created d-is way does not run until
you send it a resume message. (Interestingly the fork message is
actually implemented as a newprocess message followed by a
resume.) We won’t go into this aspect of processes except to say
that you might use this capabdity if you wanted to gain more
control over process scheduling.

PROCESS SCHEDULING

VisualWorks does not have a preemptive scheduler, which
means that a process will continue execution until either it
explicitly gives up control, using Processor yield, or it does an
18
operation that yields the processor, such as reading a file or
waiting. So, for example, in the following code, processl wiU
never give up control and so process2 never runs. In fact, if we
had used fork to create the new process, it would have inherited
the priority of the creating process, and would have never given

up control to the parent, so the parent would not be able to ter-
minate it. Unfortunately, you won’t be able to terminate it with

ctrl-C; try it and see!
Iprocesslprocess2I
processl:= [[Transcriptshow ‘1 ‘] repeat]

forlrAfiProcessoruserBackgroundPriority.
process2:= [[Transcriptshow ‘2 ‘] repeat]

forkAtProcessoruserBackgroondPriority.
(DelayforSeconds:7) wait.

processl terminate.

process2 tercrdnate.

Results: llllllllllllllllll 1

In these examples we don’t want the processes to run forever, so
we terminate them after seven seconds. We have shown all the
code above, but in future examples we will only show the
processl and process2 code to save space. We will also use a
tighter formatting than we would use in production code.
Another thing to note is our use of the Delay class. Every time
we want to wait, we create an instance of Delay then immedi-
ately ask the instance to wait. In a production system, it might
be more appropriate to create the instance in a separate opera-
tion from the wait, especirdlyif the wait occurs inside a loop.
For example,

delay:= Delayforhfilliseconds:100.

[-..
delaywait] repeat.

In the next example, we yield the processor and now process2
gets a chance to run. Similarly we could have done an opera-
tion that caused a wait, such as (Delay forMilliseconds: 10) wait,

and this would have the same resuk
processl := [[Transcriptshow ‘1‘.Processoryield] repeat]

forkAt ProcessoruserBackgroundPriority.

process2 := [[Transcriptshow ‘2‘.

Processoryield] repeat]

forkAkProcessoruserBackgrourrdPriority.

Results: 12121212121212

Let’s now give process2 a higher priority

(userSchedulingPriority) than processl. Even though process2
The Sma[ltalkReport

At SHL SYSTEMHOUSE, client/server computing isn’t just a part of our business. It ~ our busfness.
We’re a billion dollar systems Integrator dedicated entirely to business transformation through client/
server computing,

And we’re using object technology to make these transformations a reality

Join SHL and help us bufld mission critical applications using object technology from analysis to
construction. We’ll challenge you and support you. You’ll collaborate with the Industry’s top object
technology professionals. And you’ll make a major impact,

As a leader in a $100 billion Industry our potential for growth la extraordinary If you’ve got the
knowledge, imagination and vision, your career opportunities at SHL are endless.

If you’re commkted to object technology join a company that Is firmly connnkted to
your future, Please send your resume and letter of introduction to: SHL, Manager of
Human Resources, Dept. MJS-295, 300 South Wacker Dr., Suite 2500,

a

#

Cticago, IL 60606. FAX (312) 939-0066. E-mall: oops@chi.shl.com.
SHL is an Equal Opportunity Employer M/P/DN

SHL
SHL SYSTEMHOUSE 8YSTEMHOUBFC
does a Processor yield, processl is never scheduled after
process2 gets into the picture because process2 always has work
to do. This is unlike timesharing processes in a UNIX system,

where each process in effect has two priorities: a base priority
and a current priority. The UNIX process scheduler computes

the current priority from the base priority, how much time the
process has been sleeping, how much CPU tiie it has used,
and other factors. Thk way, all processes have a chance to run,

even if they have a low base priority. Smalltalk processes are
more like UNIX real-time processes, where the highest priori~
process always gets the CPU if it has something to do.

processl:= [[lhnscriptshow ‘1’] repeat]
fork.tlkprocessoruaerBackgrourrdPriority.

(DelayforMiUiseconds:100)wait.
process2:= [[Transcriptshow ‘2’. Processoryield]repeat]

forkAtiProcessoruserScheduLbrgPriori&.

Resrrks:ll1122Z 22222222222 222

Let’s take a brief look at how VkualWorks itself uses some of
the different priorities; we’ll specify the priority by the mes-

sage that you send to Processor. The incremental garbage
collector runs at systemBackgroundPriority, so it only gets
activated if there is nothing else going on. Once running, if it
decides that memory needs compacting, if forks a process to
do so at userIntenuptPriority, which is a Klgher priority than
the typical user application running at
userSchedulingPriority, The Profiler also runs at
Februaq 1995
userInten’uptPriority, since it needs to periodically interrupt
the application it is prof~lng.

Keyboard and mouse input are done at a higher priori~
stii, lowIOPriority,as is the process that handles low space con-
dkions. An example of a highIOPtiorityprocess is a C routine
calling back into Smalltalk. The highest priority, timingpriori~,
is used by system processes that handle delays and process ter-
mination.

TERMINATING PROCESSES

Once a process has been forked, how does it terminate? There
are two ways thk can happen. It can simply finish what it was
doing, or it can be terminated. This example shows a process
finishing up its job then terminating. We print out the vahre of
the process twice, once while it’s still doing work, and again
after it’s finished and the garbage collector has done its thing.

proc:= [(Delayforseconds:1) wait.]fork.
Transcriptcr;show procprintString.
(DelayforSeconds:2) wait.

ObjectMemorygarbageCoUect.

Transcriptcr; show proc printing.

Results a Processin [] optimized

a Recess in nil

To terminate a process, we send it a terminate message.
Generally thk message will be sent by another process, but
there’s no reason why a process can’t send itself a terminate, Of

course the process will need a handle to itself if it wants to send
a terminate message to itself Generally you should be able to
19

structurethe code that is executed in a forked block to simply

finish, but it’s certainly possible that the termination condition
may be buried deep in your code, and rather than filtering up
the condition it’s easier to terminate the process when the con-
dition is found (alternatively you could raise an exception). A
process could also terminate itself by sending the terminate

message to the active process (i.e., i;self): -
ProcessoractiveProcessterminate

The example that follows shows a process being terminated by
another process. The main difference between this example and
the prm:ous one is *at in line one, the process waits for ten

seconds, then in line threewe terminate the process. The
Transcriptshows that the process is nil long before the 10 sec-
onds are up.

proc:= [(DelayforSeconds:10) wait.] fork.

