The Smalitalk Report

The International Newsletter for Smalltalk Programmers

May 1994 Volume 3 Number 7

he enhancements to Smalllalk application development provided by

EXTENDING THE
APPLICATION

MODEL 'l'hi.s type of m?dcl is implclmin}ed by lP}c class Il\pp-licationModeL Although Appli-
cationModel offers a rich set of features for application management, we have
found additional abstract subclasses of ApplicationModel, which add still more
leatures, to be of tremendous benefit in our VisualWorks development. Cur-
rently, we have two very mature abstract subclasses of ApplicationModel. When
by Tim Howard & Bill Kohl starting a new project for a client, we typically create yet another abstract subclass,
specilfic to that clienCs needs. These additional abstract subclasses of Application-

VisualWorks extend well beyond the advantages of GUI window
painting. Fundamental among these enhancements is a new applica-
tion architecture that includes a type of model dedicated exclusively

to managing an entire application—or at least an entire window.,

Model provide several benefits:

= casier control of the interlace

additional functional features

lean implementations of concrete application model classes

| elegant and readable source code for concrete application model classes

Contents: = consistency of features and behavior over all conerete application model
classes which comprise an entire application
Features/Articles - improved dialog development
1 Extending the application model]] o) _
by Tim Howard & Bill Kohl In this article, we will offer some of the more useful enhancements that have been

9 "Smart Menus” in Smalltallk/V developed so far: component services, aspect services, and conlaining model ref-

for Win32
by Wayne Beaton

erence. These features are provided in a subclass of ApplicationModel we call Ex-
tendedApplicationModel. Although most of these ideas are quile simple, they
greatly facilitate application model development. Also, it is important that none
of this additional functionality interlere with, or override, what is already pro-

Columns vided in ApplicationModel. That is, any existing subclass of ApplicationModel

13 Tl?e best of comp.lang.smalltalk should also be able to run as a subclass of ExtendedApplicationModel without any
Mlscellangous adjustments in its implementation. Finally, we will show how to add ExtendedAp-
by Alan Knight plicationModel to your VisualWorks class creation dialog so that it is available

15 Smalltalk idioms: when installing a canvas.
Where do objects come from?
by Kent Beck COMPONENT SERVICES

17 Product Review: Component services are used to control the components—and related interface
Digitalk's Team/V objects such as windows and keyboard hooks—during runtime. What they offer
by Scot Campbell ’ i

the developer is
- elegance of code
= readability of code

courtineed on puge ..

N
e
John Pugh

Paul White

EDITORS’
CORNER

e’re very excited to have the opportunity to be the first to tell you about the upcoming
changes planned for THE SMALLTALK REPORT as we start our fourth year of publication in
September. With Smalltalk’s move into the mainstream as an application development
tool and as the underlying scripting language for visual programming environments such
as IBM’s VisualAge and Digitalk’s PARTS, the interest and activity within the Smalltalk
arena is growing exponentially. Reflecting this and our rapidly growing readership, THe
SMmarrTaLk Report will be expanded from its current 24 pages to 32 pages and will take
on a new look with enhanced use of color throughout the publication. We will be able to
expand the editorial content of THE SMALLTALK REPORT, which, for our readers, trans-
lates into more features, articles, columns, and reviews. Over the next few months we will
be introducing you to new columnists and new departments.

A new feature we would like to add to THE SMALLTALK REPORT starting in September
is something that, for the want of a better name we are calling the “Wow, that’s neat. ..”
column. The idea is to have our readers contribute some small snippets of code that pro-
vide some interesting or useful functionality. We are hoping that the description and code

. together will fit into roughly one printed page. If you have some “neat things” that you
have built in the past that you’d be willing to share with our readership, why not pass

them on?

We are delighted to introduce Tim Howard and Bill Kohl as new columnists this
month. They will be writing columns that will be dealing with issues of software construc-
tion using Smalltalk. Their first contribution is featured this month and deals with mak-
ing extensions to VisualWorks’ Application Model by introducing useful abstract classes
to ApplicationModel. We’re sure you'll agree that their contribution will meet the same

high standards set by all our columnists.

Also in this issue, two of our regular columnists return. Kent Beck is continuing with
his “Where do objects come from?” series, which has been dealing with issues of when
and why objects should be introduced during development. Alan Knight presents us with
a potpourri of issues that have been raised on Internet’s comp.lang.smalltalk, which is a
constantly growing forum in which Smalltalkers can participate. If you haven’t checked
out comp.lang.smalltalk, you may wish to do so. Although not all of what is said there will
be of interest to you, you will undoubtedly find gems of information to help in your work.

‘Wayne Beaton returns this month with a description of extensions that can be made to
Smalltalk/V’s menu facilities giving them a more object-oriented flavor. Finally, Scot Camp-
bell provides a detailed inside look at Team/V, Digitall’s facility for team development.

-—

Jobia

s

(.

o

Q 3\ \ ‘\lﬁf W

THE SMALLTALK REPORT (ISSN# 1056-7976) is published 9 times a year, every month except for the Mar/Apr, lnly/Aui, and Nov/Dec com-
Y

bined issues. Published by sIGS Publications Inc., 588 Broadway, New York, NY 10012 212.274.0640. Lmyright 1994
All rights reserved. Reproduction of this matcrial by electronic transmission, Xerox or any other method wi

S1GS Publications.
be treated as a willful violation of

the US Copyright Law and is flatly prohibited. Material may be reproduced with express permission from the publisher.
Mailed First Class. Canada Post International Publications Mail Product Sales Agreement No. 290386. Subscription rates 1 year (9 issues): do-

mestic, $79; Foreign and Canada, $114; Single copy price, $B.

POSTMASTER: Send address changes and subscription orders to: THe SmarLTALK REroRT, P.O. Box 2027, Langhorne, PA 19047. For service

on curreni subscriptions call 215.785.5996.

To submit articles, please send electronic files on disk to the Editors at 509-885 Meadowlands Drive, Ottawa, Ontario K2C 3N2, Canada, or
via Internet to pugh@scs.carleton.ca Preferred formats for lilgures are Mac or DOS EPS, TIF, or GIF formats. Always send a paper copy of your

manuscript, including camera-ready copies of your figures (

PRINTED IN THE UNITED STATES.

aser outpun is fine).

The Smalitalk Report

Editors

John Pugh and Paul White
Carleton University & The Object Psople

SIGS PuBLCATIONS
Advisory Board

Tom Atwood, Object Design
Frangois Bancithon, O, Technologies
Grady Booch, Rational

George Bosworth, Digialk

Brad Cox, Information Age Cansuling
Adele Goldberg, ParcPiace Systems
Tom Love, IBM

Bertrand Meyer, ISE

Meilir Page-Jones, Wayland Systems
Sesha Pratap, CenterLine Software
Cliff Reeves, IBM

Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

THE SmaLLTALK REPORT

Editorial Board

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Systems
Reed Phillips, Knowledge Systems Caorp.
Mike Taylor, Digitalk

Dave Thomas, Object Technology international

Columnists

Kent Beck, First Class Software

Juanita Ewing, Digitalk

Greg Hendley, Knowledge Systems Corp.
Ed Klimas, Linea Engineering Inc.

Alan Knight, The Object Peaple

Eric Smith, Knowledge Systems Corp.
Rebecca Wirfs-Brock, Digitalk

SIGS Publications Group, Inc.

Richard P. Friedman

Founder & Group Publisher

Art/Production

Kristina Joukhadar, Managing Editor

Susan Culligan, Pilgrim Raad, Ltd., Creative Direction
Seth J. Bookey, Praduction Editor

Andrea Cammarata, Electronic Publishing Coordinatar
Margaret Conti, Production Assistant
Circulation

Bruce Shriver, Circulation Director

K.S. Hawkins, Fuifilment Manager
Marketing/Advertising

Shirley Sax, Director of Sales

Gary Portie, Advertising Mgr—East Coast/Canada/Europe
Helen Newling, Advertising and Exhibit Sales

Sarah Hamilton, Manager of Promotions and Ressarch
Caren Polner, Promotions Graphic Artist
Administration

David Chatterpaul, Accounting Manager

James Amenuvor, Baokkeeper

Amy Melsten, Assistant to the Publist

Joanna Lowenstein, Administrative Assistant

Margherita R. Monck, General Manager

- PUBLICATIONS

Publishers of JOURNAL oF OBJECT-ORIENTED PRO-
GRAMMING, OBJECT MAGAZINE, C++ REFORT, THE
SMALLTALK ReroRT, ROAD, THE X JOURNAL, AND
OBJEKTapektrum.

2

THE SMALLTALK REPORT

1e F
Sﬁ winnowBumper PRV

INC.

Smalltalk/V developers have come to rely on
WindowBuilder as an
essential tool for develop-
ing sophisticated user inter-
faces. Tedious hand coding
of interfaces is replaced by
interactive visual composi-
tion. Since its initial release,
WindowBuilder has
become the industry stan-
dard GUI development tool
for the Smalltalk/V environ-
ment. Now Objectshare
brings you a whole new
level of capability with

The New Power in Smalltalk/V Interface Development

Window: Bmlder Pro/V is Avallable on Windows for $295

and OS§/2 for $495. Our stan-
dard WindowBuilder/V is
still available on Windows
for $149.95 and OS/2 for
$295. We offer full value
trade-in for our
WindowBuilder customers
wanting to move up to Pro.
These products are also
available in
ENVY®/Developer and
Team/V™ compatible for-
mats. As with all of our

I products, WindowBuilder

WindowBuilder Pro! New

functionality and power
abound in this next genera-
tion of WindowBuilder.

Pro comes with a 30 day

money back guarantee, full
source code and no Run-

2 Time fees.

Some of the exciting new features..

* CompositePances: Create custom controls as composites
1 of other controls, treated as
a single object, allowing the
developer higher leverage

i | of reusable widgets.

g, CompositePanes can be
used repeatedly and
because they are Class based, they can be easily sub-
classed; changes in a CompositePane are reflected any-
where they are used.

