Simalltalk

= [= = 0O R T

Editors
John Pugh and Paul White
Cadeton University & The Object People

SIGS Publications Advisory Board
Tom Atwaod, Object Design
Franguis Bancilhon, O Technologies
Grady Booch, Rational
Gaorge Bosworth, Dipitalk
Jesse Michael Chonoales, ACC of Martin Marietta
Adels Galdberg, ParcPlace Systems
Tom Love
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, IBM
Bjame Straustrup, ATGT Bell Labs
Dave Thamas, Dbject Technology International

Tue Smawak Reporr Editorial Board
Jim Anderson, Digitalk
Adele Goldberg, ParcPlace Systems
Reed Phillips
Mike Taylor, Digitalk
Dave Thomas, Object Technalogy Intemational

Columnists
Jay Almarode
Kent Beck, First Class Software
Juanita Ewing, Digitalk
Greg Hendley, Knowledge Systems Corp.
Tim Howard, RothWell International
Alan Knight, The Object People
William Kohl, RothWell Imemational
Mark Lorenz, Hatteras Software, Inc.
Eric Smith, Knowledge Systems Corp.
Rebecca Wirls-Brock, Digialk

SIGS PUBLICATIONS GROUP, INC.
Richard P. Friedman, President
Hal Avery, Graup Publisher

Editorial/Production
Kristina Joukhadar, Editorial Director
Elisa Verian, Preduction Manager
Brian Sieber, Art Director
Seth J. Bookey, Production Editor
Margaret Conti, Advertising Production Coordinator
Dan Ofawski, Editorial Production Assistant

Circulation
Bruca Shriver, Jr., Circulation Director
John R. Wengler, Circulation Manager
Kim Maureen Penney, Circulation Analyst

Advertising/Marketing
Gary Portie, Advertising Manager, East Caast/Canada/Eurape
Jeff Smith, Advertising Manager, Central U.S.
Michael W. Pech, Advertising Representative
Kristine Viksnins, Exhibil Sales Representative
212.242.7847 |v), 212.242.7574 (f)
Diane Fuller & Associates, Sales Reprasentativa, West Coast
408.255.2991 (v), 408.255.2992 (f)
Sarah Hamilton, Director of Promotions and Research
Caren Polner, Senior Promotions Graphic Designer

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
James Amenuvor, Business Manager
Michela Walkins, Assistant ta the President

WSIGS

PUBLICATIONS

Publishers of JournaL oF OjecT-ORIENTED
Procramming, OnjecT Macazing, C++ RerorT,
THe SMaLLTALK ReporT, THE X JounNaL, REporT
on Osject ANALYss & DEsion, OBjecTs IN
Eunorg, and Onjexr SPEkTRUM (GERMANY)

February 1995

Table of Contents

February 1995 Vol 4 No 5
Features

A sample pattern language—

concatenating with streams 13
Bobby Woolf

Software design and implementation techniques can be documented thoroughly and con-
cisely using the pattern format. Individual patterns can be combined into an even more
powerful whole as a pattern language. In this article, Bobby describes what a pattern and a
pattern language are, and provides a sample pattern language.

Processes 18
Alec Sharp & Dave Farmer

Smalltalk allows you to create separate processes so that your application can do several
things in parallel. These processes all run on a single Smalltalk image.

MathPack/V 23

David Buck
MathPack can handle almost any numerical operation you have ever wanted to perform
and even a bunch that you have never heard of.

Columns

Getting Real Transactions in Smalltalk 4
Jay Almarode

The key characteristic of multi-user Smalltalk is that a single object
identity domain is accessible by multiple, concurrent users.
Smalitalk Idioms Garbage collection revealed 9
Kent Beck

All of the commercial Smalltalks provide some ability to tune the
garbage collector, but without knowing what'’s going on and why, you
are unlikely to be able to know when these features are applicable or
how to use them.
Project Practicalities Architecting large 00 projects 28
Mark Lorenz

Managing the complexity of mast commercial OO projects requires
planning for and controlling an architecture for your business object
model.

The Best of comp.lang.smalltalk 32
Alan Knight

High-speed modems have paved the way for better performance with
graphically based network applications. The World Wide Web, one of
the best known of these, is explored by Alan this month.

Departments
Editors’ Corner 2
Recruitment 30

The Smalitelk Repert (ISSN# 1058-7978) is pubhzhed 9 times a yaer, monthly except in Mar—Apr, July—Aug, and Nov—Dec. Published by SIGS PubBications Inc., 71 West
23rd 51, 3rd Aaer, New York, NY 10010. © 1995 by SIGS Publications. All rights reserved. Reproduction of this material by electranit transmission, Xerox or
any uther method will be treated as a willful violation of the US Capyright Law and is Flatly Matenal may be duced with express ian from the publishec
Second Cless Postage Pending et NY, NY and additional Mailing offices. Canada Post Imernational Publications Mail Product Sales Agreement No. 280386.
Individual Subscription rates 1 yesr (9 issues): domestic $79; Mexico end Canada $104, Foreign $118; Institutional/Library rates: domestic $113, Canada & Mexico 5144,
Foreign $159. To submit articles, please send electronic fles on disk to the Editors at B85 Meadowlands Driva #509, Ottawa, Ontaria K2C 3N2, Caneda, or via Intsmet 1o
straport@ubjectpeaple.on.ca. Preferred formats for ligures ara Mac or DOS EPS, TIF, or GIF formats. Always send a paper copy of your manuscript, including camers-ready
copies of your figures (laser output is fine).
POSTMASTER: Send eddress changes and subscription orders to: The Smalltalk Repart, PO. Box 2027, Langhorne, PA 18047, For service on currem subscriptions call
215.785.5996, 215.785.6073 (Iex), PO0976@psilink.com {smail). PRINTED IN THE UNITED STATES.

1

Editors’ Corner

€'ve spoken a number of times of the different types of
\ ; s /. applications that you are solving with Smalltalk. The
major vendors have made it abundantly clear that their
target market is the professional MIS market of the so-called Fortune

500 companies. The other thing that they have made clear is that they

no longer see C++ as the major competitor of Smalltalk. Clearly, it is

the PowerBuilders and VisualBasics of the world that they are compet-

ing against in the corporate board rooms.
This does leave out many other significant domains in which
Smalltalk has been, and continues to be, used. There are numerous

engineering shops that are making use of Smalltalk both for modeling
and for development of actual production systems. Smalltalk has been

used in many research arenas because of the power it offers. One area
that we know has been using Smalltalk for some time is in the devel-

opment of real-time systems. In these markets, Smalltalk is very much

still competing directly with C++. And the knocks against using
Smalltalk seem to remain constant. Comments that it is too slow to
use, or the image size is too large to be used are still the complaints,
even though most of them are no longer justified. In fact, while
attending a talk a few weeks ago we were astounded to hear one
member of the audience pose to the speaker the comment “having a
garbage collector makes Smalltalk useless™ This to us says Smalltalk
has an image problem.

These comments seem to be the right answer to the wrong ques-
tion, Many have proven that Smalltalk can be used in real-time sys-
terns. That Smalltalk runs slower than equivalent code written in
Assembler or C is a given. But surely this doesn’t lead to the conclu-
sion “therefore it isn’t appropriate to ever use it.” It just means if you
need blinding speed use Assembler. While some real-time systems
require exceptionally quick response time, what they all need is pre-
dictability, which can definitely be achieved using Smalltalk. Yes, we
need performance, but predictable performance. Tuning Smalltalk
systems is definitely possible. There are a number of tools available
for doing just that. What's more, tuning many applications can be
achieved by finding fundamentally better approaches, rather than
making a poor design run faster. Since we can build solid, under-

standable models of our domains, it should be possible to find signifi-

cant improvements to them, a task that is difficult using traditional
approaches. What's more, if you find a part of your Smalltalk system
that doesn’t perform acceptably, it is always possible to rework that
part using another language. As for the garbage collector being a

problem, we’re no experts in the field, but as has often been explained

to us, the garbage collector only works as hard as you make it. That

is, though it is not controllable, it is certainly predictable. If you know

the garbage you're creating, it should be possible to predict how the
garbage collector will behave. What's more, features such as the one

ParcPlace has included for controlling the garbage collector's behavior

are a step in the right direction. (We'll try to get someone who
knows this area better than we do to write about this soon).

As we're just coming back to the reality of facing another cold
January here in the “Great White North” it is time for our traditional
post-Christras wish list for the Smalltalk world. Some items are new,
some have been on the list forever. But here goes:

1. Build a better browser. This has been number one on our list for
many years now, but to little avail. What is required is not just

2.

4,

5.

minor changes, but a radical rework of
the browser from the ground up. With
no good reason, Smalltalk has lost the
edge in terms of development environ-
ments. It is time to reclaim that title.

Fix the name space problem. Classes
should not be global. We've argued in
the past that this problem is at best an
annoyance and at worst a real impedi-
ment to building large Smalltalk
applications. In particular, the lack of
proper narme spaces is going to inhibit
the growth of third party libraries
coming to market. The solution of just

adding prefixes to the front of all class
names is just a patch rather than a

PAUL WHITE

solution to a deficiency in the lan-

guage. It would be nice if the ANSI committee would have
something to say about this one, but the chances of this are
extremely slim.

. Support private methods. In large system development, it is

mandatory that the language itself support true private methods.
Again, hopefully the committee will solve this one.

Provide testing tools. This wish is still fuzzy in our minds. It is
clear that testing mechanisms are being created by different orga-
nizations using Smalltalk, but this seerns to be inappropriate. It
certainly goes against the goal of Smalltalk that is to achieve reuse
and stop people from reinventing the wheel. The vendors must
have testing mechanisms they use themselves, as do many of their
customers with which they work closely. Hopefully, these tools
(or at least their strategies) will be included in their products.
Provide documentation tools. Again, most organizations using
Smalltalk realize there is a need to do a better job of document-
ing what is being constructed, but it is being done for the most
part in a haphazard way. Certainly the vendors themselves have
not led the way in terms of showing us how classes should be
described within Smalltalk. We need to capture not just the
descriptions of each of the methods, but the actual design of the
class. As has been discussed more and more lately, it is more
important that the designer of a class describe how they intended
for the class to be used, rather than providing a description of
how it was built.

. Make available a “Smalltalk Lite ” We continue to hope that

someone will come forward with a $199 Smalltalk for the masses.
This version could be nothing more than a return to the original
style Smalltalks we had in the past. There is no denying we need
the features that each of the vendors have been working so hard
to include so that business can get their job done, but the individ-
ual working at home in their basement who wants to try
Smalltalk out needs very little in terms of features. The impor-
tance of such people to the growth of Smalltalk should not be
underestimated.

Enjoy the issue, and we hope to see many of you at the Smalltalk
Solutions conference at the Omni Park Central Hotel in New
York at the end of this month.

2

The Smalltalk Report

Introducing Argos

The only end-to-end object development and deployment solution

An integrated object modeling tool provides model-driven
development for enterprise-wide applications

All object models are managed in a shared vepository,
supporting team development and traceability

It

Anges

1L

5

olim
G

o

Authorizalio
nTool

T=a
(=3
I w[e].
IEEEEIL R] G g M|
1 h00h o Chen : Eut rphaNumeric ‘ H Name Age ‘
- =C i | sen '
b= ¥ g i
k Iaﬁl arass ﬁ 2::2&:;%&:"::::9“'33“ eriasi i
; @ dp 'EM LEsn: AlphaNumeric _____ = |
Pts _sor Jf¢F ot | WidgeiPool, charls3 Tt :
[e O, v Production Bounded Foint S
D _ven || pro | 20— ﬂ
] - i P)
WEEE 180fe, " ~a - w gy
m' ﬂl 1: W \
— —Tl A i ion: lext i
= o e e |
o R Ert T e e oy PR

1234567801011

EiNov Il Dac M Oct [Sep
MJan

Powerful drag and drop “enzymes” make application
development intuitive

[

Comprrehensive set of widgets, including business

graphics, multimedia, and others make application

development easy and powerful

VERSANT Argos™ is the only application development
environment (ADE) that makes it easy to build and deploy
powerful, enterprise-wide object applications. Easy because
Argos features an embedded modeling tool and Smalltalk
code generation that ensure synchronization between your
models and applications. Powerful because Argos supports
full traceability and workgroup development through a
shared repository.

Argos automatically generates multi-user database applications
that run on the industry-leading VERSANT ODBMS. Argos
deals with critical issues such as locking and concurrency

VERSANT

The Database For Objects ™

control transparently. And only Argos is packaged as a
completely visual ADE built on ParcPlace VisualWorks®.

Leading organizations — in industries from telecommunications
to finance — are using Argos to deliver business-critical
applications. Find out how Argos can help you deliver your
critical applications in weeks, instead of years.

yat

da
contact us 0 A15

1-800-VERSAN‘\', ext.

or via e-mail at
info@versant.com

1380 Willow Road ¢ Menlo Park, CA 94025 e« (415) 329-7500

©1994 by Venant Object Technology. VERSANT, VERSANT Argos and The Database For Objects are trademarks of Versant Object Technulogy Comperation. All uther company names and logos are registered trademarks of the individual companics,

Getting Real

Transactions
in Smalltalk

JAy
ALMARODE

N MY PREVIOUS column, I described the architec-

ture and advantages of multi-user Smalltalk. The key

characteristic of multi-user Smalltalk is that a single
object identity domain is accessible by multiple, concurrent
users. Users share the same objects, not proxies to a remote
system or duplicate copies mapped from a persistent store.
This means that users share object behavior, as well as
state. Rather than duplicating the same behavior in each
application (and having to update each application when
the behavior changes), the application sends messages to
objects that reside in a single, globally shared image.

Since multiple users may be reading and modifying
shared objects, the underlying Smalltalk system must make
sure that a single user’s view of objects is consistent. When
a user reads or modifies an object, the user’s operations
must not be invalidated by other user’s changes. For exam-
ple, suppose an application maintains financial accounts
with objects that encapsulate the account balance. A user
that wants to transfer funds from account A to account B
would cause the value in the account object for A to be
decremented by some amount, and the value in account B
to be incremented by the same amount. Since multiple
users may be allowed to view the account balance in
account A, it is important that concurrent users are not
allowed to transfer funds based upon a view of the account
that has since been decremented (unless we are allowed to
make money out of thin air).