Transcriptcr; show proc printstring.

proc terminate.

(Delayfor.seconds:1) wait.

ObjectMemorygarbageCollect.

Transcriptcr; show proc printString.

Results: a Processin [] optied

a Processin nil

SHARED RESOURCES

Sometimes we have resources that the various processes need
shared access to. For example, in our application, we log infor-

mation from the various processes and we need to make sure
rhat we don’t get interleaved data. We also keep a
ThingsToCleanUpobject in a pool dictionary, in which we store
sll the opened files and external devices, and the forked
processes. We want to make sure that we provide threadsafe

access to these shared resources. If we don’t make access to
shared resources threadsafe,we could end up in the situation
illustrated by the following example,

array:= #(1 23456 7) copy.

processl := [arraydo: [:ekment I Transcriptshow elementprintsbing, ”.

(DelayforMiUiseconds:500) wait]] fork.

(DelayforMiUiseconds:1000)wait.

process2 := [array ak 6 puti N1.

Transcript show Wetting 6=nib’] fork.

Results: 12 <sting 6=N~345 nil 7

We want to protect the arrayso that only one process can
access it at a time. We do this with a mutual exclusion sema-
phore, which we create by sending the forMutualExclusion mes-
sage to Semaphore. We ask the semaphore to run the code by
sending it the criticak message with the block of code to run,

and the semaphore is smart enough to or-slyrun one block of
code at a time.

array :=#(1234567) copy.

sern:= SemaphoreforMutualExclusion.

processl := [sem criticak

[array do: [:element I Transcript show element printString, ‘‘.

(Delay forMiUiseconds: 500) wait]]] fork.

(Delay forMilliseconds:1000) wait.
20
process2 := [sem criticak

[array ak 6 puh nil.

Transcriptshow ‘<setting6=niP ‘]] fork.

Results: 1234567 <sethg 6=ni~
As a brief aside, Semaphores work by having processes wait
until a signal is sent to the semaphore. The mutual exclusion

semaphore sends itself a signal when it’s created, so that the
first block of code to be run by the semaphore already has a
signal waiting. That is, it doesn’t have to wait. Once the code
has been executed, the semaphore sends itself another signal,
priming itself in advance for the next code block. It does so by

‘mutuallyExcludedBlockvalueNowOrOnUnwindDo:[selfsignal]
How do the priorities of the different processes affect mutual
exclusion? Fortunately, mutual exclusion works as you’d want it
to work, regardless of priority. If we change the previous exam-
ple so that processl is forked with forlult Processor
userBackgroundPriori@ and process2 is forked with forkAti
Processor userSchedulingPriori~, we get the same results.The

criticzl block is SW run to completion before the Klgher priori-
ty process carsget access to the shared resource.

The next question is can another process get access to a
shared resource if it’s not cooperating by sending the critical:
message? As the following example shows, the answer is yes:

array :=#(1234567) copy.

sem:= SemaphoreforMutuaWrchssion.

processl := [sem miticaE [array do: [:element I

Transcriptshow element print.%ing, “.

(DelayforMiUiseconds:500) wait]]] fork.

(Delayforkfilliseconds:1000)wait.

process2:= [mray ak 6 put nil.

Transcript show %ethg 6=nil>’] fork.

Results: 12 <setbng 6=nil>34 5 nil 7

So, to protect shared resources, the processes must cooperate.
Both processes have to agree to use the same semaphore to
protect the shared resource. Let’s go ahead and implement
access to a shared resource, a Dictionmy, as we might do in a
real application. We will create and initiahze the object, then
provide read, write, and delete access to the resource. Our first
decision is whether to subclass off Dictionay or create a new
class that has a Dictionagr as an instance variable. Since we
want to restrict access to just a few messages, it’s easier to create
a new class than worry about all the possible ways someone
might try to access a subclass of Ditionary. So, we’ll create a
new class with two instance variables, collection and
accessproteck

new
“supernewinitialize

initialize

colledion := Difionary new.

accessprotect := SemaphoreforMutualEsclusion.

atiaKeypuh anItem

‘accessProtect criticab [collection ak aKeyput: afltem]

ah aKey
The Smal[talkReport

Authors Wanted
For Two Innovative

Book Series

Managing Object Technology
edited by Charles F, Bowman

For more information please contact:
Charles F. Bowman, Series Editor

(p) 914-357-6285, (f) 914-357-6524
71700,3570@ compuserve.com

m
and

Advances in Ob~ect Technology
edited by Dr. Richard S. Wiener

For more information please contact
Dr. Richard S. Wiener

135 Rugely Court
Colorado Springs, CO 80906
(phone W fax) 719-579-9616
‘accessProtect critica~ [collection at aKeyifAbsenti[nil]

removeaKey
‘accessProtectcriticak[collectionremweKeyaKeyifclbsenk [nil]]

Having got thk far,we now need to say that the Transcriptis
not threadsafe. It so happens that all our examples work in
VisualWorks 2.0, but writing to the Transcriptfrom multiple
processes is not guaranteed to work correctly. In fact we have
an innocuous looking Transcriptexample that in VisudWorks
1.0 hangs until you press ctrl-C. So, while we use the
Transcript in our examples, we don’t recommend writing to it
from multiple processes in production code. Much of the time,

code that is not threadsafe will work because the Sma.lltalk
scheduler is non-preemptive and so many code segments will
run to completion. However, if you ever add code that causes
the process to give up control, you may find that your code no
longer works correctly.

INTERRUPTING ANOTHER PllOCESS

Now, suppose you want to ask a particular process about its
state. Perhaps you want to know if it’s waiting for a particular
input, or whether it’s finished some part of its processing. In
our product, where we have separate processes handling differ-
ent robot tape libraries, we sometimes want to know the status
of the library for example, if it’s on-line or off-line. There are
severalways to handle thk desire for information.

One solution might be to restructureyour application so you

don’t need access to this information, but we’ll ignore this one

because it’s not very interesting to this article! Another solution
would be to have the process post the needed information in a
shared resource, protected by a mutual exclusion semaphore.
This has the potential dkadvantage that the process maybe
updating the shared resource with a lot of information, but per-
haps no one is readhg it very often.