» Morphing: Allows the developer to quickly change
[from one type of control suns

malltalk T
andowflullder @ to another, allowing for | O Smamaik
/| powerful “what-if” style | OWindowBullder
& Visual development. The | ©Other

flexibility allowed by
morphing will greatly enhance productivity.

s ScrapBook: Another new feature to leverage visual
component reuse, ScrapBooks provide a mechanism for
developers to quickly
store and retrieve pre-
defined sets of compo-
nents. The ScrapBook
is a catalog of one's
favorite interface com-
ponents, organized

~Eelecicd Pagn

sl (LT T T

]

into chapters and pages.

* Rapid Prototyping capa-
bilitics: With the new link-
ing capabilities, a develop-
er can rapidly prototype a
functional interface without
writing a single line of
code. LinkButtons and
LinkMenus provide a pow-

Beled n ViewManger Clase:
DlukBrowaer Link Type
FlleFinder [independens]
FreeDruwing il
GraphiciDema Sibling

IconEditny
IncomeTax
(MDISyetem
MDITranscript

Opena the seleded
'windew 85 a child of
the current window.

Pozzls15

and Wi Pro are ol Obj S

Inc. All olher brand and producl names are

erful mechanism for linking
windows together and speci-
fying flow of control.

il ActionButtons and
ActionMenues provide a
mechanism for developers to
attach, create, and reuse
actions without having to write code. These features
greatly enhance productivity during prototyping.

* ToolBar: Developers can Create sophisticated toolbars

just like the ones in the WindowBuilder Pro tool itself.

= Other new features include: enhanced duplication and
cut/paste functions, size and position indicators,
enhanced framing specification, Parent-Child window
relationship specification, enhanced EntryField with char-
acter and field level validation, and much more...

¢ Add-in Manager: Allows developers to easily integrate
extensions into WindowBuilder Pro's open architecture.

Catch the excitement, go Pro!
Call Objectshare for more information.

(408) 727-3742
Objectshare Systems, Inc S Town & Country Village
Fax: (408) 727-6324 Suite 735

CompuServe 76436,1063 San Jose, CA 95128-2026

of lheir respeclive companies

continued from page 1

u EXTENDING THE APPLICATION MODEL

« brevity of code

+ development efficiency
* flexibility

« safe component access

« additional functionality

After you have written a few meaningful applications in Visu-
alWorks, you may begin to notice a certain repetition of code
where component control is concerned. For example, suppose
we want a method that is responsible for disabling three com-
ponents—#name, #address, and #phone. The implementation
for such a method might look like this:

(self builder componentAt: #name) disable.
(self builder componentAt: #address) disable.
(self builder componentAt: #phone) disable.

At first glance, one notices that this code is not very readable. A
statement such as self builder componentAt ...disable does not
fit very well with our common vernacular. To a second party
reviewing this code, it is not readily apparent what is going on.
Smalltalk code should be short, elegant, and readable. Also,

Table 1. Component Services.

notice how much redundancy is involved. There is no excuse
for this in Smalltalk, which leads us to the next implementa-
tion. Most veteran Smalltalkers would implement our example
method as follows.

#(name address phone) do: [:each |
(self builder componentAt: each) disable]

An improvement, but we are still not quite there. This second
implementation is more elegant in that it removes the redun-
dancy, but it is even less readable than the first. In English,
what we are trying to do is disable #name, #address, and
#phone. Is there any reason why we cannot write the method
just this way? Certainly not! Application models that are sub-
classes of ExtendedApplicationModel implement our example
method as follows.

self disable: #(name address phone)

This third implementation is short, concise, and readable. In
the time it takes to read this very short line, we know exactly
what is taking place. Application models that are subclasses of
ExtendedApplicationModel are able to control their compo-
nents in just such a fashion.
As another illustration of the utility
of component services, consider chang-

ing one of the colors of a component.
This is not at all a straightforward task.

to: aSymbolOrColor

Message Behavior

abortFocusShift Prevents a shift of focus from taking place.

change: aSymbol of: Change the color role aSyrbol of the component(s)
aSymbolOrArray identified by aSymholOrArray to the color indicated by aSymbolOrColor

There are some subtleties involved with
this process and several lines of code are
required to do the job. For example, if
we wanted to change the foreground

component: aSymbol
controllerFor: aSymbol
disable: aSymbolOrArray
enable: aSymbolOrArmay
invalidate: aSymbolOrArray
keyboardHook
keyboardHook: aSymbol

keyboardProcessor

makelInvisible:
aSymbolOrArray

makeVisible:
aSymbolOrArmay

1eplaceWidgetControllerIn:
aSymbol with: a
Controller

takeFocus: aSymbol
tumOff: aSymbolOrArray
turnOn: aSymbolOrAmay
widget: aSymbol

window

Return the component (SpecWrapper) whose id is aSymbol
Return the controller for the widget identified by aSymbol
Disable the component(s) identified by aSymholOrArray
Enable the component(s) identified by aSymbolOzArray
Redraw the component(s) identified by aSymbelOrArmray
Return the keyboard hook.

Retrun the keyboard hook for the widget of the component whose ID is
aSymbol.

Return the keyboard processor.
Make invisible the component(s) identified by aSymbolOrArray

Make visible again the component(s) identified by aSymbolOrArray
Replace the controller in the widget identified by aSymbol with aController

Give focus to the component identified by aSymbol
Turn off the component(s) identified by aSymbolOrArray
Turn on the component(s) identified by aSymbolOrArray
Return the widget identified by aSymbol

Return the builder’s window.

color of a component whose ID is
#nates, then we would write something
like the following,

| \p comp |

comp := self builder componentAt: #notes.

Ip := comp lookPreferences.

lp :=1p foregroundColor: ColorValue red.
comp lookPreferences: lp

This is quite a bit of code and not at all
readable. Of course, the acid test of read-
ability is to state in English exactly what
we are trying to accomplish. In this case,
the English version reads change the fore-
ground color of #notes to the color red.
The ExtendedApplicationModel offers a
component service that allows us to
write the code in just such a way.

self change: #foregroundColor
of: #nates to: ColorValue red

Notice that we also gain in brevity and
elegance. For someone reviewing the
code, it is immediately obvious what this
statemnent does. To provide some flexi-
bility, the color argument can be either

THE SMALLTALK REPORT

Now! Automatic

Documentation

SYynopsis produces high quality class documentation
automatically. With the combination of Synopsis and
Smalltalk/V, you can eliminate the lag between the
production of code and the availability of documentation.

Synopsis for Smalltalk/V

* Documents Classes Automatically

* Provides Class Summaries and Source Code Listings
* Builds Class or Subsystem Encyclopedias

* Publishes Documentation on Word Processors

» Packages Encyclopedia Files for Distribution

* Supports Personalized Documentation and
Coding Conventions

Dan Shafer, Graphic User Interfaces, Inc.:
“Every serious Smalltalk developer should take a
close look at using Synopsis to make documentation
more accessible and usable.”

For Smalltalk/V Development Teams — With Synopsis

Development Time Savings

Coding Documentation

Without S
Synopsis A A

Start Finish

Documentation

With Coding
Synopsis

A A

Start Finish

Products Supported:

Digitalk Smalltalk/V Windows $295

Digitalk Smalitalk/V OS2 $395
(0S/2 version works with Team/V and Parts)

Sy Synopsis Software
8609 Wellsley Way, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

some kind of Paint object or a Symbol identifying one of the
named ColorValues such as #navy or #lightGray.

As another form of flexibility, many component services
that take a component ID as an argument can also take an Ar-
ray of component IDs. For instance, we can make a single
component invisible with

self makelnvisible: #name

Or with the same message, we can make an arbitrary number
of components invisible, such as

self makeInvisible: #(name rank serialNumber)

The component services are also robust enough to ignore any
errant component IDs—those that do not identify a compo-
nent. The component lookup is conducted such that compo-
nent IDs not found in the builder’s named components collec-
tion are ignored.

There are two component services that add some additional
functionality not currently available in VisualWorks. These
component services turn components off and on. Turning off a
component is similar to disabling it in that the turned off com-
ponent will not respond to user input. Unlike disabling, how-
ever, the component is not redrawn in a gray hue but main-
tains its original color. The implementation is quite a bit
different as well, A component is turned off by giving its wid-
get a NoContxoller. The purpose of turning off a component is
to provide a read only effect. Turning on a component merely

reinstates the widget’s default type of controller so that it can
accept user input again.
There are 18 component services; these are listed in Table 1.

ASPECT SERVICES

When designing an application model that manages several
components, the instance variable list tends to become some-
what overloaded. Traditionally, good Smalltalk style frowns on
class definitions with excessive instance variables. Such a
symptom can be indicative of

= a lack of factoring in the hierarchy
* a lack of support object types and collaborator object types

* unnecessary and unused instance variables

Table 2. Aspect service argument for ValueHolder.

aSelector A Symbol which is the name of the method using
the service.
anObject The initial value of the ValueHolder.

aSelectorOrArray A Symbol or an Array.

If it is a Symbol, it is the name of a unary message
to be sent to the application model on a change of
value of the ValueHolder,

If it is an Array, the first element is the change
message, and the second element is the receiver
of the message.

May 1994

m EXTENDING THE APPLICATION MODEL

In general, an excess of instance variables usually indicates that
the class is assuming too much responsibility and that some of
this responsibility should be defined in one or more super
classes or delegated to collaborator and support objects. In the
case of concrete application model development, however,
these two options usually do not apply. This leaves only one
avenue for reducing our number of instance variables—re-
moving those that are unnecessary. Well, the aspect instance
variables are unnecessary! The reason for this is that a
UlIBuilder caches these objects in its bindings variable. This
means the application model maintains redundant references
to its aspect models. The application model can always refer-
ence its aspect models via its builder, so why keep them as in-
stance variables? ExtendedApplicationModel uses this informa-
tion to provide aspects for the components without having to
load up on aspect instance variables.

