

in The Queue

Volume 6, Number 8 August 1981
Features
1 4 Introducing the Smalltalk-80 System by 348 Is the Smalitalk-80 System for Children? by
Adele Goldberg / A readers’ guide to the Smalltalk articles in Adele Goldberg and Joan Ross / Although Smalltalk-80 is
this issue. not meant to be used by children, application programs can be
written that will allow them to be creative and, at the same
36 The Smalltalk-80 System by the Xerox Learning time, learn about programming
Research Group / How message-sending objects are used in the 3 ; :
Smalitalk-80 system. 6 ToolBox: A Smalitalk lllustration System by
William Bowman and Bob Flegal / The versatile
Bulld a Z&-Baseg Cpnt'O' Computer with Smalltalk-80 language can create an environment for graphics
BASIC, Part 2 by Steve Ciarcia / Steve continues his design that can be used by non technically oriented people.
description of the Z8-BASIC Microcomputer and suggests two ap- 3 7 8
plications. Virtual Memory for an Object-Oriented
Language by Ted Kaehler / Virtual memory techniques must
74 Object-Orlented Software Systems by be used when the active memory space needed by a language
David Robson / Object-oriented software systems provide the is much larger than the amount of available memory.

underlying design of Smalitalk.

The Smalltalk Environment by Larry
Tesler / Programming and debugging in Smalltalk are always in-

teractive activities. Rev‘ews

S1 ?7 t:-'s?""Of 'e"ueg 'I?Descril(ptlorll;zf Smalltalk 398 wicrosoft Editor/Assembler Plus by Keith Carlson
ystems by Trygve eenskaug / A Smalltalk applica- : ; 7
tion program will limit the user’s access to the language. 33:, :%3?&&?&%;22??9 el R

1 68 The Smalitalk Graphics Kernel by Daniel H
H Ingalls / The Graphics Kernel provides the interface through
which all text and graphics are displayed

2 00 The Japanese Computer Invasion by Stan Nuc'eus
6

Miastkowski / Like it or not, the Japanese small computers are Editorial: Smalltalk: A Language for the 1980s

on their way. 30 Letters
197 BYTE's Bit
230 Bullding Data Structures In the 224 BYTELSIN'E;
Smallitalk-80 System by James C Althoff Jr/ 392 BYTE's Bugs
Many kinds of data structures can be added easily to the 388 Ask BYTE
Smalltalk-80 system. 391 Books Received
2806 oesign Principies Behind smalitaik by gg; el A
Daniel H H Ingalls / The design principles of a language 394 “EVent Qlicue
Siogb’oaﬁea Its power-and usability. 402, 413 System Notes: Indirect /O Addressing on the 8080;
Aim-65 16-bit Hexadecimal to Decimal Conversion
The Smalitalk-80 Virtual Machine by Glenn 404, 408, 414, 417, 418 Programming Quickies: A Disk
Krasner / The use of a Smalltalk-80 Virtual Machine allows the Catalog for the Eighties; Alpha-Beta Tree Search Con-
system to be transported easily among different 16-bit verted to Assembler; Fast Line-Drawing Techniques:
MICroprocessors. Word Ujbnmarle; Binary-to-BCD Converter Program for
the 8080
3 2 2 Bullding Control Structures In the 421 What's New?
Smalitalk-80 System by L Peter Deutsch / 478 Unclassified Ads
Design of complicated control structures is easy in the 479 Reader Service
Smalitalk-80 language. 480 BOMB, BOMB Results

R

Page 50 Page 90 Page 168

June 1981 © BYTE Publications Inc 3

Circle 114 on inquiry card.

6 August 1981 © BYTE Publications Inc

Smalltalk: A Language
for the 1980s

by Chris Morgan, Editor in Chief

Welcome to the fifth annual BYTE language issue. Over the past four years
we have devoted our August issues to discussions of APL, Pascal, LISP, and
FORTH, respectively. This year we are pleased to present the Smalltalk-80
language, the culmination of ten years of research by the Xerox Learning
Research Group located at the Xerox Palo Alto Research Center (PARC) in
California.

During the past few months the BYTE staff has been acquainting itself with
Smalltalk. I spent some time this spring working with the Smalltalk systems at
Xerox PARC and being briefed by Adele Goldberg and Dave Robson. I came
away excited by this revolutionary language. I hope the articles in this issue
convey some of that excitement.

Smalltalk is an object-oriented language, as opposed to procedure-oriented
languages such as BASIC, Pascal, and FORTRAN. Because of this, program-
ming in Smalltalk is similar to the process of human interaction. An analogy
might help to clarify this point. Suppose a person wishes to invest in a good
mutual fund. He sends a telegram to his broker. The broker analyzes the cur-
rent state of the market and picks what he considers to be the best mutual fund
for his client. That in a very small nutshell describes the basic activity inherent
in all Smalltalk programs: a message is sent to a receiver to invoke some
response. In our analogy, the telegram is the message and the broker is the
receiver. The telegram has two parts, called the selector and the argument.
Here the selector is “buy” and the argument is “best mutual fund.” The broker
belongs to a class which contains the description of the method he uses to pick
the best mutual fund. Because of this, the client does not have to tell the broker
how to do his job.

Of course, my analogy skims only the thinnest surface of the deep waters of
the Smalltalk-80 system, as you'll see when you read the articles in this issue.

When [first worked at a Smalltalk-80 computer terminal, I noticed an
interesting phenomenon: I did very little typing, although a full keyboard was
available to me. This is because of the window menu format and the presence
of the “mouse,” a small mechanical box with wheels that lets you quickly
move the cursor around the screen. (Stoney Ballard of Digital Equipment Cor-
poration, who has been doing research work lately with the Smalltalk-80
system, points out that he was able to do a significant amount of programming
with his experimental system over several weeks even though his keyboard
was not working.) Choosing a particular item in a list from a window causes
another window to appear on the screen. Additional levels of nested windows
can be accessed by continuing to reposition the cursor and pressing the
appropriate key on the mouse.

This makes for fast programming. Those who saw the remarkable
demonstration of the Xerox Star terminal (Xerox's new $16,000 office ter-
minal) at the National Computer Conference (NCC) this past spring got a taste
of what a programming environment can do for productivity.

Smalltalk allows the user to solve more problems without becoming a com-
puter expert. Larry Tesler from Apple (who wrote “The Smalltalk Environ-

Smalltalk-80 is a trademark of Xerox Corporation.

High
Technology

We make our
competition
opsolete

with Information Master,™

Data Master,™ and Transit.™

Information Master is clearly the
best information management
software available for your Apple Il *
and it's the easiest to use.

Here are two very useful

companions that add even more

power to Information Master.

» Data Master — Alter the file
layout of existing Information
Master files without re-entering
data. Add, omit, change fields,
subdivide and append files
selectively.

* Transit — Convert VisiCalc* files
(and almost any other files you
may have) into Information
Master files.

See your computer dealer today

for all the details.

* VisiCalc is a trademark of Personal Software. Inc
Applellis a
trademark of
Apple
Computer.
Inc

Technology, Inc.
Software Products Division
P.O. Box B-14665

8001 N. Classen Blvd.
Oklahoma City, Okla. 73113
405 840-9900

*Apple Il is a trade name of
Apple Computer, Inc

10 August 1981 © BYTE Publications Inc

ment” on page 90) spoke about the efficiency of the
language at the NCC. For example, suppose a user is run-
ning a complex program that churns away for nearly an
hour—then a bug appears in the output routine. All is not
lost. Since the Smalltalk-80 language is “modeless” (a
concept Tesler discusses in his article), the user can debug
the output routine and continue with the main routine
without having to start from the beginning. This is only
one of the advantages of the Smalltalk-80 system.

Where to Start

The order in which you read the Smalltalk-80 articles
in this issue makes a difference. The first stopping point
should be Adele Goldberg's article “Introducing the
Smalltalk-80 System” on page 14, in which she provides a
guided tour of the issue. I also recommend Dave
Robson’s “Object-Oriented Software Systems” on page
74 as a good overview of the Smalltalk-80 philosophy.
The glossary on page 48 will be helpful as you begin to
absorb the rather extensive (and sometimes overwhelm-
ing) vocabulary used to describe the language. I found
that, once the terms become familiar, the concepts begin
to make elegant sense.

When Can I Buy It?

There are currently no personal computer implementa-
tions of the Smalltalk-80 language. Because of this, I'm
sure we'll be criticized by some for introducing the
language too early and frustrating our readers. Never-
theless, I feel that the time to begin exposing people to
object-oriented language is now. Only by challenging
and enticing the personal computer community can we
stimulate the industry to create the machines we all
dream of.

As far as future hardware hopes are concerned, it is
interesting to note that four of the speakers at the recent
NCC Smalltalk-80 symposium were from Digital Equip-
ment Corporation, Apple Computer Company,
Tektronix, and Hewlett-Packard. All four research repre-
sentatives were quick to point out that their companies
are not necessarily working on Smalltalk products, but
are rather exploring the language’s potential. Despite the
disclaimers, though, I would be very surprised if we do
not see a computer with the Smalltalk-80 system built in
sometime in the next few years—perhaps sooner. I hope
this issue brings that dream closer.m

Acknowledgments

I wish to express my appreciation to Adele Goldberg and Dave Rob-
son at Xerox PARC for their invaluable help in preparing this special
issue—and especially to Adele for coordinating the many authors who
contributed their expertise. I'd also like to thank Gregg Williams for his
editorial skills in preparing this issue CM

Circle 359 on inquiry card. ==

Introducing the Smalltalk-80 System

Adele Goldberg
Manager, Learning Research Group
Xerox Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto CA 94304

It is rare when one can
indulge in one’s prejudices
with relative impunity,
poking a bit of good
humored fun to make a
point.

ith this statement,

Carl Helmers
opened his remarks in the
“About the Cover” section
of the August 1978 issue of
BYTE. The issue was a
special on the language
Pascal, so Helmers took
the opportunity to present
Pascal’s triangle as drawn
by artist Robert Tinney.
The primary allegory of
the cover was the inver-
sion of the Bermuda
Triangle myth to show
smooth waters within the
area labeled “Pascal’s
Triangle.” In explaining

the allegory, Helmers
guided the traveler
through the FORTRAN

then editor of
BYTE. This month’s
cover design presents
" \just such an opportuni-
¥ 1t depicts the clouds
clearing from around
the kingdom of Smalltalk,
and, with banners stream-
ing, the Smalltalk system
is taking flight into the
mainstream of the com-
puter programming com-
munity. This cover was
also executed by Robert

e ¥

Ocean, the BASIC Sea,
around the Isle of BAL, and up to the Land of Smalltalk.

Traveling upward (in the picture) through heavy seas
we come to the pinnacle, a snow white island rising like
an ivory tower out of the surrounding shark infested
waters. Here we find the fantastic kingdom of Smalltalk,
where great and magical things happen. But alas . . . the
craggy aloofness of the kingdom of Smalltalk keeps it out
of the mainstream of things.

It is rare when one can indulge in one’s fantasies to re-
spond to so pointed a remark as that provided by the

14 August 1981 © BYTE Publications Inc

Tinney, to the delight of
the Learning Research Group (LRG) of the Xerox Palo
Alto Research Center. LRG is the group that has de-
signed, implemented, and evaluated several generations
of Smalltalk over the past ten years.

The balloon on the cover symbolizes the Smalltalk-80
system that is being released this year for more general
access. The release is in the form of publications and a file
containing the Smalltalk-80 programming system.
Twelve articles describing the system appear in this issue
of BYTE. Through such publication, LRG’s research will
become generally accessible, dispelling the clouds.

Smalltalk is the name LRG assigned to the software

Figure 1

part of Alan Kay’s personal computing vision, the Dyna-
book. The vision is a hand-held, high-performance com-
puter with a high-resolution display, input and output
devices supporting visual and audio communication
paths, and network connections to shared information
resources. LRG's goal is to support an individual’s ability
to use the Dynabook creatively. This requires an
understanding of the interactions among language,
knowledge, and communication. To this end, LRG does
research on the design and implementation of program-
ming languages, programming systems, data bases, vir-
tual memories, and user interfaces.

The ivory tower on the island of Smalltalk is an excit-
ing, creative place in which to work on these ideas. A

18 August 1981 © BYTE Publications Inc

Figure 2

sense of LRG’s long-range goals is aptly portrayed in the
illustrations designed by Ted Kaehler.

In figure 1, we see a view of the conventional software
development environment: a wizard sitting on his own
computational cloud creating his notion of a Taj Mahal
in which programmers can indulge in building applica-
tions for nonprogramming users. The Taj Mahal repre-
sents a complete programming environment, which in-
cludes the tools for developing programs as well as the
language in which the programs are written. The users
must walk whatever bridge the programmer builds.

A goal in the design of the Smalltalk system was to
create the Taj Mahal so that programmers can modify it
by building application kits, which are specialized exten-

S T S Py N ——.

.

Circle 45 on inquiry card.

20

M 7114 12K ROM/PROM
W 7470 A/D Converter
W 7490 GPIB |EEE 488 Interface
B 7710A Asynchronous RS-232C
DCE Interface
W 7710D Asynchronous
Communications Interface
W 7712 Synchronous
RS-232C DTE Interface
W 7720 Parallel
Interface
W 7728 Centronics
Printer Interface
W 7811 Arithmetic
Processor
W 7424 Calendar/
Clock
W 7440 Program-
mable Interval
Tirger

CCS industrial quality

modules give you eleven reliable,

inexpensive tools to expand the capa-

bilities of Apple Il computers. Available

through 921 computer retailers nationally. There's
one near you.

Apple, Apple Il are trademarks of Apple Computer Corporation

(California Computer Systems

250 Caribbean Drive
Sunnyvale, California 94086
J 408) 734-5811
elex 171959 CCS SUVL

August 1981 © BYTE Publications Inc

Figure 3

sions and/or subsets of the system whose parts can be
used by a nonprogrammer to build a customized version
of the application. Applications that can be created from
a kit are related in a fundamental way: the programmer
may, for example, create it for building bridges, but it is
the user who pieces together the parts to create a cus-
tomized bridge (see figure 2).

One of LRG's current research goals is to provide sys-
tem parts to aid the programmer in creating kits. Al-
though Smalltalk itself is conceptually sufficient for this
task, it needs better support to help the programmer piece
together the graphical display and the control for an in-
teractive user interface. This is the “kit maker,” as shown
in figure 3.

Circle 260 on inquiry card.

DATA CORPORATION

TAKE A STEP
TOWARD TOMORROW

At MSI our small company environment en-
courages big ideas. If you've been thinking about
a high technology career in micro-computers that
offers high visibility , then why not think about
MSI, the leader in Hand-Held Source Data Entry
Systems. For Software Professionals, the follow-
ing positions are now available.

PROJECT GROUP LEADERS
Needed to direct a small team of technical profes-
sionals in:

High Level Languages

Background in HLL, i.e., PASCAL, ALGOL, etc.,
needed for development of Automatic Program
Generator Systems using BASIC compiler and
other languages. Assembly language required.

Operating Systems

Assembly language and/or interpreter experience
required. Hardware interface experience
desirable. Must have strong documentation and
design skills. Knowledge of FORTH and PASCAL
preferred.

SENIOR ENGINEERING PROGRAMMERS
Test and Integration

Background in test planning and evaluation. Will
be responsible for forming new group of
specialists to develop test programs, implement
test procedures and integrate software products.

Communications Development

Requires extensive experience in systems and
programming. Knowledge of BSC protocols
desirable and Hardware interface background in
assembly language required. Familiarity with
FORTH or PASCAL preferred.
Operating Systems Development

Senior and Intermediate Engineering Program-
mers. Assembly language programming ex-
perience on micro and mini-computers needed to
create application solution systems for our new
Route Accounting, Program Management Group.
Experience in HIGH LEVEL LANGUAGE and
FORTH would be a plus.

SOFTWARE TECHNICAL WRITER
Responsible for development and design of soft-
ware documentation manuals, including writing
maintenance documents, operating instructions
and design specifications. Degree plus 3 years’
software documentation experience in Assembly
and HIGH LEVEL LANGUAGE. Background in
FORTH would be a plus.

We offer a complete benefits portfolio including
paid medical, dental and life insurance, 100% tui-
tion reimbursement, and retirement benefits.
Please contact or call collect:

Joan Ramstedt

MSI Data Corporation
340 Fischer Avenue, Costa Mesa, CA 92626
(714) 549-6125

An Equal Opportunity Employer M/F/H

R

22

August 1981 © BYTE Publications Inc

\
\

P 0

2o \

Figure 4

As part of the Dynabook vision, the system should
help the programmer build a personal computational
cloud (see figure 4). Two research projects, ThingLab by
Alan Borning and PIE by Ira Goldstein and Danny
Bobrow, took advantage of Smalltalk’s support for creat-
ing new metaphors.

We are often asked: “What makes Smalltalk different
from other languages?” The articles in this issue attempt
to answer that question. Look for an emphasis on interac-
tive graphics, on modular development of programs, and
on integrated approaches to accessing program develop-
ment tools. Also, look, for the distinction between a pro-
gramming language and a programming system, and con-
sider the difference in providing a system in which the
user can feel individual mastery over complexity. Al-

though each article can be read independently of the
Text continued on page 26

24 August 1981 © BYTE Publications Inc

[PRINCIPLES

D

ON WONDERING |F
THE SmALLTALK - 8C

THE SMALLTALK

SMALLTALK
DESIGN

X

5

L1207 VA VR VA T T 8 R W G 0

X

-

VR W W VA

S

A\, Y)

VAL O Y

Circle 231 on inquiry card. e==p

Text continued from page 22:

others, knowledge of the Smalltalk-80 system and its de-
sign philosophy is a prerequisite to understanding many
of them. The map in figure 5 is presented to help the
reader find a course through this hitherto uncharted
ivory tower.

You can begin at the drawbridge by reading Dave Rob-
son’s introduction to object-oriented programming (page
74) and then proceed by reading the description of the
Smalltalk-80 language (page 36). The two examples of
programming in Smalltalk-80 are likely next steps: one,
by Jim Althoff, tells you how to build data structures
(page 230); the other, by Peter Deutsch, describes how to
build control structures (page 322). Or, you can follow a
hallway to the user interface window and read Larry
Tesler’s description of the Smalltalk programming envir-
onment (page 90). Trygve Reenskaug offers further per-
spectives on providing a programming interface to a
Smalltalk system (page 147).

At any time, you can take the side stairs to read Dan
Ingalls’ presentation of the design principles behind
Smalltalk (page 286). Those readers who are interested in
implementation details can head for the cellar and read
Glenn Krasner's article on the Smalltalk virtual machine
(page 300), or Ted Kaehler's article on a Smalltalk virtual
memory (page 378).

The walls of the tower are covered with visual images
that will please any graphics enthusiast. Many were
created by the ToolBox painting component of Smalltalk,
as described in Bill Bowman and Bob Flegal's article (page
369). Greater detail about the Smalltalk graphics kernel is
provided by Dan Ingalls (page 168).

Ivory towers are often associated with educational
enterprises. So it is not surprising that field studies of the
various versions of Smalltalk have been carried out most-
ly in educational settings; elementary, junior, and senior
high school students as well as university students have
helped us test our ideas. Joan Ross and I provide some of
the history in an article exploring whether the Small-
talk-80 system is for children (page 348).

Many people have helped to build our ivory tower, to
surround it with protective clouds, and then to blow
some of the clouds away. All the people, past and pre-
sent, of the Xerox Palo Alto Research Center contributed
a brick or two. George Pake, vice president of Corporate
Research, assembled the bricklayers. We especially
herald the person who is responsible for laying the foun-
dation, Alan Kay, and current members of LRG not
named as article scribes: Peggy Asprey, Alan Borning,
Laura Gould, Bruce Horn, Neil Jacobstein, Kim McCall,
Diana Merry, Steve Putz, and Steve Weyer. Special
thanks to Bert Sutherland who did the “preflight
check.”m

SMALL CO

BAR CODE FORYOUR
MPUTER.

forms. There is also description of soft-
ware to generate and read all major
formats from Code 39 to HP-41C, and
UPC to the new NATI text software pub-
lication format. You get inmﬁon you
can use to program your computer
for bar code without detail processing by

New in-depth report tells
you how-at savings
of up to $40,000

“Contemporary Applications of Optical
Bar Code Technology" is a new, compre-
hensive report from North American
Technology that can save you thousands
of dollars in research and development

time when programming and equipping 2" himan o .

Lo 8 perator. This method speeds
it 'é(i small oomptftgr forngba" code. - the operation, eliminates translation and
T - Written by the originators of Byte entry errors and, where desirable, permits
iy Magazine's experiments with publication the use of unskilled personnel for the

‘ of software in printed form, Walter Banks entry function. You save thousands of
and Carl Helmers, this reportisthe only dollars as a result. The $500 purchase

complete presentation of materials on
keyless data entry using modern bar code
technology. It will enable you to:

o Read HP-41C calculator formats into
your Apple, or other suitable computer.
. e and deliver machine

readable printed software to your
customers.

» Read a UPC code into your personal
computer.

o Print Code 39 manufacturing inven-
tory tags with your formed character
or dot matrix printer.

Here, in clear, concise, understandable
is all you need to know about
bar history, software engineering
requirements, complete machine inde-
pendent Pascal software in source lis-
ting and machine-readable bar code

price of the report includes license for
the commercial modification and use of
all software contained therein.

For detailed information, send for our
brochure. There is no cost or obligation.
Mail the coupon today.

r T S) TEET ARG CEST ST Dhe Smaw ﬂ
o NORTH AMERICAN
ENR . TECHNOLOGY, INC.
Strand Building
|| TR 174 Concord St,
Peterborough, NH 03458
(603) 924-6048
Please send me your FREE brochure on
“Contemporary Applications of Optical Bar
Code Technology."

LS RN Re

NAME
ADDRESS
CITY.
LSTATE 2P
e s S S ems Gmn e Tm e

26 August 1981 © BYTE Publications Inc

Circle 407 on inquiry card.

The Smalltalk-80 System

The Xerox Learning Research Group
Xerox Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto CA 94304

The Smalltalk-80 system represents the current state of
the object-oriented point of view as it has been reduced to
practice by the Xerox Learning Research Group. The
Smalltalk-80 system is composed of objects that interact
only by sending and receiving messages. The program-
mer implements a system by describing messages to be
sent and describing what happens when messages are
received.

The Smalltalk-80 system is the latest in a series of
programming environments that have applied the
object-oriented point of view more and more uniform-
ly to the design and production of software systems.
The fundamental ideas of objects, messages, and
classes came from SIMULA. (See reference 1.)
SIMULA allows users to create object-oriented sys-
tems, but uses the standard data/procedure-oriented
ALGOL language to provide numbers, booleans, basic
data structures, and control structures. The Flex
system, the Smalltalk-72, Smalltalk-74, and
Smalltalk-76 (see references 5, 2, and 4, respectively)
systems extended the object-oriented point of view to
an increasing number of the elements of a program-
ming environment. For example, in Smalltalk-72,
arithmetic, list structures, and control structures were
represented as objects and messages, but classes were
not. In Smalltalk-74, class descriptions as objects were
introduced. The Smalltalk-76 system added the
capability to express relationships between classes,
and extended the object-oriented point of view to the
programmer’s interface.

This article presents the central semantic features
and most of the syntactic features of the Smalltalk-80
system. It was prepared by Dave Robson and Adele
Goldberg as scribes for the group effort of designing
and implementing the system. Two forthcoming books
(see reference 3) provide the full specification of the
Smalltalk-80 system; in particular, the books describe
the implementation of the interpreter and storage
manager, and the graphical user interface.

36 August 1981 © BYTE Publications Inc

Sending Messages—Expressions

Messages are described by expressions, which are se-
quences of characters that conform to the syntax of the
Smalltalk-80 programming language. A message-sending
expression describes the receiver, selector, and arguments
of the message. When an expression is evaluated, the
message it describes is transmitted to its receiver. Here
are several examples of expressions describing a message
to an object. (Note: color has been added to help identify
the receivers, selectors, and arguments in the following
examples.)

Key: [Receiver

]

2. [origin ﬂ

3. [frame | moveTo: [
4. [iist at: Jindex] put: [element |

Each expression begins with a description of the
receiver of the message. The receivers in these examples
are described by variable names: frame, origin, frame,
and list, respectively. Generally, at least one space must
separate the parts of an expression.

Messages without arguments are called wunary
messages. A unary message consists of a single identifier
called a unary selector. The first example is a unary
message whose selector is center.

A binary message has a single argument and a selector
that is one of a set of special single or double characters
called binary selectors. For example, the common
arithmetic symbols (+, —, *, and /) are binary selectors;
some comparison operations are represented as double
characters (eg: == for equivalence, ~ = for not
equal). The second example is a binary message whose
argument is offset.

A keyword message has one or more arguments and a
selector that is made up of a series of keywords, one
preceding each argument. A keyword is an identifier with

[J Selector

B Argument

a trailing colon. The third example is a single-argument
keyword message whose selector is moveTo: and whose
argument is newLocation. The fourth example is a two-
argument keyword message whose selector is made up of
the keywords at: and put: and whose arguments are index
and element. To talk about the selector of a multiple-
argument keyword message, the keywords are con-
catenated. So, the selector of the fourth example is
at:put:.

The message receivers and arguments in the examples
are described by variable names. In addition, they can
also be described with literals. The two most common
kinds of literals are integers and strings. An integer literal
is a sequence of digits that may be preceded by a minus
sign (eg: 0, 1, 156, —3, or 13772). A string literal is a se-
quence of characters between single quotes (eg: ‘hi’,
"John’, or ‘the Smalitalk-80 system’). A binary message
with an integer literal as its receiver is

45 + count
A keyword message with a string literal as its argument is
printer display: "Monthly Payroll’

When a message is sent, it invokes a method deter-
mined by the class of the receiver. The invoked method
will always return a result (an object). The result of a
message can be used as a receiver or argument for
another message. An example of a unary message
describing the receiver of another unary message is

window frame center

Unary messages are parsed left to right. The first
message in this example is the unary selector frame sent to
the object named window. The unary message center is
then sent to the result of the expression window frame
(ie: the object returned from window’s response to
frame).

Binary messages are also parsed left to right. An exam-
ple of a binary message describing the receiver of another
binary message is

index + offset * 2

The result of sending the binary message + offset to
the object named index is the receiver for the binary
message *2. All binary selectors have the same
precedence; only the order in which they are written mat-
ters. Parentheses can be used to change the order of
evaluation. A message within parentheses is sent before
any messages outside the parentheses. If the previous ex-
ample were written

index + (offset * 2)

the result of the binary message * 2 to offset would be

used as the argument of a binary message with receiver
index and selector + .

Unary messages take precedence over binary messages.
If unary messages and binary messages appear together,
the unary messages will be sent first. In the example

frame center + window offset — index

the result of the unary message center to frame is the
receiver of the binary message whose selector is + and
whose argument is the result of the unary message offset
to window. The result of the + message is, in turn, the
receiver of the binary message — index. Parentheses can
be used to explicitly show the order of evaluation, eg:
((frame center] + (window offset)) — index. Parentheses
can also be used to alter the order of evaluation. In the
example

(center + offset) x

the binary message + oOffset would be sent before the
unary message X.

Whenever keywords appear in an unparenthesized
message, they compose a single selector. The example

window showText: ‘Title* inFont: helvetica
indented: 15

is a single message whose selector is showText:inFont:in-
dented:. Because of this concatenation, there is no left-to-
right parsing rule for keyword messages. If a keyword
message is to be used as a receiver or argument of another
keyword message, it must be parenthesized. The expres-
sion

frame scale: (factor max: 5)

describes two keyword messages. The result of the ex-
pression factor max: 5 is the argument for the scale:
message to frame.

Binary messages take precedence over keyword
messages. When unary, binary, and keyword messages
appear in the same expression without parentheses, the
unary messages are sent first, the binary messages next,
and the keyword messages last. The example

bigFrame height: smallFrame height * 2
is evaluated as if it were parenthesized as follows:
bigFrame height: ((smallFrame height) * 2)

A cascaded message expression describes a sequence of
messages to be sent to the same object. A simple message
expression is a description of the receiver (ie: a variable
name, literal, or expression) followed by a message (ie: a
unary selector, a binary selector and argument, or a set of
keywords and arguments). A cascaded message expres-

August 1981 © BYTE Publications Inc 37

000000000

II digit Il J

] ST]

specml churocur

. il e e i S

I character lr

CEEEEY$ $ ¢ 6 6.4 _

digit | letter l

L L

special character

\

Figure 1: Syntax diagrams for the Smalltalk-80 language.

sion is a single description of a receiver followed by
several messages separated by semicolons. For example,
in the expression

printer newLine; print: reportTitle; space;
print: Date today.

four messages are sent to the object named printer. The
selectors of the four messages are newLine, print:, space,
and print:. In the expression

window frame center: pointer location;
width: border + contents; clear

three messages are sent to the object returned from the
frame message to window. The selectors of the three
messages are center:;, ‘width:, and clear. Without
cascading, this would have been three expressions

window frame center: pointer location.

window frame width: border + contents.
window frame clear

Assigning Variables
The value of a variable can be used as the receiver or

38 August 1981 © BYTE Publications Inc

argument of a message by including its name in an ex-
pression. The value of a variable can be changed with an
assignment expression. An assignment expression con-
sists of a variable name followed by a left arrow (—)
followed by the description of an object. When an assign-
ment expression is evaluated, the variable named to the
left of the arrow assumes the value of the object described
to the right of the arrow. The new value can be described
by a variable name, a literal, or a message-sending ex-
pression. Examples of assignments are

center — origin

index — O

index — index + 1

index — index + 1 max: limit

In the last example, the message + | is sent to the
value of the variable index, the message max: limit is sent
to the result of the + 1 message, and the result of the
max: limit message becomes the new value of the variable
index.

A number of variables can be assigned in the same ex-
pression by including several variable names with left ar-
rows. The expression

start — index — O

makes the value of both start and index be O.

The syntax table in figure 1 is a diagram for parsing
well-formed Smalltalk-80 expressions. This table does
not specify how spaces are treated. Spaces must not ap-
pear between digits and characters that make up a single
token, nor within the specification of a number. Spaces
must appear

ebetween a sequence of identifiers used as variables or
unary selectors

ebetween the elements of an array in an array constant
eon either side of a keyword in a keyword expression

Spaces may optionally be included between any other
elements in an expression. A carriage return or tab has
the same syntactic function as a space.

Receiving Messages—Classes

A class describes a set of objects called its instances.
Each instance has a set of instance variables. The class
provides a set of names that are used to refer to these
variables. A class also provides a set of methods that
describe what happens when its instances receive mes-

character constant

UL

\e
I literal } [ber J==2 >
='
o jo-ttring 1]
binary 5 S

selector | &
l E e 1

| keyword] identifier

special character

)
4

Figure 1 continued on page 40

sages. A method describes a sequence of actions to be
taken when a message with a particular selector is re-
ceived by an instance of a particular class. These actions
consist of sending other messages, assigning variables,
and returning a value to the original message.

To create a new application, modify an existing ap-
plication, or to modify the Smalltalk-80 system itself, a
programmer creates and modifies classes that describe
objects. The most profitable way to manipulate a class is
with an interactive system. Much of the development of
the Smalltalk-80 system has been the creation of ap-
propriate software-development tools. (See Larry Tesler’s
article “The Smalltalk Environment,” on page 90.) Unfor-
tunately, to describe a system on paper, a noninteractive
linear mode of presentation is needed. To this end, a
basic class template is provided as a simple textual
representation of a class. The basic class template in table
1 shows the name of the class, the names of the instance
variables, and the set of methods used for responding to
messages.

In table 1, the italicized elements will be replaced by
the specific identifiers or methods appropriate to the

August 1981 © BYTE Publications Inc 39

Figure 1 continued:

o primary] e

[unary object description |
L-hln‘owo‘bj\c‘.etdnc’gipfhn = —{ unary object description '[
1—' t;inury oxwgqsion J—f

unary expression unary object description |—-—-@ =
binary expression binary object description } 1 binary ‘I I \unary object dltmupihLI———b

binary object description JT—O

~ keyword expression | binary object description

I simple message oxmssion‘~-= 1

| cascaded message expression _|——s| simple message

binary selector I—'m object description

keyword |—=1{ binary object description

40 August 1981 © BYTE Publications Inc

class name identifier

instance variable names identifier identifier identifier

methods

method
method
method

Table 1: The basic class template.

class. Names of classes begin with an uppercase letter,
and names of variables begin with a lowercase letter. As
an example, figure 2 shows the basic template form of a
class named Point whose instances represent points in a
two-dimensional coordinate system. Each instance has an
instance variable named x that represents its horizontal
coordinate and an instance variable named y that
represents its vertical coordinate. Each instance can res-
pond to messages that initialize its two instance variables,
request the value of either variable, and perform simple

class name

—

arithmetic. The details of methods (in particular, the use
of ’|’, ".” and ") are the subject of our next discussion.

Methods
A method has three parts:

®a message pattern
e some temporary variable names
®some expressions

The three parts of a method are separated by vertical
bars (|). The message pattern consists of a selector and
names for the arguments. The expressions are separated
by periods (.) and the last one may be preceded by an up
arrow (1). In the method for selector + in figure 2, the
message pattern is + aPoint, the temporary variable
names are sumX and sumY, and there are three expres-
sions, the last one preceded by an 1.

Line breaks have no significance in methods; format-
ting is used only for purposes of aesthetics. The vertical
bars and periods are delimiters of significance.

As stated earlier, each message pattern contains a selec-
tor. When a message is received by an instance, the
method whose message pattern contains the same selector
will be executed. For example, suppose that offset were an

Point

instance variable names

Xy

methods

x — xCoordinate
y — yCoordinate

Message

x| |
Pattern

X

\ yIT)I/

x: xCoordinate y: yCoordinate | |

Temporary
Variable
Names

)
[+ aPoint|| sumX sumY]|

sumX — x + aPoint x. (_——"‘"" Expressions
sumY — y + aPointy.

tPoint newX: sumX Y: sumY

— aPoint | differenceX differenceY |
differenceX — x — aPoint x.
differenceY — y — aPoint y.
tPoint newX: differenceX Y: differenceY

= scaleFactor |scaledX scaledY |
scaledX — x * scaleFactor.
scaledY — y * scaleFactor.
tPoint newX: scaledX Y: scaledY

Figure 2: Illustrated class template for the class Point.

August 1981 © BYTE Publications Inc 41

_

o

class name DepositRecord class name CheckRecord
superclass Object superclass DepositRecord
instance variable names date amount instance variable names number

methods

of: depositAmount on: depositDate | |

date — depositDate.
amount — depositAmount

amount | |
I amount

balanceChange | |
t amount

Table 2: Class template for class DepositRecord.

methods

number: checkNumber for: checkAmount on:
checkDate | |
number — checkNumber.
date — checkDate.
amount — checkAmount

of: anAmount on: aDate | |
self error:
‘Check records are initialized with
number:for:on:’

balanceChange | | { O — amount

Table 3: Class template for class CheckRecord.

instance of Point in the expression
offset + frame center

The method whose message pattern is + aPoint would
be executed in response. For selectors that take
arguments, the message pattern also contains argument
names wherever arguments would appear in a message.
When a method is invoked by a message, the argument
names in the method are used to refer to the actual
arguments of that message. In the above example, aPoint
would refer to the result of frame center.

—

class name identifier

superclass identifier

instance variable names identifier identifier identifier

class variable names identifier identifier identifier

class messages and methods

method
method

method

instance messages and methods

method
method

method

Table 4: The full class template.

42 August 1981 © BYTE Publications Inc

Following the message pattern, a method can contain
some temporary variable names between vertical bars.
When a method is executed, a set of variables is created
that can be accessed by the temporary variable names.
These temporary variables exist only while the method is
in the process of execution.

Following the second vertical bar, a method contains a
sequence of expressions separated by periods. When a
method is executed, these expressions are evaluated se-
quentially.

So, there are three steps in receiving a message, cor-
responding to the three parts of the method. Smalltalk
will

1. Find the method whose message pattern has the same
selector as the message and create a set of variables for
the argument values.

2. Create a set of temporary variables corresponding to
the names between the vertical bars.

3. Evaluate the expressions in the method sequentially.

Six kinds of variables can be used in a method’s expres-
sions:

ethe instance variables of the receiver
e the pseudo-variable self

e the message arguments

etemporary variables

eclass variables

eglobal variables

The instance variables are named in the message
receiver’s class. In the example, x and y refer to the values
of the instance variables of offset.

There is an important pseudo-variable available in
every method, which is named self. self refers to the

receiver of the message that invoked the method. It is
called a pseudo-variable because its value can be accessed
like a variable, but its value cannot be changed using an
assignment expression. In the example, self refers to the
same object as offset during the execution of the method
associated with + .

Arguments and temporary variables are similar, in that
the names for both are declared in the method itself and
they both exist only during the method’s execution.
However, unlike arguments, temporary variables are not
automatically initialized. The values of temporary
variables can be changed with an assignment expression.

Class variables are shared by all instances and the class
itself. Names for the class variables are shown in the full
class template in an entry called “class variable names”
(see table 4). Although they are variables and their values
can be changed, they are typically treated as constants,
initialized when the class is created, and then simply used
by the instances. For example, if the class of floating-
point numbers wanted to provide trigonometric func-
tions, it might want to define a variable called pi to be
used in any of its methods.

Global variables are shared by all objects. A global dic-
tionary, called Smalltalk, holds the names and values of
these variables. The classes in the system, for example,
are the values of global variables whose names are the
class names. With the exception of variables used to
reference system resources, few global variables exist in
the Smalltalk-80 system. Programming style that depends
on user-defined globals is generally discouraged.

If the last expression in a method is preceded by an 1,
the message that invoked the method takes on the value
of this expression. If an | does not precede the last ex-
pression, the value of the message is simply the receiver
of the message. For example, the X:y: message to a Point
(see figure 2) behaves as if it had been written

x: xCoordinate y: yCoordinate | |
x — xCoordinate.
y — yCoordinate.
1 self

Methods can contain comments anywhere. A comment
is a sequence of characters delimited by double quotes.
Two consecutive double quotes are used to embed a
double quote within a comment. The methods in class
Point were purposely written in a verbose style to provide
examples. The messages for + could have been written

+ aPoint | |
t Point newX: x + aPoint x Y: y + aPoint y

The basic class template presents only the most important
attributes of a class. The complete description of a class is
provided by the full class template, described in the next
section.

Inheritance
The basic template allows a class to be described in-

dependently of other classes. It ignores inheritance
among classes. The full class template, however, takes in-
heritance into account. (See table 4.) With it, a class can
be described as a modification of another class called its
superclass. All classes that modify a particular class are
called its subclasses. A subclass inherits the instance
variable names and methods of its superclass. A subclass
can also add instance variable names and methods to
those it inherits. The instance variable names added by
the subclass must differ from the instance variable names
of the superclass. The subclass can override a method in
the superclass by adding a message with the same selec-
tor. Instances of the subclass will execute the method
found in the subclass rather than the method inherited
from the superclass.

To assemble the complete description of a class, it is
necessary to look at its superclass, its superclass’s
superclass, and so on, until a class with no superclass is
encountered. There is only one such class in the system
(ie: without a superclass), and its class name is Object.
All classes ultimately inherit methods from Object. Ob-
Jject has no instance variables. The set of classes linked
through the superclass relation is called a superclass
chain. The full class template has an entry called
“superclass” that specifies the initial link on the class’s
superclass chain.

As an example, we might describe a class,
DepositRecord, whose instances are records of bank ac-
count deposits. Each instance has two instance variables
representing the date and amount of the deposit. The
class template is shown in table 2.

—

class name CheckRecord
superclass DepositRecord
instance variable names number

class messages and methods

number: checkNumber for: checkAmount on:
checkDate | |
! self new number: checkNumber
for: checkAmount
on: checkDate

instance messages and methods

number: checkNumber for: check Amount on:
checkDate | |
super of: checkAmount on: checkDate.
number — checkNumber

of: anAmount on: aDate | |

self error: ‘Check records are initialized with
number:for:on:’

balanceChange | | 1 0 — amount

Table 5: Full class template for class CheckRecord.

August 1981 © BYTE Publications Inc 43

A class, CheckRecord, whose instances are records of
checks written on an account is a subclass of
DepositRecord; this new class adds an instance variable
that represents the check number. The class template is
shown in table 3.

An instance of CheckRecord has three instance
variables. It inherits the amount message, adds the
number:for:on: message, and overrides the
balanceChange and of:on: messages. The of.on: method
contains a single expression in which the message error:
‘Check records are initialized with number:for:on:’ is sent
to the pseudo-variable self. The method for error: is found
in the superclass of DepositRecord, which is the class Ob-
Jject; the response is to stop execution and to display the
string literal argument to the user.

An additional pseudo-variable available in a method'’s

_

class name Point
superclass Object
instance variable names Xy
class variable names pi

class messages and methods

instance creation
newX: xValue Y: yValue | |
! self new x: xValue
y: yValue
newRadlus: radius Angle: angle | |
! self new x: radius * angle sin
y: radius * angle cos

class initialization
setPl | | pi — 3.14159

instance messages and methods

accessing
x: xCoordinate y: yCoordinate | |
x — xCoordinate.
y — yCoordinate
x| | tx
y Ldly
radlus | | 1((x * x) + (y * y)) squareRoot
angle | | t(x/)y) arctan

arithmetic

+ aPolnt | | tPoint newX: x + aPoint x
Y:y + aPointy

— aPoint | | tPoint newX: x — aPoint x
Y:y — aPointy

= scaleFactor | | IPoint newX: x * scaleFactor
Y: y = scaleFactor
circleArea | r |
r — self radius.
tpi*xrxr

Table 6: Full class template for class Point.

44 August 1981 © BYTE Publications Inc

expressions is super. It allows a subclass to access the
methods in its superclass that have been overridden in the
subclass description. The use of super as the receiver of a
message has the same effect as the use of self, except that
the search for the appropriate message starts in the
superclass, not the class, of the receiver.

For example, the method associated with
number:for:on in CheckRecord might have been defined
as

number: checkNumber for: checkAmount on:
checkDate | |
super of: checkAmount on: checkDate.
number — checkNumber

Metaclasses

Since a class is an object, there is a different class that
describes it. A class that describes a class is called a
metaclass. Thus, a class has its own instance variables
that represent the description of its instances; it responds
to messages that provide for the initialization and
modification of this description. In particular, a class
responds to a message that creates a new instance. The
unary message New creates a new instance whose in-
stance variables are uninitialized. The object nil indicates
an uninitialized value.

The classes in the system might all be instances of the
same class. However, each class typically uses a slightly
different message protocol to create initialized instances.
For example, the last expression in the method associated
with + in class Point (see figure 2) was

Point newX: sumX Y: sumY

newX:Y: is a message to Point, asking it to create a new
instance with sumX and sumY as the values of the new in-
stance’s instance variables. The newX:Y: message would
not mean anything to another class, such as
DepositRecord or CheckRecord. So, these three classes
can’t be instances of the same class. All classes have a lot
in common, so their classes are all subclasses of the same
class. This class is named Class. The subclasses of Class
are called metaclasses.

The newX:Y: message in Point’s metaclass might be im-
plemented as

newX: xValue Y: yValue | |
! self new x: xValue y: yValue

The new message was inherited by Point’s metaclass from
Class. One reason for having metaclasses is to have a
special set of methods for each class, primarily messages
for initializing class variables and new instances. These
methods are displayed in the full class-template form
shown in table 4; they are distinguished from the
methods for messages to the instances of the class. The
two categories are “class messages and methods” and “in-
stance messages and methods,” respectively. Methods in

the category “class messages and methods” are associated
with the metaclass; those in “instance messages and
methods” are associated with the class.

If there are no class variables for the class, the “class
variable name” entry is omitted. So, CheckRecord might
be described as shown in table 5.

It is often desirable to create subcategories within the
categories “class messages and methods” and “instance
messages and methods.” Moreover, the order in which
the categories or subcategories are listed is of no
significance. (The notion of categories is simply a pretty
printing” technique; it has no semantic significance.)

Returning to the example of class Point, if the instance
methods of class Point include subcategories accessing
and arithmetic, the template for Point might appear as
shown in table 6.

When the class Point is defined, the expression

Point setPi

should be evaluated in order to set the value of the single
class variable.

A Point might be created and given a name by
evaluating the expression

testPoint — Point newX: 420 Y: 26

The new Point, testPoint, can then be sent the message
circleArea:

testPoint circleArea
or used in a more complex expression:

(testPoint * 2) circleArea

Primitive Routines

The response to some messages in the system may be
performed by a primitive routine (written in the im-
plementation language of the machine) rather than by
evaluating the expressions in a method. The methods for
these messages indicate the presence of such a primitive
routine by including < primitive > before the first expres-
sion in the method. A major use of primitive methods is
to interact with the machine’s input/output devices.

An example of a primitive method is the new message
to classes, which returns a new instance of the receiver.

new | | <primitive>

This particular primitive routine always produces a
result. If there are situations in which a primitive routine
cannot produce a result, the method will also contain
some expressions. If the primitive routine is successful in
responding to the message, it will return a value and the
expressions in the method will not be evaluated. If the
primitive routine encounters difficulty, the expressions
will be evaluated as though the primitive routine had not
been specified.

Another example of a message with a primitive
response is a message with the selector + sent to a
Smallinteger

+ aNumber | | <primitive>
self error: ‘Smallinteger addition has failed’

One reason this primitive might fail to produce a result
is that the argument is not a Smallinteger. In the example,
this would produce an error report. In the actual
Smalltalk-80 system, an attempt is made to check and see
if the argument were another kind of number for which a
result could be produced.

Indexed Instance Variables

An object’s instance variables are usually given names
by its class. The names are used in methods of the class to
refer to the values of the instance variables. Some objects
also have a set of instance variables that have no names
and can only be accessed by messages. The instance vari-
ables are referred to by an integral index. Indexable ob-
jects are used to implement the classes in the system that
represent collections of other objects, such as arrays and
strings. z

The messages to access indexed instance variables have

—
Array

class name

superclass IndexedCollection

indexable instance variables

class messages and methods

instance creation
with: anElement | |
t(self new: 1) at: | put: anElement
with: firstElement with: secondElement
| anArray |
anArray — self new: 2.
anArray at: 1 put: firstElement.
anArray at: 2 put: secondElement.
lanArray

instance messages and methods

accessing
at: aninteger | |
< primitive >
self error: ‘index out of range’

at: aninteger put: anElement | |
< primitive >
self error: ‘index out of range’

funny stu
embed |
tArray with: self

Table 7: Full class template for class Array.

August 1981 © BYTE Publications Inc 45

selectors at: and at:put:. For example
list at: 1

returns the first indexed instance variable of list. The ex-
ample

list at: 4 put: element

stores element as the value of the fourth indexed instance
variable of list. The at: and at:put: messages invoke
primitive routines to load or store the value of the in-
dicated variable. The legal indices run from one to the
number of indexable variables in the instance. The at: and
atput: messages are defined in class Object and,
therefore, can be understood by all objects; however, on-
ly certain classes will create instances with indexable in-
stance variables. These classes will have an additional
line in the class template indicating that the instances con-
tain indexable instance variables. As an example, we
show a part of the template for class Array in table 7.

Each instance of a class that allows indexable instance
variables may have a different number of them; such in-
stances are created using the new: message to a class,
whose argument tells the number of indexable variables.
The number of indexable instance variables an instance
has can be found by sending it the message size. A class
whose instances have indexable instance variables can
also have named instance variables. All instances of any
class will have the same number of named instance
variables.

Control Structures and Blocks
The two control structures in the Smalltalk-80 system
described so far are

e the sequential execution of expressions in a method
e the sending of messages that invoke other methods that
eventually return values

All other control structures are based on objects called
blocks. Like a method, a block is a sequence of expres-
sions, the last of which can be preceded by an up arrow
(1). The expressions are delimited by periods; they may
be preceded by one or more identifiers with leading co-
lons. These identifiers are the block arguments. Block
arguments are separated from expressions by a vertical
bar.

Whenever square brackets are encountered in a
method, a block is created. Evaluation of the expressions
inside the square brackets is deferred until the block is
sent the message value or a message whose selector is a
concatenation of one or more occurrences of the keyword
value:. Control structures are implemented as messages
with receivers or arguments that are blocks. The methods
for carrying out these control-structure messages involve
sending the blocks patterns of value messages.

In the Smalltalk-80 system, there are two types of

46 August 1981 © BYTE Publications Inc

primitive control messages: conditional selection of
blocks, ifTrue:ifFalse:, and conditional iteration of blocks,
whileTrue: and whileFalse:.

The representation of conditions in the Smalltalk-80
system uses distinguished boolean objects named false
and true. The first type of primitive control message pro-
vides for conditional selection of a block to be executed.
This is similar to the IF . . . THEN . . . ELSE of ALGOL-
like languages. The expression

queue isEmpty ifTrue: [index — 0]
ifFalse: [index — queue next]

evaluates the expressions in the first block if the receiver
is true and evaluates the expressions in the second block if
the receiver is false. Two other forms of conditional selec-
tion provide only one alternative

queue isEmpty ifTrue: [index — 0].
queue isEmpty ifFalse: [index — queue next].

When ifTrue: is sent to false, it returns immediately
without executing the block. When ifFalse: is sent to true,
the block is not executed.

The second type of primitive control message repeated-
ly evaluates the expressions in a block as long as some
condition holds. This is similar to the WHILE and UNTIL
statements in ALGOL-like languages. This type of con-
trol message is a message to a block; the receiver, the
block, evaluates the expressions it contains and deter-
mines whether or not to continue on the basis of the value
of the last expression. The first form of this control
message has selector whileTrue:. The method for
whileTrue: repeatedly executes the argument block as
long as the receiver’s value is true. For example,

[index < = limit] whileTrue: [self process: list at: index.
index — index + 1]

The binary message < = is understood by objects
representing magnitudes. The value returned is the result
of comparing whether the receiver is less than or equal to
(< =) the argument.

The second conditional iteration message has selector
whileFalse:. The method for whileFalse: repeatedly ex-
ecutes the argument block as long as the receiver’s value
is false. For example,

[queue isEmpty] whileFalse: [self process: queue next]

The messages whileTrue and whileFalse to a block pro-
vide a shorthand notation for messages of the form
whileTrue: aBlock and whileFalse: aBlock, if the argument
aBlock is an empty block.

Block arguments allow one or more of the variables in-
side the block to be given new values each time the block
is executed. Instead of sending the block the message
value, messages with selectors value: or value:value:, and

so on, are sent to the block. The arguments of the value:
messages are assigned to the block arguments (in order)
before the block expressions are evaluated.

As an example, classes with indexed instance variables
could implement a message with selector do: that takes a
block as an argument and executes it once for every in-
dexed variable. The block has a single block argument;
the value of the appropriate indexed variable is passed to
it for each execution. An example of the use of such a
message is

list do: [:element | self process: element]
The message might be implemented as

do: aBlock | index |
index — 1.
[index < = self size] whileTrue:
[aBlock value: (self at: index).
index — index + 1]

Similar control messages can be implemented for any
class. As an example, a simple repetition could be pro-
vided by a timesRepeat: aBlock message to instances of
class Integer

timesRepeat: aBlock | index |
index — 1.
[index < = self] whileTrue:
[aBlock value.
index — index + 1]

Examples of implementing other control messages are
given in L Peter Deutsch’s article “Building Control Struc-
tures in the Smalltalk-80 System,” on page 322.

. The Smalltalk-80 System: Basic Classes

The Smalltalk-80 language provides a uniform syntax
for retrieving objects, sending messages, and defining
classes. The Smalltalk-80 system is a complete pro-
gramming environment that includes many actual classes
and instances. In support of the uniform syntax, this
system includes class descriptions for Object, Class,
Message, CompiledMethod, and Context, whose
subclasses are BlockContext and MethodContext. Multi-
ple independent processes are provided by classes Pro-
cessorScheduler, Process, and Semaphore. The special
object nil is the only instance of class UndefinedObject.
These classes comprise the kernel Smalltalk-80 system.

The system also includes class descriptions to support
basic data structures; these are numerical and collection
classes. The class Number specifies the protocol ap-
propriate for all numerical objects. Its subclasses provide
specific representations of numbers. The subclasses are
Float, Fraction, and Integer. For a variety of reasons,
there are both Smallintegers and Largelntegers; of these,
there are LargePositivelntegers and LargeNega-
tivelntegers.

Class Collection specifies protocol appropriate to ob-
jects representing collections of objects. These include
Bag, Set, OrderedCollection, LinkedList, MappedCollec-
tion, SortedCollection, and IndexedCollection. The latter
provides protocol for objects with indexable instance
variables. It has subclasses String and Array. Elements of a
string are instances of class Character; bytes are stored in
instances of ByteArray. A subclass of String is Symbol; a
subclass of Set is Dictionary (a set of Associations).

Interval is a subclass of Collection with elements
representing an arithmetic progression. Intervals can be
created by sending the message to: or to:by: to Integer.
So, the expressions 1 to: 5 by: 1 and 1 to: 5 each create a
new Interval representing 1, 2, 3, 4, 5. As a Collection, In-
terval responds to the enumeration message do:. For ex-
ample, in

(1 to: 5) do: [:index | anArray at: index put: index * 2]

the block argument index takes on successive values 1, 2,
3,4,5.

For programmer convenience, an Integer also responds
to the messages to:do: and to:by:do:, allowing the paren-
theses in interval enumeration expressions to be omitted.

The ability to stream over indexed or ordered collec-
tions is provided by a hierarchy based on class Stream, in-
cluding ReadStream, WsriteStream, and ReadAnd-
WriteStream. A file system, local or remote, is then im-
plementable as a subclass of these kinds of Streams.

Since instances of the system classes described above
are used in the implementation of all applications, an
understanding of their message protocol is as necessary to
understanding an implementation as an understanding of
the language syntax. These system classes are fully
described in the forthcoming Smalltalk books.

In addition to the basic data-structure classes, the
Smalltalk-80 system includes class descriptions to sup-
port interactive graphics (forms and images and image
editors, text and text editors), networking, standard files,
and hard-copy printing. A complete Smalltalk-80 system
contains about sixty class definitions, not including a
variety of windows or views, menus, scrollbars, and the
metaclasses. Many of these are discussed in companion
articles in this issue. (See Daniel H H Ingalls’s “The
Design Principles Behind Smalltalk,” page 286, and Larry
Tesler’s “The Smalltalk Environment,” page 90.)

