The Smalitalk Report

The International Newslettef for Smalltnlk Programmers

January 1992

Volume 1 Number 4

SHOULD CLASSES

HAVE OWNERS?
PERSPECTIVES
FROM
EXPERIENCE

By S. Sridhar

Contents:

Features/Articles
I Should dasses have owners!: Perspec-
tves from experience
by §. Sridhor
12 Smalltalk comes to the mainframe, part 2
by Glenn J. Reid
Columns
6 Object-Oriented Design: Determining object
roles and responsibilities
by Rebecca Wirfs-Brock
9 Getring Real: How to use class variables
and class instance variables, part|
by Juanita Ewing
Departments
IS Product Review: Profile/V: a performance
profiler for Smallaali/V Windows
reviewed by jon Hylands
17 Book Review: OBECT-ORIENTED MODELING
AND DesieN
reviewed by Dan Lesage
19 What They’re Saying About Smalitalk
20 Product Announcements

his is a response to Juanita Ewing's “Should classes have owners!" article in

the September 1991 issue of The Smalltalk Report. There are several themes

in the article with which I'd like to take issue. | have been a Smalltalk pro-

grammer for some years now, and for about the last nine months several of
us at Knowledge Systems Corp. have been extensively using a commercially available de-
velopment environment that pervasively supports the concept of class ownership. This is
the ENVY/Developer team development tool running on Smalltalk/V PM and
Smalltalk/V Windows. This is a powerful programming environment designed to facilitate
cooperative software development among a team of programmers. The tool is flexible
enough to cater to the needs of multiperson teams as well as the lone programmer. For the
purposes of this article, I shall use the term ENVY to refer to ENVY/Developer.

It is in the context of my experience of having developed Smalltalk code using a team
tool like ENVY in an inherently multiperson environment that I shall address each of the
issues Juanita has raised. 1 shall also attempt to provide technical as well as sociological
answers to the questions she has raised. 1 use ENVY here to set a practical context for doc-
umenting my experience with many of the class ownership issues discussed in the original
article. Readers should not misconstrue this as a commercial plug for the product.

TERMINOLOGY PRELUDE

Before delving into specific issues, let us define some key terms relevant to this discussion.
ENVY supports the notions of class owners and class developers. A class is only one of many
software components that have an ownership aspect associated with them. Ownership im-
plies that someone is responsible for controlling a software component’s evolution. This
control manifests itself in the fact that only an owner can release a class for public con-
sumption.

The granularity of a software component can be varied: a method, class, set of classes,
set of sets of classes, etc. ENVY also supports an additional programming environment
structure called an application. An application is a collection of defined and extended
classes that together accomplish a well-defined purpose. In addition to providing a physi-
cal organization of related classes, it also serves as a large-grain reusable component. Team
members no longer just talk about reuse of a single class; they talk about reuse of function-
ality. This is good because the responsibility for accomplishing a given piece of functional-
ity may be distributed among a set of closely collaborating classes.

Class developers are team members who may author one or more classes in the applica-
tion. They may be distinct from the person who actually owns the class.

WHO IS BEST QUALIFIED TO FIX THE BUG OR WRITE THE NEW
METHOD?

Juanita writes: “assume the owner of a class is rewarded for producing a reusable class.
What if another developer finds a bug in that class or thinks of a useful extension! In a

contimied on page 4.

EDITORS’
CORNER

John Pugh Paul White

n last month’s editorial, we urged you to take our columnists to task if you did not agree
with their opinions on particular topics. Well, you did just that! The approach to change
management proposed by Juanita Ewing in her opening Getting Real column, “Should
classes have owners?,” has spurred several well-known members of the Smalltalk commu-
nity to put forward their ideas. In this month’s lead article, S. Sridhar from Knowledge
Systems argues that, based on his experience, class ownership is indeed a primary compo-
nent of any strategy for managing change in large Smalltalk applications. Next month,
Jeff McKenna will put forward his view that change management is best organized
around what he refers to as the two distinct phases of software development using
Smalltalk—functional expansion and consolidation. Change management seems to be a
topical subject right now, and we look forward to hearing your views.

Two of our regular columnists appear in this issue. Rebecca Witfs-Brock continues her
Object-Oriented Design column by discussing the importance of understanding object
roles and responsibilities. In this month’s Getting Real column, Juanita Ewing begins a
two-part article on the appropriate use of class variables and class instance variables.
Also in this issue, Glen Reid, the architect of the Smalltalk/370 project, continues his
description of their project. In this issue, he discusses in detail many of the implementa-
tion issues that are specific to implementation on a mainframe, including a scheme to in-
troduce explicit variable typing in Smalltalk.

Rounding out this issue, Jon Hylands takes a look at the first of a new line of third party
Smalltalk products, Profile/V, a code profiling tool that can be used to monitor the per-
formance of Smalltalk applications. Finally, Dan Lesage reviews Object-Oriented Modeling
and Design by James Rumbaugh et al.

The Smalltalk Report is still finding its feet. Let us know what you like, what you don’t
like, and what you would like to see. We look forward to hearing from you and hope you
enjoy this issue.

7-; (N ?Ll(_? f) y \ -C;Lv?‘i(:\"

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, every month except for the Mar/Apr, July/Aug, and Nov/Dec combined issues.

Published by COOT, Inc., a member of the SIGS Publications Graup, 588 Broadway, New York, NY 10012 (212)274-0640. © Copyright 1991 by
OOOT, Inc. All righs reserved. Reproduction of this material by electronic mransmission, Xerox or any other method will he treated as a willful viola-
tion uof the US Copyright Law and is flatly prohibited. Material may be reproduced with express permission from the publishers. Mailed First Class.

Subscription rates 1 year, (9 isues) domesic, $65, Foreign and Canada, $90, Single copy price, $8.00. POSTMASTER: Send address changes and sub-
scriprion onlers to: THE SMALLTALK REPORT, Subscriher Services, Depr. SML, P.O. Bon 3000, Denville, N) 07834. Submir articles to the Editors at 91
Second Avenue, Ottawa, Ontario K1S 2H4, Canada.

THE SMALLTALK REPORT

Putting Smalitalk To Work!

1980 Smalitalk Leaves The Lab.

1984 First Commercial Version Of Smalitalk.

1985 First Industrial Quality Smalitalk Training Course.

1987 First Fully Integrated Color Smalitalk System.

1988 Responsibility-Driven Design Approach Developed.

1991 Smalitalk Mainstreamed in Fortune 100 Applications.
NEW! First multi-repository, group programming environment.

Smalltalk Technology Adoption Services

Technology Fit Assessment

Expert Technical Consulting
Object-Oriented System Design/Review
Proof-of-Concept Prototypes

Custom Engineering Services & Support

Smalitalk Training & Team Building

Smalitalk Programming Classes:

Objectworks Smalltalk Release 4
Smalltalk V/Windows V/PM V/Mac

Building Applications Using Smalitalk
Object-Oriented Design Classes:

Designing Object-Oriented Software: An Introduction

Designing Object-Oriented Systems Using Smalltalk
Mentoring:

Project-focused team and individual learning experiences.

Smalitalk Development Tools
NEW! Convergence/Team Engineering Environment™

We were there.
We were there.
We were there.
We were there.
We were there.
WE ARE THERE.
NEW!

Multi-user/shared repository development environment for teams creating production-quality Smalltalk applications.

Convergence/Application Organizer Plus™

Version management, development tools, and improved code modularity for individual Smalltalk developers.

Instantiations, Inc.
1.800.888.6892

B SHOULD CLASSES HAVE OWNERS?

continued from page ...

system with class ownership, the owner writes the code to fix
the bug or writes a new method. He is the one motivated to
make the class more reusable.”

First, the case where a developer finds a bug. Suppose 1
own a reusable class called Drawing. If another developer, say
Harry, finds a bug in Drawing, he creates a scratch edition of
the application containing the class Drawing, creates a new
edition of Drawing, fixes the bug, versions the change, and in-
forms the owner via email or otherwise of the fix. I, as the
owner, can examine the fix at my leisure, assess the impact on
the clients of the method, and, if all is well, incorporate the
fix into a future version of Drawing and then release it for pub-
lic consumption. Alternatively, I could simply release the ver-
sion of Drawing that Harry created. In the meantime, Harry
can continue to use the scratch edition of Drawing and do
anything he pleases to any of the existing methods of Drawing
without impacting any other team member. When I have re-
leased a new version of Drawing, he can load it into his envi-
ronment, replacing the scratch edition.

Thus, it is that Harry and I have resolved the bug by en-
gaging in a harmonious electronic “conversation” without dis-
rupting any other team member. He found the bug, submitted
a fix, and continued to do his work with his fix without await-
ing my approval. 1, as the owner of the method, evaluate the
quality of the fix, assess the impact of the fix, and then fold it
into the next version of the class and release it for our team's
use. The owner is the best person to assess the overall impact
since he is the one who most intimately knows the raison
d'etre for the method in the first place. He is probably the
most aware about the way in which existing and potential
clients use the method. ENVY automatically records the au-
thor and time stamp of the fixed method.