Typically, an aspect method returns some type of value
model, or some other type of aspect object such as a Selec-
tionInList. In an extended application model, aspect methods
can be written in one of two ways. For example, a method for
the #documentName aspect might look like the following:

documentName

~documentName isNil

ifTrue: [documentName := String new asValue]
ifFalse: [document]

This first implementation, which is the traditional approach,
requires the allocation of an instance variable, documentName.
In an extended application model, the method can also be
written as

Table 3. Aspects service arguments for SelectionInList.

A Symbol that is the name of the aspect and of

the method.

This can be nil, a sequenceable collection, or a Symbol
If it is nil, then an empty SelectionInList is created.

If it is a collection, the SelectionInList is initialized
with the collection.

It itis a Symbol, then it is interpreted as a message
sent to the application model to retrieve the list
which is then used to initialize the SelectionInList.
A Symbol or Array. If a Symbol, then it is the change
message sent to the application model on a change
of the list.

aSelector

anObject

aSelectorOrAmay1

and the second element is the receiver of the message.
A Symbol or Array. If a Symbol, then it is the mes-
sage sent to the application model on a change of
the selection index.

if an Array, then the first element is the change
message and the second element is the receiver of
the message.

aSelectorOrArray?

If an Array, then the first element is the change message :

Table 4. Aspect service arguments for SubCanvas.

aSelector | A Symbol which is the name of the aspect and of the method.

! aModel
|~

A subclass of ApplicationModel or an instance of such a class.

documentName
~self valueHolderFor: #documentName initialValue: String new

This second implementation does not require an instance vari-
able! As long as the aspect is accessed using the accessing mes-
sage (a practice we strongly encourage), the correct value will
be returned and the application model will behave just as if the
implementation was that of the first type. Also notice how
much more readable it is than the traditional implementation.

There are two aspect services for ValueHolders:

valueHolderFor: aSelector inijtialValue: anOhject

and

valueHolderFor: aSelector initialValue: anObject
changeMessage: aSelectorOrArray

The arguments are described in Table 2.
There are two forms of the aspect service for SelectionInList
and MultiSelectionInList

selectionInListFor: aSelector list: anObject

and

selectionInListFor: aSelector list: anObject listChange:
aSelectorOrArray1 selectionChange: aSelectorOrArray?2

The arguments are defined in Table 3.
When the component is a subcanvas, then the aspect is an-
other application model. The aspect service in this case is

applicationFor: aSelector model: aModel

The arguments are presented in Table 4.

Also, if the sub environment is itself an extended applica-
tion model, then it will automatically receive a reference to its
containing model. The containing model properties of Ex-
tendedApplicationModel are covered shortly.

All the aspect services use the same approach. For illustra-
tion, we will use the valueHolderFor:initialValue:changeMessage:
aspect service. Whenever someone sends a message to access an
aspect, that method’s implementation is an aspect service mes-
sage. For instance, an application model with a #productID as-
pect might have a method which looks like the following.

productiD
~self
valueHolderFor: #productID
initialValue: String new
changeMessage: #changedProductID

The implementation of the valueHolderFor:initialValue:changeMes-
sage: aspect service method defined in ExtendedApplication-
Model is shown below.

valueHolderFor: aSelector initialValue: anObject changeMessage:
aSelectorOrAmay
~(self builder bindings includesKey: aSelector)
iffalse: [self
registerInterestIn: (ValueHolder with: anObject)
using: aSelectorOrAmay]
ifTrue: [self builder aspectAt: aSelector]

6

Tue SMALLTALK REPORT

This method checks first to see if the builder already has the
aspect model in its bindings. If so, then access it from the
builder and return it (the ifTrue: clause). If not, then create
the ValueHolder with the initial value of anObject and use
the information in aSelectorOrArray to register interest in
the ValueHolder. Then return this new ValueHolder (the if-
False: clause). The interest in the ValueHolder is registered
by sending the message registerInterestIn: aValueHolder us-
ing: aSelectorOrArray. The implementation for this method
is shown below.
registerInterestin: aValueModel using: aSelectorOrArray
aSelectorOrArray isNil ifTrue: [*aValueModel].
(aSelectorOrArray isKindOf: Armray)
ifTrue: [aValueModel
onChangeSend: (aSelectorOrArray at: 1)
to: (aSelectorOrArray at: 2)]
ifFalse: [aValueModel
onChangeSend:
aSelectorOrArmay to: self].
~aValueModel

If aSelectorOrArray is a Symbol, then it is understood that the
interested object is the application model itself. If aSelectorOr-
Array is an Array, then its first element is expected to be a Sym-
bol naming the change message and its second element is ex-
pected to be the interested object, that is, the receiver of the
change message.

One caveat to using the aspect services is that the aspects are
necessarily public. If a completely private aspect is desired, you
must abandon the aspect services and declare an instance vari-
able that does not have an accessing method.

Although there is no functional benefit in using aspect ser-
vices, we do get a threefold increase in elegance, namely,

» areduction in the amount of instance variables in the class
definition

* much more readable and descriptive aspect methods

« the discipline of referencing aspects by their accessing
messages

For example,

Label ExtendedApplicationModel
Aspect #superPick
Select #ExtendedApplicationModel

CONTAINING MODEL

Quite often, when an application model is launched from an-
other application model, the new application model will want
to reference its parent. Also, it is quite convenient for an ap-
plication model running a subcanvas to reference the con-
taining application model. For these reasons, ExtendedAppli-
cationModel defines an instance variable, containingModel,
which allows an application model to reference the contain-
ing application model which launching it or contains it as a
sub environment.

ADDING TO VISUALWORKS
The complete source code for ExtendedApplicationModel,
along with an example application, can be acquired from the
University of Illinois Smalltalk Archives in ST_80VW directory
as “extendedApplicationModel.st.” To make ExtendedApplica-
tionModel available from the class creation dialog, open the in-
terface in UIFinder class>>classCreationDialog for editing. Now
add a radio button below the ApplicationModel radio button.
Give this new radio button the following properties and install
the canvas,

To make ExtendedApplicationModel the default selection for
this dialog, you must edit the UIFinder class method

openNew(lassDialogForName: aClassName subClassing: aSuperName
inCategory: aCategory

This is a very long method. Find the part that reads

builder
aspectAt: #superPick
put:
(superPick :=
(superName value isEmpty
ifTrue: [#ApplicationModel]
ifFalse: [#0ther]) asValue).

and change the ifTrue: value form #ApplicationModel to #Ex-
tendedApplicationModel. This will make ExtendedApplication-
Model the default superclass of any new classes created as a re-
sult of installing a canvas.

CONCLUSION

VisualWorks projects of any merit should include one or more
abstract subclasses of ApplicationModel to facilitate application
development. In this article, we developed such a class, Ex-
tendedApplicationModel, and populated it with some very useful
features: component services, aspect services, and a containing
model reference. Component services facilitate the control of
the interface objects during runtime and provide more readable
and elegant implementations. The aspect services eliminate the
need to load up on instance variables when defining an applica-
tion model class and also provide brief, readable aspect method
implementations. The containing model reference is an instance
variable that allows an application model to reference its parent
or containing model for which it serves as a subenvironment.
These three enhancements are good examples of why it is advan-
tageous to create abstract subclasses of ApplicationModel

Tim Howard holds an MBA and a MS in Industrial Eﬁgineeﬂng
and has been developing application software for eight years.
Presently he is working on a VisualWorks book for SIGS Publica-
tions and consults for RothWell International. He can be reached
at the RothWell offices at 800.256.0541, at home at 713.784.9730,
or via email at 74213.1517@compuserve.com.

Bill Kohl is a Training Administrator at RothWell International
and can be reached at the RothWell International offices at
800.256.0541.

May 1994

FREEDOM
THROUGH
ADVANCED

TECHNOLOGY

Smalitalk X otlers

- svstem independence: Fach application
within the runtime ssstems ported s
independent ol the underlving sysiem
andd - as arule - can be ported and run

without any changes or modilications

Infine C code means icis casy Lo link
existing applications and Tibraries.
Additional, systemapplications and
clusses can be supplied inmachine code

(protects your weehnology)

compact. standalone applications are
possible thanks o skatic or dynamic

linkine features

With the intevrated devefopment
chovironment vou can develop soliware
and see the results immediately iman

Toreanic” sysiein

- Indensive class Tibraries both simphils
and speed up soltware development and

impros e quatily and serviceabilin

Get more inlformation rom:
[omceat compuler Gmbll
[ruchbinesur. 4

DY - X210 Germering (Crermany)

i
‘%ff' cocasl

Fel: - 49y RY -84 99092
[axs (- 49y U - 8405 44

I-Mail: ofliceia tomueal.de

Your way to
High - Productivity

53 Y 2

e developed by Claus Gittinger @

The object-oriented development tool for
high-portable applications

ALL AVAILABLE PLATTFORMS ON OUR Beta-CD-ROM 1.0:

R 3000/4000: Silicon Graphics/Irix 4.0.x, ; NeXT: Mach with X11; SPARC: SunOs 4.1.x;
80386/486. LINUX V.0.99 pl 10/11

Yet also running:PARisc: HP-UX 9.0; SPARC: Solaris 2.x; R 3000/4000: PCS/MUNIX;
80386/486: Sys 5.41/5.42, SINIX 5.4x; UnixWare; Solaris x86
All trademarks are the property of the respectiv holders

“SMART MENuS”

IN SMALLTALK/V
FOR WIN32

Wayne Beaton

enus play an important role in any Windows-
based application. Typically, an application will
“gray-out”, or disable menu entries that don’t
make sense in the current context. Menu items
may or may not have a check mark to their left,
indicating that an option is active or inactive. Managing these
menu items can be cumbersome, if not downright difficult us-
ing the mechanisms built into Smalltalk/V (for large applica-
tions, it certainly takes far too much effort to get menus to op-
erate correctly).

