
The International Newsletter for SmaIltalk Programmers

January 1992 Volume 1 Number 4

SHOULD CIASSES—

F~H

I

12

Col

6

9

~e-

15

17

19

20

his is a resp(mse tt) Juanita Ewing’s “Sh(~uld classes h:lve owners?” article in

the September 1991 issue of The Smallm[k Report. There :Ire several themes
WW OWNERS?

PERSPE~-~S— —
‘FROM—.

EXPERIENCE
By S. Sndhar

Contents:

clee

❑ in the article with which I’d like to ~ake issue. 1 have been a Smalltalk prc~-

gtammer for some years nclw, and l(~rah(>ut the last nine mtlnths several of

us at Knt)wled~e Sysrcms (.;orp. have been extensively using a commercially available Je-

vclopment envir(mment th:it pervtlsively sLlppt)rts the c(mcept [)f class ownership. This is

the ENVY/l)evel[)per team development tc)ol running on Smalltalk/V PM and

Sm;dltalk/V Windows. This is a p~)werful progmmrning envirl)nment designed tl) facilitate

coi)pemtive st)ftware development amlmg a team of pro~rammers- The tt)ol is flexible

enol]gh t(>carer [() the needs l>fmultiperslm teams as well as rhe lone programmer. For the

purp(~ses of rhis article, I shall use rhe term ENVY ro refer to ENVY/l)evel[)per.

It is in the ctmtexr ()(my experience of having developed Srn.dltalk c[)de using a team

tool” like ENVY in an inherently multiperson envir[mment that I shall address each of the

issues Ju:{nita has riiised. I shall also attempt to pn)vide technical as well as sociological

answers to the questitms she has raised. 1 use ENVY here to set a practical c~mtext for doc-

umenting my experience with many t)f the class ownership issues discussed in the original

article. Readers sht)l]ld not miscl)ns true this as a commercial plug fc>rthe prc)duct.

Bei,)re delving into specilic isslles, let us define some key terms relevant to this discussilm.
Should ciaeaeehave ownersk Perapec-
dw b ~anca
bys. sfidhor