The way that a multi-user system maintains a consistent
view of objects is with the notion of a transaction. A trans-
action is a bounded sequence of operations such that either
all of the operations are executed to completion, or none of
them are executed. This is called atomicity. In the example
above, when transferring money between accounts, both
the debit of account A and the credit of account B must
occur, or neither must occur. Otherwise, the account bal-
ances may become logically inconsistent. In a transaction-
based system, when a user invokes the “commit” operation,
the underlying system guarantees that either all modifica-
tions that occurred since the transaction began are made

Jay Almarode can be reached at almarode: sle.com.

persistent, or none of them are. If a user wishes to discard
all modifications, then he or she invokes the “abort” opera-
tion. In a limited sense, single-user Smalltalk systems sup-
port the notion of a transaction with the operation to save
the image (by writing all of object memory to a file).
When the image is saved, all modifications that occurred
since the last save operation are made permanent, analo-
gous to a commit operation. Correspondingly, if the user
quits the image without saving, it is equivalent to the abort
operation. If you've ever made low level changes to the user
interface or kernel classes, you know the practicality of
being able to quit the image without saving. It is a conve-
nient way to back out of changes that have made the sys-
tem inoperable.

The notion of a transaction has another important ram-
ification concerning object visibility. When a user begins a
transaction, the user is presented a view of the world of
objects that is based upon the last committed state. This is
sometimes called a “transaction’s point of view.” As a user
modifies objects, these changes are not visible to other
users until these changes are committed. In addition, any
new objects that a user creates are not visible to other users
until the transaction is committed. There is another model
of object visibility where a user is allowed to see uncom-
mitted modifications performed by other concurrent trans-
actions. In this model, when a transaction views an uncom-
mitted modification to an object, the transaction becomes
dependent upon the committal of the other transaction. If
the other transaction should abort its changes, then the
current transaction must be aborted as well. With this
model of object visibility in a transaction, the application
may not get “repeatable reads” of an object. Accessing the
state of an object depends upon the time that it is accessed
within the transaction, and may not yield the same result
every time the object is accessed. This is problematic in
object-based systems, since complex (and side-effect caus-
ing) behavior may be executed based upon the state of an
object. This model also leads to the potential problem of
“cascading aborts,” where the aborting of one transaction
causes a domino effect by requiring dependent transactions
to abort.

In multi-user Smalltalk, the underlying system is
responsible for managing transactions and maintaining log-
ical object consistency. Since objects reside in a single
object memory, this task is greatly simplified. The internal
object manager has knowledge of which objects have been
read or written, and directly coordinates the updating of
object memory that is sharable by all users. In
SmalltalkDB, the data definition and manipulation lan-
guage for GemStonel, the underlying system uses shadow-
ing techniques to provide a transaction’s point of view.
When a transaction begins, the user is presented a view of
objects based upon the last committed state of object
memory. This view appeats to the user as a private copy of
all of object memory. Any modifications that the user
makes are not seen by other users. When the user modifies
an object, the modification is actually performed on a
shadow copy of the object. When the transaction is suc-

The Smalltalk Report

* The Diiference Between Success and Failure in IBM Smalltalk *

WindowBuilder™ Pro is an interactive tool
that lets you build polished user interfaces fast
in Smalltalk from Digitalk and IBM. Window-

Builder Pro (WBPro) saves you from the job of building Uls in
code. It helps simplify maintenance and increase consistency.

Like VB, with Real Objects

Select controls from a palette. Place and edit them interactively.
Integrate the controls with your app easily. Build composites of
controls to create your own reusable UI components. Place and
edit them in WBPro just like the native controls. Get portability of
your Uls across all the supported platforms of a Smalltalk family.
Includes autosizing, automatic alignment, control of fonts,
menus, colors, and more.

Building user interfuces is easy

High-Level Controls for WBPro

When you use the high-level add-on controls like spreadsheets,
business graphics, and others, your apps will be more powerful
and polished. And you’ll save even more time and effort. Inquire
about specific offerings and platform availability.

% For most Smalltalk/V programmers, WindowBuilder Pro/V
is a survival tool—the difference between success and failure®
— Milan Sremac, President, Medical Software Svstems--

WINDOWBUILDER PRO/V (vER. 2,

For Digitalk

Windows
Visual Smalttalk 0872

For Smalitalk/V Win16 (WBPro/V ver 1)

% Unless you're totally comfortable with the Motif AP, a tool like
WindowBuilder Pro is the difference between success

and failure in IBM Smalitalk.®

— Gordon Sheppard, Senior Technologist,
American Management Systams

WINDOWBUILDER PRO (FOR BN SMALITALK)

OS/2 5td. comrremrrrsrceremsares $495 Team
Windows std. $495 Team

No runtime fees are required for applications developed with WBPro. Free support for
the first 90 days. All products include complete documentation. Support subscription
available. WindowBuilder Pro/V is compatible with Team/V. Cade generation in [BM
Smalltalk is totally Motif compliant. © Objectshare Systems, Inc. 1934

Visual Smalltalk

WindowBuilder™ Pro/V lets you build Uls interactively, save
time, simplify maintenance. Version 2 is fully compatible with
Visual Smalltalk and Visual Smalltalk Enterprise. Generate
ViewManager subclasses, ApplicationCoordinator subclasses, or
PARTS windows.

WINDOWBUILDER PRO/V
Windows $495 0812

Upgrade WindowBuilder Pro/V 10 version 2. We have special upgrade
pricing to registered users. Please inquire.

Subpanes/V provides columnar list box, hierarchial list box,
table pane, bitmap pane, bitmap button, 3-D frames, and more.
Requires WindowBuilder Pro/V ver 2 and Visual Smalltalk or

Visual Smalltalk Enterprise.

SUBPANES/V
LT L p— 7K LR o 1.7 — $235

@ Objectshare Systems, Inc.
5 5 Town & Country Village
; Suite 735

2 San Jose, CA 95128-2026
w Fax 408-970-7282

CompuServe 76436,1063

VisualAge

Spreadsheets, business graphics, and other high-level components
are easy to add to your VisualAge™ based applications.

WidgetKit"/Professional has powerful spreadsheets and
more. You get virtual spreadsheets, multi-column list boxes, table
editor, graphic viewers for BMP, PCX, and GIF, input validation,
file system widgets, and more.

WIDGETKIT/PROFESSIONAL

Windows std._........... $495 Team ..o, $795

WidgetKit/Business Graphics has versatile graphs and
charts. You get bar, pie, area, line, gantt, high-low-close, scatter,
and more basic types. Options include 2-D and 3-D, fonts, colors,
control of printing, and more.

WIDGETKIT/BUSINESS GRAPHICS

[0 2T I —— $495 Team....oo....... $795
Windows std. $495 Team.................. $795

Call to order (408) 970-7280

Or call for free info. 3 AM to 5 PM PST, M-£ 30-day money-back guarantee

B Y

C O OPE R +

variable declaration:
auto-suggests solutions
onrypos and even hunts
down pool dictionaries

extensible: odd your
own self-documenting
utilities, and share
extensions with athers

hanced find/replace

functions For text:
Hjustable scope, and
regular expressions

code-aware editing:
aoutoindent, variable
completion, blockindent,
and comment filling

lision avoiddnce on
save: edit protects
ainst two versions
of just one method

senders, implementors
and references have
replace capahility and
canfigurable scope

assign Key bindings

to any public edit
method for more direcr
use of the keyboard

P ETER S

undo/redo: mista
cdn be vndone an
redone without i

code fFormatt
you to create

context-sensiriv
hypertext on sen
implementors, an
references searc

o0 The programmer’s editor fFor Smalitalk

202

configurable s
highlighting: e
reodability an
Feedback on

even over method

and switch b4

Getting Real

cessfully committed, the shadow copy is merged into
shared object memory by the underlying object manager.
At this time, other users gain visibility of the transaction’s
modifications and any new objects that were created dur-
ing the transaction. In addition, the user’s view of objects
is refreshed to include any modifications committed by
other transactions in the interim. When a transaction is
aborted, any modifications that were made to objects are
lost, and the user’s view of objects is refreshed. However,
the user does not lose any new objects that were created
before the abort occurred. As long as the application
retains a reference to the newly created objects, it can con-
tinue to access them, and possibly commit them at a later
time.

The task of maintaining logical object consistency is
slightly more complex for other architectures where a rela-
tional database (or other persistent store) or remote object
messaging is used to share objects in single-user Smalltalk
systems. In applications where a relational database is used
to store an object’s state, the application must transfer
modifications that are performed on an object into updates
to a relational table. Since the Smalltalk image exists inde-
pendently from the database, an application developer

The underlying system
manages transactions and
maintains logical object consistency in

multi-user Smalltalk. Objects reside

in a single-object memory and
this task is greatly simplified.

must decide upon some means to keep object memory in
synch with that state of the database. This problem is
commonly called the “two-space problem.”

When using a relational database or other persistent
store to share objects, the Smalltalk application must make
sure that when modifications are flushed to the database
(for example, by causing the execution of SQL update com-
mands), the modifications are atomic. This usually means
utilizing whatever transaction mechanism is provided by
the database. In the earlier example where the Smalltalk
application has objects that represent account A and
account B, there are corresponding rows in a relational
table that holds the account balances for both of these
objects. An application developer must make sure of at
least two things when the modifications to the two objects
are flushed to the database: 1) the state of the correspond-
ing rows have not changed from the time they were initial-
ly read when constructing the account objects (or at least
have not changed in such a way as to invalidate the fund
transfer), and 2) the two SQL update operations are per-

The Smalltalk Report

AND COUNTING

As we rapidly move beyond the 20,000 mark in the number of
students we’ ve enrolled, more and more people like you are
choosing Semaphore as their primary source for object technology
training and consulting. It’s a record no one can match.
Focused on object technology and only object technology,
Semaphore’s staff of more than fifty highly effective real-world
specialists train you to maximize your object skills. No matter what
your level of experience, no matter where you are in your software
development, Semaphore can help you reach your goals.
Semaphore offers over thirty courses, on-site and open
enrollment programs, worldwide training, and comprehensive
consulting that supports your entire software development cycle. &\\‘m APpo
The bottom line? Semaphore is achieving the most impressive {‘,\
numbers in the field. S

Object Technology Specialists

SEMAPHORE

Semaphore, 800 Turnpike Street, North Andover, MA 01845, USA
(508) 794-3366 = Toll Free: (800) 937-8080 ¢ Fax: (508) 794-3427 » Email: 505.4433 @mcimail.com

Call for vour FREE Semaphore Object Technology Solutions Kit: 1-800-937-8080

Automatic Documentation -

Easier Than Ever

Synopsis produces high quality class documentation
automatically With the combination of Synopsis and
‘Smalltalk/V, you cut development time and eliminate the
lag between the production of code and the availability
of documentation.

Synopsis for Smalltalk/V
+ Documents Classes Automatically
« Provides Class Summaries and Source Code Listings
« Builds Class or Subsystem Encyclopedias
o Publishes Documentation on Word Processors
« Packages Documentation as Encyclopedia Files or
as Help Files for Distribution
+ Supports Personalized Documentation and
Coding Conventions
Working with Synopsis is easy. Install Synopsis and see
immediate results --- without changing a thing about the
way you write Smalltalk code!

With Synopsis for Smalltalk/V Development Teams

Development Time Savings

Coding Documentation
Without
Synopsis
With
Synopsis
Products: Synopsis for Smalltalk/V and Team/V
Synopsis for ENVY/Developer
Environments: Windows, Win32, 0S/2
Pricing: Smalltalk/V §295, ENVY §395
Site licenses available.

Synopsis Software
8912 Oxbridge Court, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

Getting Real

formed atomically. The first problem is solved by acquiring
locks on the rows of the table or by re-reading the rows
prior to the update to validate that they have remained
unchanged. The second problem is solved by placing both
update operations in a database transaction.

In applications where objects in one Smalltalk image
can send messages to remote objects in another Smalltalk
image, these same issues must be addressed. The develop-
er must design the application so that when changes are
committed in one Smalltalk image (i.e. the image is
saved), any modifications that occurred to remote objects
in other images are also committed. For example, if the
object for account A resides in one Smalltalk image, and
the object for account B resides in another, both images
must commit their changes, or the objects may become
logically inconsistent. If both account objects reside in
the same image, but their modifications are caused due to
4 message sent from a remote image, their changes cannot
be committed unless the remote sender notifies them that
it expects them to commit. This is because the remote
sender may have determined that the changes should not
occur after all. This problem is solved using two-phase
commit protocols. In this scheme, a Smalltalk image must
ask all remote images in which it caused modifications if
they can commit their changes. If a remote image answers
yes, then it must guarantee that if asked to do so, it can
commit its changes, even in the face of hardware failure.

8

This is typically done by writing some logging informa-
tion to disk before answering affirmative to the request. If
all remote images answer yes, then the coordinating
Smalltalk image can send a second command to the
remote images, telling them to commit their changes.
Note that this scheme does not allow a Smalltalk image
to execute messages from more than one remote transac-
tion at a time and maintain logical object consistency.
This is because one remote transaction may request that
the local Smalltalk image commit its changes, while
another remote transaction might request it to abort.
Since a save operation will write all of object memory, an
image cannot selectively commit modifications to some
objects and not others.

To build industrial strength multi-user applications in
Smalltalk, the system must support the notion of transac-
tions. Sometimes a transaction may not be allowed to
commit to ensure that objects remain logically consistent.
The inability to commit a transaction is necessary when
other transactions have performed operations that invali-
date the operations in the current transaction. My next
column will discuss concurrency conflicts in multi-user
Smalltalk and how application developers can avoid them.

Referance

1. Bretl, B., ez a/. The GemStone Data Management
System, OBJECT-ORIENTED CONCEPTS, DATABASES,
AND APPLICATIONS, W. Kim and F. Lochovsky, Eds.,
ACM Press, 1989.

The Smalltalk Report

Smalltalk Idioms

Garbage
Collection
Revealed

T HIS MONTH I'LL talk about garbage collection. To

KENT BECK

paraphrase Mark Twain, everybody talks about the

garbage collector, but nobody does anything about it.
All of the commercial Smalltalks provide some ability to tune
the garbage collector, but without knowing what’s going on and
why, you are unlikely to be able to know when these features
are applicable or how to use them. This article discusses the
common vocabulary of modern garbage collection. Later, we'll
explore what you can do to tune the garbage collector in the
various Smalltalks.