The current mechanism feels a lot like functional program-
ming;: if, for example, an application has a menu titled ‘File'
and a menu titled ‘Edit’, each containing a number of entries, a
ViewManager subclass might have code to update these menus
which looks something like:

self isDocumentDirty
ifTrue: [

(self menuTitled: 'File')

enableltem: #fileSave]
ifFalse: [

(self menuTitled: 'File")
disableItem: #fileSave].

self clipboardContainsObject
ifTrue: [

(self menuTitled: 'Edit")
enableltem: #editPaste;
enableltem: #editPasteSpecial)

ifFalse: [

(self menuTitled: 'Edit')
disableItem: #editPaste;
disableItem: #editPasteSpecial]

(...etc...)

For a small number of entries, this technique may be easy to
understand and use. As the size of the application and the
number of menus increase, this type of code can grow exceed-
ingly complex. To start, the label of the menu is required to ac-
cess it. If the application is required to function in multiple
languages, this issue becomes even more complex (the typical
solution might be to have a specific method that will determine
each menu title). If the logic that determines the enabled or
disabled state gets any more complicated, the method becomes

so nested that even expert Smalltalkers choke, gag and eventu-
ally collapse and die.

AN OBJECT-ORIENTED APPROACH?

As strange as it may seem, Smalltalk is object-oriented, which
means (in part) that objects know things about themselves.
Why not have menus know how to update themselves?

When a menu item is created, a label, selector and accelera-
tor is specified for it. The label is the string that will be dis-
played for the user when the menu is selected and pulled
down. The selector is a unary message that will be sent to the
menu’s owner when the item is selected by the user and the ac-
celerator is a description of the keyboard equivalent of select-
ing the item.

Smart menus will consider additional information. When
an item is added to a smart menu, the programmer can also
specify a block of code as the “enabled condition” for the
itemn. The block must result in a Boolean when evaluated—if
the result is true, the item will be enabled, if false the item
will be disabled. Similarly, the programmer can specify a
“checked condition” which is also a block resulting in a
boolean which determines if the item is checked or not. If no
conditions are specified, then by default an item will be en-
abled and unchecked.

A subcass of Menu has been introduced named SmartMenu
(see listings 1 and 1a) that handles menu updating. A single
method has been added to MenuWindow (see listing 2) to sim-
plify the interaction between an application and its menus.

A menu is created using the existing methods in class menu.
Enabling and checking behavior can be added for an item after
that item has been added. For example, to create a “File”
menu, a method using the following code might be employed:

buildFileMenu
"Build and answer the menu titled 'File'."
~SmartMenu new
owner: self;
title: 'File';
appendItem: 'Open..." selector: #fileOpen;
appendlItem: ‘Save' selector: #fileSave;
enableltem: #fileSave
when: [self isDocumentDirty];
yourself

This method builds a menu titled “File” with two entries. The
entry labeled “Open. . .” is always enabled. The entry labeled
“Save” is only enabled when the document is dirty.

There are two ways that the menu updating process can be
initiated. Before a menu is pulled down, the menu window is
triggered with the event aboutToDisplayMenu; the handler for
this event can send the message updateMenus to the
menuWindow. Alternately, the menuWindow can be asked at
any time to update its menus (again using the message up-
dateMenus).

The class ClassList has been created to demonstrate the use
of SmartMenus (see listing 3). This class builds a window con-
taining a list box populated with the classes known to the sys-

May 1994

m “SMART MENUS”™ IN SMALLTALK/V FOr WIN32

tem (see Fig. 1). A single
menu, titled “Class” is
added containing two en-
tries. The first entry, la-
beled “Class Is Variable”,
is always disabled and
checked only if the selected
class is a variable byte
class. The second entry, la-
beled “Browse”, is enabled
only if a class is selected
and is never checked.

The menu is created in response to the event needsMenu.
When this event is encountered, the method updateClassList-
BoxMenu: assigns the menu created by the method buildClass-
Menu to the list box using the SubPane method setMenu:. The
method buildClassMenu generates a new instance of SmartMenu
by adding each item, and then indicating under what condi-
tions each item is enabled or checked.

When a class in the list is selected, the event clicked: is trig-
gered, sending the method clickedClassListBox: to the ClassList.

~ Smalltalk¥ Class List F3fr
m Class

Bag
Index
Fixed
Array
ActionSequence
CompiledMethod
Compiledinitializer
ByteArray

Interval

String

| &

Figure 1. An instance of ClassList.

This method remembers the selected class and updates the
menus by sending the message updateMenus to the MenuWindow.

SOME CONCLUSIONS

Smalltalk/V provides a rich set of user interface tools, but it
seems they have not yet evolved aspects of it into a more usable
form. As is often the case, the environment can be manipu-
lated into a more usable form with minimal impact.

The code presented here is only a first step. With some
imagination, there are other facilities that can be integrated
easily. Enabling and disabling items is something that most, if
not all, applications do. Some applications dynamically change
the contents of some menus, change the text of some entries,
or even include a graphic that may change. Such less-generic
behaviour can be easily added. H

Wayne Beaton is a senior member of the Development Teamat
the Object People. His interests include User Interfaces, Neural
Networks, and snickering of people who wear socks with sandals.
He can be reached at The Object People in Ottawa at
613.225.8812 (Wayne@ObjectPeople.on.ca).

Listing 1. The class SmartMenu.

Menu subclass: #SmartMenu
instanceVariableNames:
! itemEnableConditions itemCheckConditions ' classVariableNames: "
poolDictionaries: " !

1SmartMenu methods !

checkItem: aSymbol when: block
"Set a check mark heside the item only when block evaluates true."
self itemCheckConditions
at: aSymbol put: block.
self updateltemWithSelector: aSymbol!

enableltem: aSymbol when: block
"Enable the item named aSymbol only when block evaluates true."
self itemEnableConditions
at: aSymbol put: block.
self updateltemWithSelector: aSymbol!

initialize
"Private - Initialize myself." super initialize.
self
initializeltemEnableConditions;
initializeItemCheckConditions!

initializeItemCheckConditions
"Private - Initialize my collection of check conditions. "
self itemCheckConditions: Dictionary new!

initializeItemEnableConditions
"Private - Initialize my collection of enable conditions. "
self itemEnableConditions: Dictionary new!

isSmartMenu
"Answer whether I am an instance of SmartMenu."
“true!

itemCheckConditions
"Private - Answer my collection of check conditions."
~temCheckConditions!

itemCheckConditions: aDictionary
"Private - Set my collection of check conditions."
itemCheckConditions := aDictionary!

itemEnableConditions
"Private - Answer my collection of enable conditions."
~itemEnableConditions!

itemEnableConditions: aDictonary
"Private - Set my collection of enable conditions."
itemEnableConditions := aDictionary!

itemSelectorsDo: block
"Private - Evaluate block with the selector for each of my selectors
as parameter."
items do: [:item |
block value: item selector]! |

shouldItemBeChecked: aSymbol :
"Private - Answer whether the item named aSymbol should be |
checked or not."
~(self itemCheckConditions
at: aSymbol ifAbsent: [*false]) value! ‘

shouldItemBeEnabled: aSymbol
"Private - Answer whether the item named aSymbol should be |
enabled or not." :
~(self itemEnableConditions
at: aSymbol ifAbsent: [“true]) value!

update
"Update all of my items." ;
self itemSelectorsDo: [:each | !
self updateltemWithSelector: each]!

10

THE SMALLTALK REPORT

updateltemWithSelector: aSymbol

"Private - Update the item with selector aSymbol. First enable or
disable the item based on the value of the apprapriate enable
block. Second, check or uncheck the item based on the value of
the appropriate check block."

(self shouldItemBeEnabled: aSymbol)
ifTrue; [self enableltem: aSymbol]
ifFalse: [self disableItem: aSymbol).

(self shouldItemBeChecked: aSymbol)
ifTrue: [self checkItem: aSymbol]
ifFalse: [self uncheckItem: aSymbol]! !

!0Object methods !

isSmartMenu
"Answer whether I am an instance of
SmartMenu.”
~Malse! !

Listing 2. Extension to class MenuWindow.

'MenuWindow methods !

updateMenus
"Force my menus to update themselves."
menus do: [:each |
each isSmartMenu
ifTrue: [each update]]! !

Listing 3. The class ClassLister.

ViewManager subclass; #ClassLister
instanceVariableNames:
' classList selectedClass '
classVariableNames: "
poolDictionaries: " !

!ClassLister methods !

browseClass
"Browse the selected class,"
self selectedClass edit!

buildClassMenu
"Private - Build and answer the class menu."
ASmartMenu new
owner: self;
title: 'Class";
appendlItem: 'Class Is Variable'
selector: #classIsVariable;
appendSeparator;
appendltem: 'Browse'
selector; #browseClass;

enableltem: #classIsVariable when: [false];
checkItem: #classIsVariable when:

! [self selectedClass notNil

and: [self selectedClass isVariable]];

Listing 1a. Extenstion to class Object. :

enableltem: #browseClass
when: [self selectedClass notNil];

yourself!

classList
~classList!

classList: aCollection
classList := aCollection!

clickedClassListBox: selectedItem
self selectedClass: selectedItem.
self menuWindow updateMenus!

open
"Open myself on all the classes in Smalltalk."
self openOn:
(Smalttalk rootClasses
inject: OrderedCollection new
into: [:sum :each |
sum
addAll: each withAllSubclasses;

yourself])!

openOn: aCollection
"Open myself on the list of classes in aCollection."
| pane |
self
classList: aCollection;
label: 'Class List';
addSubpane:
((pane := ListBox new)
owner: self;
setName: #classListBox;
when: #needsMenu
send: #updateClassListBoxMenu:
to: self with: pane;
when; #needsContents
send: #updateClassListBox:
to: self with: pane;
when: #clicked:
send: #clickedClassListBozx: to: self;
yourself).

self openWindow!

selectedClass
~selectedClass!

selectedClass: aClass
selectedClass := aClass!

updateClassListBox: aListBox
"Update the contents of the class list box."
aListBox
contents: self classList;
selection: self selectedClass!

updateClassListBoxMenu: aListBox
"Update the menu for my class list box."
aListBox setMenu: self buildClassMenu! !