Smallmlkcom~ to the rrrain%q part 2
byti). Reid

urrma

~~~ ~ ~lnlng +em
rola end qn5iiltdas
byReh w-

Gtdng W. Howmuaeclase mriablas
arrdctsas-m~ea,panl
byjsronimEwing

- * Hti a performance
profiler for SmelHk/V Windows
-Wed byforrWrrds

Book_ ~@WD Mmmffi
w mN
~by DLmlaeoge

wlra~rewti~

ProductArlrmuncemem

EN

soft

plie

con

sun

set

stru

cli]
Cal

mcm

ality

ity

tltm

Jua

Wh
VY sullports the nc>ti(ms [)f ckss owners and ckss devefr)pers. A class is tmly t>ne t)f miiny

war~> ct)mpt)nrnts that have ;m t)wnersl~ip aspect associated with them. Ownership im-

s thilt someone” is resplmsihle fL)rccmtrolling a software ct)mpt)nent’s ev~)luti(m. This

trol” mimifests itself in the facr rhat only an [)wner can referee a class for public c(m-

l~>tion.

The gr~nulariry t)f a software c[)mpt)nent can he varied: a meth[)d, class, set of classes,

t)f sets of ~lilss~s,etc. ENVY also supports an :Idditional programming envirc)nment

cture cilll~dan al)plicati(m. All ailplicatilm is a collccti(m of defined and extended

11 i‘ - d pLIrpL)se.]n addititm to ~Troviding a physi-ss~~that together i~cct)mplish a w: -L chne

t)rwanizati(ln of rC121[CL] classes, it also serves as a Iargc-grain reu~l hle ct)mpt)nent. Team

hers n(l h)nger just ~alk :Ihout reuse of a single class; they ralk ahl)L]t reuse of functitln-

. This is ~t)t)d hcciiils~the resp(msihility for ;Iccomplishing a givers piece t)f functional-

Mily Ile distrihlltcd amtmg a set of closely ct)llaht)rating cl;isses.

(;lass Li~v~!()~~r~ arc team members who may autht)r one or more cltisses in the applica-

. Tl]cy may he distinct from the ~lerstm wht) actl~llly owns rhe class.

nitti writes: “assume the nwner t)f a class is rew,~rded fl)r prc)ducing a reusable class.

at if ant)ther developer lincis a hug in th:]t class or thinks of a useful extensi(m! In a

t.(mtinltcd ,,n ln~v 4.



I

2.

EDITORS’
CORNER

John Pugh Pad White

n last month’s editorial, we urged you to take our columnists to task if you did not agree
with their opinions on particular topics. Well, you did just that! The approach to change

management proposed by Juanita Ewing in her opening Getting Real column, “Should

classes have owners ?,” has spurred several well-known members of the Smalltalk commu-

nity to put forward their ideas. In this month’s lead article, S. Sridhar from Knowledge

Systems argues that, based on his experience, class ownership is indeed a primary compo-

nent of any strategy for managing change in large Smalkalk applications. Next month,

Jeff McKenna will put forward his view that change management is best organized

around what he refers to as the two distinct phases of software development using

Smalltalk—functional expansion and consolidation. Change management seems to be a
topical subject right now, and we look forward to hearing your views.

Two of our regular columnists appear in this issue. Rebecca Wirfs-Brock continues her

Object-Oriented Design column by discussing the importance of understanding object

roles and responsibilities. In this month’s Getting Real column, Juanita Ewing begins a

two-part article on the appropriate use of class variables and class instance variables.

Also in this issue, Glen Reid, the architect of the Smalltalk/370 project, continues his

description of their project. In this issue, he discusses in detail many of the implementa-

tion issuesthat are specific to implementation on a mainframe, includlng a scheme to in.

troduce explicit variable typing in Smalltalk.

Rounding out this issue, Jon Hylands takes a look at the first of a new line of third party

Smalltalk products, Profile/V, a code profiling tool that can be used to monitor the per-

formance of Smalltalk applications. Fimlly, Dan Lesage reviews Object-OrkmtedModeling

and Designby James Rumbaugh et al.

The Srmdkdk Report is still finding its feet. Let us know what you like, what you don’t

like, and what you would like to see. We look forward to hearing from you and hope you

enjoy this issue.

—L—-

i%c %nallralkRcpint (1.53w 1056-7976) is published9 rims a year,*W month entipt fm the Mar/Aw, JWAW, andNw- .=mbid i~.=.
FWishcd b ~T, lm., a mmkr of rhe S10S Puhli=Aom GnwP, 5SSBnmchvay,New Ynfk, NY IMIZ (212)274-0640. @ Copyright 1991 by
C03T, l.c. All rightsmewed flepmductim cdthismated by ekmmic mnmtissicm,Xem cmanyother methai will k mmr=dasa willlil vi.la-
ri,m of rhc US fhpyight Law and is Rarlyprchihircd Mamrial may be repmd.ced wi[h e- pemissim from du pbluhers Mailed First Cl-.
S.lmmipri.mrams1 year,(9 issues)cfmmmic,$65, ForeignandGnsda, $92, Singfecopyprice,$B.OJ.~51_SR: Sad addmmCkl@ and wb-
smiprim ordersm: THE SMALLTALK REFW.T, Sukcrikr services, fkp. SML, P.O. Pm 3002 Om.ilk, NJ 07S34.5uhmir artick m k Fditomat91
SecmnfAvenue, Ottawa, Ontario KIS 2H4, Cawda.

THESMALLTALKREPORT



1980 Smalltalk LeavesThe bb. We were there.
1984 First Commercial Version Of Smalltalk. We were there.
1985 First Industrial Quali~ Smalltalk Training Course. We were there.
1987 First Fully Integrated Color Smalltalk System. We were there.
1988 Responsibility-Driven Design Approach Developed. We were there.
1991 Smalltalk Mainstreamed in Fortune 100 Applications. WE ARE THERE.
NEW! First multi-repository, group programming environment. NEW!

Smalltalk Technology Adoption Services
Technology FitAssessment
ExpertTechnicalConsulting
Object-Oriented System Design/Review
Proof-of-Concept Prototypes
Custom Engineering Sewices & Support

Smalltalk Training & Team Building
Smalltalk Programming Classes:

ObjectWorksSmalltalkRelease4
SmalltalkVAXhndows V/PM V/Mac
Building Applications Using Smalltalk

Object-Oriented Design Classes:

Designing Object-Oriented Software: An Introduction
Designing Object-Oriented Systems Using Smalltalk

Mentoring:

Project-focused team and individual learning experiences.

Smalltalk Development Tools
NEW! ConwrgenccYT&mEngineering Envimnmentw

MullWser/sharedrepositorydwebpment environmentforhams creathg productionqualitySmalltalkapplications.

Convergence/ApplicationOrganizer PlusTM

Version management development tools,and improved code modularityfor individualSmalltalkdevelopers.

mInstantiations, Inc.
1.800.888.6892



■ SHOULD CLASSES HAVE OWNERS?

4.
COluindfmnplge1...

system with class ownership, the owner writes the code to fix

the bug or writes a new method. He is the one motivated to

make the class more reusable.”

First, the case where a developer finds a bug. Suppose I

own a reusable class called Drawing. If another developer, say

Harry, finds a bug in Drawing, he creates a scratch edition of

the application containing the class Drawing, creates a new

edition of Drawing, fixes the bug, versions the change, and in-

forms the owner via email or otherwise of the fix. I, as the

owner, can examine the fix at my leisure, assessthe impact on

the clients of the method, and, if all is well, incorporate the

fix into a finure version of Drawing and then release it for pub-

lic consumption. Alternatively, I could simply release the ver-

sion of Drawing that Harry created. In the meantime, Harry

can continue to use the scratch edition of Drawing and do

anything he pleases to any of the existing methods of Drawing

without impacting any other team member. When I have re-

leased a new version of Drawing, he can load it into his envi-

ronment, replacing the scratch edition.

Thus, it is that Harry and I have resolved the bug by en-

gaging in a harmonious electronic “conversation” without dis-

rupting any other team member. He found the bug, submitted

a fix, and continued to do his work with his fix without await-

ing my approval. 1, as the owner of the method, evaluate the

quality of the fix, assess the impact of the fix, and then fold it
into the next version of the class and release it for our team’s

use. The owner is the best person to assessthe overall impact

since he is the one who most intimately knows the raison

d’etre for the method in the first place. He is probably the

most aware about the way in which existing and potential

clients use the method. ENVY automatically records the au-

thor and time stamp of the fixed method.

Alternatively, Harry can create a new working copy or edi-

tion of Drawing along a different stream of development or

versioning branch. When he is done fixing the bug, he ver-

sions the class with a mnemonic version label. (The

mnemonic label is not required; it is just a convention we

have adopted to meaningfully identify the different versions of

a class.) The owner then merges his contributions with the

officially released version of Drawing. The point of all this is

that:

s With good communications (which is required anyway for

healthy project sociology), class ownership does not ham-

per the evolution of a class into the reusable club. This is

primarily because changes to the class can be made asyn-

chronously.

● The owner reviews the fix in a different context from that
of the other developers. It is his responsibility to guarantee

the proper functioning of all the advertised interfaces of his

class and to the extent possible be familiar with all the us-

age contexts of his class.
ADDING CLASS EXTENS1ONS

The case where Harry findsa useful extension to Drawing is

easily dealt with in ENVY. As a matter of fact, this situation

occurs constantly in our work with system classes like String,

Stream, etc. ENVY provides a programming environment ab-

straction called classextemion that allows a developer to add

brand new methods to an existing class. These method exten-

sions are localized to the application in which the extension is

defined. Thus, Harry can add a new method to Drawing by cre-

ating an extension of Drawing in his application. Even though

I am the owner of Drawing, Harry does not require my permis-

sion to add the useful extension he needs. Furthermore, this

extension does not compromise the integrity of the original

class. A malicious Harry could, of course, destroy the class’ in-

tegrity by writing a method extension that corrupts the inter-

nal smte of the class in a way that is incompatible with the rest

of the class’ behavior. The users of Harry’s code are the losers.

Team sociology being what it is, Harry would be quickly ex-

posed by the users and be pressured to undo his mischief.

h should be noted that the person who creates a class ex-

tension in a different application actually owns the extension.

Class extensions are a powerful mechanism for specifying and

managing application-specific behaviors for existing classes

and for dealing with orthogonal protocols for classes where

several developers are authoring different parts of the same
class. By splitring these orthogonal protocols along their func-

tional views using applications, multiple developers on a sin-

gle class can be managed realistically and effectively.

REWARDING REUSE

Juanita correctly notes that if a reusable class is provided by a

team of developers then the entire team should be rewarded.
his our experience that a reusable class usually has a primary

author (or owner in ENVY parlance) and it can have multiple

developers different from the author. These secondary authors

can be reviewers, bug findets and fixers, and maybe even coau-

thors. Again taking the Drawing example, I may f-redthat

Hatry has made a dozen extensions to Drawing in his applica-

tion. Upon close examination, I determine that these exten-

sions are useful and general enough to warrant inclusion in my

Drawing class. In ENVY, as the class owner, I simply add

Harry as a developer of the class, have him promote the dozen

deserving methods to my reusable rendition of Drawing. All

the newly promoted methods carry Harry’s imprimatur. Thus,

Harry and I are established as coauthors of Drawing. Since the

programming environment explicitly identifies the people