THE IDEA

In the early days of programming languages, programmers had
to decide at compile time how much memory they needed.
Languages like FORTRAN and COBOL had a simple run-
time model as a result, but they aren't very flexible. Along came
LISP, which let you allocate storage at runtime. LISP was very
flexible, but what got allocated needed to get deallocated. The
first LISP implementations would run until they filled memory,
then die. It was clear that when the system filled memory,
much of the storage was no longer in use. It had been used for
a while, but then it could be safely reused, because it would
never be used by the program again. Rather than make the pro-
grammer responsible for deallocation, early Lispers decided to
have the system deallocate memory for them.

At first, automatic storage deallocation was considered an
artificial intelligence problem. After all, how could you possibly
know that a piece of memory would never be accessed again?
Only a trained programmer could tell with any certainty, and
even they weren't very accurate.

It wasn't long before someone noticed that in a type safe
language (that is, one where you can't arbitrarily create pointers
to memory) the problem is conceptually quite simple. Once the
last pointer to an object is lost, there is no way to get another
pointer to it. Therefore, you can't possibly harm the execution
of the program by reusing that memory.

Ikent Becle has been discovering Smalltallc idioms for eight years at Telitronix,
Apple Computer, and MasPar Computer. He is the founder ol First Class Soltware,
which develops and distributes reengineering products for Smalltall. He can he

reached at First Class Soltware, P.O. Box 226, Baulder Creel, CA 95006-022G,
408.338.4649 (voice), 408.338.36G6 (tax), or by email at 707611216
(Compuserve).

February 1995

Figure 1. Object B’s memary can he safely reused.

In Figure 1, since there are no references to object B, the
program is free to reuse the memory it occupies, safe in the
knowledge that no part of the program can possibly refer to it
again. Object C cannot be reclaimed, because it is referred to
by object A. Object A cannot be reclaimed because it is
refetred to from outside the object memory.

The code that finds objects that are no longer referenced is
called the “garbage collector.” Your Smalltalk contains a garbage
collector. While most of its workings are beyond your control,
it will occasionally become a most important part of your life.
When you are trying to squeeze performance out of a running
system, or reduce its memory footprint, you will have to under-
stand what's going on “under the hood.”

One common mistaken impression is that the garbage col-
lector runs “occasionally,” almost of its own volition. The
garbage collector always runs in response to a request for mem-
ory it cannot fulfill. The memory allocator looks for the
requested memory, but can't find it. It invokes the garbage col-
lector, which reclaims some memory. The memory allocator
runs again, returning some of newly freed memory.

The presence of a garbage collector is an integral part of the
Smalltalk programming experience. When you have to explicit-
ly deallocate memory, you program in a very different style.
The hard cases are where several parts of the system share an
object, and all of them must agree before it can be deallocated.
This introduces a pattern of communication to the system that
likely wouldn't exist if not for the deallocation problem. A
garbage collector, because it needs to have a global view of the
system, frees you from having to take a global view. The con-
nections between the parts of a program can be much looser,
because they never have to communicate about deallocation.
You never have to write otherwise irrational code just to make
sure memory gets deallocated correctly.

Your Smalltalk implementation (the virtual machine) provides
you with two main resources- message sending and object alloca-
tion (and hence garbage collection). The right attitude 95% of the
time is to assume that both are free. The right time to stop this
charade is when you have gotten the design as clean as you possi-
bly can at the moment and it is obvious that limited machine
resources are poing to pose a problem for your user. Then you
need to have a model in your head of what is going on.

BAKER TWO SPACE

Here’s a simple garbage collection algorithm: allocate twice as
much space for objects as you think you'll need. Divide the
memory in two equal sections, called 0ld and New. When you
allocate an object, allocate it in 0ld space. (See Fig. 2.)

Smalltalk Idioms

Old New
Figure 2. Allocating bjects in old space.
A
Old New

Figure 3. Copying a known object to new space.

<
P

New

Oid

Figure 4. Copying a refered-to object to new space.

When you want to allocate an object, but 0ld space is out of
room you have to invoke the garbage collector. The collector
runs by starting with a known live object in Old space (in this
case A) and copying it to New space. (See Fig. 3.)

Any object that gets copied to New space has all of its
objects copied to New space, too (in this case C). (See Fig. 4.)
When no more objects remain to be copied, any objects

remaining in 0ld space are not referenced anywhere. In this
example, B can be safely ignored. Swap the identities of Old
and New space. New objects will be allocated in the same space
as the surviving objects. (See Fig. 5.)

This algorithm is called Baker Two Space after its inventor,

Henry Baker. It advantages are:
* it is simple
* it automatically compacts surviving objects together, leaving
the remaining free space in one big chunk
Its disadvantages are:
» it takes twice as much memory as the object actually occu-
pies
= the copying operation takes time proportional to the num-
ber of surviving objects

10

(b |
A

Oid New

Figure 5. Objects are allocated in old space.

AT A

Figure 6. Mark and sweep objects in a single space.

11 A /

Figure 7. After marking.

MARK AND SWEEP

The mark and sweep algorithm addresses the disadvantages of
the Baker Two Space algorithm (it actually appeared many
years before Baker Two Space). All objects are allocated in a
single space. (See Fig. 6.)

As before, when the allocator runs out of space, it invokes
the garbage collector. This time, instead of moving surviving
objects, they are merely marked as being alive. Objects referred
to by marked objects are also marked, recursively, until all the
objects that can be marked have been. (See Fig. 7.)

After all the surviving objects have been marked, the sweep
phase goes through memory from one end to the other. Any
object that isn't marked is put on a list of memory available for
allocation. While sweeping, the marks are erased to prepare for
the next invocation of the garbage collector. (See Fig. 8.)

The mark and sweep algorithm has the following advan-
tages:

* it doesn’t require extra memory
* it doesn’t need to move objects
However, it has some serious shortcomings:
« the marking phase takes time proportional to the number of
surviving objects
* worse, the sweeping phase takes time proportional to the
size of memory

The Smalltalk Report

Oddly enough, a company with possibly the largest
and most deployable Smalltalk/OO workforce is
virtually unknown - Until Now.

Over 400 Experienced Smalltalk/00 Developers,
Mentors & Trainers Available Today.

Object/nfelligence

The Object Services Company

» On-Site Smalltalk/OO Programming & Mentoring
¢ On-Site Customized Smalltalk/OO Training

o OODBMS Development: ObjectStore, Gemstone & Versant

o GUI Front-End Design/Build to Legacy Systems
¢ Object Modeling, Analysis & Design
e Smalltalk/Object Mapping to Sybase, Oracle & DB2

Call (919) 859-7384 o e-mail: infoeobjectint.com

Objectinfelligence Comporation « 6300-138 Creedmoor Rd., 5te. 196 « Raleigh, NC 27612 » (919)848-0045 Fax

C

AN
available
<

A1 A

Figure 8. After sweeping.
* the resulting available memory is fragmented, possibly
requiring a separate compaction step to pack the surviving
objects together

GENERATION SCAVENGING
‘While a graduate student at Berkeley, David Ungar combined the
two space and mark and sweep algorithms to create a collector
which usually exhibits none of the weaknesses of either, and has
some important new properties. He called it generation scavenging.

The observation that makes generation scavenging work is
that as a rule objects die young or live forever. That is, many
objects are used temporarily during computations. For example,
here a Rectangle creates a Point to calculate its extent.

Rectangle>>extent

~self corner - self origin

Similarly, a Point creates a new Point to hold the maximum of
its coordinates and the parameters coordinates.

Point>>max: aPoint

February 1995

Old New

Figure 9. D and E are old; A, B, and C are recent.

~(self x max; aPoint x) @ (self y max: aPoint y)
A client might use extent to compute the merged size of sever-
al Rectangles.
Client>>extent
~self rectangles
inject: 0@0
into: [:sum :each | sum max: each extent]
The Points created by invoking extent only live long enough to
get passed as parameters to Point>>max:. The Points created by
Point>>max: live over two invocations of the block, one where
they are created, the next when they are replaced. If Client has a
100 Rectangles, Client>>extent creates 200 Points which are all
garbage even before the answer is returned.
Generation scavenging uses the demographics of objects to

11

Simalltalk

R E =P O = T

is seeking expert reports, tutorials,
and technical papers. Articles
should be instructive, product
neufral, and technical.

Editorial topics include:

- Applications
Project management
Tools
Language issues

To submit papers, discuss story ideas,
or request Writers' Guidelines, contact:

John Pugh and Paul White, Editors,
THE SMALLTALK REPORT

855 Meadowlands Dr. #509,

Ottawa, ON K2C 3N2

613.225.8812 (v), 613.225.5943 (f)
streport@objectpeople.on.ca

Call for Writers

advantage. The relatively expensive two space collector is lav-
ished on newly created objects. The copying operation of the
two space collector is called a “scavenge.”

The generation scavenger keeps track of the age objects by
incrementing a count every time an object is copied by the two
space collector. When the count exceeds a threshold, the object
is copied not into New space, but into Tenure space. Tenure
space is managed by a mark and sweep collector.

This has the effect of concentrating the collector’s efforts on
newly created objects, the ones that are likeliest to be collectable.
After an object has demonstrated a little longevity, the collector
effectively ignores it. Only when tenure space fills or you take a
snapshot, will the mark and sweep collector examine tenure space.

By concentrating its efforts where garbage is most likely to
be found, generation scavenging garbage collectors end up tak-
ing only a small fraction of the total time of the system. In gen-
eral, the collector only takes a few petcent, compared with
20-30% for earlier algorithms.

The other valuable property of generation scavenging is that
it is insensitive to the number of objects in the system. Recall
that the two space algorithm takes time proportional to the
number of surviving objects. Since most of the objects in the sys-
tem are in tenure space, generation scavenging takes time pro-
portional to the number of recently created surviving objects.
Limiting the size of New and 0ld space keeps that number small.

A TENURING MONITOR
All of this is fine in theory, but what about practice? The col-
lector is like a pair of shoes. You don't really notice it unless it is

12

Smalltalk Idioms

Old New

Figure 10. B and C have been tenured.

causing you pain. Then you have a serious problem.

I'm running out of space this month, so I'll have to cover
garbage collection tuning in future columns. I'll leave you with
a little utility that will to help you begin to understand the
interaction of your program with the collector.

The most serious breakdown of a generation scavenger is
when it acts like a mark and sweep collector. If objects live just
long enough to be tenured, then die, all the efforts spent on
scavenging are wasted.

In old versions of Smalltalk/V the execution of the mark
and sweep collector was accompanied by a cursor shaped like a
vacuum cleaner. This lead to the use of “hoover” as a verb, “I
was creating lots of objects, and boy, was I getting hoovered.”

The new version of Smalltalk/V, Visual Smalltalk, provides
hooks for watching the collector. In particular, the global object
Processor posts the event flip when a scavenge takes place. You
can send the message bytesTenured to find out how many bytes
worth of objects were moved to tenure space.

I built the tenuring monitor with Parts. I know of no good
way to typeset a Parts application, so I'll just try to sketch it out
well enough for you to reproduce it if you want to.

The design of the user interface is 2 window with a static
text in it. The text displays the number of bytes tenured with
every scavenge.

First, we create a window and put a static text into it. Then
we need to have the static text notified when a scavenge hap-
pens. Give the static text the following script (Digitalk calls

them flips) and link it to the open event of the window:
SetDependencies
Processor
when: #flip
send: #UpdateBytes
to: self

When the window closes, the static text should stop getting
notified, so define the following script and link it to the

aboutToClose event of the window:
BreakDependencies
Processor
removeActionsWithReceiver: self
forEvent: #flip

Finally, when the static text gets UpdateBytes, it needs to dis-
play the number of bytes tenured by the latest scavenge. It gets
continued on page 30

The Smalltalk Report

A sample pattern language—
Concatenating with Streams

Bobby Woolf

WOULD LIKE to elaborate on Alan Knight's

“Performance Tips” article in THE SMALITALK REPORT,

4(1). In his article, Alan briefly discussed using streams as a
more efficient technique for performing concatenation.* I
would like to show how to document this technique more thor-
oughly using patterns. This example will also show how one
pattern can easily lead to others and form a pattern language.

WHAT IS A PATTERN?

Regular readers of THE SMALLTALK REPORT have seen numer-
ous pattern examples in Kent Beck’s “Smalltalk Idioms” eol-
umn. In each column, Kent describes at least one commonly
used technique and documents it using a pattern.

A PATTERN DOCUMENTS EXPERTISE

The concept of patterns was first described by Christopher
Alexander, an architect who theorized about how best to design
buildings and towns. He describes a patfern as the documenta-
tion of a common problem and its solution.” This can also be
phrased as “a solution to a problem in a context.™ It is a mech-
anism through which an expert in 2 field can document his
expertise, the various tricks and techniques he has learned
which make him an expert. Thus a pattern is only as good as
the person who wrote it. In fact, a pattern is frequently less
complete than the author’s understanding of the problem
because even an expert is often unable to completely express in
words all of his understanding.

A pattern is much like a scientific theory: As its accuracy is
confirmed through repeated use, its acceptance grows. But
when it fails to accurately predict results, it must be revised to
include these new circumstances. A theory can never be proven
to be fact, and a pattern can never be proven to be right. For
this reason, a pattern is never really finished. It evolves to
reflect further experience gained through its use.’ A pattern can
only be considered finished when the writer understands a
problem completely and documents it perfectly.

A number of people in the computer software industry have
discovered Alexander's work and found his concepts of patterns to
be useful when applied to software engineering tasks. The
Hillside Group formed a few years ago to investigate and pro-
mote the use of patterns in the software industry.'' It recently

* | first saw this technique documented in Ken Auer's “Efficient Smalltalk Programming”
tutorial at OOPSLA ‘92 in Vancouver, BC, Canada.

t See page x of Alexander.'
$ see Coad®
§ See page xv af Alexander.’