Alternatively, Harry can create a new working copy or edi-
tion of Drawing along a different stream of development or
versioning branch. When he is done fixing the bug, he ver-
sions the class with a mnemonic version label. (The
mnemonic label is not required; it is just a convention we
have adopted to meaningfully identify the different versions of
a class.) The owner then merges his contributions with the
officially released version of Drawing. The point of all this is
that:

e With good communications (which is required anyway for
healthy project sociology), class ownership does not ham-
per the evolution of a class into the reusable club. This is
primarily because changes to the class can be made asyn-
chronously.

® The owner reviews the fix in a different context from that
of the other developers. It is his responsibility to guarantee
the proper functioning of all the advertised interfaces of his
class and to the extent possible be familiar with all the us-
age contexts of his class.

ADDING CLASS EXTENSIONS

The case where Harry finds a useful extension to Drawing is
easily dealt with in ENVY. As a matter of fact, this situation
occurs constantly in our work with system classes like String,
Stream, etc. ENVY provides a programming environment ab-
straction called class extension that allows a developer to add
brand new methods to an existing class. These method exten-
sions are localized to the application in which the extension is
defined. Thus, Harry can add a new method to Drawing by cre-
ating an extension of Drawing in his application. Even though
I am the owner of Drawing, Harry does not require my permis-
sion to add the useful extension he needs. Furthermore, this
extension does not compromise the integrity of the original
class. A malicious Harry could, of course, destroy the class’ in-
tegrity by writing a method extension that corrupts the inter-
nal state of the class in a way that is incompatible with the rest
of the class’ behavior. The users of Harry's code are the losers.
Team sociology being what it is, Harry would be quickly ex-
posed by the users and be pressured to undo his mischief.

[t should be noted that the person who creates a class ex-
tension in a different application actually owns the extension.
Class extensions are a powerful mechanism for specifying and
managing application-specific behaviors for existing classes
and for dealing with orthogonal protocols for classes where
several developers are authoring different parts of the same
class. By splitting these orthogonal protocols along their func-
tional views using applications, multiple developers on a sin-
gle class can be managed realistically and effectively.

REWARDING REUSE
Juanita correctly notes that if a reusable class is provided by a
team of developers then the entire team should be rewarded.
It is our experience that a reusable class usually has a primary
author (or owner in ENVY parlance) and it can have multiple
developers different from the author. These secondary authors
can be reviewers, bug finders and fixers, and maybe even coau-
thors. Again taking the Drawing example, I may find that
Harry has made a dozen extensions to Drawing in his applica-
tion. Upon close examination, I determine that these exten-
sions are useful and general enough to warrant inclusion in my
Drawing class. In ENVY, as the class owner, [simply add
Harry as a developer of the class, have him promote the dozen
deserving methods to my reusable rendition of Drawing. All
the newly promoted methods carry Harry’s imprimatur. Thus,
Harry and I are established as coauthors of Drawing. Since the
programming environment explicitly identifies the people
who are working on an application (a large-grain reusable
component), it is easy to identify who to reward. A picky
manager can even measure the relative contributions to the
reuse genre and can thereby dispense rewards proportionately!
There is an interesting sociological aspect to this reward is-
sue that runs somewhat orthogonal to class ownership. If
Harry makes a change to my class that [don't like—as in
Juanita's world—who wins? As my colleague Lynn Fogwell

THE SMALLTALK REPORT

observes, being clear about who owns what, or more precisely
who is responsible for what, actually goes a long way in resolv-
ing conflicts before they get started.

FLEXIBLE PROGRAMMING ENVIRONMENT

I agree with Juanita that “flexibility in programming environ-
ments is critical.” I disagree with her statement, “Systems with
class ownership are not flexible.” A good programming envi-
ronment should be able to maintain flexibility without com-
promising the integrity and reliability of the classes. The pro-
gramming environment should be flexible enough to cater to
widely different organizational cultures and software environ-
ments. It should be appealing to the “rape and paste” rapid
prototyper as well as the person who is engaged in production
software engineering. In addition, it should be forgiving of the
user's mistakes.

In a production software environment, it is often necessary
to maintain comprehensive change control over the various
software elements; otherwise, system integration becomes a
nightmare. In certain organizations, it may be mandated that
third party reusable classes not be tampered with, for fear of
compromising the integrity and reliability of client code that
is dependent on them. Indeed, the reusable class vendor (an
internal organization or an outside source) may have shipped
a class library without any source. This is eminently possible
when classes are packaged as dynamic link libraries. Under
these circumstances, even though you cannot modify an exist-
ing method, in ENVY you can add extensions to these other-
wise read-only classes in your own application.

Juanita notes the difficulty in managing the ramifications
induced (vis-a-vis class ownership) by introducing changes in a
class hierarchy. She concludes, using an interesting syllogistic
argument, thar therefore the same developer must own all the
classes in the hierarchy. This need not be the case at all. In
fact, it is impractical to expect that the superclass and subclass
owners be the same. Often times the superclass owner may be a
third party vendor or a different organization geographically re-
mote from the subclass developer. In a programming environ-
ment such as ENVY with comprehensive version control and
configuration management facilities, a complete system con-
sists of a collection of compatible applications. By compatibil-
ity I mean, for instance, that the well-being of a subclass client
depends upon a properly functioning superclass. Now if the su-
perclass owner makes a change in his class, it may indeed com-
promise the integrity of the subclass. It is therefore incumbent
upon the subclass owner to adapt his class to the newly
changed superclass before a new configuration of the integrated
system is released. This is no different from the everyday situa-
tion where we developers have to port our classes to new ver-
sions of the Smalltalk products from vendors.

I agree with Juanita's concluding premise that classes de-
veloped by multiple programmers are understood by multiple
programmers. | disagree with her observation that class owner-
ship is an obstacle to accomplishing that. Classes in Smallealk

often reflect the style and personality of the author. Having
too many developers on a single reusable class may introduce
conflicting styles, idioms, and figures of speech that together
strike a discordant note to the hapless client. As a flexible
programming environment, ENVY recognizes the need for
new extensions to existing classes and therefore permits the
distribution of protocol among several applications possibly
authored by different programmers for ever-so-specialized rea-
sons. The primary author serves as a focal point for the evolu-
tion of the reusable class. A class, in the course of its lifetime,
may see its author pass on to a different project or even leave
the company. Or, the author may want someone else to as-
sume the class’ maintenance. Flexible programming environ-
ments provide mechanisms for effecting a smooth change of
guard to establish a new class owner.

CONCLUSION

The features and philosophy of class ownership (and indeed
that of software component ownership) foster a disciplined
software environment without compromising the classical
productivity gains of Smalltalk. Class ownership itself is inad-
equate. The ownership mantle has to be pervasively applied
across all the different units of software that together comprise
a complete system. This requires a programming environment
that uniformly applies the ownership philosophy across the
various development tools. It should be flexible enough to ac-
commodate different organizational work cultures vis-a-vis
team programming.

Class ownership provides a framework for properly separat-
ing the activities of component building from application
building. Component builders are those people whose major
goal is to build reusable components and who should have a
reward structure to match. Application builders are trying to
get an end user system out the door, and programming for
reuse may not be a critical factor for them. Even if developers
have to play both roles, it is important that they understand
and record the role that they are playing at anytime. Owner-
ship and responsibility for software is a key factor in long-term
software quality and reusability. B

S. Sridhar is a senior member of the technical staff at Knowledge Sys-
tems Corp. in Cary, NC where he is actively applying Smalltalk to a
wariety of software engineering problems. He has also developed sub-
stantial applications designed to meet specific customer requirements.
He came to KSC from Mentor Graphics Corp. where he was the pro-
ject lead for Mentor's next generation design management environ-
ment developed in C++. Prior to that he worked at Tekeronix for four
years on Common Lisp and Smalltall/80 product development. While
at Tektronix, he developed numerous tools and components running
in the Smalltall/80 environment. He was an early developer of a
framework for delivering stand-alone Smalltalk applications.

VoL. 2, No. 1: JANUARY 1992

BJECT-ORIENTED DESIGN

Rebecca Wirfs-Brock

Determining object roles and

responsibilities

onald Norman,! in The Design of Everyday Things, makes
ﬂ the following statement:

Consider the objects—books, radios, kitchen appliances,
office machines, and light switches—that make up our ev-
eryday lives. Well-designed objects are easy to interpret
and undetstand. They contain visible clues to their opera-
tion. Poorly designed objects can be difficult and frustrat-
ing to use. They provide no clues—or sometimes false
clues. They trap the user and thwart the normal process of
interpretation and understanding. Alas, poor design pre-
dominates. The result is a world filled with frustration,
with objects that cannot be understood, with devices that
lead to error.

[never thought I'd say this, but software objects are like
real-world objects! Both kinds of objects are hard to use if they
are pootly designed. Ensuring that software objects are easy to
use involves paying attention to a number of sound design
principles. No one ever said that good object-oriented design is
easy. In this month's column, I'll discuss the importance of un-
derstanding and modeling object roles. Once there is a clear
sense of an object’s intended purpose, it is much easier to detail
the necessary behavior in an understandable fashion.

Identifying the central classes in an application is just the
first step. Combing through a specification of the problem may
provide an initial list of candidate classes, but what next?
First, let me state that no designer I know has ever found all
the Ley objects by reading and understanding a specification
of the problem. A specification is just a launch pad for design
activity. Depending on the weight of that specification, there
will be different strategies needed to find those key classes. If
there is a mound of paper to wade through, the initial task will
be one of filtering out a lot of detail and focusing on identify-
ing the highest level concepts. On the other hand, if the
specification is on the slim side, the task will be to develop a
skinny statement of intent into a model of key concepts that
will drive the design.