who are working on an application (a large-grain reusable

component), it is easy to identify who to reward. A picky

manager can even measure the relative contributions to the

reuse genre and can thereby dispense rewards proportionately!

There is an interesting sociological aspect to this reward is-
sue that runs somewhat orthogonal to class ownemhip. If

Harry makes a change to my class that I don’t like-as in

Juanita’s world—who wins? As my colleague Lynn FogWell
THESMALLTALKREPORT



observes, being clear about who owns what, or more precisely

who is responsible for what, actually goes a long way in resolv-

ing conflicts before they get started.

FLEXIBLE PROGR4MM1NG ENVIRONMENT

I agree with Juanita that “flexibility in programming environ-

ments is critical.” I disagree with her statement, “Systems with

class ownership are not flexible.” A good programming envi-

ronment should be able to maintain flexibility without com-

promising the integrity and reliability of the classes. The pro-

gramming environment should be flexible enough to cater to
widely different organizational cultures and software environ-

ments. It should be appealing to the “rape and paste” rapid

prototype as well as the person who is engaged in production

software engineering. In addition, it should be forgiving of the

user’s mistakes.

In a production software environment, it is often necessa~

to maintain comprehensive change control over the various

software elements; otherwise, system integration becomes a

nightmare. In certain organizations, it may be mandated that

third party reusable classes not be tampered with, for fear of

compromising the integrity and reliability of client code that

is dependent on them. Indeed, the reusable class vendor (an

internal organization or an outside source) may have shipped

a class library without any source. This is eminently possible

when classes are packaged as dynamic link libraries. Under

these circumsmnces, even though you cannot modify an exist-

ing method, in ENVY you can add extensions co these other-

wise read-only class= in your own application.

Juanita notes the difficulty in managing the ramifications

induced (vis-?t-vis class ownership) by introducing changes in a

class hierarchy. She concludes, using an interesting syllogistic

argument, that therefore the same developer must own all the

clasw in the hierarchy. This need not be the case at all. In

fact, it is impractical to expect that the superclass and subclass

owners be the same. Often times the superclass owner maybe a

third party vendor or a different organization geographically re-

mote from the subclass developer. In a programming environ-

ment such as ENVY with comprehensive version control and

configuration management facilities, a complete system con-

sists of a collection of compatible applications. By compatibil-

ity I mean, for instance, that the well-being of a subclass client

depends upon a properly flsnctioning superclass. Now if the su-

perclass owner makes a change in his class, it may indeed com-

promise the integrity of the subclass. It is therefore incumbent

upon the subclass owner to adapt his class to the newly

changed superclass before a new configuration of the integrated

system is released. This is no different from the everyday situa-

tion where we developers have to port our class= to new ver-

sions of the .%nalltalk products from vendors.

I agree with Juanita’s concluding premise that classes de-

veloped by multiple programmers are understood by multiple

programmers. I disagree with her observation that class owner-

ship is an obstacle to accomplishing that. Classes in Smalltalk
VOL. 2, No. i: ~ANUARY1992
often reflect the style and personality of the author. Having

too many developers on a single reusable class may introduce

conflicting styles, idioms, and figuresof speech that together

srnke a discordant note to the hapless client. As a flexible

programming environment, ENVY recognizes the need for

new extensions to existing classes and therefore permits the

distribution of protocol among several applications possibly

authored by different programmers for ever-so-specialized rea-

sons. The prima~ author serves as a focal point for the evolu-

tion of the reusable class. A class, in the course of its lifetime,

may see its author pass on to a different project or even leave

the company. Or, the author may want someone else to as-

sume the class’ maintenance. Flexible programming environ-

ments provide mechanisms for effecting a smooth change of
guard to establish a new class owner.

CONCLUSION

The features and philosophy of class ownetship (and indeed

that of software component ownership) foster a disciplined

software environment without compromising the classical

productivity gains of Smalltalk. Class ownership itself is inad-

equate. The ownership mantle has to be pervasively applied

across all the different units of software that together comprise

a complete system. This requires a programming environment

that uniformly applies the ownership philosophy across the

various development tools. h should be flexible enough to ac-

commodate different organizational work cultures vis-h-vis

team pro~mming.

Class ownership provides a framework for properly separat-

ing the activiti~ of component building ftom application

building. Component buildets are those people whose major

goal is to build reusable components and who should have a

reward stmcture to match. Application builders are trying to

get an end user system out the door, and programming for

reuse may not be a critical factor for them. Even if developers

have to play both roles, it is important that they understand

and record the role that they are playing at anytime. Owner-

ship and responsibility for software is a key factor in long-term

software quality and reusability. ❑

S. .WJrar is a senior member of the technicalsraffat Knowfedge Sys-

tems Corp. in Cary, NC wherehe is actively applyingSrnalhalkto a

varietyof so@are engineeringprobkrns.He hasalso developedsub-

stantial applications &signedtnmeetspecijiccustomer requirements.

He came to KSC from Mentor Gra@cs Corp. where he was the pro-

ject leadforMentor’snext generation &sign managementenviron-

mentdevelopedin C++. Prior to thathe worked at Tek&onixfor four

years on Common LisjIand Smafltd/80 product&ue.!opment.While

atTektronix, he&ue@ed numeroustook and components running

in theSmaUtafk/80enuimmrrent.He was an earlydewfoperof a

ameworkfor dekring stand-alone%nahal.k apphcatiom.fi

5.



6.
BJECT-ORIENTED DESIGN

Determining object roles and
responsibilities

Rebecca WirJ&Brock
II
onald Norman, 1 in The Designof Everyday Things, makes

the following statement:

Consider the objec~books, radios, kitchen appliances,

office machines, and light switches-that make up our ev-

eryday lives. Well-designed objects are easy to interpret
and understand, They contain visible clues to their opera-

tion. Poorly designed objects can be difficult and fiusrrat-

ing to use. They provide no clues-or sometimes false

clues. They trap the user and thwart the normal process of

interpretation and understanding. Alas, poor design pre-

dominates. The result is a world filled with frustration,

with objects that cannot be understood, with devices that

lead to error.

I never thought I’d say this, but software objects ure like

real-world objects ! Both kinds of objects are hard to use if they

are poorly designed. Ensuring that software objects are easy to

use involves paying attention to a number of sound design

principles. No one ever said that good object-oriented design is

easy. In this month’s column, I’ll discuss the importance of un-

derstanding and modeling object roles. Once there is a clear

sense of an object’s intended purpose, it is much easier to detail

the necessary behavior in an understandable fashion,

Identifying the central classes in an application is just the

first step. Combing through a specification of the problem may

provide an initial list of candidate classes, but what next?

First, let me state that no designer I know has ever found all

the key objects by reading and understanding a specification

of the problem. A specification is just a launch pad for design

activity. Depending on the weight of that specification, there
will be different strategies needed to find those key classes. If

there is a mound of paper to wade through, the initial task will

be one of filtering out a lot of detail and focusing on identify-

ing the highest level concepts. On the other hand, if the

specification is on the slim side, the task will be to develop a

skinny statement of intent into a model of key concepts that

will drive Thedesign.

There is a deceptively simple question that needs to be an-

swered for each identified class. Can that class’ purpose within

the application be clearly stated? I’ve found it useful to force

myself to write a concise, precise statement of purpose for

each potential class. This purpose statement need not be long
or wordy, a sentence or two will often suffice. However, if it is

difficult to construct a succinct statement, more work is
needed. There are several plausible explanations (other than

that the class doesn’t belong in the design) for being unable to

write a clear purpose statement for a class.

SUBDIVIDING LARGE CONCEPTS

For one thing, the class may represent too large a concept.

One indicator of this is that the class seems to embody an en-

tire program or a major portion of the overall system behavior.

This large concept needs to be decomposed into more under-

standable pieces. What are the constituent responsibilities of

this mega-object? To answer this question, we must resolve a

rather complex concept into simpler, more basic ones. These

simpler concepts will be easier to understand, and their pur-

pose and role will be easier to elaborate. Simpler concepts will

be represented by classes in the final design, while the larger

concept may not.

66
.,.software objects are like

real-world objects
99

It is conceivable that the large, vague concept still has a
role to play and will be represented by a class in the final de-

sign. For example, the object might be responsible for coordi-

nating the actions of other objects (each with a concisely

stated purpose) that collaborate to fulfill the larger purpose.

One design for an automated teller machine might have an
automated teller session object whose purpose is to conduct a

customer session. This customer session would consist of a se-

ries of user transactions with the bank (and a whole chain of

responses to user requests) that are coordinated by the auto-

mated teller object.

Subdividing the responsibilities of a large, complex class

into a number of simpler classes requires deeper understanding

of the system. Each newly created class needs a clearly stated
THE SMALLTALKREPORT



Voss
Virtual Object Storage System for

SmaUtalklV
Seamlesspersistentobjectrrrrznagementwith up&te transaction

●

●

●

●

●

●

●

-contruidir&tly in tk %sWalk Ia&urge

TmnsparentaccssstoSmalltalkolqsck30ndisk
TnmmctimmIrunit/ronback
~ to inditiud demants d virtual eolktions and

Multi-keyandmuki-valusvirtualdkbmnas. withqueryby
Iteymngeandsetinl ““

ClassmSmctumsditmbrrenamhgelassessndaddingor
~ inslance-blssallowaimmmmhl applbtion
developsmt
Shaledaeea?4stooamedvirtualobjsctspace3
WJroECds supplied

Sornsanllmertsm hawersc?h?dabutVoss:
“,..ckan...akgant, Workstikeacharm”

-HntHitdimmd,hmnst lubmhks
“works abotutely bsausifully;axcdent @romance and
apptiditilyl”

-W Dutan,Micqsnks Inshmwnti

logic ~~ZKZ:.T=IZ?~*
~R T S w~==w-y~z,==’=

TS3L449ZZS21ZWZ FAx#z73z4s171

7

role. There already may be identified classes that can tldfill