February 1995

held a conference, PLoP ‘94 (The First Annual Conference on

the Pattern Languages of Programs) to further coordinate this
effort.*

A PATTERN FOLLOWS A FORMAT
There is considerable debate among software engineers about
what the format or template for a pattern should be. Alexander
describes a format for his architecture patterns,” but it is not
easily applied to software patterns. Whatever format is used, a
pattern consists of at least four discrete partsﬂ:
* A #itle. This is who the pattern is, a name for easy reference.
‘While many authors prefer to give each pattern a name that
describes the overall pattern, I prefer a name that summa-
rizes the solution in a2 sound bite.
* An explicit problem statement. This describes whar the
entire pattern is about, what problem it will demonstrate
how to solve. The problem statement is specific enough to
accurately describe the dilemma, but general enough to
apply to the widest possible range of examples.
* A discussion of the forces or constraints. This section
describes why the problem is difficult to solve. It defines the
various obstacles that must be overcome and explores alter-
natives for doing so. The forces/constraints set the bound-
aries of the problem and guide the reader to the solution.
* An explicit so/ution. This shows bow to solve the problem. It
is stated as a clear recommendation of a course of action to
be taken by the reader. The solution has the same level of
specificity as the problem.
It is possible and often preferable for a pattern to have addi-
tional parts, but only the four listed previously are required. I
prefer to combine the forces and constraints together into a
Context section. I also include an Example section in my pat-
terns, but that is not a requirement a pattern tust meet.

The title should be just a few words that name the pattern,
one that people will easily associate with the pattern. The prob-
lem statement should be short and simple. It is what the reader

| | Back? contains details about the Hillside Group's origins.

A book by The Hillside Group,® due this year, will contain 30 pattem languages from the
proceedings of PLoP '94, the first annual Pattern Languages of Programs conference. PLoP
‘95, which will be held September 6—8, 1995, in Monticello, IL, has issued its preliminary
call for papers. For more information, contact Richard Gabriel a1 rpg@parcplace.com.

** See pages x—xi of Alexander.’

11 The four parts | have listed are my opinion. Other opinions on which sections are key
include: 1) Gamma et &/ lists four elements—pattern name, problem, solution, and conse-
quences; 2) Beck, page 20,2 lists three parts—problem, context, and solution; 3} Coplien®
discusses four parts: the problem the pattern solves, the trade-offs it resolves, the context
in which it applies, and the particulars of its implementation, There appears 10 be less
debate about whether the section/parts should be explicitly labeled. Although Alexander
did not label his sections, the aforementioned authors and | all do.

13

Pattern Language

will review to quickly find whether a pattern meets his current
needs. The solution should also be concise, but long enough to
describe all of the steps the reader should take and any excep-
tions to the rule that he may encounter. The real meat of the pat-
tern is the discussion of forces/constraints. This section teaches
the reader about the problem and documents the writer’s concep-
tualization of it. It considers alternate solutions and shows why
they were rejected. In the end, it justifies the solution.

For a couple of examples of patterns, see the sample pattern
language included in this article.

A PATTERN IS REUSABLE

Ideally, a pattern describes a solution to not just one problem
but rather a range of related problems. Thus the reader can
encounter several seemingly unassociated problems that fall
into this range. The context section will show that the pattern
applies to each of these “different” problems such that all of
them have the same solution. In this way, the solution to one
problem can in fact be reused to solve many.

Because patterns have this reusability, once an author has
documented the solution to a problem using a well-written pat-
tern, he should never have to document that solution again,
(On the other hand, as mentioned earlier, a pattern is never
really finished. Both the author’s understanding of the problem
and his ability to express his understanding will evolve. As they
do, he should update the pattern accordingly. However, the pat-
tern is available for reuse throughout its evolution.) Any time
another problem touches upon this one, he will be able to sim-
ply refer back to this pattern as the ready-made solution,

A PATTERN ENCAPSULATES A SOLUTION

Each pattern must be a small, self-contained chunk that is rela-
tively easy to understand on its own. If a pattern becomes too
long and complex, it will lose its focus of presenting a specific
solution to a specific problem. Should this happen, the pattemn
must be refactored into a series of smaller patterns.

Thus a complex problem requires more than one pattern to
derive its solution. Each pattern will describe a specific problem
and its solution, and the patterns will build on and reinforce each
other. The solution offered by the pattern family whole is greater
than the sum of its pattern parts, therefore the family will present a
more elaborate solution to the complex problem. Alexander called
such a collection of collaborating patterns a pattern language.

WHAT IS A PATTERN LANGUAGE?
Individual patterns document individual techniques, but an
expert in a topic has numerous techniques at his disposal. His
art is knowing how to combine these techniques to form a
methodology for solving a range of problems within a domain.
When coupled in certain ways, his techniques form a structure
of solutions far more useful than the sum of the individual
parts. Yet when mixed together haphazardly, the guidelines
cancel out each other's value, This can leave the reader at a loss
as to how to apply small patterns to solve large problems.

A pattern language is a collection of patterns that reinforce
each other to solve an entire domain of problems. Each pattern

14

in a language leads to others. Large, broad patterns contain
smaller, specific patterns. A language’s shape is a multidimen-
sional web of patterns referring to one another. But paper is
two-dimensional and a reader’s attention is one~-dimensional, so
a pattern language is written as a list. This list guides the read-
er, starting with an overall problem; through subsequent pat-
terns, the language explores the various issues involved and dis-
covers the specific solutions that will be required.

Pattern languages can be nested, forming a language con-
sisting of sub-languages consisting of sub-sub-languages. Each
of these is a pattern language of its own that just so happens to
be part of a broader pattern language. Just as a tree may actually
be a branch in a larger tree, a pattern language is a sub-lan-
guage in one or more larger languages. In theory, a pattern lan-
guage describing a feature in Smalltalk is part of “the”
Smalltalk pattern language. The Smalltalk pattern language is
part of the object-oriented pattern language (as would be paral-
lel languages for C++ and other object-oriented languages).
Furthermore, the object-oriented pattern language is, in tumn,
part of the software engineering pattern language.

A SAMPLE PATTERN LANGUAGE: CONCATENATING WITH STREAMS
This is an example of a simple pattern language. It is very
Smalltalk specific. As in the “Performance Tips” article, it
teaches the reader that it is more efficient to use streams for
string concatenation than to use the concatenate message.
Because it is written in pattern form, it clearly describes why
the solution works and when to use it. For example, it notes
that streams can be used to concatenate any
SequencableCollection, not just Strings.

What makes this a language is that the overall solution is
presented not in one pattern but in three. The first pattern is
the main one and discusses the most important issues docu-
mented by the pattern language. In the process, it touches on
two other problems and refers the reader to other patterns that
resolve them. Because the other two patterns are referred to by
the main pattern, they are included in the language (otherwise
it would be a one-pattern “language”).

Notice that these three patterns could also refer to even
more patterns. The reader might not know Smalltalk and thus
would need patterns describing problems that are solved using
strings, streams, and concatenation. Pattern 2 refers to unneces-
sary garbage collection; the reader may require a whole separate
pattern language on problems encountered in memory manage-
ment and why Smalltall’s dynamic garbage collection is a good
solution. The reason these patterns are not included in this lan-
guage is that I, the author, decided that they were outside the
scope of this language. Although they probably belong in a
larger-context language that describes Smalltalk in general, they
do not belong in a specific sub-language that discusses concate-
nation using streams.

CONCATENATING WITH STREAMS
Pattern 1: Use a stream for multiple concatenations

Problem: What is an efficient way to concatenate together a
number of strings (or other collections) into a larger string?

Context: Concatenation (which is implemented in ParcPlace

The Smalltalk Report

MI™ from ARS
« adds multiple inheritance to VisualWorks™ Smalltalk’

¢ provides seamless integration that requires no new syntax
* installs into existing images with a simple file-in

¢ is written completely in Smalltalk

Leading methodologies (OMT, CRC, Booch, OOSE)
advocate multiple inheritance to facilitate reuse. Smalltalk’s
lack of multiple inhertance support impedes the direct
application of these methodologies and limits class reuse.
M| is a valuable tool which enables developers to apply

advanced design techniques that maximize reuse.

Introductory Price: $195

To order Ml or for more information on ARS’s family of products and
services, please call 1-800-260-2772 or e-mail Info@arscorp.com.

timplementations in VisualAgs™ and SmaittalkV™ are forthcom

Applied Reasoning Systerns Coiporation (ARS) Is an innovative developer of high
quality Smalitalk development tools, application frameworks, intelligent software AN ARI=IBN 1= YT NI M e AT 1A S
systems, and related services that provide advanced solutions to complex problems.

ettt o Dite = Sl 96 Bl]OC = 270049

Smalitalk Products « Consulting » Education « Mentoring

Phone/Fax: (919) 781-7997 = E-mail: info@arscorp.com

Smalltalk by the method in SequenceableCollection whose
name is a2 comma) is convenient, but somewhat inefficient. To
concatenate two lists (a list being some kind of sequenceable
collection), 2 and 4, a third list, ¢, is created, then 2 and 5 are
copied into it. To then concatenate ¢ and 4, a new list ¢ is creat-
ed to hold copies of ¢ and 4. Thus each concatenation requires
creating one new object plus iterating through and copying
each of the elements in both of the arguments. This is neces-
sary for the first concatenation, but a seties of concatenations
creates a number of intermediate objects and involves copying
the same sublists repeatedly.

A better solution would create fewer new objects and copy
the sublists as few times as possible. The solution should work
for any pair of sequenceable collections, but will most common-
ly be used to concatenate strings.

To quickly concatenate a couple of short lists, the comma
message is simpler. A more complex technique would be appro-
priate for concatenating together numerous and/or long lists.
Solution: Use a WriteStream to perform multiple concatena-
tions. Create a stream that contains what will be the result list,
add each of the lists to be concatenated into the stream, and
then return the resulting list.

A tip when concatenating strings: One common source of
strings to concatenate is the method printString. Pattern 2 sug-
gests using printOn: instead of printString, and Pattern 3 gives
preference to print: over printOn:. So use print: instead of
printString.

February 1995

Here’s a simple way to concatenate several strings:
descriptionString
~'Tam a', self class name, ' whose name is ',
self name, ' with a value of ', self value
printString, "'
Using a stream is a more efficient way to compute the same
string. The general technique is to replace every concatenation
comma message with nextPutAll:, which will add the string to
the stream. Other WriteStream messages, such as print: and
nextPut:, are also helpful:
descriptionString
| stream |
stream := (String new: 100) writeStream.
self descriptionOn: stream.
~ stream contents

descriptionOn: aWriteStream
aWriteStream
nextPutAll: Tama';
nextPutAll: self class name;
nextPutAll: ' whose name is ';
nextPutAll: self name;
nextPutAll; ' with a value of ;
print: self value;
nextPut: $.
Notice that I broke the implementation into two methods. This
way, if the description string is going to be concatenated with
another string, a stream can be used directly.
Some subtle efficiencies to note in the transformed method:

15

Pattern Language

The message nextPut: was used to add a single character; that is
more efficient than using nextPutAll: to add the one character
string *". And, as mentioned in the solution, I used “print: self
value” instead of “nextPutAll: self value printString”.

This example shows strings being concatenated but this
technique can be used to concatenate any series of
SequenceableCollections.

Pattern 2: Avoid creating intermediate objects

Problem: How can I avoid creating intermediate objects—
ones that are not needed by the methods that obtain them—in
my code?

Context: Intermediate objects waste memory by taking up
space. They waste CPU time, first when being created, then
when their memory is reclaimed (during garbage collection).

Often the reason a method receives an intermediate object is
because what it really wanted was a similar object, so it takes
the one it received and converts it into the one it wanted. The
method should be more specific and ask for the object it wants
so that it will not need to convert it.

Code with a series of message sends is less encapsulated
because each message send assumes it will be understood by the
answer returned by the message before it. By replacing a series
of message sends with a single one, the code is both better
encapsulated and easier to read.

A single message send is not always more efficient than multiple
ones because the single message’s implementor may create more
intermediate objects than multiple explicit message sends would.

Solution: Avoid creating intermediate objects by sending an
object a message that will return the answer object you want,
rather than an intermediate object to which you have to send
further messages to get the object you want. If the message
you're sending returns an object that requires conversion, look
for and use another (usually in the same receiver’s public proto-
col) that will return the final resulting object.

Be aware, however, that the implementor of the message that
returns you the object you want may in turn create numerous
intermediate objects. It may create those unwanted objects itself or
use other messages that create them. The goal is not just for your
code to create as few unwanted objects as possible, but for your
code and all of the code it uses to minimize such objects. In gener-
al, though, if everyone writes effident methods that minimize
intermediate objects, all code that uses those methods benefits.

Another technique: It is often tempting to ask an object to
return an answer so that you can use it to perform a certain
task. Instead, ask the object to perform that task for you. To do
s, it can use the answer you would have received without cre-
ating a new object to return the answer to you.

‘When you make these simplifications to your code, it will
become more efficient, and will often make it easier to read as well.

Examples
Example 1: One way to determine the height of a rectangle
is:

16

rect extent y
However, extent computes and returns an intermediate object, a
Point, which is then sent y and thrown away. To avoid creating
this unneeded object, do this:

rect height
where height is implemented as:

Rectangle>>height

~ comer y - originy

This message will perform two accesses and a simpler calcula-
tion than extent performed (subtracting Numbers instead of
Points). It will return the object you want, with no more access-
ing or conversion required.

Example 2: Similarly, when adding strings to a stream, the
intermediate string is usually avoidable. This will print an
object on a stream:

myStream nextPutAll: anObject printString
The problem is that printString returns a String tha4t is thrown
away after nextPutAll: is through. This is unnecessary;
printString is implemented to use printOn: which takes a stream
as a parameter. To accomplish the same task without creating
the unwanted string, ask the object to do it:

anObject printOn: myStream
Whenever practical, use transformations like these on your
code to avoid intermediate objects.

Pattern 3: Use cascading to increase readability

Problem: When one object is being sent a series of messages,
how can I format my source code to make this obvious to the
reader?

Context: A message expression has at least two parts: the
message and the receiver. Thus to understand an expression, the
reader must digest not only what the message is but what object
it’s being sent to. When multiple messages are being sent to the
same object, it simplifies the reader’s understanding to explicitly
show that all of these messages are being sent to the same
object. That way, the reader need only determine the receiver
once, and can then concentrate on the messages being sent.

Separate code statements are divided by periods. Each is
usually placed on a separate line to clearly show the reader that
they are separate statements. When multiple staternents are
appended together into a single sequence, it is tempting to
place them all on the same line as one statement. This, howev-
er, makes it difficult for the reader to recognize that the state-
ment is really a series of separate sub-statements.

If a substatement starts in the first column of a line, it is diffi-
cult for the reader to recognize that this is a sub-statement (a con-
tinuation from the previous line) and not a complete statement.

Solution: Use message cascading to send multiple messages
to the same object. Cascading will explicitly show the reader
that all of the following messages are being sent to the same
receiver.