The important thing to note is that each of these class
descriptions is implemented in the Smalltalk-80 language
itself. Each can be examined and modified by the pro-
grammer. Some of the class descriptions contain methods
that reference primitive methods; only these methods are
implemented in the machine language of the implementa-
tion machine. It is a fundamental part of the philosophy
of the system design that the programmer have such com-
plete access. In this way, system designers, such as
members of the Xerox Learning Research Group, are able
to build the next Smalltalk in the complete context of
Smalltalk itself.m

August 1981 © BYTE Publications Inc 47

148

References

Birtwistle, Graham; Ole-Johan Dahl; Bjorn Myhrhaug; and
Kristen Nygaard. Simula Begin. Philadelphia: Auerbach, 1973.

. Goldberg, Adele and Alan Kay, editors. Smalltalk-72 Instruc-

tional Manual. Xerox PARC technical report, March 1976 (out
of print).

. Goldberg, Adele; David Robson; and Daniel H H Ingalls.

Smalltalk-80: The Language and Its Implementation and

Smalltalk-80: The Interactive Programming Environment, 1981
(books forthcoming).

. Ingalls, Daniel H H. “The Smalltalk-76 Programming System:

Design and Implementation.'' In Proceedings of the Principles
of Programming Languages Symposium, January 1978.

. Kay, Alan. The Reactive Engine. Ph.D. Thesis, University of

Utah, September, 1969 (University Microfiims).

Glossary

Editor’s Note: This glossary provides concise definitions for many of the keywords and concepts related to
Smalltalk-80. These definitions will be most useful if you first read the introductory Smalltalk articles. . . . GW

General Terminology block a literal method; an object repre-
object a package of information and senting a sequence of actions to be
descriptions of its manipulation - taken at a later time, upon receiving
message a specification of one of an object’s an “evaluation” message (such as
-5 manipulations one with selector value or value:)
mefh_qd a procedure-like entity; the descrip-
g tion of a sequence of fzction.s to be Samiantce
taken 'when a message is received by | instance vari- a variable that is information used
an object g able to distinguish an instance from
class a d.escnptlon of one or more similar other instances of the same class
! Oble‘:tf ; ; class variable a variable shared by all instances of
instance an object described by a particular a class and the class itself
? class iy named variable an instance variable that is given a
n?ethod dic- a set of associations betwe.en name in the class of the instance; the
tionary message selectors and me.thc?ds; in- name is used in methods of the class
cluded in each class description | indoxed variable an instance variable with no name,
metaclass a class whose (single) instance is accessed by message only; referred
itself a class. d to by an integer (an index)
subclass % clas.s t?’“t is created by sharing the | olobal or pool @ variable shared by instances of
descr:tpt.xon of another class, often | 4arigple several classes; a system example is
modxf ying some aspects of that Smalltalk, a dictionary that includes
description references to all the defined classes
temporary vari- a variable that exists only while the
able method in which it is declared is in
Syntax Terminology the process of execution
message re- the object to be manipulated, ac- | pseudo-variable a variable available in every method
ceiver cording to a message without special declaration, but
message sender the object requesting a manipulation whose value cannot be changed us-
message selector a symbolic name that describes a ing an assignment. System examples
desired manipulation of an object are self, super and thisContext.
message one of the objects specified in a | nil a special object, the only instance of
argument message that provides information class UndefinedObject
needed so that a message receiver
can be manipulated appropriately Implementation Terminology
unary message a message without arguments field the memory space in which the
binary message a message with a single argument value of an object’s variable is
and a selector that is one of a set of stored
special single or double characters bytecode a machine instruction for the virtual
keyword mes- a message that has one or more machine
sage arguments and a selector made up of | object pointer a reference to an object
a series of identifiers with trailing | reference count of an object, is the number of ob-
colons, one preceding each argu- jects that point to it (ie: that contain
ment its object pointer)

48 August 1981 © BYTE Publications Inc

Circle 336 on inquiry card, =

Object-Oriented

Software Systems

David Robson
Learning Research Group
Xerox Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto CA 94304

This article describes a general class of tools for
manipulating information called object-oriented software
systems. It defines a series of terms, including software
system and object-oriented. The description is greatly
influenced by a series of object-oriented programming
environments developed in the last ten years by the Learning
Research Group of Xerox's Palo Alto Research Center, the
latest being the Smalltalk-80 system. The article describes
object-oriented software systems in general, instead of the
Smalltalk-80 system in particular, in order to focus attention
on the fundamental property that sets the Smalltalk-80
system apart from most other programming environments.
The words ‘“object-oriented” mean different things to
different people. Although the definition given in this article
may exclude systems that should rightfully be called object-
oriented, it is a useful abstraction of the idea behind many
software systems.

Many people who have no idea how a computer works
find the idea of object-oriented systems quite natural. In
contrast, many people who have experience with com-
puters initially think there is something strange about
object-oriented systems. (I don’t mean to imply that
computer-naive users can create complex systems in an
object-oriented environment more easily than experi-
enced programmers can. Creating complex systems in-
volves many techniques more familiar to the programmer
than the novice, regardless of whether or not an object-
oriented environment is used. But the basic idea about
how to create a software system in an object-oriented
fashion comes more naturally to those without a
preconception about the nature of software systems.) I
had had some programming experience when I first en-
countered an object-oriented system and the idea cer-
tainly seemed strange to me. I am assuming that most of
you also have some experience with software systems and
their creation. So instead of introducing the object-
oriented point of view as if it were completely natural, I'll
try to explain what makes it seem strange compared to
the point of view found in other programming systems.

Software Systems
A software system is a tool for manipulating informa-

74 August 1981 © BYTE Publications Inc

tion. For the purposes of this article, I'm using a very
broad definition of information.

Information: A representation or description of
something.

There are many types of information that describe dif-
ferent things in different ways. One of the great insights
in computer science was the fact that information can
(among other things) describe the manipulation of infor-
mation. This type of information is called software.

Software: Information describing the manipula-
tion of information.

Software has the interesting recursive property of
describing how to manipulate things like itself. Software
is used to describe a particular type of information-
manipulation tool called a software system.

Software system: An information-manipulation
tool in which the manipulation is described by

software.

A distinction is made in information-manipulation
tools between hardware systems and software systems. A
hardware system is a physical device like a typewriter,
pen, copier, or television set. The type of manipulation
performed by a hardware system is built in and can only
be changed by physical modification. The type of
manipulation performed by a software system is not built
in—it is determined by information, which can be
manipulated.

The virtue of software systems is that the mechanism
developed for manipulating information can be used to
manipulate the mechanism itself. Software systems that
actually manipulate other software systems are called
programming environments.

Programming environment: A software system
that manipulates software systems. An environ-
ment for the design, production, and use of soft-
ware systems.

Circle 78 on inquiry card. ==

Thus, a programming environment is also recursive: it
is what it manipulates. The fact that software systems can
be manipulated is both good news and bad news. Since a
text editor is a software system, it is not “cast in concrete”
and you can change it to conform to your style of
interacting with text more closely than it does now (using
a programming environment). However, you also may
reduce it to the proverbial “pile of bits” (not a text editor
*at all).

Data/Procedure-Oriented Software

The traditional view of software systems is that they
are composed of a collection of data that represents some
information and a set of procedures that manipulates the
data.

Data: The information manipulated by software.
Procedure: A unit of software.

Things happen in the system by invoking a procedure
and giving it some data to manipulate.

As an example of a software system, consider a system
for managing windows that occupy rectangular areas on
a display screen. The windows contain text and have
titles. They can be moved around the screen, sometimes
overlapping each other. (The details of this system are

DISKETTE
COPY SERVICE

Allenbach Industries
4322 Manchester Ave. Olivenhain, CA 92024

76 August 1981 © BYTE Publications Inc

Circle 11 on inquiry card.

not important. Its main purpose is to point out the dif-
ferences between the structure of a data/procedure
system and an object-oriented system.)

A window-management system implemented as a
data/procedure system would include data representing
the location, size, text contents, and title of each window
on the screen. It would also include procedures that move
a window, create a window, tell whether a window
overlaps another window, replace the text or title of a
window, and perform other manipulations of windows
on a display. To move a window, a programmer would
call the procedure that moves windows and pass to it the
data representing the window and its new location.

A problem with the data/procedure point of view is
that data and procedures are treated as if they were in-
dependent when, in fact, they are not. All procedures
make assumptions about the form of the data they
manipulate. The procedure to move a window should be
presented with data representing a window to be moved
and its new location. If the procedure were presented
with data representing the text contents of a window, the
system would behave strangely.

In a properly functioning system, the appropriate
choice of procedure and data is always made. However,
in an improperly functioning system (eg: one in the pro-
cess of being developed or encountering an untested
situation), the data being manipulated by a procedure
may be of an entirely different form from that expected.
Even in a properly functioning system, the choice of the
appropriate procedure and data must always be made by
the programmer.

These two problems have been addressed in the context
of the data/procedure point of view by adding several
features to programming systems. Data typing has been
added to languages to let the programmer know that the
appropriate choice of data has been made for a particular
procedure. In a typed system, the programmer is notified
when a procedure call is written using the wrong type of
data. Variant records allow the system to choose the
appropriate procedure and data in some situations.

Object-Oriented Software

Instead of two types of entity that represent informa-
tion and its manipulation independently, an object-
oriented system has a single type of entity, the object,
that represents both. Like pieces of data, objects can be
manipulated. However, like procedures, objects describe
manipulation as well. Information is manipulated by
sending a message to the object representing the informa-
tion.

Object: A package of information and descrip-
tions of its manipulation.

Message: A specification of one of an object’s
manipulations.

When an object receives a message, it determines how

to manipulate itself. The object to be manipulated is
called the receiver of the message. A message includes a
symbolic name that describes the type of manipulation
desired. This name is called the message selector. The
crucial feature of messages is that the selector is only a
name for the desired manipulation; it describes what the
programmer wants to happen, not how it should happen.
The message receiver contains the description of how the
actual manipulation should be performed. The program-
mer of an object-oriented system sends a message to in-
voke a manipulation, instead of calling a procedure. A
message names the manipulation; a procedure describes
the details of the manipulation.

Of course, procedures have names as well, and their
names are used in procedure calls. However, there is only
one procedure for a name, so a procedure name specifies
the exact procedure to be called and exactly what should
happen. A message, however, may be interpreted in dif-

ferent ways by different receivers. So, a message does not
determine exactly what will happen; the receiver of the
message does.

If the earlier example of the window-management
system were implemented as an object-oriented system, it
would contain a set of objects representing windows.
Each object would describe a window on the screen. Each
object would also describe the manipulations of the win-
dow it represents—for example, how to move it, how to
determine whether it overlaps another window, or how
to display it. Each of these manipulations would corre-
spond to a selector of a message. The selectors could in-
clude move, overlap, display, delete, width, or height. (In
this article, an alternate typeface is used for words that
refer to specific elements in example systems.)

In addition to a selector, a message may contain other
objects that take part in the manipulation. These are
called the message arguments. For example, to move a

The
Powerful

Circle 354 on inquiry card

New Alternative

To VisiCalc™

For CP/M based microcomputers,
SuperCalc is the superior new ““electronic

worksheet’ for businessmen. Complex calcu-

lations, alternative recalculations, and
numerical forecasting are easy. Just type in
your numbers - SuperCalc does the rest.
SuperCalc pays for itself almost immediately,
and eventually it will save enough in time and
money to pay for your computer as well!
Dealer and distributor inquiries welcome.
SORCIM Corporation, 405 Aldo Ave.,
Santa Clara, CA 95050, (408) 727-7636

‘““What was needed for the OSBORNE 1 was
an easy-to-understand CP/M based alterna-
tive to VisiCalc from a qualified, reliable

company. SuperCalc by SORCIMisallthat. ..
and more.”

Adam Osborne
Developer of the OSBORNE 1

B

Powerful Software Tools

SuperCalc., SORCIM

VisiCalc is a trademark of Personal Software Inc., SuperCalc is a trademark of SORCIM Corp.

window, the programmer might send the object repre-
senting the window a message with the selector move.
The message would also contain an argument represent-
ing the new location. Since this is an object-oriented
system, the selector and argument are objects: the selec-
tor representing a symbolic name and the argument
representing a location or point.

The description of a single type of manipulation of an
object’s information (the response to a single type of
message) is a procedure-like entity called a method. A
method, like a procedure, is the description of a sequence
of actions to be performed by a processor. However,
unlike a procedure, a method cannot directly call another
method. Instead, it must send a message. The important
thing is that methods cannot be separated from objects.
When a message is sent, the receiver determines the
method to execute on the basis of the message selector. A
different kind of window could be added to the system

with a different representation and different methods to
respond to the messages move, overlap, display, delete,
width, and height. Places where messages are sent to
windows do not have to be changed in order to refer to
the new kind of window; whichever window receives the
message will use the method appropriate to its represen-
tation.

Objects look different from the outside than they do
from the inside. By the outside of an object, I mean what
it looks like to other objects with which it interacts (eg:
what rectangles look like to other rectangles or to win-
dows). From the outside, you can only ask an object to
do something (send it a message). By the inside of an ob-
ject, I mean what it looks like to the programmer im-
plementing its behavior. From the inside, you can tell an
object how to do something (in a method). For example,
a window can respond to messages having the selectors
move, overlap, display, delete, width, or height.

IMPORTS

W |
NORTHSTAR
Burned ond tested - backed by fost waranty
service. Find out why our prices. availability

and service moke usthe #1 source forthe #1
5-100 system. Free gomes disk.

EPSON MX-80
Price Breakthrough - Call!

Okidara M-80 ... 5399
Okidata M-82 ... $549
Okidata M-83 5849

PAPER TIGERS

Horizon Il 64K DD ... 2895.00
Horizon Il 64K Qd 3295.00

|
ALTOS
NOW MORE FOR LESS

ACS-8000-15 hos 208K RAM. 1 Mg. on floppys.
6 seriol ond 2 porollel ports. Upgrade w/Win-
chester hord-disk drives ond tope back-up.

Mulri-user of single user prices.

ACS8000-15

ATARI
The new leader! Derochoble keyboaord.
£00 O%;/SQK extra port. 3 function keys. numeric
$ keypad. 24x80. RS-232. builr and backed
while they last by ADDS.

plus 410 §59 - Stor R §27
ADDS Viewpoint ... $569

Joysticks $14 - 810 5449
TELEVIDEO

ZENITH

The all-in-one computer thot's backed by
your local Zenith/Heath service center. Green
Phosphor screen and CP/M included.

289 w/48K 2510's

$2249

TERMINALS

Sco’r’rsdolé\Sysre MS.o.

6730 E. McDowell Road, Suite 110, Scottsdale, Arizona 85257

= (602) 941-5856 =

Call 8-5 Mon.-Fri.
(We Export) TWX 910-950-0082 (IMEC SCOT)

Anadex
9500/9501
Datasouth

$1274.00

$1349.00

Tl 810 Basic $1499.00

MORE PRINTERS

$719.00 + NEC5510 $2689.00
$1049.00 + Diablo 630 ... $2295.00

Centronics 737
DEC LA 34AA .
MPI 88G
MPI 99G

.. $619.00 C. Itoh Starwriter ... $1495.00
$719.00 NEC 5520 ... $3089.00

*Tractors included in price

Zenith Z-19
Soroc IQ 120
Soroc IQ 135
Hozeltine 1421

ORDERING
MAIL ORDER ONLY ——
2% cash discount included / charge cards add 2%. Prices subject to
change, product subject to availability. Arizona residents add 5%.
F.O.B. point of shipment Scottsdale. 0-20% restocking fee for
returned merchandise. Warranties included on all products.

However, nothing is known outside the window about
how it responds to these messages. (It is known that a
window will move when asked to, but it is not known
how it accomplishes the move.)

The set of messages an object can respond to is called
its protocol. The external view of an object is nothing
more than its protocol; the internal view of an object is
something like a data/procedure system. An object has a
set of variables that refers to other objects. These are
called its private variables. It also has a set of methods
that describes what to do when a message is received. The
values of the private variables play the role of data and
the methods play the role of procedures. This distinction
between data and procedures is strictly localized to the
inside of the object.

Methods, like other procedures, must know about the
form of the data they directly manipulate. Part of the
data a method can manipulate are the values of its
object’s private variables. For example, we might imagine
three ways that a window represents its location and size
(internally). The private variables might contain:

e four numbers representing the x and y location of the
center, the width, and the height

e two points representing opposite corners of the window
e a single rectangle whose location and size are the same
as the window's

The method that moves a window (the response to

Some things are just
naturally right.

tiny-c is a structured programming language designed to
allow you to focus attention on the problems you want to
solve — rather than the language you're using to solve it. With
tiny-c you can expand your horizons far beyond the limits of
BASIC. tiny-c ONE (interpreter), $100- includes Owner's Manual
plus wide choice of media, source code. It's still the best struc-
tured programming trainer. Tiny-c TWO (compiler), $250 -
includes Owner's Manual, CP/M® disk, source code. This
version puts UNIX® pleasure into your CP/M.

tiny_c associates, P.0. Box 269, Holmdel, NJ 07733
(201) 671-2296

un

You'll quickly discover tiny-c is
naturally right for your language

5% sales tax. Visa or Master
plate number with order.

82 August 1981 © BYTE Publications Inc

Circle 385 on inquiry card.

messages with the selector move) assumes that a par-
ticular representation is used. If the representation were
changed, the method would also have to be changed.
Only the methods in the object whose representation
changed need be changed. All other methods must
manipulate the window by sending it messages.

A message must be sent to an object to find out
anything about it (ie: our concept of manipulation in-
cludes inquiring about information, as well as changing
information). This is needed because we don't want the
form of an object’s inside known outside of it. The
response to a message may return a value. For example, a
window’s response to the message width returns an object
that represents its width on the display (a number). The
method for determining what to return depends on the
form of the window’s private variables. If they are
represented as the first alternative listed above (four
numbers), the response would simply return the value of
the appropriate private variable. If the second alternative
is used (two points), the method would have to determine
the width from the x coordinates of the two corners. If
the third alternative is used (one rectangle), the width
message would simply be passed on to the rectangle and
the rectangle’s response would become the window’s
response.

Classes and Instances

Most object-oriented systems make a distinction be-
tween the description of an object and the object itself.
Many similar objects can be described by the same
general description. The description of an object is called
a class since the class can describe a whole set of related
objects. Each object described by a class is called an in-
stance of that class.

Class: A description of one or more similar
objects.

Instance: An object described by a particular
class.

Every object is an instance of a class. The class
describes all the similarities of its instances. Each instance
contains the information that distinguishes it from the
other instances. This information is a subset of its private
variables called instance variables. All instances of a class
have the same number of instance variables. The values
of the instance variables are different from instance to in-
stance. An object’s software (ie: the methods that
describe its response to messages) is found in its class. All
instances of a class use the same method to respond to a
particular type of message (ie: a message with a particular
selector). The difference in response by two different in-
stances is a result of their different instance variables. The
methods in a class use a set of names to refer to the set of
instance variables. When a message is sent, those names
in the invoked method refer to the instance variables of
the message receiver. Some of an object’s private

variables are shared by all other instances of its class.
These variables are called class variables and are part of
the class.

The programmer developing a new system creates the
classes that describe the objects that make up the system.
The programmer of the window-management system
would create a class that contained methods correspond-
ing to the message selectors move, display, delete, width,
and height. This class would also include the names of
the instance variables referred to in those methods. These
names might be frame, text, and title, where:

frame is a rectangle defining the area on the
screen,

text is the string of characters displayed in the
window, and

title is the string of characters representing the
window’s name

The classes representing rectangles and strings of
characters are included in most systems, so they don't
need to be defined.

In a system that is uniformly object-oriented, a class is
an object itself. A class serves several purposes. In a run-
ning system, it provides the description of how objects
behave in response to messages. The processor running
an object-oriented system looks at the receiver’s class
when a message is sent to determine the appropriate

AicroTech Exports 1980

GETS FILES ACROSS!

With REFORMATTER disk utilities you can read and write
IBM 3740 and DEC RT-11 single density formatted diskettes on your
CP/M™ system.

REFORMATTER enables you to access large system databases,
improve data exchange with other organizations, increase program
development capabilities, and use your micro in distributed processing.

REFORMATTER programs feature bi-directional data transfer
and full directory manipulation. ASCII/EBCDIC conversion provided
with CP/M < IBM. MP/M is now fully supported.

Program Data Sheets, Application Guides, and Machine Compati-
bility Guides available.

Each program $195.00 from stock. Specify CP/M <> IBM or
CP/M < DEC. Order from MicroTech Exports, Inc., 467 Hamilton
Ave., Suite 2, Palo Alto, CA 94301 [Tel: 415/324-9114 [J TWX:
910-370-7457 MUH-ALTOS [J Dealer and OEM discounts available.

L
. CP/M® is a registered trademark of Digital Research ‘

NS J

86 August 1981 © BYTE Publications Inc Circle 241 on inquiry card.

method to execute. For this use of classes, it is not
necessary that they be represented as objects since the
processor does not interact with them through messages
(preventing a nasty recursion). In a system under
development, a class provides an interface for the pro-
grammer to interact with the definition of objects. For
this use of classes, it is extremely useful for them to be ob-
jects, so they can be manipulated in the same way as all
other descriptions. Classes also are the source of new ob-
jects in a running system. Here again, it is useful for the
class to be an object, so object creation can be
accomplished with a simple message. For example, the
message New might be sent to a class to create a new in-
stance.

Inheritance

Another mechanism used for implicit sharing in object-
oriented systems is called inheritance. One object inherits
the attributes of another object, changing any attributes
that distinguish the two. Some object-oriented systems
provide for inheritance between all objects, but most pro-
vide it only between classes. A class may be modified to
create another class. In such a relationship, the first class
is called the superclass and the second is called the
subclass. A subclass inherits everything about its
superclass. The following modifications can be made to a
subclass:

e adding instance variables

eproviding new methods for some of the messages
understood by the superclass

eproviding methods for new messages (messages not
understood by the superclass)

e adding class variables

As an example, the window-management system might
contain windows that have a minimum size. These would
be instances of a subclass of the ordinary class of win-
dows that added an instance variable to represent the
minimum size and provided a new method for the
message that changes a window’s size.

Conclusion

The realization that information can describe the
manipulation of information is largely responsible for the
great utility of computers today. However, that
discovery is also partially responsible for the failure of
computers to reach the utility of some predictions made
in earlier times. On the one hand, it can be seen as a
unification between the manipulator and the
manipulated. However, in practice, it has been seen as a
distinction between software and the information it
manipulates. For small systems, this distinction is
harmless. But for large systems, the distinction becomes a
major source of complexity. The object-oriented point of
view is a way to reduce the complexity of large systems
without placing additional overhead on the construction
of small systems.®

The Smalltalk Environment

Larry Tesler
Apple Computer Inc
10260 Bandley Dr
Cupertino CA 95014

As I write this article, I am wearing a T-shirt (photo 1)
given to me by a friend. Emblazoned across the chest is
the loud plea:

DON'T
MODE
ME IN

Surrounding the caption is a ring of barbed wire that
symbolizes the trapped feeling I often experience when
my computer is “in a mode.”

In small print around the shirt are the names of some
modes I have known and deplored since the early 1960s
when I came out of the darkness of punched cards into
the dawn of interactive terminals. My rogues’ gallery of
inhuman factors includes command modes like INSERT,
REPLACE, DELETE, and SEARCH, as well as that in-
escapable prompt, “FILE NAME?” The color of the silk
screen is, appropriately enough, very blue.

My friend gave me the shirt to make fun of a near-
fanatical campaign I have waged for several years, a cam-
paign to eliminate modes from the face of the earth—or
at least from the face of my computer’s display screen. It
started in 1973 when I began work at the Xerox Palo Alto
Research Center (PARC) on the design of interactive
systems to be used by office workers for document
preparation. My observations of secretaries learning to
use the text editors of that era soon convinced me that my
beloved computers were, in fact, unfriendly monsters,
and that their sharpest fangs were the ever-present
modes. The most common question asked by new users,

Photo 1: The “DON'T MODE ME IN" T-shirt.

90 August 1981 © BYTE Publications Inc

at least as often as “How do I do this?,” was “How do I
get out of this mode?” Other researchers have also con-
demned the prevalence of modes in interactive systems
for novice users (reference 1).

Novices are not the only victims of modes. Experts
often type commands used in one mode when they are in
another, leading to undesired and distressing conse-
quences. In many systems, typing the letter “D” can have
meanings as diverse as “replace the selected character by
D,” “insert a D before the selected character,” or “delete
the selected character.” How many times have you heard
or said, “Oops, I was in the wrong mode’?

Preemption

Even when you remember what mode you are in, you
can still fall into a trap. If you are running a data-plotting
program, the only commands you can use are the ones
provided in that program. You can't use any of the useful
capabilities of your computer that the author of the pro-
gram didn't consider, such as obtaining a list of the files
on the disk. On the other hand, if you're using a program
that lets you list files, you probably can't use the text
editor to change their names. Also, if you are using a text
editor, you probably can't plot a graph from the numbers
that appear in the document.

If you stop any program and start another, data
displayed by the first program is probably erased from
the screen and irretrievably lost from view. In general,
“running a program’” in most systems puts you into a
mode where the facilities of other programs are
unavailable to you. Dan Swinehart calls this the dilemma
of preemption (reference 2).

Many systems feature hierarchies of modes. A portion
of a typical mode hierarchy is shown in figure 1. If you
are in the editor and want to copy text from a file, you
issue the copy-from command and it gives the prompt
“from what file?” You then type a file name. What if you
can’t remember the spelling? No problem. Leave from-
what-file mode, leave copy-from mode, save the edited
text, exit from the editor to the executive, call up file
management from the executive, issue the list-files com-
mand, look for the name you want (Hey, that went by
too fast. Sorry, you can’t scroll backwards in that
mode.), terminate the list command, exit from file
management to the executive, reenter the editor, issue the
copy-from command, and when it prompts you with
“from-what-file?,” simply type the name (you haven't

Circle 269 on inquiry card. ==

forgotten it, have you?).

You don't have to be a user-sympathizer to join the
campaign against modes. The most coldhearted program-
mer is a victim as well. Say you have programmed a new
video game for your personal computer and have en-
countered a bug. An obscure error message appears on
the screen mixed in with spacecraft and alien forms. To
see the latest version of the program on the screen, you
have to wipe out the very evidence you need to solve the
problem. Why? Because the system forces you to choose
between edit mode and execute mode. You can't have
both.

Enter the Integrated Environment

Soon after I began battling the mode monster, I became
associated with Alan Kay, who had just founded the
Learning Research Group (LRG) at the Xerox PARC. Kay
shared my disdain for modes and had devised a user-
interface paradigm (reference 3) that eliminated one kind
of mode, the kind causing the preemption dilemma. The
paradigm he advocated was called “overlapping win-
dows.”

Most people who have used computer displays are
familiar with windows. They are rectangular divisions of
the screen, each displaying a different information set. In
some windowing systems, you can have several tasks in
progress, each represented in a different window, and can
switch freely between tasks by switching between win-
dows.

[= 2

What is a

CLOCALPEEP?

Another name for
the CCB-Il, which is:

e a clock
hour, minute, second
e a calendar
day, day of week,
month, year
e an audio alarm

All on one board for your

TRS-80 Model Il

It includes a pacemaker battery which will
give over 8 years of continuous timekeeping.

From the folks who brought you the best
CP/M?® for the Model II.

$175 plus shipping
Prepaid, COD, Mastercharge or Visa orders
accepted. California residents add 6%
sales tax.

TRS-80 is a trademark of Tandy Corp.

PICKLES CP/M is a registered trademark of Digital Research Inc.
Sogte , PICKLES & TROUT

P.O. BOX 1206, GOLETA, CA 93116, (805) 967-9563

Warning: Installation requires opening the Model Il, which may void its
warranty. We sugﬁesl that you wait until the warranty period has expired
L before installing the CCB-II.

-,

94 August 1981 © BYTE Publications Inc Circle 310 on inquiry card.

The trouble with most windowing systems is that the
windows compete with each other for screen space—if
you make one window bigger, another window gets
smaller. Kay's idea was to allow the windows to overlap.
The screen is portrayed as the surface of a desk, and the
windows as overlapping sheets of paper (photo 2). Partly
covered sheets peek out from behind sheets that obscure
them. With the aid of a pointing device that moves a cur-
sor around the screen, you can move the cursor over a
partly covered sheet and press a button on the pointing
device to uncover that sheet.

The advantages of the overlapping-window paradigm
are:

ethe displays associated with several user tasks can be
viewed simultaneously

eswitching between tasks is done with the press of a but-
ton

eno information is lost switching between tasks
escreen space is used economically

Of course, windows are, in a sense, modes in sheep’s
clothing. They are more friendly than modes because you
can't slip into a window unknowingly when you are not
looking at the screen, and because you can get in and out
of any window at any time you choose by the push of a
button.

Kay saw his paradigm as the basis for what he called an
“integrated environment.” When you have an integrated
environment, the distinction between operating system
and application fades. Every capability of your personal
computer is always available to you to apply to any in-
formation you want. With minimal effort, you can move
among such diverse activities as debugging programs,
editing prose, drawing pictures, playing music, and run-
ning simulations. Information generated by one activity
can be fed to other activities, either by direct user interac-
tion or under program control.

When Kay invented the Smalltalk language in 1972, he
designed it with the ability to support an integrated en-

Executive

|
| |

Editor File manager
Copy from Insert List files Delete files
from what file? on directory? file name?

Figure 1: A portion of a typical mode hierarchy.

vironment. The implementations of Smalltalk produced
by Dan Ingalls and the other members of the Learning
Research Group have achieved ever-increasing integra-
tion. The file system, process-management system,
graphics capability, and compiler are implemented
almost entirely in Smalltalk. They are accessible from
any program, as well as by direct user interaction.

In recent years, the idea of an integrated environment
has spread outside the Learning Research Group and even
to non-Smalltalk systems. The window-per-program
paradigm is now commonplace, and many system
designers have adopted the overlapping-sheet model of
the screen.

In summary, the term environment is used to refer to
everything in a computer that a person can directly access
and utilize in a unified and coordinated manner. In an in-
tegrated environment, a person can interweave activities
without losing accumulated information and without giv-
ing up capabilities.

Strengths of Smalltalk

Before delving further into the nature of the Smalltalk
environment, we should first discuss its purpose.

Many general-purpose programming languages are
more suitable for certain jobs than others. BASIC is easy
to learn and is ideal for small dialogue-oriented pro-
grams. FORTRAN is well suited to numerical applica-
tions. COBOL is tailored to business data processing.
Pascal is good for teaching structured programming.

LINE VOLTAGE

TRANSIENT CLIPPING

Features Parallel Operation Hits/Second

PROTECTS: PROTECTS AGAINST:
*Computers *High Energy Voltage
eMicro-Computer Systems Transients

*Word Processors *On-Off Switching

eCash Registers eLightning Induced Transients
ePower Supplies e|nrush of On/Off Power

MARC 0

TRANSIENT VOLTAGE
SURGE SUPPRESSOR LISTED

INDUSTRIES, INC.
Dealer Inquiries invited.

7133 Rutherford Rd. Baltimore, Md. 2120ﬂ

(301) 298-3130 800-638-9098

96 August 1981 © BYTE Publications Inc Circle 123 on inquiry card.

LISP is wonderful for processing symbolic information.
APL excels at manipulating vectors and matrices. C is
great for systems programming. SIMULA shines at
discrete simulations. FORTH lets people quickly develop
efficient modular programs on very small computers.

All these languages have been used for numerous pur-
poses in addition to those mentioned. You can write
almost any program better in a language you know well
than in one you know poorly. But if languages are com-
pared from a viewpoint broader than that of a narrow
expert, each language stands out above the others when
used for the purpose for which it was designed.

Although Smalltalk has been used for many different
applications, it excels at a certain style of software
development on a certain type of machine. The machine
that best matches Smalltalk’s strengths is a personal com-
puter with a high-resolution display, a keyboard, and a
pointing device such as a mouse or graphics tablet (photo
3a). A cursor on the screen tracks mouse movements on
the table so you can point to objects on the screen. The
mouse (reference 4) has one or more buttons on its top
side (photo 3b). One button is used as a selection button.
If there are more buttons, they are normally used as
menu buttons.

If the machine has a high-performance disk drive, you
can use a virtual-memory version of Smalltalk and have
as little as 80 K bytes of main memory, not counting
display-refresh memory. Otherwise, you should have at
least 256 K bytes of memory. This much memory is re-
quired because the whole integrated environment lives in
one address space. It includes not only the usual run-time
language support, but window-oriented graphics, the

Photo 2: A typical Smalltalk display. The various “windows”
look and behave like overlapping sheets of paper.

FREE

Computer

Forms
Catalog

with 32 pages of
continuous
business forms for
small computer
systems

Send today for our NEW full color 32
page catalog with programming guides,
prices and order forms for continuous
checks, invoices, statements, envelopes,
stock paper and labels.

¢ Quality products at low prices

e Available in small quantities

» Fast Service

e Money Back Guarantee

e Convenient TOLL-FREE ordering

Fast Service by mail or. . . PHONE TOLL FREE

1+ 800-225-9550
Mass. residents 1+ 800-922-8560
8:30 a.m. to 5:00 p.m. Eastern Time Monday — Friday
r R N S (AT RSN e AR GRS BT ﬂ
Please rush a new computer forms catalog to: CODE 20460

I Name

Company

I Street
City, State and Zip

Phone

I Computer make & model

E————- m’s RxmsJ

78 Hollis Street, Groton,Mass. 01471

A division of New England Business Service, Inc.

98 August 1981 © BYTE Publications Inc Circle 266 on inquiry card.

editor, the compiler, and other software-development
aids. The programs you write tend to be small because
they can build on existing facilities; no system facilities
are hidden from the user. Users of LISP and FORTH will
be familiar with this idea.

Smalltalk supports its preferred hardware by incor-
porating software packages that provide:

eoutput to the user through overlapping windows
einput from a keyboard, a pointing device, and menus
euniform treatment of textual, graphical, symbolic, and
numeric information

These interactive facilities are utilized heavily by the
built-in programming aids and are available to all user-
written applications.

The style of software development to which Smalltalk
is oriented is exploratory. In exploratory development, it
should be fast to create and test prototypes, and it should
be easy to change them without costly repercussions.
Smalltalk is helpful because:

e The language is more concise than most, so less time is
spent at the keyboard.

el

Photo 3: A typical Smalltalk system (photo 3a) and a close-up of
the “mouse” (photo 3b), a device that allows you to move an
on-screen cursor and select certain options.

oThe text editor is simple, modeless, and requires a
minimum of keystrokes.

eThe user can move among programming, compiling,
testing, and debugging activities with the push of a
button.

eAny desired information about the program or its
execution is accessible in seconds with minimal effort.
eThe compiler can translate and relink a single change
into the environment in a few seconds, so the time usual-
ly wasted waiting for recompilation after a small pro-
gram modification is avoided.

eSmalltalk programs grow gracefully. In most en-
vironments, a system gets more difficult to change as it
grows. If you add 2 megabytes of virtual memory to the
Smalltalk environment, you can fill the second megabyte
with useful capabilities as fast as you can fill the first.
oThe class structure of the language prevents objects
from making too many assumptions about the internal
behavior of other objects (see David Robson’s article,
“Object-Oriented Software Systems,” on page 74 of this
issue). The programmer can augment or change the
methods used in one part of a program without having to
reprogram other parts.

The Anatomy of a Window

Over the years, members of the Learning Research
Group have embellished Kay's original window concept.
Let us look at a Smalltalk window in more detail (figure

The window is shown as a framed rectangular area
with a title tab attached to its top edge. The program
associated with the window must confine its output to the
framed area.

Every window has a window menu (photo 4a). The
window menu includes commands to reframe the win-
dow in a new size and location, to close the window, to
print the contents of the window on a hard-copy device,
and to retrieve windows hidden under it.

A window is tiled by one or more panes, each with its
own pane menu (photo 4b). The pane menu includes
commands appropriate to the contents of that pane. In

Title

scrotl | | Pane Scroll
oo pop-up Pane Bar
menu

Pane
pop-up Pane
menu

e

Wwindow
pop-up
menu

Scroll
Bar

Pane
pop-up
menu

Pane

Figure 2: Anatomy of a window.

" CAT-100

FULL COLOR
GRAPHICS

Complete line of color imaging systems with high
resolution real time video FRAME GRABBER
for the 8-100 bus.

Capture and digitize a video frame in 1/60th of a second. Store

up to 2 million bits of image data in on-board buffer. By software,
select the best resolution for your application from 256 to 1280
pixels per TV line. Display your digitized image or your computer
processed image with up to 256 gray levels or 65,536
simultaneous colors on standard B/W, NTSC or RGB color TV
monitors.

e Highest quality 480x512x8 digital video image
® Input capability from TV cameras or other sources

® Variety of synchronization choices

® 2 selectable video A/D conversion circuits

® Choice of 1, 2, 4, 8, 16 or 24 bits per pixel

® 32K-byte image memory on the basic system

® 64K, 128K, 192K and 256K-byte system capacity

@ High resolution lightpen input

® Photographic trigger control input

® Software selectable system parameters

® Stand-alone intelligent graphics unit with universal interface

Accessories:

@ RGB color monitor
@ High performance lightpen

“=DIGITAL
RAPHIC
ZSYSTEMS

® Hard copy printer/plotter
@ Software packages available

935 Industrial Avenue
Palo Alto, CA 94303
(415) 856-2500

240x256 Digitized image. 16 levels

ROBOTICS-AUTOMATED COUNTING AND MEASURING-QUALITY CONTROL MONITORING-
PATTERN RECOGNITIONIMAGE PROCESSING-MEDICAL AND SCIENTIFIC RESEARCH

480x512 Computergenerated

100 August 1981 © BYTE Publications Inc Circle 113 on inquiry card.

addition, a pane has a scroll bar on its left side used to
scroll the contents of the pane when more information ex-
ists than fits in the frame at one time.

Although you can see many windows and panes at
once, you can interact with only one pane at a time. That
pane and its window are said to be awake or active. To
awaken a different pane of the same window, move the
cursor over the new pane (photo 4c). To awaken a dif-
ferent window, move the cursor over the new window
and press the selection button on the pointing device
(photo 4d). When a window wakes up, its title tab and all

| ThiS text 1s

{self

l'frams'

{'collapsed

' ritlepara’

'growing'

'entflag

' panes'

,’ 'r»mplmc"
Retils

H'vanables'

?_anz of a tWo-pang wmaow.
window has G uArdaus
mernt and each pane has a i
TR,

Note that lines of text break at
waord spaces automarically.

unader
frarme
close
prnt
r r' rl Tl tb" [’:.\ ERRRET A P AR 1 AR IS I AR BRI 1

ganeofatwo- ¢ '
he window has a uAmicns
mwnit and each pang has a pane

‘vanables'

Note that lines of text break at
word spaces auromarically.

its panes are displayed, and it is no longer covered up by
other windows.

The scroll bar of the active pane is called the active
scroll bar. Its menu and the menu of its window are called
the active menus. In order to reduce screen clutter and
maximize utilization of precious screen space, no inactive
scroll bars or menus are displayed. On machines that use
a pointing device with three buttons, some versions of
Smalltalk even hide the active menus until one of two
menu buttons is pressed, at which time the associated
menu pops up and stays up until the button is released. If
the button is released when the cursor is over a command
in the menu, that command is executed (photo 4e).

Modeless Editing

The overlapping-window paradigm helps eliminate
preemption. It can also reduce the need for certain
prompts and their associated modes. For example, you
never have to type the name of a procedure you want to
examine. At worst, you point to its name in a list; at best,
the desired procedure is already in a window on the
screen, and you activate that window.

Unfortunately, overlapping windows do not eliminate
command modes like “insert” and ‘“replace” by

themselves. Between 1973 and 1975, | worked at PARC
with various collaborators, including Dan Swinehart and
Timothy Mott, to banish command modes from interac-

P

pang
window. A wmdow may have any number of
pangs, but berween ong and six aré typical.

A pang can contain both text and graphics.

When a window 15 uncovered, all 1ts panes
redisplay thetr contents.

A user can arrange the deskrop by changing the
s12¢s and locanons of windows.

THIS [€XT 15

: - ane of @ two-panéd window,
adn
[This toxt l i the oTdy pane 0? a OM"WY\E& Jas a
[window. A window Ay have any number of
{pangs, but t tween one and six are typical.
|

eak at
A pang can contan both toxr and l}fﬂ[ﬂh\[‘i. atlu.

(When a window 15 Unco
{redisplay thetr contents.

s panes

W arrangs the j chanaing the

0t w

Photo 4: Windows and their behavior.

102 August 1981 © BYTE Publications Inc

Circle 165 on inquiry card. wep

tive systems. Despite initial skepticism, nearly all users of
our prototypes grew to appreciate the absence of modes.
The following techniques were devised by us to eliminate
modes from text editing. They are analogous to the
techniques used to keep Polish-notation calculators
relatively mode-free. Similar techniques can be applied to
page layout, graphics creation, and other interactive
tasks.

Selection precedes command:

eEvery command is executed immediately when you
issue it. You are not asked to confirm it. You can issue an
undo command to reverse the effects of the last issued
command. Although the main purpose of “undo” is to
compensate for the lack of command confirmation, it can
also be used to change your mind after issuing a com-
mand.

eFor a command like “close the active window” that re-
quires no additional parameters, you simply issue the
command.

eFor a command like “delete text” that requires one
parameter, you first select the parameter using the point-
ing device and then issue the command. Until you issue
the command, you can change your mind and make a dif-
ferent selection, or even choose a different command.

e For a command like “send electronic mail” that requires
several parameters (recipient, subject, content), you first
fill the parameters into a form using modeless text editing

and then issue the command. You are not in a mode while
filling out the form. If you want to copy something into
the form from another place, you can. If you want to do
something else instead, just do it; you may even return to
the form later and finish filling it out.

Typing text always replaces the selected characters:

e Pressing a text key on the keyboard never issues a com-
mand. It always replaces the current selection by the
typed character and automatically selects the gap follow-
ing that character.

eTo replace a passage of text, first select it (photo 5a)
and then type the replacement. The first keystroke deletes
the original text (photo 5b).

oTo insert between characters, you first select the gap
between those characters (photo 6a) and then type the in-
sertion (photo 6b). Essentially, you are replacing nothing
with something.

eThe destructive backspace function always deletes the
character preceding the selection, even if that character
was there before the selection was made.

o The “undo” command (photos éc and 6d) can be used
to reverse the effects of all your typing and backspacing
since you last made a selection with the pointing device.

Thus, the usual insert, append, and replace modes are
folded into one mode—replace mode—and one mode is
no mode at all.

Building Blocks for
Microcomputer Systems,
Dedicated Controllers
and Test Equipment.

S-100 ROM,
RAM & 1/0
BOARD

ECT's R2l/O is an S-100 Bus I/O Board with 3 Serial
I/O Ports (UART'’s), 1 Parallel /O Port, 4 Status Ports,
2K of ROM with the 8080 Apple Monitor Program and

2K of Static RAM.
$295.00

RM-10

S-100

RACK MOUNT
CARD CAGE

ECT’'s RM-10 is a rack mount 10 slot Card Cage with
Power Supply, consisting of an ECT-100 rack mount
Card Cage (19"W x 12.25"H x 8"D), the MB-10 Mother
Board (with ground plane and termination) all 10
connectors and guides and the PS-15A Power Supply
(15A @ 8V, 1.5A @ = 16V). $295.00

Specializing in Quality Microcomputer Hardware
Industrial e Educational e Small Business e Personal

EETW Card Cages, Power Supplies, Mainframes, CPU’s, Memory, 1/O, OEM Variations
EI.EGTB“N": anTnol TEC“NUL“GY (201) 686-8080

763 Ramsey Ave., Hillside, NJ 07205

104 August 1981 © BYTE Publications Inc

Circle 129 on inquiry card.

Circle 388 on inquiry card. eep

(5a)

UNCovered

V1S

inge the desktop by chan

¥ 1indnue

(5b) '
oW 1S exposed] all its par

range the desktop by chg
nf unndous

Photo 5: Replacing text in Smalltalk.

.-A"
S 3
-

is] :xp : e auuqu
P

dow
S.

a the desktop b
range p by

(s

ToXT aNdl gra
low is ever] exposed, all i

b COM&T\IS.

rrange the desktop by ch

nf unndonc

(6¢)

(6d)

w is| exposed, all its pan

. , \

‘ange the deskiop by cha

f windouc

Photo 6: Inserting text in Smalltalk.

Regular bold rralic underined

Creami0 Cream |2 TimesRomans TimesRoman 10
TimesRoman12 FixedPitchie

Helvetica18
Hc)\xq.alo

&~ @ N ToFX 2362 R TLIH» O -l

3. @0AOCOOO LR OF 2/ Ozt /0t +2

A-OJE%ES=IR L JUC ZakAIVETECED
DIFPXCVEEOE

Photo 7: Multiple typefaces can be used in any window.

106 August 1981 © BYTE Publications Inc

The “shift lock” key and analogous commands like
“bold shift” and “underline shift” cause modes for the in-
terpretation of subsequently typed characters. However,
shifts are familiar to people and are relatively harmless.
The worst they do is change a “d” toa “D,” “d,” or “d”"—
never to a Delete command.

The bit-map display can show boldface characters, as
well as italics, underlining, and a variety of styles and
sizes of printer’s type (photo 7). Thus, as you enter text in
bold shift, the screen shows what the text will look like
when it is printed. A command like bold shift can also be
applied to existing text to change it to boldface.

In 1976, Dan Ingalls devised a user interface for
Smalltalk that incorporated most of the mode-avoidance
techniques discussed earlier. Consequently, it is rare in

the present Smalltalk environment to encounter a mode.

Making a Selection

In the Smalltalk-76 user interface, text is selected using
the pointing device and a single button. First, the cursor
is moved to one end of the passage to be selected (photo
8a). The selection button is pressed and held down while
the cursor is moved to the other end of the passage. This
operation is called “draw-through,” though it is not
necessary to traverse intermediate characters en route to
the destination. When the cursor reaches the other end of
the passage, the button is released. The selected passage is
then shown in inverse video (photo 8d).

The feedback given to the user during selection is as
follows. When the button is depressed, a vertical bar ap-
pears in the nearest intercharacter gap (photo 8b). (At the

(8a)
A one—paned window
text 15 in the only pane of a
ong-paned window. A window
may have any number of panes,
butr betweln ong and six are
typical.

A pang can contain both text and
graphucs.

(8b)

fext 1S pang
ong-paned window. A window
may have| any number of panes,

bt betwekt one and six are
typical.

A pang can contain both text and
graphucs.
(8¢)

A one—-paned window

TRIS Text 15 N the only pane of a
ong-paned window. A window
may have r of panes,
but between ong ank six are

typical.

A pang can contain both text and
graphics.

left end of a line of text, the bar appears to the left of the
first character. At the right end of a line, the bar appears
to the left of the final space character.)

If the button is released without moving the cursor, the
bar remains, indicating that a zero-width selection has
been made. This method—clicking once between
characters—is the one to use before you insert new text.

If the button is held down while the cursor is moved,
the system supplies continuous feedback by highlighting
in inverse video all characters between the initial bar and
the gap nearest to the cursor (photo 8c). When the button
is released, the selected characters remain highlighted
(photo 8d). This method—drawing through a passage—is
the one to use before you copy, move, delete, or replace
text, or before you change it to boldface or otherwise
alter its appearance.

Clicking the button twice with the cursor in the same
spot within a word selects that whole word and highlights
it (photo 8e). This special mechanism is provided because
it is very common to select a word. Informal experiments
lead us to believe that double clicking is much easier than
drawing through a word for beginners and experts alike.
It is also faster. It takes the average user about 2.6
seconds to select a word anywhere on the screen using
draw-through, but it takes only 1.5 seconds using the
double click (reference 5).

There is only one selection in the active pane. It is
called the active selection.

(8d)

A one—paned window
TRiS text 15 i the onl pane of a
ong-pangd window. A window

IR RTARE any number of panes,
wiWeen Ong anaggEeei(a

A pang can contain both text and

graphics.

(8e)

s ext 15 th the only paru of a
one —paned window. A window
may have any number of panes,
but between one and six are
typical.

& pang can both text and
graphics. \

When a window 15 exposed, all 1S

pangs 7'6"11‘5],"[-1‘_5 thetr contents.

4

Photo 8: Selecting text using the mouse and the cursor.

108 August 1981 © BYTE Publications Inc

SOFTWARE
for the ATARI 800*

and ATARI 400*
from QUALMTY SOFTWARE

STARBASE
HYPERION™
By Don Ursem

Become absorbed in this intri-
guing, original space simulation
of war in the far future. Use
strategy to defend a front line
Star Fortress against invasion
forces of an alien empire. You
create, deploy, and command a
fleet of various classes of space
ships, while managing limited
resources including power
generators, shields and probes.
Real time responses are
sometimes required to take
advantage of special tactical
opportunities. Use of color,
sound, and special graphics
add to the enjoyment of this program. At least 24K of RAM is required
On Cassette — $19.95 On Diskette — $22.95

Issuing a Command

When you issue a command in Smalltalk, you are
sending a message to an object. There are two ways to
send a message from Ingalls’s user interface. You can send
certain commonly sent messages to the active pane or
window by choosing them from menus; you can send any
message to any object by direct execution of a Smalltalk

statement.
(9a)

TRiS toxt 15 i the only pane of a
o —paned Wwindow. A window
may have any number of

agatn
A Pang can i copy th text and
graphics. CUC
P PASTE
When g wind] doge posed, all s
panes redispldcampile janeentes.
Urdn

NAME THAT SONG
By Jerry White

Here is great entertainment for everyone!
Two players listen while the Atari starts
playing a tune. As soon as a player thinks
he knows the name of the song, he
presses his assigned key or joystick o r
button. There are two ways to play. The > ’(-
first way requires you to type inthename + %
of the song. Optionally, you can play
multiple choice, where the computer
asks you to select the title from four possibilities. The standard version requires 24K of
RAM (32K on diskette) and has over 150 songs on it. You also get a 16K version that has
more than 85 songs. The instructions explain how you can add songs to the program, if
you wish. Written in BASIC

On Cassette — $14.95

On Diskette — $17.95

QS FORTH

By James Albanese

Want to go beyond BASIC? The remarkably efficient FORTH programming language may
be just for you. We have taken the popular fig-FORTH model from the FORTH Interest
Group and expanded it for use with the Atari Personal Computer. Best of all we have
written substantial documentation, packaged in a three ring binder, that includes a
tutonial introduction to FORTH and numerous examples. QS FORTH is a disk based
system that requires at least 24K of RAM and at least one disk drive. Five modules that
may be loaded separately from disk are the fig-FORTH kernel, extensions to standard
fig-FORTH, an on-screen editor, an 1/0 module that accesses Atari's operating system,
and a FORTH assembler

Diskette and Manual — $79.95 Manual Only — $39.95

(9b)

{ A one—paned window|

This wxt 15 i the only pane of a
ot —paned wmdow. A window
may have any nmber o

agatn

A Il,ﬂ'p’ CANL O Copy ﬂ[et l“]d
aravhics
| ,U'll nics,

|

b paste
wWhen a wandl doie CPosed, all 1es
panes redispldcompus jontents.

’{'Ulf:

ik

sty

an

FOR OUR COMPLETE LINE OF ATARI SOFTWARE
PLEASE WRITE FOR OUR CATALOG

QUALITY SOFTWARE

6660 Reseda Blvd., Suite 105, Reseda, CA 91335
(213) 344-6599

ASK FOR QUALITY SOFTWARE products at your favorite computer store. If necessary
you may order directly from us. MasterCard and Visa cardholders may place orders by
calling us at (213) 344-6599. Or mail your check or bankcard number to the address
above. California residents add 6% sales tax. Shipping Charges: Within North America
orders must include $1.50 for shipping and handling. Outside North America the
charge for airmail shipping and handling is $5.00. Pay in U.S. currency.

*Indicates trademarks of Atari

(9¢)

A, pane can contain both text and
l]!'ﬂ[,"'hll"i».

When a window 1S exposed, all 1rs
(pares Tuil'?["l-‘l" thetr contents.

A USEr Ccan arn inge the deskrop by

110 August 1981 © BYTE Publications Inc Circle 322 on inquiry card.

Photo 9: “Cutting” text in Smalltalk.

6809
SOFTWARE

POWER TOOLS

BY MICROWARE®

0S-9™ MULTIPROGRAMMING
OPERATING SYSTEM

true multitasking, real time operating system for
timesharing, software development, database,
process control, and other general applications.
This versatile OS runs on almost any 6809-based computer.
B UNIX™ -like file system with hierarchical directories,
byte-addressable random-access files, and full file security.
Versatile, easy-to-use input/output system is hardware in-
dependent and expandable.
B Powerful “shell” command interpreter features: 1/0
redirection, multiple job stream processing, and more. In-
cludes a complete set of utility commands.
B 0S-9 Level Two uses hardware memory management
and can address over one megabyte of memory. Also
includes pipes and filters for inter-process data transfers.

B 0S-9 Level One runs on systems without memory
management hardware having up to 56K memory.

[J0S-9 Level Two $495* [] Level One $195

BASIC09™ PROGRAMMING
LANGUAGE SYSTEM

xtended BASIC language compiler/interpreter with

integrated text editor and debug package. Runs

standard BASIC programs or minimally-modified
PASCAL programs.

B Permits multiple named program modules having local
variables and identifiers. Modules are reentrant, position
independent and ROMable.

B Additional control statements for structured
programming: IF ... THEN ... ELSE, FOR ... NEXT,
REPEAT ... UNTIL, WHILE ... DO, LOOP ... ENDLOOP,
EXITIF ... ENDEXIT.

B Allows user-defined data types and complex data
structures. Five built-in data types: byte, integer,

9 digit floating-point, string and boolean.

B Runs under 0S-9™ Level One or Level Two. [1$195*

OTHER 0S-9™ FAMILY SOFTWARE

B Stylograph™ Screen-Oriented Word Processor
B Macro Text Editor

B Interactive Assembler
B Interactive Debugger

BASIC#9 and 0S-9 are trademarks of Microware® and Motorola. UNIX is
a trademark of Bell Laboratories.* Most software is available on ROM or
diskette in versions for many popular 6809 computers. Contact
Microware® for specific availability.
For compatible hardware see GIMIX ad page 128.