part of the responsibilities of the rather large concept. Most

likely, this isn’t the case. A hypothesis must then be formu-

lated on how to partition the vague concept into several dis-

tinct roles. Each role will be assigned to a new class. A key de-

signer of a large, successful application told me that his design

team subdivided responsibilities according to when, what, and

how. These subresponsibilities were then assigned to separate

classes that were either responsible for knowing when, know-

ing what, or knowing how to perform an operation. Sounds

simple enough. The design team found they spent time debat-

ing whether a particular responsibility was actually a when, a
what, or a how. One object’s what is another object’s how. It

all depends on a parties.da point of view. At least the team

had a strategy for elaborating class roles. But they still had to

debate the details in context of their emerging model.

COMPLETING A MODEL OF OBJECT INTERACTIONS

There are other situations where it is difficult to state a class’

purpose. One common situation is that a class doesn’t seem to

be connected to any others. It’s hard to explain why this dis-

joint class should exist, yet the designer remains convinced

that it’s important. Chances are, the class is important. The

problem is that the model is incomplete. This problem rypi-

cally arises when classes are sifted through one at a time,

rather than building an understanding of the collaborative be-

havior between objects in the design.

To understand any single object’s role, it must be looked at

in the context of others with which it interacts. Constructing

an object-oriented design is not a linear, top-down process, al-

though it is often to present the design that way. Understand-

ing an object’s purpose forces the designer to understand the

roles of other objects. To understand the role of a seemingly

isolated object, both an understanding of iw static, structural

relationships with other objects and interactions with other

objects is needed.

To determine the static relationships an object has with

others, examine how an object is connected to othets. Is there

a whole–part relationship between it and another object?

Does this object represent an aggregation of other objects? If

so, it is usually pretty simple to tit this object into the design.

It is much harder when an object participates in a number

of relationships. In this case, it is useful to build an under-

standing of the dynamic behavior of the object. Performing
design walk-throughs by tracing a chain of object collabora-

tions in rqcmse to a stimulus is a good way to understand ob-

ject interactions. Ivm Jacobson,z pioneer of the Objectory

method, inuoduced the notion of usage cases. Usage cases can

be recorded and then used to test the model under both nor-

mal and abnormal conditions. A key component of Steve

Weiss and Meilir Page-Jone’s3 object-oriented software syn-

thesis method is modeling the response to events and under-

standing their impacts on a design. The idea behind both

techniques is to translate requiremet-m into events and to as-
VOL, 1, No. 4: ~ANUA.tlY1992
sociate events with objects that are responsible for handling

them.

The more situations that are modeled, the better. As sim-

ple as this sounds, it rakes some skill to effectively elaborate

object interactions. The goals is to first develop a “big picture”

before diving into detail. The way to do this is to trace object

collaborations between objects that are at either the same or

next conceptual level in the design. First, develop an overall,

high-level view of key object interactions. Then elaborate and

subdivide roles and object responsibilities. This breadth-first

approach avoids modeling classes at widely differing concep-

tual levels, which indeed is difficult.
This breadth-first approach represents an ideal. 1.sspractice,

some areas of the design will be better understood and naturally

elaborated before others. An uneven design model can make it

difficult to uace object collaborations. h will be relatively easy

to trace the collaborative behavior throughout the well-under-

stood pasts of the design. When collaborations are necessary

with objects in an undeveloped area, suddenly what had seemed

sttaightforward becomes very unclear. This isn’t a sign of fail-

ure; it just indicates that the unclear part needs elaboration.

OBJECTS THAT DON’T FIT THE MODEL

Perhaps one of the toughest problems to deal with is when an
object doesn’t fit with the designer’s notion of what consti-

tutes a “good” object. It is very difficult to explain the purpose

of such misfits. Criticisms commonly leveled against such

troublesome objects are:



8,

■ OBJECT-ORIENTED DESIGN
● This is an organizing object. It is too simple. It merely

consists of data. It has no behavior. Aren’t objects sup-

posed to have both?

● This object’s only purpose seems to be to route messages

between two other objects. Why should I have intermedi-

ary between these objects ? Can’t they just directly commu-

nicate with each other instead ?

● This object is too action oriented. Aren’t objects supposed

to encapsulate both operations and data? This object seems

like a pure “process.” We’re doing an object-oriented de-

sign, not a process decomposition.

66
Constructing an object-oriented

design is not a linear, top-down process,

although it is often useful to present
the design that way.

99

There are no pat answers to these criticisms. In each case,

the object doesn’t match the designer’s expectations. The

model, the designer’s expectations, or both need readjust-

ment. In the first case, it is worth noting that objects are not
uniform packages of operations and data. It is natural that the

proportion of each will vary according to the object’s role in

the design. It is perfectly reasonable for relatively simple ob-

jects to mexist alongside more complex ones. However, the

object must stand on its own merit to be included. Indeed,

there may be preferable alternatives to creating a “data

mostly” object.

When creating an object model, the designer may need to

invent mechanisms that weren’t spelled out in the

specification. Mechanisms may be added for the express pur-

pose of reorganizing the flow of information and communica-

tion between objects. These mechanisms may help reduce ob-
Universal Database
OBJECT BRIDGE m

This developer’s tool allows Smalltal.k to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,

dBASEIII, Lotus, and Excel.

Intelligent Systems, Inc.
$
/ S06N.StotOStreal. AnnArbOr.M4g104 (31.3)W6d2m(Sli3)996dZ41fa
ject coupling or provide an absttact connection between ob-

jects. The consequences of inserting such mechanisms needs

careti.rlconsideration. But, objects whose purpose is to orga-

nize or manage communication between objects can be rea-

sonable design additions.

In the third case, the purpose of an object may be to trans-

form information from one form to another. Such process-ori-

ented objects can naturally occur in a design and are not al-
ways a sign that the designer hasn’t shifted from the

procedural to the object-oriented paradigm. Each process-ori-

ented object should apply a fair amount of intelligence to pro-

duce results, Better yet, a process-oriented object can often

provide a completely different view on the transformed infor-

mation. The objects being processed and the clients request-

ing the transformed information may be only dimly aware of

each other. In this case, the process-oriented object is proba-

bly a reasonable design concept. One example of a process-

oriented object is a compiler. The role of a compiler is to

transform text into an executable program structure. h takes a

lot of intelligence to perform this operation. Defining a com-

piler object is a reasonable design choice.

h maybe that a class doesn’t belong in the final design.

Websters Dictionary defines role as “a character assigned or as-

sumed. A part played by an actor or singer.” The task of the

designer is to assign each object an appropriate role. Each role

is constrained to fit within the existing object model, but a lot

of designer discretion is still involved. It’s a challenge to de-

sign well-understood, easy-to-use objects. But the positive im-

pacts that well-designed objects have on application mainte-

nance and understandability are well worth the extta effort. ❑

REFERENCES

[1] Norman, D. TheDesign ofEucrydayThings,Bantam-Do.bleday-
Dell,New York, 1988.

[2]Jacobson, I. Object-orienteddevelopmentin an industrialenvi-
ronment, 00PSLA ’87 ConferenceProceedings,Orlando,FL,
SIGPLANNotices, 22(12), 1987, pp. 183-191,

[3] Weiss,S., and M. Page-Jones.Synthesis/analysisandsynthesis/de-
sign,Proceedingsof the0bjec@ri4mted SystemsSymposium,Sum-

mer 1990.

Rebecca Wi+-Brock is theDirectorof ObjectTechnolo~ Services
aSInmantiticms and coauthor of DesigningObject-Oriented

Software. Sheis theProgam chairfor 00PSL.A ’92. SheIuusix-

teenyearsofe@mience designing, implementing, and managing

software products. During the bt seven years, she has focused on

object-oriented sofwre. She managed the deudoprnentof Tek-
tTonixColor SrnaUrnl.kand hasbeenimmersed in &uefoping, reach-

ing, and kcti”ng on object-oriented so@are.
THESMALLTAL.KREPORT



ETTING REAL Juanita Ewing

How to use classvariables and class
instance variables, part 1
I
n last month’s column, I discussed some strategies for initial-

izing classes and how initialization related to class variables

and class instance variables. In this column, I will talk about

coding conventions for class variables and when to use class

variables vs. class instance variables.

Classes that use class variables can be made more reusable

with a few coding conventions. These coding conventions

make it easier to create subclasses. Sometimes developers use

class variables inappropriately. Inappropriate use of class vari-

ables results in classes that are difficult to subclass. Often, the

better implementation choice for a particular problem is a

class instance variable instead of a class variable.

WHAT ARE CLASS VARIABLES?
Classes can have:

“ classvariables
● classinstancesvariables

Class variables are referenced from instance and class methods

by referring to the name of the class variable. Any method, ei-

ther a class method or an instance method can reference a

class variable. Figure 1 contains a diagram of a class, Listhter-

hce, that defines a class variables.

The methods in Iisffnterface would look like this:

Listb-iterfaceclass
*lise

“Createa menu.”

ListMenu:=Menulabels:#(’add’’remove’)

UstIntert%ce
haaMenrz

“Returntrue if a menuis de6ned.”

“ListMenunotNil

pezfosmMessuAetMty
“Perfornsthemouse-basedativity formyview.”

selfhasMenu
iil’nte:[“ListMenustartUp].

Both instance and class methods can directly reference

class variables by name. The class method initialize is used to

bind values to the class variables. The instance methods has-
VOL. 1, NO. 4: ]ANUARY1992
Menuand perforrnMenuAfivityreference the class variable List-

Menu.All instances of Iisffnterface and the class ListInterface

share the same class variables.

HOW ARE CLASS VARIABLES INHERITED?
Class variables and the values they are bound to are inherited.

The class variable referenced by a subclass is the same as the

one referenced by the superclass. This means that a class vari-

able is shared by a class, all its subclasses, and all the instances

of the class and its subclasses.

66
It is possible for subclass methods to

modify inherited class variables, but

generally it is undesirable to do SO.
9

Our example has a subclass of Li.sthttetfacecalled Calculat-

edListlnterface. Subclass methods referring to the ListMenu

class variable reference exactly the same object as the super-