May 1994

11

" Cremting thoss new clent and server dpplications

Mbefmmmrewm@xgifyoumdd.réuse

exisfing code instead of rewrifing it. And now

thot goot becomes reality with object-oriented

programming. Especially when you can rely

on VisualWorks™ the ParcPlace Smalltalk™

" Agplications Development Environment that

 crantes applications that ore instontly portuble
batween Windows, 0S/2, Madintosh and UNIX.
Trus OOP, it provides o robust set of tools fo
baild sophisticated graphical applications with
necess fo a wide voriety of relational datubases.
Fully armed with superior flexibifity, dynamic
compilation for impressive performance and the

world’s largest set of tried and tested closs

" have selactol VisalWotks for cit and sover

development. And sfnpped--ie'miﬁng history.

VisualWorks

ParcPlace®

Al deneanks e enisa adernks

I SIRELTY 07 eI 10T 0wl

DEVELOPERS WHO DO NOT

REMEMBER HISTORY ARE

CONDEMNED TO REWRITE IT.

Miscellaneous

that don’t require an entire column’s worth of space.

This includes some recommended reading, the an-
nouncement of a new version of the Self language, a template
of examples for class comment rules used in the APOK tool kit,
and a handy bit of code for finding references to objects in
ParcPlace Smalltalk.

T his month’s column covers several unrelated things

READING MATERIAL

Books on Smalltalk programming are coming out regularly,
but the most interesting Smalltalk-related reading I've come
across lately has little to do with programming. It’s Alan Kay’s
“The Early History of Smalltalk,” part of the Second History of
Programming Languages conference (HOPL-II) sponsored by
the Association for Computing Machinery (ACM) Special In-
terest Group on Programming Languages (SIGPLAN).

The conference covers the early history of more than 14
different programming languages, including Smalltalk and C++
(SIMULA was covered in the first HOOPLA). I naturally
thought the Smalltalk article was the highlight, but I found the
whole thing very interesting. I include a few choice quotes
from the article:

One way to think about progress in software is that a lot of
it has been about finding ways to late-bind, then waging
campaigns to convince manufacturers to build the ideas
into hardware.

A language I now called “Smalltalk”—as in “program-
ming should be a matter of...” and “children should pro-
gramin. . ..” The name was also a reaction against the
“Indo European god theory,” where systems were named
Zeus, Odin and Thor, and hardly did anything. I figured
that “Smalltalk” was so innocuous a label that if it ever did
anything nice people would be pleasantly surprised.

...] think the enormous commercialization of personal
computing has smothered much of the kind of work that
used to go on in universities and research labs, by sucking
the talented kids towards practical applications.

Should we even try to teach programming? I have met
hundreds of programmers in the last 30 years and can see
no discernible influence of programming on their general
ability to think well or take an enlightened stance on hu-
man knowledge. If anything, the opposite is true.

HE BEST OF comp.lang.smalltalk

Alan Knight

I received the preprints of the conference papers as a special is-
sue of SIGPLAN notices. I understand, however, that a book
including these papers and much other conference material is
being planned. Unfortunately, it won’t be published until
sometime in 1995, In the meantime, the preprints are available
from the ACM: US $27 for ACM members and US $54 for
nonmembers. The order number is 548931, ISBN 0-89791-
5704. The ACM publications office can be reached at
800.342.6626 or 212.626.0500 or at P.O, Box 12114, Church
Street Station, New York, NY, 10257 USA.

SELF

Self is a prototype-based experimental language similar in
many ways to Smalltalk, with a very aggressive optimizing
compiler. It’s often mentioned in discussions about optimizing
Smalltalk. If you're interested in checking it out for yourself
and have a Sun workstation handy, Version 3.0 was recently
announced. Excerpts from the announcement follow:

The Self Group at Sun Microsystems Laboratories, Inc,,
and Stanford University is pleased to announce Release
3.0 of the experimental object-oriented programming
language Self

Designed for expressive power and malleability, Self
combines a pure, prototype-based object model with uni-
form access to state and behavior. Unlike other languages,
Self allows objects to inherit state and to change their pat-
terns of inheritance dynamically. Self’s customizing com-
piler can generate very efficient code compared to other
dynamically-typed object-oriented languages.

The latest release is more mature than the earlier re-
leases: more Self code has been written, debugging is easier,
multiprocessing is more robust, and more has been added
to the experimental graphical user interface which can now
be used to develop code. There is now a mechanism (still
under development) for saving objects in modules, and a
source-level profiler.

The Self system is the result of an ongoing research pro-
ject and therefore is an experimental system. We believe,
however, that the system is stable enough to be used by a
larger community, giving people outside of the project a
chance to explore Self.

This release is available free of charge and can be ob-

MaAY 1994

13

m THE BEST OF COMP.LANG.SMALLTALK

tained via anonymous ftp from Self.stanford.edu. Also avail-
able for ftp area number of published papers about Self.

There is a mail group for those interested in random
ramblings about Self: Self-interest@Self.stanford_edu. Send
mail to Self—request @self.stanford.edu to be added to it
(please do not send such requests to the mailing list itself!).

Self currently runs on SPARC-based Sun workstations
running SunOS 4.1.x or Solaris 2.3. The Sun-3 implemen-
tation is no longer provided.

@8 | have met hundreds of
programmers in the last 30 years and
can see no discernible influence of
programming on their general ability

to think well.

CLASS COMMENT RULES

Part of ParcPlace’s Advanced Programming ObjectKit (APOK)
is a class reporter that includes checking parts of class com-
ments against some simple rules. This is good. In my experi-
ence, there are far too many classes out there in real products
that have no comments at all. Of those that do, far too many
are inadequate or out of date. Let’s face it. When you’re on a
roll, writing detailed comments to explain everything just
slows you down. Going back afterward and figuring out which
comments need to be fixed is tedious and annoying. It’s too
easy to just skip it and let things get a little bit out of sync. You
can fix it later. Naturally, later never arrives. To help prevent
this, comment checking should be an important part of any
code review. A tool to make some of this checking automatic is
a godsend for reviewer and programmer alike.

The rules that it checks, while relatively simple, aren’t that
well documented. It always seems easier to just refer to other
class comments for examples (I have to congratulate ParcPlace
for actually having class comments and for following their own
rules). In the interests of making commenting easier, Niklas
Bjoernerstedt (nbt@funsys.se) has written some templates for
these rules. They are reproduced below:

Instance Variables:

bufferType <nil | String class

> Class of the byte-type object used to store data from the io

Connection

ClassVariables:

IM90Roots <Set of: IM900bject>
Class Instance Variables:

activated <true | false | nil > Holds the activated status of the
application

Pool Dictionaries:

I0Constants <Dictionary> of characters keyed by symbols
Subclasses must implement the following messages:
printing
defaultRelationType
class protocol
instance creation
newApp

FINDING REFERENCES IN PARCPLACE SMALLTALK
Tracking down references to objects using allOwners can be
painful. One problem is that the process of searching for refer-
ences generates more references. This is particularly noticeable
in ParcPlace Smalltalk, where it is common to see half a dozen
“false” references among one or two real ones. Many of these
are arrays, and it can be troublesome to pick out which are le-
gitimate references and which are artifacts of the search process.

To help filter out these false references, Jan Steinman
(jan.bytesmiths@acm.org) provides the following bit of code.
This should be added as a method in Inspector, and the field-
Menu method modified to call it (don’t forget to evaluate In-
spector flushMenus)

inspectHolders
"Inspect all who have a reference to the fieldobject. Do not include
references generated by the reference gathering process!"

(self fieldValue allOwners reject: [-each |
"don't include the object under inspection (it always contains the
field object)"
each == object
"don't include this inspector (in case the feld is 'self’)"
or: [each == self
"don't include the methods that got us here"
or: [(each class == MethodContext
and: [each selector == #allOwners
or: [each selector == #allOwnersWeakly:]])
"don't include the stack array with a temporary variable containing
the object"
or: [each class == Ammay
and: [each size = 12
and: [each first == false
and: [(each at: 2) == self fieldValue]]]}]]) inspect

This isn’t foolproof (in a pathological case, it could filter out a
legitimate reference), and it doesn’t do much filtering that
couldn’t be done manually, but I find it very useful. It clears
away the clutter and allows you to concentrate on the impor-
tant references. I added one extra line, each==self, to this
method because often I seemed to be using it on inspectors
with the field for self selected giving me an extra reference
from the inspector itself.

Note that in ParcPlace, Smalltalk references sometimes hang
around awhile after they should be garbage, presumably due to
WeakArray references. This can be confusing, so when in doubt,
force a garbage collect from the Launcher and see if it helps.

Alan Knight is an object person with The Object People. He can be
reached at 613.225.8812 or by email at knight@acm.org.

14

THE SMALLTALK REPORT

MALLTALK IDIOMS

Kent Beck

Where do objects come from?
From variables and methods

objects are born without blushing. So far we’ve seen two

patterns: objects from states and objects from collec-
tions. This time we’ll look at two more sources of objects: ob-
jects from variables and objects from methods. All four pat-
terns have one thing in common—they create objects that
would be difficult or impossible to invent before you have a
running program.

These patterns are part of the reason I am suspicious of any
methodology that smacks of the sequence, “design, then pro-
gram.” The objects that shape the way I think about my pro-
grams almost always come out of the program, not out of my
preconceptions. Thinking “the design phase is over, now I just
have to push on and finish the implementation” is a sure way
to miss these valuable objects and end up with a poorly struc-
tured, inflexible application to boot.

L et’s see if I can get through this third column on how

PATTERN: OBJECTS FROM VARIABLES
Problem: How can you simplify objects that have grown too
many variables?