Another approach would be to send an object to the process
using a shared queue and have the object figure out the infor-
mation then send it back on another shared queue. We’ll talk
more about shared queues later,but a disadvantage of the
shared queue approach is that the process needing the informa-
tion will usually have to wait until the process can get to the
shared queue, pufl the object off it and process it. It’s not an

aPPmach to use if You - in a hufiY-
The approach we are going to look at is one where you can

actuslly interrupt a process and ask it to do something for you.
The mechanism is to send an interruptWiti [aBIock] message
to the process, passing as a parameter the block of code you
want executed. The process saves its context, executes the
passed-in block restores its context, then resumes its business,

Here’s an example. Processl is simply waiting for time to pass

before doing anything. We interrupt it and ask it to print

something.

proceasl := [(DelayforSeconds:4) wait.

TranscriptCI;shovz ‘processl done waiting’] fork.

process2 := [(DelayforMiUisecon&100) wait.

processl interruptWMu

~anscript cr; showr‘process2interrupt’]] fork.
Februaq 1995
Results: process2interrupt

processl done waibng

That’s all well and good, but what happens if the pocess is
doing something that it really doesn’t want interrupted?
Fortunately, there’s a way to prevent interrupts, which is to pro-
tect the specisl block of code with a valuelhi.nterruptably mes-

sage. The valueUnintenuptably method sends the active process
an unintermptablyDo: [aBlock] message.

uninterruptablyDo: takes the parameter block and asks a
semaphore named interruptProtect to run the block in critical
mode. interruptWiti also asks interruptProtect to run its block
in critical mode. Since valueUninterruptably and interruptWith:
both ask the same semaphore to run their blocks critically only
one of the code blocks executes at a time.

Here’s the previous example with processl protecting its
work against interruption:

processl:= [[(Delayforseconds: 4) wait.

Transcript CI;showc‘processl done waitig’]

valueUnintenuptably] fork.

process2 := [(Delayfcdfilliseconds: 100) wait.

processl fnterruptWitk

~ansmipt cu show ‘process2interrupt’]] fork.

Results: processl done waiting

process2 interrupt

Are the interruptWith: and valueUnintenuptably messages ones
that you should use? Our view is to use them if you have to, but
use them sparingly. PsrcPlace recommends against their use.
21

co~tinued on page 29
The method comments for valuelhintemuptably and

uninterruptablyDo: both say “Use thk facility VERY sparingly.”
One problem with running a process ursinterruptablyis that
you can’t even use ctrl-C to interrupt it should things go

wrong. Another is that if a process running uninterruptedly
does something time consuming, such as reading a file, no one
else can get the processor during that time. The only classes
that send valueUninterruptablyare Profiler and SharedQueue.
ControlManager and Process are the only classes that send
interruptWith:.

SHARED QUEUES

Our main objective in talking about interruptWith: and
valueUninterruptably is to illustrate some interesting capabll-
ties, then let this lead to a discussion of SharedQueues. So
here we are. SharedQueues are the general mechanism for
communicating between processes. They contain an
OrderedCollection so that all objects that go onto a shared
queue are taken off in chronological order. To set up commu-

nication between processes, you create an instance of
SharedQueue and tell both processes about it. One process

will put objects on the shared queue using nextPut: and the
other process will use next to get objects from the queue.
When a process sends the next message, it blocks until there
is something on the queue. If the process doesn’t want to
block it can send isErnpty or peek.

Because shared queues are so important for communicating

between processes, they need to be as ssfe as possible. For this
reason, all access to shared queues is protected by a mutual
exclusion semaphore using the criticak message, and this block
of code is protected by a valueUninterruptablymessage. For
example, here’s how ParcPlace implements the size message to

a shared queue.
sise

a[accessProtectcritical:[contentssise]]valueunintenuptably
Again, the critica~ message makes sure that only one operation
happens at a time, so for example, it makes sure that one
process is not getting an object from the queue whale another
process is adding an object. The valuelhinterruptably makes

sure that the shared queue operations can’t be interrupted by a
process sending an interruptWith: message.

Here’s an example of shared queues in use. Process2 prints

the number and puts it on the shared queue, and processl reads
the queue and prints the numbe~

sharedllueu e:=SharedQueuenew.

processl := [[number:= shared9ueue next.

Transcriptshow ‘ R’,number printstring] repeat] fork.

process2 := [1 to: 5 do: [:index I

Transcriptshow ‘ W, index print.Shing.

sharedQueuenextPuk index.

(DelayforMiUiseconds:500) wait]] fork.

Results:WI RI W2R2W3R3W4R4W5R5

TV this again after removing the Delay in process2. Because
process2 now always has something to do, it does not give up
control and so processl waits for the processor until process2 is
22
completely finished. The Transcriptoutput now looks like:
Results:WIW2W3W4W5R1R2R3R4 R5

OUR PRODUCT

In our product we make heavy use of processes and therefore
of shared queues (See Fig. 1). We have one process that does
nothing more than block on a socket waiting for input. It puts
the input on a shared queue and another process takes it off.
Thk second process sends each object a queueYourself mes-
sage, telling the object to put itself on the appropriate shared

queue for the robot tape library that the request is going to.
Each library controller blocks on its own shared queue, wait-

ing for a request to process. Fksally, after the request has done
what it needs to do, a response is created and put on an out-
put shared queue. The output process gets response objects

from this queue and sends them out over a socket to the

appropriate ~~ Process. Because sm~lt~k gives a Process
control while it has things to do, we put a Processor yield after
each shared queue nextPuk. This gives each process the

opportunity to run, even when other processes have more they
could be doing.

I

figure 1

There is actually a lot more going on than this, and to
solve our specific problems we created a subclass of
SharedQueue, which we call a Priori@ SharedQueue.Rather
than keeping objects in chronological order in the shared
queue, it orders them by priority then time. It also has
methods to search for specific types of object and to delete
objects. However, that’s a story for another day. This just
about wraps the article up, but before we leave, we’d like to
mention briefly a new class that appeared in VisualWorks
2.0 that mzkes use of processes.