There is a deceptively simple question that needs to be an-
swered for each identified class. Can that class' purpose within
the application be clearly stated? I've found it useful to force
myself to write a concise, precise statement of purpose for
each potential class. This purpose statement need not be long

or wordy; a sentence or two will often suffice. However, if it is
difficult to construct a succinct statement, more work is
needed. There are several plausible explanations (other than
that the class doesn’t belong in the design) for being unable to
write a clear putpose statement for a class.

SUBDIVIDING LARGE CONCEPTS

For one thing, the class may represent too large a concept.
One indicator of this is that the class seems to embody an en-
tire program or a major portion of the overall system behavior.
This large concept needs to be decomposed into more under-
standable pieces. What are the constituent responsibilities of
this mega-object? To answer this question, we must resolve a
rather complex concept into simpler, more basic ones. These
simpler concepts will be easier to understand, and their pur-
pose and role will be easier to elaborate. Simpler concepts will
be represented by classes in the final design, while the larger
concept may not.

(=
... software objects are like
real-world objects

It is conceivable that the large, vague concept still has a
role to play and will be represented by a class in the final de-
sign. For example, the object might be responsible for coordi-
nating the actions of other objects (each with a concisely
stated purpose) that collaborate to fulfill the larger purpose.
One design for an automated teller machine might have an
automated teller session object whose purpose is to conduct a
customer session. This customer session would consist of a se-
ries of user transactions with the bank (and a whole chain of
responses to user requests) that are coordinated by the auto-
mated teller object.

Subdividing the responsibilities of a large, complex class
into a number of simpler classes requires deeper understanding
of the system. Each newly created class needs a clearly stated

THE SMALLTALK REPORT

role. There already may be identified classes that can fulfill
part of the responsibilities of the rather large concept. Most
likely, this isn’t the case. A hypothesis must then be formu-
lated on how to partition the vague concept into several dis-
tinct roles. Each role will be assigned to a new class. A key de-
signer of a large, successful application told me that his design
team subdivided responsibilities according to when, what, and
how. These subresponsibilities were then assigned to separate
classes that were either responsible for knowing when, know-
ing what, or knowing how to perform an operation. Sounds
simple enough. The design team found they spent time debat-
ing whether a particular responsibility was actually a when, a
what, or a how. One object’s what is another object’s how. It
all depends on a particular point of view. At least the team
had a strategy for elaborating class roles. But they still had to
debate the details in context of their emerging model.

COMPLETING A MODEL OF OBJECT INTERACTIONS
There are other situations where it is difficult to state a class’
purpose. One common situation is that a class doesn’t seem to
be connected to any others. It’s hard to explain why this dis-
joint class should exist, yet the designer remains convinced
that it's important. Chances are, the class is important. The
problem is that the model is incomplete. This problem typi-
cally arises when classes are sifted through one at a time,
rather than building an understanding of the collaborative be-
havior between objects in the design.

To understand any single object’s role, it must be looked at
in the context of others with which it interacts. Constructing
an object-oriented design is not a linear, top-down process, al-
though it is often to present the design that way. Understand-
ing an object’s purpose forces the designer to understand the
roles of other objects. To understand the role of a seemingly
isolated object, both an understanding of its static, structural
relationships with other objects and interactions with other
objects is needed.

To determine the static relationships an object has with
others, examine how an object is connected to others. Is there
a whole-part relationship between it and another object?
Does this object represent an aggregation of other objects? If
50, it is usually pretty simple to fit this object into the design.

It is much harder when an object participates in a number
of relationships. In this case, it is useful to build an under-
standing of the dynamic behavior of the object. Performing
design walk-throughs by tracing a chain of object collabora-
tions in response to a stimulus is a good way to understand ob-
ject interactions. Ivar Jacobson,? pioneer of the Objectory
method, introduced the notion of usage cases. Usage cases can
be recorded and then used to test the model under both nor-
mal and abnormal conditions. A key component of Steve
Weiss and Meilir Page-Jone’s* object-oriented software syn-
thesis method is modeling the response to events and under-
standing their impacts on a design. The idea behind both
techniques is to translate requirements into events and to as-

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management with update transaction
control directly in the Smalltalk language

® Transparent access to Smalltalk objects on disk

Transaction commit/rollback

® Access to individual elements of virtual collections and
Jictionari

® Multi-key and multi-value virtual dictionaries with query by
key range and set intersection

® (lass restructure editor for renaming classes and adding or
removing instance variables allows incremental application
development

® Shared access to named virtual object spaces

® Source code supplied

Some comments we have received about VOSS:
“...clean ...elegant. Works like a charm.”

—Hal Hildebrand, Anamet Laboratories
“Works absolutely beautifully; excellent performance and
applicability.”

—Raul Duran, Microgenics Instruments

VOSS/286 $595 (3375 to end of February 1992) + $15 shipping.
VOS5/Windows $750 ($475 to end of February 1992) +$15 shipping.
Quantty discounts available Visa, MasteyCard and FuroCard accepted.
Logic Aris Lid_ 75 Hemingford Road, Cambridge, England, CB1 3BY
TEL: 444223212392 FAX: +44 223 245171

logic

ARTS

sociate events with objects that are responsible for handling
them.

The more situations that are modeled, the better. As sim-
ple as this sounds, it rakes some skill to effectively elaborate
object interactions. The goals is to first develop a “big picture”
before diving into detail. The way to do this is to trace object
collaborations between objects that are at either the same or
next conceptual level in the design. First, develop an overall,
high-level view of key object interactions. Then elaborate and
subdivide roles and object responsibilities. This breadth-first
approach avoids modeling classes at widely differing concep-
tual levels, which indeed is difficult.

This breadth-first approach represents an ideal. In practice,
some areas of the design will be better understood and naturally
elaborated before others. An uneven design model can make it
difficult to trace object collaborations. It will be relatively easy
to trace the collaborative behavior throughout the well-under-
stood parts of the design. When collaborations are necessary
with objects in an undeveloped area, suddenly what had seemed
straightforward becomes very unclear. This isn't a sign of fail-
ure; it just indicates that the unclear part needs elaboration.

OBJECTS THAT DON'T FIT THE MODEL

Perhaps one of the toughest problems to deal with is when an
object doesn't fir with the designer’s notion of what consti-
tutes a “good” object. It is very difficult to explain the purpose
of such misfits. Criticisms commonly leveled against such
troublesome objects are:

VoL. I, NO. 4: JANUARY 1992

B OBJECT-ORIENTED DESIGN

® This is an organizing object. It is too simple. It merely
consists of data. [t has no behavior. Aren’t objects sup-
posed to have both?

¢ This object’s only purpose seems to be to route messages
between two other objects. Why should I have intermedi-
ary between these objects? Can't they just directly commu-
nicate with each other instead?

® This object is too action oriented. Aren’t objects supposed
to encapsulate both operations and data? This object seems
like a pure “process.” We're doing an object-oriented de-
sign, not a process decomposition.

66

Constructing an object-oriented
design is not a linear, top-down process,
although it is often useful to present
the design that way.

g y.)

There ate no pat answers to these criticisms. In each case,
the object doesn’t match the designer’s expectations. The
model, the designer’s expectations, or both need readjust-
ment. In the first case, it is worth noting that objects are not
uniform packages of operations and data. It is natural that the
proportion of each will vary according to the object’s role in
the design. It is perfectly reasonable for relatively simple ob-
jects to coexist alongside more complex ones. However, the
object must stand on its own merit to be included. Indeed,
there may be preferable alternatives to creating a “data
mostly” object.

When creating an object model, the designer may need to
invent mechanisms that weren't spelled out in the
specification. Mechanisms may be added for the express pur-
pose of reorganizing the flow of information and communica-
tion between objects. These mechanisms may help reduce ob-

ject coupling or provide an abstract connection between ob-
jects. The consequences of inserting such mechanisms needs
careful consideration. Bur, objects whose purpose is to orga-
nize or manage communication between objects can be rea-
sonable design additions.

In the third case, the purpose of an object may be to trans-
form information from one form to another. Such process-ori-
ented objects can naturally occur in a design and are not al-
ways a sign that the designer hasn't shifted from the
procedural to the object-oriented paradigm. Each process-ori-
ented object should apply a fair amount of intelligence to pro-
duce results. Better yet, a process-oriented object can often
provide a completely different view on the transformed infor-
mation. The objects being processed and the clients request-
ing the transformed information may be only dimly aware of
each other. In this case, the process-oriented object is proba-
bly a reasonable design concept. One example of a process-
otiented object is a compiler. The role of a compiler is to
transform text into an executable program structure. It takes a
lot of intelligence to perform this operation. Defining a com-
piler object is a reasonable design choice.

It may be that a class doesn't belong in the final design.
Websters Dictionary defines role as "a character assigned or as-
sumed. A part played by an actor or singer.” The task of the
designer is to assign each object an appropriate role. Each role
is constrained to fit within the existing object model, but a lot
of designer discretion is still involved. It’s a challenge to de-
sign well-understood, easy-to-use objects. But the positive im-
pacts that well-designed objects have on application mainte-
nance and understandability are well worth the extra effort. B

REFERENCES

[1] Norman, D. The Design of Everyday Things, Bantam-Doubleday-
Dell, New York, 1988.