Constraints: It is common to add a variable to an object
during development, then add related variables later. After a
while, this process of accretion can lead to objects that have
many variables. Such objects are difficult to debug, difficult to
explain, and difficult to reuse.

Still, the object more than likely works as desired. You'd
like to avoid changing code and risking breaking the system for
no reason. You will pay a space penalty for breaking the object
up, as each object requires an 8 or 12 byte overhead.

Solution: Take variables that only make sense together and
put them in their own object. Move code that only deals with
those variables into methods in the new object.

Example: The classic example of this pattern is dimen-
sioned numbers. Because Smalltalk doesn’t have a built-in
framework for dimensioned numbers, programmers often
simulate computing with dimensions by storing a value and a
dimension together;

Class: Page
variables: lines widthNumber widthUnits heightNumber heightUnits
Code has to take the different possibilities for units into account:

area
| widthInches heightInches |

widthInches := widthNumber *

(widthUnits = #mm ifTrue: [25.4] ifFalse: [1]).
heightInches := heightNumber *

(heightNumber == #mm ifTrue: [25.4] ifFalse: [1]).
“widthInches * heightInches

The number and units for width don’t make sense without one
another. Take away one variable and the other no longer is
useful. The same is true for height. Both are candidates for ob-
jects from variables. First we have to create a Length object to
hold both the measure and units:

Class: Length
variables: magnitude units

Now the Page can be simplified:

Class: Page
variables: lines width height

and the area method can be simplified, too:

area
A(width * height) inches

I'll leave the implementation of Length arithmetic as an exer-
cise for the reader and maybe as the subject of a future column.

Once you have Length, you will find many places to use it.
The resulting code will be much cleaner, easier to read, and
more flexible. If you have to add cubits as a measure, you
won’t have to visit a hundred methods, you'll just have to fix
Length. Following up on object from states, I suppose this is
another way to avoid the need for case statements. Rather than
build the cases into many different methods, you build it into
one object and hide the caseness of it.

How can you know when and how to simplify an object
that seems to have too many variables? You should obviously
avoid the extremes: no object with fewer than two variables
will work because you’d never have enough information in one
place to write a readable method. All the variables in the world
in one object would result in an entirely unreadable, un-
reusable mess. How can you walk the delicate line between
breaking objects up too much and too little?

One telling sign that this pattern is appropriate is when you
have two variables in an object with the same prefix and differ-
ent suffixes. Thus, if you see headCircumference and head-
Weight as variables, they likely could be factored into their own

May 1994

15

ODBMS

ODBMS 2.0
Smalltalk Object Management

Client-Server Architecture

Object Management supporting
Versions, Transactions, Distribution
Multimedia-Objects

Objects o RDBMS

Available as
Single User, Network and Server Version

Supports Smalltalk under
Windows, Windows NT, OS/2, Unix

Successful applications:

Smalltalk Team Development
Personal Data Manager
Configuration of Complex Systems

Objectoriented Technology by
VC Software

USA: VC Software, Houston TX
v (713) 333-8936, f: (713) 333-3743

Putnlnrwn}lrgﬂ 38118 Braunschwei
v: +49 531 24240-0.[:44953124‘2':&24
USA: Object Power, Harvard MA
w(sos)mgﬂ,ﬁ(sosnms%

UK: , London
v: +44 71 436 9481, £ +44 71 436 0524

m SMALLTALK IDIOMS

object, reducing the original object’s variable count by one.

Now for the second pattern du jour, objects from methods.
This isn’t a pattern I have. (This is a usage that has spread
quickly in the pattern community. You’ll present a pattern and
someone will say, “I have that pattern,” meaning they use it,
even if they haven’t ever articulated it before.) Several people I
respect have reported excellent results with it, so I'll do my best
to make the case for it. Perhaps there is something else in my
programming style that causes me to find these objects another
way, or maybe I just never find them. I haven’t really thought
much about it. Anyway, here is the pattern:

PATTERN: OBJECTS FROM METHODS

Problem: Sometimes you write a method that is too long to
read well. Reduction with the usual techniques (e.g., compose
methods), doesn’t seem to make it read any better. How can
you simplify methods that resist easy reduction?

Constraints: Creating a new object is one of the weightiest
conceptual decisions you can make when programming with
objects. You should never make the decision to create one
lightly. If the object in question has no obvious counterpart in
the problem domain, you should be even more careful. The in-
creased load on downstream programmers is one reason to
create as few kinds of objects as possible. The tendency of ob-
jects to leak into the user’s consciousness is another.

Objects are great for structuring information, particularly
information that has a behavioral or computational compo-
nent. They are good for representing not just the user’s view of
a program, but the programmer’s view as well. When you have
tried simpler methods of writing a computation and failed to
produce a result that effectively communicates your intent as a

| programmer, you are justified in creating new objects to sim-

plify your computation.

Methods that are candidates for this treatment have several
features in common. First, they are long. Two, three, and four
line methods composed out of other provocatively named
methods generally communicate well.

Second, they are not easily shortened by splitting them into
smaller methods. This may be because the parts of the method
don’t make sense when separated, or it may be because you
have to pass so many parameters to the submethods that you
have trouble naming them all meaningfully. The submethods
may also need to return two or more values. Finally, such
methods often have many temporary variables (resulting in the

i many parameters to the submethods).

Solution: Create an object encompassing some of the tem-
porary variables from the complex methods that manipulate
those variables into the new object. In the original method,
create one of the new objects and invoke it.

Example: As | said in the preamble, I don’t have a good ex-
ample of this pattern. I have used object languages that didn’t
have points, however, and I can imagine discovering them us-
ing this pattern. If you have a method that displays a sequence
of pictures:

continued on page 21

16

THE SMALLTALK REPORT

RODUCT REVIEW

Digitalk’s Team/V

ment. Starting with the mature base class library, devel-

opers add new classes and new behavior to existing
classes using the interactive browsers, inspectors, and debug-
gers of the environment. However, after reaching a given mile-
stone in the development process, the developer is left with the
question, “What did I add to the base image?”

Smalltalk teamns, as all software development teams, gener-
ally have the challenge of delivering high-quality products un-
der tight timetables. Smalltalk teams have the added pressure
of “proving” the new technology to management. Shipping a
module with a missing method or an uninitialized variable can
be detrimental to these ends, and Murphy’s Law predicts the
certainty of a runtime error occurring from the omission.
Team/V, from Digitalk, is team-oriented configuration man-
agement software that aids in structuring the project and deliv-
ering complete applications.

The other most notable product in this category is
ENVY/Manager, from Object Technology International, Inc.,
which has been previously reviewed in this publication.! This
article explains the functionality and features of Team/V and
highlights areas where it differs from ENVY/Manager.

Team/V addresses the major issues of team development in
Smalltalk:

1. Identification of the additions to
the image that make up the appli-
cation.

S malltalk is a highly productive programming environ-

LI
wx modifications to base
CUA '31 Controls

2. Coordinating the efforts of the de-
velopment team.

Team/V Enhancements
Team/V Interface
Team/V Protected

M18 CP298 Support

M18 Scheduler for 05/2

3. Version Control.

Scot Campbell

bers as development progresses. Comparison browsers highlight
the differences between any two versions of a package.

PACKAGES

The fundamental organizing structure in Team/V is the Pack-
age. A Package is intended to encapsulate one unit of function-
ality. For example, the set of classes and methods that support
asynchronous communications could form a package. In addi-
tion to being a unit of functionality, the package is also a unit
of sharing, being used by any applications that require the
function. By assigning the packages among the developers of a
teamn, a project can distribute the work to be done. A package
consists of the following:

* Name—for identification purposes (this name appears in
the browsers),

= Annotations—are simply key/value pairs for commenting
the package,

* Comment—a predefined annotation,

* Definitions—are ordered collections of units of Smalltalk code.

Packages roughly correspond to ENVY Applications, however,
there are differences. ENVY applications maintain two relation-

,f“ TET

TEAM/V CONCEPTS Class [Epher
Teamn/V adds mechanisms and tools to Superclass
help structure and manage the work of a
team. Packages organize the code that v
- Varlables —
help to identify the makeup of the appli- iglr:stam:e
cation and coordinate the efforts of indi- [ig class Instance)

vidual members. New browserswork with ~ [@Pe°!
packages, and version control mechanisms
manage changes to packages. Versions of
packages are saved in a repository where
they can be loaded by other team mem-

Figure 1. The Package Browser.

May 1994

17

m PRODUCT REVIEW

tion Orga

** base class liby
on nodification:
CUA '91 Controls]

»EphemerisCalculator
»GeographicSpot
I8 Float>asTime

| Float>decimal ToSexagesimal
Float> fractlonalPart
Floal>sexagesimalToDeclmal

TimeZones := Dictionary new
at: "ADT" put: -8;
at: "AST' put: -5;
at: "BST' put: 8;
at: "CDT’ put: -5;
at: "CEST’ put: 1;
at: “CET" put:2;
at: “CST' put: -6;
at: ‘EDT" put: -4;
at: ‘EST' put: -5;

: 'GMT' put: 8;

. 'HKT* put: 8

Figure 2. The Definition Organizer.

ships. The first, prerequisites, indicate what other applications
are required before a given application can be loaded. OTI
claims that prerequisites are essential for supporting the con-
cept of pluggable software components while Digitalk claims
they limit reusability. Both positions are valid. Anything we add
in Smalltalk is based upon what already exists, and in fact an
application named “Kernel” (which includes most of the base
class library) becomes the default prerequisite for any applica-
tion we define. And documenting what services are required
and enforcing the requirement is helpful, in fact, essential to
prevent errors. However, the biggest challenge in effectively us-
ing either of these products is coming up with the best configu-
ration of packages or applications. A poor configuration of ap-
plications will lead to overlapping and unnecessary prerequisite
relationships that can limit reusability.

The second relationship supported by ENVY applications
are subapplications, which is a partial relationship. A subappli-
cation is a part of an enclosing application. The most common
usage of this is for multiplatform development, where the ap-
plication contains function common to all platforms, and sub-
applications contain platform-specific code when it is required.
Subapplications can be nested, which allows the project to bet-
ter organize the classes in a large application.