PROMISES

VisualWorks 2.0 introduces a new class, the Promise class. An
instance of Promise promises to do something for you whale
you go off arsddo other things. It does this by forking a new
process to carry out the work. You create the promise by send-
ing the promise or promiseAti message to a BlockClosure.Once
the promise has been created, you can query it for its value (if
the promise has been kept), or to find out if it has a value (it
may still be doing its work.) In fact, promises are a little more
complex than this because if the promise fails or terminates, an
exception is raised, so to be robu~t, you should wrap the
The Smalltdk Repoti

i’MathPack/V

David Buck
A
few months ago, a friend came to me with an

engineering problem. He needed to calculate

some strange formulas having to do with electro-

magnetic interference. He tried using calculators and

spreadsheets without success. In desperation, he asked me

if there’s anything I could do to help. “Sure,” I said.
“Smalltalk is a gr~at system for crunching through formu-

las like that.” Well, at least it’s better than a spreadsheet.
He came over and showed me the formulas. Some for-

mulas involved matrix algebra. I was fortunate enough to
have written a matrix cla~s in Smalltalk when I was doing

my master’s degree, so we used that. The formulas also
involved complex numbers. Well, complex numbers can’t
be all that hard, can they? We whipped up a complex
number class. Wait a minute, we had to take pow~r~ of
complex numbers. How do you do that? We pulled out
some dusty old math textbooks and looked up the formu-
las. We found that you apparently have to convert the

complex numbers to polar coordinates, raise them to a
power, and convert them back into complex numbers. OK,
we typed the formulas into Smalltalk. We then tried out
the equations and got some really strange results. There

was a bug in the method that converts from complex num-
bers to polar coordinates. We had to worry about the sign
of the result, which we weren’t handling properly. We
fixed the bug and continued on.

We finally managed to get an array of the answers, and
my friend said, “OK, can you plot these?” It sounded like
an easy request, but Smalltalk has no built in plotting
functions, To plot a graph, I’d have to open a GraphPane,
scale the numbers to the proper range, and issue the place:
and line: messages to draw the graph. This was too much

work for plotting about 20 points. We gave up and
sketched it on graph paper. After spending about 10 hours
on it, we ended up with results that we couldn’t trust
because we didn’t know if all the steps in between were
completely bug-free, and any small bug would dramatically
change the results. I started thinking that Smalltalk wasn’t
such a great environment for this after all.

ENTER MATHPACK/V

Since that time, I’ve found a mathematics package by

GSoft called MathPack/V. It’s a mathematics package for
Smalhalk/V Win16 and Win32 (the package is available
for ObjectWorks Smalltrdk). I now realize that if I’d had
this package at the time, the task of performing all those
February 1995
calculations would have been trivial. MathPath has facili-
ties for performing Matrix and Vector calculations that are

more complete and more general than the ones I had
implemented myself. It also has classes for Complex num-
bers and Polar coordinates, and they perform the raisedTo:

operation correctly. When it comes to plotting the results,
MathPack has an excellent set of plotting classes that let
you plot multiple values in 2D or 3D simply and easily. In
fact, MathPack can handle almost any numerical operation
I’ve ever wanted to perform and even a bunch that I’ve

never heard of. When you combine these facilities with
the Smalltalk/V programming environment, you get a
truly astounding mathematical workbench for solving

almost any math problem you can come up with.

SYMBOLIC MATH

To start off, MathPack performs many of its operations

symbolically instead of numerically. What does this mean?

Well, let’s take an example. In Smalltalk, if you type in

5 Sqrt

you get the answer: 2.23606798. With MathPack

installed, you get the answer: V5 (meaning the square root

of 5). In other words, MathPack returns you a square root

object. This answer is actually more accurate than the one

that Smalltalk normally provides. In fact, if you run

5 sqrt squared

The answer will be the integer 5 (precisely!). The limits of

this ability actually surprised me. When I tried

(PI / 3) sin

I got sin(PI/3) as the answer. Notice that in MathPack,

there’s an object for pi. This isn’t just a global variable that

contains the number 3.1415926 . . . but rather a symbolic

value that represents pi precisely. But we can go one step

further:

(PI / 3) sin simplify

This gives the answer l/2V3 (meaning one half the square

root of 3).

MathPath also allows you to include variables in your

equations; not Smalltalk variables but symbolic mathemat-

ical variables. The variables X, Y, Z, R, and T are defined
for you in MathPack, but you can create your own if you
wish. For example:

myPoly:= ((X=*3) - (X’*2 * 4) + (X*5) + 7).
creates a formula representing the polynomial x3 + 4x.2 +

5x + 7. You can then evaluate this formula by sending it a
value: message:
23

I

myPolyvalue: 3 ==> 13

More simply, I could have used a polynomial like this:
myPoly:=#(7 5-4 1) asPolynomial

or this:
myPoly:=#(1 -45 7) asReversePo@omial
Because this polynomial is stored symbolically, you can

do some more intelligent things to it. For example, let’s

find the roots of this polynomial:
myPolysolve
===> llag((2.34372593+1.65207333i) (2.34372593-l.65207333i)

0.68745166)
MathPack found all three roots of my polynomial. The
first two roots are comple~ the last root is real.

Do you want to try some calculus? Try this:
myPoly der

===>3XA2-811+5

This gives us the derivative of the polynomial. In fact, yot

can calculate symbolic derivatives of any function. For
example:

((x**2) sin+ (X+*2) cas) der: X “Derivative with respect to X“

===> (2*cos(X**2)*X-2*sin(X**2)*X)

Unfortunately, symbolic integration is more complex.
MathPack can symbolically integrate polynomials, some
trigonometric functions, and some exponentiation func-

tions, but symbolically integrating arbitrary functions is
mathematically impossible. If you need to, however, you
can numerically integrate any function using the Romberg

method provided by MathPack.

PLOTTING FUNCTIONS

Plotting graphs is a breeze with MathPack. Suppose we
want to plot the values of the polynomial -x3 + 3x2-5x+7
from -10 to +10. Just type the following code into a work.

space and run it.
I poly results I

poly:= #(-1 3-5 7) asReversePolynomial.

results := OrderedCollection new.

-10 to: 10 do: [:i I

results add: i@(poly value: i)].

1200.

1000.

800.

600.

400.

Zm

-200.

-400.

-6W,

!7gure 1. 2D plot ofs cubic function.
24
Plot2D new

axes: true;

vectors: results;

points: results symbol: #filledDiamond color: CkRed;

tickx: 2;

tickY 200;

display

This produces the plot shown in Figure 1.
The first few lines of this code simply evaluate the

polynomial at the desired points and collect the results
into an OrderedCollection. You can use any technique you
want to collect the values to plot. To plot the values, sim-
ply create a Plot2D object and set it up. The axis: message
indicates that I want the X and Y axes shown. The vectors:
message indicates that I want the points connected by
lines. The points: symbol: color: message indicates that I
want individual points plotted with the given graphical
symbol (a filled diamond in this case) with the ~iven color..
You could use circles, crosses, squares, or triangles instead
of diamonds. Finally, I indicate that I want tick marks on

the X and Y sxes and then display the plot. If you don’t
want ticks or axes shown, you can leave out the corre-
sponding lines. If you want, you can add legends, change

I

I

figws2.A3DSUlfSCE Plot.

line styles, and use splines instead of straight lines to plot
the graphs.