[2]) Jacobson, 1. Object-oriented development in an industrial envi-
ronment, OOPSLA ‘87 Conference Proceedings, Orlando, FL,
SIGPLAN Notices, 22(12), 1987, pp. 183-191.

[3] Weiss, S., and M. Page-Jones. Synthesis/analysis and synthesis/de-
sign, Proceedings of the Object-Oriented Systems Symposium, Sum-
mer 1990.

Universal Database
OBJECT BRIDGE ™

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,
dBASEIII, Lotus, and Excel.

ﬁtelligent Systems, Inc.

i.’ 506 N. State Street, Ann Arbor, MI 48104 (313) 996-4238 (313) 9964241 fax

Rebecca Wirfs-Brock is the Divector of Object Technology Services
at Instantiations and coauthor of Designing Object-Oriented
Software. She is the program chair for OOPSLA ‘92. She has six-
teen years of experience designing, implementing, and managing
software products. During the last seven years, she has focused on
object-oriented software. She managed the development of Tek-
tronix Color Smalltalk and has been immersed in developing, teach-

ing, and lecturing on object-oriented software.

THE SMALLTALK REPORT

ETTING REAL

Juanita Ewing

How to use class variables and class
instance variables, part 1

izing classes and how initialization related to class variables

and class instance variables. In this column, I will talk about
coding conventions for class variables and when to use class
variables vs. class instance variables.

Classes that use class variables can be made more reusable
with a few coding conventions. These coding conventions
make it easier to create subclasses. Sometimes developers use
class variables inappropriately. Inappropriate use of class vari-
ables results in classes that are difficult to subclass. Often, the
better implementation choice for a particular problem is a
class instance variable instead of a class variable.

|n last month's column, I discussed some strategies for initial-

WHAT ARE CLASS VARIABLES?
Classes can have:

= class variables
* class instances variables

Class variables are referenced from instance and class methods
by referring to the name of the class variable. Any method, ei-
ther a class method or an instance method can reference a
class variable. Figure 1 contains a diagram of a class, ListInter-
face, that defines a class variables.

The methods in ListInterface would look like this:

ListInterface class
initialize
“Create a menu.”

ListMenu := Menu labels: #(‘add"remove’)
ListInterface
hasMenu
“Return true if a menu is defined.”
AListMenu notNil

performMenuActivity
“Perform the mouse-based activity for my view.”

self hasMenu
ifTrue: [*ListMenu startUp].

Both instance and class methods can ditectly reference
class variables by name. The class method initialize is used to
bind values to the class variables. The instance methods has-

Menu and performMenuActivity reference the class variable List-
Menu. All instances of ListInterface and the class ListInterface
share the same class variables.

HOW ARE CLASS VARIABLES INHERITED?

Class variables and the values they are bound to are inherited.
The class variable referenced by a subclass is the same as the
one referenced by the superclass. This means that a class vari-
able is shared by a class, all its subclasses, and all the instances
of the class and its subclasses.

66

It is possible for subclass methods to
modify inherited class variables, but
generally it is undesirable to do so. o

Our example has a subclass of ListInterface called Calculat-
edListInterface. Subclass methods referring to the ListMenu
class variable reference exactly the same object as the super-
class method. The subclass CalculatedListInterface has behavior
that is different from its superclass, as defined by the method

conditionalMenuActivity:
alListinterlap
list [aklslintertace

Listinterface / /
class variables
——*[MH—» aMenu

subclass

CalculatedListinterface

list
calculationBlock

aCalculaledL
list
calculationBlock

Figura 1. Class variables are refernced by subclasses and all instances.

VoL. 1, No. 4: JANUARY [992

B GETTING REAL

CalculatedListInterface
conditionalMenuActivity
“Perform the mouse-based activity for my view if the list is not
empty. If there is no menu, fash the list pane.”

self hasMenu
ifFalse: [*self flash].
list isEmpty
iffalse: [~ListMenu startUp].

Subclass methods can directly reference class variables that
are defined by the superclass. In our example, the Calculated-
ListInterface method references the class variable ListMenu that
is defined by ListInterface. This is different from the inheri-
tance of instance variables. The method conditionalMenuActiv-
ity references the instance variable list that is defined by the
class ListInterface. But, each instance of CalculatedListInterface
and ListInterface has its own copy of list and does not share its
instance variables.

HOW DO SUBCLASSES MODIFY CLASS VARIABLES!?
It is possible for subclass methods to modify inherited class
variables, but generally it is undesirable to do so. If a subclass
were to modify a class variable, it would change the only ex-
isting value of the class variable. Each subclass does not have
its own copy. It references a shared copy. Generally, develop-

ﬁw Smalltalk/V users: the tool

n for maximum productivity ,

° Put related classes and methods into a single task-
oriented object called application.

° Browse what the application sees, yet easily move code
between it and external environment.

° Automatically document code via modifiable templates.

° Keep a history of previous versions; restore them with
a few keystrokes.

° View class hierarchy as graph or list.

° Print applications, classes, and methods in a formatted
n:ron.. inated and commented.

° File into applications and merge them together.

° Applications are unaffected by compress log change
.and many other features..

Class { Deleted classes |
ro [Application)<
Yam ! Deleted methods |

History —[Code recovery

Utllitles.. —| Application printing | and more..

CodeIMAGER™ V286, VMac $129.95

& VWindow $249.95
Shipping & handling: $13 mail, $20 UPS, per copy
Diskette: [J312 [5w

SixGraph™ Computing Ltd.
]
A
Fugrardl

formerly ZUNIQ DATA Corp.

2035 Céte de Liesse, suite 201

Montreal, Que. Canada H4N 2MS5

Tel: (51;&332-1331. Fax: (514) 956-1032
CadoIMAGHR ls & rog. trademark of SixGraph Campuring Lid.
Smalltalk/V b » reg. tradomark of Digitall,

ers want to create a new class variable and use it in place of
the inherited class variable.

Using our example, we will create a new menu in the sub-
class CalculatedListInterface. The menu is implemented with a
class variable so it is not possible to change the menu for the
subclass without also changing it for the superclass. This is be-
cause both classes reference the same variable.

The only way to create a new menu for the subclass and re-
tain the original menu for the superclass is to create a new
class variable. In our example, we call the new class variable
CalculatedListMenu. In addition to a new class variable, all
methods that reference the original menu must be overridden
in the subclass:

CalculatedListInterface class
initialize
“Create a calculated menu.”

CalculatedMenu := Menu labels: #(‘add’ ‘remove’ “print’)

CalculatedListInterface
hasMenu
“Return true if a menu is defined.”

~CalculatedMenu notNil

performMenuActivity
“Perform the mouse-based activity for my view.”

self hasMenu
ifTrue: [*CalculatedMenu startUp].

Because direct references to the class variable ListMenu are
sprinkled throughout the class ListInterface, the subclass must
override many methods. In this simple example, we had to
override three methods that reference ListMenu to reference a
different menu. In a complicated real-world application, many
other methods may need to be overridden to reference a dif-
ferent class variable in a subclass. Because significant portions
of the class needed to be overridden, the class is not very

reusable.
alistintertap
list (aLlslinierlace
list
BLIstinterface)
Listintertace list
class variables
—T—"[ListMenu aMenu
subclass
CalculatedListinterface

calculationBlock

calculalionBlocl

Figure 2. Ceding conventions increase the reusability of classes
implemented with class variables.

THE SMALLTALK REPORT

A better version of ListInterface has the minimum number
of references to a class variable—one for setting and one for
retrieving the value of a class variable:

ListInterface class
initialize
“Create a menu. Create constants.”

ListMenu := Menu labels: #(‘add”remove’)

menu
“Return the list menu.”

~ListMenu

ListInterface
hasMenu
“Return true if a menu is defined.”
“self class menu notNil

performMenuActivity
“Perform the mouse-based activity for my view.”

self hasMenu
ifTrue: [~self class menu startUp].

66

Because of the nature of the data
stored in class variables, it is best for
class methods to store and retrieve
the class variables.

b

This coding convention reduces the number of direct refer-
ences to a class variable, as illustrated in Figure 2. It is easier
to create subclasses because only the methods that set and re-
trieve the class variable need to be overridden. Now the code
for CalculatedListInterface looks like this:

CalculatedListInterface class
initialize
“Create a a computed list menu.”

CalculatedMenu := Menu labels: #(’add’ ‘remove’ ‘print’)

menu
“Return the list menu.”

“CalculatedListMenu

This coding convention effectively restricts the references
to a class variable. Because of the nature of the data stored in
class variables, it is best for class methods to store and retrieve
the class variables. In effect, we have eliminated the sharing
between classes and instances.

silence...

the end to your Smalltalk:V troubles

- full multi-user project management

- source code version control

- aulomatic change documenting

- release packaging

- source code hiding

- code performance profiling

- change log browser and restorer

- inslaller with global renaming capability

introductory pr
unlil Karch J1s 92

Windows version available immediately
u 0S 2 and Mac versians - CALL!

source code included

Unil 6. 1e. Toronto.
Phane B 35 3 ax: (416) 408-2850

tario. Canada. M5T 2GE

udigamma solutions

By eliminating this sharing, we have made ListInterface
more reusable; however, ListInterface still has another prob-
lem. Another class variable had to be created by the subclass
to provide a different menu. Now CalculatedListInterface has
two class variables, one of which (ListMenu) is not used.