DEFINITIONS
Definitions are the main component of a package.
An element in the definitions list can be one of the following:

Class—both definition and methods,

Class Extension—methods for a class, no definition (called
“loose methods™ in the Team/V documentation),

Global variable,
Pool Dictionary,

Initializer—an arbitrary Smalltalk expression whose primary
purpose is initializing objects.

A new browser, the Definition Organizer, provides the capa-
bility to order the definitions. By sequencing the definitions,
you can ensure that needed initialization is run before any
component that requires the initialization. The Definitions
concept appears more flexible than the collection of defined
and extended classes in an ENVY application or subapplica-
tion, The Team/V documentation talks of the elements of a
class definition (instance vars, class vars, class instance vars,
and the pool usage), as discrete items in the definitions.
While this is currently not possible, they have plans to sup-
port class extensions that contain more than just a set of
methods. You could then have an extension that added some
methods and a needed instance variable, required only by
the extension.

The other area where definitions appear more flexible is in
the ordering of the definitions. ENVY adds protocol to per-
form initialization before or after an application is loaded. The
loaded and removing methods are commonly implemented for
applications in ENVY. The loaded method can be used for ini-
tializing classes in the application. Team/V defines a class ini-
tializer, which puts the initialization with the class. The ENVY
removing method is commonly used for cleaning up the image
when an application is unloaded, such as removing a global
variable. In contrast, with Team/V, because the global is part of
the definition, when a package is deleted, any unreferenced
globals defined in the package are removed automatically.

An example ad-hoc initializer given in the tutorial tests the
package after it is loaded. This rigor would go a long way in test-
ing prerequisite conditions, ensuring that the image the package
is loaded into will support the requirements of the package.

VERSION CONTROL

The Glossary that comes with the Team/V documentation
defines a revision as “One of potentially many incarnations of
a given package” while it defines a version as “One of poten-
tially many incarnations of a given definition.” The distinction
is not critical; however, I will attempt to use them in their cor-
rect context.

When a package is “committed” the package is stored in a
repository under a specified revision number. Team/V sup-
ports repositories managed with Intersolv’s PVCS or the file
system of the OS being used. The PVCS repositories are more
space efficient, as only the delta between revisions is stored,
and all revisions can be stored in one archive. PVCS also in-
cludes access control mechanisms to limit who can make a new
revision of a package and mechanisms to deal with concurrent
commitment. You do not have to separately purchase PVCS to
use the PVCS archives; Team/V ships with support that allows
it to utilize PVCS archives.

ENVY defines component ownership, classes have owners
and applications have managers. Although any developer can
modify a class, it is the owner who maintains the major path of
development for the class. The application manager is the only
one who can release an application, thereby making it available
for others.

18

THE SMALLTALK REPORT

With the purchase of the full PVCS product, Team/V
users can put controls on who can modify or release a pack-
age. Without having the full PVCS product, I was unable to
determine if PVCS provides the flexibility or dynamics pro-
vided by ENVY.

OTHER FEATURES

Class Definition

Class definition is done through a formatted pane on the
package browser. In addition to naming the class, its super-
class, instance variables, class variables, and pools that are
supported in Smalltalk/V, Team/V adds Class Instance Vari-
ables, Comments (for both the class and variables), and class
initialization. Message categories are also implemented for
classifying, or grouping methods. Although the notion of
public and private methods is not directly implemented, as in
ENVY, private methods can be placed in a category named or
containing “Private,” which would provide the benefits of
documenting the public/private protocol of the class.

Conflict Resolution

When a package is loaded Team/V first checks for any
conflicts. A conflict occurs when one of the definitions of a
package you are trying to load has the same name as one of the
definitions already loaded in your image. A conflict also occurs
if you attempt to load a class extension for a class that is not
defined. Conflict resolution only occurs when you load a pack-
age. Using the Install/File-In menu items does not perform
conflict resolution. However, with the Package/Load operation
one can select any source file and have the conflict resolution
performed when filing in source in nonpackage format.
Team/V then generates a package named “From: <filename>,”
which you can then rename to an appropriate name.

NEW BROWSERS

Package Browser

The Package Browser is a new tool for working with Packages
(See Fig. 1). The package browser has four panes at the top.
The top left pane shows the packages in the image. Packages

that are only opened and not loaded are enclosed in parenthe- -

ses. Open packages are packages that are only open for inspec-
tion; they are not part of the executable image. Open packages
are useful for comparing with other revisions of the same
package or any other package. You can also modify and com-
mit a new version of an open package. In this way you can re-
solve a conflict in a package you are attempting to load.

The second pane from the left shows global definitions
(classes, global variables, and pool dictionaries) for the selected
package. The third pane from the left shows the message cate-
gories for the selected definition if the definition is a class. And
finally the right pane shows the methods for the selected cate-
gory, if a category has been selected. A nice feature of the
method list is that it can show inherited methods in addition
to those defined within the selected class.

The lower half of the package browser shows various as-

pects of a definition, a class definition (as shown in the
figure), method source if a method is selected, or any of the
comment fields that the system supports. This pane is the pri-
mary place for modifications to be made. In fact, the Class Hi-
erarchy Browser has been made read-only in Team/V. Source
code formatting for method source is also available from the
package browser.

Some of the panes support direct manipulation (drag/drop)
for moving components around. However, because the panes
are not multiselect, I found this to be tedious at times. For ex-
ample, a definition that defined a class could be moved from
the definitions list to a different package, but a definition that
was only a class extension could not. In this case, each method
had to be moved individually. This tedium occurs mainly
when you are filing in external source while constructing your
packages for the first time. ENVY defines a default application
that receives all filed-in code. I found the default application
mechanism to be more convenient.

The browsers show modified components in italics and a
different color, defined classes are in bold while class exten-
sions are not. These visual cues are excellent for grasping what
changes have been made since the last commit.

Definition Organizer

The Definition Organizer lets you examine the definitions
within a package in the order in which they will be initialized.
You can reorder the definitions as necessary. The top left pane
shows the packages currently loaded or opened, the top right
pane shows the definition list for the selected package, the
lower left pane shows the annotations for the selected package
or definition and the lower right pane shows the source for the
selected definition or annotation (See Fig. 2).

While the Package browser only allows specification of
global definitions only (class, pool and global variable defini-
tions), the Definition Organizer allows all types of definitions to
be specified. Only the definition organizer allows for the ad hoc
initializers to be added. The Definitions Organizer is also the
tool to use for annotating a Package.

Definition Group Browser

The Definition Group Browser has the same appearance as the
familiar method browser so I have not shown it. The main
difference is that the contents can be any definition (e.g.,
method, class, initializer, etc.) rather than just methods. A nice
feature added to the Smalltalk menu is Browse—

>Modified. . .which brings up a Definition Group Browser on all
definitions that have been modified since you last committed
the packages.

History Browser

The bottom right of the Team/V browsers contain a button
labeled with version information for the given definition.
Clicking on this button brings up a History Browser that con-
tains all the known versions of the definition. The versions
known are only those since the last compress of the changes

May 1994

19

m PRODUCT REVIEW

all Ttk wlup;lr\'sun
nloﬂf/r:
CUA "91 Controls

[Ephemeris Calculator
{ISerial Comm Support

*¥ modificatians (o base class lbrary
CUA "91 Controls
E| Is Calculator

(Serlal Comm Support 1.1)
=ComPort
»definition
vinstance methods
bytesinQueue
clear
flushinputBuffer
flushOutputBuffer
getch
initlallze

g~ ComPort
g1 b definition
§ wmstance methods
1 bytesinQueue
clear
flushinputBuffer
flushOutputBuffer
getch

Inltiallze

Figure 3. The Package Comparison Browser.

file. This differs from ENVY where every save of a method
saves an edition in the repository that can later be browsed
and compared with other editions. I expected to have ver-
sions of methods in opened packages available in the History
Browser, but they were not. Not being able to have history di-
rectly available for versions of methods across versions of
packages is a definite disadvantage.

COMPARISON TOOLS
Team/V allows you to compare two versions of a method, or
two revisions of a package.

Method Comparison Browser

Selecting Method—>Compare from a Package Browser or Ver-
sion—>Compare from a History browser brings up a Method
Comparison Browser. The Method Comparison browser is basi-
cally two method browsers side by side. The differences be-
tween the two selected versions of the method are shown both
in a different color and underlined.

Package Comparison Browser

Team/V allows you to compare two versions of a given pack-
age, or you can compare two completely different packages
(See Fig. 3). The top two panes are the revisions list; revisions
of all packages appear. The middle two panes are the defini-
tions list. Definitions that are in one revision but not the
other are in boldfaced text. Definitions that are in both are in
italics. The bottom panes are the contents panes with differ-
ences underlined.

The granularity of versions is finer in ENVY than Team/V.
ENVY maintains versions of methods, classes, subapplications,
applications, and Configuration maps (groupings of applica-
tions) in the repository while Team/V maintains only versions
of packages.

15 1o Dase cla ltibrary ««

Documentation

Team/V’s documentation is very good and
easy to use. In addition to the explanation of
how the new browsers work, there is a chapter
MBS that explains the concepts behind Team/V

B and a tutorial that acquaints the new user
with the development process under it. One
very useful chapter answers questions that
arise during the development process. Ques-
tions like, “How do we divide up the work of
the application?” (i.e., along what lines should
we define our Packages?).

The Team/V Programmatic Interface

The Programmatic Interface is a mapping of
the semantic components of Team/V into
classes that you can use to create your own
custom tools and browsers. Digitalk’s inten-
tion is to keep this interface compatible in
future releases of Team/V. Multiplatform
development could be built using this inter-
face and an annotation convention on packages. Using an
annotation named something like “Platform” and having
values that indicate the intended platform for the package
(e.g., “AlL” “PM,” “Win,” etc.) one could extend the system
with a “smart” export to have something like ENVY applica-
tion line-ups, thereby providing some amount of multiplat-
form support.