In addition to simple 2D plots, you can make 3D sur-
face plots. The code below produced the image shown in
Figure 2.

I aPlot I
aPlot:= Plot3Dnew.
(((X*X)+(Y’’Y))sqrtcos * ((X*X)+ (Y*Y)● -0.05) exp * 5)

xyzPlot:(-10@ -10 corner:10@lO)
viewpoint 30@60@50

sectors: 20

on: aPlot.

aPlot display

In addition to functions of two variables, MathPack has

a number of full 3D geometric objects that can be rotated,
translated, and plotted on the screen. The following piece

of Smalltalk code creates a cone with an elliptical base,
The SmalltaIkReport

Precise metrics
for advanced 00

development.

● Metrics collection facilify for Smolltolk applimtions development

● SupporfsVisualWorks,Smrilltoll@ for windows,Wirr32s,Windom NT

● Completegmphkrrluserinterfme ● FullysupportsEnvy(optional)

.bjedSpaceTM
~ SPECIALISTS IN OBJECT TECHNOLOGY

PRODUCTS -TRAIN ING. CONSULTING -M ENCORING. AUDITING

FormoreinformrrtionCOII1-EIOO-OEJEIT-1,Emoil:info@o~ettspoce,tom

[om.mhtDbk&me.lnc 01574 MlnommondhndemnrhMBIhemcnemoflw MMCIIWOWIMIS.
L

Figura 3.A30 cooe rotatad and plottad.

rotates it about three axes, and plots it on the screen. The
result is shown in Figure 3.

IaPlot I
aPlot:= Plot3Dnew.

Conenew
baseCuwe:((PolarConice: 0.9 k: 2.0) loLim:0.0; hiLim:6.2.S);

apex:O.O@O.O@IO;
rotateWithRoll:0.3 pitch: 0.7 yaw 0.5;
plotFromViewPoint:40@60@50 sectors:20 center:O@O@Oon

aPlot.
a~ot display.

Three dimensional figures supported by MathPack includ[

3D points, lines, and curves as well as boxes, cones, pyra-
mids, cylinders, ellipsoids, spheres, planes, revolving
curves, and toruses. You can then combine these basic fig-
ures together into composite objects to model more com-
plex 3D objects. MathPack, however, isn’t intended to be :

3D modeling program. The plots of these shapes are wire-
frame only, without hidden surface removal. If you need tc
perform sophisticated 3D modeling and rendering, you

should look into a package that is better tailored to it or
be prepared to implement your own in Smalltalk.

MATRIX ALGEBRA

I’ve spent quite a lot of time writing 3D graphics software
so I can really appreciate the matrix and vector facilities oj
MathPack. The Matrix classes provide virtually all the
functionality I’ve ever needed from matrices and more.

Creating matrices couldn’t be easier. You can simply say
the following:

#((2 4 3) (5 -3 2) (7 1 9)) asMatri~
===> 12571

14-311
13291

The asMatrix message interprets each subarray as a columr
of the matrix. If you want to treat them as rows, you can
use asRowMajor instead. Now that you have a matrix, you
Februaq 1995
can perform normal operations such as addition, subtrac-
tion, multiplication, and division. As you would expect,
there are also methods to access individual elements in the
matrix and to return row vectors and column vectors from
the matrix.

Using matrices, you can solve a system of simultaneous
linear equations. There are two ways of doing this. The
most efficient way is to send the solve: message to the
matrix passing in the vector to solve for. For example, sup-
pose you know that

2x+5y-3z= -29

x- 2y+4z =32

-x+3y-2z =-23

What values of x, y, and z satisfy these conditions? Well,
just type this into MathPack

#((2 5 -3) (1 -2 4) (-1 3 -2)) asRowMajorsolve: #(-29 32 -23)

===> (2 -3 6)

So, x = 2, y = -3, and z = 6 satisfy all three of the above

equations.
The other way to solve these equations is to multiply

the result vector by the inverse of the matrix:
#((2 5 -3) (1 -2 4) (-1 3 -2)) asRowMajorinvert* #(-29 32 -23)
asVector
===> I 2 I

I-3 I
161

With square matiices you carscalculate eigenvslues and eigen-
vectors using MathPack. Other usefid operations include

matrix transposition, LU decomposition, and pseudoinverses.
25

continued on page 29
The matrix’ approach to solving systems of equations is

fine if the equations are linear. If you want to solve non-
linear equations or systems of inequations, you can use the

SimultaneousEquations or the SystemOfInequalities classes.
To use these classes, you must provide the equations sym-
bolically. MathPack can then use the Newton–Raphson
technique to solve the equations.

DIFFERENTIAL EQUATIONS

Do you need to calculate the path of a space ship navigat-
ing through a trinary star system? Well, maybe we’11just

worry about hitting a target 75 meters away with your bow
and arrow. Both of these problems require a technique

called “numerical differential equation solving. ”
MathPack can numerically solve differential equations

using a technique known as fourth order Runge–Kutta. In
a nut shell, it means that this is a stable and accurate tech-
nique for doing this sort of work. Many simple programs
use a technique called Euler’s method, which is to add a
bit of the acceleration to the velocity and to add a bit of
the velocity to the position on each ‘step. Euler’s method
works well in simple situations (like the arrow example
above), but more involved calculations require a better sys-
tem like Runge-Kutta.

There are faster and more sophisticated techniques for
solving ODES that MathPack doesn’t provide, but these
techniques don’t handle the tough parts as well as
Runge–Kutta. My only regret is that the implementation

of Runge–Kutta provided by MathPath isn’t adaptive. This
feature would allow the algorithm to take small steps over
the rough terrain while taking long strides over the easy

parts.

STATISTICS AND OTHER STUFF

MathPack includes a huge array of statistical facilities.
Well, at least it’s huge from my perspective, because I
don’t often need to use statistics. I find that a simple mean
supports most of my statistical needs. But for those who
need more, MathPack has it. You get Chi-square tests,
one-way and two-way analysis of variance, linear and
polynomial regression, generalized least squares fit, and
nonlinear least squares fit. There’s also a random number
generator that can generate uniform and Gaussian random
numbers.

In the “other stuff” category, there’s a class for per-
forming digital signal processing functions. The most
commonly used function is the Fast Fourier Transform,
but also included are Cos and Sin transforms, convolu-
tions and deconvolutions, correlation of data sets, and
spectral analysis.