MICROWARE:-

Microware Systems Corp., Dept. B2

5835 Grand Avenue, Des Moines, lowa 50304
(515) 279-8844 ¢ TWX 910-520-2535

112 August 1981 © BYTE Publications Inc

Circle 242 on inquiry card.

Smalltalk-76 provides pop-up menus for the most com-
monly used commands, like “cut,” which deletes the
selected text. To issue the “cut” command, you pop up
the active-pane menu with one of the menu buttons on
the mouse (photo 9a), keep that button down while mov-
ing the cursor to the command name (photo 9b), and then
release the button (photo 9c). A command in the pane
menu can have only one parameter, the active selection.
A command in the window menu can have no
parameters.

To issue a command that is not available in a menu,
you select any place you can insert text, and type the
whole command as a statement in the Smalltalk language
(photo 10a). Then you select that statement and issue the

(10a)
A one—paned window
A user can arange the desktop

changing the sizes and locations of
windows.

4 max: 5

(10b)

A WF
| copy | arrange the desktop by

cly cur w sizes and locations of
W] paste

max: S

cancel
altan

A User can arrange the deskiop by
changing rhe sizes and locations of
windows.

4 max: S

X

Photo 10: Executing text using the “doit” message.

Circle 335 on inquiry card. we=p

single-parameter command “do it” (photo 10b) to obtain
the result (photo 10c). The “do it” command provides im-
mediate execution of any Smalltalk statement or group of
statements. This method of command issuance uses the
previous method: you are sending the message doit to the
pane, with the Smalltalk statement as its parameter.

It is standard practice to keep a “work-space” window
around the screen in which to type your nonmenu com-
mands. When you want to reissue a nonmenu command
issued earlier, simply select the command in the work-
space window and “do it.” You may, of course, edit some
of the parameters of the old command before you select it
and “do it.” In a sense, you are filling out a form when
you edit parameters of an immediate statement.

Unfortunately, the common commands “move text
from here to there” and “copy text from here to there”
cannot be issued by a single menu command because they
require two parameters, the source selection and the
destination selection. Sometimes, they even involve
messages to more than one pane, the source pane and the
destination pane. In a modeless system, a move or copy
command is done in two steps:

(11a)

15 toxt 15
111[of a two-po,

cornpile
1 { rdn

.

® A move is done by cut and paste. First, you select the
source text and issue the “cut” command (photo 11a).
The “cut” command deletes the selected text (photo 11b),
but leaves it in a special place where it can be retrieved by
“paste.” Then you select the destination and issue the
“paste” command (photo 11c) to complete the move
(photo 11d).

® A copy is done by copy and paste, which is completely
analogous to cut and paste, but does not delete the
original text.

Remember the “copy-from-file” example (the one
where you had to go in and out of many layers of
modes)? In the Smalltalk-76 user interface, you can ac-
complish this with six pushed buttons, no mode exits,
and no typing: (1) activate the source window that
displays the file you are copying from; (2) select the
desired text; (3) issue the “copy” command in the menu;
(4) activate the destination window; (5) select the destina-
tion point, and (6) issue the “paste” command in the
menu. The job requires little more effort than copying
within the same document. If the window is not already

(11b)

window has a winda mend
pach pane has a mane menit,

that lings of text break ar
spacest

X

(11d)

Photo 11: Moving text in Smalltalk.

114 August 1981 © BYTE Publications Inc

on the screen and you can’t remember the file name, you
can go to another window and scroll through a list of files
without having to exit any modes, invoke any programs,
save any edits, lose sight of the destination file, or lose
any time.

The Smalltalk-76 text-editing facilities not only relieve
you of the burden of modes, they also require very few
keystrokes and are easy to learn.

Software-Development Aids

One of my summer projects in 1977 was to increase the
speed and friendliness of the Smalltalk software-
development environment by adding inspect windows,
browse windows, and notify windows to the user inter-
face. These and other enhancements made by the Learn-
ing Research Group are described below. In recent
months, the team has further enhanced the Smalltalk-80
environment. Although it conforms to the same prin-
ciples as before, its details are different from what is
described in this article.

Inspecting Data Structures

Suppose someone has given you a Smalltalk program
to implement a “regular polygon” class (table 1) and you
want to learn more about it. It would be helpful to see an
actual instance of a regular polygon.

If the variable triangle refers to a regular polygon, you
type the following statement into your work-space
window:

triangle inspect

and then issue the “do it” command in the pane menu
(photo 12a). In a few seconds, a two-paned “inspect win-
dow” appears on the screen. Its title tab tells you the class
of the inspected object, in this case, RegularPolygon. The
window is divided into two panes. The left or variable
pane lists the parts of a regular polygon, sides, center,
radius, and plotter. The right or value pane is blank.

You point to the word sides in the variable pane and
click the selection button on the mouse. The word sides is
highlighted, and in the value pane, the value of the
variable sides appears (photo 12b), in this case, 3. You
point to the word center and click. In the value pane
appears the value of center (photo 12c), in this case, the
point 526@302. The value pane is dependent on the
variable pane because its contents are determined by
what you select in the variable pane. The arrow in figure
3 symbolizes this dependency.

Let’s inspect the value of center. In the variable pane,
where center is selected, pop up the pane menu and issue

Variable Value

Pane —% Pane

Figure 3: Principal dependencies among panes of an inspect
window.

116 August 1981 © BYTE Publications Inc Circle 282 on inquiry card.

EPSON

PRODUCTS

MX80/70 FRICTION FEED

KIT by Orange Micro

HERE AT LAST! A friction feed kit
for your EPSON MX80/70. The kit
allows the user to convert his
Epson printer to a friction feed and
pin feed mechanism.

The friction feed will accept single
sheets of your letterhead, or mul-
tiple copy forms such as invoices
with up to 4 part carbon copies.

The pin feed replaces the adjust-
able sprocket mechanism. It allows
use of 9%2" wide continuous fan-
fold paper which is an industry
standard size.

No drilling required. Installation
takes about 15 minutes. All parts
are included with easy to follow
instructions.

375.00

DEALER INQUIRIES
INVITED

EPSON
MX80

* 9 x 9 dot matrix * Lower case
descenders * 80 CPS e Bidirec-
tional, Logic seeking * 40, 66, 80,
132 columns per line * 64 special
graphic characters: TRS-80 Com-
patible * Forms handling * Multi-
pass printing ® Adjustable tractors.

EPSON
MX70

* Super low-priced dot resolution
graphics ® 5 x 7 dot matrix ® User
replaceable printhead ¢ Top of

Z4
L]

(List $645) $ CALL
(List$100) $ CALL

(List $495) $ CALL

EPSON
MX80 FT

* Same basic features as the MX80
* PLUS friction feed for single
sheets ¢ and adjustable tractors.

(List $745) $ CALL

APPLE INTERFACE

For Epson

The Grappler™ interface card is
the first to provide on-board firm-
ware for Apple high resolution dot
graphics. No longer does the user
need to load clumsy software
routines to dump screen graphics
— it's all in a chip. Actually, it's our
E-PROM, and it is replaceable to
accommodate the Anadex, Epson
MX80 & MX70, IDS Paper Tigers,
Contronics 739, and future graphics
printers. The Grappler™ accepts
17 software commands including
Hi-Res inverse, 90° rotation, double
size, and much more.

165,00

Includes Cable
DEALER INQUIRIES
INVITED

The following template contains a description of a regular polygon with the following attributes:

sides Number of sides (3 for a triangle, 5 for a pentagon, etc.).

center If the regular polygon were inscribed in a circle, this would be its center point.
radius If the regular polygon were inscribed in a circle, this would be its radius.
plotter A pen that can draw an image of the polygon on the screen or on paper.

The following expressions provide an example of creating and using an instance of RegularPolygon.

triangle — RegularPolygon sides: 3 radius: 50.

triangle translateBy: -90 @ 60
triangle plot: black.

nanale + rregularPolydon vraces:
(DraeredCollecnon with: 2 @ 21 !
with: =25 @ -5 wath: X @ ~7).

ar tnar,
tnangs « RegularPolygon sues: 3 radius: 5o,

tnangle translaeBy: -9 @ 60.

triangle translateBy: 165 @ 20. triandte pot: tack. mwﬁy 30 @ 60
triangle scale: 0.6. :m’r:;: ;v.z:sk::;ﬂit Lo manas transtage bu: 167
triangle plot: gray. “‘where gray denotes an ink color”’ trange plot: aray. mg ;; A
class name RegularPolygon

superclass Object

instance variable names ; sides center radius plotter

class messages and methods

initialization
sides: s radlus: r | |
“Create an instance of RegularPolygon whose center is locatéd at the center of the currently active window on the display screen. Screen is a
global variable that refers to the hardware display screen.”
1 self new sides: s radius: r center: (Screen activeWindow frame center)

instance messages and me_lhodsJ

initialization
sldes: s radlus: r center: c | |
“Inialize all attributes. Class Pen is provided in the system as one way of side effecting the display screen.”

sides — s.
center — C.
radius — r.
plotter — Pen width: 2
analysis
center | | “‘Answer the center coordinate of the polygon.”
1center
sides | | “Answer the polygon’s number of sides. "
1sides
display
plot: Ink | | “‘Draw an image of the polygon using the specified ink color."
plotter penup. “lift the pen to disable drawing’
plotter goto: self center. “’position the pen at the center”
plotter up. ““face the top of the screen”
plotter go: radius. “‘position at a corner”
plotter turn: 180 - (self cornerAngle/2). “turn to face along a side”
plotter color: ink. “'select the ink color”
plotter pendn. “lower the pen to enable drawing”
| to: sides do: “*for each side of the polygon:
[:1 | plotter go: self sideLength. “’plot that side™’
plotter turn: 180-self cornerAngle] ““turn to face along the next side”
transformation

scale: factor | |
““Scale the polygon radius by the specified factor.”
radius — radius * factor
translateBy: deltaXyY | |
“Change the polygon’s location by the specified amount (a Point)."”
center — center + deltaXyY
private instance methods

cornerAngle | | “Answer the interior angle of any vertex. in degrees.”
1180 - (360 / sides)
sideLength | | “Answer the length of any one of the equal sides.”

12 = radius * (self cornerAngle /2) degreesToRadians cos
Table 1: Description and class template for class RegularPolygon.

118 August 1981 © BYTE Publications Inc Circle 397 on inquiry card. e==p

the “inspect” command (photo 12d). On the screen
appears another inspect window showing that center is
(arz\a }nstance of class Point (photo 12e). You can now ex-
1

amine that point’s variables, x and y, reactivate the
original inspect window, close either or both windows,
or work in any other window. You are not in a mode.

Browsing Through Existing Definitions

Now that you have inspected a sample regular
polygon, you might want to find out what methods have
been defined in its class. One way to do this is to activate
a window called a “browse window” or “browser.” Most
Smalltalk programmers leave a browser or two on the
screen at all times with the work-space window.

The title tab of the browser (photo 13a) says “Classes”
because the standard browser lets you examine and
change the definitions of all Smalltalk classes—classes
supplied by the system, as well as classes supplied by
yourself. It is easy to create a more restricted browser
that protects the system from ill-conceived modification.
But on a personal computer, you are just going to hurt
yourself.

The browser has five panes. The principal dependen-

FP) o=
mangle inspect.
‘plotrer’
R and e o
(12¢)

nangle inspect.

RegularPolygon| -~
£3
o oy sosp e RO TND S0
self
'stdes’
center
radius i
‘ploteer!

R

e sanad

SE

'sides

Carger?
'radius’
‘plotrer’

Photo 12: Inspecting data structures in Smalltalk.

120 August 1981 © BYTE Publications Inc

ADD EXCITING MUSIC
TO YOUR APPLE"!

R

L AU e L

MEASURE 3 suB 9474 FREE
END

SAVE®

A L F’'s 9-voice Music Card MC1
is only $195.

Here’s what our customers have said:
(Excerpts from unsolicited letters. Copies of original letters available on request.)

About the A L F system:

It's a rare enough occurrence when hardware/software lives up to one's
expectations. For something to exceed one's wildest hopes — as the ALF
synthesizer certainly does — is a real treat. My congratulations to all
concerned.

—Dhahran, Saudi Arabia

| myself have told several people that next to a disk, | consider the [ALF]
synthesizer to be the most important peripheral they could purchase for their
system. Very excellent job! Keep up the good work.

—Oak Ridge, Tennessee

| recently purchased 2 of your Apple music boards. Out of the peripherals |
have for my Apple, | enjoy them the most. It has to be the most enjoyable
thing that has ever been invented. | hope you continue to develop products as
clever and enjoyable as this one. The Entry program has to be one of the most
sophisticated programs | have ever seen. It proves that a hardware manufac-
turer DOES have the ability to also produce quality software. It is almost
worth the price of the boards just for the Entry program.
—Burbank, California

About ease of use:

| have had my Music Card MC1 for a little more than a week now and | have
almost completed entering ‘‘The Maple Leaf Rag". | found it to be a lot
simpler than | thought and so | am very, very pleased. My family isn't because
I sit up to all ends of the night playing with the blasted thing!

—Cypress, Texas
ALF has opened up my head and ears and enabled me to do things musically
which | would like to be able to do on [conventional] instruments. As much as
I love the instruments | try to play, | just don't have the talent and technique to
play what is in my head. By golly, the ALF board doesn't know about my
limitations, though. | can play hell out of that thing, playing notes and tempos
which previously have existed only in my head. Many thanks from a frustrated
musician and satisfied ALF ‘‘player’".

—Demopolis, Alabama

About documentation:

| don’t know much about hardware, but | have been a programmer for 15
years and | have never seen a better piece of software documentation than
your user manual. It is a joy to study!

—Lancaster, California

About the competition:

Recently, | purchased an [ALF] 9-voice board and a couple of music al-
bums all | can say is that | wish | had listened and played with it before |
purchased the Mtn. Hardware board. It sounds about the same and is vastly
superior in software, ease of use, and price. The Entry program is a joy to use
and it's easier than Mtn. Hardware’s, but then, | guess you guys know that
already. (Oh yes, you wouldn’t happen to know of anyone that wants to buy a
Mtn. Hardware system? $450 or best offer?)
—Kirkland, Washington

| would like to tell you that after having used the system ONLY ONE DAY, that
| am absolutely delighted with it. In addition, | purchased the three boards
although | ALREADY own Mountain Hardware's music system. Now that |
have seen and own your system, | am putting my *‘old"' one up for sale. | think
that your software makes it far easier to enter music, and that the software
routines allow for far greater flexibility. Again, | extend my compliments to
you. As | said. | have owned another music system, and consider myself
therefore. qualified to make a judgement between the use of the two. Yours is
the clear choice!
—Levittown. New York

See your local Apple® dealer
or write:

A L F Products Inc.
1448 Estes Denver, CO 80215

Appic = 3 trademars of Appie Computer Inc

122 August 1981 © BYTE Publications Inc

cies between panes are symbolized by arrows in figure 4.
The top row has four panes called the class-category
pane, class pane, method-category pane, and method
pane. The large lower pane is called the editing pane.
(After you have used the system for a few minutes, the
significance of each pane becomes apparent, and it is not
necessary to memorize their technical names.)

In photo 13a, the browser shows a method definition in
the editing pane. You can tell that the method is class
RegularPolygon’s version of scale: because Regular-
Polygon is highlighted in the class pane and scale: is
highlighted in the method pane.

The method-category pane lists several groups of
methods within class RegularPolygon: initialization,
analysis, display, transformation, testing, and private
methods. You can tell that scale: is a transformation
message in class RegularPolygon because that category is
highlighted.

The class-category pane lists several groups of classes,
including numbers, files, and graphical objects. You can
tell that class RegularPolygon is in the graphical objects
group because that category is highlighted.

Suppose you want to look at a different method,
translateBy:. Click its name in the method pane and its
definition is immediately displayed in that pane’s depen-
dent, the editing pane (photo 13b). If the method you
want to see is in the method category analysis, first click
that category name. Immediately after you do that, its
dependent, the method pane, lists the methods in that
category. Now you can click the name of the desired
method (photo 13c).

If you want to know things about the class as a whole,
like its superclass and field names, click “'Class
Definition” in the method-category pane and the defini-
tion appears in the editing pane (photo 13d).

Suppose you want to look at a different class, say
IrregularPolygon. Click its name in the class pane and its
method categories are immediately displayed in the next
pane (photo 13e). If the class you want to see is in the
class category windows, first click that category name.
Immediately after you do that, the class pane lists the
classes in that category. Now you can click the name of

Class Category Class Method Category Method
Pane Pane Pane Pane
7% 74 RS >

N

Editing
Pane

Figure 4: Principal dependencies among panes of a browse
window.

the desired class (photo 13f).

Categorization is used at both the class and method
level to help the programmer organize his or her program
and to provide fewer choices in each pane. If a list is
longer than what can fit in a pane, it can be scrolled by
pressing a mouse button with the cursor in the scroll bar.

If you just want to browse around reading class and
method definitions, you can do so by lazily clicking the
selection button with the cursor over each name, never
touching the keyboard. That is why the window is called
a browser. Browsers are further discussed in references 6
and 7.

Astute readers may have noticed that the class
template (see “The Smalltalk-80 System” by the Learning
Research Group on page 36 of this issue) presents the
methods of a class apart from the methods of its in-

(13a)

ClassDefinunion
ClassOrgarnuzari
"ninalizaton’

stances, while the browser does not. This discrepancy
stems from differences between the Smalltalk-80 and
Smalltalk-76 languages.

Revising Definitions

If you are looking at a method definition or class
definition in the editing pane, you can revise it using the
standard text-editing facilities (select, type, cut, paste,
copy).

If you like, you can copy information into the defini-
tion from other windows—including other browse win-
dows—because you are not in any mode while browsing.
You can even interrupt your editing to run another pro-
gram, list your disk files, draw a picture, or do whatever
you like. You can later reactivate the browser and con-
tinue editing.

Half Tone ClassOrad
[|Half Toner 'tninalizal
‘ ‘analysis'
ot \ ‘display’
Rectangle 'testing’
RegularPolygon |'transfor

lassOrganizanion
'tnitiglizarion’
‘analysts'
la"splayl
‘transformarcion’
'testing'
'private Instance me

St TRegularPolygarn
o5 center radius plorrer’

graphical objecrs'

‘A reqular polygon has (s1des) vertices,
each ar a distance of (radius) from (center).
It 18 drawn on the screen by the pen (plotter).’

(13)

Photo 13: Browsing through existing definitions in Smalltalk.

124 August 1981 © BYTE Publications Inc

The following template contains a description of an irregular polygon with the following attributes:
vertices An OrderedCollection of Points.
plotter A pen that can draw an image of the polygon on the screen or on paper.

The following expressions provide an example of creating and using an instance of IrregularPolygon .

triangle — IrregularPolygon vertices:
(OrderedCollection with: 2 @ 21
with: -25 @ -35
with: 52 @ -7).
triangle translateBy: -90 @ 60.
triangle plot: black.

triangle trahslateBy: 165 @ 20.
triangle scale: 0.6.
triangle plot: gray. “where gray denotes an ink color’

class name IrregularPolygon
superclass Object
instance variable names vertices plotter
class messages and methods

initialization

vertices: aCollection | |

“Create an instance of IrregularPolygon whose center is located at the center of the currently active window on the display screen
Screen is a global vanable that refers to the hardware display screen.”

1 self new vertices: aCollection center: (Screen activeWindow frame center)

instance messages and methodsg‘

initialization
vertices: aCollection center: ¢ | |
“Ininalize all attributes. Class Pen is provided in the system as one way of side effecting the display screen.”
vertices — aCollection.
plotter — Pen width: 2.
self translateBy: ¢ - self center

analysis
center | sum | ‘Answer the center coordinate of the polygon
sum — 0@0.

vertices do: [:pt | sum — sum + pt].
Isum / self sides

sides | | Answer the polygon’s number of sides
lvertices size
display
plot: ink | l Draw an image of the polygon using the specified ink color
plotter penup. lift the pen to disable drawing’
plotter goto: vertices last. ‘position the pen at one vertex
plotter color: ink “select the ink color’
plotter pendn ‘lower the pen to enable drawing
vertices do: for each vertex'
[:pt | plotter goto: pt) ‘draw a straight line to it
transformation

scale: factor | center |
‘Scale the polygon by the specified factor
center — self center. “the center of expansion’
vertices — vertices collect: generate new vertex list from old st
[-pt | (pt - center)*factor + center]
translateBy: deltaXyY | |
Change the polygon’s location by the specified amount (a Point)
vertices — vertices collect: [:vertex | vertex + deltaXY]

Table 2: Description and class template for class IrregularPolygon.

126

August 1981 © BYTE Publications Inc Circle 4 on inquiry card.

When you are done editing, pop up the active-pane
menu and issue the “compile” command (photo 14a).
Compilation takes a few seconds or less because it is in-
cremental—that is, you can compile one method at a
time. The compiler reports a syntax error to you by
inserting a message at the point where the error was

detected and automatically selecting that error message
(photo 14b). You can then cut out or overtype the
message, make the correction, and immediately reissue
the “compile” command.

If you start to revise a definition and change your mind
about it, you can pop up the pane menu and issue the

(14a) (14b)
TEetTe] classes DiEp@aygrormn Class
‘numbers' Fonm ClassC
'collections’ Haly Tone ‘runal
Half Toner . J'analyg
IrreqularPolygon |'displa
splat PoIns '‘rransf
lt'\!u‘lﬂli‘ : Rectangls et
panes and menus'
fies' gaaurE =
comeraAnge | | copy |the meenor anagl
1180 - (/sudes)| cur
paste
dot

uru
CANCe
align

(14d)

Irregularfolygon
Pomt

T TOTET
IrregularPolygon
Point
Rectangls

1splay
s’
E and menus'

rAngle | | TANSWeT ﬂ

180 - (360/s1des)

mrend

Photo 14: Options during method compilation.

6809 SYSTEMS (| 6809 SYSTEMS ()| 6809 SYSTEMS (| 6809 SYSTEMS

Featuring the GIMIX mainframe with 30 amp C.V. ferro-resonant power supply; fifteen 50 pin and eight 30 pin slot Mother Board:

For further information, pricing and brochures, contact

2 Mhz CPU with time of day clock & battery back-up, 1K RAM, 6840 prog

parallel 1/0 cards.

variety of software and languages is available for these systems.

and all necessary instruction and documentation.

needs. Please contact the factory if you have any special requirements.

timer, pi
Arithmetic processors, and 4 PROM/ROM/RAM sockets that can hold up to 32KB of monitor or user software.

VARIETY: you can have 32KB, 56KB, 128KB and up of static RAM. You can use 5'* and/or 8' disk drives, single or double
density, single or double sided, and single or double tracking with GIMIX disk controllers. You have a wide choice of serial or

EXPANDABILITY: You can add memory, 1/0s, Video or Graphics cards, Arithmetic processors, additional drive capacity, and other
hardware now or in the future to this SS50 bus structured system from GIMIX or other SS50 bus compatible manufacturers.
SOFTWARE VERSATILITY: GIMIX systems can use TSC's FLEX or UNIFLEX and MICROWARE'S 0S-9 operating systems. A wide

QUALITY: All boards are assembled, burned-in, and tested and feature GOLD PLATED BUS CONNECTORS. Only top quality com-
ponents are used and all boards are fully buffered for maximum system expansion. All boards come complete with bus connectors

GIMIX designs, manufactures and tests, in-house, their complete line of products. Complete systems are available to fit your

for 9511A or 9512

GIMIDX(

The Company that delivers

Quality Electronic products since 1975.
1337 WEST 37th PLACE, CHICAGO, IL 60609
(312) 927-5510 + TWX 910-221-4055

GIMIX* and GHOST* are registered trademarks
of GIMIX Inc

Flex and Uniflex are trademarks of Technical Systems
Consultants Inc. 0S9 is a trademark of Microware Inc. See
their ads for other GIMIX compatible software

For GIMIX compatible software see Technical Systems Consultants ad page 183 and Microware ad page 112.

128 August 1981 © BYTE Publications Inc

Circle 145 on inquiry card.

“cancel” command (photo 14c). The “cancel” command
redisplays the last successfully compiled version of the
method (photo 14d). If you cancel by accident, just issue
the “undo” command to return the revised version.

Adding New Definitions

To add a new method definition, select a method
category. In the editing pane, a template appears for
defining a new method (photo 15a). The template
reminds you of the required syntax of a method.

(15a)

Use standard editing facilities to supply the message
pattern, variable list, and body of the method. When the
definition is ready, issue the “compile” command (photo
15b).

Once compilation succeeds, the selector of the new
method is automatically added to the alphabetized list in
the method pane, and the message pattern is- automati-
cally changed to boldface in the editing pane (photo 15c).

A new class definition is added in an analogous
manner. Start by selecting a class category (photo 15d),
then fill in a template for defining a new class and com-
pile it (photo 15e). New categories can be added and old
categories can be renamed and reorganized.

Program Testing

Let us purposely add a bug to a method and see how it
can be tracked down and fixed.

Browse to the method cornerAngle in class Regular-
Polygon, cut out the characters “180 —" (photo 16a),
and recompile it. In the RegularPolygon work-space win-
dow, select the test program and issue the “do it” com-
mand (photo 16b). Instead of the desired triangle, an
open three-sided figure is drawn because of the bug in-
troduced into the angle calculation.

paste
Aot

umn
cancel
algn

(15d)
TRemel classes DTS Purygror T CIsSoR BEoTTIEl Clisses DISPEyFOTITT 7
‘numbers’ Form ClassOrgarnz ‘numbers' Form 3 A
‘collectons' Half Tong "rufialiZacior ,nu eTs ;
Half Toner collections Tone
IrregularPolygon |'display 'text’ Half Toner
] Pownt ‘transfonmnary h‘regm'w'n
‘wandows' Rectangle '‘resnng’ 1
250 it S text display Point
‘nangs and menus MPALY NS
Fies : i windows' 5 Rectangle
nmeter | | a0 ‘panes and menus' |RegularPolygon
"the sum of my sule lengehs” copy files' 000 e e
T sides # self sulelenath cur

bject subclass: "NameOftlass’
fields: 'instvarName! tnstvarName?
declare: 'classvarNamet classvarNan
shanng: "'
category: 'graphical objects'
comment: 'Overall descripion of thy

(15¢)

*the sum side lengths®
1 sides # osglf"?mewngm

Object subclass: TCiale,
fields: ‘center radius ploteer'
declare: " Ly
cateqon;: ‘graphical objects'
oommem:g'rA circle 1s descnbed by s (center) and (radiug
It is drawn by (plotter), a pen.}

Photo 15: Adding new definitions in Smalltalk.

132 August 1981 © BYTE Publications Inc

Breakpoints

To track down the bug, let us set a breakpoint in the
method cornerAngle. Using standard editing facilities,
add the statement:

self notify: ‘about to calculate angle’.

before the return statement (photo 16c). Now rerun the

IrregularPolygon
’ Pmergt %

Recm%

nes and megnus'
1 MSI

SNSWer e inten
s) agan
co ;

past
dotr

compile

test case. When the computer encounters the breakpoint,
a new window appears in midscreen. It is called a “notify
window” (photo 16d). The title tab of the notify window
says “about to calculate angle”.

The notify window has one pane, the stack pane. It
shows RegularPolygon >>cornerAngle (ie: the class and
method in which the breakpoint was encountered). The
pop-up menu of that pane offers several commands, in-
cluding “stack” and “proceed” (photo 16e).

The “proceed” command closes the notify window and
continues execution from the breakpoint. If we issue a
“proceed” in our example, the same breakpoint will be
encountered again immediately because the cornerAngle
method is used several times during the execution of the
test program.

What a Notify Window Can Display

The “stack” command expands the contents of the pane
to include messages that have been sent, but have not yet
received replies (photo 17a). It reveals that the sender of
the message cornerAngle was RegularPolygon > >plot:.

The pop-up menu of the notify window offers the usual
repertoire, including the “close” and “frame” commands
(photo 17b). If “close” were issued, the notify window

would disappear from the screen and execution of the
Text continued on page 138

(16d)

about 1 calculaze angle |

RegularPolygon> >comerAngle
el classes X
umbers'
hllections'
Pxt'
raphilcal -Jc-Jecrs' JRaFToTeT TATALSLS
Pxt dis r(a}l; Irreqular Pl)'.l_{q_]x)n '‘dis p,“uq
nndows' Poing n.uupmvum‘m
anegs and menus' |Recranagle ‘resnng’
los’ RegularPolugon |'privacd nstate ms
ANSWEr the INENOT angle of any Lerex. i (

|
self norify: 'about 10 calowlare angle'.
T (360 / sules)

(16e)

ClassDc fmuu:-

Formm

Half Tone ClassOrgmuzo,
Half Toner 'tninalizanon'
IrregularPolygon

Pownt

windows'
anes and menus'
ues'

Pz 2 [l’lTlﬂlE

Ange | | Irre U POMOOTT [APty
self mm}u ‘abourt 0 -u(ulau anabc Poine 'trans forr narwon'
T (360/51d28) Rectangle ‘resring'
' |RegularPolydon {'private MEtatics me
NAvcayior ehe snepene anale ot A 1oty v 30y

Mmcdammj

Pe qwarPolygom SCOMEerAn
bl'a(
awn

Ceeq

prC

Photo 16: Creating a faulty method for purposes of illustration.

134 August 1981 © BYTE Publications Inc

Circle 154 on inquiry card. ee=p

Stack ; Editing
Pane Pane
Memod\l/ Method
Variable _% Value

Pane Pane
\Vinstance Instance
Variable ——> Value
Pane Pane

Figure 5: Principal dependencies among panes of a notify
window.

Text continued from page 134:

program under test would be aborted. Let us issue the
“frame” command instead. The notify window grows
larger and acquires a total of six panes (photo 17c). Their
interdependencies are diagrammed in figure 5.

The upper left pane is the stack pane retained from
before. The upper right pane is an editing pane. If you
select RegularPolygon >> plot: in the stack pane, its
method definition appears in the editing pane. You can
scroll through the definition and even edit it there and
recompile as in the browser.

The middle two panes are the “context variable” and

(17a)

about w calculate angle |

RegularPolygon> >comerAngle
W RegularPolt 43on plot:
o UndefinedObyect>>DOIT
Formy) apC ompust > epaluate
HAUf CadePane > sexecure inam

d r(:mcrﬁ
sidelen

1¢sS fll!T

Half

Irre Y POMOTT [e oy

Potne ‘transfonmanon'
Rectangls (¢ _fmﬂ

RegularPolygon {'privare mstdnee me

“context value” panes. They are analogous to the two
panes of an inspect window, but, in this case, the
variables you can examine are the arguments and local
variables of the method selected in the stack pane. Click
ink in the variable pane to see its value in the value pane.

The bottom two panes are the “instance variable” and
“instance value” panes. They also are analogous to the
panes of an inspect window. They let you examine the in-
stance variables of the receiver of the message selected in
the stack pane. Click center to see its value appear in the
value pane.

You can type statements into the value panes and
execute them using “do it” (photo 17d). They will be
executed in the context of the method selected in the stack
pane—that is, they may refer to arguments and local
variables of the method and to instance variables.

Debugging

You could step through the execution of the method in
the editing pane. You would select one statement at a
time in the editing pane and issue the “do it” command.
To close in on the planted bug, we can evaluate self
cornerAngle, an expression on the last line of the method.
Select that expression and issue the “do it” command
(photo 18a). The answer, 120, appears to the right of the
question (photo 18b). Since the interior angle of a regular

(17b)

P p—p—

RegwarPolygomxonw
Regular \&n»

Undefined ecr>>DO
LAD ompuzr»evaluat
CodePane>>execute:ins

transfonnmwn'
'restt

Answer the mtenar angle of any vertex, i deg

=
]
B |
-
i
-
. =
8§
5
=
2
al 11
g.
=
=
(=]
o
)
Z
s
=
-
)(
-
p~|
k3

(17¢)

CodePane>>executesfor:
CodePane>>dotr
CodePane>>yellowbug

CodePane>>eachriime

(17d)

205 (@34 5]

Photo 17: Use of the “notify” window.

138 August 1981 © BYTE Publications Inc

"lifr e pen o diaible
center. " pasigian the
"fiuw the rap of e atn

. " POSICIGT V2L 3 COST
hﬂ’ 2),

" LT 16 H30E JGTHF 13
"avlecr fhie (1R calar”
“auaer the pen 10 ey

E; Dfiaid7 i3, T5age Gf ¢ [OSARTT Us)
calar." g
. Mlifr the pen (o d@able anzin
: self center. " pasigion the pen. Céng
"face the fap of ohe acreen”
radius. " POSICIGT 3F 3 COrTier”

1: 180 — (self comerA 2).
"t fo face ala Shde"

r: ink. "adecr e ik cdl

n.

“lauass (e PETL 16 ETuadie

R veriex, in degrees”

¢ POl i self notify: 'abour o cal
indefined ject>>DOIT K ! a

T (360/51d23)
ADCompiler> >evaluate :in:rg
[0de PaNg > >executein:ro:

odePane> rexecure:fors

Pode Pane > >dott
ode Pane > >yellowbug
odePang > >eachiime
odePang (Object)>>startup