OTHER DIFFERENCES

ENVY defines configuration maps that are groupings of appli-
cations that other developers can load to bring their image up
to a given point in the development process. Configuration
maps are stored in the repository as are all components in
ENVY. Team/V does have a Build Script operation that will
build a script that a developer can run to load current packages
into her image. But because they are not stored in the reposi-
tory, the management would not be as easy.

A particularly hot issue of late on the CIS Digitalk forum
has been image size. ENVY includes a packager that will create
a separate runtime image containing only the code that is re-
quired at runtime. One drawback of this is that changes that
Digitalk makes to its implementation of Smalltalk affect the
packager. There was a long delay between the release of
Smalltalk/V OS/2 2.0 and a packager that worked for it. One
reason you may want to stay with a single source for tools.

Team/V is not supported on ParcPlace’s Smalltalk. Many
large companies have projects using both the Digitalk and Par-
cPlace versions of Smalltalk. With ENVY these projects could
share a common repository.

CONCLUSION

Both Team/V and ENVY share all the mechanisms to support
team development and version control. If you are delivering a
standalone commercial application on multiple platforms,

20

THE SMALLTALK REPORT

ENVY with its packager for producing minimal sized delivery
sets and application line-ups for supporting multiplatform de-
velopment seems better positioned. If on the other hand you
are in an enterprise that has standardized on a platform and
you are delivering many Smalltalk applications that can share
base class libraries, you can easily package your applications in
object libraries and have small images that bind to needed li-
braries and open the required user interface. In this case,
Team/V provides all the needed tools.

Reference

1. Steiman, J., and B.Yates, “Product review: Object technology’s
ENVY developer,” THe SMaLLTALK REPORT, 2(2), 5-11, October
1992.

Sci;t_(_jampbél_i is a Smalltalk contractor in California. Before con-
tracting, Scot developed programming tools at Chevron Informa-
tion Technology Co. Scot can be reached at scot@netcom.com or
CISD: 70641,2501.

= SMALLTALK IDIOMS

continued from page 16

display
[xy]
x:=y:=0.
10 timesRepeat:
[picture displayAtl: x y: y.
XK:i=X+2,
y=y+2]

Using objects from methods, we notice that x and y are used
together. We create a point object with X and y variables. We
can then simplify the above method to the following;

display
lpl
p:=Point x: 0y: 0.
10 timesRepeat:
[picture displayAt: p.
p=p+2]
I don’t find this example compelling, but if you had an algo-
rithm that used a half dozen points, you could easily get lost in
the thisX, thisY, thatX, thatY’s. The transformation would make
much more difference.
Ward Cunningham told me a story of using this pattern on
a piece of financial software. There was one method that was
long and ugly, but it was important because it computed the
value of a bond at a given moment. As soon as they turned the
method into its own object, the computation came into focus.
These advancer objects became the centerpiece of their
caching strategy.
In my next column, I will end my series on the origin of ob-
jects by examining two common patterns for finding objects:
objects from the user’s world and objects from the interface. @

Shift Over
To CPU!

If you're an experienced Smalltalk professional, shift
your career over to the exciting world of consulting
with Computer People Unlimited. We're the
Midwest's premier professional software services
firm handling a full spectrum of engagements from
staff supplementation to complex turnkey projects.
Currently, we have opportunities available
for experienced:

SMALLTALK DEVELOPERS

You will be rewarded with a highly competitive
salary and complete benefits. To find out more
about these Midwest opportunities, please call or
fax your resume to:

Appleton/Green Bay --- Marv Miller

Phone: 1-800-960-1278 or Fax: 414-73B-4499
Mllwaukee --- Julie Endlich

Phone: 1-800-527-8462 or Fax: 414-995-4011
Madison --- John Manyo

Phone: 1-800-280-2782 or Fax: 608-293-3810
Minneapolls --- Scott Fleischmann

Phone: 1-800-278-2850 or Fax: 612-338-3210

You may also send your resume to: Computer
People Unlimited, Dept. SR, 732 N. Jackson Street,
Milwaukee, WI 53202. Sorry, no entry
level positions available. We are an equal
opportunity employer.

||IIII|||'
.
Iy
(T

COMPUTER PEOPLE UNLIMITED inc.

Building On Our Strengths.

MAY 1994

REC RU ITMENT TO PLACE AN AD, CALL SHIRLEY SAX AT 212.274.0640

Smalltalk

software Developers

fied individuals will possess at least 1 year of
application experience.

ATS offers excellent salaries and company-paid

benefits. For consideration, please forward

resume to: Advanced Technology Systems, Inc.,
ite 2460, 301

ATS

Advanced Technology Systems, Inc.

micado SoftwareConsult GmbH is one of the lea-
ding system houses in Germany for object ori-
ented languages. It has an expert team with wide
experience in development and customer support.
Due to the astounding growth of the object orien-
ted market in Germany, we are currently seeking
the following freelance OO professionals:

Smalltalk
Designers and
Developers

If you welcome new challenges and if you want to
explore your career opportunities please send or
fax your resume to

micado SoftwareConsult GmbH

Reutherstr. 1a-c D-53773 Hennef

Tel. (49)2242-871-450 FAX -455
Compu-Serve 100024,2444

OBJECT EXPO NEW YORK

JOB FAIR

JUNE 7, 11-6:30 B JUNE 8, 11-6:30
JUNE 9, 9am-2pm

DataLink Corporation and other top
recruiting, consulting and hi-tech firms
will be at the East Coast’s largest OT spe-
cific expo looking for YOUR object-ori-
ented expertise and skills. The OBJECT
EXPO NEW YORK JOB FAIR, located in
a private area on the exhibits floor, allows
you to talk one-on-one with recruiters
about the best nationwide career oppor-
tunities for OT professionals.

BRING YOUR RESUME—RECRUITERS
WANT TO MEET WITH YOU!

Fax to 212.274.0899 Dept. OE for a
FREE exhibits pass to attend
the Job Fair.

Sofiware Engineering

000
£OC PRO-STAR

PRO-STAR is a fast growing management and
information systems consulting company
specializing in applications development. We
provide services to our clients that support all
phases of the systems development life cycle. We
have expertise in virtually all hardware and software
technologies.

We have significant client/server development
projects underway. We need to add senior smalltalk
developers to our staff. Experience with ENFIN is a
plus. If you are a talented, hard working information
technology professional, come join our team in
Sacramento, California. Please respond to:

PRO-STAR, a division of PRODATA, Inc.
6929 Sunrise Bivd., #210

Citrus Heights, CA 95610
(916)969-0176

FAX: (916) 722-1045
rfellows@netcom.com

FORCE-FIT RELATIONAL TECHNOLOGY
AND YOU COULD REALLY HIT IT BIG.

Maybe you're beating your head against the relational you can store Smalltalk objects directly in the
database wall - trying to integrate your Smalltalk database. We make your development time more
applications with an ADBMS. Maybe you're spending productive and your object applications more efficient.
all your time debugging SQL calls instead of building Learn for yourself by calling us today for a
great applications. Or maybe you've hit the relational copy of “Object or Relational? A Guide for
performance wall because you're wasting too much Selecting Database Technology After all, the
processing time an object decomposition and recomposition. best way to deal

Servio™ has a better way. With our high-performance with an obstacle SER\/ IO
GemStone® object database management system, is to avoid it in

OBJECT TECHNOLOGY
the first place. FOR THE REAL WORLD

Call 1 B00-243-9369 for a free copy of “Object or Relational? A Guide for Selecting Database Technology”

Sarvio is & trademark and GemStone is a registered trademark of Servin Corparation.

Not long ago, client/server
development required massive
amounts of time, money and
expertise to combine different
and complex technologies.

e Now Digitalk
ARTS® a rapid
application
development
tool set, lets you
easily integrate
your software

)

client/server applications.

PARTS is the only object-
oriented technology that lets
you leverage your legacy code
and the knowledge of your
current staff.

Only PARTS products let
you take existing code—written
in Smalltalk/V, COBOL, C, SQL
and other languages—and wrap
it into components or “parts’
Which can then be virtually
snapped together visually. The result
is smooth-running client/server
applications in a fraction of the
usual time. For a fraction of the
usual cost.

PARTS supports all popular
SQL databases like Sybase, Oracle
and DB2. Plus legacy or late model

PARTS. THE CLIENT/SERVER INTEGRATION TOOL.

DIGITALK e =

Gul

systems like CICS, COBOL, APPC
and SOM. And PARTS lets you
develop on both 0S/2 and Windows.

RATED #1-TWICE.

Only months ago,
awarded PARTS Workbench the
highest rating ever in the 0S/2

NOTES

category, calling it “the defini-
tive visual development tool
And InfoWorld ranked
PARTS the #1 component-
based tool for visual develop-

a—11 ment. InfoWorld’s Stewart

Alsop adds: “There's nothing
like it on the PC.”

To make large teams pro-
ductive, PARTS also supports
group development and version
control. Plus PARTS has a host
of graphical power tools to give
you all the power of objects—
without the learning curve.

10 YEARS EXPERIENCE.

And PARTS is from
Digitalk. The company that's
been providing object-oriented
tools to the Fortune 500 longer
than anyone else in the world—

—_=|| with over 125,000 users.
= -~ Call 800-531-2344 X 610

and ask about our
PARTS Workbench
Evaluation Kit.

With minimum
effort, you'll learn why
PARTS is the maximum }
solution for client/server
integration.

DIGITALK

	By Article Title
	Digitalk's Team/V
	Extending the application model
	Miscelleanous
	"Smart Menus" in Smalltalk/V for Win32
	Where do objects come from?

	By Author Name
	Beaton, Wayne
	Beck, Kent
	Campbell, Scot
	Howard, Tim
	Knight, Alan
	Kohl, Bill

	By Topic
	comp.lang.smalltalk
	Product Review
	Smalltalk Idioms