Try to avoid interrupting the cascade to send a2 message to
another object. The more pieces you break the cascade into, the
less helpful it will be to the reader.

Format a cascade to indicate to the reader that this is a cas-

The Smalltalk Report

cade. Put the receiver on the first line in the first column. Then
put each sub-statement sent to the receiver on its own line,
indented a set amount from the first column (such as one tab).

Cascading won't make your code any more efficient, but it
will make it easier to read.

Examples
Example 1: This code is typical for creating a new object:
| layout |

layout := LayoutFrame new.
layout leftFraction: 0 offset: 10.
layout topFraction: 0.1.

layout rightFraction: 1 offset: -10.
layout bottomFraction: 0.9.

To create the same object the same way, but make the code eas-
ier to read, use cascading:
| layout |

(layout := LayoutFrame new)
leftFraction: O offset: 10;
topFraction: 0.1;
rightFraction: 1 offset; -10;
bottomFraction: 0.9.

The cascading shows the reader more clearly that all four mes-
sages are being sent to the same object.

Example 2: Be careful not to assume that all messages return
self, many don't, and they could cause you to set your variables
incorrectly. This code:

~ (Set new)

add: 1;

add: 2
will return 2, not a Set; use the message yourself to fix this
problem:

~ (Set new)

add: 1;
add: 2;
yourself

Example 3: Avoid writing code that interrupts the cascade.
The code:
writeStream nextPutAll: 'My class has'.
self class subclasses size printOn: writeStream.
writeStream nextPutAll: 'subclasses.'.
can be written to use cascading without interruption as:
writeStream
nextPutAll: "My class had';
print: self class subclasses size;
nextPutAll: ' subclasses.'.

Referencas
1. Alexander, C., ef al. A PATTERN LANGUAGE, Oxford
University Press, New York, 1977.

2. Beck, K, Patterns and software development, DR. DOBB’S

February 1995

405 El Camino Real, #106
Menlo Park, CA 94025, U.S.A.
voice: 1-415-854-5535

or 1-800-ST-SOFTWARE

Jax: 1-415-854-2557

BBS: 1-415-854-5581

email: info@smalltalk.com
compuserve: 75046,3160

The Smalltalk Store carries over 75
Smalltalk-related items: compilers, class
libraries, books, and development tools. Give
us a call or send us an email - we’ll put you
on the mailing list and send you a copy of
our combination newsletter-catalog. It’s
informative and entertaining.

When you get the
chance, check out our new
dialect-neutral Smalltalk
bulletin board system at
415-854-5581, 8N1. Y

Send For Our Free Catalog!

JOURNAL, 19(2): 18-20 and 22, Feb. 1994.

3. Coplien, J.O., Pattern languages for organization and
process, OBJECT MAGAZINE, 4(4): 46-51, July/Aug. 1994.

4. Gamma, E., R. Helm, R. Johnson, and J. Vlissides. DESIGN
PATTERNS: ELEMENTS OF REUSABLE OBJECT-ORIENTED
SOFTWARE, Addison-Wesley, Reading, MA, 1994.

5. Coad P, D. North, and M. Mayfield, OBJECT MODELS:
STRATEGIES, PATTERNS, AND APPLICATIONS, Prentice
Hall, forthcoming.

6. The Hillside Group, PATTERN LANGUAGES OF
PROGRAMMING, Addison-Wesley, Reading, MA, forthcoming.

Further Reading

7. Alexander, C. THE TIMELESS WAY OF BUILDING, Oxford
University Press, New York, 1979.

8. Johnson, R E. Documenting frameworks using patterns,
OOPSLA '92 CONFERENCE PROCEEDINGS, The Association
for Computing Machinery, New York, 1992, 63-76.

9. Gabriel, R.P. The bead game, rugs, and beauty, JOURNAL
ofF OBJECT ORIENTED PROGRAMMING, Part 1—7(3):
74-78, June 1994 , and Part 2—7(5):44-49, Sept. 1994.

10. Beck, K. A short introduction to pattern language,
SMALLTALK REPORT, 2(5): 17-18.

Bobby Woolf is a member of the Technical Staff at {nowledge Systems
Corp., where he is developing patterns and pattern languages on topics
such as VisualWorks frameworks and Smalitalk configuration management.
He also participated in PLoP ‘94, the first annual Pattern Languages of
Programs conference. Comments are welcome at woolf@acm.org.

17

Processes

Alec Sharp and Dave Farmer

HIS ARTICLE TALKS about Smalltalk processes,

the threadsafeness of shared resources, and communi-

cation between processes. Because the implementation
of processes varies quite a bit between Smalltalk vendors, we

want to note up front that in this article we are describing
VisualWorks 2.0 from ParcPlace Systems.

CREATING PROCESSES

Smalltalk allows you to create separate processes so that your
application can do several things in parallel. For example, our
application creates a process for handling input from sockets,
another process for handling output to sockets, and separate
processes to handle 1/0 to each robot tape library that is con-
nected to our UNIX server. These processes all run in a single
Smalltalk image.

The Smalltalk image is a single process being run by the
operating system, but internal to Smalltalk is another process
scheduler that allocates time among the various Smalltalk
processes. So the operating system scheduler allocates time to
Smalltalk, and the Smalltalk scheduler allocates time to the
various Smalltalk processes.

Smalltalk processes can be forked at different priorities, with
higher priority processes being given preferential treatment if
they have anything to do. To fork a process, you send a fork or
forkAt: message to a BlockClosure. For example,

[SocketInput new start] forkAt: Processor userSchedulingPriority.
When assigning priorities, it’s a good idea to use names to
avoid problems when values change in new software releases.
For example, in VisualWorks 1.0, user background priority was
3, but in VisualWorks 2.0 the number of priorities has been
significantly increased and user background priority is now 30.
The priority names can be found in the “priority names”
instance protocol of ProcessScheduler.

You can also create a process that does not immediately run,
using the newProcess or newProcessWithArquments: message to
a BlockClosure. A process created this way does not run until
you send it a resume message. (Interestingly, the fork message is
actually implemented as a newProcess message followed by a
resume.) We won't go into this aspect of processes except to say
that you might use this capability if you wanted to gain more
control over process scheduling.

PROCESS SCHEDULING

VisualWorks does not have a preemptive scheduler, which
means that a process will continue execution until either it
explicitly gives up control, using Processor yield, or it does an

18

operation that yields the processor, such as reading a file or
waiting. So, for example, in the following code, process1 will
never give up control and so process2 never runs. In fact, if we
had used fork to create the new process, it would have inherited
the priority of the creating process, and would have never given
up control to the parent, so the parent would not be able to ter-
minate it. Unfortunately, you won't be able to terminate it with
ctrl-C; try it and see!
| process1 process? |
process] := [[Transcript show: '1'] repeat]
forkAt: Processor userBackgroundPriority.
process2 == [[Transcript show: '2 '] repeat]
forkAt: Processor userBackgroundPriority.
(Delay forSeconds: 7) wait.
process1 terminate.
process2 terminate.

Results:1111111111111111111....
In these examples we don't want the processes to run forever, so
we terminate them after seven seconds. We have shown all the
code above, but in future examples we will only show the
process1 and process2 code to save space. We will also use a
tighter formatting than we would use in production code.
Another thing to note is our use of the Delay class. Every time
we want to wait, we create an instance of Delay then immedi-
ately ask the instance to wait. In a production system, it might
be more appropriate to create the instance in a separate opera-
tion from the wait, especially if the wait occurs inside a loop.
For example,

delay := Delay forMilliseconds: 100.

[

delay wait] repeat.

In the next example, we yield the processor and now process2
gets a chance to run. Similarly, we could have done an opera-
tion that caused a wait, such as (Delay forMilliseconds: 10) wait,
and this would have the same result:
process1 := [[Transcript show: "1 . Processor yield] repeat]
forkAt: Processor userBackgroundPriority.
process?2 := [[Transcript show: '2 .
Processor yield] repeat]
forkAt: Processor userBackgroundPriority.

Results:12121212121212......
Let’s now give process2 a higher priority
(userSchedulingPriority) than process1. Even though process2

The Smalltalk Report

Recruttment

server computing.

SHL is an Equal Opportunity Employer M/F/D/V.

SHL SYSTEMHOUSE

OBJECT TECHNOLOGY PROFESSIONALS

We're just as committed to
object technology as you are.

At SHL SYSTEMHOUSE, client/server computing isn't just a part of our business. It is our business.
We're a billion dollar systems integrator dedicated entirely to business transformation through client/

And we're using object technology to make these transformations a reality.

Join SHL and help us build mission critical applications using object technology from analysis to
construction. We'll challenge you and support you. You'll collaborate with the Industry's top object
technology professionals. And you'll make a major impact.

As a leader in a $100 billlon industry, our potential for growth is extraordinary. If you've got the
knowledge, imagination and vision, your career opportunities at SHL are endless.

If you’re committed to object technology, join a company that is firmly committed to
your future, Please send your resume and letter of introduction to: SHL, Manager of
Human Resources, Dept. MJS-295, 300 South Wacker Dr., Suite 2500,

Chicago, IL 60606. FAX: (312) 939-0066. E-mail: oops@chi.shl.com.

SYSTEMHOUSE

Processes

does a Processor yield, process1 is never scheduled after
pracess2 gets into the picture because process2 always has work
to do. This is unlike timesharing processes in a UNIX system,
where each process in effect has two priorities: a base priority
and a current priority. The UNIX process scheduler computes
the current priority from the base priority, how much time the
process has been sleeping, how much CPU time it has used,
and other factors. This way, all processes have a chance to run,
even if they have a low base priority. Smalltalk processes are
more like UNIX real-time pracesses, where the highest priority
process always gets the CPU if it has something to do.
process1 := [[Transcript show: '1 '] repeat]
forkAt: Processor userBackgroundPriority.
(Delay forMilliseconds: 100) wait.
process?2 := [[Transcript show: '2 . Processor yield] repeat]
forkAt: Processor userSchedulingPriority.

Results: 111122222222222222222.....
Let’s take a brief look at how VisualWorks itself uses some of
the different priorities; we'll specify the priority by the mes-
sage that you send to Processor. The incremental garbage
collector runs at systemBackgroundPriority, so it only gets
activated if there is nothing else going on. Once running, if it
decides that memory needs compacting, if forks a process to
do so at userInterruptPriority, which is a higher priority than
the typical user application running at
userSchedulingPriority. The Profiler also runs at

February 1995

userInterruptPriority, since it needs to periodically interrupt
the application it is profiling.

Keyboard and mouse input are done at a higher priority
still, lowIOPriority, as is the process that handles low space con-
ditions. An example of 2 highIOPriority process is a2 C routine
calling back into Smalltalk. The highest priority, imingPriority,
is used by system processes that handle delays and process ter-
mination.

TERMINATING PROCESSES
Once a process has been forked, how does it terminate? There
are two ways this can happen. It can simply finish what it was
doing, or it can be terminated. This example shows a process
finishing up its job then terminating. We print out the value of
the process twice, once while it’s still doing work, and again
after it’s finished and the garbage collector has done its thing.

proc := [(Delay forSeconds: 1) wait.] fork.

Transcript cr; show: proc printString.

(Delay forSeconds: 2) wait.

ObjectMemory garbageCallect.

Transcript cr; show: proc printString.

Results: a Process in [] optimized
a Process in nil
To terminate a process, we send it a terminate message.
Generally this message will be sent by another process, but
there's no reason why a process can’t send itself a terminate, Of
course the process will need a handle to itself if it wants to send
a terminate message to itself. Generally you should be able to

19

Processes

structure the code that is executed in a2 forked block to simply
finish, but it's certainly possible that the termination condition
may be buried deep in your code, and rather than filtering up
the condition it's easier to terminate the process when the con-
dition is found (alternatively, you could raise an exception). A
process could also terminate itself by sending the terminate
message to the active process (i.e., itself):

Processor activeProcess terminate
The example that follows shows a process being terminated by
another process. The main difference between this example and
the previous one is that in line one, the process waits for ten
seconds, then in line three we terminate the process. The
Transcript shows that the process is nil long before the 10 sec-
onds are up.

proc := [(Delay forSeconds: 10) wait.] fork.

Transcript cr; show: proc printString.

proc terminate.

(Delay forSeconds: 1) wait.

ObjectMemory garbageCollect.

Transcript cr; show: proc printString.

Results: a Process in [] optimized
a Process in nil
SHARED RESOURCES

Sometimes we have resources that the various processes need
shared access to. For example, in our application, we log infor-
mation from the various processes and we need to make sure
that we don't get interleaved data. We also keep a
ThingsToCleanUp object in a pool dictionary, in which we store
all the opened files and external devices, and the forked
processes. We want to make sure that we provide threadsafe
access to these shared resources. If we don't make access to
shared resources threadsafe, we could end up in the situation
illustrated by the following example.
array :=#(123 456 7) copy.
process1 := [array do: [:element | Transcript show: element printString, '".
(Delay forMilliseconds: 500) wait]] fork.
(Delay forMilliseconds: 1000) wait.
process2 := [array at: 6 put: nil.
Transcript show: '<Setting 6=nil> '] fork.

Results: 1 2 <setting 6=nil> 3 4 5 nil 7
We want to protect the array so that only one process can
access it at a time. We do this with a mutual exclusion sema-
phore, which we create by sending the forMutualExclusion mes-
sage to Semaphore. We ask the semaphore to run the code by
sending it the critical: message with the block of code to run,
and the semaphore is smart enough to only run one block of
code at a time.
array :==#(123 456 7)) copy.
sem := Semaphore forMutualExclusion.
process1 := [sem critical:
[array do: [:element | Transcript show: element printString, ''.
(Delay forMilliseconds: 500) wait]]] fork.
(Delay forMilliseconds: 1000) wait.

20

Pprocess2 = [sem critical:
[array at: 6 put: nil.
Transcript show: '<setting 6=nil> ']] fork.

Results: 12 3 45 6 7 <setting 6=nil>
As a brief aside, Semaphores work by having processes wait
until a signal is sent to the semaphore. The mutual exclusion
semaphore sends itself a signal when it’s created, so that the
first block of code to be run by the semaphore already has a
signal waiting. That is, it doesn't have to wait. Once the code
has been executed, the semaphore sends itself another signal,
priming itself in advance for the next code block. It does so by:

~mutuallyExcludedBlock valueNowOrOnUnwindDo: [self signal]

How do the priorities of the different processes affect mutual
exclusion? Fortunately, mutual exclusion works as you'd want it
to work, regardless of priority. If we change the previous exam-
ple so that process1 is forked with forkAt: Processor
userBackgroundPriority and process2 is forked with forkAt:
Processor userSchedulingPriority, we get the same results. The
critical block is still run to completion before the higher priori-
ty process can get access to the shared resource.