eGUIATFOLYGOTL >COMET ANgle

~~~~~~~ COTNer.

X, in degrees”

again &
undefined copy= {17 R
LADCompiler>>evaiuare] | 4T
CodePane>>executesinz | PO
CodePang>>execute:for:
anegane»amt
odePaneg> >yellowbt 5

CodaePame>>;;‘€achnmt.g "(‘;Imrfl
R A e eqularrolygon> >co

Photo 18: Debugging a faulty method.

140  August 1981 © BYTE Publications Inc

triangle is 60 degrees, we have found the planted bug.

Now select RegularPolygon> >cornerAngle in the stack
pane. Its method definition, including the breakpoint we
set, appears in the editing pane (photo 18c). Use standard
editing to remove the breakpoint, correct the error, and
recompile the editing pane (photo 18d).

You can randomly access any level in the stack by
clicking it in the stack pane.

Resumption

After recompiling a method, you can resume execution
from the beginning of any method on the stack using the
“restart” command in the stack-pane menu (photo 19a).
This lets the test proceed (photo 19b) without having to
start over from the work-space window. Resumption of
execution after a correction is a handy capability when a
program that has been running well encounters a minor
bug.

The entire stack of the process under test was saved in
the notify window. When a notify window appears, the
rest of the system is not preempted. You are not required
to deal with the notify window when it appears. You can

Undefined
LADCompiler> >¢valuare:in:td

CodePaneg>>executd srack
CodePane>>executy spawn
CodePane > >dotr roceed

ICode Pane > >yellon e
CodePang>>eachrin

{

1

Photo 19: Compilation of a faulty method can be continued
without restarting, once the error has been corrected.

Circle 284 on inquiry card. ===p



work in other windows and come back to it later, cause
other notify windows to be created, or work a little in the
notify window and then do something else. There are no
modes.

Error Notifications
Error messages are no different from breakpoints, ex-

(20a)

agtion’
M ]

P

AL POl POPOS PPGIS SIIP dbi Sis

agan
copy
cut

paste
doir

cesToRadians cosing

"
cancel
align

(20c)

Message not understood: cosine

Float{Object)>>doesNotUnderstang

PN PO PN BN BN NN N

X

W FS Py ‘
rransfornmarion’

Photo 20: Displaying an error in a faulty method.

142  August 1981 © BYTE Publications Inc

cept that if they are supposed to be “unrecoverable” they
are programmed as:

self error: ‘error whatever'.

If the user “proceeds” out of the notify window after an
error, the process under test is terminated.

The most frequently encountered Smalltalk error is
“Message not understood.” It occurs when a method is
sent to an object and neither that object’s class nor any of
its superclasses defines a method to receive that message.
Let us edit the method sideLength (photo 20a) to send the
message cosine instead of cos. After recompiling that
method (photo 20b) and reexecuting the test program, a
notify window appears (photo 20c) to announce that
class Real and its superclasses do not define cosine.

In most programming systems, equivalent error condi-
tions such as “undeclared procedure” and “wrong
number of arguments” are issued at compile time.
Smalltalk cannot detect these conditions until run time
because variables are not declared as to type. At run
time, the object sent the message cosine could be an in-
stance of a class that did define a method of that name.

Type Checking

When we program in languages like Pascal, we depend
on type checking to catch procedure-call errors early in
the software-development process. In return, we have to
take extra time maintaining type declarations, and we
lose the very powerful ability to define “generic” or
“polymorphic” procedures with the same name but with
parameters of varying types.

Type checking is important in most systems for four
reasons, none of which is very important in Smalltalk:

e Without type checking, a program in most languages
can “crash” in mysterious ways at run time. Even with
type checking, most programming systems can crash due
to uninitialized variables, dangling references, etc.
Languages with this feature are sometimes called
“unsafe.” Examples of unsafe languages are Pascal, PL/1,
and C. Examples of fairly safe languages are BASIC and
LISP. Smalltalk is a safe language. It cannot be wiped out
by normal programming. In particular, it never crashes
when there are “type mismatches.” It just reports a
“Message not understood” error and helps the program-
mer quickly find and fix the problem through the notify
window.

eIn most systems, the edit-compile-debug cycle is so
tedious that early error detection is indispensable. In
Smalltalk, type errors are found early in testing, along
with value-range errors and other bugs.

o Type declarations help to document programs. This is
true, but well-chosen variable names and pertinent com-
ments provide more specific information than do type
declarations. A poor documenter can convey as little in-
formation in a strongly typed program as in an untyped
program.



Photo 21: Project windows in Smalltalk. Each window, when
selected, makes available all the windows associated with that
project.

(22a)

PN AN BN D, N T

Float{Object)>>
yrorm

Photo 22: Recording results in Smalltalk. The current state of
the Smalltalk system can be saved with “snapshot.” Smalltalk
code can be saved to a text file by using “filout” and restored by
using “filin.”

144  August 1981 © BYTE Publications Inc

e®Most compilers can generate more efficient object code
if types are declared. Existing implementations of
Smalltalk cannot take advantage of type declarations.
We expect that future versions will have that ability. At
that time, type declarations may be added to the
language. They probably will be supplied by the system
rather than the user, using a program-analysis technique
called “type inference.”

Project Windows

Although overlapping windows enable you to keep the
state of several tasks on the screen at the same time, you
may sometimes be working on several entirely different
projects, each involving several tasks. Smalltalk lets you
have a different “desk top” for each project. On each desk
top are windows for the tasks involved in that project. To
help you travel from one desk top to another, a desk top
can have one or more project windows that show you
other available desk tops and let you switch to one of
them (photo 21).

Saving Programs

In unintegrated systems, you create a program using
standard text-editing facilities. Then, using standard utili-
ty programs, you can obtain a program listing on paper,
back up the program on other media, and transmit the
program to other people. In an integrated system,
equivalent capabilities must be provided within the
system itself. Some of the program-saving capabilities of
Smalltalk are described briefly below.

One important facility is the snapshot (photo 22a). The
entire state of the Smalltalk environment—including
class and method definitions, data objects, suspended
processes, windows on the screen, and project desk
tops—can be momentarily frozen and saved on second-
ary storage. The snapshot can be restored later and
resumed. People familiar with the sysout in InterLISP or
the workspace concept in APL will understand the
benefit of this facility.

Another facility allows definitions of one or more
methods or classes to be listed on a printer. A related
facility is filin/filout. The filout message (photo 22b)
writes an ASCII representation of one or more definitions
onto a conventional text file. The definitions can then be
transfused into another Smalltalk environment by using
the filin message in that environment.

Often, during a programming session, the user changes
a number of method definitions that are scattered
throughout many classes and cannot recall which ones
were changed. The changes facility automatically keeps a
record of what definitions changed in each project, and
makes it easy for the user to filout those definitions at the
end of the session.

Implementation of the Environment
Because Smalltalk is an integrated environment, all the
facilities described in this article are implemented in the
Text continued on page 147



Text continued from page 144:

high-level language, including modeless editing, win-
dows, the compiler, and the notify mechanism. This was
possible because Smalltalk represents everything, in-
cluding the dynamic state of its own processes, as objects
that remember their own state and that can be sent
messages by other objects. Using the browser, you can
examine and (carefully) change the definitions of the
software-development aids.

In the implementation of Smalltalk-76, classes Inspect-
Window, BrowseWindow, and NotifyWindow are all
tiny subclasses of class PanedWindow, which defines
their common behavior. Similarly, classes StackPane,
VariablePane, ValuePane, and so on, are all tiny
subclasses of class ListPane. The superclass defines com-
mon behavior such as scrolling and selecting entries.

If someone shows you a system claimed to be
“Smalltalk,” find out whether the software-development
aids exist and whether they are programmed as class
definitions in the high-level language. If not, the system is
not bona fide.

Conclusions

The Smalltalk programming environment is reactive.
That is, the user tells it what to do and it reacts, instead of
the other way around. To enable the user to switch be-
tween tasks, the state of the tasks is preserved in instantly
accessible windows that overlap on desk tops. To give
the user the maximum freedom of choice at every mo-
ment, modes rarely occur in the user interface. The result
of this organization is that tasks, including software-
development tasks, can be accomplished with greater
speed and less frustration than is usually encountered in
computer systems. B

References
15 Sneeringer, J. ‘‘User-Interface Design for Text Editing: A Case
Study.” Software—Practice and Experience 8, pages 543 thru
557, 1978.
2. Swinehart, D C (thesis). ‘“‘Copilot: A Multiple Process

Approach to Interactive Programming Systems. Stanford
Artificial Intelligence Laboratory Memo AIM-230, Stanford
University, July 1974.

3. Kay, A and A Goldberg. ‘“‘Personal Dynamic Media.” Com-
puter, March 1977 (originally published as Xerox PARC
Technical Report SSL-76-1, March 1976, out of print).

4. English, W, D Engelbart, and M Berman. “Display-Selection
Techniques for Text Manipulation."” /EEE Transactions on
Human Factors in Electronics, volume 8, number 1, pages 21
thru 31, 1977.

5. Card, S, T Moran, and A Newell. “‘The Keystroke-Level Model
for User Performance Time with Interactive Systems."” Com-
munications of the ACM, volume 23, number 7, July 1980.

6. Goldberg, A and D Robson. “A Metaphor for User-Interface
Design."” Proceedings of the Twelfth Hawaii International Con-
ference on System Sciences, volume 6, number 1, pages 148
thru 157, 1979.

7. Borning, A. “ThingLab—A Constraint-Oriented Simulation
Laboratory."" To appear in ACM Transactions on Programming
Languages and Systems (originally published as Stanford
Computer Science Report STAN-CS-79-746 and Xerox PARC
Technical Report SSL-79-3, July 1979, out of print).

<= Circle 38 on inquiry card.

JNNOVATIVE
PRODUCTS

COMPLETE CATALOG OF COMPUTER
EQUIPMENT AT DISCOUNT PRICES.

65K S-100 DYNAMIC MEMORY
BY FAMOUS NAME MANUFACTURER

unbelievable price $299

FEATURES: Fully Compatible with IEEE-696. Assembled, tested
and fully populated with 65K of 200 ns. brand name memory
Bank selectable, 4Mhz. operation, extended addressing. invisible
refresh 8/16 bit operation (per IEEE-696) and many other features
One year warranty, manual included... Hurry, limited quantities!

TELEVIDEO TERMINALS EPSON PRINTERS:
Model 912C 0
Model 920

New! Model 950

Qlr. COMPUTER SYSTEMS

DESCRIPTION (ALL ASSEMELE
..25 A Mainframe; 12 Sul SMO Dlm 8" Drive
MF+18A ... 25 A Tabletop Mainframe; 18 Slot. S100
MF+12A ......25 A Mainframe: 12 Slot, S100. Dual 5" Drive .. 4¢
Z+80A.. .Single Board. Z-80 Computer 2/4 Mhz.. S-100 ..
Z+80A .Monitor Program for Z+80A & Tarbell or VF-1.
RAM 32 .32K Static RAM Board. Low Power, S-100
QTCIOA ......2 Serial & 4 Parallel Port 1/0. S-100.
QTCCCSA ... .Clock Calendar Board. S-100
QTCCCAA. C\(xx C Board. for Al
QT CC(,'PSBD Clock C J

VISTA COMPUTER COMPANY

DESCRIPTION (ALL ASSEMELE
V300/25 ..Letter Oua\!\, Printer, 25 CPS
V300/45 ..Letter Quality Printer. 45 CPS
V-DRI \F .Dual 8 Dyck Cabnor Power Supply. R

COMPUTER SYST EM RESOURCES

DESCRIPTION (ALL ASSEMELE
tic'RAM. S-100
e MOS) Version of R#
QAM 1/0 PutBa K §f‘r~r S H’

Model MX-80 .........:. SCALL

MODEL
MF+DD12A

MODEL

MODEL
RAM 16...
RAM 16C .
RAM 65 ... 16
RAM 65C .
RAM 32...32
RAM 256 . . 256K r3 ‘b Bx Dyn

8 Port Serial 1/0O. F

ORDERING INFORMATION:

Minimum Order is $15.00. Prices quoted do not include shipping
and handling. Foreign orders require prepayment by MICR or
Money Order in U.S. funds. Purchase Orders accepted from U.S
Government & firms with published A1 Rating from Dunn &
Bradstreet. All other orders require prepayment, charge card
or COD shipment

TOLL-FREE PHONE NUM BER:

Call Toll-Free: 1-800-555-1212, and ask the operator for our New
Toll-Free (800) Number. In Alaska, California. and Hawaii. call us
collect at (213) 883-3244

TO RECIEVE OUR FREE CATALOG:

Call our Toll-Free (800) number, or circle Reader Service #

ully IEEE. up to 200K BAU ) o ’!‘)L‘\

7131 OWENSMOUTH AVE. / #21D
CANOGA PARK, CALIFORNIA 91303

213 / 883-3244 J"MAT',VSE

Circle 168 on inquiry card. August 1981 © BYTE Publications Inc 147



User-Oriented Descriptions
of Smalltalk Systems

For many people, the workings of a
computer remain a mystery. Just
exactly what the computer does and
how it does it is locked within the
code of a computer language. The
computer and the user understand
two completely different languages. It
is well known that only a few systems
are designed and written so that they
can be understood by the user. More
than twenty years of experience has
shown that a bad system design can
never be hidden from the user, even
by a masterfully devised user inter-
face. A quality system, therefore,
must be based on sound design that
can be described in terms with which
the user is familiar.

The Smalltalk system has been
designed to handle a great variety of
problems and solutions. It, therefore,
provides the greatest possible flex-
ibility for writing any kind of system
a programmer may desire. While this
flexibility is essential for experiment-
ing, there is the potential for
disastrous results if restrictions are
not put on the system structures that
are available to the application pro-
grammer.

This article shows how the basic
metaphors of Smalltalk can be used
to describe complex systems. Since
this magazine is not yet distributed in
a form readable by Smalltalk, we
have to restrict ourselves to tradi-
tional written documentation. (Let it
be a challenge to Smalltalk ex-

148  August 1981 © BYTE Publications Inc

Trygve M H Reenskaug
Central Institute for Industrial Research
Blindern, Oslo 3
Norway

perimenters to convert this presenta-
tion into a graphic and dynamic one.)

The Smalltalk system user will
most likely employ his system to
organize the large amount of infor-
mation that will be available to him,
R N N o P T T T i W 4 N T RS ST

More than twenty
years of experience has
shown us that a bad
system design can
never be hidden from
the user, even by a
masterfully devised

user interface.

P P 3 T S Wl " S N R IS
such as reference materials in the
form of market information, news
services, and weather forecasts. Some
data, such as travel information and
bank transactions, may flow both to
and from the owner. Other informa-
tion, such as personal notes or
material that is not yet ready for
distribution, can remain private.

An individual’s total information
needs are very large and complex. His
Smalltalk system, therefore, is also
likely to be large and complex. The
challenge to the Smalltalk ex-
perimenter is to find ways to struc-
ture systems so the user will not only
understand how to use them, but also
get an intuitive feel for their inner
workings. In this way, the user can
really be the master and the systems

his faithful slaves.

An important part of any system is
the software that controls the user’s
interaction with the information.
Mastering the software is crucial to
handling the information. With
Smalltalk, software is just a special
kind of information and is treated as
any other information within the
total system. It is available to the user
in the usual manner.

A traditional way of describing
software is through written documen-
tation. Smalltalk provides more
dynamic interfaces through the use of
two-dimensional graphics and anima-
tion on the computer screen. Devising
such interfaces is probably the
greatest challenge in personal com-
puting today, and it provides a rich
field of endeavor for the interested ex-
perimenter.

System Descriptions

We can describe any application
system in three different ways: how it
is used, its system structure, and its
implementation:

e How it is used—This is the least
satisfactory type of description. The
user operates the system through rote
command sequences such as: switch
on the machine, type your password,
hit button A, listen to your system
saluting you by playing “Hail to the
Chief.” Since 80% of all user manuals
for electronic data processing systems



are of this kind, we will not discuss
them further here.

This level of understanding has
been likened to walking around in a
strange city following directions such
as: “Go outside, turn right, walk
straight ahead for four blocks, turn
left . . . . " It is easy to get lost under
such circumstances.
® System structure—With this type of
description, the user has an intuition
about the kinds of building blocks
that make up the system, how they
behave, and how they interact to
form the complete system. We show
that the basic Smalltalk metaphors of
objects and messages are well suited
to function as building blocks. The
metaphors are simple and easy to
understand; yet they permit construc-
tion of immensely powerful systems.

A basic system will
have several thousand
objects, and typical
applications would
contain many more.

Any Smalltalk system contains a
large number of objects. A basic
system will have several thousand ob-
jects, and typical applications would
contain many more. The common
software engineering device of layer-
ing becomes essential in making the
whole thing manageable. In the
description of a layer, essential func-
tion on that level is highlighted and
inconsequential detail is relegated to
lower levels. There is one absolute re-
quirement of these simplified descrip-
tions appearing on the different
layers: what is shown should be cor-
rect and complete as far as it goes.
This means that the structure of the
description has to be a pure tree struc-
ture: the function of each module has
to be limited to that module with no
hidden side effects upon the other
modules.

This level of understanding cor-
responds to the user having a street
map of the system. He knows the
major landmarks and the most im-
portant streets. This gives the user an
intuition about the total structure and
permits him tc find his way any-

where. It is almost impossible to get
totally lost under these cir-
cumstances.

® Implementation—Descriptions at
this level of understanding explain to
the user how each individual object is
built so that it behaves in the manner
prescribed on the system structure
level. Here he will find the third basic
metaphor of Smalltalk, the method.
A method is similar to a subroutine in
other languages; it prescribes the
actions to be taken by an object when
it receives a message.

On all layers but the lowest, the
behavior of an object is fairly com-
plex, and we can think of it as com-
posed of a number of sub-objects that
are used to implement it. The purpose
of the method is to enlist the aid of
the sub-objects to implement the
desired behavior. The user thus finds
that the typical object is structured in
much the same manner as his total
system, and it consists of a number of
sub-objects that send messages to
each other. The description tool is
recursive in that the same tool is used
on all levels. This recursion descrip-
tion is probably the most powerful
feature of Smalltalk. Once the user
masters the few very general con-
cepts, he can learn more and more
about his system by simply using
these concepts to dig deeper and
deeper into the system layers. In addi-
tion, the user can modify and expand
the system on any level by collecting
new components out of the building
blocks provided by the next level
below it.

The user at this level now has an in-
tuition of the overall layout of the
city. He also has sub-maps of all the
details and he knows how to read
them. Depending on his personality,
he may use these maps only when ab-
solutely necessary, or he may use
them to explore unknown territory.
In contrast to the tourist, the
Smalltalk user can even make
modifications and new extensions to
the city. The tools are there. The user
decides if, when, and how he wants
to use them.

Example of a System Description
The problem: Consider a small
manufacturing company that has two

Circle 394 on inquiry card.

The Converter
that transforms
your electronic

typewriter into a
computer
printer.

No modifications to
the typewriter

Does not affect normal
typewriter functions

> All typewriter functions
accessible by computer

RS232C, IEEE and
parallel interfaces
available

KSR version turns
typewriter into a
computer terminal

> Fully assembled, tested
and burned in

NEW! NOW AVAILABLE

OLIVETTI PRAXIS 35
TYPEWRITER

-
CONVERTER TP35 =
DAISY WHEEL PRINTER
FOR LESS THAN $1000.

Prices start as low as $275.
CONTACT YOUR LOCAL
OFFICE EQUIPMENT DEALER
OR

VERTICAL DATA SYSTEMS INC.
FOR FURTHER DETAILS.

\‘VV/\‘VV/\‘V'/ Vertical Data Systems Inc.

1215 Meyerside Dr., Unit 2A,

\/\'/\'/ Mississauga, Ontario,
Canada L5T 1H3

(416) 671-1752

Dealer inquiries invited

August 1981 © BYTE Publications Inc 149



Customer 1

Customer 2

Sales Production

Customer 3

Figure 1: A job-shop manufacturing company with its customers.

departments: sales and production.
The responsibility of the sales depart-
ment is to find customers for any pro-
duct the company can make, to con-
tact the production department to
find out when the product can be
delivered, and to sign a contract with
the customer. The responsibility of
the production department is to
manufacture each product as cheaply
as possible at a specified level of
quality and to have it finished on the
promised date. When the production
department has manufactured the
product, it is dispatched to the
customer through the sales depart-
ment.

The system: A natural way to map
this into a Smalltalk system would be
to represent each department as an
object. The function of the Sales ob-
ject would be to keep track of the
state of each sale in the following
sequence:

1. Fill in and send proposals

2. Reserve the necessary resources in
production for the product

3. Send contracts and packing notes
to the customer

The function of the Production ob-
ject would be to:

1. Keep track of commitments
2. Schedule the manufacture of pro-
ducts
. Help keep the product quality
4. Control the manufacturing pro-
cess to get the products completed
on time

w

It also seems reasonable to include a
third kind of object in our system:
Customer objects. The purpose of
these objects would be to act as a

150  August 1981 © BYTE Publications Inc

receptacle for the messages being
passed from the company to the
customer and from the customer to
the company. The various objects
with a set of reasonable communica-
tion channels is shown in figure 1.

The overall processing of an order:
The Smalltalk system would be pro-
grammed to reflect everything of im-
portance that takes place during the
processing of an order and to support
its user on every step. The process
that takes place inside the Smalltalk
system would, therefore, closely
resemble the actual processing of an
order. Let us assume the following
real-life process, which is depicted in
figure 2. A customer submits an in-
tention to buy, a request for offer, to
the company. The sales department
books resources from the production
department and returns an offer with
the cost and delivery date to the
customer. The customer answers with
a purchase order. This is transcribed
and passed from sales to production
as a requisition. The product is
manufactured in production, and a
ready-note is sent to sales, which ar-
ranges for transport and sends pack-
ing notes to the customer.

In the Smalltalk system, the Sales
object would help the user of the
system in corresponding with the
customer, in keeping track of pro-
gress, and in sending the required
forms to the production department.
The Production object would help the
user in the planning and control of
the manufacturing process.

In order to highlight the principles,
we have made this a very simple
system. The reader will have no dif-
ficulty in expanding it, for example,
by adding an object for the account-
ing department that takes care of bill-

VISIT THE
MICroAge.
STORE IN YOUR
AREA!

9530 Viscount
El Paso, Texas
(915) 591-3349

611 Rockville Pike
Rockville, Maryland
(301) 762-7585

5742 E. Broadway
Tucson, Arizona
(602) 790-8959

2760-S South Havana
Aurora, Colorado
(303) 6966950

1707 Monroe Avenue
Rochester, New York
(716) 244-9000

1220 Melbourne Drive
Hurst, Texas
(847) 284-3413

2675 Mayfair Road
Milwaukee, Wisconsin
(414) 257-1100

2065 EI Camino Real West
Mountain View, Califomia
(415) 964-7063

79 Main Street
Norwalk, Conneticut
(203) 846-0851

2525 N. Scoftsdale Road
Scoftsdale, Arizona
(602) 944-8794

1490 W. Spring Valley Rd.
Richardson, Texas
(214) 234-5955

83 South 10th Street
Minneapolis, Minnesota
(612) 338-1777

4550-50 E. Cactus
Phoenix, Arizona
(602) 996-2910

24 W. Camelback
Phoenix, Arizona
(602) 265-0065

2591 Hamilton Road
Columbus, Ohio
(614) 868-1550

8615 Allisonville Road
Indianapolis, Indiana
(317) 849-5161

1517 NE. 122nd Avenue.
Portland, Oregon
(503) 2564713

COMING
SOON TO:
Salt Lake City, Utah
St. Louis, Missouri
San Diego, California
Omaha, Nebraska
Albuquerque, New Mexico
Spokane, Washington
Toronto, Canada
Boston, Massachusetts
Pompano Beach, Florida
Palm Beach, Florida
Houston, Texas
Wilmington, Delaware
Chicago, lllinois
Walnut Creek, California
Panama City, Panama
Ancorage, Alaska

FOR FRANCHISE
OPPORTUNITY
INFORMATION CALL

(602) 968-3168




Bigsale

onK’s!
lﬁK...$l49.95
32K...$199.95
48K...$249.95
64K...$299 95

~—

New JAWS-IB
The Ultrabyte Memory Board
Due to the tremendous success of our JAWS I, we
were able to make a special purchase of ﬁnt-gualily
components at below-cost prices for JAWS-I
we are sharing our cost saving with {ou Butdon'tbe

surprised if the next timi rouseet adtheprioes
have gone up substantially. Better yet, order now,
and get the best memory on the market at the best
price on the market.

ONE CHIP DOES IT ALL
aws-IB is the Rolls-Ri of all the S100 dynamic
rds. Its heart is Intel’s single chip 64K dynamic
RAM controller. Eliminates h& h-current logic
delay lines . . . massive heat sinks . . . unreliable
trick circuits. lAWS-l'B solves all these problems

LOOK WHAT ]AWS-lB OFFERS YOU
Hidden ref? . fas! . low power
i Cl hed data 200 NS
4116 RAM's . .. on- -board crystal . . RAM lum
selectable on 8K boundaries fully socketed .
solder mask on both sides of board . . . phantom line
. designed for 8080, 8085, and Z80 bus signals . .

works in Explom. Sol, Horizon, as well as all other
ll-designed $100

P

IO'DA' MONEY-BACK TRIAL: Try & lllly Mr!d
and tested board for 10 da! r then elt
it return it for kit, or simply return Illuwlklw

condition.

lCommenlal U.S.A. Credit Card Buyers Outside Connecticut: :
-TO ORDER CALL TOLL FREE 800-243-7428 &

From Connecticut Or For Assistance:
' (203) 354-9375

'Please send the items checked below:

'D EXPANSION KIT, 16K RAM Module, to expand'
- JAWS-IB in 16K blocks up to 64K. $59.95
2 All prices plus $2 pnsdge and insurance ($4.00 Canada). u
3 Connecticut residents add sales tax.

'Tnul losed: §

50 Personal Check O] Money Order or Cashier’s Check
0 VISA O Master Card (Bank No. )

-
sAcct. No. Exp. Date

—2Zip

NETRONICS R&D Ltd.

333 Litchfield Road, New Milford, CT 06776«

152  August 1981 © BYTE Publications Inc

Customer 2

requestForOffer

Sales Record request

bookProductionFacilities: after:

Production Planning and reservation

{ planned CompletionTime

Sales Prepare and send offer
toffer
Customer 2 Evoluate offer
purchaseOrder
Sales Record purchase order

productionRequisition

Manufacture product

Production 5
according fo plan

{ productReadyNote

Sales Arrange for transport

packingNote:

Customer 2 Receive product

Figure 2: The processing of an order. The Smalltalk system supports this processing
through interaction with its owner in real-time.

ing, an object for the warehouse that shown in listing 1.
may or may not have the required One of the instance variables of the
product in stock, and so on. Also, Production object is the table pro-
figure 2 could probably be better ductDuration which contains the time
documented on a Smalltalk computer it takes to manufacture various pro-
by animating figure 1. ducts. Looking at this table, we find
the duration for a product. In this
An Implementation Description  simple example, there is only one re-
Let us inspect the Production object source, and we find the first available
of figure 1 and see how it processes time slot for the product by sending
the message bookProductionFacilities: self the message findFreePeriod:
after:. When this message is received after:. This corresponds to calling a
by the Production object, it consults local subroutine in other systems. We
its message dictionary to find the cor- then reserve the resource for our pro-
responding method. If the products duct in that period. (These two steps
were simple and the workshop small, could have been combined into one,
the object could contain the current but the separation gives us more flex-
production plan directly and the ibility in varying the planning
method could go something like that algorithm if we wish to do so later.)



STATE-OF-THE-ART
SS16K/IEEE
16K STATIC RAM BOARD

ony #1795

Expand your system beyond
64K — add universal bank
select option for only $20.00

New: SS16K/IEEE RAM
It's everything you need in a 16K static RAM board
— at the lowst price you've ever seen. The
SS16K/IEEE comes with all the high performance
features listed below: And unlike obsolete-design
RAM'’s (‘Mlhnc_)ut bau:k sl'eleczt) you can add-on our

e o4 o
now just $20.00. This makes the SS16K/IEEE capa-
ble of addressing 2,048 different banks. You can add
memory beyond the 64K limit. You can expand to a
multi-terminal system.

FEATURES OF SS16K/IEEE :

® Low-power 2114's

o All inputs and outputs meet the proposed IEEE
standards for the $100 bus.

© 4.0 MHz operation. :

o Schmitt trigger buffer on all signals for maximum
noise reduction.

o Add A, i-—-o-MK.dlp Ateh
sel:ecmble. - R

¢ Phantom option, switch selectable.
PWR/MWI{ITE ophPon. dip switch selectable.

® Glass epoxy PC board with Eold-plnted contacts

and double-sided solder mas|
o Fully socketed.
® Four | for maxi stability.

WITH BANK SELECT OPTION (now just $20.00)

YOU ADD THIS:

¢ Software bank selector featuring a universal
decoder works with Cromenco, Alpha Micro,
Netronics, most other systems, or your design.
On-board dip switches: Bank Select Enable, Reset
Enable, Reset Disable, Port Address, Port Data.

¢ LED Indicator to display status.

10-DAY MONEY-BACK TRIAL: Try a fully wired
and tested board for lndalys —then either keep
it, return it for kit, or simply return it in working
condition.

FLAA R AL L L L L L R e P PR R R R R R L]
#Continental U.S.A. Credit Card Buyers Outside Connecticut: 3
:TO ORDER CALL TOLL FREE 800-243-7428}

From Connecticut or For Assistance:

-

: (203) 354-9375 H
Please send the items checked below: H
SS16K/IEEE without bank select: H
S L e ves isois $179.95%;
#(] Fully assembled, wire & tested ........ $199.95%3
s SS16K/IEEE with bank select: H
S I S e S R s $199.95*%
20 Fully assembled, wired & tested ....... $229.95%3
=[] SS16K/IEEE bank select option. . ....... $20.00°2
u "Plus$2 postage & insurance ($5.00 Canada). Connecticut resi-s
2 dents add sales tax. =
EToul losed: $ E
:D Personal Check ) Money Order or Cashier's Checky
o VIsA ) Master Card (Bank No. N
-

E Acct. No. Exp. Date -
. -
» Sj .
. .
£ Rant, g
- .
3 Address H
L] -
i it -
s State Zip H
:

NETRONICS R&D Ltd. :

333 Litchfield RDMIJ New Milford, CT 067763
ML L L Y T I

August 1981 © BYTE Publications Inc

Listing 1: Smalltalk method for the message bookProductionFacilities:after:.

bookProductionFacllities: productType after: earllestStartTime
“‘Reserves production facilities for a new product of given type as soon as possible after the
specified earliest starting time. Returns the planned completion time for the product.”

| duration plannedStartTime |

duration — productDuration at: productType.
plannedStartTime — self findFreePeriod: duration after: earliestStartTime.
self reservePeriod: duration from: plannedStartTime.

! (plannedStartTime + duration)

Listing 2: Alternate Smalltalk method for the message bookProductionFacilities:after:.

bookProductionFacilities: productType after: earliestStartTime
““Reserves production facilities for a new product of given type as soon as possible after the
specified earliest starting time. Returns the planned completion time for the product.”

| productldentification |

productldentification — jobManager defineProduct: productType.
JobManager schedule: productldentification after: earliestStartTime.
t (jobManager plannedCompletionTime: productldentification).

Messages from the surrounding system

Production Production
Manager
s N
Job Resource
Manager Manager
Job 1
} Resource A |
\—— Job 2
Resource B ' ——~
NS Uob 3 __/_
Resource C —/
Job 4 _/_
Figure 3: The internals of the Production object.

The planned completion time is
returned to the sender, in this case the
Sales object.

Lower-Level System Description

If the user wants more advanced
aids for production control, the Pro-
duction object would call upon the
services of a subsystem of intercon-
nected objects. A possible subsystem
is shown in figure 3.

The entrance to the internals of the
Production objects is through a Pro-
duction Manager object; it is con-

nected to a Job Manager object and a
Resource Manager object.

The manufacturing of a product is
split into a number of jobs. The
available production facilities (people
and machines) are split into a number
of resources. Each job is to be per-
formed by a single resource. A
natural way to map this into a
Smalltalk system is to represent each
job by a Job object and each resource
by a Resource object.

In this scheme, each Job object en-
sures that the job is performed by its



TRANSISTOR SPECIALS
207 PP GETOS

CPU S& SUPPORT CHIPS

.
s P GETOS n
750 m UO '] 1 . . . .
:;.';’m‘ s cijEc ESc- 28 -2 8| I : resource within the available time.
a2 360 8257(AMS517)~ 796 07 7 an - » e - 175 4CES 190 ™12 TIP 116 :‘ 2 - %
e mgwmonElm AR AS 2B ;.m:..c%'zéga.f;é’am ! Similarly, each Resource object en-
A T T T R e e I hat i 2 ;
- B SS - 8 e DR MGk 1B | Domwstosw ) sures that its resource is used in an ef-
23 ot 0 4518 - 125 MCI61 - 115 umsqof an e X S
e’ in 7= “iEEc 8 R Chowecis| smmwneron it ficient manner, that there is sufficient
s o Deaw, cURlEn - B o - 8 wp o'z SR iR SSMemms it . : :
) o 2, -UEles- oo omouE D KRR Aewwans o time available for preventive
MK&027-3 350 112 - 755 20 0 a8 % MCI0 7 W -1 NS NS T0-20 .
MK4096-11 20 2202 6% | @ %« ® MG -1 T - 8 2N6108 PP 51 0. 220 ' ,
usien - 42 wva am | @ s s emic B oum CoZmTE | T g maintenance, and that there are no
o & on - 2 M ” TIP 128 PNP S TO-220 :
Bowew - 1% ER - 3% e e LA L : unacceptable overloads. The method
ot
MK 4008P 1.95 181 7.7% - s 3
C s T e AR TTLIC SERIES in the Production object that handles
UART,S 7400 7 7473 35 7“&: . pta s o =
R - SPECIALS - ek - K e the bookProductionFacilities:after:
v I = - 7476 “ N3 - .
s Cas Aven % W j0%DisCOUNTALLSCRS s TRIACS Wl ~ N e Dk - s message could now be written as
il =
'E',“BER':C‘E‘% neorerins [l 4ea. 2716ROM'S (+5v).. 2800 5 S % R & A R shown in listing 2.
. 7408 — 27 74%0 P IT . 3 3
= = -1z [l 8ea. 41163RAM'S ...... 2000 Ml ras = 2 e~ s m 1w One of the instance variables of the
. 175 o MCOBOUUL ............... & 7411 2 M 4% 74190 - 0 P . . .
RS - 3% 3 ) roduction Manager object is a
= o i% W 8164E64K x 1RAM (150NS) 39.00 73~ % % - ® m- ® s G bN% j il
= s - ] ointer to the Job Manager object.
= ol i3 15% Discount g L e < ks i
T B All 74LS and S Series s - % i‘:?z E ZE ZE using that pointer as a communica-
16 PIN HEADERS . s 20% Discount I am_ e rom- w tion channel, the Production
24 PIN HEADERS 75 o MR - 2 TS - 5 7461~ 65 z
40PN HEADERS 0 @ 340T and 320T Regulators [ 1% - % ko5 = % Manager object passes most of the
SOPIN EDGEBOA:g gg::“ 953 740 — 17 74183 - 40 75326 - 228 k h -
Pl GEBOA! 5 d o =
ZEN NG SO CONN. B @ L1anale Veble Dogtector(‘ro-szi e R B work on to the Job Manager object.
20PIN RIGHT ANGLE CONN. 2 3/41. e SR e m ow First, the Job Manager is asked to
D CIRCUIT BOARD 3 1 7447 65 74161 — 65 901 3
6L DouALE SIDED 00D TRy Ay, I T define the new product. The Job

EPOXY BOARD %," THICK
$.60ea. ... 5/$2.60

Manager creates the Job objects (see

CRYSTALS $3.45 ea FULL WAVE BRIDGE
*| WE SHIP OVER 95% . .
PRV | 2A | 6A | 28A
EPOXY GLASS VECTOR BOARD v?ﬁrg:"uaz?:l%innss wl T o figure 3), hn!<s them to the proper
116" thick with 110 spacng R Resource objects, and returns an
4 %" '2%‘033:::’ OF RECEIPT 600 1130 | 1.90 | 440 3 vpe A %
Sl e B : : : S SOCKETS identification that is to be used for
DATEL'S DAC-0BEQ MINIATURE MULTI-TURN TRIM POTS BPIN 17  22PIN 30
bl BAC - 47.9 50, 100, 5K, 10K. 280K .......... .75 each 3/42.0 oW 3 2w future references to the product. The
16PN
mrz;cs‘x:&?v!:mxgcswwcu 1.5 No 3OWIRE WRAP WIRE SINGLE STRAND a |:nn g ﬁ:: : 2 Job Manager is then asked to schedule
N‘I’tR‘StUCUmﬂch\?Bn """""""""""""""" 5
T s26.50 74LS SERIES the product for manufacturing as
REDICON SAD 1024 ANALOG SWITCH $10.95 ALCO MINIATURE TOGGLE SWITCHES ' "
SR B I R ew s | MIAzeoRoT MR - soon as possible after the given date.
e 0 %:g;ﬁ Eg MSD 206 P-DPDT CENTER OFF LEVER SWITCH ,$1.85 oo ;g oo R e Finally, the JOb Manager is asked
oS- 1y - L 7 A S0t - 2 TSI 45 JSMI- 985 ;
B OE omE omml SCR’s TRIAC's el el B et when the product will be completed,
o - 138 . 5. 25A WS® - 2 TSI/ W IMSM-13 3 2
& 5 S8 SR |opojaimmel| aujenm  [RSCD METs s and this value is returned to the out-
et e | ol wliso[ew| 0] sfin[210 i - Jusmes 45 rasme- 10 : z 2
7WATT LD 65 LASER g}m%m e eI EENE TR wen % wsmo s - % side world (in this case, to the Sales
DIODE IR $8.95 10 S0 : e R Jaswi- A Jasws : : .
25 watt Infra Red Pulse (SG 2006 equiv.) | FP100PHOTO TRANS Tl [t S T Ob)eCt). The planmng process in the
Laser Diode (Spec shestinchuded| 026,95 | RED YELOW S emnunceLess 7 Sh [ rm s 3 mowsm wem- w Production subsystem that is shown
2N3820 P FET ........ S 45 | MLEDR2IRLED CET] ieeprtimoe b =) Tl il 2 5 R 2
N5457 NFET | s 45 | wRousrHoToDARL XToR B e it in figure 4 is controlled by this
2N2B4BUJT. ......... o ] 1L-5OPTO-ISOLATOR. PP MSH - 18 TASR-100  JSAHI- 80
ER 900 TRIGGER DIODES .. ... 4/81.00 | 1WATT ZENERS: 3.3,4.7.5.1,5.6,68.82,9.1, 10 o g o e method.
2N 6028 PROG.UJT ... ... . $ 65 12, 15, 18, or 22V 6/$1.00 Lol §7oq U s Tl Y o
DISC CAPACITORS SFC 3301 — 50 PRV 30A Y:tsco 3 3 ,«sa 175 msns: 5
i AT -3 e T s i wem- Definition of New Objects
7488 2 174 -1,
MMS316 4475 MNBSIS 495 s B tesmian . b The first task of the Job Manager
ST » s - 0 T4LS306 - 50
TANTALUM CAPACITORS [RSlIRlel el el RECTIFIER min B ews e emois object is to define the new object. It
47UF 35V 5/$1.00 10UF10V —$ .40 25A  240A WSE - 75 MSWI- 90 MLSEN-250 & x 3
SBUF3SV 519100 22U 1OV 4 30 B e |MemcE mswtie smie receives message defineProduct: when
WUF20V  5/$1.00 15UF 16V 3/81.f — - - - . -~ L e lia, .
22UF20v 6/$1.00 UFEV Sisig0 | 2007 X 4 13 52 500 |- Y this is to be done. The corresponding

3.3UF20V 4/61.00 3BUF20V  $ .60 400 09 25 65 15 650 1200
4.7UF35V 4/$1.00 47UF 20V 85 600 .11 .30 80 200 85 1500
6.8UF 35V 3/$1.00 120UF 6V 7 800 .15 .35 1.00 250 1050 18.00

method could be something like that

SARRER 00 20 45 125 300 1280 2600 E shown in listing 3. We are referencing
AUDIO POWER AMPS IN 4148 (IN914) 12 two instance variables of the Job
Si1010 G 10 WATTS .$ 7.50 15/$1.00 o = Manager object in this method: pro-
S0 G sWATTS 42750 | 5V at800ma SOLARCELLS |iE 7 = % ductDescriptions and production-
200 PRV 1A LASCR .95 3”diameter $4.35 iz ECE % Manager. productDescriptions is an
RS232 7 SEGMENT DISPLAYS T REGULATORS ordered collection with one member
CONNECTORS I, ey for each product type. Each of these
DB26Pmale. ... $3.25 | A 5. s % FNDO8-cC . Noe | mocauuni Soranuy members contains a sequence of small
HOODS ......... $1.50 A S et T e raw s e objects with the class, duration, and
POSTAGE ~ADD 10% FOR ORDERS UNDER £20.0 g T A e resource type for each of the jobs that

RATES  ADD 5% FOR ORDERS BETWEEN $20.00 AND $50.00  C0p. PURCHASE ORDER OR CHARGE $2000 RECTIFIERS. 145 HAMPSHIRE
ADD 3% FOR ORDERS ABOVE $50.00 MINIMUM MAIL ORDER $5.00. ST.. CAMBRIDGE. MASS. 02139

go into the manufacture of such a
product. productionManager con-

SOLID STATE SALES TEL. (617) 547-7053 tains a pointer to the Production

WE SHIP OVER 95% Manager object. The result of the

P.0.BOX 74B OF OUR ORDERS WITHIN

24 HOURS OF RECEIPT product creation is put into a third in-

SOMERVILLE, MASS. 02143 . ;
5 TOLL FREE 1-800-343-5230 stance variable, the productDic-

156  August 1981 © BYTE Publications Inc



Circle 245 on inquiry card.

MMSFORTH VERSION 2.0:

MORE FOR YOUR RADIO SHACK
TRS-80 MODEL | OR MODEL Il !

% MORE SPEED
10-20 times faster than Level || BASIC.

% MORE ROOM

Vel rxdcomplc! compiled code plus VIRTUAL
IORY makes your RAM act larger. Variable

number of block buffers. 31-char.-unique word-
names use only 4 bytes in header!

% MORE INSTRUCTIONS
Add YOUR commands to its 79-STANDARD-plus
instruction set!
Far more compltla than most Forths: single &

double rrays, 9 9, clock,
more.
% MORE EASE
full: Editor, &

modular programming

Word search utility

NOTEPADS Letter writer

Optimized for your TRS-80 with keyboard
repeats, upper/lower case display driver, full
ASCII, single- & double-width graphics, etc.

% MORE POWER
Forth oporlll»g system
Interpreter AND compiler
8080 Assembler
(280 Assembler also available)
Intermix 35- to 80-track disk drives
Model 11l Syslom can read, write & run Model |
diskettes!
VIRTUAL 0 1:1 vndoo and printer, disk and tape
(10 ard

gaby

M FORT

THE PROFESSIONAL FORTH
FOR TRS-80

(Over 1,500 systems in use)

Pric
MMSFORTH Disk Syslom V2.0 (requires 1 disk drive 5
16K RAM, 32K for Model II1) 20.95°
MMSFORTH Cnsono Sys(em sz (raquues Level Il
BASIC & 16K RAM; . $89.95°

AND MMS GIVES IT
PROFESSIONAL SUPPORT

Source code provided

MMSFORTH Newsletter

Many demo programs aboard

MMSFORTH User Groups

Inexpensive upgrades to latest version

Programming staff can provide advice, modifications
and custom programs, to fit YOUR needs.

MMSFORTH UTILITIES DISKETTE: includes FLOATING

POINT MATH (L.2 BAS!C ROM routines plus Complox

numbors
grees mode, more), plus a full Forth-style Z80 ASSEM

R; plus a powerful C O SRE ERENCER to Tist

Forlh words Fy block and All on one diskette

(requires MMSFORTH VZ 0,1 drive & 32K RAM) . $39.95*

FORTHCOM: RS-232
driver, dumb terminal mode, transfer of FORTH blocks,
and host mode 1o operate a vamole TRS-80 (roqulros
MMSFORTH V2.0, 1 drive & 32K RAM)

THE DATAHANDLER V1 2: I very sophlslblcllod data-
ySst

MMSFORTH GAMES DISKETTE: real-time grnpmcs &
board games wisource code. Includes BREAKFORTH,
CRASHFORTH, FREEWAY, OTHELLO & TICTACFORTH
(requires MMSFORTH V2.0, 1 drive & 32K RAM) . $39.95°

Other MMSFORTH products under development

FORTH BOOKS AVAILABLE

MicroFORTH PRIMER - comes with MMSFORTH;
e . $15.00*

separately ...............
USING FORTH - more de

llg ORTH . ot ais o Ua S e st asinsn s b a s $17.50°
T READED INTERPRETIVE LANGUAGES - advanced,
oxcollenl analysis of MMSFORTHIIkn I;n

. $18.95°

ood for Forth . .
STANDARD MANUA erel
7B-STANDARD word set, etc .. .. .8
CALTECH FORTH MANUAL - nood on Forth internal
SUCLUND, BC . .o ocivuurenarinscinnnnannsss $10.00*
FORTH SPECIAL ISSUE, BYTE Magazine (Aug. 1980) -
we stock this collaclor 's item for Forth users and n
ners .. $4.

* - ORDERING INFORMATION: Software prices include
manuals and require signing of a single system, single-
user license. SPECIFY for Model | or Model IIl! Add
$2.00 S/H plus $1.00 per additional book; Mass. orders
add 5% tax. Foreign orders add 20%. UPS COD, VISA &
MIC accepted; no unpaid purchase orders, please.

Send SASE for free MMSFORTH information.
Good dealers sought.

lulld pvo;sr

Get MMSFORTH products from your
computer dealer or
MILLER MICROCOMPUTER
SERVICES (B8)

61 Lake Shore Road, Natick, MA 01760
(617) 6536136

158  August 1981 © BYTE Publications Inc

bookProductionFacilities:after:

Production

Production
Manager

defineProduct:

Job

Manaoger

Create job objects

toroductidentification

Production
Manager

Schedule product

schedule: after:

Job
ager

Schedules jobs in sequence

scheduleAfter

a Job

Schedules job as soon as
possible ofter given date

{plannedCompletionTime

schedule : ofter : duration

o Resource

Reserves facilities for job

t plannedStartingTime

o Job

Records own start ond

completion times

g

Figure 4:

Listing 3:

defineProduct: productType

“To create a new product of given type. The corresponding Job objects are created and linked to

their resource objects.”

A simple planning algorithm implemented in a Smalltalk system.

Smalltalk method for the message defineProduct:.

| productidentification jobDescriptions job jobList resourceObject |
productldentification — self nextProductldentification.
JjobDescriptions — productDescriptions at: productType.

JobList — jobDescriptions collect:
[ :description
job — (description class) new.

Job duration: (description duration).
resourceObject — productionManager getResource: (description

resourceType).
Job resource: resourceObject].

productDictionary at: productldentification put: jobList.

! productldentification.

tionary. In this dictionary, each key is
a product identification; the cor-
responding entry is the sequence of
job objects for that product.

The first line of code gets a new,
unique identification for the new pro-
duct. Next, the list of job descriptions

is retrieved from the productSpecifica-
tion collection. We then build the se-
quence of Job objects by going
systematically through the job
descriptions. For each description, we
create a new Job object of the given
class, feed it its duration, and let it

Circle 104 on inquiry card. e==p



SOFTWARE
DEVELOPIMENT
TOOLS FOR
INDUSTRY

CP/M CROSS-ASSEMBLERS

Fast, comprehensive cross-assemblers
to run under CP/M.* Extensive pseudo-
ops include full listing control, nested
conditonals, mnemonic synonyms, and
inclusion of external source files. Gen-
erate object file, assembly listing, and
symbol table from source code for nine
popular microprocessor families.

COPS400

Assemblers . . .. $200.00 each
Manualonly.... $25.00

8048 DEVELOPMENT PACKAGE

Now you can use the 8048 family of
single-chip microcomputers without
buying expensive equipment. Develop
8048 software with the XASM48 cross-
assembler. Then plug our EPR-48 board

into your S-100 system to program the
8748 EPROM version. (Similar packages
for 8051 and TMS9940E coming soon.)

8048 Development Package . . . $574.00
EPR-48 alone $449.00

PROM EMULATOR BOARD

Debug dedicated systems quickly. Our

PSB-100 PROM Emulator is an S-100

board with up to 8K of RAM. Cable with

24-pin plug replaces PROM(s) in your

target system for instant program test-

ing.

PSB-100 PROM Emulator . . $445.00 w/
2K RAM

804 south state st.
dover, delaware/19901/302-734-0151

Visa and Mastercharge accepted. We ship on
8" single-densily. Ask us about other formats.
OEM AND DEALER INQUIRIES INVITED.

160  August 1981 © BYTE Publications Inc

Job Manager
Job M

.

)

Class for new
Job type A

Class for new
Job type B

Class for new
Job type C

Figure 5: Sub-objects in the Job Manager actually create the new Job objects.

Object
pointer ¢ ication
pointer channels to
other objects
Class
message
received
e pointer to class
method
method
[dictionary method
method

Figure 6: All objects contain a pointer to a Class object that contains their message dic-

tionary and methods.

any Object

any Object

a Class object

any Object

any Object

a Superclass object

a Class object

any Object

Figure 7: The superclass-subclass chains of pointers. The user does not meet them
unless he wants to become a real Smalltalk expert.

connect itself to its Resource object.
From figure 3, we see that there is no
direct connection between the Job
Manager object and the resources.
We therefore have to go via the Pro-
duction Manager object to get the
pointer to the Resource object that we
give to the new Job object.

We finally insert the new list of
jobs into the productDictionary in the
Production Manager object and
return the product identification.

The Job Manager is built so that
Job objects may belong to several dif-
ferent classes. The different Job ob-
jects created would all understand the

Circle 206 on inquiry card. ==p



same message protocols, but they
would differ in their implementation.
For example, a job might be: wait for
24 hours while a resin glue is curing.
This does not need any resources, and
the planning of such a job would be
very simple—wait 24 hours. Another
kind of job, such as pouring concrete,
should not span a weekend, since
joining old and new concrete could
give weak spots in the product.

As is the case with Job objects, we
often find that several objects share
the same message protocols and pro-
cess the messages with the same
methods. Their only difference is that
they appear in different places in the
total system and that their instance
T T S S Y T T TG G S I I TR ST

The Smalitalk user
should be able to
“open up’’ the
application object on
the screen to see its
component parts and
to find out how they
work together.

variables point to different objects
(their states are different). Such ob-
jects are created by the same class ob-
ject and are said to belong to the same
class.

It would be very inefficient if each
object of a class stored a replica of the
message dictionary and all methods,
and it would be extremely tiresome if
we actually had to program each ob-
ject by itself. We, therefore, use the
concept of layering to let each and
every object enlist the services of its
class object in order to decode an in-
coming message and to select the pro-
per method to process it. This
mechanism is illustrated in figure 6.
As in so many other parts of
Smalltalk, we find a recursive argu-
ment.

Many classes are very similar; they
differ only in the handling of a few
messages. The different kinds of Job
objects are a case in point. It seems
reasonable to let a class object enlist
the services of a superclass object
whenever it is called upon to execute
methods it shares with other classes.

< Circle 351 on inquiry card.

Program to Recover
“Crashed” Discettes AUTOMATICALLY!

Maybe it was a lightning storm, static from the rug, or just
too late at night to be working. Whatever the cause, when a
discette “crashes” and valuable data or programs are
destroyed, the loss is enormous, both in time and money.

DISK DOCTOR is a program which automatically recovers
bad discettes. Best of all DISK DOCTOR does not require any
knowledge of CP/M file structure! If you can operate CP/M,
then you can use DISK DOCTOR. The entire system is menu
driven with key information displayed.

DISK DOCTOR is comprised of five “wards”, each capable of
performing a specific discette recovery operation.

* Ward A: Verifies discettes and locks out bad sectors without touching the
good files that remain.

* Ward B: Copies whatever can be read from a “crashed” file and places it
into a good file under user control.

* Ward C: Copies discettes without stopping for bad sectors. Bad sectors are
replaced by spaces.

* Ward D: “Un-erases” files. That is, Ward D will recover accidentally erased
disk files.

* Ward E: Displays directory of recoverable erased files.
DISK DOCTOR will pay for itself the first time it is used.

Best of all, DISK DOCTOR operates almost complete automatically. The
small amount of user interaction is explained in the manual as well as
prompted by DISK DOCTOR.

Requires: 48K CP/M, two drives
needed for complete operation.

All Orders and General Information:
SUPERSOFT ASSOCIATES
DISK DOCTOR: $100.00 P.O. BOX 1628
s Bl N - $ 10.00 CHAMPAIGN, IL 61820
(217) 359-2112
CP/M Formats: 8" soft sectored, 5" Technical Hot Line: (217) 359-2691

Northstar, 5" Micropolis Mod I, (answered only when technician is
Vector MZ, Superbrain DD/QD, Apple Il + available) S

SuperSoft
First in Software Technology

CP/M REGISTERED TRADEMARK DIGTAL RESEARCH

August 1981 © BYTE Publications Inc 163



Many classes will then share the same
superclass; we get a tree-shaped class
structure as shown in figure 7. Note
that the purpose of this structure is
convenience in programming and ef-
ficiency in implementation; it belongs
on the lowest levels of the system
hierarchy and is not part of the struc-
ture of the application system.

Future Experiments

When personal computing becomes
sufficiently entertaining and in-
teresting to become a widespread

tool, the new user of a Smalltalk
system is likely to begin by using its
ready-made application systems for
writing and illustrating documents,
for designing aircraft wings, for doing
homework, for searching through old
court decisions, for composing music,
or whatever. After a while, he may
become curious as to how his system
works. He should then be able to
“open up” the application object on
the screen to see its component parts
and to find out how they work
together. He could, for example, see

And You Thought You
Didn't Fave 4 Choice

Now you can provide your customers with another of those

PR
fo"ff) Sz o s

10_qnck
(0 5“‘01"’

PR

. . . a complete packet of the most attractive
stock forms on the market. From the people whose only business is
you and your customer.

* OVER 200 STOCK FORMS TO CHOOSE FROM

* 7-WORKING DAY GUARANTEED RUSH SHIPMENT

* PERSONALIZED SERVICE AND QUALITY YOU WILL
N LEARN TO COUNT ON

]
1
1
1
1
|
1
1
I
I
I
I
1
1
:
|
]
1
I
I
]
]
1
1
1
~
®

CALL NOW TOLL FREE

iTSyslgs Plus « TCS « Structured Systems Group *

~
[ J
| ® Vector  Peachtree * Radio Shack * Osborne *
[ B * Alpha Micro  Durango * Warex * Cado *
| VECTOR 8P Money Maesiro
° e = T w v

& Many More

NATIONWIDE
800-854-2750

IN CALIFORNIA
800-552-8817

_NdChecks
¥4_To-Go

N B

little extras that makes them feel good about the sale . . .

}
1
1
1
I
]
I
1
]
1
1
I
I
I
I
]
I
1
1
1
1
1
1
i
l}
l}
}
1

< Citor Do aaesiins W b, Ty Psouns

166  August 1981 © BYTE Publications Inc

Circle 52 on inquiry card.

something like figure 1 together with
his usual user interface. By exercising
the application commands, the com-
puting process could be illustrated on
the system diagram. Using Smalltalk
to document itself in this manner
should make it possible to make some
novel and extremely powerful system
description tools.

The next thing the user might want
to do is to build new systems similar
to the one he has been using. A kit of
graphical building blocks would let
the user compose a new system by
editing the system diagram on the
screen. While the Trip system (as
described in reference 2) is not a pro-
per kit, it could be a good source of
ideas to the experimenter on building
such systems.

Finally, the expert user would want
to make his own kits. Even here, it is
important that he sees only what he
needs and that all unimportant details
are suppressed. Since what is impor-
tant in one context might be unimpor-
tant in another, and vice versa, the
concepts of filters (see reference 1)
will be an essential ingredient for the
experimenter when he develops tools
for these expert users.

Much experimenting needs to be
done before we learn how to make
systems that are self-documenting on
any level and that provide a smooth
and stumble-free transition from one
level to the next. It is hoped that the
availability of Smalltalk will lead to
great activity in this field, to the
benefit of all future computer users.®

References

1. Goldberg, Adele and David Robson. “A
Metaphor for User Interface Design."" Pro-
ceedings of the University of Hawaii
Systems Science Symposium, January
1979, Honolulu.

2. Gould, Laura and William Finzer. ‘A Study
of TRIP: A Computer System for
Animating Time-Rate-Distance
Problems.”" Proceedings of the IFIP World
Conference on Computers in Education
(WCCE-81), Lausanne, Switzerland, July
1981.

3. Ingalls, Daniel H H. *'The Smalltalk-76 Pro-
gramming System. Design and Implemen-
tation."” Conference Record of the Fifth
Annual ACM Symposium on Principles of
Programming Languages, Tucson,
Arizona, January 1978.




The Smalltalk Graphics Kernel

Graphics are essential to the
quality of an interactive program-
ming system and to the interactive
applications that go along with such a
system. Qualitatively, people think
with images, and any system that is
incapable of manipulating images is
incapable of augmenting such
thought. Quantitatively, a person can
visually absorb information equiva-
lent to millions of characters a se-
cond, while the normal rate for
reading text is less than 100 characters
a second.

For the graphical interaction cycle
to be complete, a computer system
must provide a channel for input in
the visual domain as well. While the
projection of images from the realm
of thought into the space of electronic
information seems an impossible
task, a well-designed pointing device
can effectively harness the computer’s
graphical output capability to express
graphical input from the user. Given
such a pointing device, the process of
selecting from graphical objects, such
as text displayed on the screen, is
natural and rapid. By tracking the
pointer with a program that simulates
a pen or paintbrush, the visual input
channel can be extended to include
line drawing and freehand sketches.

The purpose of graphics in the
Smalltalk system is to support the
reactive principle:

Any object accessible to the user
should be able to present itself in a
meaningful way for observation and
manipulation.

Meaningful presentation of any ob-
ject in the system demands maximum
control over the display medium, and

168  August 1981 © BYTE Publications Inc

Daniel H H Ingalls
Learning Research Group
Xerox Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto CA 94304

many technologies fall short in this
respect. One approach that provides
the necessary flexibility is to allow the
brightness of every discernible point
in the displayed image to be in-
dependently controlled. The simplest
implementation of this approach is a
contiguous block of storage in which
the setting of each bit (1 or 0) is
mapped into dark or light illumina-

Photo 1: An example of a Smalltalk-80
video display. Note the multiple win-
dows, the combinations of text and
graphics, and the pointer in the window
marked “UserView workspace."

tion of the corresponding picture ele-
ment, or pixel, when displaying or
combining with other images. The
block of storage is thus referred to as
a bitmap, and this type of display is
called a bitmap display. The simplest
form of bitmap allows only two
brightness levels, white and black.
The Smalltalk-80 graphics system is
built around this model.

Photo 1 shows a typical view of the
Smalltalk-80 system, and it illustrates
the wide range of graphical idiom

implied by the reactive principle. Rec-
tangular areas of arbitrary size are