class method. The subclass CalculatedListlnterface has behavior

that is different from in superclass, as defined by the method

conditionalMenuAciivity:

pz---,+
class mlitikS

LIatManu aMmu

+(%
M
.alculationB!-ati

Figure 1. Classvariablesare referncedby aubclasaesand all instances.

9.



■ GEITING REAL

10.
CalccclatedListIntert%ce
eenditinalMenuMivity

“Performthemouse-basedaclivityformyviewifthelistis not
empty.If thereis nomenu,flashthelistpane.”

selfhasMenu
ifFalse:[“selfilash].

listisEmpty
ifpalse:[“ListMenustartUp].

Subclass methods can directly reference class variables that
are defined by the superclass. In our example, the Calculated-

hsffnterface method references the class variable hstienu that

is defined by ~sffnterface. This is different from the inheri-

tance of instance variables. The method conditiomlMenuAtiv-

ity references the instance variable list that is defined by the

class Lisffnterface.But, each instmce of calculated.i.sffnterface

and Listhterhce has its own copy of list and does not share in

instance variables.

HOW DO SUBCLASSES MODl_FY CLASS VARIABLES?

It is possible for subclass methods to modify inherited class

variables, but generally it is undesirable to do so. If a subclass

were to modify a class variable, it would change the only ex-

isting value of the class variable. Each subclass does not have

its own copy. It references a shared copy. Generally, develop-
#~ Smalltalk/Vusers: the tool
~ for maximum productivity p

Putrelatedclasses and methods into a single task-
oriented object called application.
Browse what the application sees, yet eaaily move code
between it and exremal environmen~
Automatically document code via modifiable templates.
Keep a history of previous vessions; restorethem with
a few keystrokes.
Vii CblSS hit”UChy as graphor ht.
Printapplications, classes, and methods in a fosmatted

Fw5Je--’d~mmmMimm apphcauons andmerge them together.
Applications are unakkd by compress log change
mndmany otherfeatures.,

Class :--------------------------.—..;
‘ Deletedclarmes !

<--$

<

................ ..................
m k-ppu=q ~.................................

Yarn Deletedmethods7I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ag History — ICode reeovery[

UtUltlerL._----Afifititfi&[fi&[ and more..

CodeIMAGERm V284, VMac $129.95

~m ❑ 31a ~5.

Ii!iIl

SixGraphm Computing Ltd.
formerly ZUNIQ DATA Corp.
2035 C&e & Lieatse,suite 201
Montreal, Que. CanadaH4N2M5

& T&&\I&~2--331, Fax (514 956-1032
4

mlr-rkrk cQqM~Lm.
SrdSrdk/Vb rims. am&md
ers want to create a new class variable and use it in place of

the inherited class variable.

Using our example, we will create a new menu in the sub-

class CakmlatedLisffnterface.The menu is implemented with a

class variable so it is not possible to change the menu for the
subclass without also changing it for the superclass. This is be-

cause both classes reference the same variable.

The only way to create a new menu fcsrthe subclass and re-

tain the original menu for the superclass is to create a new

class variable. In our example, we call the new class variable

CalculatedListMenu.In addition to a new class variable, all

methods that reference the original menu must be overridden

in the subclass:

CalculatedListIntert%ceclass
iniUalise

“Createa calculatedmenu,”

CalculatedMenu:= Menulabels:#(’add’‘remove’‘printi)

CalculatedListInterface
hatienu

“Returntrueifa menuis defined.”

“CalcufatedMenunotNil

pesforrnhiendidvity
‘Terformthemouse-basedactivityformyview.”

selfhasMemr
ifhue: [“CalculatedMenustartUp].

Because direct references to the class variable ListMenuare

sprinkled throughout the class Lisffnterface, the subclass must

override many methods. In this simple example, we had to

override three methods that reference ListMenuto reference a

different menu. In a complicated real-world application, many

other methods may need to be overridden to reference a dif-
ferent class variable in a subclass. Because significant portions

of the class needed to be overridden, the class is not very

reusable.

Y-,-
LlsSMenu aMenu

&(’6’G3
list
dculalimBlock

Figure 2. Coding conventionsincreasethe reusabilii of classes
implementedwith classvariables.
THESMALLTALKREPORT



A better vets ion of IM.rrterface has the minimum number

of references to a class variabl~ne for setting and one for

retrieving the value of a class variable:

Lisffntert%ceclass
initialize

“Createa menu.Createconstants.”

I&Menu:= Menulabels:#(’add’’xemove’)

menu
“Returnthe list menu,”

“ListMenu

ListInterface
lwdtenu

“Morn hue if a menuis defined.”
“selfcbss menunotNil

performMenmAclkHy
“Perhrm the mouse-basedativity formyview.”

selfhasMenu
ifl’rue:[“selfclassmenu.startUp].

66
Because of the nature of the data

stored in class variables, it is best for

class methods to store and retrieve
the class variables.

99

This coding convention reduces the number of direct refer-
ences to a class variable, as illustrated in Figure 2. h is easier

to create subclasses because only the methods that set and re-

trieve the class variable need to be overridden. Now the code

for Cahmlatedtiffnterhce looks like this:

CakulatedListInterhceclass
iuiualiaa

“Createa a computedlist menu.”

CalculatedMenu:=Menulabels:#(’add’‘remove’‘print’)

menu
“Returnthe list menu.”

“CalculatedListMenu

This coding convention effectively restricw the references

to a class variable. Because of the nature of the data stored in

class variables, it is best for class methods to store and retrieve

the class variables. In effect, we have eliminated the sharing

between classes and instances.
VOL. 1, No. 4: ~ANUARY 1992
By eliminating this sharing, we have made Lkt.htterhce

more reusable; however, tisffnterface still has anoher prob-

lem. Another class variable had to be created by the subclass
to provide a different menu. Now Cahntl.atedListInteri%cehas

two class variables, one of which (tisthienu) is not used.

The root of the remaining problem is that class variables

are shared by a class and its subclasses. In our example (and in

many other situations), this sharing is inappropriate. Instead,

a subclass needs to be able to override inherited data. Class
variables share the data between subclasses and superclasses,

so it’s not possible for a subclass to override the data. Next

month, we will explore another mechanism, class instance
variables, that will solve our problem. ❑

Juanita Ewing is a senior staff member of lnsrantiatiom, Inc., a soft-

ware engiruwing andconsultingj%rr that@ecializesin dwel.upingand
applying object-orientedtechnologies.Shek beena projectleaderfor

comme-rciulobject-oriented softwareprojectsand is an expert in the de-

sign and implementationof object-orientedapplications,frameworks,

andsystems.In herprewiouspositionat TektronixInc., sk was re-

spomibk for tk developmentof cl.mslibraries for the firstcorrcrmwcia[

qualitySrnalhdk-80system.Her professionalactivities inch.ukWork-

shop and Pad Chairs for the00PSLA conference.



12.
SMALLTALK

COMES TO THE

MAINFRAME,

PART 2

GkmnJ. Reid

II
n part 1 of this article, we discussed our implemen-

tation of Srnalltalk in an IBM mainframe environ-

ment that we have called Smalltalk/3 70. Mention

was made that we are investigating the introduc-

tion of typing into Smalltalk, cutrently a popular area of inter-

est in the 00 community. Here, in part 2, we will discuss some

specifics of our investigation (not yet complete) and, hopefilly,
shed some light on the difficulties involved in typing a lan-

guage like %nalltalk.

Before we launch into a discussion of solutions, perhaps it

would be appropriate to determine what we are investigating

and why. In part 1, we stated that the performance overhead

of dynamic (or late) binding would probably be unacceptable

in Smalltalk/370, particularly since degradation of the system
affects all users in a time-sharing environment. T’he fastest

untyped version of Smalltalk today is the ParcPlace

Smalltalk-80 implementation, which runs at approximately

10% the speed of optimized C. This does not imply that the

basic mechanism of dynamic binding in Smalltalk must be

thrown out. As with many performance problems, it is very

possible that concentrating on a few areas of concern will

lead to a satisfactory system. Since dynamic binding is the

problem, we must substitute statically bound procedure calls

or, better yet, in-lined procedures in the areas where they

provide the most benefit.

When we first considered the dynamic binding problem, we

felt that we would probably be able to implement a static typ-

ing mechanism that would allow programmers to explicitly de-

clare variable types within their programs and enable our com-

piler to make use of these for optimization purposes. In our first

attempt, we limited the scope of our ability to explicitly type

Smalltalk. Since performance was our main goal, rather than a

comprehensive typing system, we considered this approach ac-
ceptable. We have included a few of the details of this ap-

proach later in this article.

As our static typing mechanism gained in substance, a num-

ber of things became apparent. Explicit type declarations in-

crease system complexity from the users perspective. A new di-

mension is required in programmer thinking. Not only must

performance requirements be observed in producing algorithms

that operate efficiently, but all variations of types that the algo-

rithm could operate upon must be considered as well as the rel-

ative volume of message sends to each type. It is possible that

subsequent changes to the system may make previous tuning

invalid. Furthermore, type declarations may restrict the appli-

cation of a method. For example, a method argument maybe

typed, causing method failure, similar to primitive failure,

when an argument with art incorrect type is received. This

makes the programming environment less flexible, or more

complex ftom the programmers point of view. Intuitively, it

appears that these complexities will increase if we expand our
typing strategy,

As part of our investigation, we are reviewing published lit-

erature in the area of typing and optimizations to pure object-

oriented languages. So far, we have come across three different

approaches.

Probably the furthest advanced example of comprehensive

explicit typing within Smalltalk is the Typed Smalltalk (TS)

project. 1 In this project, a syntax extension to Smalltalk allows

the programmer to explicitly declare types for variables,

method reds, etc., that the compiler can use to statically

bind or in-line procedures. Published performance results indi-

cate that some small benchmarks have achieved speeds
at least twice that of Smalltalk-80, Since this data is not re-

cent, and we understand that work is still continuing on Typed

Smalltalk, we expect that these results have been improved

still further. This approach is closest to our initial experiments

with explicit typing. Since this project is much further ad-
vanced, we will probably look to it to evaluate some of our

concerns mentioned above.

Recent benchmark results in the SELF programming envi-

ronment have demonstrated a Smalkdk-like language mrming

at approximately 57% of the speed of optimized C.2 These re-

sults were achieved without the introduction of explicit typing

within the language. In this approach, the compiler uses “path

splitting” to generate both high- and low-performance paths

through a method. Path splitting is used when a frequently used

message selector whose receiver usually belongs to a particular

class is detected within the source program. For example, path

splitting would occur for the high-frequency message a~, which
is most often received by an instance of Array, This approach

uses the advanced techniques of dynamic compilation, cus-