The next question is can another process get access to a
shared resource if it’s not cooperating by sending the critical:
message? As the following example shows, the answer is yes:

array :=#(1234567) copy.

sem := Semaphore forMutualExclusion.

process1 := [sem critical: [array do: [:element |

Transcript show: element printString, ''.
(Delay forMilliseconds: 500) wait]]] fork.

(Delay forMilliseconds: 1000) wait.

process2 := [amay at: 6 put: nil.

Transcript show: '<setting 6=nil> '] fork.

Results: 1 2 <setting 6=nil> 3 4 5 nil 7
So, to protect shared resources, the processes must cooperate.
Both processes have to agree to use the same semaphore to
protect the shared resource. Let’s go ahead and implement
access to a shared resource, a Dictionary, as we might do in a
real application. We will create and initialize the object, then
provide read, write, and delete access to the resource. Our first
decision is whether to subclass off Dictionary or create a new
class that has a Dictionary as an instance variable. Since we
want to restrict access to just a few messages, it’s easier to create
a new class than worry about all the possible ways someone
might try to access a subclass of Dictionary. So, we'll create a
new class with two instance variables, collection and
accessProtect:

new

~super new initialize

initalize

collection := Dictionary new.
accessProtect := Semaphore forMutualExclusion.

at: aKey put: anltem
~accessProtect critical: [collection at: aKey put: anltem]

at: aKey

The Smalltalk Report

~accessProtect critical: [collection at: aKey ifAbsent: [nil]

remove: aKey

~accessProtect critical: [collection removeKey: aKey ifAbsent: [nil]]
Having got this far, we now need to say that the Transcript is
not threadsafe. It so happens that all our examples work in
VisualWorks 2.0, but writing to the Transcript from multiple
processes is not guaranteed to work correctly. In fact we have
an innocuous looking Transcript example that in VisualWorks
1.0 hangs until you press ctrl-C. So, while we use the
Transcript in our examples, we don’t recommend writing to it
from multiple processes in production code. Much of the time,
code that is not threadsafe will work because the Smalltalk
scheduler is non-preemptive and so many code segments will
run to completion. However, if you ever add code that causes
the process to give up control, you may find that your code no
longer works correctly.

INTERRUPTING ANOTHER PROCESS

Now, suppose you want to ask a particular process about its
state. Perhaps you want to know if it’s waiting for a particular
input, or whether it’s finished some part of its processing. In
our product, where we have separate processes handling differ-
ent robot tape libraries, we sometimes want to know the status
of the library; for example, if it’s on-line or off-line. There are
several ways to handle this desire for information.

One solution might be to restructure your application so you
don't need access to this information, but we’ll ignore this one
because it’s not very interesting to this article! Another solution
would be to have the process post the needed information in a
shared resource, protected by a mutual exclusion semaphore.
This has the potential disadvantage that the process may be
updating the shared resource with a lot of information, but per-
haps no one is reading it very often.

Another approach would be to send an object to the process
using a shared queue and have the object figure out the infor-
mation then send it back on another shared queue. We'll talk
more about shared queues later, but a disadvantage of the
shared queue approach is that the process needing the informa-
tion will usually have to wait until the process can get to the
shared queue, pull the object off it and process it. It’s not an
approach to use if you are in a hurry.

The approach we are going to look at is one where you can
actually interrupt a process and ask it to do something for you.
The mechanism is to send an interruptWith: [aBlock] message
to the process, passing as a parameter the block of code you
want executed. The process saves its context, executes the
passed-in block, restores its context, then resumes its business,
Here’s an example. Process1 is simply waiting for time to pass
before doing anything. We interrupt it and ask it to print
something.

process] := [(Delay forSeconds: 4) wait.

Transcript cr; show: 'process1 done waiting'] fork.
process? := [(Delay forMilliseconds: 100) wait.
process1 interruptWith:
[Transeript c1; show: 'process2 interrupt']] fork.

February 1995

Authors Wanted |

For Two Innovative
Book Series

Managing Object Technology
edited by Charles F. Bowman
For more information please contact:
Charles F. Bowman, Series Editor
(p) 214-357-6285, (f) 914-357-6524
71700,3570@compuserve.com
3

and

8
Advances in Object Technology
edited by Dr. Richard S. Wiener
For more information please contact:
Dr. Richard S. Wiener
135 Rugely Court
Colorado Springs, CO 80906
(phone & fax) 719-579-9616

SIGS
BOOKS

.“

Resulis:
process1 done waiting
That’s all well and good, but what happens if the psocess is
doing something that it really doesn’t want interrupted?

process2 interrupt

Fortunately, there’s a way to prevent interrupts, which is to pro-
tect the special block of code with a valueUninterruptably mes-
sage. The valueUninterruptably method sends the active process
an uninterruptablyDo:[aBlock] message.
uninterruptablyDo: takes the parameter block and asks a
semaphore named interruptProtect to run the block in critical
mode. interruptWith: also asks interruptProtect to run its block
in critical mode. Since valueUninterruptably and interruptWith:
both ask the same semaphore to run their blocks critically, only
one of the code blocks executes at a time.
Here's the previous example with process1 protecting its
work against interruption:
process1 := [[(Delay forSeconds: 4) wait.
Transcript cr; show: 'process1 done waiting']
valueUninterruptably] fork.
process? := [(Delay forMilliseconds: 100) wait.
process1 interruptWith:
[Transcript cr; show: 'process?2 interrupt']] fork.
Results: process1 done waiting

process2 interrupt

Are the interruptWith: and valueUninterruptably messages ones
that you should use? Our view is to use them if you have to, but
use them sparingly. ParcPlace recommends against their use.

21

Processes

The method comments for valueUninterruptably and
uninterruptablyDo: both say “Use this facility VERY sparingly.”
One problem with running a process uninterruptably is that
you can't even use ctrl-C to interrupt it should things go
wrong. Another is that if a process running uninterruptedly
does something time consuming, such as reading a file, no one
else can get the processor during that time. The only classes
that send valueUninterruptably are Profiler and SharedQueue.
ControlManager and Process are the only classes that send
interruptWith:.

SHARED QUEUES

Our main objective in talking about interruptWith: and
valueUninterruptably is to illustrate some interesting capabili-
ties, then let this lead to a discussion of SharedQueues. So
here we are. SharedQueues are the general mechanism for
communicating between processes. They contain an
OrderedCollection so that all objects that go onto a shared
queue are taken off in chronological order. To set up commu-
nication between processes, you create an instance of
SharedQueue and tell both processes about it. One process
will put objects on the shared queue using nextPut: and the
other process will use next to get objects from the queue.
When a2 process sends the next message, it blocks until there
is something on the queue. If the process doesn't want to
block it can send iSEmpty or peek.

Because shared queues are so important for communicating
between processes, they need to be as safe as possible. For this
reason, all access to shared queues is protected by a mutual
exclusion semaphore using the critical: message, and this block
of code is protected by a valueUninterruptably message. For
example, here’s how ParcPlace implements the size message to
a shared queue.

size

~[accessProtect critical: [contents size]] valueUninterruptably
Again, the critical: message makes sure that only one operation
happens at a time, so for example, it makes sure that one
process is not getting an object from the queue while another
process is adding an object. The valueUninterruptably makes
sure that the shared queue operations can't be interrupted by a
process sending an interruptWith: message.

Here's an example of shared queues in use. Process2 prints
the number and puts it on the shared queue, and process1 reads
the queue and prints the number:

sharedQueue := SharedQueue new.

process1 := [[number := sharedQueue next.

Transcript show: * R', number printString] repeat] fork.
process2 := [1 to: 5 do: {:index |
Transcript show: * W', index printString.
sharedQueue nextPut: index.
(Delay forMilliseconds: 500) wait]] fork.
Results: W1 R1 W2 R2 W3 R3 W4 R4 W5 R5

Try this again after removing the Delay in process2. Because
process2 now always has something to do, it does not give up
control and so process1 waits for the processor until process2 is

22

completely finished. The Transcript output now looks like:
Results: W1 W2 W3 W4 W5 R1 R2 R3 R4 R5

OUR PRODUCT

In our product we make heavy use of processes and therefore
of shared queues (See Fig. 1). We have one process that does
nothing more than block on a socket waiting for input. It puts
the input on a shared queue and another process takes it off.
This second process sends each object a queueYourself mes-
sage, telling the object to put itself on the appropriate shared
queue for the robot tape library that the request is going to.
Each library controller blocks on its own shared queue, wait-
ing for a request to process. Finally, after the request has done
what it needs to do, a response is created and put on an out-
put shared queue. The output process gets response objects
from this queue and sends them out over a socket to the
appropriate UNIX process. Because Smalltalk gives a process
control while it has things to do, we put a Processor yield after
each shared queue nextPut:. This gives each process the
opportunity to run, even when other processes have more they
could be doing.

Library
Handler

Sochsl Pachel
=

Library
sa Handler

Socket

Outpul sQ

Figure 1.

There is actually a lot more going on than this, and to
solve our specific problems we created a subclass of
SharedQueue, which we call a PrioritySharedQueue. Rather
than keeping objects in chronological order in the shared
queue, it orders them by priority then time. It also has
methods to search for specific types of object and to delete
objects. However, that’s a story for another day. This just
about wraps the article up, but before we leave, we'd like to
mention briefly a new class that appeared in VisualWorks
2.0 that makes use of processes.

PROMISES

VisualWorks 2.0 introduces a new class, the Promise class. An
instance of Promise promises to do something for you while
you go off and do other things. It does this by forking a new
process to carry out the work. You create the promise by send-
ing the promise or promiseAt: message to a BlockClosure. Once
the promise has been created, you can query it for its value (if
the promise has been kept), or to find out if it has a value (it
may still be doing its work.) In fact, promises are a little more
complex than this because if the promise fails or terminates, an

exception is raised, so to be robust, you should wrap the
continued on page 29

The Smalltalk Report

MathPack/V

David Buck

few months ago, a friend came to me with an
A engineering problem. He needed to calculate

some strange formulas having to do with electro-
magnetic interference. He tried using calculators and
spreadsheets without success. In desperation, he asked me
if there’s anything I could do to help. “Sure,” I said.
“Smalltalk is a great system for crunching through formu-
las like that.” Well, at least it's better than a spreadsheet.

He came over and showed me the formulas. Some for-
mulas involved matrix algebra. I was fortunate enough to
have written a matrix class in Smalltalk when I was doing
my master’s degree, so we used that. The formulas also
involved complex numbers. Well, complex numbers can't
be all that hard, can they? We whipped up a complex
number class. Wait a minute, we had to take powers of
complex numbers. How do you do that? We pulled out
some dusty old math textbooks and looked up the formu-
las. We found that you apparently have to convert the
complex numbers to polar coordinates, raise them to a
power, and convert them back into complex numbers. OK,
we typed the formulas into Smalltalk. We then tried out
the equations and got some really strange results. There
was a bug in the method that converts from complex num-
bers to polar coordinates. We had to worry about the sign
of the result, which we weren't handling properly. We
fixed the bug and continued on.

We finally managed to get an array of the answers, and
my friend said, “OK, can you plot these?” It sounded like
an easy request, but Smalltalk has no built in plotting
functions. To plot a graph, I'd have to open a GraphPane,
scale the numbers to the proper range, and issue the place:
and line: messages to draw the graph. This was too much
work for plotting about 20 points. We gave up and
sketched it on graph paper. After spending about 10 hours
on it, we ended up with results that we couldn'’t trust
because we didn’t know if all the steps in between were
completely bug-free, and any small bug would dramatically
change the results, I started thinking that Smalltalk wasn’t
such a great environment for this after all.

ENTER MATHPACK/V

Since that time, I've found a mathematics package by
GSoft called MathPack/V. It’s a mathematics package for
Smalltalk/V Win16 and Win32 (the package is available
for ObjectWorks Smalltalk). I now realize that if I'd had
this package at the time, the task of performing all those

February 1995

calculations would have been trivial. MathPath has facili-
ties for performing Matrix and Vector calculations that are
more complete and more general than the ones I had
implemented myself. It also has classes for Complex num-
bers and Polar coordinates, and they perform the raisedTo:
operation correctly. When it comes to plotting the results,
MathPack has an excellent set of plotting classes that let
you plot multiple values in 2D or 3D simply and easily. In
fact, MathPack can handle almost any numerical operation
I've ever wanted to perform and even a bunch that I've
never heard of. When you combine these facilities with
the Smalltalk/V programming environment, you get a
truly astounding mathematical workbench for solving
almost any math problem you can come up with.

SYMBOLIC MATH

To start off, MathPack performs many of its operations
symbolically instead of numerically. What does this mean?
Well, let’s take an example. In Smallealk, if you type in

5 sqrt
you get the answer: 2.23606798. With MathPack
installed, you get the answer: V5 (meaning the square root
of 5). In other words, MathPack returns you a square root
object. This answer is actually more accurate than the one
that Smalltalk normally provides. In fact, if you run

5 sqrt squared
The answer will be the integer 5 (precisely!). The limits of
this ability actually surprised me. When 1 tried

(P1/ 3) sin
1 got sin(PI/3) as the answer. Notice that in MathPack,
there’s an object for pi. This isn't just a global variable that
contains the number 3.1415926... but rather a symbolic
value that represents pi precisely. But we can go one step
further:

(P1/ 3) sin simplify
This gives the answer 1/2V3 (meaning one half the square
root of 3).

MathPath also allows you to include variables in your
equations; not Smalltalk variables but symbolic mathemat-
ical variables. The variables X, Y, Z, R, and T are defined
for you in MathPack, but you can create your own if you
wish. For example:

myPoly := ((X**3) - (X**2 * 4) + (X*5) + 7).
creates a formula representing the polynomial x3 + 4x2 +
5x + 7. You can then evaluate this formula by sending it a
value: message:

23

| MathPack/V

myPoly value: 3 ==>13
More simply, I could have used a polynomial like this:

myPoly := #(7 5 -4 1) asPolynomial
or this:

myPoly := #(1 -4 5 7) asReversePolynomial

Because this polynomial is stored symbolically, you can
do some more intelligent things to it. For example, let’s
find the roots of this polynomial:

myPoly solve

===> Bag((2.34372593+1.65207333) (2.34372593-1.65207333i) -

0.68745186)
MathPack found all three roots of my polynomial. The
first two roots are complex; the last root is real.