filled with white, black, and various
halftone patterns. Text, in various
typefaces, is placed on the screen
from stored images of the individual
characters. Halftone shades are
“brushed” by the user to create
freehand paintings. Moreover,
although not shown on the printed
page, images on the display may be
moved or sequenced in time to pro-
vide animation.

Graphical Storage—Forms

Simple images are represented by
instances of class Form. A Form has
height and width and a bitmap that
indicates the white and black regions
of the particular image being
represented. Consider, for example,
the arrow-shaped Form that appears
in the lower-right window of the
screen image in photo 1. The internal
representation of this Form is
depicted in figure 1. Its height is 16,
its width is 8, and its appearance is
described by the pattern of ones and
zeros (shown as light and dark
squares) in its bitmap. The height and
width of the Form serve to impose the

g 58
ey e
5

10

g

Figure 1: A simple Form representing the
cursor in photo 1.



(0] 10 20 30 40 50 60 70 80
0
destForm:
destX = 67 10 sazessgass ¥ -
destY = 10 H = A
20 =nE = 1] - H
30
/1
Aul
40 |
width =
height = 13
0 10 240 P50 260 270 400
0
11J) 1l IBNENEPRESE JI111IY
sourceForm: H H )
1 = 11 !
SOUI'CGX 248 10— 11111 1]]‘}} {III] JIIII1] Illlllllll’“‘ L{J{
sourceY =0 CLCOTOIT

Figure 2: Copying a character of text from a source Form (bottom) to a destination Form (top).

appropriate two-dimensional order-
ing on the otherwise unstructured
data in the bitmap. We will return to
the representation of Forms in more
detail later in this article.

A complex image can be rep-
resented in either of two ways: by a
very large Form, or by a structure
that includes many Forms and rules
for combining and repeating them in

order to produce the desired image.
The freehand drawing in the center of
photo 1 is an example of the former,
and the text below it is an example of
the latter.

The large unstructured Form has an
additional use of great importance: it
can be presented to the display hard-
ware as a buffer in memory of the
actual data to be shown on the

display terminal. We refer to the
Form which is so used as the
displayForm. Since the interface to the
hardware is through a Form, there is
no difference between combining
images internally and displaying
them on the screen. Animation can be
done simply in this manner: one Form
serves as the displayForm while the
next image to be displayed is

Circle 280 on Inquiry card.

Both models carry a one year warranty.

PRICES INCLUDE SHIPPING & HANDLING
WHEN PRE-PAID

Now! An Acoustic
Coupler for $125.

The Omnitec Model 715 (originate only) has the necessary
features, needed to expand any business or home
computer systems capability: 0-450 baud data rate,
RS232 compatibility and carrier detect at a low
factory-direct price of $125. Or, select the Model 770
at $179.00 for originate or answer communications.

OMNITEC DATA /

2405 South 20th Street ® Phoenix, Arizona 85034

O
v
<</<<

/

August 1981 © BYTE Publications Inc

171



Circle 319 on inquiry card.

GooD

You can save buying whole-
sale through our firm. As your
agent we will buy computers
on the wholesale market for
you. Our fee is one fourth of
what we save you off list price.
Access to over 500 manufac-
turers. Minimum fee of $75 per
order. Call for other prices.

Whse. Fee\
COMPUTERS

Alpha Micro 10MEG $11.204 $1.243
Altos 8000-10 5695 701
Altos 8000-15 4.014 494
Archives 64K QD 4450 512
Compustar Model 30 3.595 225
Cromemco System 3 5.357 659
Dynabyte 64K 2 MEG 5929 691
Calif. Comp. 64K 1 MEG ~ 3.987 427
Ithaca System 2A 2.520 270
Televideo Sys. | 2.600 349

DISK DRIVES

Corvus 5 MEG Hard
Corvus 20 MEG Hard
Morrow 26 MEG Hard
CRT'S

ADDS View Point 505
DEC VT 100 1.305
Hazeltine Esprit 565
IBM 3101 Model 10 1.140
Lear Siegler ADM 3A + 710
Leedex 13" Color Monitor 350
NEC 12" Monitor 190
Televideo TVI 910 545
Televideo 950

Visual 200

PRINTERS

Anadex 9501
Centronics 737
Diablo 630 R/0
Epson MX80

1DS Paper Tiger 460 G
IDS 560/9

NEC 5510 w/ Tractor
C. Itoh 25 cps

T1 810 Basic

SOFTWARE
Word Star

2.588
4.450
3.596

Spell Guard

Prices subject to change without notice

We are buying agents for overseas
computer dealers. Export services
available.

International Telex 470851

The Purchasing Agent
1635 School Street, Suite 101
Moraga, CA 94556

(415) 376-9020

172  August 1981 © BYTE Publications Inc

prepared in a second Form. As each
image is completed, the two Forms
exchange roles, causing the new
image to be displayed and making the
Form with the old image available for
building the next image in sequence.

Graphical Manipulation—BitBIt

To support a wide range of
graphical presentation, we have
specified a kernel operation on Forms
that we call BitBlt. All text and
graphic objects in Smalltalk are
displayed and modified using this
single graphical primitive. The author
wrote the original design in October
1975 with the advice and support of
Diana Merry. After five years' ex-
perience, we have felt the need for
only minor changes, and these im-
provements are largely due to Bob
Flegal and Bill Bowman. The re-
mainder of this article describes the
current BitBlt primitive in detail—its
specification, examples of its use,
and, finally, the details of its im-
plementation.

One of the first computers on
which a Smalltalk system was im-
plemented had an instruction called
BLT for block transfer of 16-bit
words. The name BitBlt derives from
the generalization of data transfer to
arbitrary bit locations, or pixels.
BitBlt is intentionally a very general
operation, although most applica-
tions of it are graphically simple, such
as “move this rectangle of pixels from
here to there.”

A specific application of BitBlt is
governed by a list of parameters that
includes:

® destForm—a Form into which pixels
will be stored by BitBlt
esourceForm—a Form from which
pixels may be copied

e halftoneForm—a Form containing a
spatial halftone pattern

e combinationRule—an Integer speci-
fying the rule for combining cor-
responding pixels of the sourceForm
and destForm

edestX, destY, width, height—
Integers specifying the rectangular
subregion to be filled in the destina-
tion

e clipX, clipY, clipWidth, clipHeight—
Integers specifying a rectangular

boundary that further restricts the af-
fected region of the destination

e sourceX, sourceY—Integers specify-
ing the location (top left) of the
subregion to be copied from the
source

In the remainder of this section, we
examine the effect of each of these
parameters in greater detail.

Source and Destination Forms

Figure 2 illustrates the process of
copying a character of text into a
region on the display. This operation
will serve to illustrate most of the
characteristics of BitBlt. The copy
operation involves two Forms, a
source and a destination. The source
in this example is a font containing a
set of character glyphs depicted in
some uniform style and scale and
packed together horizontally. Pixels
are copied out of the source (the font)
and stored into the destination (the
display). The width and height of the
transfer correspond to the character
size. The source x and y coordinates
give the character’s location in the
font, and the destination coordinates
specify the position on the display
where its copy will appear.

Clipping Rectangle

In its specification, BitBlt includes a
rectangle that limits the region of the
destination that can be affected by its
operation, independent of the other
destination parameters. We call this
rectangle the clipping rectangle.
Often it is desirable to display a par-
tial window onto larger scenes, and
the clipping rectangle ensures that all
picture elements fall inside the
bounds of the window. By its inclu-
sion in the BitBIlt primitive, the clip-
ping function can be done efficiently
and in one place, rather than being
replicated in all application pro-
grams. Figure 3 illustrates the result
of imposing a clipping rectangle on
the example of figure 2. Pixels that
would have been placed outside the
clipping rectangle (the left edge of the
“N” and half of the word “the”) have
not been transferred. If other
characters had fallen above or below
this rectangle, they would have been
clipped similarly.

Circle 369 on inquiry card. sep



20 30 40

50 60 70 80

11

11
1

jEnanl

11
11

0 10
0
destForm:
10 H
clipX = 6
clipY = 4
clipwidth = 58 20 =
clipHeight = 23
30
40

Figure 3: An example of using a clipping window on the illustration in figure 2.

Halftone Form

It is often desirable to fill areas with
a regular pattern that gives the effect
of gray shading or texture. To this
end, BitBlt provides for reference to a
third Form (halftoneForm) containing
the desired pattern. This Form is

restricted to a height and width of 16.
When halftoning is specified, this pat-
tern is effectively repeated every 16
units horizontally and vertically over
the entire destination. There are four
“modes” of supplying pixels from the
source and halftone controlled by

eliding (supplying nil for) sourceForm
or halftoneForm:

® Mode 0—No source, no halftone
(supplies solid black)

® Mode 1—Halftone only (supplies
halftone pattern)

Peachtree Software”Announces

SALES TRACKER

olved’ The case of ineffective business
control. Now Sales Tracker microcompu-
ter software gives business managers
unprecedented control over lifestream
activities.
You get ANSI COBOL, floppy and hard
disk support, and a modular format that
lets you install packages as you need them.
And look at these outstanding features.
Accounts Receivable: Multiple com-
panies on one disk. Nine selectable re-
ports including G/L sales and receivables,
customer classes, and sales tax routines.
Sales Analysis: Reports by salesman

(with commission), product class, inventory item, cus-
tomer, item by customer, and customer by item.

Order Processing: Handles multiple
shipping locations, automatic discount-
ing, partial shipments, back orders,
demand invoicing, full order status and
maintenance.

Inventory: Multiple companies on one
disk; reports by class, warehouse, price
level and quantity break; automatic
price updating; maintains items option-
ally by case, lot or serial number.

Clues to why Sales Tracker is so easy to
use? Excellent documentation, sample
data files, conversant menu-driven pro-

grams, and standardized formats. For information call

800-835-2245 ext. 35 (Kansas, 800-362-2421, ext. 35)

PEACHTREE
SOFTWARE

PEACHTREE SOFTWARE, 3 Corporate Square, Suite 700, Aclanta, Georgia 30329 (404) 325-8533
Telex I1: 810-751-0273 PEACHTREE ATL

Peachtree Software and Sales Tracker are trademarks of Peacheree Software Incorporated

174  August 1981 © BYTE Publications Inc

Circle 304 on inquiry card.

Circle 267 on inquiry card.




mode 0
all ones

®Mode 2—Source only (supplies
source pixels)

e Mode 3—Source AND halftone
(supplies source bits masked by
halftone pattern)

Figure 4 illustrates the effect of these
four modes with the same source and

halftone only

mode1l mode 2

source only

Figure 4: BitBlt's four possible source modes.

destination and a regular gray
halftone.

Combination Rule

The examples above have all stored
their results directly into the destina-
tion. There are actually many pos-
sible rules for combining each source

D Destination Before

Source Before S

D’ Destination After

Figure 5: A BitBIt combination diagram. This diagram, when filled in, specifies the ef-
fects of a given combination (or “rule”) on all combinations of dark and light source and
destination cells. Each combination is given a number equal to the sum of the cells that

are darkened. See figure 6 for examples.

mode 3
source AND halftone

element S with the corresponding
destination element D to produce the
new destination element D’. Such a
rule must specify a white or black
result for each of the four cases of
source being white or black and
destination being white or black.
Figure 5 shows a box with four cells
corresponding to the four cases en-
countered when combining source (S)
and destination (D). For instance, the
cell numbered 2 corresponds to the
case where the source was black and
the destination was white. By ap-
propriately filling the four cells with
white or black, the box can be made
to depict any combination rule (there
are sixteen possible rules altogether).
The numbers in the four cells relate
the rule as depicted to the integer
value that selects that rule. For in-
stance, to specify that the result

PROTECT YOUR HARDWARE
FROM THE UNEXPECTED.

Not to mention the unavoidable pollutants in the air.
Performance robbing dust, grime, spills and static electricity.
Cover Craft Dust Covers help extend the useful life. of
your computer equipment at a fraction of the cost

Perhaps that’'s why more people throu

rely on Cover Craft Dust Covers tha

. Amherst, NH 03031  (603) 889-6811

176  August 1981 © BYTE Publications Inc

Circle 92 on inquiry card.



ME
rule 3
D=S

should be black wherever the source
or destination (or both) was black,
we would blacken the cells numbered
4, 2, and 1. The associated integer for
specifying that rule is the sum of the
blackened cell numbers, or 4 + 2
+1=7.

Figure 6 illustrates four common
combination rules graphically. Each
is described by a combination
diagram, its integer rule number, and
the actual logical function being ap-
plied. The earlier case of ORing can
be seen in left center of the figure.
This case is often described as paint-
ing “under” the destination because
existing black areas remain black.

Smalltalk Access to BitBlt

In this section, we present the
Smalltalk interface to BitBlt and take
a detailed look at the application of
BitBlt to text display and line draw-
ing. In preparation, you will need
some additional context, which we
present here before describing class
BitBIt.

Besides class Form, two additional
classes are used extensively in work-
ing with stored images, Point and Rec-
tangle. Points contain x and y coor-
dinate values and are used for refer-
ring to pixel locations relative to the
top left corner of a Form (or other
point of reference). By convention, x
increases to the right and y down,
consistent with the layout of text on a
page and the direction of TV scan-
ning. A Rectangle contains two
Points: origin, which specifies the top
left corner, and corner, which in-

178  August 1981 © BYTE Publications Inc

D'=SORD

rule 7

rule 1
D' = SANDD

Figure 6: Four common combination rules.

dicates the bottom right corner of the
region described. Class Point pro-
vides protocol for access to the coor-
dinates and for various useful opera-
tions such as translation and scaling.
Class Rectangle provides protocol for
access to all the coordinates involved
and other operations such as intersec-
tion with other rectangles. It may be
useful to note the parallel between
classes Point, Rectangle, Form and
classes Number, Interval, Indexed-
Collection. Numbers index Collec-
tions and Points index Forms. Inter-
vals select subCollections, and Rec-
tangles select subForms.

Figure 7 shows the complete
representation of the Form shown in
figure 1. The width and height are
stored as Integers. The actual pixels
are stored in a separate instance of
class Bitmap. Bitmaps have almost no
protocol, since their sole purpose is to
provide storage for Forms. They also
have no intrinsic dimensionality,
apart from that projected by their
own Form, although the figure retains
this structure for clarity. It can be
seen that space has been provided in

=n
rule 6
D' = SXORD

the Bitmap for a width of 16; this is a
manifestation of the hardware
organization of storage and process-
ing into 16-bit words. Bitmaps are
allocated with an integral number of
words for each row of pixels. The in-
tegral constraint on row size
facilitates movement from one row to
the next during the operation of BitBlt
and during scanning of the display
screen by the hardware. While this
division of memory into words is
significant at the primitive level, it is
encapsulated in such a way that none
of the higher-level graphical com-
ponents in the system need consider
word size.

Class BitBIt

The most basic interface to BitBlt is
through a class of the same name.
Each instance of BitBIt contains the
parameters necessary to specify a
BitBlt operation. The BitBIt protocol
includes messages for initializing the
parameters and one message,
copyBits, that causes the primitive
operation to take place. The class
template for BitBIt is given in table 1.

0 10

i S

Form O 1111
111

bitmap F H
width = 8 !
1

height = 16 1011

| | i B

—4+HH+H

Figure 7: The complete representation of figure 1.

Circle 254 on inquiry card. s=p



BitBIt

class name

*

superclass

Object

instance variable names

destForm sourceForm halftoneForm
combinationRule destX destY width height
clipX clipY clipWidth clipHeight
sourceX sourceY

instance messages and methods

setup

destForm — form]1.
sourceForm — form2.
halftoneForm — form3.
combinationRule — rule.

destX — destRectangle minX.

destY — destRectangle minY.
width — destRectangle width.

clipX — clipRectangle minX.
clipY — clipRectangle minY.

sourceForm = = nil ifFalse:
[sourceX — sourceOrigin X.
sourceY — sourceOrigin y].
self copyBits

operations

copyBits | | < primitive >

destForm: form1 sourceForm: form2 halftoneForm: form3 rule:
rule destRectangle: destRectangle clipRectangle: clipRectangle
sourceOrigin: sourceOrigin | |

height — destRectangle height.

clipWidth — clipRectangle width.
clipHeight — clipRectangle height.

Table 1: Class template for class BitBIt.

The state held in an instance of BitBIt
allows multiple operations in a
related context to be performed
without the need to repeat all the

setup. For example, when displaying
a scene in a display window, the
destination Form and clipping rec-
tangle will not change from one

operation to the next. This situation
occurs frequently in the graphics
kernel, as demonstrated in the follow-
ing section.

Image Synthesis of Text

Much of the graphics in the
Smalltalk system consists of text and
lines. These high-level entities are
synthesized by repeated invocation of
BitBIt. In this section and the next, we
examine these two important applica-
tions more closely.

One of the advantages derived
from BitBIt is the ability to store fonts
compactly and to display them using
various combination rules. The com-
pact storage arises from the possibili-
ty of packing characters horizontally
one next to another (as shown in
figure 2), since BitBIt can extract the
relevant bits if supplied with a table
of left x coordinates of all the
characters. This is called a strike for-
mat, from the typographical term
meaning a contiguous display of all
the characters in a font.

The scanning and display of text is
performed in the Smalltalk-80 system
by a subclass of BitBIt. This subclass
inherits all the normal state, with
destForm indicating the Form in
which text is to be displayed and
sourceForm indicating a Form con-
taining all the character glyphs side
by side (as in figure 2). In addition,
this subclass defines further state in-
formation, including:

etext—a String of Characters to be
displayed

e textPos—an Integer giving the cur-
rent position in text

Bower-Stewart & ASSOCIates sormware AND HARDWARE DESIGN
$GOLD DISK$ CP/M® Compatible Z-80 Software

Available for all 8-5” SS-SD IBM format systems including TRS-80®, Northstar, SD Systems. Also available on 5" double density Superbrain®

Un-can your canned software! Great looking letters & reports!
$175. $50.

Z-80 Disassembler Feel couped up with your E-Z Text A unique word processor organized
canned software? Our Z-80 Disassembler around user-created text files, embellished

ppd recreates assembly language source files from ppd with simple control commands, which supports
absolute code enabling users to easily tailor such ‘BIG GUYS' features as Automatic Foot-
programs to meet their specific needs. The noting, Table Spacing, Heading, Paging, Left
Preconditioner works with the Disassembler to & Right Margins, Proportional Spacing and
decode ASCII. i MORE, at a ‘LITTLE GUYS' price tag.
Credit cards: Immediate service. free 24 hr phone - we will w c,...,cw State system & controller. Allow time for surface mail
credit invoice. Checks. M.O.'s' Ten workday hold CA res Add tax |l BN J Trademarks: Digital Research, Radio Shack. Intertec

POST OFFICE BOX 1389 HAWTHORNE, CALIFORNIA 90250 213 / 676-5055

180  August 1981 © BYTE Publications Inc Circle 37 on inquiry card.



Listing 1: The scanWord: method scans or prints text.

scanWord: endRun

| charindex |

< primitive >

[charindex > endRun] whileTrue:
[charindex — text at: textPos.

(exceptions at: charindex) > 0O

“May be implemented internally for speed”

“‘pick character””
“check exceptions”

ifTrue: [1 exceptions at: charindex].

sourceX — xTable at: charindex.

“left x of character in font"*

width — (xTable at: charindex + 1) — sourceX. “up to left of next char”

printing ifTrue: [self copyBits].
destX — destX + width.

destX > stopX ifTrue: [t stopXCode].

textPos — textPos + 1].
textPos — textPos — 1.
! endRunCode

e xTable—an Array of Integers giving
the left x location of each character in
sourceForm

estopX—an Integer that sets a right
boundary past which the inner loop
should stop scanning
eexceptions—an Array of Integers
that, if non-zero, indicate that the
corresponding characters must be
specially handled

Once an instance has been initialized
with a given font and text location,
the scanWord: loop given in listing 1
will scan or print text until some

“print the character”’
*“‘advance by width of character”
“passed right boundary”’

“advance to next character’’

horizontal position (stopX) is passed,
a special character (determined from
exceptions) is found, or the end of
this range of text (endRun) is reached.

The check on exceptions handles
many possibilities in one operation.
The space character may have to be
handled exceptionally in the case of
text that is padded to achieve a flush
right margin. Tabs usually require a
computation or table check to deter-
mine their width. Carriage return is
also identified in the check for excep-
tions. Character codes beyond the

range given in the font are detected
similarly and are usualiy handled by
showing an exceptional character,
such as a little lightning bolt, so that
they can be seen and corrected. The
printing flag can be set false to allow
the same code to measure a line
(break at a word boundary) or to find
where the cursor points. While this
provision may seem over-general,
two benefits (besides compactness)
are derived from that generality.
First, if one makes a change to the
basic scanning algorithm, the parallel
functions of measuring, printing, and
cursor tracking are sure to be syn-
chronized. Second, if a primitive im-
plementation is provided for the
loop, it exerts a threefold leverage on
the system performance. The scan-
Word: loop is designed to be
amenable to such primitive im-
plementation; that is, the interpreter
may intercept it and execute primitive
code instead of the Smalltalk code
shown. In this way, much of the
setup overhead for copyBits can be
avoided at each character, and an en-
tire word or more can be displayed

182  August 1981 © BYTE Publications Inc

Circle 271 on inquiry card.



Circle 2 on inquiry card.

SPECTACULAR

OFFERS

BASF “FLEXYDISK"...

Superior Quality data Q\
storage medium.

Certified and guaranteed

100% error free, L'

SINGLE SIDED-SINGLE DENSITY

5%" or 8" Diskettes............. 10/524
5%" or 8” Vinyl Storage Pages ..... 10/$5

MAXELL- DISKETTES

The best quality

diskette money can buy.
Approved by Shugart

and IBM.

Sold only in boxes of 10

D sldel i s e
8%ileside iR s .
LR 2 A S R g 54 25
B 2kside T Sl e e $5.60

ALL MAXELL DISKETTES ARE DOUBLE DENSITY

LIBRARY CASE...
3-ring binder album.
Protects your valuable
programs on disks
Fully enclosed and
protected on all sides.
Similar to Kas-sette storage box.

Library 3-Ring Binder.............. $6.50
5%4” Mini Kas - sette/10 ............ $2.49
8 Kas-setle/ 100 .5 v o vaveinstonmiaisios $2.99

DISKETTE DRIVE HEAD CLEANING KITS i
Prevent head crashes and

insure efficient, error-

free operation.

LYo P N R e R b 2 $19.50

SFD CASSETTES

C-10 Cassettes........... 10/$7 g
(All cassettes include box & labels)
Get 8 cassettes,C-10 sonic and
Cassette/8 library album for
O Y N s s e e $8.00

(As illustrated)
.
|

5%" Applicator $3  5%4” Hardholes $6
8" Applicator $4  50/8” Hardholes $8

VISA ® MASTERCHARGE ® MONEY ORDERS
CERTIFIED CHECK ® FOR PERSONAL CHECKS
ALLOW TWO WEEKS e C.O.D. REQUIRES A 10%
DEPOSIT e CAL. RES. ADD 6% SALES TAX
MIN $2 SHIPPING & HANDLING e MINIMUM
ORDER $10 ® SATISFACTION GUARANTEED
OR FULL REFUND
Write for our free catalog

HARDHOLE
Reinforcing ring of
tough mylar protects
disk from damage

PRODUCTS
8868 Clairemont Mesa Blvd.
San Diego, CA 92123

Toll Free

1-800-854-1555

For Orders Only

For information or California orders

(714) 268-3537

184  August 1981 © BYTE Publications Inc

Listing 2: The drawlLoopX:Y: method draws lines.

drawlLoopX: xDelta Y: yDelta
| dxdypxpypi |
< primitive >
dx — xDelta sign.
dy — yDelta sign.
px — yDelta abs.
py — xDelta abs.

self copyaBits. “first point””
py > px
ifTrue: “more horizontal’’
p — py/ /2.
1 to: py do:
[:i | destx — destx + dx.

(p — p — px) < O ifTrue: [desty — desty + dy.p — p + pyl.

self copyaBits]]
ifFalse:
[p— px /2.
| to: px do:
[:i | desty — desty + dy.

“more vertical”’

(p — p — py)<O ifTrue: [destx — destx + dx. p — p + px].

self copyaBits]]

Listing 3: Methods for image magnification. @ is a shorthand message that returns a
new Point whose x-value is the receiver (on the left) and whose y-value is the argument
(on the right). Points respond to the + and * messages by distributing them over each

of the coordinates.

magnify: rect by: scale spacing: spacing

| wideForm bigForm |

““First expand horizontally’

wideForm — Form extent: (rect width * scale x) @ rect height.
wideForm spread: rect from: self by: scale x
spacing: spacing x direction: 1 @ O.

bigForm — Form extent: rect extent * scale.

“Then expand vertically”

bigForm spread: wideForm asRectangle from: wideForm by: scale y

spacing: spacing y direction: O @ 1

I bigForm

spread: rect from: sourceForm by: scale spacing: spacing

direction: dir
| slice sourcePt |

slice — Rectangle origin: 0 @ O extent: dir transpose * self extent + dir.

sourcePt — rect origin.
1 to: (rect extent dot: dir) do:
gl “slice up the original image"’

“transpose returns a Point with swapped coordinates’’
“dot product selects direction of stretch”

self copy: slice from: sourcePt in: sourceForm rule: STORIng.
sourcePt — sourcePt + dir. slice moveby: dir x scale].

| to: scale — spacing — 1 do:

i | “‘smear out the slices, leave some space”’

self copyAllTo: 1 @ O in: self rule: ORIng]

directly. Conversely, the Smalltalk
text and graphics system requires im-
plementation of only the one
primitive operation to provide full
functionality.

Line Drawings, Image Synthesis
The same design principle applies
in the support for drawing lines. By
using BitBIt, one algorithm can draw
lines of varying widths, different
halftone “color,” and any combina-

tion rule. To draw a line, an instance
of BitBlt is initialized with the ap-
propriate destination Form and clip-
ping window, and with a source that
can be any Form to be applied as a
pen shape along the line. Starting
from the stored destX and destY, the
line-drawing loop, drawlLoopX:Y:
(listing 2), accepts x and y delta
values and x and y step values as
necessary, calling copyBits at each
point along the line. The method used



Circle 120 on inquiry card.

is the Bresenham plotting algorithm
(IBM Systems Journal, Volume 4,
Number 1, 1965). It chooses a prin-
cipal direction and maintains a
variable, p. When p's sign changes, it
is time to move in the minor direction
Ad ; :
as well. This procedure is another
ULTIMATE SOFTWARE PLAN i P
17 (New itoms or new prices) na.turi'a.l unit to be 1mp]emente<?l as a
primitive, since the computation is
We'll match any advertised pric? Combine our price protection trivial and the setup in copyBits is
on any item that we carry. And i with the availability of full profes- : 4
you find a lower price on what you sional support and our automatic a.lmost all constant from one invoca
bought within 30 days of buying update service and you have the tion to the next.
it, just show us the ad and we'll Ultimate Software Plan.
refund the difference. It's a convenient, uncomplicated, 2
It's that simple. logical way to get your software. Image Processing
CP/M users: specify disk systems and formats. Most formats available hwe havedsee.n hO;:V BfltBlt C?n COpy
shapes an in the foregoing ex-
MICROSOFT “PASCAL" P h g IOEEBOME
CP/M Basic-80 $200/530  Pascal/MT+ $429/830 amples, how repeated invocation can
Basic Compile /$ 'ascal/ . .
ARTIFICIAL INTELLIGENCE FortranB0. .- $349/$30 +~ Pascal/UCSD $399/$50 synthesize more complex images such
Medical(PAS-3) $849/$40  (ho)-80 $574/$30  Pascal/M $149/520 ; : 5
Dental (FASS) $849/$40  \.Sort $124/530  -wORD PROCESSING" as text and lines. BitBlt is also useful
ASYST DESIGN Macro-80 $144/820 . wordSearch $179/$50 . }‘I g 1 . Ay
Prof Time Billing $549/$40  Edit-80 $ 84/520 " gpeliGuard $200/$25 in the manipulation of existing
General Subroutine. . .$269/$30 MuSimp/MuMath $224/825 VTS/80 $259/$65 o ] b
Application Utilities. .. $439/$30  MuLisp-80 $174/520  Magic Wand $289/545 images. For example, text can be
COMPLETE BUS. SYSTEMS ORGANIC SOFTWARE Spell Binder $349/$45 ;
Creator $269/525  ToxtWrter I $111/520  -OTHER GOODIES" ma(ile to look bold by ORing over
Reporter 169/$ ateBook Il / 4 H H 3 3
Both $399/545  Milestone $260/525  Sioenone pip b itself, Sh‘ﬂe"i right by one pl’fel' Just
COMPUTER CONTROL OSBORNE Target $189/530 as complex images can be built from
Fabs (B-tree) $159/820 General Ledger $ 59/820 BS AM‘ $149/815 ;i A
UltraSort 11 $159/525  AcctRec/AcctPay. .. $ 59/820 LI $,89/50 simple ones, complex processing can
ayroll w/Cos ny mpiler . o %
COMPUTER PATHWAYS AIl3 $129/S60  CBASIC-2 s 98/520 be achieved by repeated application
Pearl (level 1) $ 99/825 ) 3 + CBASIC-2 $199/s75  Nevada Cobol $129/$25 . :
Pearl (level 2) $209/$40 2 MicroStat $224/$20 of simple operations. Here, we pre-
+ Pearl (level 3) $549/$50 EEACHITREdE S%00 5h0 N Vedlt $105/515 /
DIGITAL RESEARCH oo s3g9/sa0  ESGA. $1349/$50 sent three examples of such structural
CP/M 22 iniMode! ; ; st
NornStar .. . s149/825 it gt s StatPak $449/540 manipulation: magnification, rota-
5 odel + 159/ | $399/$40 . .
Micropolis s160/825 i o 23‘.?,9/80 $224/595 tion, and the game of Life. These ex-
cO - . .
PL;/ggo sa50/535 Bty M te-up. $700/940  Sing/80 (source). ....$279/$na amples were devised by the author in
A 1 ¢ -
Mac s 8slEtey . Melling Address SA9/340 APPLE II * collaboration with Ted Kaehler.
Sid $ 65/$15 SOFTWARE WORKS 5
v 2:Sid S 90/s12  Adapt(CDOStoCP/M).$ 69/Sna  INFO UNLIMITED As we shall see in the next two sec-
v~ Tex $ 90/$15 Ratfor $ 86/Sna EasyWriter $224 < z % D
DeSpool $.50/810' * ‘35O GROUP Datadex s349 tions, many applications of BitBlt are
D.M.A. MatchMaker $ 97/820 1 918
BMA S L e e 3177/350  MICROSOFT very simple, such as filling a Form
OMA-D0S $19/535  STRUCTUREDSYSTEMS e with white, or copying all of one
GL or AR or AP or Pay. .$599/84 & 5
Formula $539/845  Inventory Control  $500/540 i e it Form to some location in another.
5 Magic Worksheet $219/84 .
82‘:55’3;323"" sToRrei0" SAnalt $199/525 m:&s‘g; % 3209 Smalltalk provides for such casual
$729/840 Letteright $179/825 o 5
rrizgiss tog S720/340  QSort s-eo/s20) WO/ Mungs - Sas0 use of BitBIt through a wide range of
Job Cost $729/$40 "
Payroli 1l s73uay o SURERSOET « 4o/s20  PERSONAL SOFTWARE simple messages to class Form, such
Inventory Il $729/$40 Diagnostic Il $ 84/820 Visicalc s 99 <
Payroll $493/840 Disk Doctor $ 84/$20 Visicalc Il $159 as:
Inventory $493/840 Forth (8080 or Z80) $149/825 CCA Data Mgr $ 84
Cash Register $493/%40 Fortran $219/$30 Desktop/Plan Il $159 ¥ ;
bl $493/840  Fortran w/Ratfor. | . .$289/835  ySieTT e someForm fillAll: white.
Medical $729/$40 Other less 10% Visiplot $149 someForm Copy/\“To:
Dental $729/840 TCS Visitrend/Visiplot $229 5 ;
MICRO-AP GLorARorAPorPay..$ 79/$25 Zork s 34 destLocation in: destForm.
S-Basic soeg/s25 A4 $269/599  PEACHTREE®
Selector IV $469/$35 UNICORN 5 (jgg[eéae}cl.eelsgﬁg gggiggg
MICRO DATA BASE SYSTEMS  &u1CC, 3 29/335  AcctPayable 224240 || We will not list all such messages
HDBS $269/$35 Both $189/$50 Payroll $224/340 h In th 1 hat foll h
MDBS $795/$40  Amothyst $299/575  Inventory $224/$40 ere. In the examples that tollow, the
DRS or QRS or RTL ~$269/535 e oo, 3
MDBS PKG $1295/60  WHITESMITHS DIHES! $450/550 reader should be able to infer the
MICROPRO C" Compiler . $600/$30 /3U :SSE(usewNusxcalc] $ 49/ 1 f th d
Worastor s319/560 P;:(:.:: :nAc; Ec ) $850/545 Superfoxt 5127 meaning from the message names an
ustomization Notes.. $ /$na | - Data Factory $1 1 1
Mail-Merge $109/525  FMS-80 $649/545 DB Master $184 the accompanying explanations.
WordStar/Mail-Merge $419/$85 dBASE Il $629/850 OEM (complete
DataStar $249/560 gondor : :ggg/igg accting) $399 . M ﬁ
WordMaster $119/540 ondor | / Charles Mann less 15 if1 1
SuperSort | $199/840 Access/80 $749/850 STC less 15% Iagnl cfahon f 1 f
3 t is often use to magnify an
ORDERS ONLY— CALL TOLL FREE VISA - MASTERCHARGE ] ; 1 L AEY g
1-800-854-2003 ext. 823 - Calif. 1-800-522-1500 ext. 823 image for closer scrutiny an
Overseas—add $10 plus additional postage * Add $2.50 postage and handling per each item « California especia"y to a]]ow convenient altera-
residents add 6% sales tax « Allow 2 weeks on checks, C.O.D. ok « Prices subject to change without notice g
All items subject to availability « ® —Mfgs. Trademark tion of stored Forms. Photo 1 shows
THE DISCOUNT SOFTWARE GROUP : : idi
6520 Selma Ave. Suite 309 + Los Angeles, Ca. 90028 - (213) 666-7677 this function providing user control
Int1 TELEX 499-0032 BVHL Attn: DiscSoft « USA TELEX 194-634 BVHL Attn: DiscSoft « over the font used for display of text.
TWX 910-321-3597 BVHL Attn: DiscSoft

186  August 1981 © BYTE Publications Inc Circle 289 on inquiry card. =



Listing 4: The rotate method. This method rotates an image of size 2" by 2" one quarter-

turn clockwise.

rotate | mask temp quad |
temp — Form extent: self extent.
mask — Form extent: self extent.

“set up the first mask’’

mask copy: mask asRectangle halftone: white rule: STORINgG.
mask copy: mask asRectangle/2 halftone: black rule: STORINg.
quad — self width/2. “the size of a quadrant”

[quad > = 1] whileTrueDo:
[ “First exchange left and right halves”

mask copyAllTo: 0 @ O in: temp rule: STORING.
mask copyAllTo: 0 @ quad in: temp rule: ORing.
self copyAllTo: O @ O in: temp rule: ANDIng.

temp copyAllTo: 0 @ O in: self rule: XORIng.

temp copyAllFrom: quad @ O in: self rule: XORing.
self copyAllTo: (0 — quad) @ 0 in: self rule: ORINg.
temp copyAllTo: quad @ O in: self rule: XORing.

“Then flip the diagonals™”

self copyAliTo: 0 @ O in: temp rule: STORING.

temp copyAllFrom: quad @ quad in:-self rule XORIng.
mask copyAllTo: 0 @ O in: temp rule: ANDIng.

temp copyAliTo: O @ O in: self rule: XORIng.

temp copyAllTo: quad @ quad in: self rule: XORing.

“Compute the next fine mask’

mask copyAllIFrom: (quad/2) @ (quad/2) in: mask rule: ANDIng.
mask copyAllTo: quad @ O in: mask rule: ORing.
mask copyAllTo: O @ quad in: mask rule: ORing.

quad — quad/2]

The character for “Z” has been
presented magnified nine times. Using
a pointing device, the user has
blackened some cells to provide a
European style “Z,” and the result can
be seen in both the upper-left and
lower-right windows on the screen.
A simple way to magnify a stored
Form would be to copy it to a larger
Form, making a big dot for every
little dot in the original. For a height h
and width w, this would take h X w

self wideForm wideForm

1 [E===

operations. The algorithm presented
in listing 3 (as two messages to class
Form) uses only a few more than
h + w operations.

The magnification proceeds in two
steps. First, it slices up the image into
vertical strips in wideForm separated
by a space equal to the magnification
factor. These are then smeared, using
the ORing function, over the in-
tervening area to achieve the horizon-
tal magnification. The process is then

bigForm bigForm

Figure 8: Magnification with BitBIt. See the text for more details.

repeated from wideForm into
bigform, with horizontal slices
separated and smeared in the vertical
direction, achieving the desired
magnification. Figure 8 illustrates the
progress of the above algorithm in
producing the magnified “Z” shown
in photo 1.

Rotation

Another useful operation on
images is rotation by a multiple of 90
degrees. Rotation is often thought to
be a fundamentally different opera-
tion from translation, and this point
of view would dismiss the possibility
of using BitBlt to rotate an image.
However, the reader must consent
that the first transformation shown in
figure 9 is a step toward rotating the
image shown: all that remains is to
rotate the insides of the four cells that
have been permuted. The remainder
of the figure shows each of these cells
being further subdivided, its cells
being similarly permuted, and so on.
Eventually each cell being considered
contains only a single pixel. At this
point, no further subdivision is re-
quired, and the image has been
faithfully rotated!

Each transformation shown in
figure 9 would appear to require suc-
cessively greater amounts of com-
putation, with the last one requiring
several times more than h X w
operations. The tricky aspect of the
algorithm below is to permute the
subparts of every subdivided cell at
once, thus performing the entire rota-
tion in a constant times log,(h) opera-
tions. The parallel permutation of
many cells is accomplished with the
aid of two auxiliary Forms. The first,
mask, carries a mask that selects the
upper left quadrant of every cell; the
second, temp, is used for temporary
storage. A series of BitBlt operations
exchanges the right and left halves of
every cell, and then another series ex-

Figure 9: Image rotation with BitBIt. See the text for more details.

188  August 1981 © BYTE Publications Inc



1 2 3 4 5 6 /.
g Eg AlB AlB 0[B o[B BB BlA
D|C D|C D|C _07*@ 0|C CJC C|D
pHbASTS M 4 AND XOR XOR XPR
and right _)k SN i ol
G 1/0 110 A|O AlO AB| O AB| O AB| O
0|0 10 D|0O D|O CD| O ICD| O CD| 0
sstheny
8 9 10 11 12
i FB-TI B|A B|A D|A DA M means
: LC_BI Cc|D Cc|D Cc|D C|B the quadrant mask
exchange M K\
: XOR A XOR XOR
diagonals. . Ny _\rrz AB here
faiis: B|A BD| ? BD| 0 BD{ 0 BD| O means A XOR B
C|D ? 0|0 0|0 0]0
Figure 10: Permuting four quadrants of a cell.
changes the diagonal quadrants, probably well known to readers of the 1s bit, 2s bit, and 4s bit of the

achieving the desired permutation.
The complete method for rotation is
given in listing 4.

Figure 10 traces the state of temp
and self after successive operations.
The offsets of each operation are not
shown, though they are given in the
prcyram listing. After twelve opera-
tions, the desired permutation has
been achieved. At this point, the
mask evolves to a finer grain, and the
process is repeated for more, smaller
cells. Figure 11 shows the evolution of
the mask from the first to the second
stage of refinement. The reader will
note that the algorithm presented
here for rotation is applicable only to
square forms whose size is a power of
two. The extension of this technique
to arbitrary rectangles is more in-
volved and is left as an exercise for
the reader. A somewhat simpler exer-
cise is to apply the above technique to
horizontal and vertical reflections
about the center of a rectangle.

The Game of Life

John Conway’s game of Life is

BYTE. It is a fairly simple rule for
successive populations of a bitmap.
The rule involves the neighbor count
for each cell—how many of the eight
adjacent cells are occupied? Each cell
will be occupied in the next genera-
tion if it has exactly three neighbors,
or if it was occupied and has exactly
two neighbors. This is explained as
follows: three neighboring organisms
can give birth in an empty cell, and
an existing organism will die of ex-
posure with less than two neighbors
or from overpopulation with more
than three neighbors. Since BitBlIt
cannot add, it would seem to be of no
use in this application. However,
BitBlt's combination rules do include
the rules for partial sum (XOR) and
carry (AND). With some ingenuity
and a fair amount of extra storage,
the next generation of any size of bit-
map can be computed using a con-
stant number of BitBlt operations.
Listing 5 gives the method for next-
LifeGeneration. As shown in figure
12, the number of neighbors is rep-
resented using three image planes for

i

.,
8100Q

Figure 11: Refinement of the quadrant mask.

190  August 1981 © BYTE Publications Inc

neighbor count in binary. The 8s bit
can be ignored, since there are no sur-
vivors in that case, which is equiva-
lent to zero (the result of ignoring the
8s bit). This Smalltalk method is
somewhat wasteful, as it performs the
full carry propagation for each new
neighbor, even though nothing will
propagate into the 4-plane until at
least the fourth neighbor. Some
readers may enjoy improving upon
this algorithm.

Many other image-processing tasks
can be performed with BitBlt. The
author has built a complete optical
character-recognition system for San-
skrit text using the various combina-
tion rules and an operation that
counts the number of black bits in
any rectangle (how would you do
it?).

Bitmap processing is ideally suited
to VLSI (very large scale integration)
implementation. Readers who are in-
terested in this direction should check
the proceedings of the Design
Automation Conference, June 1981,
for “Parallel Bitmap Processor,” by
Tom Blank, Mark Stefik, and Willem
vanCleemput.

Efficiency Considerations
Our original specification for BitBlt

has been published elsewhere

Circle 59 on inquiry card. eep



Circle 248 on inquiry card.

SUPERBRAIN
BvINTERTEC

SRR BRI,

64K Double or Quad Density units available. Uses
two Z-80 CPU's. Commercial-type terminal with
12" monitor. Dual double density minifloppies.
Over 350 kilobytes of storage (twice that with quad
density drives). Two serial RS232 ports, 1/O ports
standard. Expandable with optional S-100

interface. Comes with CP/MTM 2.2 operating sys-
tem. MiniMicroMart can supply a wide range of
CPI/M development and application software.

w/64K Double Density, List $3495 . . $2869
w/64K Quad Density, List $3995. . ... $3395

A -acianc
HP-41CV
$259

zgl__ﬂl data
systems

. ....Z219 Video Terminal
: 1 Limited
Time

$799

List $995
U2} o rlnnn HP-85A

SO Desk-Top
AT
o YA

Computer
\ List
\ $3250

us$2250 Special $1749

F.0.B. shipping point. All prices subject to change and all
offers subject t> withdrawal without notice. Advertised prices

are for prepaid orders. Credit card and C.0.D. 2% higher.
C.0.D. may require deposit.

— WRITE FOR FREE CATALOG —

- - -
MiniMicroMart
1618 James Street
Syracuse, NY 13203 (315) 422-4467

192  August 1981 © BYTE Publications Inc

Listing 5: The nextLifeGeneration method. This method calculates the next Life genera-
tion given the BitBlt bitmap of the current generation. See figure 12.

nextLifeGeneration | nbrl nbr2 nbr4 carry2 carry4 |

nbrl — Form new extent: self extent + (2 @ 2).
nbr2 — Form new extent: self extent + (2 @ 2).

“temp areas larger by 1"
*“bit all around”*

nbr4 — Form new extent: self extent + (2 @ 2).
carry2 — Form new extent: self extent + (2 @ 2).
carry4 — Form new extent: self extent + (2 @ 2).

(1 @ 1) eightNeighbors do:
[:delta F

“‘delta equals a different neighbor-offset each time through this loop™

carry2 copyAllFrom: O @ O in: nbrl rule: STORINg.

carry2 copyAllFrom: delta in: self rule: ANDiIng.
nbr1 copyAllFrom: delta in: self rule: XORing.

“carry into 2"
“sum 1"

nbr2 copyAllTo: O @ O in: carry4 rule: STORIng.

carry2 copyAllTo: O @ O in: carry4

carry2 copyAllTo: O @ 0 in: nbr2 rule: XORing.
carry4 copyAllTo: O @ O in: nbr4 rule: XORing].

rule: ANDINg. ““carry into 4"
“sum 2"

“sum 4"

nbr2 copyAllTo: 1 @ 1 in: self rule: ANDINg. “perform logic to determine the survivors”

nbr2 copyAllTo: O @ O in: nbrl rule: ANDIng.
nbr1 copyAllTo: 1 @ 1 in: self rule: ORIng.
nbr4 copyAllTo: O @ O in: self rule: NOTANDIng

“(2s AND self) OR (2s AND 1s))”
“...all AND (NOT 4s)”
“'store next generation”’

“over self”
nbr4
nbr2
self 8 neighbor shifts nbri
larry4
l carry2
self neighbor counts next self
D 111
pted —4: 331211 : :
= = .,: Hi ﬁ: -
1
je | 8|

nbri nbr2

nbr4

| 5 1 )

j

15 B E

Figure 12: Counting neighbors in the game of Life.

(Newman and Sproull, Principles of
Interactive Computer Graphics, 2nd
edition, McGraw-Hill, 1979) under
the name RasterOp. The implementa-
tion described in that reference can
easily be extended to include the full
set of combinations, and the addition

of clipping is also straightforward.
Here, we add a few notes on efficien-
cy gathered from experience.

BitBlIt is so central to the user inter-
face that any improvement in its per-
formance has considerable effect on
the interactive quality of the system

Circle 135 on inquiry card. sp

"3



sTp BUS 6809’

The newest in Datricon’s family of low-cost 4th engines.

MEMORY capacity to 40k bytes, RS232/RS422 SERIAL PORT
and the powerful 6809 CPU, all on one 4.5 x 6.5 inch
STD Bus Card

29590 in one's
OEM pricing available

These Specifications Tell You More!

Every way you look at it, this powerful STD Bus Processor uses Industry-
wide Standards.

STD Bus interface (both STD-Z80 and STD-6800 compatible) offers
unprecedented user support with Analog, Power Input/Output,
Disk and advanced communications protocols.

SERIAL PORT supports RS232C or RS422 with full modem controls
including software baud rate, from 50 to 19.2Kbaud. User
selectable standard since RCVR/DRVR's are factory installed.

BYTE-WIDE MEMORY concept permits the use of 20 currently avail-
able memory devices from 2k x 8, 4k x 8, and 8k x 8 RAM,
ROM and EPROM.

QUALITY AND RELIABILITY

Backed by Datricon’s standard one year parts and labor warranty, 200 hour
burn-in and extensive factory testing, our customers are assured of receiving
high quality product.

D-FORTH SOFTWARE

Datricon’s popular D-FORTH software available on the Series 12 and 14 is
also available on the Series 09. Optimized for control systems, D-FORTH is
high-level and interactive, it is especially useful in interactive control applica-
tions such as testing and process monitor/control. Efficient memory utiliza-
tion and rapid execution provide exceptional Return On Investment.

Contact Datricon’s nationwide staff of highly qualified sales representatives
or the factory for information.

:
§ IDatricon

CORPORATION

QUALITY WITHOUT COMPROMISE
503 - 284-8277 7911 NE 33RD Drive Portland, Or 97211

194  August 1981 © BYTE Publications Inc

as a whole. In normal use of the
Smalltalk-80 system, most calls on
BitBlt are either in the extreme
miCroscopic or macroscopic range.
Let us examine these more closely.

In the macroscopic range, the
width of transfer spans many words.
The inner loop across a horizontal
scan line gets executed many times,
and the operations requested tend to
be simple moves or constant stores.
Examples of these are:

e Clearing a line of text to white
o Clearing an entire window to white
e Scrolling a block of text up or down

It is fortuitous that most processors
provide a fast means for block moves
and stores, and these can be made to
serve the applications above. Sup-
pose we structure the horizontal loop
of BitBIt as the following sequence:

1. Move left partial word

2. Move many whole words (or
none)

3. Move right partial word (or none)

Special cases can be provided for item
2 if the operation is a simple store or
if it is a simple copy with no skew
(horizontal bit offset) from source to
destination. In this way, most macro-
scopic applications of BitBlt can be
made fast, even on processors of
modest power.

The microscopic range of BitBlt is
characterized by a zero count for the
inner loop in item 2, so that the work
on each scanline involves, at most,
two words. Both overall setup and
vertical loop overhead can be con-
siderably reduced for this case.
Because characters tend to be less
than a word wide and lines tend to be
less than a word thick, nearly all text
and line drawing fall into this
category. A convenient way to pro-
vide such efficiency is to write a
special case of BitBlt that assumes the
microscopic parameters, but goes to
the general BitBlt whenever these are
not met. Because of the statistics
(many small operations and a few
very large ones), it does not hurt to
pay the penalty of a false assumption
on infrequent calls.®



Building Data Structures
in the Smalltalk-80 System

Most programmers are exposed to
the concept of data structures very
early in their programming exper-
ience. A course in data structures is
an integral part of most computer
science curricula, and there are many
excellent and widely used texts on the
subject (see references 1, 2, and 4).
The data structures covered in these
texts generally include the linear list,
stack, queue, tree, and graph.

In this article, we will define and
implement some of the simplest struc-
tures, including the linear list, stack,
and queue. Our approach will be to
describe each data structure infor-
mally, and then to show a
Smalltalk-80 class definition that
closely matches this informal descrip-
tion. We will see that it is possible,
using the class construct, to create
programming structures that clearly
mirror the entities being im-
plemented. However, in order to
demonstrate how to build these data
structures from scratch, we will not
make use of any of the advanced data
structure classes that already exist in
the Smalltalk-80 system.

We will make extensive use of the
Smalltalk-80 subclass mechanism in
the class definitions we introduce. We
will use subclassing to facilitate the
construction of different implementa-
tions of the same entity. In addition,
we will see how the subclass
mechanism enables us to define two
or more related classes in such a way

230  August 1981 © BYTE Publications Inc

James C Althoff Jr
Learning Research Group
Xerox Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto CA 94304

that the common parts of their defini-
tion can be shared.

Notation

In order to understand the program
examples presented in this article, the
reader should have some familiarity
with the Smalltalk-80 programming
language. For an introduction to the
language and a fuller discussion of
subclasses, see “The Smalltalk-80
System,” on page 36. In addition, a
text box on page 240 of this article
contains a brief description of some
of the messages that we will use in the
examples.

P T R T T S L Y R T Iy
The advantage of the
sequential list is that it
Is easy to access and
replace an arbitrary

item in the list.
—

For each data structure that we
describe, we will give a correspond-
ing Smalltalk-80 class definition.
Each class definition will be presented
in the form of a template that shows
the instance variables, messages, and
other information associated with the
class. (A complete description of the
template can be found in the article
mentioned above.)

The messages defined in the
template are partitioned into two
main groups. The first comprises the

class messages. These are messages
that are sent to the class itself (which
is, in actuality, an object). For our
purposes, these will be a set of crea-
tion messages that can be sent to the
class in order to create a new, init-
ialized instance of the class. The sec-
ond group consists of a set of
messages that can be sent to instances
of the class. These will be divided into
two more groups. The first is a collec-
tion of external messages that repre-
sent the interface between an instance
of the class and clients (ie: other
objects in the system) of that in-
stance. The second is a set of internal
messages used in methods that are
defined in the class or a subclass but
are not intended for wider use. Note
that the distinction between internal
and external messages is made for
conceptual clarity. The Smalltalk-80
programming language does not have
a mechanism for controlling message
usage.

An example of a class definition is
given in table 1. This template defines
a class whose name is Card. An
instance of class Card can be used to
represent a card in a game program.
Class Card has instance variables
named suit, rank, and faceUp. A new
instance is created by sending class
Card the creation message suit:rank:.
For example:

|aCard|
aCard — Card suit: "heart’ rank: 7.



oﬂ“ﬂ“\

SOFTWARE

FREE OFFER

WITH PURCHASE OF ANY 3 PROGRAMS, YOU
WILL RECEIVE FREE THE ORIGINAL ADVENTURE
GAME, CONVERTED TO LOAD ENTIRELY INTO 48K
RAM ON APPLE. NOTHING LEFT OUT. AMAZING!

APPLE SOFTWARE
DISCOUNTS FROH 10% TO 30%
SALE $89.50
! sAu $135.50
(] APPLE PIE (40 OR 80 COL)...$129.95 SALE $119.50
RSCRIBE : SALE $84.50
SALE $225.50

(CJ EASY WRITER 80 COL. $2

[C] DB MASTER (STONEWARE) . $22900 SALE $199.00
] PAYROLL (BRODERBUND)....$395.00 SALE $359.50
[JMODIFIABLE DATABASE ........ §79.50 SALE $69.50
[CIMAILING LIST DATABASE....... $50.00 S, .
[CJGEN. LEDGER (CONT.).

[CIWIN AT RACES (HANDICAP) 539, 95
[JLALAND MONOPOLY............$29.95 §
SWARP FACTOR...

..$19.95
[CJPRO FOOTBALL POINT PRED .$26.95 SALE
[JODYSSEY ADVENTURE...........$30.00 SALE
[] COMPU-MATH ARITHMETIC ...$49.95
[ COMPU-MATH FRACTIONS ....$39.95
() COMPU-MATH DECIMALS ......$39.95
[C) COMPU-SPELL

(REQ. DATA DISK)...... ! X
[ DATA DISK LEVEL 4 19.95 SALE $16.50
[CJ DATA DISK LEVEL 6... SALE $16.50

[C) DATA DISK SECRETARIAI
I STATISTICS 3.0......

$24.
() SNOGGLE (NEW PUCKMAN) ..$24.95
[C) WIZARD AND THE PRINCESS.$32.95 SALE
...$24.95
29.95

] ADAMS ADVENTURE #1,2,3 ..
[ ADAMS ADVENTURE 45,6 ..
[ ADAMS ADVENTURE #7.8.9 ..$39

(] THREE MILE ISLAND ..
] PHANTOMS FIVE

SALE §

.00 SALE 8299 50
..... .$195.00 SALE $175.50

[ M/R SUPERTERM 80 COL....$375.00 SALE $325.50

* SEND FOR FREE PRICE LIST & CATALOG *

DEDUCT 3% IF PAYMENT ACCOMP,

PAY SHIPPING AND IF YOU PHONE YOUR ORDER WE WILL
CREDIT $1.00 CALL. CALIFORNIA RESIDENTS ADD
6% SALES TAX. ALL ORDERS SHIPPED FROM STOCK
WITHIN 48 HOURS. WE ACCEPT MASTER CARD AND VISA

EXP DATE .......: SIGNATURE...................
% P.0. BOX 796, DEPT. B-6, TWIN PEAKS, CA 92391 *
PHONE ORDERS  (714) 886-0761

Circle 256 on inquiry card.

232  August 1981 © BYTE Publications Inc

creates a new instance of Card that
represents the seven of hearts. In the
method for suit:rank:, the message
new creates an uninitialized instance.
The internal message setSuit:setRank:
sets the suit and rank fields and init-
jalizes the new instance to be “face
down.” Given an instance of class
Card, we can determine its suit, rank,
and orientation, and change the latter
using the external messages specified
in the class definition. Because we do
not want to be able to change the suit
and rank of an instance once it has
been created, we do not include a
message for doing this operation in
the set of external messages.

The methods shown here
demonstrate a convention we will use
in subsequent examples. All of the
names that we use for parameters and
local variables will be formed by tak-
ing the name of a class and preceding
it with an indefinite article. For exam-
ple, the two parameters to the
message setSuit:setRank: are named
astring and aninteger. Such a name
indicates what kind of object is
expected as the value of the
parameter or local variable to which
the name refers. Smalltalk-80 has no

Card

class name

#

type-checking; this is only a conven-
tion to help make the examples more
understandable.

We will now examine a number of
elementary data structures and their
implementation with Smalltalk-80
classes. In the informal description of
each data structure, we will include a
list of operations that are meaningful
for that structure. We will then show
a corresponding class definition
whose external messages match the
listed operations. The details of the
implementation of the data structure
will be hidden in the class definition.
We will see how this process enables
us to define different classes that
reflect different implementations of
the same basic data structure.

The Linear List

The first data structure we will ex-
amine is the linear list. A linear list is
a sequence of data items that have,
essentially, a one-dimensional rela-
tionship to one another (see figure 1).
That is to say, given an object in the
sequence, we can find the object that
precedes or follows it. For example, if
we have a program that deals with a
game of cards, we might represent

Object

superclass

instance variable names

suit rank faceUp

class messages and methods

t aCard.

sult: aString rank: aninteger | aCard
aCard ~ self new. aCard setSuit: aString setRank: aninteger.

instance messages and methods

external
sult | | 1 suit.
rank | |1 rank.

turnFaceUp | | faceUp ~— true.

IsFaceUp | | t faceUp.
IsFaceDown | | I faceUp not.

internal

turnFaceDown | | faceUp - false.
turnOver | | faceUp — faceUp not.

setSuit: aString setRank: aninteger | |
suit — aString. rank — aninteger. self turnFaceDown.

Table 1: Class template for class Card.




: K

n data items

\ remove an item

\ access an item

»

append an item

insert an item

OGN TS/PLUS ™
Indexes and Sorts WordStar

DocuMate/Plus™ Features . ..

¢ 8-Level Indexing

¢ Table of Contents Generation

* New Self-Contained Sort Feature

e “See” and “See Also” References

e New Output Format Control

e New Cross-Document Index
Generation

DocuMate/Plus generates completely col-
lated tables of contents and alphabetical
multi-level indexes from WordStar'™™ text
files of any length ... as detailed as you
desire.

DocuMate/Plus is today’s most flexible indexing program
available for professional word processing.

DocuMate/Plus is available on standard 8" CP/M and 5% Northstar diskettes.
e DocuMate/Plus Program with Manual

* Manual Only

» Special Pricing to update existing DocuMate users.

ORBHO ) -

The Textware Company

* WordStar is a trademark of MicroPro International

=

DocuMate/Plus is refreshingly easy to use,
and its internal sort feature can save you
the cost of an expensive stand-alone sort
program. Just type simple DocuMate com-
mands right into your text file. DocuMate/
Plus's “Extract” feature automatically
finds and places all index references in a
separate work file for sorting and collating.

DocuMate/Plus builds master indexes for
many documents, such as research notes,
books and articles, speeches, hardware
and software documentation, and busi-
ness correspondence

$125.00

THE ORTHOCODE CORPORATION
P.O. Box 6191 ¢ Albany, CA 94706
(415) 832-8175

* CP/M is a trademark of Digital Research

234

August 1981 © BYTE Publications Inc

Circle 286 on inquiry card.

Figure 1: A linear list (1a) is a collection
of objects arranged in linear sequence.
Permissible operations include accessing
(1b), appending (Ic), inserting (1d), and
removing an item (Ie).

each card hand as a linear list of
cards.

The operations that we might want
to perform on a linear list include:

edetermine how many items are in
the list

edetermine whether or not the list is
empty

eaccess the ith item in the list
eappend an item to the end of the list
einsert an item at some position in
the list

ereplace an item at some position in
the list with some other item
eremove an item from the list

In order to implement a linear list of
data items, we need to implement
both the data items and the linear list.
In all of our subsequent examples, we
will assume that we have imple-
mented the data items with one or
more class definitions (eg: class
Card). When we are describing things
in general, we will use such terms as
“data item” and “linear list.” When
we are describing a specific imple-
mentation, we will refer instead to the
“object” (or “instance of a class”) that
represents the entity under considera-