tomization, deferred compilation, and path splitting manage-

ment algorithms to produce the results mentioned above.

Finally, we have noted that some are working in the area of

type inference without explicit typing.3 Here, a type inferenc-
ing algorithm constructs a graph of type constraints horn a pro-
THESMALLTALKREPORT



gram, The program is typeable if these constraints are solvable.

Static binding information is derived from the solution. This

project is currently implementing the inferencing algorithm,

with an optimizing compiler as a future undertaking, and so

has no performance results to report. In our initial exploration

of explicit typing within .%nalltalk, we have confined ourselves

at t.hs time to investigating typing of named variables, exclud-

ing such things as intermediate results generated during expres-
sion evaluation. Potential candldatea for typing are

● dictionary variables (i.e., class, pool, and global variables)

● instance variables

● arguments

s named temporaries

● receivers

In all cases, the affected variable would be constrained to
belong to a particular class or one of its subclasses (i.e., the

variable has been “typed”). Thus, we are using a simpler ver-

sion of typing than that used in Typed Smalltalk. For this dis-

cussion, type and class may be considered synonymous. Here

are some of the issuesinvolved.

For programmer convenience, we would prefer a common
type declaration syntax that could be used for all the above-

mentioned cases. A possible candidate syntax is shown below:

CurrentSmalhalk: varisbleNarne
TypedSmalltalk: ( vasisblehrne:tlaas )

This new syntax would be u.wdwherever variables are “de-
clared” in Smalkalk, that is, in class definitions, message pat-

terns, and declarations of temporarim.

Typed variables must be initializedacwrding to type. Un-

typed variables are tiltiahzed at creation with the value nil. This
is umcceptable for typed variables. If variable x is declared as:

( xdlrray)

we must ensure rhat x always contains an kay objec~ other-

wise, invocation of the statically bound expresion

xatil

would have disastrous resul~. This requires a modification to

the new and new methods of class Behavior.Variables typed as

Datawas (i.e., types that do not have a direct system represen-

tation of their data structure) would be initialized by sending

the message new to the appropriate claas. Variables typed as

basic Data Wuctures, such as Integer, Float, and Array,would be

initialized at the primitive level. A possible set of initialization
values for Data Shuctures might be:

IntegerO
Float o

Anay O elements

This arrangement would cover most cases, including the

special initialization requirements that apply to some classes
VOL.1, No. 4: .hlWJARY 1992
(e.g., OrderedColldon). Immutable Data Types (e.,g., Character)

that disallow creation of new instances present some difficul-

ties, the main being that it is currently impossible for the sys-

tem to detetrnine whether a class is immutable.

It would possible to initialize typed temporary variables in

methods to nil, as is done currently, since the compiler would

recognize that these variables remain untyped until an assign-

ment takes place, at which point the typing could then be
taken into account. This might be preferable to reduce initial-

ization overhead.

Runtime type checking is required to ensure that typed

variables are assigned according to their declared type. This

function would be performed by compiler-generated code that

would perform the equivalent of an isKindOEcheck prior to as-
signment of an expression result. The system overhead of this

check is minimal. In addition, typed arguments would be

checked upon entry to a method.

At compile time, Smalltalk changes a reference to a Mctio-

nary variable into a reference ro the /associationcontaining the

variable key and value to avoid a runtime dictionary lookup.

However, dictionary variables may be updated through basic

Dictionarymessages akpub, removeKey, etc. This creates the po-

tential for an integrity violation in Smalltalk (tty removing an

existing clzm variable with removeKey then adding it again

with atputi). While it could be argued that one should not up-

date dictionary variables in this manner, nevertheless it is an

option open to the user. This situation is aggravated for ryped

Dictionaryvariables since there is no compiler-generated code

to stand in the way of an incorrect assignment when using the
basic ~ciionary messages. Our present solution to kls is to cre-

ate a subclass of ksociation, call it Con*aine&ssociation, that
would contain a new instance variable, consimint, and would

inhibit incorrect assignment to its value. The class definition

and methods for CotiaineWsociation are shown in Listing 1.

Note that our solution does not address the removeKey in-

tegrity problem that currently exists in Smalltalk.

To manage static binding, we propose creation of the
classes:

BoundMethod
Conatraht( virtualclass-no instenees )

BehauiorConstrsint
TypeConsMnt

BoundMethodwould be a tuple containing at least an “imple-

menting” CompiLedMethod,a “sending” CompiledMethod,and an

instance of either BehaviorConstraintor TypeConstmint.Behav-

iorconstiaint describes an instance of static binding, and ~e-

Contiaint describes the less restrictive case of simple type

checking.

In the following example, let us assume the class hierarchy:

Number
Integer

SmallInteger
13.



■ SMALLTALK COMES TO THE MAINFRAME

14,
where the method u is located in class Number.Then in the

following:

I (temp:Intager)(indexI:Integer)indam?I
tesnp:= ideal max: indaxi?.

the message max: would be bound to the method rnamin class

Numberat compile time, and an instance of BoundMethod

would be entered in the global Set, BoundMethods.This in-
stance of BoundMethodwould contain a BehaviorCon,s&ainLThe

compiler rule used to determine whether a BehaviorConshaint

or a TypeConstraintis generated is fairly simple. If a method is

redefined in any of the subclassesof the constraint class, the

compiler will generate a ~econstrain~ If such redefinition

does not occur, the compiler will generate a BehaviorConstnint,

If the method rnax was now defined in class Integer, the

ptesence of a BehaviorConsttaintin BoundMethodswould inform

us that there was a “aendi@ method that required recompil-
_

ing, and BoundMethodswould be updated to reflect the new Be-

haviorf?onshint.

If the method max were now defined in class hrdhteger,

the compiler (using the rule mentioned above) would remove

the BehaviorCon.slmintand substitute a TypeConfiafnt- In our

system, BoundMethodsmust be loaded at system start-up since

they will be invoked by direct flrnction call.

Dynamic binding would remain the primary and prefetred
way of associating messages with methods. Typing would be

ussd in situations that caused performance degradation or as a

data validation tool. Intuitively, the best use of typing applies
in high-use areas where typed languages can typically produce

very ei%cient code. Coincidentally, these areas correspond to

functions in Smalltalk that undergo few changes since they are

integral to the basic tlmctioning of the system. Some example

preliminary candidates for typing might be arrays, which are

frequently used in the ak and akpuh messages, and array in-

dices, which participate in integer operations. In some actual

program samples we have studied, up to 40% of message rout-

ing would he removed by static binding in these areas.

Typing will probably be a compiler option that maybe

turned on or off by the programmer. Programs compiled for

production would usually take the performance advantage of

typing, while, in the development environment, typing might

not be used to retain flexibility and fast compilation. ❑

REFERENCES

[1] Johnson, R. E., J. O. Graver, and L. W. Zurawski.TS: an optimiz-
ingcompilerSmalkalk,00PSL4 ’88 ConferenceProceedings,San
Diego,CA, October 1988, pp.18-26.

[2] chambers, C., md D. Ungar. Makingpureobject-orientedlan-
guagespractical,00PSLA ’91 Conferenceproceedings,Phoenix,
AZ, October 1991, pp. 1-15.

[3] PaIsberg,J., andM. I. Schwartzbach.Object-orientedtypeinfer-
ence, 00PSLA ’91 Conferenceproceedings,Phoenix, AZ, October
1991, pp. 146-161

GlennJ. Red is Presidentand Four& oJQSYS Systems Consultants,

inc., a consultingandsofhuare&we@nent cmnpony whose main arm

of e@ertise is in the application of object-orientedtechnology.Architect
of SmAal.hJ370, Mr. Reid is currentlyinwlued in thedevelopment and

application of a cornpkre projectlife cycle approach to developingobject-

mienredsystemsm a nsainj%ameenvinmnent.He am b rackd at

(416) 34345464.
Llsthsg1.

hodsdonanbclaax~aoctatims
in.shnceVtileNames:

‘Cormaint‘
claasVariableNarnes:”
pooulictionaliee: “

Constraineskwcsation doss methods

* -Wk auObject coushdssb aClaaa
“Answeran insbmce of classConshainedAssoeialion
whosekeyis irdtjalisedto aKey,whosevalueis irdtiahsed
to anObjeet,andwhoseconshdnt is iniiialisedto aClaas.”
aClasaiaBehavior

iFalse [ “self error‘eonatmintmusta Class~.
(anObjectisKindLWaCfas@

ifFalae [ “aelferrm ‘valuemustbe ldndof’,aClaasname].
‘( (selfkey aKay)value:anObject) eonsbaink allass

Constroined4ssm”istionmethods

conrMsIC a-
“Settheeonehaintof the raeeiverto be aCleas.Answerthe

receiver.”
aClaaaiaNii

wake [
(value*M aCla@

ifFalae:[
%elferrtm‘visluemustbekindof’,a(lassname] ],

conshaint:=aClaaa!

value:anObject
“Setthevalueof the receiverto be anObjactif anObject
is an inshnee of consbaintorone of its subclasses.”
ecmstraintL%Nil

ifhlset [
(arIObjectiaEindOfCO~)

mdae: [
“selferrm ‘valuemustbeIrindOf’,

coswhaintname] ].
value:=anObject
THESMALLTALKREPORT



wRODUCT

Profile/W a
Smalltalk/V

REVIEW Reviewed by Jon Hykmds

performance profiler for
Windows
P
rofde/V, from First Class Software, is a code profiling tool

that allows Smalltalk programmers to monitor the perfor-

mance of their applications. h creates a weighted call tree

of your code that basically shows the percentage of total run-

ning time spent in each method. With this information, it is

possible to find out where your code (or, just as important, syw

tern code) is causing a bottleneck.

W irh a list price of $299.99, Profile/v is a tool that any

Smalltalk programmer who is interested in writing high-per-

formance code should include in their library. Although it

needs some improvement in the user interface department, it

is definitely money well spent. It is currently available for Dig-
italk’s V Windows,V Mac, and V 2S6, Profile/V will be avail-

able for V PM this month.

HOW TO USE PROFILE/V
Profrle/V comes on one software diskette and includes a 50-

page UseT’sGuide./TuwriaLThe manual’s 29-page tutorial
shows the optimization of a simple graphical application,

which is included on the disk. The manual also includes sect-

ions on installation, how to use the product, notes on how it

is implemented, and a very interesting section on “Program-

ming for Optimitation.”

The only problem I had with the manual is the fact that

the installation page is somewhere in the last half—when I

look for the installation instructions, I expect them to be at

the beginning.

Protile~ uses an invisible window to capture timer events

artd takes a snapshot of the stack from the current user inter-

face process when a timer event happens-It builds a profile

object from these samples and then can open a browser on the

profile. The browser is a subclass of the system-supplied

method browser. The browser has three panu and it provides

the user with the ability to go as deep as they want—right

down to individual statements in a method.

Other valuable features include the capability to gather

method profiles for the same method and browse them as a