In some unrelated other stuff, there’s an interesting new

kind of Number in MathPack. It’s a decimal fraction, It
can represent decimal numbers with any desired degree of
accuracy. For example, if you want to calculate pi to 20
digits, you can type

PIasDecimalFraction:20
26
Any Integer, Float, or Fraction can be converted into a

decimal fraction.

QUIRKS AND llUIBBLES

MathPack has never given me a wrong answer. It has,

however, given me answers that need to be interpreted
carefully. For example, in the following equation, I’m try-
ing to calculate the derivative of pi*x2, Here’s ~MathPack’s
answer:

PI* (X ● * 2) dec X
===>(2*X*P1+X**2*P~)

The real answer should be 2*X*PI. Is MathPack wrong?
Not really. In the second part, X**2*PI’ is zero because PI’
is O. The problem here seems to be that PI isn’t really
known as a numeric constant, so MathPack doesn’t know

how to differentiate it. It blindly uses the chain rule and
puts an apostrophe to indicate that the PI needs to be dif-
ferentiated but MathPack doesn’t know how to do it.
(Actually, I was quite impressed that it worked this well.)

A more serious problem is the way that MathPack
hooks itself into the existing Smalltalk system. It’s certain-
ly convenient for 5 sqrt to give you back a square-root
object, but if you’re going to alter existing methods like
this, you have to be extremely careful. There are some
messages that Numbers understand that Root objects
don’t, For example, if you try running “5 sqrt rounded” in
MathPath, you’ll get a walkback window because Root

objects don’t understand rounded. To fm the problem, you
have to use “5 sqrt asFloat rounded”.

The problem here is that if you have existing code that
used to work without MathPack, it may not run after

MathPack is installed because MathPack changes the way
some system methods work. If you are using MathPack as
a mathematical workbench, this issue isn’t very serious. If
you get a walkback window, you can easily fix the problem
and continue. In this way, SmaIltalldV with MathPack
becomes a very powerful scientific calculator, This is the
ideal environment for MathPack. Using MathPack rou-
tines in a delivered application, however, may be risky

because you can never accurately predict when the results
of a calculation will be numeric or symbolic, and the dif-
ference may be critical.

There are some inconsistencies in the system that are,
really, more annoying than troublesome. For example, if
you have a function and you want to plot it, you can send
the function a plotFrom:to:points: type: on: message. For

example:
(X*X)plotFrom: -10

to: 10

points: 20

type: #vectors

on: aplot

Great. But try replacing “(X*X)” with “#(1 O O)

asReversePolynomial” and it doesn’t work. Polynomials don’t

understand the same messages as functions. To differentiate

a polynomial, you send it a der unary message. To differen-
tiate a function, you send it a der: keyword message with
The Sma[ltalkRepoti

Finally, in
commemoration of

Smalhdk’s 25th anniversary,
a vendor-independent conference
dedicatedto all Smalltalkusers.Focusing on
the uractical atmlication of Smalltalkin its dkdects, h

MARK LORENZ

Architecting
large 00
projects
M
ANAGING THE complexity of most commercial
00 projects requires planning for and controlhng
an arcbitectue for your business object model. Thk

involves dhdhg up your system into subsystems, assigning
contracts between the subsystems, and establishhg your archi-
tects’ ownership of the contracts.

F@re 1 shows a partialproject architecturealong with own-

erahlpassignments.Development teams own particularsubsys-
tems and me responsible to build these subsystemsso that they

support the subsystem contracts.These contracts, such as
Maintain inventory L=veh, provide a set of public servicesto the
other subsystems.The client subsystem teams treatthe server
subsystemas a black box, ignoring the complexities inside.

IManage+!*.Archilect

evenls

‘Salea Inventory

Mairrfairr Management

inventory

* 4

!!

* 4

Development
Team

t J

Development
Team

Iura 1. Ownership assignments

This organization allows the different development teams to

proceed re~tively independently of each othe<an essential
requirement for large projects.

N.A: This discussionis .amacted from the author’sforthcoming book

RAPIDSOFTWAREDEVELOPMENT.3
28
hClaaa
(3

Subaystnm
Conlracl

Contract

Figure 2. Exploring rm architecture for one subsystem.

AN ARCHITECTING PROCESS

So. how does this architecture come about? Many times, pro-
jects do not have a good idea of what subsystems exist ah~ad of
time. The subsystems, much like other abstractions such as
frameworks aod abstract classes, become apparent as the system

exploratory process proceeds.
Figure 2 givesan overview of the process for one subsystem:

● Use cases are written for the system requirements.

■ Scenario scripts are used as a technique to fill in details of

the object model.

“ Key classes are clustered into more closely coupled groups,

called subsystems.

● Subsystems are assigned public contracts from groupings of

key responsibilities of the classes.

■ Development teams are assigned ownership of the subsys-

tems. Their focus is on building a subsystem that supports

its contracts.

■ Architects are assigned ownership of the subsystem con-

tiacts. Their focus is on controlling any changes to the sub-

system contracts.

Figure 3 shows how the archkecture team moves across all
subsystems for the system problem domain, working with each

‘Domain/System *

& d

E5iE9a
Figure 3, Traversing the system.
The Smal[talkRepoti

continued from psge 22 continued from page 26
promise in a handle:do: message. But since we are only men-
tioning promises in paseing, we’ll just show a simple example
of a promise in action.

count :=O.
Transcript cr.
promise := [DialogViewcor&-m ‘Isit true?’] promise.
[promisehasValue]

whileFalse
[Transcriptshow count printiting, ” .
count := count+ 1.
(Delayforseconds: 1) wait].

‘hnscript show:promisevalue prfrk$ting.

Afec Sharp is an Advisory Software Enginaar at StorsgeTek. He is the

suthor of Softwara QuaIii and Productivity, prrlsliahed by Van Nostrand

Reinhold. He csn he rsached at alec_shar@atortek.com.

Dava Farmsr is a Sanior Software Enginsar st StorsgaTsfr. He can ba

reachsd at david_fsrmer@atotiak.com.

Tlwy both work on the UNIX Storage Server software, which manages

connations to networkad heats and drives tha StoragaTek famify of

robotic tape Iibrarias.
Februay 1995
the variable to differentiate as a parameter. I can under-
stand the difference (polynomials don’t have an explicit
variable), but the difference becomes confusing.