The root of the remaining problem is that class variables
are shared by a class and its subclasses. In our example (and in
many other situations), this sharing is inappropriate. Instead,
a subclass needs to be able to override inherited data. Class
variables share the data between subclasses and superclasses,
so it's not possible for a subclass to override the data. Next
month, we will explore another mechanism, class instance
variables, that will solve our problem.

Juanita Ewing is a senior staff member of Instantiations, Inc., a soft-
ware engineering and consulting firm that specializes in developing and
applying object-oriented technologies. She has been a project leader for
commercial object-oriented software projects and is an expert in the de-
sign and implementation of object-oriented applications, frameworks,
and systems. In her previous position at Tektronix Inc., she was re-
sponsible for the development of class libraries for the first commercial
quality Smalltalk-80 system. Her professional activities include Work-
shop and Panel Chairs for the OOPSLA conference.

VoL. I, No. 4: JANUARY 1992

11.

12.

SMALLTALK

COMES TO THE

MAINFRAME,

PART 2
Glenn J. Reid

n part 1 of this article, we discussed our implemen-

tation of Smalltalk in an IBM mainframe environ-

ment that we have called Smalltatk/370. Mention

was made that we are investigating the introduc-
tion of typing into Smalltalk, currently a popular area of inter-
est in the OO community. Here, in part 2, we will discuss some
specifics of our investigation (not yet complete) and, hopefully,
shed some light on the difficulties involved in typing a lan-
guage like Smalltalk.

Before we launch into a discussion of solutions, perhaps it
would be appropriate to determine what we are investigating
and why. In part 1, we stated that the performance overhead
of dynamic (or late) binding would probably be unacceptable
in Smalltalk/370, particularly since degradation of the system
affects all users in a time-sharing environment. The fastest
untyped version of Smalltalk today is the ParcPlace
Smalltalk-80 implementation, which runs at approximately
10% the speed of optimized C. This does not imply that the
basic mechanism of dynamic binding in Smallralk must be
thrown out. As with many performance problems, it is very
possible that concentrating on a few areas of cancern will
lead to a satisfactory system. Since dynamic binding is the
problem, we must substitute statically bound procedure calls
or, better yet, in-lined procedures in the areas where they
ptovide the most benefit.

When we fitst considered the dynamic binding problem, we
felt that we would probably be able to implement a static typ-
ing mechanism that would allow programmers to explicitly de-
clare variable types within their programs and enable our com-
piler to make use of these for optimization purposes. In our first
attempt, we limited the scope of our ability to explicitly type
Smalltalk. Since performance was our main goal, rather than a
comprehensive typing system, we considered this approach ac-

ceptable. We have included a few of the details of this ap-
proach later in this article.

As our static typing mechanism gained in substance, a num-
ber of things became apparent. Explicit type declarations in-
crease system complexity from the users perspective. A new di-
mension is required in programmer thinking. Not only must
performance requirements be observed in producing algorithms
that operate efficiently, but all variations of types that the algo-
rithm could operate upon must be considered as well as the rel-
ative volume of message sends to each type. It is possible that
subsequent changes to the system may make previous tuning
invalid. Furthermore, type declarations may restrict the appli-
cation of a method. For example, a method argument may be
typed, causing method failure, similar to primitive failure,
when an argument with an incorrect type is received. This
makes the programming environment less flexible, or more
complex from the programmers point of view. Intuitively, it
appears that these complexities will increase if we expand our
typing strategy.

As part of our investigation, we are reviewing published lit-
erature in the area of typing and optimizations to pure object-
oriented languages. So far, we have come across three different
approaches.

Probably the furthest advanced example of comprehensive
explicit typing within Smallealk is the Typed Smalltalk (TS)
project.! In this project, a syntax extension to Smalltalk allows
the programmer to explicitly declare types for variables,
method results, etc., that the compiler can use to statically
bind or in-line procedures. Published performance results indi-
cate that some small benchmarks have achieved speeds
at least twice that of Smalltalk-80. Since this data is not re-
cent, and we understand that work is still continuing on Typed
Smalltalk, we expect that these results have been improved
still further. This approach is closest to our initial experiments
with explicit typing. Since this project is much further ad-
vanced, we will probably look to it to evaluate some of our
concerns mentioned above.

Recent benchmark results in the SELF programming envi-
ronment have demonstrated a Smalltalk-like language running
at approximately 57% of the speed of optimized C.2 These re-
sults were achieved without the introduction of explicit typing
within the language. In this approach, the compiler uses “path
splitting” to generate both high- and low-performance paths
through a method. Path splitting is used when a frequently used
message selector whose receiver usually belongs to a particular
class is detected within the source program. For example, path
splitting would occur for the high-frequency message at:, which
is most often received by an instance of Array. This approach
uses the advanced techniques of dynamic compilation, cus-
tomization, deferred compilation, and path splitting manage-
ment algorithms to produce the results mentioned above.

Finally, we have noted that some are working in the area of
type inference without explicit typing.? Here, a type inferenc-
ing algorithm constructs a graph of type constraints from a pro-

THE SMALLTALK REPORT

gram. The program is typeable if these constraints are solvable.
Static binding information is derived from the solution. This
project is currently implementing the inferencing algorithm,
with an optimizing compiler as a future undertaking, and so
has no performance results to report. In our initial exploration
of explicit typing within Smalltalk, we have confined ourselves
at this time to investigating typing of named variables, exclud-
ing such things as intermediate results generated during expres-
sion evaluation. Potential candidates for typing are:

e dictionary variables (i.e., class, pool, and global variables)
¢ instance variables

® arguments

® named temporaries

® receivers

In all cases, the affected variable would be constrained to
belong to a particular class or one of its subclasses (i.e., the
variable has been “typed”). Thus, we are using a simpler ver-
sion of typing than that used in Typed Smalltalk. For this dis-
cussion, type and class may be considered synonymous. Here
are some of the issues involved.

For programmer convenience, we would prefer a common
type declaration syntax that could be used for all the above-
mentioned cases. A possible candidate syntax is shown below:

variableName
(variableName:Class)

Current Smallealk:
Typed Smalltalk-

This new syntax would be used wherever variables are “de-
clared” in Smalltalk, that is, in class definitions, message pat-
terns, and declarations of temporaries.

Typed variables must be initialized according to type. Un-
typed variables are initialized at creation with the value nil. This
is unacceptable for typed variables. If variable x is declared as:

(x:Amay)

we must ensure that x always contains an Amray object; other-
wise, invocation of the statically bound expression:

xat: 1

would have disastrous results. This requires a modification to
the new and new: methods of class Behavior. Variables typed as
Data Types (i.e., types that do not have a direct system represen-
tation of their data structure) would be initialized by sending
the message new to the appropriate class. Variables typed as
basic Data Structures, such as Integer, Float, and Array, would be
initialized at the primitive level. A possible set of initialization
values for Data Structures might be:

Integer0
Float 0
Ammay 0 elements

This arrangement would cover most cases, including the
special initialization requirements that apply to some classes

(e.g., OrderedCollection). Immutable Data Types (e.g., Character)
that disallow creation of new instances present some difficul-

ties, the main being that it is currently impossible for the sys-

tem to determine whether a class is immutable.

It would possible to initialize typed remporary variables in
methods to nil, as is done currently, since the compiler would
recognize that these variables remain untyped until an assign-
ment takes place, at which point the typing could then be
taken into account. This might be preferable to reduce initial-
ization overhead.

Runtime type checking is required to ensure that typed
variables are assigned according to their declared type. This
function would be performed by compiler-generated code that
would perform the equivalent of an isKindOf: check prior to as-
signment of an expression result. The system overhead of this
check is minimal. In addition, typed arguments would be
checked upon entry to a method.

At compile time, Smalltalk changes a reference to a Dictio-
nary variable into a reference to the Association containing the
variable key and value to avoid a runtime dictionary lookup.
However, dictionaty variables may be updated through basic
Dictionary messages at:put:, removeKey:, etc. This creates the po-
tential for an integrity violation in Smalltalk (try removing an
existing class variable with removeKey: then adding it again
with at:put:). While it could be argued that one should not up-
date dictionary variables in this manner, nevertheless it is an
option open to the user. This situation is aggravated for typed
Dictionary variables since there is no compiler-generated code
to stand in the way of an incotrect assignment when using the
basic Dictionary messages. Our present solution to this is to cre-
ate a subclass of Association, call it ConstrainedAssociation, that
would contain a new instance variable, constraint, and would
inhibit incorrect assignment to its value. The class definition
and methods for ConstrainedAssociation are shown in Listing 1.
Note that our solution does not address the removeKey: in-
tegrity problem that currently exists in Smalltalk.

To manage static binding, we propose creation of the
classes:

BoundMethod
Constraint (virtual class - no instances)
BehaviorConstraint
TypeConstraint

BoundMethod would be a tuple containing at least an “imple-
menting” CompiledMethod, a “sending” CompiledMethod, and an
instance of either BehaviorConstraint or TypeConstraint. Behav-
iorConstraint describes an instance of static binding, and Type-
Constraint describes the less restrictive case of simple type
checking.