new profile, This feature is ideal when profiling recursive

methods. Another useful utility is the ability to take what is

displayed in the browser and convert it into formatted text in

a workspace for inclusion in documerm (such as this one).

You can also adjust the threshold value for the browser, which

controls how many methods are shown when the browser is
VOL. 1, NO. 4: ~ANUARY1992
initially opened by hiding all methods that take less than the

threshold percentage value to run.

Perhaps one of the nicer things about Profile/v is iw size, or
lack thereof. The entire profiling system is only about 27K of

source code, which makes it a product more likely to be un-

derstandable and expendable.

BUT MY CODE IS ALREADY FAST...
Many programmers, myself included, will look at this tool ini-

tially and say something to that effect. Unfortunately, in the

case of Smalltalk, where you have a large libra~ of reusable

code written by someoneelse, having your code run at light-

speed doesn’t necessarily mean your application will be as fast
as it can be. Programmers tend to make assumptions about the

performance of other code, and these assumptions often turn
out to be incorrect. This turned out to be the case for a graph-

ics application I profiled.

USING PROFILER TO OPTIMIZE A SAMPLE
APPLICATION
The application I ran my tests on was a simple magnifying

glass, which first appeared in the Smalltalk column in the

Jounud of Object-Ch-ien&dProgmmmrng.l Since that time, the

authors have made large number of changes to the code to

simplify and streamline it. The magnifier simply simulates a

magnifying glass on the screen and shows the magnification of

a circular area. I limited the tests to a single method, which is

the code that displays this circular magnified image, since it is

the slowest part of the magnifier simulation.

The first iteration of the profiler run on this method pro-

duced the profile shown in Figure 1. It shows quite clearly

(and quite surprisingly, also) that almost half the time spent

in this method is in sending the pen message to bitmaps!

The pen message is sent six times since we are performing
five copyBitmap’s and one set of drawing commands to

achieve the circular magnification effect. However, we can

improve this since only two bitmaps are the receivers of the

pen message. We can cache each bitmap’s pen in a tempo-

rary variable at the beginning of the method, thus saving

four pen messages. This works when performing coPY-

Bitmaps, but not when doing pen-based drawing, so the pen

message must also be sent before the drawing section of the

method takes place.

15.



■ PRODUCT REVtEW

16.

J

p

Hle Edit smalttalk Methods pmfllc
2%[2] SOIaded

12%f131Gr@issTmLM@lm@mmtm.
7%IS) Gr~Tdm@@msEhmrknim..
7%~ Bkll@>cls#@tvliWr...
6% IQ GrtiT~>@im@imcfmk,,
5% [5] BihsP>h&&w.
4%[4]F’eo>fcremx...
3% (3I Fw’o)seILh+m...
w(5]-hslcFmm,,,

en d
“hmwer#’ag~l ddUmra&vm”

d &ekd,
“gadixTod

Figure 1.Initialprofile,

After making this modification, I again profiled the
method, getting the results shown in Figure 2. As you can see,

the pen message frequency had been reduced to 23%, which is

half of the first run.

And, as shown in Figure 3, you can see that the pen mes-

sage has increased to 30% of the running time, but the bound-

ingBox message has disappeared, and, as a result, the method
runs faster.

!% you can probably see by now that this tool is a valuable

one. I would never have guessedthat the pen message is one to

avoid, end, in a real-world application, tMngs like that can

mean the difference between acceptable and poor performance.

PROBLEMS WITH PROFILEfV
So far, the only problems I have had with ProfilefV are small

ones relating to the user interface. One is that the indent on

\
~le Edit Smalitalk Mathoda ~le
O%tl@MagnilemM4Rrm
SZ[1OCIIMm)dmh44wmmm..

B%f171Gr@uTabmwShr@mTCtmI&..
H [171GIW&!TabhTIYBilrrqxhm#nk...

Il%[lZIB~>&s#h,,,
III% [1OJGI~Tmb)awShnqrlIomta...
W(BIBkIWOhmckqBon,,
m(qlhEIAlqMm$w
s%pl l+m>ckdm..
K lq ~>bslish%..

!m
“AMW IIE gti rml d llm receiver”

SSJsAmL
“g#ic~Taci

Figure2. ProlWewith cachedpens.
—

51e Edit ~malhalk Methods ~oflfe

Im%[lm] MagifieoNestRr#l
97%[1W]MmnifiaI>>d.sc4wMmrifiimaga..,

20%~] Gr~Tti>cc@il~honratrulm,..
15%(23]Gr~T~>wp@hn@orrdar&...
13%[24)Bhnap>displa#ttitk.,.
12%[23]GrapbTd>cop@~fmmta,.,
3%[6]Pem>ckcle:...
3%~ CormsD>bs&Plotla...

en
Wrswerthsg@cs Id ofthereceiver.”

a

Sd sekd.
“wa@-icsTml

.,

Figure3. Finalpro61e,with boundingBon messageremoved.

the profile tree is hard to make out since each successive in-

dent is only one space. I spoke with Kent Beck, the author,

and he assured me that this had been changed in future ver-

sions to make it more readable.
The other problem is perhaps more important and it in-

volves the way the children of a method are hidden and shown.

In ProfilefV, some of the direct children of a method may be

visible, while others are not. This presents problems when try-

ing to view your profile from a given depth since you often have
to either do two double-clicks to get the desired resul~ or use

the Hide Children menu command. You can get around this by

adjusting the threshold to be one (so it only takes one double-

click), but persomlly I think it would be more useful to have a
feature that allows the user to set a depth threshold rather than

(or in addition to) a percentage threshold.

FINAL WORD
I found Profile/V to be an extremely useful piece of software

and I will definitely use it in the future. In comparison, I have

only briefly seen the profiler that Digitalk is shipping with

Smalltall@l PM 1.3. It is lacking in that it only produces
fairly complex text reports and has no user interface to allow

browsing of a profile.

I recommend ProfilefV as a solid addition to any serious

Smallt.alk developer’s toolkit. E

REFERENCES

[1] LaLonde,W, R., andJ. R. Pugh.Graphicsthroughthe looking
gh%s,IOllld of @ect~ Pro@mm@, 1(3), 1988, pp. 52-58.

on Hykmchis a memberof thetechnicalstifl at The ObjectPeoplein

Ottauu, Ontmio. He is alsoapart-time studentin theSchoolof Corn-

uterScienceat Carleton Univenity. He can bereachedat (61 3)

230-6897.
THESMALLTALKREPORT



Reviewed by Dan Lesage

OBJECT-ORIENTEDMODELINGAND DESIGN
b J. Ruhugh M. BhdKz,W.Premdan.i, F, Eddy, ami W. bremen
PrenticeHall, Engkwood Clifis, NJ, 1991
T
hk is the book to recommend to your MIS/DP customers

that are considering the use of 00P in their company but

don’t know where to start down the path toward the Holy

Grail. The investment in an 00 language may be considered

too risky for the average data processing manager, without

knowing how 00 can benefit his or her complete develop-

ment cycle. In that regard, the DP manager will likely wish to

understand the benefits of 00 in terms of a formal methodol-

ogy. Rumbaugh et al. describe their object modeling tech-

nique (OMT), which is a gentle mutation of existing struc-
tured amlysis/structured design (SA/SD) methodologies plus

entity-relationship (ER) diagrams into an 00 one. Should

your DP customer already be using structured techniques in

his or her shop, this book will help ease the transition toward

00. It should be no surprise that a large part of OMT follows
Rumbaugh’s own work in combining objects with relations at

GE, as described in several of the 00PSLA Procedngs.

The book consists of five major sections: motivation, mod-
eling, methodology, implementation, and example systems.

The motivation part covers the normal questions of why one

would want to use 00 techniques. The modeling section pre-

sents the components of the OMT techniques that are based

on three diagraming techniques. Two of them are (hope-

fidly) already being used by your MIS/DP customec Harel

state diagrams, which are used as the dynamic model, and data

flow diagrams, which are used in the functional model. The

object model, is an extension of entity-relationship diagram

conventions incorporating class operations (methods) and in-

heritance (in the !%rralltalksense). If you are familiar with

these three basic techniques, the OMT methodology shows

how information from the dynamic and hn-ictional models can

gradually be pushed into the object model. OMT provides an

evolutionary approach to ease people into the world of 00
amlysis and design, using existing modeling paradigms. I sup-

pose that I should also mention that the pretty pictures are di-

agraming conventions that you will already know if you are

familiar with the above structured techniques. No three-di-

mensional dodecahedrons, no dithered lines, no trisected

equilateral triangles, etc.

The strengths of the book and the methodology are many.

The methodology draws on knowledge of familiar modeling

techniques. It is soft and can be tailored in a number of ways
for introduction into DP shops currently using structured
VOL. f, lVO. 4: htWJAtW 1992
techniqu~. The examples presented in the text are excellent

since they have been drawn from real-world problems encoun-

tered by the authors during the course of their research.

Within the context of some examples, the authors describe
how subsequent requirements information caused them to go

back and adjust their models. They give the reader a view of

the model over the life cycle of analysis and design rather

than just presenting the “answer.” There is very good coverage

of some of the design issues involved when trying to incorpo-

rate an 00 design into systems containing components built

with more traditioml technologies, such as relational

databases. The authors also attempt to provide practical ad-
vice about implementing your 00 design in non-00 pro-

gramming languages.

Another strength is that the book can easily be used for

reference purposes. Each chapter contains a very thorough

bibliography. The organization of the book is such that the

reader can focus very quickly on the chapter that is relevant
to his or her question. It contains a glossary. The book can be

used as a supplemental educational text since each chapter is

followed by exercises, with selected answers in the back. Fi-

nally, the text is easy to read, which helps if the only time you

have for technical books is after your spouse and kids have

gone to bed!

And, should your MIS/DP customer wish to compare OMT

with other methodologies before going out to buy the latest,
greatest CASE tools or white boards, the authors have conve-

niently included a chapter to make the decision easier. They

compare OMT with SA/SD, Jackson structured development

(JSD), and conventional ER modeling, describing under what

circumstances they believe each model excels.

There are few negative aspects about this book. The

methodology may be confusing for people coming f-mman ob-

ject-oriented background. The notion of having to map dy-

namic and functional behavior into methods will be foreign

since it is natural for them to think in terms of methods from

the analysis stage. For 00 types, the object model should be

sufficient for the analysis. The chapter on system design is the

weakest link in the life cycle chain, but it’s also the hardest in

real life so, although it does not provide the system design

cookbook, it does allude to many of the real-world decisions

that are made during this stage of the model refinement. I was

cmtinuedm~lf l,,,



Excerptsfrom industry publications

... Momenta built the [PenTop] machine around the object-ori-
ented language Smalltelk. Everything in the PenTop’s environ-
ment is an object, so users can link anything in the machin+
from internal toolbox functions to their own sketches, text, and
presentations-to one another. The machine runs all popular
DOS and Windows applimtions, and will support Microsoft’s
PenWfmdows when it becomes available ,..

Momenta Rewrites the Notebook Rules, Richard Doherty,