Finally, I found that the manual was good when it
came to listing the classes and methods but poor in terms
of concrete examples. There should be more examples of
plotting in both 2D and 3D, differential equations, the
statistical functions, and the DSP functions. It’s rather
tricky trying to figure these out from only the explana-
tions of the methods. There are, however, a number of
examples stored as class methods in the MathTest hierar-
chy that you can refer to for some additional examples.

CONCLUSION

All in all, MathPack is an excellent package for solving
serious math problems or just for exploring the mathe-
matical world. The combination of MathPack and
Smalltalk makes the symbolic operations very easy to use.
It’s like having a mathematical workbench at your disposal
with a wide variety of power tools ready for you to use.
Now, the next time my friend asks me to do some mathe-
matical calculations for him, I’ll be ready. ~
of the subsystem teams to model their portion of the system at

a high level.
The contracts between each of the subsystems that makeup

the system are discovered during rapid modeling sessions of

two to ten days each, depending on the subsystem size. Some
questions that help identi@ subsystem contracts are:

■ Why do we have this subsystem?
■ What basic services should it provide?
■ Does it make sense for this subsystem to provide this ser-

vice?

■ What scrvimsdoes this subsystemneed hm other subsystems?
Once the rapid modeling session has been completed for one
subsystem, its team is free to start iterative development in par-
allel with other efforts. The development team must negotiate
subsystem-level contract changes with the architects, who have

the broad, system-wide perspective. The architects will involve
atTectedsubsystem owners in the change negotiations.

SUMMARY

We have discussed a proven process for srchitecting large 00
projects. Thk process is essential for large projects to be able to
manage the complexity and communications across the teams.
It is also very effective for geographically dktributed projects.

TEFIMINOLOGY

Architect: A person with a broad view of the system’s interrela-
tionships that owns the subsystem contracts.

Black box: Viewing something from the outside only, ignoring
the internal workings.

Contract:A grouping of public responsibilities that provide ser-
vices to a subsystem’ ardor class’ dlents.

Key class:A class that is essential to model a particular problem

domain.

Srript: A time-ordered sequence of message sends through the

model to support a functional thread for a use case.

Subsystem: A grouping of more tightly coupled classes and

contained subsystems that support one or more contracts.

Use cafe: A particular usage of the system to support its
requirements.

References

1.

2.

3.

4.

Jacobson, Ivar, et al OBJECT-ORIENTED SOFTWARE

ENGINEEIUNG A USE CASEDIUVENAPPROACH,Addkon-
Wesley Reading, MA 1992.

Lorenz, M. OBJECT-ORIENTEDSOFTWAREDEVELOPNIENT

A PRACTICALGUIDE, Prentice Hall, Englewood Cliffs, NJ,

1993.

Lorenz, M. RAPID SOFTWARE DEVELOPMENT, SIGS

Books, New York NY, 1995, forthcoming.

Wh-fs-Broc~ R., et al. DESIGNING OBJECT-ORIENTED

SOFTWARE, Prentice Hall, Englewood CliHs, NJ, 1990.
29

I

To advertise in this section,
please call Mike Peck

at 212.242.7447

ENGINEER THE FUTURE .

SOFTWARE ENGINEERS
HBO&COnrpany (HBOC)isa Ieading”mtemarionafdevefoper
and provider of software solutions for hospitals and the
heakhcare enterprise With over 25CiIlemployees and 1994
revmues anticipatedto exceed $300 million,we are continuing
20 years of success and profitable growd-s.Join the leader and
grow your career with us in our Adanta, GA, Mimezpolie,
MN or Amherst, MA offices.

We seek talented individuals to design and develop our next
generation of sotlware products using the latest technologies.
We currently have the foUowing openings for Information
Technology professiomls.

smalltalk
The ideaf candidates will have experience with object-oriented
anafysisand design, PC software development, and %nafltalk
progmnming,

VISWll c++
Positions require 2+ years of development experience with
Visual C++ in a Windows environment.

Ihe professirmaLswe seek must possess excellent cmnrnuni-
zations skills and the ability to work in a team environment,

HBOC offers excellent benet%s, competitive sdar-ies and a
eamwrimted profe%omd work mvironmerrr where promotion
‘mm within is the norm. If you possess mergy and vision and
wishto join a company committed to excellence. Dlease .

Ay“ixwadjfax your - resume [0 HIK) & tlms~, _
.
—OSPS=@ Res=ssidrsrs 00D1/95, 301 ~ A
krster Nsm@Albm@GA 30346, titm~
:404) 39$6063. No phone calls or agencies, ~
]Iease.

A

+B08eC0mpany

.Sdvmre2~, Inc., ItIS *r in Client/Ser+w Iechnolm

gy has emblrd upon on wvolutiormry drofagy to rwngi-

naer ils owmrrknning AS/400 applications with
Miniurn’”, itsnew a@c!-&enfd client/seww architecture.

M are seeking experienced Smalltalk devebpers to

ioin our 00 development team. If you have demon-

strated ex~ience in 00 fools design and develop

ment or 00 user interfaces, we enmurage you b

explare Sohware 2000 and bemme involved with the

creation and design OF our 00 client/eewar Fame

work. A BS degree in Computer Science is required.

WIlh nmrly 1000 clients worklwide, our compa$tii edge

Irortdates inio outstanding career opportunities, ❑ =mpaii

live solary and Pragressiw bnehls package (w prr.

ws invite you to join our dedii barn and enjoy fhe

raword.s of our mntinued expansion and succe.w. Please
sendyour resumein confidence IO: 5sseano’bnor,
Corp=de Recruiting Man-r, Sofhvam
-, Inc., 25 Corssmursidbsa Way, Drawer

@W, Hyannis, MA 02601; fast (508] 790-
6S26. An Equal CJpporhrniiy Emplayw M/F/D/Y

(Softume 2000 1)

continued from page 32
this number by sending Processor the message bytesTenured.

I will describe all the available messages in a later article.

Here is the script, which formats the number of bytes

tenured for display.

UpdateBytes

sel-fsetValue: Processor bytesTenured printString , ‘bytes’

Launch the resulting window. Then go operate your favorite
interface, You can watch as objects get promoted. If you are

doing an operation which you don’t thhk should create any
long lived objects, but lots of bytes are shown as being
tenured, you may have a candidate for some tuning. I found
drag and drop to be a good example.