tion.

Linear lists are partly defined in the
template given in table 2. Class
LinearList, as defined in table 2, is
incomplete since there is no
mechanism for actually storing ob-
jects that represent data items. This is
because there are several different
strategies for storing these objects in a
linear list. For each strategy, we will
define a different class, each of which
is a subclass of LinearList. All of these
classes have some characteristics in
common; these are captured in the
superclass LinearList. For example,
because all of the subclasses that we

Circle 63 on inquiry card. =



R N R S S L Y e T T T P iy e O S S o R e i 2 12 NI ATl . .
will define keep count of the number

; : of objects (representing data items) in
class name LinearList the list, a corresponding instance
variable, count, is defined in the

o oot superclass LinearList. Similarly, all
instance variable names count subclasses can make use of an internal

message, initialize, that initializes
class messages and methods count to zero, and another message,

checkindex:, that insures that any in-
dex specified as a parameter to one of
instance messages and methods the access messages (at:, insert:at:,
and so on) is within range. Since we
start the numbering of items in a
linear list at 1, the range will always

“none defined here”

external
count | |t count.
empty | |t count = 0.

“at: aninteger | | ... to be defined in subclasses” be between 1 and count (the number
“append: anObject | | ... to be defined in subclasses” of items in the list). Also, the message
“insert: anObject at: aninteger | | ... to be defined in subclasses” empty s implemented in the
“replace: anObject at: aninteger | | ... to be defined in subclasses” .

superclass since the answer to

“removeAt: aninteger | | ... to be defined in subclasses” g
whether or not the list is empty can be

internal determined from the value of count.
lr;jltla::l'z:’ Il COLIJFZI — 0.
checkindex: aninteger

(aninteger < 1) (a|nlnteger > count) The Indexed Table

ifTrue: [ 1 self error: ‘index out of range’ ]. The first strategy we will explore
for actually storing data items in a
linear list involves the sequential
allocation of storage. In order to see
how this works, we will interrupt our
discussion of the linear list and intro-
duce a very basic data structure that
we will call an indexed table (see
figure 2). An indexed table, which
corresponds to what is called a one-
dimensional array in many program-
ming languages, is a relatively simple
structure that closely matches the
physical memory of most computers.
As we will see, many useful data
LRl | structures, including the linear list,

PREIT R CRVANCRYIN | can be implemented with an indexed
meet the demand for low cost table
alternatives to the higher priced 2 g
language and ram cards. The ConComp An indexed table comprises a
Apple Il 16K Ram Card will work with all existing sequence of variables into which we
software compatible with the Apple Language Card' 3
and the Microsoft Z-80 Softcard®. Allowing up to 64K of can store and from which we can

user memory, the Ram Card helps make complete use of Pascal, retrieve data items. Each variable is
designated by an integer. The

Table 2: Class template for class LinearList.

CP/M*, and larger programs like Visicalc® The Atari 80072 version is
also compatible with all Atari software that is operational with Atari 7 :
and other ram cards smallest integer used to designate a

Both cards are constructed using high-speed high-quality dynamic RAM. variable in an indexed table is called

For more information please contact your local dealer or call us!

the lower bound of the table. The

‘Trademark of Apple Computer Inc
“Trademark of Atari Inc i i
A P P | E I | L E e o M o largest integer is .called the upper
QRS el | Lound. The operations that we wish
“Trademark of MiCros Consumer Products. Inc &
$1 3 0 to perform on an indexed table are:

Available from: 2
33 e specify the lower and upper bounds

ATA Rl 8 0 0 Concomp Industries of the table (when it is created)

8338 Center Dr. edetermine the lower and upper
$89 La Mesa, CA 92041 bounds of the table

edetermine the number of variables

Dealer Inquiries Invited (71 4) 464-8338 allocated to the table

236  August 1981 © BYTE Publications Inc Circle 87 on inquiry card.



lowerBound =5 . - anObject
-4 nil

5 e EEEEE anObject

9 —t— anObject
10 nil
upperBound 2 :

Figure 2: An indexed table.

eaccess an item at a particular posi-
tion in the table

eput an item at a particular position
in the table

In order to store into an indexed
table, we specify an item to be stored
and an integer that indicates the par-
ticular variable that will contain the
item. In order to retrieve from an in-
dexed table, we need only specify
which variable of the table has the

data item of interest.

The class definition in table 3
shows how to implement an indexed
table. We have seen in the definition
of classes Card and LinearList how to
specify a fixed number of named in-
stance variables in a class definition.
What we need in order to implement
an indexed table, however, is a
sequence of unnamed variables that
are designated by an integer index.
How can we define such a sequence of

variables? We do this by specifying
the number of indexed variables
needed for an instance at the time that
an instance of a class is created. The
creation message from:to: in class
IndexedTable sends the message
new:, whose parameter is the number
of indexed variables required for the
instance being created. In order to
access these variables, we send low-
level (ie: primitive) access messages
with a parameter that specifies an
appropriate index (starting at 1). The
access message basiCAt: i retrieves the
object stored in the ith indexed
instance variable. The access message
basicAt: i put: anObject stores a
pointer to anObject in the ith indexed
instance variable.

In addition to indexed instance var-
iables, class IndexedTable has two
named instance variables: lower-
Bound and upperBound. lowerBound
is an integer that indicates the small-
est allowable index for a particular
instance of IndexedTable; upper-
Bound indicates the largest allowable
index. In order to create a new in-
dexed table, we send the message

238

How to Get Started
with CP/M

Carl Townsend

One of the world's most popular operat-
ing is explained in simple
terms. Includes a handy guide on shop-
ping for an operating system, a glossary
a list of hardware manufacturers sup-
porting CP/M and a list of major CP/M
software

ISBN 0-918398-32-0

systems

$9.95

Microsoft Fortran
Paul M. Chirlian

Here is the book for microcomputer
users who want to implement FOR-
TRAN on their machines. Even if
readers have never used FORTRAN be-
fore, they will be writing and running
FORTRAN programs almost at once.

ISBN 0-918398-46-0

For

'FORTRAN

Paul M. Chirlian

$14.95

Most bookstores and computer stores carry our books. Call us on
our toll free number and we'll tell you the one nearest you.

Everybody!

Computers for
Everybody
Jerry Willis and Merl Miller

This fun-to-read book covers all the
things a beginner should know about
computers. It explains how to use a
computer, how to buy and who to buy
from, and which are good and which are
bad.

ISBN 0-918398-49-5 $4.95

32 BASIC Programs for
the Apple Computer
Tom Rugg and Phil Feldman
Chock full of programs with practical
applications, educational uses, games
and graphics, each of the 32 chapters
fully documents a different program.

ISBN 0-918398-34-7 $17.95
dilithium Press "dm
P.O. Box 606 —
Beaverton, OR 97075

August 1981 © BYTE Publications Inc

Circle 118 on inquiry card.




_

class name IndexedTable

superclass

Object

instance variable names lowerBound upperBound

class messages and methods

from: aninteger1 to: aninteger2 |
(aninteger] > aninteger?2) ifTrue: [ 1 self error: ‘invalid bounds’ ].
I (self new: aninteger2 — anintegerl + 1)
lowerBound: anintegerl upperBound: aninteger 2.

instance messages and methods

external
lowerBound ! lowerBound.
upperBound t upperBound.
size | | 1 upperBound — lowerBound + 1.
at: aninteger | |
self checkindex: aninteger.
I self basicAt: (aninteger — lowerBound + 1).
put: anObject at: aninteger | |
self checkindex: aninteger.
self basicAt: (aninteger — lowerBound + 1) put: anObject.

internal

lowerBound: aninteger1 upperBound: aninteger2 | |
lowerBound — anlintegerl. upperBound — aninteger2.

checkindex: anlnteger?
(aninteger < lowerBound) | (aninteger > upperBound)
ifTrue: [ 1 self error: ‘index out of range’ ].

“basicAt: i | | ... this is a primitive Smalltalk-80 message that accesses the ith indexed
instance variable.”
“basicAt: i put: anObject | | ... this is a primitive Smalltalk-80 message that stores a pointer

to anObject in the ith indexed instance variable.”

Table 3: Class template for class IndexedTable.

Some Smalltalk Messages

The following messages are used in this article without having been previously
defined. Each is either provided by the Smalltalk-80 system, or easily implemented
using other messages provided by the system. For each message, we provide a brief,
informal description of its intended effect.

new—Creates a new instance.

new: i—Creates a new instance with i indexed instance variables.

error: aString— Causes some appropriate action to occur, such as interrupting pro-
gram execution and displaying aString.

not—The “logical not" operation.

| —The “logical or" operation.

+, —, * /, =, <, >, <=—Arithmetic operations and relations.

Flow of control is affected by sending messages that correspond to basic control
structures. For example:

a ifTrue: [ b ] corresponds to: if athenbend

a ifTrue: [ b ] ifFalse: [ ¢ ] corresponds to: if a then b else ¢ end

xto:y do: [:i | a]corresponds to: for i from x to y by 1 repeat a end

x downTo: y do: [: i | a] corresponds to: for i from x to y by —1 repeat a end
x timesRepeat: [ a ] corresponds to: repeat x times a end

240  August 1981 © BYTE Publications Inc

from:to: to class IndexedTable. For
example:

| table |
table — IndexedTable from: —5 to:
10.

creates a new instance of Indexed-
Table whose indices range from —5
to 10. This message is implemented
using an internal message, lower-
Bound:upperBound:, that sets the
instance variables of a newly created
instance to their appropriate values.

Once we have created an instance
of IndexedTable, we can perform the
operations specified in the above
description of indexed tables by send-
ing the messages lowerBound, upper-
Bound, size, at:;, and put:at.. lower-
Bound and upperBound return the
corresponding values of the instance
variables; size computes and returns
the number of indexed instance vari-
ables in the table. at: and put:at: both
use an internal message, checkindex:,
in order to make sure that their index
parameter is within range of the
lower and upper bounds of the table.
at: returns the object stored in the in-
dexed instance variable indicated by
the integer parameter; put:at: stores
the object, specified as the first
parameter, in the indexed instance
variable indicated by the second pa-
rameter. Notice that both at: and
put:at: use the value of lowerBound
to map indices from the range of the
table to the range of the indexed in-
stance variables that are used to im-
plement the table.

As an example of how we might
use class IndexedTable, consider the
following sequence of messages:

| table |

table — IndexedTable from: 1 to:
13.

1 to: 13 do: [:i | table put: (Card

suit: "heart’ rank: i) at: i. ].

This creates a new instance of class
IndexedTable with indices that range
from 1 to 13 and fills it with instances
of class Card whose ranks match the
indices.

The Sequential List

Now that we have an implementa-



table [

J—— ]

count 3

= T

.-—————.

anindexedTable

Figure 3: A sequential list.

tion for indexed tables, we can use
them to demonstrate our first imple-
mentation of linear lists. We will call
a linear list that uses an indexed table
to store its data items a sequential list
(see figure 3). The basic idea is to
manage an indexed table so that the
first i consecutive entries in the table
are the i data items in our linear list.
The most difficult operations using
this strategy are the insertion and
removal of items, since these cause
parts of the indexed table to be copied
from one area to another. An addi-
tional difficulty is that we must

specify, at the time we create the
linear list, the expected maximum
number of items in the list. This is
necessary because indexed tables
come in fixed sizes, which means that
if the list grows larger than this initial
number, we must do something to
accommodate the extra items.
(Details are shown in the class defini-
tion given in table 4.)

The creation message size: is used
to create an instance of SequentialList
of some estimated maximum size. For
example:

SciTronics introduces . .

REAL TIME CLOCKS

with full Clock/Calendar Functions

The Worry-free Clocks for People
Who Don’t Have Time to Worry!!

What makes them worry-free?

e Crystal controlled for high
(.002%) accuracy

e Lithium battery backup for contin-
uous clock operation (6000 hrs!!!)

e Complete software in BASIC-
including programs to Set and
Read clock

¢ Clock generates interrupts
(seconds, minutes, hour) for
foreground/background operation

Applications:
¢ Logging Computer on time

* Timing of events

e Use it with the SciTronics Remote
Controller for Real Time control
of A.C. operated lights and ap-
pliances

242  August 1981 © BYTE Publications Inc

Versions available for:

* S-100 bus computers

* Apple Il computer

® SciTronics RC-80
owners

send  SciTronics Inc.
Check o 523 S. Clewell St., P.O. Box 5344
"o: Bethlehem, PA 18015
(215) 868-7220

Please list system with which you plan to use
controller ® Master Charge and Visa accepted.
COD’s accepted. PA residence add sales tax.

RTC-100 $159
RTC-A $129
RC-80CK $109

Circle 340 on inquiry card.

| list |
list — SequentialList size: 5.

creates a list with enough space, init-
ially, for five objects. The internal
message initialize:, which is sent from
size:, creates an instance of Indexed-
Table of the appropriate size and
assigns it as the value of the instance
variable named table. The other inter-
nal message, expand, is used to
enlarge table when it becomes full.
This is done by creating a new
instance of IndexedTable that is twice
as large as the original and by copy-
ing the objects from the original table
into the first half of the new table.
The new table is then assigned as the
value of table for subsequent use.

Retrieval from Sequentiallist is
done by retrieving from its associated
indexed table. A new object can be
appended to the list by storing it in
the next available location of the
indexed table of that list. This loca-
tion is determined by the value of
count. If there is still room in the
table, count is incremented and the
object is stored. Otherwise, the se-
quential list has to be expanded,
which is accomplished using the
message expand, described previous-
ly. Insertion into the list is done by
copying from their current location to
the next, all objects after, and in-
cluding, the one at the desired loca-
tion. A new object can then be stored
at that location. Removing an object
from a list is done analogously. An
object is replaced by storing another
object in the corresponding position
in the indexed table.

The advantage of the sequential list
is that it is easy to access and replace
(not remove) an arbitrary item. The
disadvantages are that it is necessary
both to estimate the maximum size of
the list when it is created (although,
as we have seen, the list can expand
when necessary) and to move items
around when inserting or removing
them from the list.

Let us now consider an example
that shows how to create and send
messages to an instance of class
SequentialList. Suppose we want to
represent a deck of cards and two
hands, dealt from the deck. To create



Circle 12 on inquiry card.

PDATA Ig‘l"aEHFHCE
COMMUNICATIONS
CABLE ASSEMBLIES?

THINK
ALLISON!

Allison Data Communications is
the most technologically ad-
vanced manufacturer of Data
Interface cable or Communica-
tions Cable Assemblies in the
industry, so we can deliver the
quality you want, atthe prices you
need.

Low Cost, High Quality and Fast
Delivery is our commitment to you.

Think Cost, Think Quality, Think
Allison, The new leader in the field.

Allison Data Communications
Cables include:

EIA RS 232C

EIA RS 499

TEFLON AIR PLENUM

COAXIAL

RIBBON

TELCO

CUSTOM
We can aiso develop and pro-
duce any type of cable needed
in special applications. Our
Technical Representatives will

be happy to provide you with
any assistance you might need.

If you are thinking about Cable
.. . Think Allison!

ALLISON DATA COMMUNICATIONS
1290 MOTOR PARKWAY,
HAPPAUGE, NEW YORK 11788

(516) 234-2010 » (212) 895-6449
TWX: 510-227-8892

244  August 1981 © BYTE Publications Inc

two initially empty hands we write:

| hand! hand2 deck |
handl — SequentialList size: 5.
hand2 — SequentialList size: 5.

To create an unshuffled deck of fifty-
two cards we write:

deck — SequentialList size: 52.

1 to: 13 do: [: i | deck append:
(Card suit: ‘heart’ rank: i). .

1 to: 13 do: [: i | deck append:
(Card suit: ‘diamond’ rank: i). ].

1 to: 13 do: [: i | deck append:
(Card suit: ‘club’ rank: i). ].

1 to: 13 do: [: i | deck append:
(Card suit: ‘spade’ rank: i). ].

ARSI T T PR T T T P AT Y e O N I S R SO S PR R R AR

Then, to deal five cards from the deck
to the first hand we write:

5 timesRepeat: [ hand! append:
(deck removeAt: 1). ].

To deal from the bottom of the deck
to the second hand we write:

5 timesRepeat: [ hand2 append:
(deck removeAt: deck
count). |.

The Linked List

A second approach for managing
the storage of items in a linear list is
to use a linked list. The strategy for

class name SequentialList
superclass LinearList
instance variable names table

class messages and methods

slze: aninteger | |
(aninteger > 0) ifTrue:
ifFalse:

[ 1 (self new) initialize: aninteger ]
[ t self error: ‘invalid size’ ].

instance messages and methods

external

append: anObject | |

count — count + 1.
insert: anObject at: aninteger | |
self checkindex: aninteger.

count downTo: aninteger do: [: i
table put: anObject at: aninteger.
count — count + 1.
replace: anObject at: aninteger |
self checkindex: aninteger.
table put: anObject at: aninteger.
removeAt: aninteger | anObject
anObject — self at: aninteger.
aninteger + 1 to: count do: [: i |
count — count — 1.
I anObject.

internal
Initialize: aninteger | |
super initialize.

expand | anindexedTable |

table — anlndexedTable.

at: aninteger | | self checkindex: aninteger. ! table at: aninteger.

(count = table size) ifTrue: [ self expand. ].
table put: anObject at: count + 1.

(count = table size) ifTrue: [ self expand. ].

table — IndexedTable from: 1 to: aninteger.

anindexedTable — IndexedTable from: 1 to: 2 * count.
1 to: count do: [: i | anindexedTable put: (table at: i) at: i. ].

Table 4: Class template for class SequentialList.

| table put: (table at: i) at: i + 1.].

table put: (table at: i) at: i — 1.].




SUPEBRAIN

@D - ONLY
*2

Buy Factory Direct and Save! Direct from

Intertec to you at the best prices in the country!
FREE! Word processing or single accounting program with

SUPERBRAIN 5mb upgoce v . .

Smb Hard disk. controller, brackets. cables, CP/M-  and DOS diskefte

SUPERBRAIN 64K oowi censiy . . . . .

Winchester-type
Intertec. List $4995 .

Includes ST-506 5«

HARD DISK 10m

NORTHSTAR COMPUTERS
HORIZON II

32k ggrl:gilr:'. Reg. $3695 S 2 1 50

HORIZON I
32k g:ggny. Reg. $3995 $2965

TERMINALS

Intertec

Intertube Il reg. sgas

120
Intertec

Emulator req sses . ... 120

PRINTERS - DOT MATRIX
Lowest Prices!

LIST $749 5550
5150
*450
*825
*465
525

PRINTERS-woORD PROCESSING

COMET citon with RS232. . .Reg's 995
COMET Il Paralter Reg $1350
EPSON MX80 roratier . . .Regs 645
EPSON MX80 rs232. . .regs 720

STARWR'TER Porallel . . . Reg.$2195
STARWRITER rs232 . . . reg$2395
STARWRITER |l ascps. . regs2795
XYMEC Parallel Reg.$2650
XYMEC rs232 Rregs2875 2165
NEC 5510 2535

1495
1650
*1795
*1995

purchase of 64k Superbrain at $2650.

c... "2995

. $2650
... %3395

HORIZON I
Double
64k Density. Reg. $4195

*3125
HORIZON I
64k ggggity, Reg. $4495 $33 25

DISC DRIVES

5 mbyte 5" Hard Disk ST-506
from Seagate Technology

LIST $1500 ONLY..*1300
FLOPPY DISC 5%

Tanden TM 100-1 Single Sided. Double Density
395
TM 100-2 Double Sided. Double Density

SOFTWARE NORTHSTAR

25% OFF!

WORD PROCESSING
Word Star 320
Mail Merge 110
449
400
225
*170
*100
*100

Benchmark
Spellguard

NAD Mail List structured systems
MVF Mailer

ACCOUNTING PLUS

by Systems Plus
Accounts Receivable, Payroll, Accounts
Payable, Inventory, General Ledger, Sales
Order Entry, Purchase Order Entry.

Each 395

PEACHTREE
A/R, A/P, G/L, P/R, INV. .. .ea.
CPA, Property Mgmt
MVF PROGRAMS
Restaurant Inventory
Client Billing
DBMS PROGRAMS

C Basic Compiler
Microsoft Basic

“C/PM is trademark of Digital Research

U.S. International Dealer Inquiries Invited

To Order Call (206) 453-8159 @& ™

Mastercharge, VISA odd 3%. No C.0.D's. All prices FOB origin

PACIFIC COMPUTER BROKERS

11056 Palatine North, Seatftle, WA 98133

246  August 1981 © BYTE Publications Inc

Circle 290 on inquiry card.

using a linked list is the following: in-
stead of allocating sequentially the
storage needed to hold data items, we
allocate separate storage objects,
called links, each of which keeps
track of a data item and either one or
two other links. A set of links are
connected together to form a linked
list. A single link (see figure 4a) is one
that keeps track of a data item and
one other link, which is its successor.
A double link (see figure 4b) has a
data item and two other links: its suc-
cessor and its predecessor.

Class SingleLink is defined as shown
in table 5. It has instance variables
named entry and successor; entry
points to an object that represents a
data item, successor points either to
another instance of class SingleLink,
or, if there is no successor, to the ob-
ject nil. We specify the entry and suc-
cessor of a single link at the time we
create it. For example:

| link1 link2 |

link1 — SingleLink entry: (Card
suit: ‘club’ rank: 4) successor:
nil.

link2 — SingleLink entry: (Card
suit: ‘diamond’ rank: 6)
successor: link1.

creates two links. The entry of the
first link is an instance of class Card
that represents the four of clubs. Its
successor is Nil. The entry of the sec-
ond link is an instance of class Card
that represents the six of diamonds;
its successor is the first link.

The class definition for double
links is given in table 6. Class
DoubleLink inherits from class
SingleLink the instance variables and
messages that are used to implement
the entry and successor of a double
link. In addition, there is an instance
variable named predecessor that
points either to an instance of class
DoubleLink or to nil. The messages
predecessor: and predecessor set and
return, respectively, the value of
predecessor.

As stated previously, a linked list is
a sequence of links connected in a
linear arrangement. We can make dif-
ferent kinds of linked lists depending
on the links we use and the precise



Circle 265 on inquiry card.

Send for our
FREE Catalog

DATA READER &
PRINTOUT RULER
FROM LINE-SITE

ONLY

$2.00

(It’s even FREE if you
order from our catalog!)

This special price is just to
introduce you to our catalog
of computer accessories and
word processing supplies.
We offer you 25-50% off on
products like 3M-Scotch™
brand diskettes, computer
paper, ribbons, printwheels,
binders, and alot more.

If you order the Data
Reader we'll send you

a gift certificate worth
$2.50 when you order

from the catalog.

15" flexible plastic,
clear & tinted

Highlighted
reading window

Vertical spacing
scale for 8 lines
per inch

6 lines per
inch vertical
spacing scale

Horizontal
spacing scale,
150 print
positions
R

R v b‘
B B TR 2]
TRICORA

3601 S. 9th St.

Kalamazoo, MI 49009

TOLL FREE: (800) 253-4358

In Michigan: (616) 375-7519

[J Here's my $2 (plus 50¢ postage and handling)
for a Data Reader/Ruler and send me your catalog
with 25%-50% savings on name brand disks, paper,
labels and other computer accessories

O3 1 don't need the Data Reader/Ruler but please
put me on your catalog mailing list

Name
Company
Address
City

State/Zip
*3M Co.

(4a) onObject

anObject

anObject l

entry I

et ==L ™
successor

[ —f—s ¢ o o

(4b) anObject

anObject

| anObject |

entry .

successor
D —

predecessor
.

Figure 4: Two kinds of links. Figure 4a shows a list of storage objects joined by single
links, while figure 4b shows a similar list joined by double links.

class name

*
SingleLink

superclass

Object

instance variable names

entry successor

class messages and methods

entry: anObject successor: aSingleLink | |
1 ((self new) entry: anObject) successor: aSingleLink.

instance messages and methods

external
entry | | ! entry.

internal
“‘none defined here"”’

entry: anObject | | entry — anObject.
successor | | ! successor.
successor: aSingleLink | | successor — aSingleLink.

Table 5: Class template for class SingleLink.

way that they are connected
together. Table 7 defines class
LinkedList, which acts as the
superclass of the various linked lists
we will consider. It collects several
messages that are suitable for all of
the LinkedList subclasses.

The message linkAt: is used inter-
nally by LinkedList methods. Taking
an integer as a parameter, it traverses
a sequence of connected links looking
for the link in the position indicated
by that integer. It returns this link as
a result. This message is not intended
for use outside of the class since we

don’t want the rest of the system to
have access to the internal structure
of the list. The messages at: and
replace:at: can be defined using
linkAt: since, once the appropriate
link is found, it is easy to return or
replace its corresponding entry.

The Singly Linked List

The first type of linked list we will
examine is the singly linked list. A
singly linked list is a sequence of
single links connected together so that
the successor of the first Jink is the se-
cond link, the successor of the second



Circle 293 on inquiry card.

NO FRILLS!
NO GIMMICKS!
JUST GREAT

DISCOUNTS

MAIL ORDER ONLY
ATARI 800

Personal Computer
System

NORTHSTAR
Horizon Il 32K
Horizon Il Quad
Horizon Il 64K
Horizon Quad 64K

TELEVIDEO
Model 912
Model 920
Model 950

HAZELTINE
Model 1420
Model 1421
Model 1500
Model 1510
Model 1520
Espirit
Executive 80
Model 20
Model 30

OKIDATA
Microline 80

SOROC Technology
Model 1Q 120
Model 1Q 140

link is the third link, and so on (see
figure 5). The successor of the last
link is nil.

The definition for class
SinglyLinkedList is given in table 8.
Class SinglyLinkedList has an instance
variable named firstLink that points
either to the first object in the list or
to nil if the list is empty. The internal
message initialize, which is sent when

#

an instance of SinglyLinkedList is
created, sets firstLink to nil. The inter-
nal message firstLink, which is never
sent to an empty list, returns the
SingleLink instance pointed to by
firstLink.

In the implementation of the
message append:, we first create a
new link whose entry is the object
passed as a parameter. We then check

class name DoubleLink
superclass SingleLink
instance variable names predecessor

class messages and methods

aDoubleLink2 | |
aDoubleLink2.

entry: anObject successor: aDoubleLink1 predecessor:

1 (self entry: anObject successor: aDoubleLinkl) predecessor:

instance messages and methods

external

internal
“none defined here”’

predecessor | | ! predecessor.
predecessor: aDoubleLink | | predecessor — aDoubleLink.

Table 6: Class template for class DoubleLink.

class name

R T R I T R T i S T e e R S T O S T T LR A W RS

LinkedList

superclass

LinearList

instance variable names

““none defined here”

CROMEMCO

System 3
Model Z2H

QANTEX

Model 8000 150 CPS
parallel interface
Model 8000 150 CPS
serial interface

114900
119500

DECwriter IV
Model LA-34

We'll meet or beat any advertised prices!
Most items in stock for immediate delivery.
Factory sealed cartons. Full manufacturer’s guarantee
All products subject to availability.
All prices subject to change

DATA DISCOUNT CENTER

135-53 Northern Bivd., Flushing, N.Y. 11354
Visa ® Master Charge * N.Y.S. residents add SalesTax
Shipping F.0.B. N.Y.

Phone Orders Call (212) 895-5577

250  August 1981 © BYTE Publications Inc

class messages and methods

new | | 1 (super new) initialize.

instance messages and methods

external
at: aninteger | |
self checkindex: aninteger.

self checkindex: aninteger.

internal

linkAt: aninteger | alLink |
aLink «— self firstLink.

t aLink.

t (self linkAt: aninteger) entry.
replace: anObject at: aninteger | |

(self linkAt: aninteger) entry: anObject.

“firstLink | | ... to be defined in subclasses”

(aninteger — 1) timesRepeat: [ aLink — aLink successor. ].

Table 7: Class template for class LinkedList.




Circle 82 on inquiry card.

to see if the list is empty, and if so we link for the item and then find the link

B b Ma‘l set firstLink to point to the new link. If that the new link is to follow. We
w‘ the list is not empty, we get the last then make this link point to the new
VE link in the list and make its successor link, and have the new link point to
the new link. In either case, we incre- the former successor of this link (see
ment the value of count to keep track figure 6a). The only exception to this
of the new number of objects in the process occurs if we are adding the
list. data item to the beginning of the list.

In general, to insert a data item into  In this case there is no predecessor, so
a singly linked list, we create a new we simply point the new link to the

cMPurERS..

anObject anObject J anObject anObject

Intertec Superbrain SPECIALS
64K Ram, List$3495 . ... ... ... $2595 firstLink ; :
64K Quad, List $3995 . . .. $2995 | ]

NorthStar I S it
Horizon | 32K DD List $2695 CALL
Horizon | QD List $2995 CALL : ! ; : .
Horizon 232DD List $3095 .. CALL Figure 5: A singly linked list.

IntersystemDPS-1 List $1749 CALL

—

Lq,,,zm,:;fm class name SinglyLinkedList
superclass LinkedList
instance variable names firstLink
Cromemco Z-2H, List $3995 . . $7945
System 2, 64K List $4695 $3749 chw emmn el
System 3, 64K, List $79% $6395 e ot v
Disk Systems
ISC .
Dal Disoun 2D o 20 1 isiono | | | imstance messages and methods
Discus 2 + 2, List $1549 $1259
M26 Hard Disk, List $4995 $3949 external
Discus M-10, List $3695. ... ... .. $2995 append: anObject | aSingleLink |
Printers & Terminals aSingleLink — SingleLink entry: anObject successor: nil.
Paper Tiger IDS-445 ... ........ $649 self empty
with graphic opton $719 ifTrue: [ firstLink — aSingleLink. ]
Centronics 730-1, List $795 By ifFalse: [ (self linkAt: count) successor: aSingleLink. ].
ek count — count + 1. . '
b R S Insert: anObject at: aninteger | aSingleLink |
T1810, List $1895 $1489 self checkindex: aninteger.
NEC SPINWRITER5530 . ... .. .. $2395 (aninteger = 1)
NEC SPINWRITER 5515, 5510 . . $2395 ifTrue: [ firstLink — SingleLink entry: anObject successor: firstLink. ]
Diablo 630 List $2711 $2399 ifFalse: [ aSingleLink — self linkAt: aninteger — 1.
Intertube I11 List $895 $729 aSingleLink successor: (SingleLink entry: anObject successor:
Zennh A R T R $719 aSingleLink successor). ].
Televideo912C ............... $679 count — count + 1.
gggc """""""" z;gg removeAt: aninteger.| aSingleLink anObject |
i s Ao0. - e 789 self checkindex: aninteger.
1600570 S $845 (aninteger = 1)
Soroc 120 LISt 89955 ovvss tatiis 5689 ifTrue: [ anObject — firstLink entry. firstLink — firstLink successor. ]
Q13575 s e .. $719 ifFalse: [ aSingleLink — self linkAt: aninteger — 1.
VAD oo i oo i . $994 anObject — aSingleLink successor entry.
asSingleLink successor: aSingleLink successor successor. J.
Compute rs count — count — 1.
1 anObject.
Wh0|esa| e internal
P.0. Box 144 Camillus, NY 13031 Initialize super initialize. firstLink — nil.
- (315)472-2582 @ firstLink | | — firstLink.
3%5&":32.'3 s-::c:v:: 'S resdents a0 '3552’«?2”?1’“ il Table 8: Class template for class SinglyLinkedList.

Prices do not include shipping. VISA and Master Charge add 3%
CO.D. orders require 25% deposit. Prices subject to change without
notice




The NO Compromise on P**

S-100 Plug-Ins

*(Performance, Power, Price)

STATIC RAM BOARD The 32K x 8 bit/16K x 16 bit STATIC

RAM BOARD uses low power and its
fast device access time of 200 nsec
(max.) allows for operation @ 4 MHz
without any wait cycles.
Features: |[EEE-696 compatibility with
extended addressing [J Memory ad-
dress may start and stop on any 4K/
2K boundary [J Special Memory Man-
agement and Control Functions (sel-
ectable via output port control word(s):
Bank select/deselect 8K/4K
Bank write protect 8K /4K
Bank readdress 8K/4K
[JSoftware page select/override (] Software wait cycle select (if slower devices util-
ized by user) [] External power source back-up capability for Memory Array [J Low
input power requirements (full memory array - 150 MA max. @ 8 VDC IN — support
logic-500 ma typ @ 8 VDC IN) [ Socketed RAMs and support logic IC's for easy
maintenance [ Comprehensive Manual

Assembled and Tested
Kit P/N 52748-500 $395

S T ———
LT T T T T

P/N 52748-500-100 $485
Bare Board P/N 52748-5XX $95

The multiple on-board functions allow MULTI-FUNCTION I/O BOARD

for complete software and hardware

1/0 task(s) control.

Features: Two independent SYNC/
ASYNC serial ports (Software program-
mable with status read interface: RS-
232-C or current loop — 20 or 60ma
— or TTL with handshaking. Dedicated
output connectors for each port) [ : :
One strobed 8-bit parallel port with y

handshaking (Software status read) C g

Three 8-bit parallel ports undedicated
& user configured (Software program-
mable for input, output, plus input/output/bidirectional with handshaking or com-
binations thereof. Software status read for handshake logic) [J Three independent
16-bit timers (Software programmable for 5 operating modes. Indiv. clock source
input & gate control — int. or ext. Uninterrupted read. Two buffered outputs) O
Eight level priority interrupt controller (Software programmable highest interrupt
level. 8080/Z80 auto restart command).[] Two software programmable baud rate
generators with crystal controlled frequencies — .01 % tolerance (] Large proto-
typing area with access to regulated +5, + 12, — 12VDC.

A bled and Tested P/N52748-100-101 $375
Kit P/N 52748-100 $225 Bare Board P/N52748-1XX $85

e

AU T

PROTOTYPING BOARD

Provides flexibility and saves hours
of power busing layout time.
Features: Bus-bar power distribution
[J Allows wire-wrap or soldering of
sockets and discrete components [
Accepts all std. sockets on .30" & .60"
centers [ 3 regulators (+5V % 12V)
with filter and decoupling capacitors
[J Accepts edge connectors on .10
centers.

Or complete as shown in photo.

Kit includes: 3 regulators w/3 heat-
sinks/filter capacitors/2 bus bars and
manual P/N52748-400 $49.95
Bare Board P/N 52748-4xx $34.95

3 ISR
g )T

I/0O TECHNOLOGY

P.O.Box 2119
Canyon Country, CA 91351
(805) 252-7666

-, T
=

CA residents add 6% tax
Q‘s. Domestic Price, FOB Factory

254  August 1981 © BYTE Publications Inc

Circle 161 on inquiry card.

former first link in the list. This pro-
cedure is used to implement the
message insert:At: in class
SinglyLinkedList. We also increment
the value of count, just as we do in
the message append.

The general procedure for remov-
ing a data item from a singly linked
list is analogous to that for inserting
an item. First we find the link that
precedes the one at the position of in-
terest. We then point this link to the
link that follows the one of interest.
This deletes the link of interest from
the list (see figure 6b). We then return
the entry of the deleted link. Again,
the exceptional case is removing the
first item since there is no preceding
link. The message removeAt: in class
SinglyLinkedList is implemeneted
using this procedure. Since an object
has been deleted from the list, we
decrement the value of count.

Suppose we wish to use a singly
linked list instead of a sequential list
in our previous example of a deck of
cards. We simply create instances of
class SinglyLinkedList for the deck and
hands, as shown in the following:

| hand!l hand2 deck |

deck — SinglyLinkedList new.
hand! - SinglyLinkedList new.
hand2 - SinglyLinkedList new.

We can then use the rest of the code,
unchanged, from that example. We
are able to do this because we have
hidden the details of each implemen-
tation inside the corresponding class
definition and, in using the classes,
have limited ourselves to a clearly
defined set of external messages.

The Circular List

Another type of linked list is the
circular list (see figure 7). A circular
list is a singly linked list in which the
successor of the last link in the list is
the first link in the list. This makes a
circular chain of links. If we have
access to the last link in a circular list,
then we also have easy access to the
first link of that list since it is the
immediate successor of the last link.
By keeping track of the last link of a
circular list, we can easily insert and
remove items from both the begin-

Circle 342 on inquiry card. ===




(6a)

entry

successor

(6b)

successor

Figure 6: The insertion and deletion of data items from a singly linked list. In both inser-
tion (6a) and deletion (6b) processes, the dotted lines represent the links existing before

]

anObject |

l anObject

anObject

' anObject

anObject

the process, while the solid lines represent the links existing after the process.

anObject

onObject

anObject

anObject

=)

%)

lastLink

Figure 7: A circular list.

ning and the end of the list. This will
be a useful property in some of the
data structures that we will build out
of circular lists.

The definition of class CircularList is
given in table 9. Class CircularList has
an instance variable named lastLink
that points either to the last link in the
list or to nil if the list is empty. The in-
ternal message initialize sets lastLink to
nil. The internal message firstLink
(again, as in the case of class
SinglyLinkedList, sent to nonempty
lists only) returns the successor of
lastLink. Since the list is circular, this
is the first link in the list.

The append, insert, and remove
operations on a circular list are
similar to those on a noncircular list.
Since we always have a link that
precedes any given link in a circular
list, we don’t have to make exceptions
for operations on the beginning of the
list. The implementation of these
operations is demonstrated in the
methods for the messages append:,
insertAt:, and removeAt:.

The Doubly Linked List
Now we will consider the doubly
linked list (see figure 8). A doubly
linked list is a sequence of double
links connected together. The suc-
cessor of a given link is the link that
follows it in the sequence, just as in
the case of the singly linked list. The
predecessor of a given link is the link
that precedes it in the sequence. A
doubly linked list can be made into a
circular list, just as a singly linked list
can, by connecting the first and last
links. In this case, the successor of the
Text continued on page 260

AMS

ADVANCED MICRO SYSTEMS « 26188 ADAMOR ROAD » CALABASAS, CA. 91302
MORROW DESIGNS rRODUCTS AT LOW LOW PRICES!

Te

OFFER
EXPIRES

l.: (213) 880-4670 Oct 31 1981

*HARD DISK SUBSYSTEMS

ADDITIONAL HARD DISK

*FLOPPY DISK SUBSYSTEMS TWO DRIVE SUBSYSTEMS

M-26 DISCUS M26 $3697.00
M-20 DISCUS M20 $3553.00
M-10 DISCUS M10 $2760.00

A-26 DISCUS M26 $3337.00
A-20 DISCUS M20 $3193.00
A-10 DISCUS M10 $2400.00

F-1118 DISCUS |
F.1218 DISCUS 20 $ 888.00
F-2218 DISCUS 242 $1176.00

All shipments FOB Calabasas — 90 days warranty on all products

DISK CONTROLLERS (A &T) STATIC MEMORY (A &T)

DJ.M26 M26 HARD DISK $595.00 16K SUPERAM $248.00

DJ-M20 M20 HARD DISK $595.00 16K MEMORY MASTER  $284.00

DJ"M10 M10 HARD DISK $595.00 24K MEMORY MASTER  $378.00

DJ-2208 DOUBLE DENSITY FEOPPY  $349.00 32K SUPERAM $450.00

DJ-1108 SINGLE DENSITY FLOPPY  $219.00 65K STATIC RAM $870.00

1/O CONTROLLERS (A &T) I.E.E.E. S-100 BUS (A&T)

$B-2411 SWITCHBOARD 1/0O $219.00 WB-0800 8 SLOT MOTHER BRD.  $109.00
$B-2411-4K 4K RAM OPTION $ 60.00 WB-1200 12 SLOT MOTHER BRD.  $129.00
MB.3200 MULT 1/0 BOARD $309.00 WB 2000 20 SLOT MOTHER BRD.  $173.00

Prices, Terms, Specifications subject to change without notice.

$ 816.00

F-1128 DISCUS | $1389.00
F-1228 DISCUS 2D  $1450.00
F-2228 DISCUS 242 $1954.00

*DECISION | BASIC UNIT $1342.00

NOTE:

1. The disk subsystems include Digital Research
CP/M 2.2 and Microsoft Basic V5.2

2. If you own a MITS controller and disc drive,
we have the interface 1o run them with our
new subsystems, and a reformatter for your
Pertec drives and software 1o translate your
Mits files to your new operating system

256

August 1981 © BYTE Publications Inc

Circle 7 on inquiry card.



Circle 196 on inquiry card.

QUALITY AND FAST SERVICE class name CircularList

1

LS191
LS193

superclass LinkedList
MEMORY 1-10 11-49 instance variable names lastLink
1702A 4.75
2708 3.25 3.05 class messages and methods
TMS2716 6.50
2716 5V 6.50 Y “none defined here”
2716-1 (350 ns) 8.50
TMS2532 17.00 instance messages and methods
2732 17.00
2732A-3 (300ns) 23.00 1 external
i i append: anObject | aSingleLink |
2114 (450 ns) 275 ; self empty : : : . ,
2114 (300 ns) 3.00 : ifTrue: [ lastLink — SingleLink entry: anObject successor: nil.
2114 (200 ns) 3.65 ; lastLink successor: lastLink. ]
TMS4060-2 (200 ns)  2.50 : ifFalse: [ aSingleLink — SingleLink
4116 (200 ns) 2.50 X entry: anObject successor: astLink successor.
4116 (150 ns) 3.00 - lastLink successor: aSingleLink. lastLink — aSingleLink. ].
6810 423 count — count + 1.
ik g Insert: anObject at: aninteger | aSingleLink |
8080A 275 : self checkindex: aninteger.
8085A 8.75 i asSingleLink — self linkAt: aninteger — 1.
8212 2.50 : aSingleLink successor:
8216 2.50 : (SingleLink entry: anObject successor: aSingleLink successor).
8748 55.00 - count — count + 1.
TMS9900 25.00 . removeAt: aninteger | aSingleLink anObject |
Z-80 CPU g : self checkindex: aninteger.
Z80n c <5 : aSingleLink — self linkAt: aninteger — 1.
SPECTAL T (agoougjfci ')aSmgleLunk successor entry.
B for 19.00 ifTrue: [ lastLink — nil. ]
-LS PRODUCT ifFalse: [ aSingleLink successor: aSingleLink successor successor.
e (aninteger = count) ifTrue: [ lastLink — aSingleLink. ]. ].
L 90 count — count — 1.
Lst64 85 t anObject.
LS165 85
LS174 100 2
LS175 100 internal
00
85

LS195
Ls221
LS240
Ls241

firstLink 1 lastLink successor.

linkAt: aninteger | |
(aninteger = count) | (aninteger = 0) ifTrue: [ 1 lastLink ].
1 super linkAt: aninteger.

Initialize l / super initialize. lastLink — nil.

38a3

TTL - CMOS
SOCKETS o i i
EoNNECTons Table 9: Class template for class CircularList.
CAPACITORS
DIP SWITCHES
DIODES
TRANSISTORS
anObject —l anObject anObject anObject
8921 S. Sepulveda Ste 208 p J o
Los Angeles, CA 90045
213/641-3101 MON THRU FRI
800/421-2418 8:00 am to 5:00 pm = . 4+ o 1arTe —_— [ 2
| o - - s e e— 1@
IEBMS: POSTAGE:
CHECK, MONEY ORDER, VISA
MASTERCARD. CALL FOR COD. ADD 2.00 Ground
U.S. FUNDS ONLY ADD 5.00 Air
Calif residents, add 6% tax uPs nil
ALL MAJOR MANUFACTURERS. J
100% GUARANTEED.
! listHead

Figure 8: A doubly linked list.

258  August 1981 © BYTE Publications Inc Circle 363 on inquiry card. ee=p

—r



class name DoublyLinkedList
superclass LinkedList
instance variable names listHead

class messages and methods

“‘none defined here”’

instance messages and methods

external

Insert: anObject at: aninteger | |

self checkindex: aninteger.

self insert: anObject after: (self linkAt: aninteger — 1).
removeAt: aninteger | aDoublelLink |

self checkindex: aninteger.

aDoubleLink — self linkAt: aninteger.

aDoubleLink successor predecessor: aDoubleLink predecessor.

aDoubleLink predecessor successor: aDoubleLink successor.

I aDoubleLink entry.

internal
initialize | |
super initialize.
listHead — DoubleLink entry: nil successor: nil predecessor: nil.
listHead successor: listHead. listHead predecessor: listHead.
firstLink | | ! listHead successor.
linkAt: aninteger | aDoubleLink |
(aninteger = 0) ifTrue: [ 1 listHead ].
(aninteger < = (count/ 2)) ifTrue: [ I super linkAt: aninteger ].

append: anObject | | self insert: anObject after: listHead predecessor.

aDoubleLink — listhead.

t aDoubleLink.

(count — aninteger + 1) timesRepeat:
[ aDoubleLink — aDoubleLink predecessor. ].

Insert: anObject after: aDoubleLink1 | aDoublelink2 |
aDoubleLink2 — DoubleLink entry: anObject
successor: aDoubleLink! successor predecessor: aDoubleLinkl.
aDoubleLink1 successor: aDoubleLink2.
aDoubleLink2 successor predecessor: aDoubleLink2.

Table 10: Class template for class DoublyLinkedList.

Text continued from page 256:

last link is the first link, and the
predecessor of the first link is the last
link. The class definition for a cir-
cular, doubly linked list is given in
table 10.

Class DoublyLinkedList has an in-
stance variable named listHead,
which points to a special kind of link
known as a list head. A list head is a
link whose entry is unused. The idea
is to keep the list head in the list so
that even when there are no data
items in the list, at least one link is
present. Having a link present at all
times simplifies the implementation
of some linked list operations. A list

260  August 1981 © BYTE Publications Inc

head can be used in the implementa-
tion of a singly linked list, but it is
especially convenient in the im-
plementation of a circular doubly
linked list. In a circular doubly linked
list, the list head successor points to
the first link in the list (excluding the
list head itself), or to itself if the list is
empty (see figure 9). The list head
predecessor points to the last link in
the list (excluding the list head itself),
or to itself if the list is empty. In class
DoublyLinkedList, the internal
message initialize sets listHead to an
instance of DoubleLink whose entry is
nil and whose successor and
predecessor are both that same in-

U=

Figure 9: An empty doubly linked list.

listHead

stance (ie: the double link is made cir-
cular). The message firstLink has been
modified to return the list head suc-
cessor.

Because a doubly linked list is com-
posed of a sequence of double links, it
is possible to traverse the list in both
directions, forward and backward,
with equal facility. The internal
message linkAt: in class
DoublyLinkedList has been modified
to access objects past the middle of
the list by starting from the rear and
traversing toward the front. This im-
proves the performance of the access
message at:.

Inserting an item in a doubly linked
list is similar to inserting an item in a
singly linked list. We first create a
new link for the item. Then we find
the link that this new link is to follow,
set the successor and predecessor
pointers of the new link, and adjust
both the successor pointer of the link
that precedes the new link and the
predecessor pointer of the link that
follows the new link (see figure 10a).
If we are using a circular list with a
list head, we don’t have to consider
any exceptional cases. Removing an
item from a list is an analogous pro-
cess (see figure 10b). The details of
these procedures are demonstrated in
the methods for the messages
append:, insert:, and removeAt:.

The Stack
The next data structure that we will
look at is the stack (see figure 11). A
stack is a linear list of items that is
accessed in a very restricted way. In
fact, only one side of a stack, the top,
can be accessed. The bottom of the
stack cannot be accessed. These
names are useful because most stack
diagrams list their items vertically,
with the accessible end higher. The
item at the accessible end of the stack
Text continued on page 264



Circle 57 on inquiry card.

(’“N\P U Tfﬁ&
THE FUTURE

APPLE 11 PLUS/III:

16K RAM - 1149: 32K RAM - 1200:

48K RAM - 1250: Disk Il-Drive w/Controller - 549:
Disk II-Drive Only - 479: Silentype Printer - 549:
RF Modulator - 29: Applepost - 49:
Dan Paymar Lower Case Adapt. - 49: Appleplot - 69:
Dow Jones Portfolio Eval. - 49:

Personal Finance Mgr. - 75: Apple Taxplanner - 119:
Apple Ili/info Analyst Package @ 96K RAM - 4199:
128K RAM - 4499:

A complete line of other Apple Accessories &
software - $CALL FOR PRICE

ATARI:

400-8K RAM - 399: 800-16K RAM - 799:
810-Disk Drive - 499: 815-Dual Disk Drives - 1199:
820-40C Printer - 275: 822-40C Therm Printer - 399:
825-80C Printer - 699: 830-Acoustic Modem - 175:
850-Interface Mod. - 149: 410-Recorder - 59:

32K RAMCARD - $CALL Atari Light Pen - 75:
Paddles - 20: Joysticks - 20:

A complete line of other Atari Accessories &
software - $CALL FOR PRICE

COMMODORE:

VIC-20..$CALL: #2001 - $CALL: #4001 -
#4016 - $CALL: #4032 - 1200: #8032 - 1726:
#4022 Printer - 749: #4040 Dual Drives - 1149:
#8050 Dual Drives - 1649: #8010 Modem - $CALL
C2N Recorder - 75:

A complete line of other Commodore Accessories &
software - $CALL FOR PRICE

OTHERS:

PRINTERS: EpsonMX?O 399...MX80 - 599..
MPI 88G - 699...MPI 99G - $CALL_
Centronics #737 - $CALL...#779 - $CALL
Anadex DP9500 - 1349...DP9501 - 1349
Qume Sprint 5/45 - 2699
NEC Spinwriter #5510 - 2499
#5520 - 2849...#5530 - 2499
IDS Paper Tigers - $CALL

DISK DRIVES: Shugart, Micro Sci.
Lobo - $CALL FOR PRICES

MONITORS: Video 100, 100G, 100/80,
Color - $CALL...NEC 12"’ GRN - 259
Sanyo 9" B&W - 199...12" B&W - 299
12"°GRN - 324

MODEMS: DC Hayes Micromodem - 324

ACCESSORIES: Mlcroso'l Z80 soflcavd 299
16K RAM CARD - 194

HARDWARE: Mountain Products - $CALL FOR PRICES

SOFTWARE: Insoft Accountant, Controller, Cashier,
Visicalc (Apple, Atari, CBM) Supertext Il
W/P, Apple Wordstar W/P - $CALL FOR

PRICES

ORDER INFO: |

Min. order $100.00 rders, Cashiers/certified
checks or bank drahs wolcomod. VISA & Mastercard
orders add 2%...American Exp & Diners Club add 4%.
Personal checks accepted w/25 days for clearance. Add
3% for shipping in the U.S.A. Prices subject to chan%
without prior notice and lliinois residents must add 6

for sales tax. Please include phone numbers with orders
and expiration date on credit card orders. No COD's.

Special discounts for mulnple and combination orders
placed with the statement ‘‘Praise the Lord"’ preceding
the order placement. The above prices apply to mail
orders only. Send inquiries to:

CMS ENTERPRISES
P.0. BOX 1740
CHICAGO, IL - 60690

(312) 853-1184
P _

$CALL:

264  August 1981 © BYTE Publications Inc

(10a) anObject
L
anObject anObject
entry ] ]
successor
D I e —— ] I ——— e
predecessor
(10b) anObject
anObject l | anObject
LN
e N
- ~
2 8
%
7 - M \\
entry [} 4 ~ ~ NS L]
7 7 N N
- s ~ ~
7 % ~ -
. . [ - — i =g ® + . e
successor 7 ~
7'g N
« . - .« o
pred

Figure 10: The insertion and deletion of data items from a doubly linked list. In both in-

sertion (10a) and deletion (10b) processes,

the dotted lines represent the links existing

before the process, while the solid lines represent the links existing after the process.

Text continued from page 260:

is called the top item. A new item is
added to the accessible end, thereby
making it the new top item. This is
called pushing an item onto a stack.
Only the top item can be removed, or
popped, from a stack. By adding and
removing in this fashion (pushing and
popping), we are able to access items
in a last-in-first-out manner—that is,
the last item pushed on a stack is the
first item to be popped off the stack.
Because of this, a stack is often called
a LIFO (last-in-first-out).

Many examples of collecting and
accessing in stack fashion exist out-
side the realm of programming. A
pile of trays in a cafeteria rack is often
used in this way. The same can be
true of papers piled on a desk. In pro-
gramming systems, a number of
algorithms call for the use of a stack.
For example, arithmetic expressions
expressed in prefix or postfix notation
can be evaluated using a stack to keep
track of partial results.

The operations that we want to
perform on a stack include:

edetermine the number of items on
the stack

edetermine whether or not the stack
is empty

epush an item onto the stack

epop an item off the stack

eaccess the top item on the stack

It is easy to implement a stack using a
linear list as the basic storage
mechanism. Since we have several
kinds of linear lists, it is possible to
have several different stack im-
plementations. Table 11 gives the
definition of class Stack, which serves
as a superclass for subsequent stack
classes. Each kind of stack has a buf-
fer which is a linear list, either se-
quential or linked. The messages
count and empty are implemented
using the corresponding messages of
the linear list. The message empty-
Check, which sends an error message
if the stack is empty, will be used in
the implementations of the messages
pop and top.

The Sequential Stack
The first stack implementation we



Circle 400 on inquiry card.

Here are the
Software Tools
you have been

looking for!

1. Screen Management System
Professional Looking
Screens as simple as A,B

A. Create or Update Screens with Mask
Builder
*Uses Direct Cursor controls
*Define field attributes
*Save Screen Masks on Disk
*Print out Masks for Program
Documentation
B. Use simple calls to interface CRT
Driver to your programs ’
*Built-in buffer stores mask and field
attributes :
*Display and accept data by field
number
*Forward and Back Page through
screens ;
*Forward and Back Tab through Fields
*Dynamically protect fields
*Program definable keys
No Need to use
INPUT or PRINT statements

Available for CP/M, TRS-80 (1&I), Apple Il

Microsoft's S-BASIC
BASIC-80 CBASIC
COBOL and
M80 more

2. Which console message do
you prefer when your diskette
or directory sets full?
A. DISK WRITE ERROR: (Using PIP)
B. Mount Next Diskette—Hit Carriage
Return
If you like answer B, you will love BACKUP
*Backup your hard disk to any
combination or single or double
density diskettes

*Backup from double sided, double
density to single or double density

3. Do you need to backup files
larger than a single diskette?
You can with our Dump-Restore program
*Each diskette is sequentially labeled
so your file cannot be restored out
of sequence

4. Do you need a simple file
transfer program?

We think this is it.
*Transfer your programs and data
files between computers over serial
1/0 port
*Bidirectional transfer with error
checking and retries
*Easy to interface

COMING ATTRACTIONS
CP/M Super Utility
$-100 Single Board Computer
*Priced under 1K *64K Memory
*2Z-80A (4Mh2) or Z-80B (6Mh2)
*DD,DS 8" Disk controller
*2 Serial—4 Parallel Ports
*Interrupt Driven CP/M Available

Screen Management System 195.00
BACKUP Utility 59.95
SAVE-RESTORE Utility 4995
TRANSFER Utilit 39.95

Y 4
OEM and Dealer Inquiries are Welcome

WESTERN BUSINESS

ASSOCIATES
1300 E. Shaw Ave., Suite 164
Fresno, CA 93710
Phone (209) 224-0520
*Requires Softcard

CP/M is a trademark of Digital Research, Inc.
2-80 is a trademark of Zilos Inc.
Apple is a trademark of Apple Computer Inc.

TRS-80 is a trademark of Tandy Corp.
Softcard is a trademark of Microsoft

We accept Visa and Mastercard

266  August 1981 © BYTE Publications Inc

top of stack w

stack of
n data
items

bottom of stack

a

&ush

%p

b c

Figure 11: A stack, shown in figure 11a, is a linear collection of objects arranged so that
items can be added to or removed from the stack only at the top end of the stack. Figure
11b shows an item being added, or pushed, to the stack. Figure 11c shows an item being

taken, or popped, from the stack.

will consider is the sequential stack.
A sequential stack is simply a stack
implemented using a sequential list.
The definition of class SequentialStack
is given in table 12. An instance of
SequentialStack is created by sending
class SequentialStack the message
size:, whose parameter is an integer
indicating the estimated maximum
size of the stack. For example:

| stack |
stack — SequentialStack size: 20.

creates an instance of SequentialStack
with space initially for twenty items.
This size is expanded when necessary
since the sequential list used as a buf-
fer is expanded when required.

The message push: is implemented
by appending to the buffer the object
passed as a parameter. As we have
noted, this is an easy operation for se-
quential lists to perform, except when
the list overflows and requires expan-
sion. The message pop is im-
plemented by first checking to see if
the buffer is empty, in which case an
error is reported. Otherwise, the last
item from the buffer is removed.

Again, we should recall that this is an
easy operation for a sequential list to
perform. Similarly, in order to access
the top of the stack (using the
message top), we check to see that the
stack is not empty, in which case we
return (without removing) the last
item in the buffer.

The following is an example using
class SequentialStack:

| stackabc |

stack — SequentialStack size: 10.
a — (Card suit: ‘heart’ rank: 5).
b — (Card suit: ‘heart’ rank: 6).
Cc — (Card suit: "heart’ rank: 7).
stack push: a.

stack push: b.

stack push: c.

a — stack pop.

b — stack pop.

C — stack pop.

This example creates an instance of
class SequentialStack that initially has
space for ten objects. The variables a,
b, and c are assigned to instances of
class Card with ranks 5, 6, and 7,
respectively. These instances are
pushed on the stack and then popped



Circle 47 on inquiry card.

INTRODUCTORY OFFER!

Turn your Micro-Computer into a Mini-Computer.
Try the world's #1 programming language-COBOL!
Finally at a price you can afford and with no risk!

Introducing...

NPS-MICRO-COBOL

This is the Naval Post Graduate School Cobol
that you've heard so much about. Designed to

ass the stringent government Hypo-COBOL
ests used by GSA in their Compiler Certification
Program. This is the first public release of
version 2.1. This is an elaborate ANSI-COBOL
subset. Comes complete with users manual in
DeLuxe three-ring binder.

® perfect for learning COBOL.
Perfect for teaching COBOL
FREE sample programs included
Runs in 24K

Requires 8080, Z-80®, or 8085 and
standard CP/M® system

Provided on standard 8" disk or
Northstar Double Density CP/M 5"

Only $69.95!
FREE ALGOL INCLUDED!

FREE BONUS. All purchasers receive a
FREE copy of NPS-ALGOL at no extra
cost. A favorite language in Europe,
ALGOL is the original structured lang-
uage. Comes with FREE sample programs.

MONEY-BACK GUARANTEE. If you're not
completely satisfied with this software. You
may return it within fifteen days for any
reason and get a full refund.

Send Check, Money Order or Credit
Card information and order a copy
today! Please add $2.50 shipping
and handling on all orders.

Credit Card buyers: For ExtraFast
service call (415) 527-7730

l Order from: The Software Review
| 704 Solano Avenue, Albany, CA 94706 |
|

Yes, | want to run COBOL on my system! Enclosed find
| $69.95 plus $2.50 shipping/handling (California

residents please add appropriate sales tax). | will |

receive the NPS-COBOL sﬂystem plus a FREE copy of |
| NPS-ALGOL. | understand that | ma¥ Iretum the
e

' fsoltware within 15 days if not completely satisfied |
or a full refund.

1 NAME

] COMPANY

| STREET

I CITY

| STATE ZIP |

| AMOUNT ENCLOSED  § |

; Disk size desired: 5" 8" =

1 [0 Check Enclosed [J VISA |

| O UPS C.0.D. [J Mastercharge i

| Card number |

| Expiration Date |

| signature |
[ Check here for more information f

l CP/M is atrademark of Digital Research and Z-80 is a I

T |

268  August 1981 © BYTE Publications Inc

e

class name Stack
superclass Object
instance variable names buffer

class messages and methods

““none defined here"’

instance messages and methods

external
count | | t buffer count
empty | | I buffer empty

“pop | | ... to be defined in subclasses’
“top | | ... to be defined in subclasses’’

internal

“push: anObject | | ... to be defined in subclasses”

emptyCheck | | self empty ifTrue: [ 1 self error: ‘stack empty” ].

Table 11: Class template for class Stack.

R N I T S L O A M A T I v B e it