In the following example, let us assume the class hierarchy:

Number
Integer
SmallInteger

VoL. 1, No. 4: JANUARY 1992

13.

B SMALLTALK COMES TO THE MAINFRAME

where the method max: is located in class Number. Then in the
following:

| (temp:Integer) (index1:Integer) index2 |
temp := index1 max: index2.

the message max: would be bound to the method max: in class
Number at compile time, and an instance of BoundMethod
would be entered in the global Set, BoundMethods. This in-
stance of BoundMethod would contain a BehaviorConstraint. The
compiler rule used to determine whether a BehaviorConstraint
or a TypeConstraint is generated is fairly simple. If a method is
redefined in any of the subclasses of the constraint class, the
compiler will generate a TypeConstraint. If such redefinirion
does not occur, the compiler will generate a BehaviorConstraint.
If the method max: was now defined in class Integer, the
presence of a BehaviorConstraint in BoundMethods would inform
us that there was a “sending” method that required recompil-

Listing 1.

Assodation subdass: #ConstrainedAssociation
instanceVariableNames:
‘constraint ‘
classVariableNames: *
poolDictionaries:

ConstrainedAssociation class methods

key: aKey value: anObject constraint: aClass
“Answer an instance of class ConstrainedAssociation
whose key is initialized to aKey, whose value is initialized
to anObject, and whose constraint is initialized to aClass.”
aClass isBehavior
ifFalse: [“self emor: ‘constraint must a Class].
(anObject isKindOf: aClass)
ifFalse: [“self error: ‘value must be kindOf, aClass name].
~((self key: aKey) value: anObject) constraint: aClass

ConstrainedAssociation methods

constraint: aClass

“Set the constraint of the receiver to be aClass. Answer the
receiver.”

aClass isNil

ifFalse: [
(value isKindOf: aClass)
iffalse: [
Aself error: ‘value must be kindOf *, aClass name]].
constraint := aClass!

value: anObject
“Set the value of the receiver to be anObject if anObject
is an instance of constraint or one of its subclasses.”
constraint isNil
ifFalse: [
(anObject isKindOf: constraint)
ifFalse: [
~self error: ‘value must be kindOf *,
constraint name]].
value := anObject

ing, and BoundMethods would be updated to reflect the new Be-
haviorConstraint.

If the method max: were now defined in class SmallInteger,
the compiler (using the rule mentioned above) would remove
the BehaviorConstraint and substitute a TypeConstraint. In our
system, BoundMethods must be loaded at system start-up since
they will be invoked by direct function call.

Dynamic binding would remain the primary and preferred
way of associating messages with methods. Typing would be
used in situations that caused performance degradation or as a
data validation tool. Intuitively, the best use of typing applies
in high-use areas where typed languages can typically produce
very efficient code. Coincidentally, these areas correspond to
functions in Smalltalk that undergo few changes since they are
integral to the basic functioning of the system. Some example
preliminary candidates for typing might be arrays, which are
frequently used in the at: and at:put: messages, and array in-
dices, which participate in integer operations. In some actual
program samples we have studied, up to 40% of message rout-
ing would be removed by static binding in these areas.

Typing will probably be a compiler option that may be
turned on or off by the programmer. Programs compiled for
production would usually take the performance advantage of
typing, while, in the development environment, typing might
not be used to retain flexibility and fast compilation. B

REFERENCES

[1} Johnson, R. E., J. O. Graver, and L. W. Zurawski. TS: an optimiz-
ing compiler Smalltalk, OOPSLA ‘88 Conference Proceedings, San
Diego, CA, October 1988, pp.18-26.

[2] Chambers, C., and D. Ungar. Making pure object-otiented lan-
guages practical, OOPSLA '9]1 Conference Proceedings, Phoenix,
AZ, October 1991, pp. 1-15.

[3] Palsberg, J., and M. L. Schwartzbach. Object-oriented type infer-
ence, OOPSLA ‘91 Conference Proceedings, Phoenix, AZ, October
1991, pp. 146-161

Glenn J. Reid is President and Founder of QSYS Systems Consultants,
Inc., a consulting and software development company whose main area
of expertise is in the application of object-oriented technology. Architect
of Smallallf370, Mr. Reid is currently involved in the development and
application of a complete project life cycle approach to developing object-
oriented systems in a mainframe environment. He can be reached at

(416) 343-6464.

THE SMALLTALK REPORT

RODUCT REVIEW

Reviewed by Jon Hylands

Profile/V: a performance profiler for
Smalltalk/V Windows

rofile/V, from First Class Software, is a code profiling tool

that allows Smalltalk programmers to monitor the perfor-

mance of their applications. It creates a weighted call ree
of your code that basically shows the percentage of total run-
ning time spent in each method. With this information, it is
possible to find out where your code (or, just as important, sys-
tem code) is causing a bottleneck.

With a list price of $299.99, Profile/V is a tool that any
Smalltalk programmer who is interested in writing high-per-
formance code should include in their library. Although it
needs some improvement in the user interface department, it
is definitely money well spent. It is currently available for Dig-
italk’s V Windows,V Mac, and V 286. Profile/V will be avail-
able for V PM this month.

HOW TO USE PROFILE/V

Profile/V comes on one software diskette and includes a 50-
page User’s Guide/Tutorial. The manual's 29-page tutorial
shows the optimization of a simple graphical application,
which is included on the disk. The manual also includes sec-
tions on installation, how to use the product, notes on how it
is implemented, and a very interesting section on “Program-
ming for Optimization.”

The only problem I had with the manual is the fact that
the installation page is somewhere in the last half—when |
look for the installation instructions, I expect them to be at
the beginning.

Profile/V uses an invisible window to capture timer events
and takes a snapshot of the stack from the current user inter-
face process when a timer event happens. It builds a profile
object from these samples and then can open a browser on the
profile. The browser is a subclass of the system-supplied
method browser. The browser has three panes and it provides
the user with the ability to go as deep as they want—right
down to individual statements in a method.

Other valuable features include the capability to gather
method profiles for the same method and browse them as a
new profile. This feature is ideal when profiling recursive
methods. Another useful utility is the ability to take what is
displayed in the browser and convert it into formatted text in
a workspace for inclusion in documents (such as this one).
You can also adjust the threshold value for the browser, which
controls how many methods are shown when the browser is

initially opened by hiding all methods that take less than the
threshold percentage value to run.

Pethaps one of the nicer things about Profile/V is its size, or
lack thereof. The entire profiling system is only about 27K of
source code, which makes it a product more likely to be un-
derstandable and extendable.

BUT MY CODE IS ALREADY FAST...

Many programmers, myself included, will look at this tool ini-
tially and say something to that effect. Unfortunately, in the
case of Smalltalk, where you have a large library of reusable
code written by someone else, having your code run at light-
speed doesn’t necessarily mean your application will be as fast
as it can be. Programmers tend to make assumptions about the
performance of other code, and these assumptions often turn
out to be incorrect. This turned out to be the case for a graph-
ics application I profiled.

USING PROFILER TO OPTIMIZE A SAMPLE
APPLICATION

The application I ran my tests on was a simple magnifying
glass, which first appeared in the Smalltalk column in the
Joumnal of Object-Oriented Programming.! Since that time, the
authors have made large number of changes to the code to
simplify and streamline it. The magnifier simply simulates a
magnifying glass on the screen and shows the magnification of
a circular area. I limited the tests to a single method, which is
the code that displays this circular magnified image, since it is
the slowest part of the magnifier simulation.

The first iteration of the profiler run on this method pro-
duced the profile shown in Figure 1. It shows quite clearly
(and quite surprisingly, also) that almost half the time spent
in this method is in sending the pen message to bitmaps!

The pen message is sent six times since we are performing
five copyBitmap's and one set of drawing commands to
achieve the circular magnification effect. However, we can
improve this since only two bitmaps are the receivers of the
pen message. We can cache each bitmap's pen in a tempo-
rary variable at the beginning of the method, thus saving
four pen messages. This works when performing copy-
Bitmaps, but not when doing pen-based drawing, so the pen
message must also be sent before the drawing section of the
method takes place.

VoL. 1, No. 4: JANUARY 1992

15.

16.

B PRODUCT REVIEW

Elle Edit Smallialk Methods Proflle _

100% (107) Mu’fu) YestAun
5%

12% (13) GraphicsT oob > copyBimap:from:to....
%0 GrqhuTnd»coijimm:ﬁmtatnh:
7% [7) Bitmapd > chsplayét with:

6% [6) Erq:lﬁTnd»copyBimqﬂlmh:m
5% (5) Bitmap>>boundingBok.

dhmhgdumddhm
“graphicsT ool

:) i)
B E 'h’;i*l‘l: LD, "".It'i%.l’lfbgia} B g AR

ORI N
e e e T e e S

Figure 1. Initial profile.

After making this modification,] again profiled the
method, getting the results shown in Figure 2. As you can see,
the pen message frequency had been reduced to 23%, which is
half of the first run.

And, as shown in Figure 3, you can see that the pen mes-
sage has increased to 30% of the running time, but the bound-
ingBox message has disappeared, and, as a result, the method
runs faster.

So you can probably see by now that this tool is a valuable
one. | would never have guessed that the pen message is one to
avoid, and, in a real-world application, things like that can
mean the difference between acceptable and poor performance.