Do you want to try some calculus? Try this:

myPoly der

===> Jx"2-8x+5
This gives us the derivative of the polynomial. In fact, you
can calculate symbolic derivatives of any function. For
example:

((X**2) sin + (X**2) cos) der: X "Derivative with respect to X"

===> (2*cos(X**2)*X-2*sin(X**2)*X)
Unfortunately, symbolic integration is more complex.
MathPack can symbolically integrate polynomials, some
trigonometric functions, and some exponentiation func-
tions, but symbolically integrating arbitrary functions is
mathematically impossible. If you need to, however, you
can numerically integrate any function using the Romberg

method provided by MathPack.

PLOTTING FUNCTIONS
Plotting graphs is a breeze with MathPack. Suppose we
want to plot the values of the polynomial -x3 + 3x2-5x+7
from -10 to +10. Just type the following code into a work-
space and run it.

| poly results |

poly := #(-1 3 -5 7) asReversePolynomial.

results := OrderedCollection new.

-10 to: 10 do: [:i |

results add: i@(poly value: i)].

400

200.

Figure 1. 2D plot of a cubic function.

24

Plot2D new
axes: true;
vectors: results;
points: results symbol: #filledDiamond color: ClrRed;
tickX: 2;
tickY: 200;
display

This produces the plot shown in Figure 1.

The first few lines of this code simply evaluate the
polynomial at the desired points and collect the results
into an OrderedCollection. You can use any technique you
want to collect the values to plot. To plot the values, sim-
ply create a Plot2D object and set it up. The axis: message
indicates that I want the X and Y axes shown. The vectors:
message indicates that I want the points connected by
lines. The points:symbol:color: message indicates that I
want individual points plotted with the given graphical
symbol (a filled diamond in this case) with the given color.
You could use circles, crosses, squares, or triangles instead
of diamonds. Finally, I indicate that I want tick marks on
the X and Y axes and then display the plot. If you don’t
want ticks or axes shown, you can leave out the corre-
sponding lines. If you want, you can add legends, change

Figure 2. A 3D surface plot.

line styles, and use splines instead of straight lines to plot
the graphs.

In addition to simple 2D plots, you can make 3D sur-
face plots. The code below produced the image shown in
Figure 2.

| aPlot |

aPlot := Plot3D new.

(((X*X)+(Y*Y)) sqrt cos * ((K*X) + (Y*Y) * -0.05) exp * 5)

xyzPlot: (-10@-10 corner: 10@10)
viewPoint: 30@60@50

sectors: 20

on: aPlot.

aPlot display

In addition to functions of two variables, MathPack has
a number of full 3D geometric objects that can be rotated,
translated, and plotted on the screen. The following piece
of Smalltalk code creates a cone with an elliptical base,

The Smalltalk Report

i

Figure 3. A 3D cone rotated and plotted.

rotates it about three axes, and plots it on the screen. The
result is shown in Figure 3.
|aPlot |
aPlot := Plot3D new.
Cone new
baseCurve: ((PolarConic e: 0.9 k: 2.0) loLim: 0.0; hiLim: 6.28);
apex; 0.0@0.0@10;
rotateWithRoll: 0.3 pitch: 0.7 yaw: 0.5;
plotFromViewPoint: 40@60@50 sectors: 20 center: 0@0@0 on:
aPlot.
aPlot display.
Three dimensional figures supported by MathPack include
3D points, lines, and curves as well as boxes, cones, pyra-
mids, cylinders, ellipsoids, spheres, planes, revolving
curves, and toruses. You can then combine these basic fig-
ures together into composite objects to model more com-
plex 3D objects. MathPack, however, isn't intended to be a
3D modeling program. The plots of these shapes are wire-
frame only, without hidden surface removal. If you need to
perform sophisticated 3D modeling and rendering, you
should look into a package that is better tailored to it or
be prepared to implement your own in Smalltalk.

MATRIX ALGEBRA
I've spent quite a lot of time writing 3D graphics software,
so I can really appreciate the matrix and vector facilities of
MathPack. The Matrix classes provide virtually all the
functionality I've ever needed from matrices and more.
Creating matrices couldn’t be easier. You can simply say
the following:
#((2 4 3) (5 -3 2) (7 19)) asMatrix
==> (2 57|
|4-31|
1329
The asMatrix message interprets each subarray as a column
of the matrix. If you want to treat them as rows, you can
use asRowMajor instead. Now that you have a matrix, you

February 1995

Precise metrics
for advanced 00
development.

o Metrics collection facility for Smalltalk applications development
= Supports VisualWorks, Smalltalk/V for Windows, Win32s, Windows NT
« Complete graphical user interface = Fully supports Envy (optional)

@®bjceciSpace”

- SPECIALISTS [N OBJECT TECHNOLOGY

PRODUCTS-TRAINING - CONSULTING -MENTORING * AUDITING
For more information call 1-800-0BJECT-1, Email: info@objectspace.com

Copyright ObiectSpuce, Inc. @1994. All names ond rademarks ore the property of Ineir respeclive awngrs.

can perform normal operations such as addition, subtrac-
tion, multiplication, and division. As you would expect,
there are also methods to access individual elements in the
matrix and to return row vectors and column vectors from
the matrix.

Using matrices, you can solve a system of simultaneous
linear equations. There are two ways of doing this. The
most efficient way is to send the solve: message to the
matrix passing in the vector to solve for. For example, sup-
pose you know that

2x +5y-3z=-29

K- 2y+4z=32

-X+3y-2z=-23
What values of «, y, and z satisfy these conditions? Well,
just type this into MathPack:

#((25-3) (1-2 4) (-1 3 -2)) asRowMajor solve: #(-29 32 -23)

===> (2-36)

So, x = 2, y = -3, and x = 6 satisfy all three of the above
equations.

The other way to solve these equations is to multiply
the result vector by the inverse of the matrix:

#((25-3) (1-2 4) (-13-2)) asRawMajor invert * #(-29 32 -23)

asVector

—> 2|
|-31
| 6]

With square matrices you can calculate eigenvalues and eigen-
vectors using MathPack. Other useful operations include
matrix transposition, LU decomposition, and pseudoinverses.

25

MathPack/V

The matrix approach to solving systems of equations is
fine if the equations are linear. If you want to solve non-
linear equations or systems of inequations, you can use the
SimultaneousEquations or the SystemOfInequalities classes.
To use these classes, you must provide the equations sym-
bolically. MathPack can then use the Newton—Raphson
technique to solve the equations.

DIFFERENTIAL EQUATIONS

Do you need to calculate the path of a space ship navigat-
ing through a trinary star system? Well, maybe we’ll just
worry about hitting a target 75 meters away with your bow
and arrow. Both of these problems require a technique
called “numerical differential equation solving.”

MathPack can numerically solve differential equations
using a technique known as fourth order Runge—Kutta. In
a nut shell, it means that this is a stable and accurate tech-
nique for doing this sort of work. Many simple programs
use a technique called Euler’s method, which is to add a
bit of the acceleration to the velocity and to add a bit of
the velocity to the position on each step. Euler’s method
works well in simple situations (like the arrow example
above), but more involved calculations require a better sys-
tem like Runge—Kutta.

There are faster and more sophisticated techniques for
solving ODEs that MathPack doesn't provide, but these
techniques don't handle the tough parts as well as
Runge-Kutta. My only regret is that the implementation
of Runge-Kutta provided by MathPath isn't adaptive. This
feature would allow the algorithm to take small steps over
the rough terrain while taking long strides over the easy
parts.

STATISTICS AND OTHER STUFF

MathPack includes a huge array of statistical facilities.
Well, at least it’s huge from my perspective, because I
don’t often need to use statistics. I find that a simple mean
supports most of my statistical needs. But for those who
need more, MathPack has it. You get Chi-square tests,
one-way and two-way analysis of variance, linear and
polynomial regression, generalized least squares fit, and
nonlinear least squares fit. There’s also 2 random number
generator that can generate uniform and Gaussian random
numbers.

In the “other stuff” category, there’s a class for per-
forming digital signal processing functions. The most
commonly used function is the Fast Fourier Transform,
but also included are Cos and Sin transforms, convolu-
tions and deconvolutions, correlation of data sets, and
spectral analysis.

In some unrelated other stuff, there’s an interesting new
kind of Number in MathPack. It’s a decimal fraction. It
can represent decimal numbers with any desired degree of
accuracy. For example, if you want to calculate pi to 20
digits, you can type

PI asDecimalFraction: 20

26

Any Integer, Float, or Fraction can be converted into a
decimal fraction.,

QUIRKS AND QUIBBLES

MathPack has never given me a wrong answer. It has,
however, given me answers that need to be interpreted
carefully. For example, in the following equation, I'm try-
ing to calculate the derivative of pi*x2. Here’s MathPack’s
answer:

PI* (X ** 2) der: X

===> (2*X*PI+X**2*PT)

The real answer should be 2*X*PI. Is MathPack wrong?
Not really. In the second part, X**2*PI’ is zero because PI’
is 0. The problem here seems to be that PI isn’t really
known as a numeric constant, so MathPack doesn’t know
how to differentiate it. It blindly uses the chain rule and
puts an apostrophe to indicate that the PI needs to be dif-
ferentiated but MathPack doesn’t know how to do it.
(Actually, I was quite impressed that it worked this well.)

A more serious problem is the way that MathPack
hooks itself into the existing Smalltalk system. It’s certain-
ly convenient for 5 sqrt to give you back a square-root
object, but if you're going to alter existing methods like
this, you have to be extremely careful. There are some
messages that Numbers understand that Root objects
don’t. For example, if you try running “5 sqrt rounded” in
MathPath, you'll get a walkback window because Root
objects don’t understand rounded. To fix the problem, you
have to use “5 sqrt asFloat rounded”.

The problem here is that if you have existing code that
used to work without MathPack, it may not run after
MathPack is installed because MathPack changes the way
some system methods work. If you are using MathPack as
4 mathematical workbench, this issue isn’t very serious. If
you get a walkback window, you can easily fix the problem
and continue. In this way, Smalltalk/V with MathPack
becomes a very powerful scientific calculator. This is the
ideal environment for MathPack. Using MathPack rou-
tines in a delivered application, however, may be risky
because you can never accurately predict when the results
of a calculation will be numeric or symbolic, and the dif-
ference may be critical.

There are some inconsistencies in the system that are,
really, more annoying than troublesome. For example, if
you have a function and you want to plot it, you can send
the function a plotFrom:to:points:type:on: message. For
example:

(X*X) plotFrom: -10

to: 10

points: 20

type: #vectors

on: aPlot
Great. But try replacing “(X*X)” with “#(1 0 0)
asReversePolynomial” and it doesn’t work. Polynomials don't
understand the same messages as functions. To differentiate
a polynomial, you send it a der unary message. To differen-

tiate a function, you send it a der: keyword message with
continued on page 29

The Smalltalk Report

For information on attending
Smalltalk Solutions ‘95, please
contact the SIGS Conferences Registrar:

PHONE: 212.242.7515
FAX: 212.242.7578

email: info@sigs.uucp.netcom.com

Finally, in

commemoration of

Smalltalk’s 25th anniversary,

a vendor-independent conference

dedicated to all Smalltalk users. Focusing on

the practical application of Smalltalk in its

Smalltalk Solutions ‘95 is an opportunity for the entire
Smalltalk community to network, share innovative strate-
gies and programming tips, and stay up-to-date on the lat-
est tools and techniques.

Learn from the Smalitalkk Experts

The educational program has been designed in conjunction
with the Technical Conference Chair John Pugh, editor of The
Smalltalk Report. The 4-day conference offers over 30 inten-
sive classes ranging from beginner to advanced, all taught by
experienced and well-respected Smalltalk experts.

You'll come away with new insights on language advances,
usage tips, project management, analysis and design tech-
niques, and insightful, practical applications. Specific class
tracks focus on Technical Training, Corporate Case Studies,
and Management Issues.

The latest Smalltalk products will be displayed in the
Smalltalk Solutions ‘95 Exhibit Hall, where you'll have a
chance to demo the leading Smalltalk products, and receive
an up-close, hands-on comparison. Don’t miss this chance
to see Smalltalk in action.

Smalltalk Solutions 95 is presented by SIGS Conferences, spon-
sor of over 7 conferences world-wide, including Object Expo,
Object Expo Europe, and C++ World.

DON'T MISS
THIS UNIQUE
SMALLTALK EVENT!

Project Practicalities

Architecting

large OO
projects

MARK LORENZ

ANAGING THE complexity of most commercial

OO projects requires planning for and controlling

an architecture for your business object model. This
involves dividing up your system into subsystems, assigning
contracts between the subsystems, and establishing your archi-
tects’ ownership of the contracts.

Figure 1 shows a partial project architecture along with own-
ership assignments. Development teams own particular subsys-
tems and are responsible to build these subsystems so that they
support the subsystem contracts. These contracts, such as
Maintain inventory levels, provide a set of public services to the
other subsystems. The client subsystem teams treat the server
subsystem as a black box, ignoring the complexities inside.

Architect

Inventory
Management

Mainiain
inventory

Management

Development
Team

?Rmm.

Figure 1. Ownership assignments

This organization allows the different development teams to
proceed relatively independently of each other—an essential
requirement for large projects.

Note: This discussion is extracted from the author's forthcoming book
RAPID SOFTWARE DEVELOPMENT.

Mark Lorenz is founder and president of Hatteras Software, Inc., a company which
affers numerous services and products to help other companies use object tech-
nology effectively. He welcomes questions and comments via e-mail at

71214.3120:= compuserve.com or phonemail at 919.319.3816.

Requirements

Subsystem
Coniract

£Jcontract

Figure 2. Exploring an architecture for one subsystem.

AN ARCHITECTING PROCESS

So, how does this architecture come about? Many times, pro-
jects do not have a good idea of what subsystems exist ahead of
time. The subsystems, much like other abstractions such as
frameworks and abstract classes, become apparent as the system
exploratory process proceeds.

Figure 2 gives an overview of the process for one subsystem:

» Use cases are written for the system requirements.