class name SequentialStack
superclass Stack
instance variable names "“none defined here’”

class messages and methods

size: aninteger | |
(aninteger > 0)
ifTrue: [ 1 (self new) initia

ifFalse: [ 1 self error: ‘invalid size’ ].

lize: aninteger ]

instance messages and methods

external

internal
Initialize: aninteger | | buffer

push: anObject | | buffer append: anObject.
pop | | self emptyCheck. t buffer removeAt: buffer count.
top | | self emptyCheck. t buffer at: buffer count.

Table 12: Class template for class SequentialStack.

— SequentialList size: aninteger.

off. The effect is to reverse the
assignments to 3, b, and ¢, such that
the ranks are 7, 6, and 5, respectively.

The Linked Stack

Alternatively, we can define a
linked stack, which is a stack whose
buffer is a linked list. The definition
of class LinkedStack is given in table
13. A linked stack is created by send-

ing the message new to class
LinkedStack. Since we are using a
linked list for the buffer, there is no
need to specify a maximum size
estimate. For example:

| stack |
stack — LinkedStack new.

creates a new instance of class



class name

—

LinkedStack

superclass

Stack

instance variable names

“‘none defined here”’

class messages and methods

new | | t (super new)

initialize

instance messages and methods

external

internal

push: anObject | | buffer insert: anObject at: 1.
pop | | self emptyCheck. t buffer removeAt: 1.
top | | self emptyCheck. t buffer at: 1.

Initialize | | buffer — LinkedList new.

Table 13: Class template for class LinkedStack.

LinkedStack. The message push: is im-
plemented by inserting the object
passed as a parameter at the begin-
ning of the buffer (ie: at position
number 1). This is an easy operation
for a singly linked list. The message
pop is done by removing the first ob-

ject from the buffer—another easy
operation. The message top is im-
plemented by accessing the object
that is the entry of the first link of the
buffer. We can use an instance of
class LinkedStack in the example given
for class SequentialStack by doing the

following:

| stack |
stack — LinkedStack new.

The rest of the example is unchanged.

The Queue

The queue is an important data
structure that, like the stack, occurs
often both in programming systems
and outside the realm of program-
ming (see figure 12). A queue is a
linear list of items whose access is
restricted to the two ends. An item
can be appended to only one end of a
queue, called the rear. An item can be
removed only from the other end of
the queue, called the front of the
queue. This causes a sequence of
items that are added to a queue and
subsequently removed, to be accessed
in a strict first-in-first-out fashion (ie:
the first item that we put in a queue is
the first item that we get out).
Because of this, a queue is sometimes
called a FIFO (first-in-first-out).

Lines of customers at a bank win-

LDP1/2

The LDP1/2 utilizes the advanced 8088 processor to provide up to 8

NEW LOWER 8088 PRICES

LDP88 8088 CPU BOARD

* 8088 CPU 5 MHz operation urgradeable to 8 MHz « 9 vectored inter-
rupts ¢ Fully complies with

EE 696 electrical and timing specs

270

times the throughput of a 4 MHz Z80A processor. The powerful instruc-
tion set of the 8088 is ideally suited to higher level languages such as
PASCAL and PU1. The 10 slot motherboard leaves 7 slots for USER ex-
pansion. With the option of a 10 MByte Winchester and MP/M-86, the
LDP mainframe becomes a powerful multiuser system with the capabili-
ty of handling 8 users without the degradation in performance experi-
enced with Z80 CP/M systems. The performance of the LDP1 and LDP2
has never before been available for such an affordable price.

FEATURES:

— LDP88, 8088 CPU board
— LDP72, advanced floppy disk controller

— LDP864K dynamic RAM

— 1 serial RS232 port

— 10 slot motherboard

— 18" Shu%:n 801R drive (LDP1), 2 Shugart 801R’s (LDP2)

4K EPROM socket for user population

s 8" 10 MByte Winchester (replaces 1 Shugart 801 in LDP2, available

Seg)t. 81
— MP/M-86 multiuser system (available Sept. 81)
— Woodgrained 7 slot chasis

PRICES ASSEMBLED & TESTED
LDP88 CPU $ 349.95
LDP72 FDC 274.95
LDP64K RAM 795.00
LDP128K RAM 1295.00
LDP256K RAM 2095.00
HAZITAL 325.00
LDP1 3295.00
86-DOS 195.00
CP/M-86 250.00
Microsoft BASIC 86 350.00

Call for LDP1 option prices and board kit prices.

CP/M-86 and MP/M-86 are ks of Digital R )
86-DOS is a trademark of Seattie Computer Products

August 1981 © BYTE Publications Inc

* RS232 serial port with modem controls * 1K bytes of static RAM « 2
EPROM sockets (2716 or 2732) « 8087 upgrade kit available in Sept.
« 8 bit bus eases interface to other S100 bus boards « 1MByte address
space ¢ 65K I/O ports

64/256K MEMORY

* 8 or 16 bit operation « Meets all IEEE 696 specs * Access time
350 ns from PSYNC low « Intel 8203 dynamic RAM controller « 24 or
16 _bit address decoding * No wait states with 5 MHz 8088 or 8086
* Parity with Error interrupt %eneration * No DMA RESTRICTIONS
+ 64K board is upgradeable to 256Kbyte board

HAZITALL

« 2 Serial RS232 ports « 2 parallel ports with handshake control
* Math processor support (8231/9511 or 8232/9512) « WINCHESTER
DISK support « Real time programmable interrupt « Clock/calendar
with battery back up * Synchronous data communication supported

LDP72 FLOPPY DISK CONTROLLER

« |BM compatible single and double density format « Single or double
sided drives « Programmable data record length (128 to 8192 bytes/
sector) « Multi sector and multi track transfer capability « Parallel
seeks on up to 4 drives « On board digital data separator » Software
selectable single or double density operation ¢ Separate connectors
for 5%" and 8" drives + Software selection of standard or minidrives
allowing mixing of both drives on a single controller

LOMAS
DATA
PRODUCTS

11 Cross Street
Westborough, MA 01581
Telephone (617) 366-4335

Circle 201 on inquiry card.




front of
queue

rear of
queue

queue of » data items

Figure 12: A queue (12a) is a linear collection of objects arranged so that items can be
added (or put) only at the rear of the queue (12b) and taken away (or gotten) only at the

front of the queue (12c).

dow or checkout counter are every-
day examples of this kind of
discipline. In programming systems,
queues are used for many purposes,
for example, to represent a line of

customers in a simulation program or
to handle ordered lists of events and
processes in operating systems.

The operations we want to perform
on a queue include:

INFOSOFT Has a Better Way

1/0S™ Infosoft/operating system

@ Full CP/M™, CDOS™, SDOS™, compatibility
® Up to 15 disk units of 65 megabytes each

® Mix 5” and 8" floppies and hard disks

©® Autostart and turnkey capabilities

©® Adaptable to most 8080/8085/Z80 systems

® Dialog system generation without programming
@ Up to 975 megabytes of on-line data storage

*New! Developed from the 1708 single-user system*
Introducing

MULTI/0S™

the complete multi-user operating system
All features of the single-user 1/0S plus

® Up to 16 independent users and/or tasks

® Multiple printers with automatic spooling

® Up to 56k bytes in each user partition

® Managable sub-directories allow up to 63,504 files per unit

©® Record/file lock capabilities

Call Us Today
To Improve Your
System Performance

MASTERCARD and VISA accepted

CP/M i  registered trademark of Digital Research. CA
CDOS is a registered trademark of Cromemco
SDOS is a registered trademark of SO Systems

272  August 1981 © BYTE Publications Inc

Circle 166 on inquiry card.

edetermine the number of items in
the queue

e determine whether or not the queue
is empty

eput an item in the queue

eget an item from the queue

Just as in the case of the stack, we can
have different implementations of the
queue depending on the type of buffer
we use for storing the data items.
Class Queue, which serves as a
superclass for the queue classes, is
given in table 14. Class Queue con-
tains an instance variable named buf-
fer that points to the object that pro-
vides the storage for items in the
queue. The external messages have
been listed to show what must be
defined in all subclasses. The message
emptyCheck, which sends an error
message if the queue is empty, will be
used in the implementation of get.

The Linked Queue

The first queue we will consider is
the linked queue. A linked queue is
one whose buffer is a linked list.
Because we want to remove and add
items easily, we will use a circular,
singly linked list in our implementa-
tion. Class LinkedQueue is shown in
table 15. An instance of class Linked-
Queue is created by sending the crea-
tion message new to the class. For
example:

| queue |
queue — LinkedQueue new.

creates and initializes a new linked
queue. The internal message initialize
creates a new instance of CircularList
and stores a pointer to it in buffer.
To put an object in a linked queue
we use the message put:, passing the
object as the parameter. This object is
then added to the circular list by
sending buffer the message append:.
Similarly, the next object can be
removed by using the message get.
The method for get first checks to see
if buffer is empty. If it is, an error
message is sent. If not, the first object
is removed from buffer and returned.
The messages count and empty are
implemented by sending the respec-
tive messages to buffer and returning



Circle 133 on inquiry card.

THE NEW

NEVADA

COBOL!

At $149.95 you can't buy
a better COBOL or one
residing in less memory.

Now with the new Nevada COBOL, you can
use the programs developed by professional
business programmers over the past twenty
years to run the big IBM machines. And you can
develop and tailor programs on your micro and
run them on your micro or recompile and run
them on any mainframe computer. What's more
you can do it for about one-fifth the cost of
comparable COBOL compiler systems.

Almost all the popular microcomputers
work with the CP/M operating system we use
including Apple, TRS-80, North Star, Superbrain,
Cromemco and so on.

Check the features;
you'll go Nevada COBOL.

A powerful subset of ANSI-74, Nevada COBOL
requires a scant 16K of RAM. It’s available on 8”
CP/M standard single density or 5-1/4" diskettes.
Price includes diskette and manual. Price for
manual only, $24.95

Four COBOL applications packages
available too.

Four COBOL applications packages are cur-
rently available. Each is priced at $24.95 for the
diskette. The 73 page manual covering all four
applications costs an additional $2495.The
manual carries complete COBOL source code
listings and superior documentation

Package #1 is the Budget Plan Report
Generator. Here’s an extraordinary time saver
and planning aid for both start-up and well
established businesses.

Package #2 is the Personal Financial Planner
to give you some eye opening insights into your
own personal spending habits.

Package #3 is Labels so you can print name
and address labels.

Package #4 is Pre-COBOL for use as a
pre-processor of COBOL source programs. A great
programming aid.

Order today or write for complete details.

Phone (415) 751-1522 or address Ellis
Computing, 600 4Ist Ave, San Francisco, CA 94121.
Nevada Cobol is also available at Lifeboat
Associates, Discount Software, Westico, Business
Micro Products, Computer Information Exchange
and other quality computer stores. Mastercard,
Visa, C.O.D.s, or checks accepted. California orders
please include sales tax.

andy Corp. and |

ELLIS COMPUTING

SOFTWARE TECHNOLOGY

274  August 1981 © BYTE Publications Inc

A B N B eSS I W SO Q0 oS5 PO N Ny W P SRS )

class name Queue
superclass Object
instance variable names buffer
class messages and methods
““none defined here"”’
instance messages and methods
external
“count | | ... to be defined in subclasses”
“empty | | ... to be defined in subclasses”
“put: anObject | | ... to be defined in subclasses’
“get | | ... to be defined in subclasses”
internal

emptyCheck | | self empty ifTrue: [ 1 self error: ‘queue empty” ].

Table 14: Class template for class Queue.

class name

—

LinkedQueue

superclass

Queue

instance variable names

““none defined here”

class messages and methods

new | | ! (super new) initialize.

instance messages and methods

external

internal

count | | I buffer count.

empty | | ! buffer empty.

put: anObject | | buffer append: anObject.
get | | self emptyCheck. I buffer removeAt: 1.

initlalize | | buffer — CircularList new.

Table 15: Class template for class LinkedQueue.

the result. A simple example of the
use of LinkedQueue is the following:

| queueabc |

queue — LinkedQueue new.

a — (Card suit: ‘heart’ rank: 5).
b — (Card suit: ‘heart’ rank: 6).
¢ — (Card suit: ‘heart’ rank: 7).
queue put: a.

queue put: b.

queue put: C.

a — queue get.

b — queue get.

C — queue get.

This sequence creates an instance of
class LinkedQueue and assigns to the
variables a, b, and c, instances of
class Card with ranks 5, 6, and 7,
respectively. These instances are put
into the queue in the order listed and
are then removed and assigned to the
variables a, b, and c. The original
order is preserved; the ranks of a, b,
and c are 5, 6, and 7, respectively.

The Sequential Queue
The next implementation of a
queue that we might expect to see is



one that uses a sequential list to store
data items. Unfortunately, a sequen-
tial list is not well suited to this pur-
pose, because we need to add items to
one end of the list and remove them
from the other. You will recall that
adding items to the end of a sequen-
tial list is an easy operation, but
removing them from the beginning is
difficult since we have to copy for-
ward all of the succeeding items in the
list. Rather than copy forward all
items after the first, we would prefer
to ignore the item at position 1 of the
list and consider the item at position 2
to be the first item in the list. The
problem, however, is that as items
are added and removed from the list,

the actual positions of the first and
last items migrate toward the end of
the list. This could cause the list to ex-
pand even if it is not full. Fortunately,
we can treat the last position in the
list as if it preceded the first position:
that is, we consider the list to be cir-
cular. After we have added an item to
the last position, we can start adding
items to the beginning of the list, pro-
vided some have already been re-
moved. If we use this strategy, then
we don't have to expand the list until
it is full.

The class definition in table 16 uses
the strategy just described to imple-
ment a queue using sequential
storage. Class SequentialQueue uses

an instance of class IndexedTable as
its buffer. Since class IndexedTable
does not provide facilities for count-
ing the number of objects stored in an
instance (those facilities are provided
by class LinearList), we need to define
an instance variable count in class
SequentialQueue. Additionally, we
have instance variables named front
and rear. front is the index of the first
object stored in buffer (an instance of
class IndexedTable); rear is the index
of the last object stored in buffer.
Since we are treating buffer as a cir-
cular sequence of positions, front and
rear will repeatedly cycle through the
values between the lower and upper
bounds of buffer.

THE FORMULA™ allows the computer professional to
focus on the most important part of business: the needs
of the client. Customized systems for any business appli-
cation can be created in a fraction of the time required by
conventional methods.

* Interactive data entry, file updating, and
maintenance routines are automatically
generated from a definition of the fields.

* Reports can be created through a unique
full screen editor simply by typing a sample
format.

* Menus and job streams are defined through
a preprogrammed parameter-driven pro-
cedure.

e Fast response time is insured because
each routine can be interpreted directly by
the computer and data management is
controlled by an efficient ISAM algorithm.

THE FORMULA™ is a complete system language which
brings the process of developing applications closer to
the user’s description of his needs. That's THE FORMULA™
for success.

Disk and manual, $595. Manual only, $60.

THE FORMULA™ will run on any 8080 or Z80 computer
with CP/M;" 48K RAM, 300K total disk storage, and a CRT.

DMA e WE SPEAK YOUR LANGUAGE.

R = .‘

DYNAMIC MICROPROCESSOR ASSOCIATES ¢ 545 Fifth Avenue, New York, New York 10017 e (212) 687-7115
We ship prepaid and COD orders. Shipping & handling charges extra: $5 UPS areas; $7 non-UPS areas, Mexico, Canada; $10 + elsewhere. MasterCharge and VISA accepted.

New York State residents add appropriate sales tax.

276  August 1981 © BYTE Publications Inc

*CP/M is a trademark of Digital Research

Circle 121 on inquiry card.



class name

SequentialQueue

superclass

Queue

instance variable names

front rear count

class messages and methods

size: an Integer | |

(aninteger < 1) ifTrue: [ 1 self error: ‘invalid size” ].
1 (self new) buffer: (IndexedTable from: |1 to: aninteger) count: O.

instance messages and methods

external

count | |t count.
empty | |t count = O.
put: anObject | |

buffer put: anObject at: rear.
rear — self advance: rear.
count — count + 1.

get | anObject
| self emptyCheck.
anObject — buffer at: front.
front — self advance: front.
count — count — 1.
I anObject.

internal

advance: aninteger | |

aninteger — front.
1 to: count do:

(count = buffer size) ifTrue: [ self expand. ].

buffer: anindexedTable count: aninteger | |
buffer — anindexedTable. count — aninteger.
front — buffer lowerBound. rear — front + count.

aninteger = buffer upperBound
ifTrue: [ 1 buffer lowerBound ] ifFalse: [ 1 aninteger + 1 ].
expand | anindexedTable aninteger |
anindexedTable — IndexedTable from: 1 to: (2 * buffer size).

[:i | anindexedTable put: (buffer at: aninteger) at: i.
aninteger — self advance: aninteger. ].
self buffer: anindexedTable count: count.

Table 16: Class template for class SequentialQueue.

Because we are using an instance of
class IndexedTable for storing
objects, we must specify an estimate
of the maximum size of an instance of
class SequentialQueue when we
create it. This is done with the crea-
tion message size:, which creates a
new instance of SequentialQueue and
sends it the internal messsage
buffer:count:. The first parameter of
buffer:count: is an instance of class In-
dexedTable; the second is the number
of objects stored in the first parameter
(initially zero).

The message buffer:count: is also
sent from the internal message ex-

278  August 1981 © BYTE Publications Inc

pand, which is used to expand buffer
when it becomes full. expand is im-
plemented by creating a new instance
of IndexedTable that is twice as large
as the current one. All of the objects
stored in buffer are copied to the first
half of the new instance, which then
becomes the new buffer.

The internal message advance is
used to advance the values of front
and rear. Normally, this is done by
incrementing the current value by 1.
However, if the current value is equal
to the upper bound of buffer, then we
must set the value back to the lower
bound of buffer. The external

messages are those specified in the
superclass Queue. The message
count returns the value of the in-
stance variable count. The message
empty tests to see if count is zero.

For the message put:, we first test
to see if buffer is full. If buffer is full, it
is expanded using the message
expand. The object passed as a
parameter to put: is then stored in
buffer at the position indicated by
rear. rear is then advanced one posi-
tion forward, using the message ad-
vance. Finally, the value of count is
incremented.

Similarly, for the message get, we
first test to see if the queue is empty.
If it is, an error message is sent; other-
wise, the object stored at the position
indicated by front is removed from
buffer. front is advanced one position
forward, and the value of count is
decremented. Finally, the removed
object is returned.

Summary

The class construct is an extremely
useful tool for implementing data
structures. Implementing a data
structure with a class makes it possi-
ble to confine the details of the im-
plementation to one place and to in-
sure that the resulting object will be
accessed by the rest of the system in a
secure manner, namely, through the
use of a set of messages that corres-
pond to the operations that are well
defined for that data structure. Addi-
tionally, the ability to create
subclasses makes it possible to share
variables and methods among similar
class definitions, thereby reducing the
amount of work needed to implement
a set of data structures.®

References

1. Horowitz, E and Sartaj, S. Fundamentals
of Data Structures. Potomac MD: Com-
puter Science Press, 1976.

2. Knuth, D E. The Art of Computer Program-
ming: Volume 1/Fundamental Algorithms,
Second Edition. Reading MA: Addison-
Wesley, 1973.

3. Robson, D and Goldberg, A. “‘The Small-
talk-80 System,"" August 1981 BYTE, page
36.

4. Wirth, N. Algorithms + Data Structures
= Programs. Englewood Cliffs NJ:
Prentice-Hall, 1976.




Design Principles

Behind Smalltalk

The purpose of the Smalltalk pro-
ject is to provide computer support
for the creative spirit in everyone.
Our work flows from a vision that in-
cludes a creative individual and the
best computing hardware available.
We have chosen to concentrate on
two principal areas of research: a
language of description (program-
ming language) that serves as an in-
terface between the models in the
human mind and those in computing
hardware, and a language of interac-
tion (user interface) that matches the
human communication system to that
of the computer. Our work has
followed a two- to four-year cycle
that can be seen to parallel the scien-
tific method:

Daniel H H Ingalls
Learning Research Group
Xerox Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto CA 94304

eBuild an application program
within the current system (make an
observation)

®Based on that experience, redesign
the language (formulate a theory)

e Build a new system based on the
new design (make a prediction that
can be tested)

The Smalltalk-80 system marks our
fifth time through this cycle. In this
article, I present some of the general
principles we have observed in the

ATTENTION GOVERNMENT D P

USERS AND PURCHASERS

We represent many fine micro products and manufacturers
on the U.S. Government’s GSA Schedule, including

Apple, Cromemco, Micropolis

and Seequa Computers
Purchasing from the Schedule will save you the time
consumed by the bid process. Products shipped throughout
the United States and world-wide. Visit or write any of our
stores for more information or to receive our catalogue of
products represented.

0000000CGOCGOGOS
the dependable store

257 West Street, Annapolis, MD 21401 — (301) 268-6505

13A Allegheny Avenue, Towson, MD 21204 — (301) 296-0520
9330 Georgia Avenue, Silver Spring, MD 20910 — (301) 588-3748

6671 Backlick Road, Springfield, VA 22150 — (703) 644-5500
Plaza 38, 2442 Route 38, Cherry Hill, NJ 08002 — (609) 779-0023

Callers outside metropolitan areas served by our stores
Please call (301) 268-5801

Career Opportunities Available * An Equal Opportunity Employer

286

August 1981 © BYTE Publications Inc

Circle 80 on inquiry card.

course of our work. While the presen-
tation frequently touches on
Smalltalk “motherhood,” the prin-
ciples themselves are more general
and should prove useful in evaluating
other systems and in guiding future
work.

Just to get warmed up, I'll start
with a principle that is more social
than technical and that is largely
responsible for the particular bias of
the Smalltalk project:

Personal Mastery: If a system is to
serve the creative spirit, it must be en-
tirely comprehensible to a single in-
dividual.

The point here is that the human
potential manifests itself in in-
dividuals. To realize this potential,
we must provide a medium that can
be mastered by a single individual.
Any barrier that exists between the
user and some part of the system will
eventually be a barrier to creative ex-
pression. Any part of the system that
cannot be changed or that is not suffi-
ciently general is a likely source of
impediment. If one part of the system
works differently from all the rest,
that part will require additional effort
to control. Such an added burden
may detract from the final result and
will inhibit future endeavors in that
area. We can thus infer a general
principle of design:

Good Design: A system should be
built with a minimum set of un-
changeable parts; those parts should
be as general as possible; and all parts
of the system should be held in a
uniform framework.

Language

In designing a language for use
with computers, we do not have to
look far to find helpful hints.



Everything we know about how peo-
ple think and communicate is ap-
plicable. The mechanisms of human
thought and communication have
been engineered for millions of years,
and we should respect them as being
of sound design. Moreover, since we
must work with this design for the
next million years, it will save time if
we make our computer models com-
patible with the mind, rather than the
other way around.

Figure 1 illustrates the principal
components in our discussion. A per-

son is presented as having a body and
a mind. The body is the site of
primary experience, and, in the con-
text of this discussion, it is the
physical channel through which the
universe is perceived and through
which intentions are carried out. Ex-
perience is recorded and processed in
the mind. Creative thought (without
going into its mechanism) can be
viewed as the spontaneous ap-
pearance of information in the mind.
Language is the key to that informa-
tion:

* % % WRITE OR CALL FOR FREE CATALOG * * %
The MAX BOX: Manufactured by John D. Owens Associates. 8" dual drive cabinet com-

and engineering
With 2 Shugart 801R Drives. .$1,275.

plete with power supply & fan. Will hold Qumes, Shugarts or Siemens. Excellent design

With 2 QUME Double sided drives. .$1, 680

INI S3L¥ID0SSY SNIMO 0 NHOP

CALIFORNIA COMPUTER SYSTEMS HIGH IN QUALITY, LOW IN PRICE
Z80 CPU, 4 Mhz, with one serial port; 12 slot S-100 mainframe, disk controller, 64K
Dynamic Ram, CP/M 2.2® SYSTEM 2210A
We configure complete systems with drives and additional 1/ O.

IMS 5000 and 8000 Systems and IMS Memory
Outstanding long term reliability and performance. These systems feature a Z80A CPU,
$-100 bus; double density drives (either.single or double sided), DMA disk controller, 64K
RAM, 2 serial & 1 parallel port. Prices include the very finest implementation of CP/M®
available in the entire industry. Hard disk and multi user software options.

0 NHOI INI $31vI00SSY SNIMO O NHOP

SNIMO

NI S3LVID0SSY SNIMO 0 NHOP

Multi-User, Networking Operating System: TURBODOS

Turbodos: Spectacular new CP/M® compatible operating system. Z80 code, interrupt
driven. Up to 6X faster than CP/M®up to 35% increased disc capacity. IMS compatible.

Multi-user (up to 16 users)

Single user

PER SCI—THE KING AND QUEEN OF DRIVES!
Model 299B: Dual headed drives, total 3.2 MB unformatted
Model 277: Dual 8 inch drives, voice coil positioned, IBM compatible, 1600 K BYTES per

drive, unformatted

GRAPHICS EQUIPMENT
MICROANGELO

z
=
z

High resolution graphics system. 15” 22MHZ, green phosphor screen, 72 key keyboard;
includes complete cabling and software. From SCION. Screenware PAK II

S-100 Graphics card

HIPAD DIGITIZER from Houston Instruments. Create graphics using stylus. Easier
than joystick or keyboard input. For S-100, Apple, TRS-80, PET $

GRAPHICS SOFTWARE. On line, real time, for the M9900 to drive the Microangelo.

MO O NHOT 3N

For use in design of PC board masks, IC masks and other applications

CAT 100 Full Color Graphics: Digital Graphics Complete S-100 color imaging system
w/high performance video FRAME/GRABBER. ............................ $1,875.

MAURO MP-250B Proac Plotter: Uses standard paper, choice of pen colors and line
widths, resolution is 200 steps per inch; .005” tracking error; R$232

WE EXPORT:

Overseas Callers:
Phone 212 448-6298

TWX 710 588 2844
or Cable: OWENSASSOC

JOHN D. OWENS

Associates, Inc.
12 Schubert Street
Staten Island, New York 10305

212 448-6283

288  August 1981 © BYTE Publications Inc

212 448-2913

212 448-6298

Purpose of Language: To provide a
framework for communication.

The interaction between two in-
dividuals is represented in figure 1 as
two arcs. The solid arc represents ex-
plicit communication: the actual
words and movements uttered and
perceived. The dashed arc represents
implicit communication: the shared
culture and experience that form the
context of the explicit communica-
tion. In human interaction, much of
the actual communication is achieved
through reference to the shared con-
text, and human language is built
around such allusion. This is the case
with computers as well.

It is no coincidence that a computer
can be viewed as one of the par-
ticipants in figure 1. In this case, the
“body” provides for visual display of
information and for sensing input
from a human user. The “mind” of a
computer includes the internal
memory and processing elements and
their contents. Figure 1 shows that
several different issues are involved in
the design of a computer language:

Scope: The design of a language for
using computers must deal with inter-
nal models, external media, and the
interaction between these in both the
human and the computer.

This fact is responsible for the dif-
ficulty of explaining Smalltalk to peo-
ple who view computer languages in
a more restricted sense. Smalltalk is

explicit

—_——— »=2)

// \ _Ccommunication / \\

)

\ \ /
| I ; !
] \ implicit /l |
o tio \

/ c,_'"_l‘ﬂ'&’_'“\ \

)

/ /

\

N __// \\\_’//

Figure 1: The scope of language design.
Communication between two people (or
between one person and a computer) in-
cludes communication on two levels. Ex-
plicit communication includes the infor-
mation that is transmitted in a given
message. Implicit communication includes
the relevant assumptions common to the
two beings.



not simply a better way of organizing
procedures or a different technique
for storage management. It is not just
an extensible hierarchy of data types,
or a graphical user interface. It is all
of these things and anything else that
is needed to support the interactions
shown in figure 1.

Communicating Objects

The mind observes a vast universe
of experience, both immediate and
recorded. One can derive a sense of
oneness with the universe simply by
letting this experience be, just as it is.
However, if one wishes to par-
ticipate, literally to take a part, in the
universe, one must draw distinctions.
In so doing one identifies an object in
the universe, and simultaneously all
the rest becomes not-that-object.
Distinction by itself is a start, but the
process of distinguishing does not get
any easier. Every time you want to
talk about “that chair over there,”
you have to repeat the entire process
of distinguishing that chair. This is
where the act of reference comes in:
we can associate a unique identifier
with an object, and, from that time
on, only the mention of that identifier
is necessary to refer to the original
object.

We have said that a computer
system should provide models that
are compatible with those in the
mind. Therefore:

Objects: A computer language should
support the concept of “object” and
provide a uniform means for referring
to the objects in its universe.

The Smalltalk storage manager pro-
vides an object-oriented model of
memory for the entire system.
Uniform reference is achieved simply
by associating a unique integer with
every object in the system. This
uniformity is important because it
means that variables in the system
can take on widely differing values
and yetcan be implemented as simple
memory cells. Objects are created
when expressions are evaluated, and
they can then be passed around by
uniform reference, so that no provi-
sion for their storage is necessary in
the procedures that manipulate them.

When all references to an object have
disappeared from the system, the ob-
ject itself vanishes, and its storage is
reclaimed. Such behavior is essential
to full support of the object
metaphor:

Storage Management: To be truly
“object-oriented,” a computer system
must provide automatic storage
management.

A way to find out if a language is

working well is to see it the programs
look like they are doing what they are
doing. If they are sprinkled with
statements that relate to the manage-
ment of storage, then their internal
model is not well matched to that of
humans. Can you imagine having to
prepare someone for each thing you
tell them or having to inform them
when you are through with a given
topic and that it can be forgotten?
Each object in our universe has a
life of its own. Similarly, the brain

* % % GREETINGS TO OUR FRIENDS IN CHILE % * *

SD SYSTEMS
Z80 STARTER KIT: single board compu-
ter with RAM /ROM, 1/ 0O, display, key-
bd, kluge area $360
VFII: double density floopy controller kit,
with software $390
CPU Z80A, 4 Mhz, serial & parallel [/O
IK on-board RAM, Z80 CTC $345
EXPANDORAM Il including high quality
$540

Complete SD line available including kits
and FACTORY Assembled and tested
boards & systems at discount prices.

TEXAS INSTRUMENTS Printers

10% off list price on entire TI printer line.

CENTRONICS 737

EPSON MX80
RS 232 Interface

CORVUS Hard Drives
Model 11, Hard Disk System . . .
Mirror Backup System

.$4,820.

3 TELETYPE
Model 4320 AAA or AAK

Model 43ASR, 8 level, 1” tape . ..$2,595.

21 dBASEII Ashton-Tate

c Brings power of mainframe database
software to a microcomputer. Runs under
CP/M® . Extremely easy to use. Manual
and demo software $50.
Money Back Guarantee

DMA-DOS NORTH STAR 8" Floppy

Subsystem
A new operating sytem, completely
CP/M® compatible that allows use of
both 8” (Shugart single sided, double
density via Tarbell controller) and 5%4”
drives. Allows transfer of file from 8” to
5%" and vice versa. Complete hardware,
with software package $1,955.

TARBELL

Double density controller

4 MUSYS Single BD Computer

Z80 processor, 64K Dyn RAM, Console
serial port, S-100 parallel interface,
Bootstrap PROM

TEI MAINFRAMES, S—100
We are proud to announce that we are
now a TEI stocking distributor. For the
best in mainframes. . . .TEI!!

£ INI S3I¥I20SSY SNIMO O NHOF INI S3LV

220 volt models, add $100

=

90 day on-site warrantee.

TELEVIDEO CRTs
912..$780. 920..$850. 950..51,050.

0 NHO

IBM 3101 CRT Model 10

Selectric-like, detached keyboard. 9x16
dot matrix. Maintenance contract from
IBM only $70 per year.

INE S31VI20SSY SNIMC

COMMUNICATIONS SOFTWARE
from Hawkeye Grafix
Enables communcations from a micro to a
terminal or to another micro, mini or
maxi computer.
Object Code $75. Source Code $250.

0 NHOF NI 'S31VIJ0SSY SNIMO 0 NHC

ITHACA INTERSYSTEMS

Inventory sale on board sets & systems

MO 0 NHOP

MARINCHIP SYSTEMS M9900
Uses TI9900 16 bit CPU. Full 5-100, IEEE.
Extensive software. Boards from $550,
systems $4,995.

3M SCOTCH® Diskettes
5 box minimum, price per box
Model 740, 8” single sided,
single density
Model 741, 8” single sided,
double density
Model 743, 8” double sided,
double density
Model 744-0, 5V soft sectored, smglesnded
744-10, 54", hard sectored,
single sided

ONI 'S3LVIJ0SSY SNIMO

Prices subject to change without notice

INI S3LVIJ0SSY SNIMO 0 NHOP

JOHN D. OWENS

Associates, Inc.
SEE OUR AD ON FACING PAGE

August 1981 © BYTE Publications Inc 289



provides for independent processing
along with the storage of each mental
object. This suggests a third principle
for object-oriented design:

Messages: Computing should be
viewed as an intrinsic capability of
objects that can be uniformly invoked
by sending messages.

Just as programs get messy if object
storage is dealt with explicitly, con-
trol in the system becomes com-
plicated if processing is performed ex-
trinsically. Let us consider the process
of adding 5 to a number. In most
computer systems, the compiler
figures out what kind of number it is
and generates code to add 5 to it. This
is not good enough for an object-
oriented system because the exact
kind of number cannot be determined
by the compiler (more on this later).
A possible solution is to call a general
addition routine that examines the
type of the arguments to determine
the appropriate action. This is not a
good approach because it means that

this critical routine must be edited by
novices who just want to experiment
with their own class of numbers. It is
also a poor design because intimate
knowledge about the internals of ob-
jects is sprinkled throughout the
system.

Smalltalk provides a much cleaner
solution: it sends the name of the
desired operation, along with any
arguments, as a message to the
number, with the understanding that
the receiver knows best how to carry
out the desired operation. Instead of a
bit-grinding processor raping and
plundering data structures, we have a
universe of well-behaved objects that
courteously ask each other to carry
out their various desires. The
transmission of messages is the only
process that is carried on outside of
objects and this is as it should be,
since messages travel between ob-
jects. The principle of good design
can be restated for languages:

Uniform Metaphor: A language
should be designed around a power-

ful metaphor that can be uniformly
applied in all areas.

Examples of success in this area in-
clude LISP, which is built on the
model of linked structures; APL,
which is built on the model of arrays;
and Smalltalk, which is built on the
model of communicating objects. In
each case, large applications are
viewed in the same way as the fun-
damental units from which the
system is built. In Smalltalk especial-
ly, the interaction between the most
primitive objects is viewed in the
same way as the highest-level interac-
tion between the computer and its
user. Every object in Smalltalk, even
a lowly integer, has a set of messages,
a protocol, that defines the explicit
communication to which that object
can respond. Internally, objects may
have local storage and access to other
shared information which comprise
the implicit context of all communica-
tion. For instance, the message + 5
(add five) carries an implicit assump-
tion that the augend is the present

MAIL ORDER DISCOUNTS

éﬂpplﬂ computer

les and Service
APPLE Il PLUS 48K

$1,099

WE DISCOUNT PRICES — NOT SERVICE

HARDWARE

DISK Il DRIVE & INTERFACE

DISK Il SECOND DRIVE

BASF 5%" DISKETTES (10)

LANGUAGE SYSTEM WI/PASCAL

INTEGER BASIC FIRMWARE CARD
APPLESOFT Il FIRMWARE CARD
CENTRONICS PRINTER INTERFACE CARD . 179
HIGH-SPEED SERIAL INTERFACE CARD . ..145
GRAPHICS TABLET

APPLE |IEEE-488 INTERFACE CARD

M&R SUP-R-MOD RF MODULATOR
MICROSOFT Z-80 SOFTCARD SYSTEM
MICROSOFT 16K RAM CARD

VIDEX 80 COLUMN BOARD

HAYES MICROMODEM II

AMDEX 13" COLOR MONITOR

NEC 12" GREEN MONITOR

SILENTYPE PRINTER W/INTERFACE

EPSON MX-80 FT

QUME SPRINT 5/45 PRINTER

computer age.inc.
Authorized Apple Dealer & Service Center
4688 CONVOY STREET, SAN DIEGO, CA 92111

(714) 565-4062

290  August 1981 © BYTE Publications Inc

SOFTWARE

APPLE DOS TOOLKIT

APPLE PLOT

TAX PLANNER

APPLE FORTRAN .

APPLE PILOT

APPLE MUSIC THEORY
APPLEWRITER

DOW JONES PORTFOLIO EVALUATOR
DOW JONES NEWS & QUOTES REPORTER .
THE CONTROLLER

VISICALC (16 SECTOR)

VISIPLOT

VISITREND/VISIPLOT

DESKTOP PLAN I

BPI BUSINESS SOFTWARE (EACH) .
SUPERTEXT Il

PROGRAMMA APPLE PIE
EASYWRITER (80 COLUMNS) . ...
D.B. MASTER

MICROSOFT FORTRAN

ATARI 800 32K *

ATARI 400 (16K)

410 PROGRAM RECORDER
810 DISK DRIVE

815 DUAL DISK DRIVE

16K RAM MEMORY MODULE
850 INTERFACE MODULE
830 ACOUSTIC MODEM

825 PRINTER (CENTRONIC 737)*
JOYSTICK PAIR

LIGHT PEN

ATARI VISICALC

BASIC LANGUAGE. . ..
ASSEMBLER EDITOR .
MUSIC COMPOSER . ..
STAR RAIDER

COMPUTER CHESS . . .
BASKETBALL

TELELINK

*SPECIAL: Effective until 8/31/81

TO ORDER: Please send cashier's check, money order or personal check
(allow 10 business days to clear). VISA and Master Card credit card service
add 3%. American Express credit card service add 5%. Shipping, handling
and insurance in U.S. add 3% (minimum $4). California residents add 6%
sales tax. Foreign orders add 10% for shipping. Equipment is subject to

price ch

ility. All equip

and
prices differ from mail order prices. TELEX: 697120 DATAMAX-SDG

1t carries factory warranty. Store

CALL OR WRITE FOR A COMPLETE PRICE LIST

Circle 65 on inquiry card.



value of the number receiving the
message.

Organization

A uniform metaphor provides a
framework in which complex systems
can be built. Several related organiza-
tional principles contribute to the suc-
cessful management of complexity.
To begin with:

Figure 2: System complexity. As the
number of components in a system in-
creases, the chances for unwanted interac-
tion increase rapidly. Because of this, a
computer language should be designed to
minimize the possibilities of such in-
terdependence.

Modularity: No component in a com-
plex system should depend on the in-
ternal details of any other compo-
nent.

This principle is depicted in figure
2. If there are N components in a
system, then there are roughly
N-squared potential dependencies
between them. If computer systems
are ever to be of assistance in complex
human tasks, they must be designed
to minimize such interdependence.
The message-sending metaphor pro-
vides modularity by decoupling the
intent of a message (embodied in its
name) from the method used by the
recipient to carry out the intent.
Structural information is similarly
protected because all access to the in-
ternal state of an object is through
this same message interface.

The complexity of a system can
often be reduced by grouping similar
components. Such grouping is
achieved through data typing in con-
ventional programming languages,
and through classes in Smalltalk. A

class describes other objects—their
internal state, the message protocol
they recognize, and the internal
methods for responding to those
messages. The objects so described
are called instances of that class. Even
classes themselves fit into this
framework; they are just instances of
class Class, which describes the ap-
propriate protocol and implementa-
tion for object description:

Classification: A language must pro-
vide a means for classifying similar
objects, and for adding new classes of
objects on equal footing with the
kernel classes of the system.

Classification is the objectification of
nessness. In other words, when a
human sees a chair, the experience is
taken both literally as “that very
thing” and abstractly as “that chair-
like thing.” Such abstraction results
from the marvelous ability of the
mind to merge “similar” experience,
and this abstraction manifests itself as
another object in the mind, the
Platonic chair or chairness.

GRAPHIC
SOFTWARE
FOR
MICROCOMPUTERS

by B.J. Korites, PhD - a self-teaching guide that will show you how
to write graphics software on your microcomputer. Theory and
program listings presented side by side. Contains 61 programs for
2 and 3 dimensional graphics, isometric and perspective
transformations, scaling, stretching, clipping, intersections,
shading, tablet software, hidden line removal, dynamic simulation,
applications to engineering, science and business. Practice
problems for classroom use. Covers elementary to advanced
concepts. Perfect for professionals, students and software
developers. All programs in BASIC, written on the Apple Il Plus
48K but convertible to other systems.

da. $12 elsewhere. Add $5 for UPS
445 for

Book with program listings - $19.95 Disk of programs - $18.95

Add $2 per item shipping in US and Cal
visa/mastercharge accepted. Call (517)934

KERN PUBLICATIONS e PO Box 1029A e Duxbury, MA 02332 (617)934-0445

r delivery

292  August 1981 © BYTE Publications Inc Circle 187 on inquiry card.



Classes are the chief mechanism for
extension in Smalltalk. For instance,
a music system would be created by
adding new classes that describe the
representation and interaction pro-
tocol of Note, Melody, Score, Timbre,
Player, and so on. The “equal
footing” clause of the above principle
is important because it insures that
the system will be used as it was
designed. In other words, a melody
could be represented as an ad hoc col-
lection of Integers representing pitch,
duration, and other parameters, but
if the language can handle Notes as
easily as Integers, then the user will
naturally describe a melody as a col-
lection of Notes. At each stage of
design, a human will naturally choose
the most effective representation if
the system provides for it. The princi-
ple of modularity has an interesting
implication for the procedural com-
ponents in a system:

Polymorphism: A program should
specify only the behavior of objects,
not their representation.

A conventional statement of this
principle is that a program should
never declare that a given object is a
Smallinteger or a Largelnteger, but
only that it responds to integer pro-
tocol. Such generic description is
crucial to models of the real world.

Consider an automobile traffic
simulation. Many procedures in such
a system will refer to the various
vehicles involved. Suppose one
wished to add, say, a street sweeper.
Substantial amounts of computation
(in the form of recompiling) and
possible errors would be involved in
making this simple extension if the
code depended on the objects it
manipulates. The message interface
establishes an ideal framework for
such extension. Provided that street
sweepers support the same protocol
as all other vehicles, no changes are
needed to include them in the simula-
tion:

Factoring: Each independent compo-
nent in a system should appear in
only one place.

There are many reasons for this prin-
ciple. First of all, it saves time, effort,
and space if additions to the system
need only be made in one place. Se-
cond, users can more easily locate a
component that satisfies a given need.
Third, in the absence of proper fac-
toring, problems arise in synchroniz-
ing changes and ensuring that all in-
terdependent components are consis-
tent. You can see that a failure in fac-
toring amounts to a violation of
modularity.

Smalltalk encourages well-factored
designs through inheritance. Every
class inherits behavior from its
superclass. This inheritance extends
through increasingly general classes,
ultimately ending with class Object
which describes the default behavior
of all objects in the system. In our
traffic simulation above,
StreetSweeper (and all other vehicle
classes) would be described as a
subclass of a general Vehicle class,
thus inheriting appropriate default
behavior and avoiding repetition of
the same concepts in many different
places. Inheritance illustrates a fur-

=6809 COLOR CO¥

EDITOR, ASSEMBLER AND MORE!

pevt

SOFTWARE DEVELOPMENT SYSTEM

* /%

The Micro Works Software Development System (SDS80C) is a complete 6809
editor, assembler and monitor package contained in one Color Computer program
pack! Vastly superior to RAM-based assemblers/editors, the SDS80C is non-
volatile, meaning that if your application program bombs, it can't destroy your
editor/assembler. Plus it leaves almost all of 16K or 32K RAM free for your
program. Since all three programs, editor, assembler and monitor are co-resident,
we eliminate tedious program loading when going back and forth from editing to
assembly and debugging!

The powerful screen-oriented Editor features finds, changes, moves, copys and
much more. All keys have convenient auto repeat (typamatic), and since no line
numbers are required, the full width of the screen may be used to generate well
commented code.

The Assembler features all of the following: complete 6809 instruction set;
complete 6800 set supported for cross-assembly; conditional assem_b;y; local
labels; assembly to cassette tape or to memory; listing to screen or printer; and
mnemonic error codes instead of numbers.

The versatile ABUG monitor is a compact version of CBUG, tailored for debuggin:

programs generated by the Assembler and Editor. It features examine/change of
mo%ogrgrggisters, cassette load and save, breakpoints and more. SDS80C

~ * .
@‘:} CRACK THOSE ROMS! *’

SOURCE GENERATOR: This package is a disassembler which runs on the color
computer and generates your own source listing of the BASIC interpreter ROM.
Also included is a documentation package which gives useful ROM entry points,
complete memory map, |/0 hardware details and more. A 16K system is required
for the use of this cassette. 80C Disassembler Price: $49.95

CBUG IS HERE!
MONITOR TAPE: A cassette tape which allows you to directly access memory, 1/0
and registers with a formatted hex display. Great for machine languag.‘e
gro(?ramming, debuggingoand learning. It can also send/receive RS232 at up to
600 baud, including host system download/upload. 19 commands in all.
Relocatable and reentrant. CBUG Tape Price: $29.95

MONITOR ROM: The same program as above, supplied in 2716 EPROM. This
allows you to use the entire RAM space. And you don't need to re-load the monitor
each time you use it. The EPROM plugs into the Extended Basic ROM Socket or a
modified ROMPACK. CBUG ROM Price: $39.95

32K RAM!
MEMORY UPGRADE KITS: Consisting of 4116
200ns. integrated circuits, with instructions for
installation. 4K-16K Kit Price: $39.95. 16K-32K
Kit (requires soldering experience) Price: $39.95

WE SHIP FROM STOCK!
Master Charge/Visa and COD Accepted

PARALLEL O!
USE A PARALLEL PRINTER with your Color
by Lance Leventhal, contains the most comprehen- | Computer! Adaptor box plugs into the serial port and
sive reference material available for programming § allows use of Centronics/Radio Shack compatible
your Color Computer. Price: $16.95 ?rinters with parallel interface. Assembled and

WWICIRIG)

LEARN 6809!
6809 ASSEMBLY LANGUAGE PROGRAMMING,

{4~ GooD STUFF!

WORIKS' p0.BOX1110DELMAR, CAS2014 714-942-2400

294  August 1981 © BYTE Publications Inc Circle 232 on inquiry card.



ther pragmatic benefit of factoring:
Leverage: When a system is well fac-
tored, great leverage is available to

users and implementers alike.

Take the case of sorting an ordered

collection of objects. In Smalltalk, the

user would define a message called
sort in the class OrderedCollection.
When this has been done, all forms of
ordered collections in the system will
instantly acquire this new capability
through inheritance. As an aside, it is
worth noting that the same method
can alphabetize text as well as sort
numbers, since comparison protocol
is recognized by the classes which
support both text and numbers.

The benefits of structure for im-
plementers are obvious. To begin
with, there will be fewer primitives to
implement. For instance, all graphics
in Smalltalk are performed with a
single primitive operation. With only
one task to do, an implementer can
bestow loving attention on every in-
struction, knowing that each small
improvement in efficiency will be

amplified throughout the system. It is
natural to ask what set of primitive
operations would be sufficient to sup-
port an entire computing system. The
answer to this question is called a vir-
tual machine specification:

Virtual Machine: A virtual machine
specification establishes a framework
for the application of technology.

The Smalltalk virtual machine
establishes an object-oriented model
for storage, a message-oriented model
for processing, and a bitmap model
for visual display of information.
Through the use of microcode, and
ultimately hardware, system perfor-
mance can be improved dramatically
without any compromise to the other
virtues of the system.

User Interface

A user interface is simply a
language in which most of the com-
munication is visual. Because visual
presentation overlaps heavily with
established human culture, esthetics
plays a very important role in this

area. Since all capability of a com-
puter system is ultimately delivered
through the user interface, flexibility
is also essential here. An enabling
condition for adequate flexibility of a
user interface can be stated as an
object-oriented principle:

Reactive Principle: Every component
accessible to the user should be able
to present itself in a meaningful way
for observation and manipulation.

This criterion is well supported by the
model of communicating objects. By
definition, each object provides an
appropriate message protocol for in-
teraction. This protocol is essentially
a microlanguage particular to just
that kind of object. At the level of the
user interface, the appropriate
language for each object on the screen
is presented visually (as text, menus,
pictures) and sensed through key-
board activity and the use of a point-
ing device.

It should be noted that operating
systems seem to violate this principle.
Here the programmer has to depart

o oe e ELECTRONICS CENTER o<,

CALL TOLL FREE
1-800-228-4097

Call Toll Free For
“Unbelievable”
Low Low
Prices On These
Lines:

APPLE — ATARI — BASE 2
CENTRONICS

COMMODORE — DC HAYES

HAZELTINE — LEEDEX

MACROTRONICS — MAXELL

MOUNTAIN HARDWARE

NORTH STAR — PANASONIC

SANYO — SYNCOM

® g0000000000000 /OlURececccccccccce ®

master charge

296  August 1981 © BYTE Publications Inc

1840 “O” Street

ELECTRONICS PLAYGROUND

Lincoln, Nebraska 68508
In Nebraska Call (402) 476-7331

TR
VISA
SREEREE

Circle 132 on inquiry card.



from an otherwise consistent
framework of description, leave
whatever context has been built up,
and deal with an entirely different
and usually very primitive environ-
ment. This need not be so:

Operating System: An operating
system is a collection of things that
don't fit into a language. There
shouldn’t be one.

Here are some examples of conven-
tional operating system components
that have been naturally incorporated
into the Smalltalk language:

eStorage management—Entirely
automatic. Objects are created by a
message to their class and reclaimed
when no further references to them
exist. Expansion of the address space
through virtual memory is similarly
transparent.

e File system—Included in the normal
framework through objects such as
Files and Directories with message
protocols that support file access.
eDisplay handling—The display is

simply an instance of class Form,
which is continually visible, and the
graphical manipulation messages
defined in that class are used to
change the visible image.

eKeyboard input—The user input
devices are similarly modeled as ob-
jects with appropriate messages for
determining their state or reading
their history as a sequence of events.
® Access to subsystems—Subsystems
are naturally incorporated as in-
dependent objects within Smalltalk:
there they can draw on the large
existing universe of description, and
those that involve interaction with
the user can participate as com-
ponents in the user interface.
eDebugger—The state of the
Smalltalk processor is accessible as an
instance of class Process that owns a
chain of stack frames. The debugger
is just a Smalltalk subsystem that has
access to manipulate the state of a
suspended process. It should be noted
that nearly the only run-time error
that can occur in Smalltalk is for a
message not to be recognized by its
receiver.

THE

WORD

37500

COMPLETE

SPELLING PROOFREADER and
COMPUTER DICTIONARY

The WORD is out!
Works with the editor of your
choice to find those lurking spell-
ing errors and sneaky typos.

SPELLING CHECKER
45,000 word dictionary
Checks over 10 pages/minute
Handles apostrophes, hyphens
Marks mistakes in file
CDOS!'™ CP/M'™ compatible
Needs only 32K system

OASIS SYSTEMS

298 August 1981 © BYTE Publications Inc

EXTRA FEATURES

e Automatic rhyme finder

e Crossword puzzle solver
¢ Correct spelling finder

* Word counter

e Word frequency analyzer
¢ Dictionary builder

AVAILABLE FOR:

» 8” Single Density CP/M'™
— soon —

e 54" North Star'™

e 5" Superbrain'™

e Apple'™ | Softcard'™ CPIM

(714) 291-9489
2765 Reynard Way, San Diego, CA 92103

Smalltalk has no ‘“‘operating
system” as such. The necessary
primitive operations, such as reading
a page from the disk, are incor-
porated as primitive methods in
response to otherwise normal
Smalltalk messages.

Future Work

As might be expected, work re-
mains to be done on Smalltalk. The
easiest part to describe is the con-
tinued application of the principles in
this paper. For example, the
Smalltalk-80 system falls short in its
factoring because it supports only
hierarchical inheritance. Future
Smalltalk systems will generalize this
model to arbitrary (multiple) in-
heritance. Also, message protocols
have not been formalized. The
organization provides for protocols,
but it is currently only a matter of
style for protocols to be consistent
from one class to another. This can be
remedied easily by providing proper
protocol objects that can be con-
sistently shared. This will then allow
formal typing of variables by pro-
tocol without losing the advantages
of polymorphism.

The other remaining work is less
easy to articulate. There are clearly
other aspects to human thought that
have not been addressed in this
paper. These must be identified as
metaphors that can complement the
existing models of the language.

Sometimes the advance of com-
puter systems seems depressingly
slow. We forget that steam engines
were high-tech to our grandparents. |
am optimistic about the situation.
Computer systems are, in fact, get-
ting simpler and, as a result, more
usable. I would like to close with a
general principle which governs this
process:

Natural Selection: Languages and
systems that are of sound design will
persist, to be supplanted only by bet-
ter ones.

Even as the clock ticks, better and
better computer support for the
creative spirit is evolving. Help is on
the way.®



The Smalltalk-80
Virtual Machine

The Smalltalk-80 system is a
powerful system that encourages the
development of large applications
programs. The system contains a
compiler, a debugger, a storage man-
agement system, text and picture
editors, and a file system. It also con-
tains a highly interactive user inter-
face based on graphics that include
overlapping windows.

Typically the task of bringing up
such a powerful system on a new
computer includes writing code to im-
plement these pieces. The Small-
talk-80 system is different in that
most of these pieces are written in
Smalltalk-80 itself. The part that can
be written in Smalltalk-80 is called
the Smalltalk-80 Virtual Image, and it
includes the compiler, debugger,
editors, decompiler, and the file sys-
tem.

Smalltalk -80 Virtual Image

(300 K bytes)

Smalltalk - 80 Virtual Machine
(10 K bytes)

Figure 1: The Smalltalk-80 Virtual
Machine. Most of Smalltalk-80 is written
in Smalltalk-80 (the Virtual Image), leav-
ing only a small amount of code that has
to be rewritten for each processor on
which the language is implemented (the
Virtual Machine).

300  August 1981 © BYTE Publications Inc

Glenn Krasner
Learning Research Group
Xerox Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto CA 94304

The remaining part of the Small-
talk-80 system is defined in terms of
an abstract machine called the Small-
talk-80 Virtual Machine (see figure 1).
The Smalltalk-80 compiler translates
source code into machine instructions
for this virtual machine, rather than
translating directly into machine in-
structions for a particular hardware
machine. The task of bringing up a
Smalltalk-80 system on a new
“target” computer consists only of
implementing (writing a program to
simulate) the Smalltalk Virtual Ma-
chine on the target computer.

In this article, we will present an
overview of the elements needed to
implement the Smalltalk Virtual Ma-
chine. These elements are:

ethe Storage Manager
ethe Interpreter
ethe Primitive Subroutines

Background

A Smalltalk-80 system is made up
of objects that have state and exhibit
behavior. Their state consists of the
values of both named and indexed in-
stance variables (which we will call
fields), and their behavior is exhibited
through sending and receiving mes-
sages. Objects are members of
classes.