PROBLEMS WITH PROFILE/V

So far, the only problems I have had with Profile/V are small
ones relating to the user interface. One is that the indent on

Flle Edit Smalitalk Methods Profile

100% [105) Magnifier>>testAun
5% [100] M]

16% [17) GraphicsToob > copyBitmap: frometocnule: ..
16X (17) Graphica T aob » copyBitmap: from: at rule:...
11% (12) Bitmap> > displapAt with:
10% [1IJ] qu:!nTuob)mﬂhwllmu

(6]B >boundingBax.

5% [5) Contes>) basicProfle....
“Answer the graphics tool of e receiver."
seff selecl
“graphicsTool

Figure 2. Profile with cached pens.

o Smalltalk/¥ Profile
File Edit ﬁmalltalk Methods Profile

100% (189) Mamﬁar»lestﬂun
7% 183 aanifier> > displayid agnif

20% [38] Grq:lnTui))copyBi!mq::homatrub:
15% (26) GraphicsT ools > copyBitmap:front to: rule:....
13% (24) Bitmap> > displapAt with: ...

12% [23) GraphicsT ool > copyBitmap:from to:...
3% (B) Peny>cicle:...

3% [6) Context> > basicPiofie:...

“Answer the graphics tool of the receiver.”

Figure 3. Final profile, with boundingBox message removed.

the profile tree is hard to make out since each successive in-
dent is only one space. | spoke with Kent Beck, the author,
and he assured me that this had been changed in future ver-
sions to make it more readable.

The other problem is perhaps more important and it in-
volves the way the children of a method are hidden and shown.
In Profile/V, some of the direct children of a method may be
visible, while others are not. This presents problems when try-
ing to view your profile from a given depth since you often have
to either do two double-clicks to get the desired results or use
the Hide Children menu command. You can get around this by
adjusting the threshold to be one (so it only takes one double-
click), but personally I think it would be more useful to have a
feature that allows the user to set a depth threshold rather than
(or in addition to) a percentage threshold.

FINAL WORD
I found Profile/V to be an extremely useful piece of software
and I will definitely use it in the future. In comparison, I have
only briefly seen the profiler that Digitalk is shipping with
Smalltalk/V PM 1.3. It is lacking in that it only produces
fairly complex text reports and has no user interface to allow
browsing of a profile.

I recommend Profile/V as a solid addition to any serious
Smallealk developer's toolkit. Il

REFERENCES

(1] LaLonde, W. R., and J. R. Pugh. Graphics through the looking
glass, Journal of Object-Oriented Programming, 1(3), 1988, pp. 52-58.

Jon Hylands is a member of the technical staff at The Object People in
Ottawa, Ontario. He is also a part-time student in the School of Com-
puter Science at Carleton University. He can be reached at (613)
230-6897.

THE SMALLTALK REPORT

OOK REVIEW

Reviewed by Dan Lesage

OBJECT-ORIENTED MODELING AND DESIGN

by J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen

Prentice Hall, Englewood Cliffs, NJ, 1991

that are considering the use of OOP in their company but

don’t know where to start down the path toward the Holy
Grail. The investment in an OO language may be considered
too risky for the average data processing manager, without
knowing how OO can benefit his or her complete develop-
ment cycle. In that regatd, the DP manager will likely wish to
understand the benefits of OO in terms of a formal methodol-
ogy. Rumbaugh et al. describe their object modeling tech-
nique (OMT), which is a gentle mutation of existing struc-
tured analysis/structured design (SA/SD) methodologies plus
entity-relationship (ER) diagrams into an OO one. Should
your DP customer already be using structured techniques in
his or her shop, this book will help ease the transition toward
OO. It should be no surprise that a large part of OMT follows
Rumbaugh's own work in combining objects with relations at
GE, as described in several of the OOPSLA Proceedings.

The book consists of five major sections: motivation, mod-
eling, methodology, implementation, and example systems.
The motivation part covers the normal questions of why one
would want to use OO techniques. The modeling section pre-
sents the components of the OMT techniques that are based
on three diagramming techniques. Two of them are (hope-
fully) already being used by your MIS/DP customer: Harel
state diagrams, which are used as the dynamic model, and data
flow diagrams, which are used in the functional model. The
object model, is an extension of entity-relationship diagram
conventions incorporating class operations (methods) and in-
heritance (in the Smalltalk sense). If you are familiar with
these three basic techniques, the OMT methodology shows
how information from the dynamic and functional models can
gradually be pushed into the object model. OMT provides an
evolutionary approach to ease people into the world of OO
analysis and design, using existing modeling paradigms. I sup-
pose that I should also mention that the pretty pictures are di-
agramming conventions that you will already know if you are
familiar with the above structured techniques. No three-di-
mensional dodecahedrons, no dithered lines, no trisected
equilateral triangles, etc.

The strengths of the book and the methodology are many.
The methodology draws on knowledge of familiar modeling
techniques. It is soft and can be tailored in a number of ways
for introduction into DP shops currently using structured

This is the book to recommend to your MIS/DP customers

techniques. The examples presented in the text are excellent
since they have been drawn from real-world problems encoun-
tered by the authors during the course of their research.
Within the context of some examples, the authors describe
how subsequent requirements information caused them to go
back and adjust their models. They give the reader a view of
the model over the life cycle of analysis and design rather
than just presenting the “answer.” There is very good coverage
of some of the design issues involved when trying to incorpo-
rate an OO design into systems containing components built
with more traditional technologies, such as relational
databases. The authors also attempt to provide practical ad-
vice about implementing your OO design in non-OO pro-
gramming languages.

Another strength is that the book can easily be used for
reference purposes. Each chapter contains a very thorough
bibliography. The organization of the book is such that the
reader can focus very quickly on the chapter that is relevant
to his or her question. It contains a glossary. The book can be
used as a supplemental educational text since each chapter is
followed by exercises, with selected answers in the back. Fi-
nally, the text is easy to read, which helps if the only time you
have for technical books is after your spouse and kids have
gone to bed!

And, should your MIS/DP customer wish to compare OMT
with other methodologies befote going out to buy the latest,
greatest CASE tools or white boards, the authors have conve-
niently included a chapter to make the decision easier. They
compare OMT with SA/SD, Jackson structured development
(JSD), and conventional ER modeling, describing under what
circumstances they believe each model excels.

There are few negative aspects about this book. The
methodology may be confusing for people coming from an ob-
ject-oriented background. The notion of having to map dy-
namic and functional behavior into methods will be foreign
since it is natural for them to think in terms of methods from
the analysis stage. For OO types, the object model should be
sufficient for the analysis. The chapter on system design is the
weakest link in the life cycle chain, but it’s also the hardest in
real life so, although it does not provide the system design
cookbook, it does allude to many of the real-world decisions
that are made during this stage of the model refinement. I was

continued on page 18 ...

VoL. I, NO. 4: JANUARY 1992

17.

18.

WIHAT THEY'RE SAYING
ABOUT SMALLTALK

Excerpts from industry publications

... Momenta built the [PenTop] machine around the object-ori-
ented language Smalltalk. Everything in the PenTop's environ-
ment is an object, so users can link anything in the machine—
from internal toolbox functions to their own sketches, text, and
presentations—to one another. The machine runs all popular
DOS and Windows applications, and will support Microsoft's
PenWindows when it becomes available ...

Momenta Rewrites the Notebook Rules, Richard Doherty,
Electronic Engineering Times, 10/7/91

... In addition to the visual orientation, there are two other rea-
sons I'm attracted to Serius’ product. One is the level of ab-
straction of the objects. Most object-oriented languages today
are for professional programmers (e.g., C++ and Smalltalk) and
that means the objects are at a relatively low level of abstrac-
tion to provide sufficient control for speed and memory
efficiency. Serius Programmer, on the other hand, has very ro-
bust objects for an application generator ... The second reason
| like the package is the relatively broad support for data types.

A Serius Approach to Programming, Rich Bader,
PC Letter, 9/16/91

... Specialized OOP environments like Smalltalk tend to
frighten programmers used to the procedure-oriented ap-
proach of traditional languages...Although embedding OOP
technology in existing languages like Pascal or C has really
boosted OOP, the tendency for programmers using those tools
is to keep on doing things the same way, with only a few
changes. There's still a big learing curve, and, if you give a C
programmer a C++ compiler, he’ll probably just write C code.
It's hard to lose old habits ...

... [Ron Fisher says] “Smalltalk’s concepts are very different,
but once you can deal with them conceptually, you can write
much better programs. Smalltalk is a whole environment, not

just a language. To me, C++ is a kit car, and Smalltalk is an
Acura NSX. C++ wasn't thought out thoroughly as an object-
oriented language. It exists because C exists. You can do a lot
more low-level stuff in C that you can with Smalltalk. C lets you
get at the iron much better, but if it wasn’t for C, C++ wouldn’t
have much of a following”...

Double Plus Good, Gordon McLachlan, HP Professional, 9/91

... But in a world increasingly jammed with OOP proselytes, we
still don't have an OOP graphics front end for these [graphics)
libraries. | would like to see something that would give me
ONE Object Oriented Design perspective with support for sev-
eral graphics libraries ...
Graphic Developer’s Taste Test, William E. Gates,
Midnight Engineering, 10/91

... The more advanced pen-computing operating systems use
object-oriented design for memory management. In contrast to
desktop GUI applications, which may require multiple
megabytes of memory, object-oriented applications typically
require only about 100K to 200K because the operating system
conserves memory by eliminating redundant code ...