Thk has been a quick introduction to your garbage col-
lector. I will cover what it means in practical terms for the
various Smalltalks in future issues. As ilways, if you have
comments or questions, please let me know. I love to hear
from you.
30
you want, add it to the appropriateclassinitializationmethod and
reinitializethe class.Then, you need to createa TextAthibutes
object based on those CharacterAthibutes,figure out any addition-
al paramete~ you need, add it to the appropriateclassinitialization
method, reinitialize,and call resetViews.This is not appealhg to a--
useraccustomed to operatingsystemswith hundreds of fonts to
choose from and nice fint seltion dialogs to do the choosing.

Lots of people havedeveloped theirown font selectionwin-
dows to dealwith this problem. Wayse Parrot

(parrott@bcm.tmc.edu) not only did it but has also made the code
availablein the generalSmalltalkftp archives(st.cs.uiuc.eduor
muehmom.cs.man.ac,uk).

The code is indexed under fontmgr, and it is a simple

(about 16 K) file-in for a font editing window. The window
allows you to:

“ view sample text in an existing text style
● view sample text by incrementally editing a FontDescription
● install a FontDescription as a system text style
“ remove system text styles
● reset all views to a specified text style

This is a convenient add-on, and in my limited testing it seemed
to work well. The code is for VisualWorks 1,0, but I do not think
it would be at all ClifFscr.dtto port to version 2.0, as there have not

been many changes in font handling between theseversions.

Fleference
1.Gamma, E., R. Helm, R. Johnson, andJ. Vfissides.DESIGN PATTESCW:

ELEMENTS OF REUSAIILEOBJECT-ORIENTED SOFTWARE, Addison

Wesley Reading, MA, 1994.
The SmalltalkRepoti

. .
ALAN KNIEHT

What’s
new on
the net
T N THE PAST, everything you could do over the network
was pretty much limited to a terminal interface. Even

~ though my machine might be running a sophisticated
graphical user interface, my network communications used an
emulated VTIOO terminal. This was particularly true if access-
ing the network through a modem.

No more. With increasing modem speeds, it is now possible
to get reasonable performance with graphically based network

applications. Some of the best known of these application are
World Wide Web browsers.

WOFILO WIDE WEB

The World Wide Web is a simple concept with remarkable
results.It lets people establishpa~e~ that can contain styled text,
pictures, and ~nh- to other pa~s~These other pages tie not lim-
ited to the same site, but can be anywhere accessible on the net-

work The difference from old-style applications is amazing.
Instead of a VTIOO emulation and the ftp program, you sudden-
ly have a graphical HyperTti browser tha~spins the network.

The other amazing thkrg is the amount of stuff that is out
there. It is not like ftp sites,where there are a few large sites that

have almost everything you need. Instead, there are enormous—.
numbers of small sites, where people have set up Web pages on
topics of interest to them, with links to related sites.h.s can
easily stumble across links to completely unexpected places and
spend hours exploring them (I started out looking for SmaUtalk-
related stufl and ended up browsing a list of vegetarian restau-
rants in Atlanta). The browsers can also put a prettier face on
more conventional net resources like ftp sites and newegroups.

It is hard to convey how much fim thk technology is. I urge
you to get hold of a SLIP or other internet connection, find a

Web browser, and try it out for yourself I guaranteeyou will
enjoy it, and you may even find something usefhl.

I do not know enough about the different products to sug-
gest anything more detailed. Mosaic is the original (and free)
Web browser, but there are lots of others around, and there is a
rapidly growing range of booka and products available to help
you get started with the Internet.

Once you are set up, here are a few Smalltalk-related Web
32
pages to get you started on the useful stuff. This certainly is not
a comprehensive list, and I expect there will be many new

entries by the time this column sees print. Although the names
are long and intimidating at first glance, you only need to use
them as a starting point. Once you are into the Web, you can

get most places just by following links.
JeffMcAffer, a PhD student at the University ofTokyo, has

set up a page for all things SmaUtalkrelated. It serves as a good
starting point for finding other Smalltalk resources. It is acces-
sible as:

http://web.yLis.s.u-tokyo.ac.jp/members/jeff/smalkall.htrd
A list of Smalltalk FAQS is available in HyperText form ac

http://www.cie. ohio-state. edu/hypertext/faq/usenet/smaUtaUc-

faq/faq.html

The University of Illinois Smalltalk archive has a page under
cons~ction at:

http://at-www.cs.uiuc.edu
ParcPlace’s ParcBench Bulletin Board is also accessible via
Gopher (another protocol that is compatible with WWW). It
can be reached ac

gophe~//parcbench.parcplace.com/11/ParcBenchII
Quasar Knowledge Systems (QKS), makers of SmalltalkAgents,
have their own page a~

http://www.qks.com
For more general 00 information, there is a searchable data
base that includes links to pages for other 00 languages,
research groups, and lots of other interesting stuff:

http://cui_mw.unige.ch/OSG/OOinfo/tidex.html

14111EFlNS

Design patterns are one of the current hot topics in software
development. In addition to publications and conferences, there
has been a lot of electronic activity on this topic.

One resource is a mailing list on the subject of software pat-
terns.To subscribe to the list, e-mail pattems-requestf%suiuc.edu
with a message containing the single word suhrribe in the body.

There is also an archke of pattern-related material in the
directory /pub/patterns on the st.cs.uiuc.edu @ site. It includes:

● an archive of messages from the patterns mailing list
● a bibliography of patterns-related material
“ source code for the C++ examples from DESIGN PATTERNS1

“ papers from a variety of conferences, including position

papers for workshops, submitted papers, and so forth. Many

of them are in PostScript form.

Finally there is also a WWW site for patterns information. lt

can be accessed a~

http://at-www.cs.uiuc. edu/users/pattems/pattems .html

It includes some additional information that did not

appear to be available on the ftp site, including references
to some example patterns.

FONT MANAGER

Support for fonts is not one of the strongpoints of VisualWorks.
While it is certainlynot easyto handle fonts both portably and
~ many men find the choice of only five different fonts restric-
tive. Sure,it is possible to add new font choioes.AU you have to do
is createa new CharacterAtibutes object with the characteristics

continued on page 30
The Smallta[kReport

	By Article Title
	A sample pattern language-concatenating with streams
	Architecting large OO projects
	Garbage collection revealed
	MathPack/V
	Processes
	Transactions in Smalltalk

	By Author Name
	Almarode, Jay
	Beck, Kent
	Buck, David
	Farmer, Dave
	Knight, Alan
	Lorenz, Mark
	Sharp, Alec
	Woolf, Bobby

	By Topic
	comp.lang.smalltalk
	Getting Real
	Project Practicalities
	Smalltalk Idioms