Hectronk Engineering ~nses, 70/7/91

. . . In addition to the visual orientation, there are two other rea-
sons I’m attracted to Serius’ product, One is the level of ab-
straction of the objects. Most object-oriented languages today
are for professional programmers (e.g., C++ and Smalltelk) and
that means the objects are at a relatively low level of abstrac-
tion to provide sufficient control for speed and memory
efhciency. Serius Programmer, on the other hand, has very ro-
bust objects for an application generator . . . The second reason
I like the package is the relatively broad support for date types.

A Serius Approach to Programming, Rich Seder,
PC Letter, 9/16/91

,.. Specialized 00P environments like 5malltelk tend to
frighten programmed used to the procedure-oriented ap-
proach of traditional languages...Although embedding 00P
technology in existing languages like Pascal or C has really
boosted 00P, the tendency for programmers using those tools
is to keep on doing things the same way, with only a few
changes. There’s still a big learning cuwe, and, if you give a C
programmer a C++ compiler, he’ll probably just write C code.
It’s hard to lose old habits . . .

. . . [Ron Fisher says] “Smalltalk’s concepts are very d~erent,
but once you can deal with them conceptually, you can write
much better progmms. Smalltelk is a whole environment, not

just a language. To me, C++ is a kti car, and Smalltelk is an
Acura NSX. C++ wasn’t thought out thoroughly as an object-
oriented language. It exists because C exists. You can do a lot
more low-level stuff in C that you can with Smalltalk. C lets you
get at the iron much better, but if it wasn’t for C, C++ wouldn’t
have much of a following’’ . . .

Double Plus Good, Gordon McLechlan, HP Professional, 9/91

. . . But in a world increasingly jammed with 00P proselytes, we
still don’t have an 00P graphics front end for these [graphi~]
libraries. I would like to see something that would give me
ONE Object Oriented Design perspective with support for sev-
eral graphim libraries . . .

Graphic Developer’s Taste Test, William E. Gates,
Midnight Engineering, 70/91

. . . The more advanced pen-computing operating systems use
object-oriented design for memory management. In contrast to
desktop GUI applications, which may require multiple
megabytes of memory, object-oriented applications typically
require only about 100K to 200K because the operating system
consewes memory by eliminating redundant code ,..

Is the Pen Mightier?, K%thleen Melymuka, 72A-550 CIO, 9/15197

.. . Building a single, integrated model for the problem domain
is something the securities industry has to do. We’re face to
face with the complexity of the solution right now. Other indus-
tries won’t be far behind. Take a close look et your own prob-
lem domain; you may find that the celebrated paradigm shift is
not a problem of changing the way people think but of dealing
with the resulting solution . . .

The Complexity of the Solution, Bill Welch,
Object Magazine, 9-70/91

IQ
Au.
. mluim.dfnmp.17

slightly thrown off since the style of the other analysis and de-

sign chapters gave me much more concrete choices to make.

And, since this is Tk Smalhdt Report, I can also say that the

Smalltalk language is somewhat slighted as a potential choice
for implementation language primarily because the authors re-

fer to it as a weakly typed language. I believe that there exists

confusion here between the use of strong typing and static typ-

ing. As every Smalkalk programmer knows, Smalltallr is a

strongly typed language,

Overall, I highly recommend this book to anyone who is

interested in learning more about 00 analysis and design. It

contains good, sound, practical knowledge drawn from real-

world examples. The methodology is flexible, allowing its

users to emphasize those modeling techniques that make sense
in their shop, while deemphasizing those that are irrelevant,

The book clearly gives a path that takes the modeler from

known structured techniques and allows him to migrate this

knowledge into the realm of 00 analysis and design. In short,

this book has something for everyone using or considering the

use of 00 technology. ■

Dan IAzge Isusbeen involvedwithobject-tinted @gramming since

1986 and SrrraUdk since 1988. Cumently,k is theProjectManager,

Turnkey Systems at ObjectTechnologyIn&rmationafin Ot~wa,

Can&. His current interestsinckd distributedcomp~”ng,dam

cornmunirxtions, and object-orientedamdysiddesign.He can be

reackd at Object Technology International, (613) 22&3535, or

dan@oti.on.ca.
THESMALLTALKREPORT



—

ProductAnmmcemem are notreviews.Theyare abstractedfrompressreleasesprovidedbyvendors,andno endorsementisimpbed.Vendors
interested in being included in thisfealure shouldsend pressreksw to our editoriafofjlces, ProdsutAnnouncementsDept., 91 SecondAw.,

Ottawa, OntarioKIS 2H4, Canada.

The Agorics Project announced the opening of an online Smalltalk
Components and Consulting market on AMIX, the new electronic
marketplace for information provided by Autodesk, a subsidiary of
the American Information Exchange Corp. (AMIX), In this market,
Smalkalk users will be able to buy and sell classes, methods, tools,

appleta, and any other Smalltalk-related information. Users will also

be able to offer and request Smalltalk consulting services. Features

include email, negotiation facilities, listings of sellers’ resumes and

references, listings of comments on components by previous buy

em, and more.

For more information, contict Howard Baetjer,TheAgorics Project, 10364
Bridgetown Place, Burke, VA 22015; phone and fax (703) 250-4760; email
agorics%gmuvex. gmu.adu.

InputForma is a program designed for the interactive development
of input forms and all kinds of windowa running under Windows 3.0
and Smalltalk/V Windows. Features include the abili~ to interac-
tively select child controls and define size, position, brush, fore-
ground color, background color, font, etc.

For more inl%nation, contactVlaatimilAdamovsky,66 rue de Bourgogne,
L-1272 Luxembourg; phone 352 4208S4.

Empower S-are has announced the availability of the Smalltalk
Project Browser, a source code management tool for Smalkalldl
Windows and PM systems that adds a powerful layer of control to
the Smalltalk environment. It is also usaibl as a development shell
from which other Smalkalk development tools are launched. The
Smalltalk Project Browser provides support for code porting and
maintenance across Smalltalk platforms, management of classde-
pendencies, system integration, automated code documentation,
and code distribution and packaging.

For more information,contactEmpower Software, 9601 Wilshire Wvd., .%.
1144,BevarfyHills,CA 90210.

Dlgftalk, Inc. has announced availability of a new release of ita
Smalltalk/V PM that gives software developera a jump start on de-
veloping new applications that take advantage of the power of
IBM’s upcoming version 2.0 of 0S/2. In addition to enhanced fea-
tures and power, Digitalk’s Smalltalk/V PM 1.3 release includes sup
port for IBM’s Common User Access ’91 (CUAI controls that are at
the heati of IBMs new advanced 0S/2 2.0 graphical user interface.

For more information, contict Serbera Noperstek,Digitalk,Inc.,9S41Air-
port Blvd. Los Angelas, CA W045; [213)645-1082;fax(213)645-1306.

Bring your large, complex object-oriented applications under control
with AM/ST, the Application Manager for SmalltalkA/. The AM/ST
Application Browser helps both individuals and development teams to
create, integrate, maintain, document, and manage Smalltalk/V
application projects.

..-—...-—----_-—------.—_

m-n ,“-. m
-__. --..--.....-*

,.do&”ti.. ,, .hdmll
1 E-dkmd............

Udmd Mla

MmhDLL _.&&&LG_i_.-—-——---
*M*

..!!!u.--.!?!m
%Ilow .ppllmim

s6p* .m- ●

m w.
D

Price Liet

00s v $150
00s vr2es $ss5
MacintoshV/Mac $SS5
0S.4?WPM $475
SmeUcansee CAU

New Productivity Tools I

Windowe 3.0
WWmdowe $475

Ohange Browser’ $1s5
SOUrlX cOrltfOl*’ PM .rWlndmva

rlmt copy $1,as5
aubaaquanl $5s5

19.
VOL. 1, NO. 4: jANUARY 1992



wiNDowsANDos/2:
~UIWYPE’10DEWERYa

NowmGo
h Windows and 0S/2, you need prototypes.You haveto get a sense

for what an application is going to look like, and&l like, before you can write

it. And you can’t afford to throw the prototype away when you’re done.

With Smallti you don’t,

Start with the prototype. Therds no dmelopment system you can buy
that lets you get a workingmodel workingfasterthan Srnalltalk/V

Then, -mcmrnentally, grow the prototype into a finished applic3-

tion. Try out new idas, Get input from yourllsem. Make more changes.

Be Creatk

Smallmlk/Vgives you the freedom to experiment without risk. It’s

made for trkd, And error. You make changes, and test them, one at a time.

safely. You get imrneck“ feedback when you make a change. And you can’t

make changes that break the system. It’sthat safe.
And when you’redone, whether you’rewriting applications for

Windows or 0S/2, youll have a standalone application that runs on both.

SrnaUtalk/Vcode is portable between the Windows and the 0S/2 vemions.
And the resulting application carries no runtime charge. All for just

$499.95. -

Sotakealookat
Smalhlk/V tOCkIy.It’stime to make
that phtyping time productive.

Sn&iilklv
SrnaUcdk/V isa registered rmdemarkvf Duitdk, Inc.Ottm productnamesmetradmnarksor registered
mdemarksoftheir mspaw
Digiti,hIc., 9641 A@& H& Angeles, CA 90045
(800) 922-8255; (213) 645-1082; Fan (213) 645-1306

LOOK WHOS TALKING
HEWI.ETTPACKARD NCR

HP bas davehpeda network tmubls- NCR bm an integmtcdtest pmgmm dwalop-
shook.g tovl calkd the. Network Advimz med envimmwnt fw algbd, afdvg and
Tbe Network A&&w ofbrs o cvmpmben- mired made printedcircuitboard .&dng.

sim W of tom%inckdng an expert sytim,
Statirtks, Imdpmtvcol A?coa%s tv Spaed MIDLAND BANK
prvh%m irokztivn. Tbe NA user intmfwe is Mdbmdlkank buib a Windvwed Zdmicul
bukl an o wiadvwing sy~tem wbicb allows Te Emimmnent~ cutrmq jUhTf3

md.tipk appkcation.rto beewcuted andstvck MZI&TSusing Smalltdk t?
Simahmeoasl’

KEYmms
1 Wxld’s leading, award-winning obj@-

OrientedProgyarnmirlgsystem

■ complete Pn3totpto-delivery system

H Zero-cd runtime

■ Simplified applicationdeliveryfor
creating standalone executable (.EXE)
applications

■ Code Portabilitybetween Smaukwv
Wind&vs and Smallw PM

■ Wmppers lbr all Windows and 0S/2
controls

■ Support for new CUA 91 controls for
0S/2, including drag anddmp,booktab,
contairq value ~ slider and mom

■ ‘EansPamnt support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

■ Fhlly integrated programming environ-
ment, including interactivedebuggq
xwrce code browsers(all source code
included), world’smost extensive Win-
dows and 0S/2 class libraries,tutorial
(printedand on disk),extensive samples

■ Extensive &OfR3 SUppOlt, including
technical support, maining,electronic
dtweloperforums, k user newsletter

■ Broadbase of third-partySUppOlt,

including add-on Smalltalk/V products,
Consldtingservices, books, user groups

ThisSmatltalk/VWindowsapplimti
GIPmfdthe~ W&kShootoutaward—and
it wasannpletedin 6 hours.

m

11:
‘:’*j&’ “:
,, . ....
y,., ...
.-?’’.,-.

. . .. . .
:++>..
.,./, .

?<,;,.

“,.:.......
j. ..

- ,,’
.... .. . .

:* “.
4 ,.

SmalttsWVPMapplimtionsare4 to
devetopstateof-theart~.+m@ant
applications–and they’repm-tabkto
sdtalldv windows.


	By Article Title
	Determining object roles and responsibilities
	How to use class variables and class inheritance variables, part 1
	Object-Oriented Modeling and Design 
	Profile/V: a performance profiler for Smalltalk/V Windows
	Should classes have owners? Perspectives from experience
	Smalltalk comes to the mainframe, part 2

	By Author Name
	Ewing, Juanita
	Hylands, Jon
	Lesage, Dan
	Reid, Glenn J.
	Sridhar, S.
	Wirfs-Brok, Rebecca

	By Topic
	Book Review
	Getting Real
	Object-Oriented Design
	Product Review