* Scenario scripts are used as a technique to fill in details of
the object model.

* Key classes are clustered into more closcly coupled groups,
called subsystems.

* Subsystems are assigned public contracts from groupings of
key responsibilities of the classes.

* Development teams are assigned ownership of the subsys-
tems. Their focus is on building a subsystem that supports
its contracts.

» Architects are assigned ownership of the subsystem con-
tracts. Their focus is on controlling any changes to the sub-

system contracts.

Figure 3 shows how the architecture team moves across all
subsystems for the system problem dornain, working with each

Do.maln/System T]
Subsyste Subsystem Subsyrem)
)

Figure 3. Traversing the system.

The Smalitalk Report

Project Practicalities

of the subsystem teams to model their portion of the system at
a high level.

The contracts between each of the subsystems that make up
the system are discovered during rapid modeling sessions of
two to ten days each, depending on the subsystem size. Some
questions that help identify subsystem contracts are:

* Why do we have this subsystem?

* What basic services should it provide?

* Does it make sense for this subsystern to provide this ser-

vice?

* What services does this subsystem need from other subsystems?
Once the rapid modeling session has been completed for one
subsystem, its teamn is free to statt iterative development in par-
allel with other efforts. The development team must negotiate
subsystem-level contract changes with the architects, who have
the broad, system-wide perspective. The architects will involve
affected subsystern owners in the change negotiations.

SUMMARY

We have discussed a proven process for architecting large OO
projects. This process is essential for large projects to be able to
manage the complexity and communications across the teams.
It is also very effective for geographically distributed projects.

TERMINOLOGY
Architect: A person with a broad view of the system’s interrela-

tionships that owns the subsystem contracts.

Black box: Viewing something from the outside only, ignoring
the internal workings.

Contract: A grouping of public responsibilities that provide ser-
vices to a subsystem’ and/or class’ clients.

Key class: A class that is essential to model a particular problem
domain.

Seripz: A time-ordered sequence of message sends through the
model to support a functional thread for a use case.

Subsystem: A grouping of more tightly coupled classes and
contained subsystems that support one or more contracts.

Use case: A particular usage of the system to support its
requirements.

References

1. Jacobson, Ivar, e al. OBJECT-ORIENTED SOFTWARE
ENGINEERING: A Use CASE DRIVEN APPROACH, Addison-
Wesley,Reading, MA, 1992.

2. Lorenz, M. OBJECT-ORIENTED SOFTWARE DEVELOPMENT:
A PRACTICAL GUIDE, Prentice Hall, Englewood Cliffs, NJ,
1993.

3. Lorenz, M. RAPID SOFTWARE DEVELOPMENT, SIGS
Books, New York, NY, 1995, forthcoming.

4, Wirfs-Brock, R., ez al. DESIGNING OBJECT-ORIENTED
SOFTWARE, Prentice Hall, Englewood Cliffs, NJ, 1990.

Processes

continued from page 22

promise in a handle:do: message. But since we are only men-
tioning promises in passing, we'll just show a simple example
of a promise in action.
count := 0.
Transcript cr.
promise := [DialogView confirm: 'Is it true?'] promise.
[promise hasValue]
whileFalse:
[Transcript show: count printString, '' .
count := count + 1.
(Delay forSeconds: 1) wait].

Transcript show: promise value printString.

Alec Sharp is an Advisory Software Engineer at StorageTek. He is the
author of Software Quality and Productivity, published by Van Nostrand
Reinhold. He can be reached at alec_sharp@stortek.com.

Dave Farmer is a Senior Softwars Engineer at StorageTek. He can be
reached at david_farmer@stortek.com.

They both work on the UNIX Storage Server software, which manages

connections to networked hosts and drives the StorageTek family of
robotic tape libraries.

February 1995

continued from page 26

the variable to differentiate as a parameter. I can under-
stand the difference (polynomials don’t have an explicit
variable), but the difference becomes confusing.

Finally, I found that the manual was good when it
came to listing the classes and methods but poor in terms
of concrete examples. There should be more examples of
plotting in both 2D and 3D, differential equations, the
statistical functions, and the DSP functions. It's rather
tricky trying to figure these out from only the explana-
tions of the methods. There are, however, a number of
examples stored as class methods in the MathTest hierar-
chy that you can refer to for some additional examples.

CONCLUSION

All in all, MathPack is an excellent package for solving
serious math problems or just for exploring the mathe-
matical world. The combination of MathPack and
Smalltalk makes the symbolic operations very easy to use.
It’s like having a mathematical workbench at your disposal
with a wide variety of power tools ready for you to use.
Now, the next time my friend asks me to do some mathe-
matical calculations for him, I'll be ready.Q

29

To advertise in this section,
please call Mike Peck
at 212.242.7447

ENGINEER THE FUTURE OF HEALTHCARE
SOFTWARE ENGINEERS

HBO & Company (HBOC) is a leading internarional developer
and provider of software solutions for hospitals and the
healthcare enterprise. With over 2500 employees and 1994
revenues anticipated to exceed $300 million, we are continuing
20 years of success and profitable growth. Join the leader and
grow your career with us in our Arlanta, GA, Minneapolis,
MN or Ambherst, MA offices.

We seck talented individuals to design and develop our next
generation of software products using the latest technologies.
We cumently have the following openings for Information
Technology professionals.

Smalltalk
The ideal candidates will have experience with object-odented
analysis and design, PC software development, and Smalltalk

programming.
Visual C++

Positions require 2+ years of development experience with
Visual C++ in a Windows environment.

The professionals we seek must possess excellent communi-
cations skills and the ability to work in a team environment.

HBOC offers excellent benefits, competitive salaries and a
team-oriented professional work environment where promotion
from within is the nom. If you possess energy and vision and
wish to join a2 company committed to excellence, please
forward/fax your resume to: HBO & Company, A
Corporate Recruiting, O0D1/95, 301 Perimeter
Center North, Atlanta, GA 30346, fax to: 4 A ¢
(404) 393-6063. No phone calls or agencies, ‘v‘

Smalltalk Idioms

continued from page 12

this number by sending Processor the message bytesTenured.
I will describe all the available messages in a later article.
Here is the script, which formats the number of bytes
tenured for display.

UpdateBytes

self setValue: Processor bytesTenured printString , ' bytes'
Launch the resulting window. Then go operate your favorite
interface. You can watch as objects get promoted. If you are
doing an operation which you don't think should create any
long lived objects, but lots of bytes are shown as being
tenured, you may have a candidate for some tuning. I found
drag and drop to be a good example.

This has been a quick introduction to your garbage col-
lector. I will cover what it means in practical terms for the
various Smalltalks in future issues. As always, if you have
comments or questions, please let me know. I love to hear
from you.

30

Software 2000, Inc., the leader in Client/Server technolo-
gy, has embarked upon an evolutionary sirategy to resngi-
neer its awardwinning AS/400 applications with
Infinium™, iis new objectoriented client/server architecture.

We are seeking experienced Smalltalk developers to
join our OO development team. If you have demon-
straled experience in OO tools design and develop-
ment or OO user interfaces, we encourage you to
explore Sofiware 2000 and become involved with the
creation and design of our OO client/server frame-
work. A BS degree in Computer Science is required.

With nearly 1000 clients worldwide, our competifive edge
Iranslates info outstanding career opportunities, a competi-
tive salary and progressive benefits package for you.

We invite you fo join our dedicated team and enjoy the
rewards of our continved expansion and success. Please
send your resume in confidence fo: Susan ©’Cennor,
Corporate Recruiting Manager, Software
2000, Inc., 25 Communications Way, Drawer
6000, Hyannis, MA 02601; fax: (508) 790-
6826. An Equal Opportunity Employer M/F/D/V.

Software 2000
—

The best of comp.lang.smalltalk

continued from page 32

you want, add it to the appropriate class initialization method, and
reinitialize the class. Then, you need to create a TextAttributes
object based on those CharacterAttributes, figure out any addition-
al parameters you need, add it to the appropriate class initialization
method, reinitialize, and call resetViews. This is not appealing to a
user accustomed to operating systems with hundreds of fonts to
choose from and nice font selection dialogs to do the choosing.

Lots of people have developed their own font selection win-
dows to deal with this problemn. Wayne Parrot
(parrott@bem. tme.edu) not only did it but has also made the code
available in the general Smalltalk ftp archives (st.cs.uiuc.edu or
mushroom.cs.man.ac.uk).

The code is indexed under fontmgy, and it is a simple
(about 16 K) file-in for a font editing window. The window
allows you to:

* view sample text in an existing text style

* view sample text by incrementally editing a FontDescription

* install a FontDescription as a system text style

* remove systemn text styles

* reset all views to a specified text style
This is a convenient add-on, and in my limited testing it seemed
to work well. The code is for VisualWorks 1.0, but I do not think
it would be at all difficult to port to version 2.0, as there have not
been many changes in font handling between these versions.

Reference

1. Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design PATTERNS:
ELeMENTs oF ReusasLe OpjecT-ORENTED SoFTWARE, Addison
Wesley, Reading, MA, 1994.

The Smalltalk Report

* Consultant allInstances do: [:each |

each become: QSY SConsultant new].

Please conlact

| Yonge Street. Suite 1801 Wiz gl b “ 90 Park Avenuc. Suite 1600
Toronto. Canada ‘ New York, NY, USA
MSE W7 10016
Fax: (416) 369-0515 CURLITY SYSTEMS Tel: (212)984-0715

Email: 72072.2575 @compuserve.com

Seven Successful Years of Object-Oriented Technology

What’s
new on
the net

IN THE PAST, everything you could do over the network

ALAN KNIGHT

was pretty much limited to a terminal interface. Even

though my machine might be running a sophisticated
graphical user interface, my network communications used an
emulated VT100 terminal. This was particularly true if access-
ing the network through a modem.

No more. With increasing modem speeds, it is now possible
to get reasonable performance with graphically based network
applications. Some of the best known of these applications are
World Wide Web browsers.

WORLD WIDE WEB

The World Wide Web is a simple concept with remarkable
results. It lets people establish pages that can contain styled text,
pictures, and links to other pages. These other pages are not lim-
ited to the same site, but can be anywhere accessible on the net-
work The difference from old-style applications is arnazing.
Instead of a VT'100 emulation and the ftp program, you sudden-
ly have a graphical HyperText browser that spans the network.

The other amazing thing is the amount of stuff that is out
there. It is not like ftp sites, where there are a few large sites that
have almost everything you need. Instead, there are enormous
numbers of small sites, where people have set up Web pages on
topics of interest to them, with links to related sites. You can
easily stumble across links to completely unexpected places and
spend hours exploring them (I started out looking for Smalltalk-
related stuff and ended up browsing a list of vegetarian restau-
raunts in Atlanta). The browsers can also put a prettier face on
more conventional net resources like ftp sites and newsgroups.

It is hard to convey how much fun this technology is. I urge
you to get hold of a SLIP or other internet connection, find a
‘Web browser, and try it out for yourself. I guarantee you will
enjoy it, and you may even find something useful.

I do not know enough about the different products to sug-
gest anything more detailed. Mosaic is the original (and free)
Web browser, but there are lots of others around, and there is a
rapidly growing range of books and products available to help
you get started with the Internet.

Once you are set up, here are a few Smalltalk-related Web

Alan Knight 15 a consultant with The Object People. He can be reached at
G13.225.8812 or by email as laightacm.org.

pages to get you started on the useful stuff. This certainly is not
a comprehensive list, and I expect there will be many new
entries by the time this column sees print. Although the names
are long and intimidating at first glance, you only need to use
them as a starting point. Once you are into the Web, you can
get most places just by following links.

Jeft McAffer, 2 PhD student at the University of Tokyo, has
set up a page for all things Smalltalk related. It serves as a good
starting point for finding other Smalltalk resources. It is acces-
sible as:

http://web.yl.is.s.u-tokyo.ac.jp/ members/jeff/ smalitalk.html
A list of Smalltalk FAQS is available in HyperText form at:
http://www.cis.ohio-state.edu/hypertext/fag/usenet/smalltalk-
fag/faq.html
The University of Illinois Smalltalk archive has a page under
construction at: -
http://st-www.cs.uiuc.edu
ParcPlace’s ParcBench Bulletin Board is also accessible via
Gopher (another protocol that is compatible with www). It
can be reached at:
gopher://parcbench.parcplace.com/11/ParcBenchil
Quasar Knowledge Systems (QKS), makers of SmalltalkAgents,
have their own page at:
http://www.qks.com
For more general OO information, there is a searchable data
base that includes links to pages for other OO languages,
research groups, and lots of other interesting stuff:
http://cui_www.unige.ch/05G/00info/index.html

PATTERNS

Design patterns are one of the current hot topics in software
development. In addition to publications and conferences, there
has been a lot of electronic activity on this topic.

One resource is 2 mailing list on the subject of software pat-
terns. To subscribe to the list, e-mail patterns-request@cs.uiuc edu
with 2 message containing the single word subscribe in the body.

There is also an archive of pattern-related material in the
directory /pub/pattemns on the st.cs.ujuc.edu fip site. It includes:

» an archive of messages from the patterns mailing list
» a bibliography of patterns-related material
* source code for the C++ examples from DESIGN PATTERNs!
* papers from a variety of conferences, including position
papers for workshops, submitted papers, and so forth. Many
of them are in PostScript form.
Finally, there is also a WWW site for patterns information. It
can be accessed at:
http://st-www.cs.uiuc.edu/users/patterns/patterns.html
It includes some additional information that did not
appear to be available on the ftp site, including references
to some example patterns.

FONT MANAGER

Support for fonts is not one of the strong points of VisualWorks.

While it is certainly not easy to handle fonts both portably and

well, many users find the choice of only five different fonts restric-

tive. Sure, it is possible to add new font choices. All you have to do

is create a new CharacterAttributes object with the characteristics
continued on page 30

The Smalltalk Report

	By Article Title
	A sample pattern language-concatenating with streams
	Architecting large OO projects
	Garbage collection revealed
	MathPack/V
	Processes
	Transactions in Smalltalk

	By Author Name
	Almarode, Jay
	Beck, Kent
	Buck, David
	Farmer, Dave
	Knight, Alan
	Lorenz, Mark
	Sharp, Alec
	Woolf, Bobby

	By Topic
	comp.lang.smalltalk
	Getting Real
	Project Practicalities
	Smalltalk Idioms