Is the Pen Mightier?, Kathleen Melymuka, 12A-550 CIO, 9/15/91

... Building a single, integrated model for the problem domain
is something the securities industry has to do. We're face to
face with the complexity of the solution right now. Other indus-
tries won’t be far behind. Take a close look at your own prob-
lem domain; you may find that the celebrated paradigm shift is
not a problem of changing the way people think but of dealing
with the resulting solution ...

The Complexity of the Solution, Bill Welch,

Object Magazine, 9-10/91

.. continued from p.17

slightly thrown off since the style of the other analysis and de-
sign chapters gave me much more concrete choices to make.
And, since this is The Smalltalk Report, I can also say that the
Smalltalk language is somewhat slighted as a potential choice
for implementation language primarily because the authors re-
fer to it as a weakly typed language. I believe that there exists
confusion here between the use of strong typing and static typ-
ing. As every Smalltalk programmer knows, Smalltalk is a
strongly typed language.

Overall, | highly recommend this book to anyone who is
interested in leaming more about OO analysis and design. It
contains good, sound, practical knowledge drawn from real-
wotld examples. The methodology is flexible, allowing its
users to emphasize those modeling techniques that make sense

in their shop, while deemphasizing those that are irrelevant.
The book clearly gives a path that takes the modeler from
known structured techniques and allows him to migrate this
knowledge into the realm of OO analysis and design. In short,
this book has something for everyone using or considering the
use of OO technology. @

Dan Lesage has been involved with object-oriented programming since
1986 and Smalltalk since 1988. Currently, he is the Project Manager,
Turmnkey Systems at Object Technology Intemational in Ottawa,
Canada. His curvent interests include distributed computing, data
communications, and object-oriented analysis/design. He can be
reached at Object Technology International, (613) 228-3535, or
dan@oti.on.ca.

THE SMALLTALK REPORT

PRODUCT

ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied. Vendors
interested in being included in this feature should send press releases to our editorial offices, Product Announcements Dept., 91 Second Ave.,
Ottawa, Ontario K185 2H4, Canada.

The Agorics Project announced the opening of an online Smalltalk
Components and Consulting market on AMIX, the new electronic
marketplace for information provided by Autodesk, a subsidiary of
the American Information Exchange Corp. (AMIX). In this market,
Smalltalk users will be able to buy and sell classes, methods, tools,
applets, and any other Smalltalk-related information. Users will also
be able to offer and request Smalltalk consulting services. Features
include email, negotiation facilities, listings of sellers’ resumes and
references, listings of comments on components by previous buy-
ers, and more.

For more information, contact Howard Baetjer, The Agorics Project, 10364
Bridgetown Place, Burke, VA 22015; phone and fax (703) 250-4760; email
agorics@gmuvax.gmu.edu.

InputForms is a program designed for the interactive development
of input forms and all kinds of windows running under Windows 3.0
and Smalltalk/V Windows. Features include the ability to interac-
tively select child controls and define size, position, brush, fore-
ground color, background color, font, ete.

For more information, contact Vlastiril Adamovsky, 66 rue de Bourgogne,
L-1272 Luxembourg; phone 352 420884.

Take Control of Your

Empower Software has announced the availability of the Smalltalk
Project Browser, a source code management tool for Smalltall/V
Windows and PM systems that adds a powerful layer of control to
the Smalltalk environment. It is also useful as a development shell
from which other Smalltalk development tools are launched. The
Smalltalk Project Browser provides support for code porting and
maintenance across Smalltalk platforms, management of class de-
pendencies, system integration, automated code documentation,
and code distribution and packaging.

For more information, contact Empower Software, 9601 Wilshire Bivd., Ste.
1144, Beverly Hills, CA 90210.

Digitalk, Inc. has announced availability of a new release of its
Smalltalk/V PM that gives software developers a jump start on de-
veloping new applications that take advantage of the power of
IBM's upcoming version 2.0 of OS/2. In addition to enhanced fea-
tures and power, Digitalk’s Smalltalk/V PM 1.3 release includes sup-
port for IBM's Common User Access ‘91 (CUA) controls that are at
the heart of IBM’s new advanced OS/2 2.0 graphical user interface.

For more information, contact Barbara Noparstak, Digitalk, Inc., 9841 Air-
port Blvd., Los Angeles, CA 90045; (213) 645-1082; fax (213) 645-1306.

Applications with

application projects.

Price List

DOSV

DOS Vv/286
Macintosh V/Mac
0S/2 V/IPM

Site Licenses

pooiDickonesen:*

L
Unlack

Make DLL
Edll Wl Code:
Eén

Windows 3.0
V/Windows

Add
Remove application
Tioperts Re 9

first copy
subsequent

| One Maln Stresl
Cambndge. MA 02142

CooBers
rand

RV

PG s

Hal Hidloe:

srangd

Bring your large, complex object-oriented applications under control
with AM/ST, the Application Manager for Smalltal/V. The AM/ST
Application Browser helps both individuals and development teams to
create, integrate, maintain, document, and manage Smalitalk/V

New Productivity Tools |

Change Browser*
Source Control** PM or Windows

i SoftPert Systems Division

| (817) 621 3670 or (617) 621 3671 Fax

Applications Hierarchy
Every class has an owner.

Functional view across classes and related
methods within classes.
Applications port easily across platforms.

Automatic Documentation
Revision history for each method.

$150 Analysis and design reports.

gg Customizeable documentation templates.
$475
CALL Source Control

Integrate work of several users.
*Save and browse multiple revisions easily.
**Check-in, check-out, and lock source code.
Customize code templates.
Develop in a LAN environment.
Deliver applications without AM/ST.

$475
$195

Static Analysis Tools
Application consistency reports.

Graphical views of hierarchies.
Cross-reference of variable and method usage.
Up-to-date method index.

Dynamic Analysis Tools
Locate performance “hot spots.”.
‘Determine {est:coverage.

Anamet Lok

VoL. 1, No. 4: JANUARY 1992

19.

IN’€

&

EY
/’,' .\i

WINDOWS AND 05/2
PROTOTYPE TO DELIVERY.
NO WAITING.

In Windows and OS/2, you need prototypes. You have to get a sense
for what an application is going to look like, and feel like, before you can write
it. And you can't afford to throw the prototype away when you're done.

With Smalltalk/V, you don'.

Start with the prototype. There's no development system you can buy
that lets you get a working model working faster than Smalltalk/V.

Then, incrementally, grow the prototype into a finished applica-
tion. Try out new ideas. Get input from your users. Make more changes.

Be creative,

Smalltalk/V gives you the freedom to experiment without risk. It's
made for trial. And error. You make changes, and test them, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It’s that safe.

And when you're done, whether you're writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.
And the resulting application carries no runtime charges. All for just
$499.95

So take a look at
Smalltalk/V today. It’s time to make

that prototyping time productive.

Smalltalk/V is a registered trademark of Digitalk, Inc. Other product names are trademarks or registered
wrademarks of their respective holders.

Digitalk, Inc_, 9841 Airport Bivd., Los Angeles, CA 90045

(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

2z
u EBH ; AD/Cycle™
2z Ll

LOOKWHO'S TALKING
HEWLETT-PACKARD NCR
HP has developed a network trouble- NCR bas an integrated test program develop-

shooting tool called the Network Advisor. ment envir t for digital, log and
The Network Advisor offers a compreben- mixed mode printed circuit board testing.
sive set of tools including an expert system,

statistics, and protocol decodes to speed MIDLAND BANK

problem isolation. The NA user interface is Midland Bank built a Windowed Technical
built on a windowing system which allows Trading Environment for currency, futures
multiple applications Lo be executed and stock traders using Smalllalk 'V
simultaneously.

KEY FEATURES

M World's leading, award-winning object-
oriented programming system

B Complete prototype-to-delivery system

B Zero-cost runtime

M Simplified application delivery for
creating standalone executable ((EXE)
applications

B Code portability between Smalltalk/V
Windows and Smalltalk/V PM

B Wrappers for all Windows and OS/2
controls

I Support for new CUA '91 controls for
0S/2, including drag and drop, booktab,
container, value set, slider and more

B Transparent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

M Fully integrated programming environ-
ment, incluiding interactive debugger,
source code browsers (all source code
included), world’s most extensive Win-
dows and OS/2 class libraries, tutorial
(printed and on disk), extensive samples

B Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

B Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

g

UJDL]DD[IEE

This Smalltalk/V Windows application
captured the PC Week Shootout award—and
it was completed in 6 hours.

- SIS RR L IRRTIN

Smalltalk/V PM applications are used to
develop state-of-the-art CUA-compliant
applications —and they're portable to
Smalltalk/V Windows.

	By Article Title
	Determining object roles and responsibilities
	How to use class variables and class inheritance variables, part 1
	Object-Oriented Modeling and Design
	Profile/V: a performance profiler for Smalltalk/V Windows
	Should classes have owners? Perspectives from experience
	Smalltalk comes to the mainframe, part 2

	By Author Name
	Ewing, Juanita
	Hylands, Jon
	Lesage, Dan
	Reid, Glenn J.
	Sridhar, S.
	Wirfs-Brok, Rebecca

	By Topic
	Book Review
	Getting Real
	Object-Oriented Design
	Product Review