Classes may be subclasses of other
classes—that is, they may inherit at-
tributes from other classes. Program-
ming in Smalltalk-80 is done by defin-
ing the procedures, or methods, that
are executed when objects receive
messages. Typically, messages are

sent to other objects to invoke their
methods. Sometimes messages invoke
primitive (machine-code) subroutines
rather than Smalltalk-80 methods.

From this brief description of
Smalltalk-80, we can consider the in-
formation needed to implement each
of the three elements of the Smalltalk
Virtual Machine:

1. To implement the storage
manager, we need the information
necessary to represent objects in the
computer’s memory. This informa-
tion consists of the amount of mem-
ory that each object will occupy,
which can be computed from the
number of fields the object has, and
the representation of fields in mem-
ory. Objects that describe classes de-
fine the number of fields their in-
stances will have, so we also need to
know how this number is repre-
sented. With this information, we can
design a storage manager for objects
in a Smalltalk-80 system that will:

efetch the class of objects
efetch and store fields of objects
ecreate new objects

ecollect and manage free space

2. The interpreter executes the ma-
chine instructions of the Smalltalk-80
Virtual Machine. The information
needed to design the interpreter is a
description of these machine instruc-
tions, called bytecodes (the idea is
similar to Pascal p-codes). The byte-
codes are contained in methods, so
we also need to know the representa-




Circle 71 on inquiry card.

SIMPLY
BEAUTIFUL.

CF&A furniture looks terrific. But
beauty is more than skin deep.
That’s why our line of desks,
stands, and enclosures also fea-
tures rugged construction, low
cost, and quick delivery. In a wide
range of sizes and configurations.
With accessories to meet your in-
dividual requirements. With a
smile and a thank you.

Call CF&A. We make it simple. We
make it beautiful.

Computer Furniture and
Accessories, Inc.
1441 West 132nd Street
Gardena, CA 90249
(213) 327-7710

302  August 1981 © BYTE Publications Inc

Who's Who

The design of the Smalltalk-80 Virtual Machine is based on previous Smalltalk
systems implemented by the Learning Research Group at Xerox PARC. The original
bytecode interpreter design was made for Smalltalk-76 by Dan Ingalls (Ingalls, Dan.
“The Smalltalk-76 Programming System: Design and Implementation.” In Fifth An-
nual ACM Symposium on Principles of Programming Languages, 1978, pages 9
through 16). Smalltalk-76 was implemented on the Xerox Alto by Dan Ingalls, Ted
Kaehler, Dave Robson, Steve Weyer and Diana Merry, on the Xerox Dolphin by
Peter Deutsch, and on the Xerox Dorado by Bruce Horn. TinyTalk was implemented
on a Xerox microcomputer by Larry Tesler and Kim McCall (McCall, Kim and Larry
Tesler. “Tiny Talk, a Subset of Smalltalk-76 for 64KB Microcomputers.” In Proceed-
ings of the Third Symposium on Small Systems, ACM Sigsmall Newsletter, Volume
6, Number 2, 1980, pages 197 through 198). Smalltalk-78 (a revised version of
Smalltalk-76 similar to Smalltalk-80) was implemented on the Xerox microcomputer
by Dan Ingalls, Ted Kaehler, and Bruce Horn, on the Xerox Dorado by Jim Stamos,
and on a Norwegian microcomputer (under a research license from Xerox) by Bruce
Horn. Smalltalk-80 has been implemented on the Xerox Dorado by Peter Deutsch,
on the Xerox Dolphin by Kim McCall, and on the Xerox Alto by Glenn Krasner. The
designs of these systems were made by the implementors and other members of the

Learning Research Group.

tion of methods. From this informa-
tion we can decide how the inter-
preter will fetch and execute byte-
codes and how it will find methods to
run when messages are sent.

3. The last piece of information we
need to know is which messages will
invoke primitive subroutines; that is,
which methods we must implement in
machine code to terminate the recur-
sion of message sending and to op-
timize performance.

Before we go into more detail
about these elements of a Small-
talk-80 Virtual Machine implementa-
tion, here are a few typical figures
that will provide a little “reality” to
implementors. For the systems that
we have implemented at Xerox, the
Smalltalk-80 Virtual Image consists
of about 300 K bytes of objects. Our
typical implementation of the Small-
talk-80 Virtual Machine is 6 to 12 K
bytes of assembly code, or 2 K micro-
code instructions plus 10 K bytes of
assembly code. Of this, about 40% is
in the storage manager, 20% in the
interpreter, and 40% in the primitive
subroutines. Our average is about
one person-year to implement a fully
debugged version of this code.

The Storage Manager

Although the storage manager
tends to be the largest and most com-
plex of the three parts of a Small-

talk-80 implementation, the functions
it provides are few and relatively sim-
ple to understand.

T A R T NS TR S S

Everything in a
Smalitalk-80 system is
an object.

Everything in a Smalltalk system is
an object, so from a storage point of
view memory needs to be divided
into blocks, one for each object, plus
a pool of memory that is not yet used.
Every time a new object is created, a
new block of the appropriate size
must be found for that object: when
objects are no longer used, their
memory block may be returned to the
pool (see figure 2).

A special entity called an object
pointer is assigned to each object. If
an object pointer were the actual core
address of the memory occupied by
that object, then there would be fast
access to an object given its pointer.
However, in the Smalltalk-80 system
the object pointer is an indirect
pointer to the object through a table
kept by the storage manager. This
allows the storage manager to move
an object around in memory without
affecting any object that refers to it. It
also insures that the storage manager
is the only entity in the system con-
cerned with (and allowed to change)



Circle 308 on inquiry card.

[ATARI Tist s

ATARI® 400. ..5359
(/A ickaro HP-85

HP-85 Accessories

5% " Dual Master Disc Drive List $2500 $2125
5% Single Master Disc Drive List $1500. .. $1275
HP 7225A Graphics Plotter List $2050.

HP-85 16K Memory Module List $395

HP-85 Application Pacs Standard List $95.... $85
Serial (RS-232C) Interface Module List $395. . $355
GPIO Interface Module List $495. ... .. ... ..$445

newHP-83 $ii82§§50

HP-41CV with five times
f=e@sssy more memory

built in.
List $325

$249

HP-41C
List $250

$199

HP-32E Scientific w/Statistics —_ 53.95
HP-33C Scientific Programmable $79.95
HP-34C Advanced Scientific
Programmable _____ 123.95
HP-37E Business Calculator __ $49.95

il
Cg=-

609 Butternut Street
Syracuse, N.Y. 13208
(315) 475-6800

Prices do not include shipping by UPS. All
prices and offers subject to change without
notice.

304  August 1981 © BYTE Publications Inc

Free Block

t/\‘ Object

Object Pointer

Free Block
F lock
Object Pointer ree Bloc
| —*% Object
———= Object
Free Block
Object Pointer
Object
StorageManager
Object
Free Block

Figure 2: Objects and memory usage in
Smalltalk-80. Each Smalltalk-80 object
has an object pointer that points to a
block of memory that describes the ob-
ject. When an object is no longer used, its
memory is made available for use.

re——eeeee

(Length) 4

(Class description)
Point

(x-coordinate)

(y-coordinate)

(Length) 5

(Class description)
Triangle

(First vertex)

(Second vertex)

(Third vertex)

(Length) 4

(Class description)

ByteArray
1 2
3 4

Figure 3: Typical object representations
in Smalltalk-80.

the actual memory. In the Small-
talk-80 Virtual Image, object pointers
are single 16-bit words. This allows
for 64 K objects in the system; these
objects may take up much more than
64 K words of memory.

Since an object’s class and fields are
themselves objects, we can see that
the block of memory corresponding
to an object contains the object
pointer of the object’s class plus the
object pointer for each of the object’s
fields. The storage manager also
keeps the length of the block as one
word of the block. This means, for
example, that the block correspond-
ing to an object that is an instance of
class Point (see figure 3) will have:

e one word that says this block is four
words long

eone word that is the object pointer
of the object that describes class Point
eone word that is the object pointer
of an object that is the x-coordinate
field of the point

eone word that is the object pointer
of an object that is the y-coordinate
field of the point

Similarly, the block corresponding to
an object that is an instance of class
Triangle will have:

eone word saying this block is five
words long

eone word that is the object pointer
of the object that describes class
Triangle

eone word that is the object pointer
of an instance of class Point, repre-
senting one vertex field

eone word that is the object pointer
of an instance of class Point, for the
second vertex field

eone word that is the object pointer
of an instance of class Point, for the
third vertex field

For performance optimization, the
values in the fields of some objects,
such as instances of class ByteArray,
will be interpreted as the numerical
values themselves, rather than as
object pointers. The block corres-
ponding to the byte array containing
the elements 1, 2, 3, and 4, in order,
will have:



eone word saying this block is four
words long

e one word pointing to the object that
describes class ByteArray

eone byte encoding the number 1
eone byte encoding the number 2
eone byte encoding the number 3
eone byte encoding the number 4

We will represent all objects as hav-
ing fields interpreted as object
pointers or numerical values, not
both. Objects may store numerical
values as bytes or words, but not
both.

As we have mentioned, the objects
that describe classes also need to
represent the form of instances of
those classes. The essential informa-
tion is the number of fields the
instances will have, and whether
these will be pointer or nonpointer
fields. For example, the describer of
class Point says that its instances will
have two fields (x- and y-coordinates)
and that these will be pointers (see
figure 4). The describer of class
ByteArray says that its instances may

(Length)

(Class description)
Class of class-
describing objects

(Number of fields)2

(Pointers) True

Figure 4: Class-describing object for class
Point.

have a variable number of fields and
that these fields will not be pointers
but will be numerical values stored in
bytes.

The purpose of the storage
manager is to fetch and store fields of
objects, to create objects, and to
manage free space. A clean im-
plementation of the storage manager

FINDING SOLUTIONS
AND BEING COMPETITIVE =

“SUMMER
= SALEp

IS OUR BUSINESS. v | \

Having problems and looking for a
computer to help solve them?
Are you finding computer dealers
come in one of two ways? Either
Full szstem support with Full price
or Take it or Leave it with Low
price. At Omega we don’t believe
that you should have to make a
choice. Yes, we're in business to sell
products but also, to solve your
roblems. Our prices will be the
owest possible. Our support and

“@fappic computer

product quality will be second to none. Check out our Mail Order prices in this
ad (our retail prices will be higher). See if you don’t agree with our first claim.
For our second claim, call us with your data processing needs and problems.
Better yet, come in and see us. Finding solutions and being competitive is our
business. We never forget either of them.

APPLE Il
APPLE |l "PLUS" 48K
HEWLET PACKARD 85 or 83
APPLE Il ACCESSORIES:
Disk Il with controller ...
Disk Il 2nd drive
Graphics Tablet
Language System with PASCAL
Silentype Printer W/Int .. ..
Integer Firmware Card ..
Microsoft Z-80 Softcard ...
Videx videoterm 80 col Card
Sanyo 12" Green Monitor

Mail Order Terms of Sales: Price based on prepaid orders. NO COD's. Allow 14

Supplies:

Scotch Diskettes - Best of Quality!
price per box of (10)

744-0, 10, 32

740-0 SS/SD 0 SOCIO . vevvevnrrerennnnens 31.00
741-0 SS/DD 0 SOCOr - - vonvvnivnsrninnnens 37.00
743-0 DS/DD No Format .................... 44.00

New Products:

Videx L/C Adapter
Microsoft 16K RAM Card ...
D.C. Hayes Micromodem Il . 2
Novation DCAT Modem .... "
EPSON MX-80757 5 e e iy saisan masiaars

ing days for p | and

checks to clear. Order under $100.00 add $3.00 for shipping and handling. All orders (unless specified in ad) within

Continential U.S. shipped

U.P.S. no charge. APO or out of Continential U.S. write or call for shipping charges. All prices

subject to change and all offers subject to withdrawl without notice. CA residents add 6% sales tax.

The Probl

OMEGA

Solving Comp

306  August 1981 © BYTE Publications Inc

MICRO COMPUTERS

3447 Torrance Boulevard e Torrance, California 90503 e (213) 328-1760

Circle 276 on inquiry card.

would be one in which the other parts
of the system had access only to the
object pointers and made requests of
the storage manager only through the
following subroutine calls:

e getClass(objectPointer) returns the
object pointer of the class of the given
object

e getField(objectPointer, fieldOffset)
returns the field
estoreField(objectPointer, fieldOff-
set,newValue) replaces that field
with the new value newValue
enewlnstance(classObjectPoint-
er,numberOfFields) returns the object
pointer of a new instance of that
class, and, if that class can have in-
dexed instance variables, this instance
has the given number of fields
(numberOfFields)

Requests can be made for new storage
(with the newlinstance subroutine),
but not to return used storage. In
some other systems, storage that is no
longer used must be explicitly re-
turned to the free storage pool. The
Smalltalk-80 philosophy is that
neither the user nor any part of the
system other than the storage
manager need have such concerns.
Therefore the storage manager must
know which objects are no longer be-
ing used, so that their storage may re-
enter the free pool. Typically,
Smalltalk-80 Virtual Machine im-
plementations use reference-counting
to accomplish this. For every object
in the system, the storage manager
keeps a count of the number of other
objects that point to it. This number
will change only during execution of
the four storage-manager sub-
routines. When this count reaches
zero, the object’s memory block may
be reused because there are no
references to that object anywhere
else in the system.

The Interpreter

The interpreter is that portion of
the Smalltalk-80 Virtual Machine that
performs the actions described in the
bytecodes of methods (ie: the
machine code of the Virtual
Machine). The information needed to
implement the interpreter is the



description of the bytecodes, the
representation of methods, and the
technique to find the method to run
when sending a message.

The bytecodes define the
Smalltalk-80 Virtual Machine as a
stack-oriented machine. Each byte-
code represents one of the following
actions:

epush an object onto the stack
estore the top of the stack as the
value for a variable

epop the top of the stack

ebranch to another bytecode

esend a message using the top few
elements of the stack

ereturn the top of the stack as the
value for this method

In the Smalltalk-80 Virtual Machine,
each of these actions is realized by
one or more bytecodes. Note that
pushing, storing, popping, and
branching are standard instruction
types for any stack machine, that
sending a message corresponds to
calling a procedure using the top few

Bytecode
-1- Push 3 (3)
-2- Push 4 (3 4)
-3-Push 5 (345)
4-Send + (39
-5-Send * (27)

ﬂ

Stack Contents After Execution (Top of Stack to Right)

Table 1: Bytecodes for the Smalltalk expression 3 * (4 + 5).

elements of the stack as arguments,
and that returning an object from a
method corresponds to returning a
value from a procedure. The dif-
ference between the Smalltalk-80 Vir-
tual Machine and procedure-based
stack machines is in the way the pro-
cedure is found. In most procedure-
based stack machines the address of a
procedure is provided in the execute
procedure instruction; in the
Smalltalk-80 system only the “name,”
called the selector, of the message is
provided; the method (or procedure)
to be executed is found through a
strategy involving the receiver of the
message and its class. We will first
describe the bytecodes, then how

Offers Discounts on All
TRS-80°

HulppuHahds

(@)
S
@
o 2 U)i—-x
g 3D Mm
SR
hu[\<3;
oW 1 n
“‘wl\Iémg
NEIc8rE%E
%&.n.Dd
SEBVE 4
:‘-”8508
S il
=)
&
= (-4
3
5
m &
£ g
5 < 2
= [ohansd
4 E“ <
= oOw 7
O‘s‘ OEE .
i O
< Z2 5
gn.E,Q>-O
>.&mEzzg
P o
e R
pusd Ol E &
2 OSB%9E
u§< z®e
S G B

308  August 1981 © BYTE Publications Inc

Circle 152 on inquiry card.

methods are represented, and finally
give a strategy for finding methods.

Stack Operations

The Smalltalk-80 Virtual Machine
and corresponding bytecode set are
stack oriented. Object pointers are
pushed and popped from a stack, and
when a message is sent, the top few
elements of the stack are used as
receiver and arguments of the
method. These are replaced by the
object returned as the value of that
method. For example, the Small-
talk-80 expression:

3*(4+5)

is encoded by the bytecodes shown in
table 1.

As bytecodes labeled -1-, -2-, and -3-
are executed by the interpreter, the
objects 3, 4, and 5 are pushed onto
the stack. When bytecode -4- is ex-
ecuted, the message + is sent to the
second object on the stack (4) with
the top object of the stack as the argu-
ment (5). The 4 and 5 are popped off
this stack when the message is sent,
and the interpreter begins executing
the bytecodes for the method cor-
responding to the message + in the
Smalltalk class of small integers. This
method will eventually return an ob-
ject, in this case 9, as its value, and
the interpreter will push the 9 onto
the original stack above the 3 and
resume execution with bytecode -5-.
Bytecode -s- will produce an effect
similar to that produced by -4-, leav-
ing the object 27 on the stack. In the
same way that other stack machines
push data onto a stack and use the
top few data items as arguments for a
procedure, replacing them with the
value returned from that procedure,
the Smalltalk-80 Virtual Machine
pushes object pointers onto a stack



%

Bytecode Stack Contents After Execution (Top of Stack to Right)
41- Push 3 (3)
-2- Push 4 (3 4)
3-Send + (7)
-4- Store into a (7)

Table 2: Bytecodes for the Smalltalk expression a — 3 + 4,

#

Bytecode Stack Contents After Execution (Top of Stack to Right)
-1- Push 3 (3)
-2- Store into a (3)
-3- Pop ()
-4- Push 4 (4)
-s- Store into b (4)

Table 3: Bytecodes for the Smalltalk expression a — 3. b — 4.

Stack Contents After Execution (Top of Stack to Right)

Bytecode
-1- Push 3 (3)
-2- Store into a (3)
-3-Pop ()
-4- Push a (3)
-5- Return top of stack &)

Table 4: Bytecodes for the Smalltalk expression a — 3.ta

" DISCOUNT |
PRICES

Microcomputers & Peripherals

North Star ¢ SWTPC e Lear-siegler
Hazeltine e Centronics ¢ Cromemco
Wabash e Perkin Elmer and others

Fast, off the shelf delivery.
Call TOLL FREE 800/523-5355

MARKETLINE SYSTEMS, Inc.
2337 Philmont Ave., Huntingdon Valley, Pa. 19006
215/947-6670 e 800/523-5355 J

Dealer Inquiries Invited

310  August 1981 © BYTE Publications Inc

Circle 209 on inquiry card.

and uses the top few as receiver and
arguments of a message, replacing
them with the object returned from
that method.

In both machines, values from the
top of the stack may be stored as the
values of variables. As an example,
the Smalltalk expression:

a—3+4

will be represented by the bytecodes
in table 2. Here, -1-, -2- and -3- act as
before and the interpreter executes
bytecode -4- by storing the top of the
stack 7 into the variable a.

Stack machines in general, and the
Smalltalk-80 Virtual Machine in par-
ticular, also have the ability to pop
the top element off the stack. In the
statements:

323
b—4

once the 3 is stored into variable a, it
is no longer needed, so it is popped
from the stack. These statements are
represented by the bytecodes shown
in table 3.

The top of the stack may be re-
turned as the value for the method.
The statements:

- 3.
ta

are represented by the bytecodes
shown in table 4.

Branching Operations

Conditional and looping messages
are used so often that they are
represented not by actual messages
but by bytecodes for conditional and
unconditional jumps. (This is only for
performance reasons; these branching
and looping messages would work if
they were actually sent like other
messages.) For example:

a>4ifTrue:fa—a— 1]

(which in the Smalltalk-80 system
means execute the code within the
brackets only if the object returned
from the > message is not false) is
represented in table 5 (ignoring the
stack from now on).



Circle 320 on inquiry card.
FECEE -CER PRk Yo YL TE T ]

Factory
Direct

ELIMINATE THE MIDDLE MAN!

1 6 STATIC

RAM

RAM 16

COMPARE OUR FEATURES!

S-100 » 16K X 8 Bit Static RAM ®
2114 1K X 4 Static RAM Chip ® 2 or
4 MHZ e 4K Step Addressable ® 1K
Increment Memory ® Protection
from Top Board Address Down or
from Bottom Up ® Deactivates up
to 6 1K Board Segments to Create
Holes for Other Devices ® Phantom
Line DIP Switch ® DIP Switch Selec-
table Wait States ® 8 Bank Select
Line Expands to ¥z Million Bytes ®
All Data Address and Control Lines
Are Input Buffered ® Ignores 1/O
Commands at Board Address ® Our
Most Popular Board — Over 5000
Now in Use Worldwide!

A & T Factory Direct Price:

$175"

One Year Warranty
DON’T PAY MORE!

NEW! — RAM 65

All of the Above Advanced Features
PLUS: Bank Selection by 1/O
Instruction Using Any One of 256
DIP Switch-Selectable Codes ® This
Allows Up to 256 Software Con-
trolled Memory Banks! ® Our Most
Advanced 16K Add-On Board.

A & T Factory Direct Price:

$185.%

One Year Warranty
DON’T PAY MORE!

All of our Boards Are the Highest
Quality MIL SPEC G-14 Fibreglass.

All utilize Solder Mask over Copper
Technique for Higher Reliability!
MIX AND MATCH FOR BEST PRICING.
Include $3.00 shipping & handling per
order. California residents include 6%

sales tax.

TERMS: Cash, checks, money orders or purchase
orders from qualified firms or institutions. Pricing
and availability subject to change without notice.
International sales in U.S. funds only. COD’s
include 25% with order.

Quality Computer Parts
£.0. BOX 743, DEPT. B1
CHATSWORTH, CA 91311
Telephone (213) 882-3142

°
DO OEHOTIIED O T O W OED O GD
312  August 1981 © BYTE Publications Inc

Bytecode
-1- Push 4
-2- Push a
3- Send >
-5- Push a
-6- Push 1
eaiSendi==
-8- Store into a
-9- Pop

’

4- Jump to -10- if the top of the stack is false

-10- < the next bytecode >
Table 5: Bytecodes for the Smalltalk expression a > 4 ifTrue: la—a-—=1]

Bytecode
-1- Push a
-2- Push 4
-3- Send >
-5- Push a
-6- Push 1
-7- Send —
-8- Store into a
-9- Pop
-10- jump to -1-

#

-4- Jump to -11- if top of stack is false

-11- < the next bytecode >.
Table 6: Bytecodes for the Smalltalk expression [a > 4)whileTrue:[a — a — 1].

Table 6 shows the bytecodes for the
looping expression:

[a > 4] whileTrue: [a — a — 1]

(which means execute the code in the
second brackets as long as the code in
the first set of brackets evaluates to
something other than false).

Addressing Variables

Methods are implemented as ob-
jects whose fields contain the
bytecodes plus a group of pointers to
other objects called the literal frame.
The interpreter can use the getField
subroutine of the storage manager to
fetch the next required bytecode to
execute, This takes care of returns,
jumps, and pops, but for the other
bytecodes we need to represent more
information. In particular, for the
push and store bytecodes, we need to
represent where to find the object
pointers to push; for the send
bytecodes, we need to represent
where ‘to find the selector of the

message and which stack elements are

the receiver and arguments.

The source code for a method con-
tains variable names and literals, but
the bytecodes of the Virtual Machine
are defined only in terms of field off-
sets. From the Virtual Machine's
point of view, there are three types of
variables: variables local to the
method (called temporaries),
variables local to the receiver of the
message (instance variables), or
variables found in some dictionary
that the receiver’s class shares (global
variables). Note that class variables
are treated in the same way as other
global variables. The Smalltalk-80
compiler (itself written in Small-
talk-80) translates references to
these variables into bytecodes that
are references to field offsets of the
receiver, the temporary area, or
globals. The instance variables are
translated using a field of class-
describing objects that associates in-
stance variable names with field off-
sets. The assignment of offsets to tem-
poraries is done when the compiler
translates a method by associating



WHAT'S
BETTER
THAN AN

ISAM

CBASIC
PASCAL/MT+
S-BASIC
CROMEMCO 16K BASIC
into first class application

MICRO B+™

The first and most complete
implementation of B-TREE .
index structures for micro-
B-TREES eliminate
index file reorganization.

Search

An index of over

10,000 Key
Values In Less
Than One
Second

On A Floppy Disk System
for only

$260.00! |

System Houses:
MICRO B+™
Availoble in Language C

FAIR C—' Eerrens w0 65201
A‘R (314)445-3304

€1980 Fair Com

Shipping $4 USA / 38 Foreign
We accept VISA and

AN-80is o olDing h
CBASIC s 0 Systems. Inc.
sWChodecpmwm
PASCAL/MT+isa o MT A

\ =

314  August 1981 © BYTE Publications Inc

names of temporaries to offsets in the
temporary area. The compiler creates
instances for the literals, puts their
object pointers into the literal frame
of the method, and produces byte-
codes in terms of offsets into the
literal frame. For global variables, the
compiler uses system dictionaries that

Receiver

Stack

Stack Pointer

Method

Current Bytecode

Temporaries
(including arguments)

associate global names to indirect
references to objects. Object pointers
of the indirect references to the global
objects are also placed in the literal
frame of the method. The bytecodes
for accessing globals are encoded as
indirect references through field off-
sets of the literal frame.

(Length)

(Class description)

(Instance variable,
offset = 0)

(Instance variable,
offset =last)

{Length)

(Class description)

(Stack Element)

(Stack Element)

(Stack Element)

(Length)

(Class description)

(Literal frame,
offset = 0)

(Literal frame,
offset = last)

(First bytecode)

(Lost bytecode)

(Length)

(Class description)

(Temporary variable,
offset =0)

(Temporary variable,
offset =last)

Figure 5: Object pointers held by the interpreter.



APPLESOFT"’
Basic .
Compiler

Compiles APPLESOFT® BASIC programs into

native 6502 code, allowing programs to run up to
10 times faster. Handles graphics and shape
tables. Requires 48K, autostart ROM, language
system and at least one drive.  List Price: $200.00

Microhouse

MICROSOFT BASIC 80
List Price:  $350.00
Microhouse Price: $273.00/$30.00

$167.50

S

\\

i

—————
P ——————
—
Pr———
f——
pr———
e —
pr——
—_—
fr——

SPELLSTAR
New! Option for Wordstar. Compares words in
your text to its 20,000-word compressed
dictionary. Jumps back to WordStar for correction
of errors or addition of new words to the
dictionary. Price includes update of registered
2.x and earlier WordStar (must send master disk).
List Price:  $250.00
Microhouse Price:

MICROSOFT BASIC 80 COMPILER
Language compatible with MBASIC but code runs
3-10x faster.

List Price: $395.00

Microhouse Price: $308.00/$30.00

$165.00/NA

WORDSTAR

Version 3.0! Now featuring horizontal scrolling
and column moves.

List Price: $495.00

Microhouse Price: $322.00/$40.00

MICROSOFT FORTRAN 80

Compiler is ANSI '66 compatible (except for
COMPLEX)

List Price: $500.00
Microhouse Price:

muSIMP/muMATH by Microsoft
List Price:  $250.00
Microhouse Price: $195.00/$25.00

$345.00/$30.00

WORDSTAR for APPLE
List Price: $375.00
Microhouse Price: $245.00/$40.00

WORDSTAR CUSTOMIZATION NOTES
Package includes manual and diskette.

List Price: $150.00
Microhouse Price:

COBOL 80 by Microsoft
List Price:  $750.00
Microhouse Price:

$562.50/$30.00

$95.00/NA

MACRO 80 by Microsoft
List Price:  $200.00
Microhouse Price:

MAILMERGE

Option for Wordstar.

List Price: $150.00

Microhouse Price: $110.00/$40.00

$140.00/$20.00

EDIT 80 by Microsoft
List Price: $120.00

MAILMERGE for APPLE S Ao es Price:

List Price: $125.00
Microhouse Price:

VISICALC for APPLE
List Price:  $150.00

$84.00/$20.00

$85.00/$25.00 WHITESMITHS C

List Price: $630.00

Microhouse Price: CALL/$30.00

Microhouse Price: $107.00/NA TINY C Interpreter
List Price: $100.00
E:{'P,E::sos?;loo Microhouse Price: $79.00/$50.00
Microhouse Price: $170.00/$40.00 TINY C Compiler
List Price: $250.00
3%5'252'2‘01;:)'0 Microhouse Price: $195.00/$50.00
st Price:
Microhouse Price: $145.00/$40.00 SPELLGUARD
Fast stand-alone program works with nearly any
SUPERSORT for APPLE CP/M*® word processor

List Price:  $200.00
Microhouse Price:

DATASTAR
List Price: $350.00
Microhouse Price: $245.00/$40.00

List Price;  $295.00

$130.00/$40.00 Microhouse Price: $230.00/$25.00

STACKWORKS FORTH

For Z80 or 8080 (specify)

List Price: $175.00

Microhouse Price: $160.00/$30.00

WORDMASTER
List Price:  $150.00

Microhouse Price: $119.00/$40.00 WHITESMITHS PASCAL

Includes Whitesmiths C Compiler
List Price: $850.00

CALL OR WRITE FOR FREE CATALOG Microhouse Price:

CALL/$45.00

Microhouse

P.O. BOX 498
BETHLEHEM. PA 18016
(215) 868-8219

316 Circle 228 on inquiry card.

August 1981 © BYTE Publications Inc

This means that when the inter-
preter is executing a method, it has to
keep a stack, a temporary area, a
pointer to the receiver and arguments
of the method, and a pointer to the
method itself (see figure 5). It uses the
storage manager’s getField and
storeField subroutines to push and
pop pointers from the stack object, to
retrieve and set values of variables in
the temporary area, to retrieve and
set values of variables of the receiver,
and to get bytecodes and values of
global variables from the method.

Finding Methods

When a message is sent, the
receiver and arguments must be iden-
tified, and the appropriate method
must be found by the interpreter. The
technique used in Smalltalk-80 is to
include in each class-describing object
a dictionary, called the method dic-
tionary, that associates selectors with
methods. Pointers to the selectors
that will be sent by any method are
kept in the method (along with global
variable pointers and bytecodes). The
bytecodes that tell the interpreter to
send a message encode a field offset in
the literal frame where the selector is
found, plus the number of arguments
that that method needs. By conven-
tion, the top elements of the stack are
the arguments and the next one down
is the receiver. For example, the send
bytecode for the expression:

3+4

will stand for “send the selector in
field X of the method (which will
be +), and it takes one argument.”
The interpreter will ask the storage
manager for the X field of the
method, will get the top of the stack
(4) as the argument, and the next ele-
ment down (3) as the receiver. It will
locate the receiver’s class, its method
dictionary, search it for an associa-
tion of the + selector with some
method, and, when found, execute
that method.

If no such association is found, the
searching does not end. The receiver’s
class may be a subclass of another
class, called its superclass. If this is
the case, the method for + may be



(Length) 7

(Class description)
Class of class-
describing objects

(Number of fields)2

(Pointers) True

(Instance Variable
Names) “xCoordinate
yCoordinate"

(Global Variable
Dictionaries)

(Method Dictionary)

(SuperClass)

Figure 6: Class-describing object for class
Point, revisited.

defined in the superclass, so the inter-
preter must check there. This means
that each class must have a field that
refers to its superclass (see figure 6).
The interpreter searches the method
dictionary of the superclass, its
superclass, and so on, until either an
appropriate method is found or it
runs out of superclasses, in which
case an error occurs.

To execute a method, the inter-
preter needs a place for temporaries
and a stack for that method. In the
Smalltalk-80 Virtual Machine, this is
done by allocating an object that is an
instance of class MethodContext. Ob-
jects in MethodContext keep track of
the method, the stack for that
method, a pointer to the next byte-
code to be executed in that method,
the temporary variables for that
method, and the context from which
that method was invoked, called the
caller of that method (see figure ‘7).
When a method returns, the value
returned is pushed on the stack of the
caller context, and execution con-
tinues at the next bytecode of the
caller’s method.

The New ADDS Viewpoint

Video Te

Features a detachable Tektronics-made
keyboard with keypad. Function keys.

Reverse video, half-intensity, underlining by
fields. Printer port. ADDS quality construction

|

CALL FOR LOW PRICES ON IMS Series 5000 and
8000 Computers

C ITOH STARWRITER |

Letter-quality printer uses Diablo plastic
printwheels and ribbons. 25 cps bidirectional,
logic-seeking. Parallel interface

List Price: $1895.00

Microhouse Price: $1431.00

C ITOH STARWRITER | (Serial)
List Price:  $1960.00
Microhouse Price: $1502.00

DIABLO 630

Letter-quality printer uses plastic and metal
printwheels. 40 cps, bidirectional, logic-seeking
Optional tractor: $225.

List Price: $2710.00

Microhouse Price: $1999.00

EPSON MX70

Includes GRAFTRAX Il dot-addressable graphics.
Monodirectional. 80 cps. Adjustable tractor
Parallel only.

List Price: $450.00

Microhouse Price:

EPSON MX80

Removable print head, bidirectional, logic-
seeking, adjustable tractor, parallel interface.
Easily converted to RS232, IEEE 488, Apple or
ATARI. CALL FOR INFORMATION ON THE NEW
GRAPHICS ROM PACK!

List Price: $645.00

Microhouse Price:

EPSON MX-80 FT

Friction AND tractor feed version of the MX-80.
Parallel interface included

List Price: $745.00

Microhouse Price:

TELEVIDEO 910 Terminal
List Price:  $699.00
Microhouse Price: $595.00

TELEVIDEO 950
List Price: $1195.00
Microhouse Price: $995.00

CALL OR WRITE FOR FREE CATALOG

PRICES AND SPECIFICATIONS SUBJECT TO
CHANGE WITHOUT NOTICE

Software Manual
& Manual/Only

erminal.

$64

_Microhouseé

ASK ABOUT THE NEW Televideo COMPUTER
SYSTEMS

IDS PAPER TIGER 560G
List Price:  $1695.00
Microhouse Price: $1464.00

VIDEX VIDEOTERM SPECIAL!

Carried over by popular demand. Converts your
Apple screen to 80x24 upper and lower case.
Purchase VIDEOTERM with WordStar and save!
If purchased separately: $290

List Price: $345.00
Microhouse Price: $270.00

MORROW DISCUS 2D

8 inch single-sided double-density floppy disk
drive subsystem. Includes CP/M® and MBASIC
List Price: $1199.00

Microhouse Price: $995.00

MORROW HARD DISK SUBSYSTEM
10 Megabyte. Includes S-100 controller card,
CP/M*®, and enclosure.

List Price: $3695.00

Microhouse Price: $3062.00

MICROSOFT APPLE SOFTCARD

Purchase the softcard with MicroPro’s WordStar
and save $70! Converts your Apple Il or Il plus to
a CP/M® system. Includes MBASIC! Price if
purchased separately: $295

List Price: $349.00

Microhouse Price: $279.00

TCS/Atlanta INTERACTIVE

ACCOUNTING SYSTEM

for small businesses. Ver. 5.0. Each package can
be used alone or post automatically to the
General Ledger. Compiled version (no support
language needed). Price listed is per package
Generalledger, Accounts Receivable, Accounts
Payable, and Payroll packages available. Call for
details on new Order Entry & Inventorypackages.
ALSO AVAILABLE FOR APPLE II. Also available in
source.

List Price: Compare at $530

Microhouse Price: $79.00/$25.00

ALL FOUR TCS PACKAGES (compiled)
List Price: Compare at $530/pkg
Microhouse Price: $269.00/$90.00

CP/M is a registered trademark of Digital Research
UNIX is a registered trademark of Bell Labs

APPLE is a registered trademark of Apple Computers
TRS80 is a registered trademark of Tandy Corp

SHIPPING: Add $5 per manual or software package.
Add $2.50 for COD orders. Call for shipping charges
on other items. Pennsylvania residents add 6 per cent
sales tax.

icrohouse

P.O. BOX 498
BETHLEHEM, PA 18016
(215) 868-8219

Circle 228 on inquiry card.

August 1981 © BYTE Publications Inc




Circle 263 on inquiry card.

If you're looking for
the best prices
in the U.S.A.on

TRS-80

MICROCOMPUTERS

We have consistently offered the
TRS-80 line at savings up to 20%. You
can save up to $1500 by buying
from Computer Duscount of Amenca

ATAR! i

We have the full line of ATARI per-
sonal computers and systems.

Model Il

26-4002 64K. 1disc $3385.00
Model Il

26-1061 4K. Level | $ 610.00
26-1062 16K, Level lll $ 845.00
26-1066 48K, Level Il 2-drive/RS-232 $2115.00
Color Computer

26-3001 4K $ 329.00
26-3002 16K w/Ext. Basic $ 499.00
EPSON

MX70 Printer $ 375.00
MX80 Printer $ 485.00
MX80FT Printer $ 639.00

Our savings are as big on expansion
interfaces, printers, diskettes, Apple
Computers, OKIDATA Microline,
C-ITOH Starwriter, Lexicon Modems
— everything for your computer.

We have the largest inventory in the
Northeast, and most models are in
stock, for immediate delivery.

Our full price catalog or a price
quote is as near as your phone.

CALLTOLL FREE:
800-526-5313

Computer

Discount
of America

COMPUTER DISCOUNT OF AMERICA, INC.
15 Marshall Hill Road, West Milford Mall
West Milford, New Jersey 07480

In New Jersey Call 201-728-8080

318  August 1981 © BYTE Publications Inc

Current Context

(Length)

(Class description)
MethodContext

(Receiver)

(Stack)

(Stack Pointer)

(Method)

(Current Bytecode)

(Temporaries)

(Caller)

Figure 7: The only object pointer used by the Smalltalk-80 interpreter is a reference to

a MethodContext.

#

The Smalltalk-80
Virtual Machine
implementation is a
program running in
the machine language
of the target
computer.

RS T A <R A SRR G I TR

Primitive Subroutines

The Smalltalk-80 Virtual Machine
implementation is a program running
in the machine language of the target
computer. The storage manager is the
collection of subroutines in this pro-
gram that deals with memory alloca-
tion and deallocation. The interpreter
is the collection of subroutines in this
program, one of which fetches the
next bytecode from the currently run-
ning method and calls one of the
others to perform the appropriate ac-
tion for that bytecode. In addition to
these functions, we have found that
there are several other places in the
Smalltalk-80 system where perfor-
mance considerations make it
necessary, or at least desirable, to im-
plement certain functions as machine-
code subroutines in the Smalltalk-80
Virtual Machine. These places are:

einput/output: connecting the

Smalltalk-80 system to the actual
hardware

earithmetic: basic arithmetic for in-
tegers

esubscripting indexable objects:
fetching and storing indexable in-
stance variables

escreen graphics: drawing and mov-
ing areas of the screen bitmap quickly
eobject allocation: connecting the
Smalltalk-80 code for creating a new
instance with the storage manager
subroutines

We call this set of subroutines the
primitive subroutines.

The primitive subroutines are
represented in the Smalltalk Virtual
Image as methods with a special flag
that says to run the corresponding
subroutine rather than the
Smalltalk-80 bytecodes. When the in-
terpreter is executing the code to send
a message and finds one of these flags
set, it calls the subroutine and uses
the value returned from it as the value
of the method. The number of these
methods in Smalltalk-80 is small
(around one hundred) in order to
keep the rest of the system as flexible
and extensible as possible. We will
not list those methods that are
primitives, but will refer the reader to
Smalltalk: the Language and Its Im-
plementation (Goldberg, Robson,
and Ingalls, 1981) for details.



Need a
Real-Time Multi-Tasking
Executive for 8080 and Z807?

Circle 418 on inquiry card. 1

Dealer enquiries invited

- AMA

« Faultless operation proven in world wide use

« Truly hardware independent

+ Optimized for fast interrupt response

» Minimal memory requirements

« ROMable for control applications

« Terminal Handler is CP/M BDOS compatible

- Console Driver supports Intel iSBC boards

+ SYSGEN speeds user system configuring

» Program in PL/M, Fortran, Pascal or Assembler

- Source code included (Intel or Zilog mnemonics)
+ Unlimited use licence agreement

- Complete documentation (available separately)
* Low cost

I KADAK Products Ltd.

206-1847 West Broadway Avenue
Vancouver, B.C., Canada V6] 1Y5
Telephone (604) 734-2796

CP/M is a trademark of Digital Research Corp.; RMX/80,iSBC are trademarks of Intel Corp

ADA

A NEW BEGINNING

ADA/M - Compiles ADA program into the Host assembly language.
Excellent for learning ADA and converting existing programs.
Includes ADA Compiler and Compiler ADA Programming Support

Environment (CAPSE) ...coivrinmininaeiieeeeinennnnn.s $495.
ADA/P - Compiler and Kernal APSE (KAPSE) for Apple / ATRI
......................................................... $995.
ADA/R - Compiler and KAPSE for TRS-80 .............. $995.

ADA/H8 - ADA Language System (ALS). Includes Compiler,
KAPSE, Minimal APSE (MAPSE) and Library APSE (LAPSE).

Z80:8080%: Brrr e i e B L e e $2,995.
ADA/H16 - ALS. Includes Compiler, KAPSE, MAPSE, and LAPSE.
PDP-11,Z8000, 8086, 9900 ......cccocuvannatiraccocaes $3,995.
ADA Programmers Manual ...........cooveniiiniieineeenes $25.
ADA Syntax Reference Card .........ocoooieiiniiiinnnens $6.

Credit for purchase of ADA/M will be given toward purchase of
larger ALS. Royalty will be paid to customers who convert existing
programs into ADA for inclusion in the ALS library.

DIGITAL ELECTRONIC SYSTEMS, INC.
Box 5252, Torrance, California 90510

320

August 1981 © BYTE Publications Inc

Circle 378 on inquiry card.

A few of these primitive methods
are executed so often that even the
cost of looking them up in their
classes’ method dictionaries would be
excessive. These methods are instead
represented as special versions of the
Send Message type of bytecodes. The
message + , for example, is rep-
resented this way. When this
bytecode is executed and the top two
elements of the stack are small
integers, then the primitive method is
called as a subroutine. When this
bytecode is executed and the top two
elements of the stack are not small in-
tegers, then the + message is sent
normally.

Conclusion

The Smalltalk-80 Virtual Machine
is a fairly small computer program
that consists of a storage manager, an
interpreter, and a set of primitive
subroutines. The task of implement-
ing a Smalltalk-80 Virtual Machine
for a new target computer is not large
(especially when compared with the
task of implementing other large pro-
gramming systems) because most of
the functions that must usually be im-
plemented in machine code are
already part of the Smalltalk-80 Vir-
tual Image that runs on top of the Vir-
tual Machine.

The Smalltalk-80 Virtual Machine
could also be implemented in hard-
ware, although this has not yet been
done. Such an implementation would
sacrifice some of the flexibility of
software, but it would result in the
performance benefits that hardware
provides. Given the evolving nature
of Smalltalk, it may not yet be time to
implement the Virtual Machine in
hardware: new Smalltalks that are
more powerful would likely need at
least small changes in Virtual
Machine definition and implementa-
tion. However, hardware assists to
Smalltalk-80 Virtual Machine soft-
ware can greatly improve perfor-
mance. Writable microcode stores for
the pieces of code that are frequently
run, hardware assists for graphics, or
hardware assists for the fetching of
bytecodes could all potentially im-
prove the performance of a
Smalltalk-80 Virtual Machine im-
plementation.®



Building Control Structures
in the Smalltalk-80 System

L Peter Deutsch
Learning Research Group
Xerox Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto CA 94304

Just as data structures refer to the ways that we group
data together by using simple objects to represent more
complex objects, control structures refer to the ways a
programmer can build up complex sequences of opera-
tions from simpler ones. The easiest example of a control
structure is sequencing: do something and then do
something else. Two other familiar examples are the con-
ditional structure (if some condition is true, do
something, otherwise do something else) and the loop (do
something as long as some condition remains true).

Most languages provide a few common control struc-
tures, typically sequencing, conditional, looping, and
procedures, but no way for a programmer to define new
structures. One useful control structure that many
languages omit is the simple case statement (given N
alternative things to do, numbered from 1 to N, and a
variable K, do the Kth thing). If the language doesn’t pro-
vide a case statement, you can always simulate it with a
long string of conditionals, but it makes your program
harder to read. Other useful control structures are much
more difficult to simulate if the language fails to provide
them.

The Smalltalk-80 language and system (which will be
called simply “Smalltalk”) is one of the few languages in
which a programmer can invent and implement, with
relative ease, new control structures that aren’t provided
by the system implementors. The rest of the article
illustrates this point with examples that have actually
been run on a Smalltalk-80 implementation.

What's Built In

Smalltalk provides very few built-in control structures.
There is the conditional structure, implemented as
follows:

someCondition ifTrue: [somethingToDo]
someCondition ifFalse: [somethingToDo]
someCondition

ifTrue: [somethingToDo]

ifFalse: [somethingElseToDo]

322  August 1981 © BYTE Publications Inc

and the simple loop:

[someCondition] whileTrue: [somethingToDo]
[someCondition] whileFalse: [somethingToDo]

The most powerful tool for building new structures is the
block. Two examples are:

[somethingToDoLater]

and:
[:anArgumentName| somethingToDol ater]

The block allows a caller to pass to the implementor of a
control structure a piece of code to be executed (possibly
with arguments, as in the second example) at an
appropriate time.

Case Statement

Our first example is the case statement described
before. We would like a construct that includes an
indexed collection of blocks for the expected cases and
another block for the situation where the index is out of
range. Without any particular trouble we can have a con-
struct like this:

someExpression
case: (Array with: [casel] with: [case2] with:
[case3])
otherwise: [somethingElse]

where [somethingElse] gets evaluated if someExpression
isn’t 1, 2, or 3. Then the definition is simple. We add a
message to the existing class Number. In order to
distinguish adding methods to existing classes from
creating new classes, we will label templates “existing” if
they are to be seen as partial templates adding new
methods to existing classes.

Table 1 shows the code necessary to add the case
method to the class Number. As far as the control struc-



:FOR ONLY $129.95 Learn Computing
iFrom The Ground Up_ :

Enulld a Computer kit that grows
= with

* RAM, Microsoft BASIC, Text Edi-
1 tor/Assembler, Word Processor,
+ Floppy Disks and more.

: EXPLORER/85

Here's the low cost way to learn the

interface that lets you store and ms you've

learned to wriuy?“. . deluxe 2,000 m‘operymn‘

system/monitor makes it easy to learn computirig in

oo o enring of peogr e et

programs access by you

SETetrE ey
program tracing

step, with provision for dhglayil‘ drll:

(registers, flags, etc.) ® ... and it

. this in the starting level (Level A) of the

only $129.88. Incredible! To use. just

rown supply and terminal or

if you don't have them, see our

fg%.

— This bundh"::m:l converts the mother-
a two-slot 5100 (llﬂlllz“mndlfd)m
can plug in any of the hundreds of S100

]
L

Bkit ... 849 95 plus $2 P&L*
bus connectors (two required) ... $4.85 each.

og
8

mn—mmmmmmmmnn
quires more , we offer two choices: either add 4k
of a memory di the , or add 16k to
W&lsngmbymdndndtmwwd.u!m

RAM
plus $2 P&l *
of Microsoft BASIC: (requires Level B.
controller, 8" floppy disk drive)

the computer-readable object
™ is available either in cassette or &
Editor/Assembler (Cassette version: requires Level
‘and 8k (min.) of RAM — we suggest 16k “JAWS" —
see above) .,,...rmﬂl’tl.'
O Editor/Assembler (ROM version. supplied on an S100
card: requires Level B and 4k RAM (min.) — we
either Level D or 16k “JAWS") . . . $90.98 plus $2 P&l
8" FLOPPY DISK — A remarkable “building block.™
Addoura"bvpydhkwhmywnnd(mm
more convenient program a ap-
plication, and access lothe li thousands of programs
and available today. You simply pl
them into your Ex| /85 disk system — it accepts
1BM-formatted CP/M programs.
T4 Disk Drive . . . $499.8 plus $12 P&L*
Controller Card . .. $199.95 plus 52 P&l*
Cabinet & Power Su ... 969,95 plus

PalL*
Drlwl(_:ahl- (set up for two drives) ... $25.00 plus

=]

50 P&]
O CP/M 2.2 Disk Operating System: includes Text
Baion/ Asstimble, dynarmic debugger, and other foatures
that give your Explorer/85 access to thousands of existing
g programs . . . $150.00 postpaid.

isk drives have: )
the AP-1 fits neatly into the attractive Explorer steel
cabinet (see below)
DAP-IPowurSuglylk(uVOhm ) in deluxe steel
cabinet .. . $38.98 plus $2 P&L* S
NEED A TERMINAL? We
offer you choices: the least ex- 3

o=

-

other choice is our ASCII
Keyboard/Computer
kit, that can be used with either

ETRONICS

.A‘:" "
ese

324  August 1981 © BYTE Publications Inc

you, and can expand 10 64k E

at a CRT monitor or a TV set (if you have an RF modulator

&lnlivu one is our Hex .
eypad/Display kit that dis-

plays the information on a \ 3
calculator-type screen. The N o

arch&DevelopmentLtd.:
333 Litchfield Road, New Milford,

3 W -

o

o 4. Plug in Level E here; ac-
opts Microsol, BASIC or
1. Plug in Netronic’s Hex Editor/Assembler in ROM
. 5. Add two 5100 boards
2 Add Level Hvua convert to 6. Add you own custom cir-
cuits (prototyping area)
7. Connect torminal

S100
3 Add 4k RAM

O Hex Keypad/Display kit

0 ASCII Keyboard/Computer Terminal kit featu:
full 128 character set, u&l case. full cursor control. 75
video output. convertible to

output. ble

... $69.95 plus $2 PAL*

X al
rate. RS 232-C or 20 ma.l/O, 32
or 64 character by 16 line for-
mats ... $149.95 plus $3 PAL*

O Steel Cabinet for ASCII Keyboard/Terminal . . . $19.95

jus $2.50 P&L*

RF Modulator kit (allows you to use your TV set as a

‘monitor) . . . $8.85 postpaid.

0 12" Video Monitor (10MHz bandwidth) ... $139.98

&I\us P&L*
Deluxe Steel Cabinet for the

ﬁ l.onllu ... $49.95 plus

O Fan for cabinet $15.00

plus $1.50 Pal.*

ORDER A SPECIAL-PRICE
EXPLORER/85 PAK—THERE’S
ONE FOR EVERY NEED.
Beginner Pak - Level

e omto Soure Lo (525 i)
perimenter Pak (Save mm‘f“vpﬂ';a Level A
Qi e
Source l?pa and AP-1,5-amp. power supply .. . (Reg.
$279.95) SPECIAL $218.95

o Microsoft BASI

jus $6 P&L*

Pak (Save $103.00)— You get
Levels A (Terminal Version). B. D (4k RAM), E. 8k
Microsoft in ROM, Intel 8085 User Manual, Level A Moni

and AP-1, S-amp. power supply ..

1AL $329.95 plus §7 P&l.*

tor Source Listit
(Reg. $439.70) S

O ADD A ROM-VERSION TEXT EDI-
TOR/ASSEMBLER B
and D or $100 Memory) . . . $99.85 plus
$2 Pal.*

Starter 8" Disk m — Includes Level A. B disk
controller. one 8" disk-drive, two-drive cable. two
$100 connectors; just ndd&nur own power ;%plm.
cabi and are . . (Reg. $1065.00) CIAL
.0 32k Starter $1045.95
ter System. 85 plus $13

1.* O 64k Starter System, $1145.95 plus $13 PAL*
O Add to any of above Explorer steel cabinet, AP-1 five
m. dpower supply. Level C with two S100 connectors.
rive cabinet and power supply. two sub-D connec-
tors for i (Reg.

us
g Special! Complete Business Software Pak (Save
$625.00) — Includes CP/M 2.2 Microsoft BASIC. General

)
mmm: Receivable, Accounts Payable.
(Reg. $1325) SPECIAL $699.95 postpaid.

*P&1 stands for “posiage & insurance.” For Canadian or-
ders, double this amount.

Continental Credit Card Buyers Outside Connecticut:
TO ORDER
Call Toll Free: 800-243-7428

To Order From Connecticut, or For Technical
Assistance, call (203) 354-9375

* (Clip and mail entire od)*

SEND ME THE ITEMS CHECKED ABOVE
mgﬂd (Conn. Residents add sales tax) §_____

O Personal Check O Cashier’s Check/Money Order
O VISA O MASTER CARD (Bank No.

Acct. No, Exp. Date

Print Name

State. Zip

CT 06776 :

ture goes, this is all there is to it: alternativeBlocks is an
array of blocks, and the method in Number simply picks
the appropriate one to evaluate. However, the syntax
looks clumsy. We might like to have something that
looks more like the following:

someExpression
case: [casel], [case2], [case3]
otherwise: [somethingElse]

One way to do this is to arrange for appropriate inter-
pretation of the message , (comma) by BlockContext
(table 2a) and to invent a new subclass of IndexedCollec-
tion (table 2b) that will also interpret , appropriately. We
also have to add some protocol to BlockContext to handle
the situation of a single block. Note that double quote
marks delineate comments in Smalltalk.

As a matter of style, we generally discourage syntactic
embellishments of this kind: their implementation tends
to be obscure and they don't add that much to the ease of
writing programs.

Generator Loops

Many languages provide a kind of loop called a
generator, which sets a variable to successive values
generated by some algorithm each time through the
interior of the loop. The familiar kind of loop that runs
through successive integers from 1 to N is one such exam-
ple. Another example is looking at successive elements of
a linked list, or any ordered collection.

Smalltalk actually provides simple generators of the
form:

someCollection do:
[:anElement]| doSomethingWithTheElement]

but it is instructive to see how we could have constructed
them ourselves. This could be accomplished by having
each kind of collection object implement the message do:

class name (existing) Number

superclass

“none added here”

instance variable names “none added here”

class messages and methods

“none added here”

instance messages and methods

control
case: alternativeBlocks otherwise: aBlock | |
(self > = 1 and: [self < = alternativeBlocks size])
ifTrue: [1(alternativeBlocks at: self) value]
ifFalse: [taBlock value]

Table 1: Template showing additions to existing class
Number.




Small Business
Systems User!

WHEN BUYING CHECKS,
STATEMENTS AND
INVOICES — LOOK FOR
THIS MARK:

DFS

N

Computer Forms

o b

ON THE DOOR OF YOUR
COMPUTER STORE

DFS Computer Forms are

® Sold by a Local Business
® Satisfaction Guaranteed

® Available in Small Quantities

® Compatible with Existing
Software

® Very Economical

Compuler Forms

P.O. Box 643 * Townsend, MA. 01469

326  August 1981 © BYTE Publications Inc

directly; we would get simple arithmetic loops by using
do: with an Interval, a kind of collection that represents a
bounded arithmetic progression. Using do: is convenient
when we know that we want to look at all the elements of
the collection, and do the same thing to each one. For
example IndexedCollection might implement do: as
shown in table 3.

However, if we want to retain more flexibility in con-
trolling the generation process, there is a better way. We
define the notion of a supplier, which will deliver the
elements of a collection one at a time in response to
messages. The protocol (set of messages and their in-
tended meanings) for suppliers consists of the messages:

s atend
o A T4 S T8 S T S
class name (existing) BlockContext

superclass ““none added here”’
instance variable names “none added here”
class messages and methods

“none added here”

tance messages and methods

constructing
, aBlock | |
tBlockCollection with: self with: aBlock

accessing

size | |
“Behave like a BlockCollection with self as the only element”
1

at: Index | |
“Behave like a BlockCollection with self as the only element”
index = 1 ifTrue: [tself].

self error: ‘Subscript out of bounds’

class name (existing) BlockCollection

superclass IndexedCollection

instance variable names “none defined here”’

class messages and methods

“none defined here”’

instance messages and methods

constructing
, aBlock | |
I'self add: aBlock

Table 2: Templates showing additions to existing class
BlockContext (2a) and the creation of a class template for
class BlockCollection (2b).




Circle 323 on inquiry card.

SORCERER

SOFTWARE

from QUALITY SOFTWARE

All Programs Are On Cassette

VISI-WORD by Lee Anders

From preparing short letters to writing a book, word processing becomes easy and inex-
pensive using VISI-WORD, a cassette based word processor. VISI-WORD is designed to
interface with just about any printer you can attach your Sorcerer to. VISI-WORD can
accept control characters, which allows you to issue special commands to those
printers with graphics controls, font control, and the like. A special feature of VISI-
WORD, from which it gets its name, is the “command display off" feature. This com-
mand eliminates all special end of line markers and other non-printing characters and
automatically performs right-justification, centering, and indenting right on the video,
so that you can see what your text will look like before it is printed. Other features of
VISI-WORD include four separate buffers (to assist with form letters, boiler plating,
and shifting text around), automatic page numbering and titling, partial print, and
locating strings. $59.95

General Business System

by Lee Anders

GBS is a general purpose programming system that can be used for many business
applications. Use this system to create, edit, format, and print mailing lists. Or setup an
inventory system, an accounts receivable file, or a payroll system. Or use it to enter
orders. Delete, modify or append records, and then summarize and tabulate the results.
You design (with the help of an extensively documented user manual) a system of
records. Then use the power of GBS to compute, sort, select, merge, add, and modify
your data. GBS will provide you with the kind of fast, accurate, flexible tools you always
knew a home computer could provide. Four example application programs are
included. Of course, you don't need to use GBS for business. You can use it for personal
finance, club or personal record keeping, or almost any type of problem that involves
the management of records. Written in machine language with flexible cassette inter-
facing, this program requires a Sorcerer with at least 32K of memory $99.95

FORTH for the Sorcerer. Now Sorcerer owners can enjoy the convenience and speed of
the fascinating FORTH programming language. Based on fig-FORTH and adapted for the
Sorcerer by James Albanese, this version uses simulated disk memory in RAM and does
not require a disk drive. Added to standard fig-FORTH are an on-screen editor, a serial
RS-232 driver, and a tape save and load capability. Numerous examples are included
in the 130 pages of documentation. Requires 32K or more of RAM. $59.95

ARROWS AND ALLEYS™ by Vic Tolomei

The latest of Quality Software's great arcade games for the Sorcerer is ARROWS AND
ALLEYS, by Vic Tolomei. You drive your car in a maze of alleys. Your task is to eliminate a
gang of arrows that constantly pursues you. You have a gun and the arrows don't, but
the arrows are smart and they try to stay out of your sights and will often attack from the
side or from behind. Eliminate the arrows and another, faster gang comes after you.
Four levels of play. Requires 16K or more of RAM. $17.95

We have more than 20 programs for the Sorcerer
PLEASE WRITE FOR OUR CATALOG

QUALITY SOFTWARE

6660 Reseda Blvd., Suite 105, Reseda. CA 91335
Telephone 24 hours. seven days  week (213) 344-6599

HOW TO ORDER: If there is no SORCERER dealer near you, you may order directly from
us. MasterCard and Visa cardholders may place orders by telephone. Or mail your
order to the address above. California residents add 6% sales tax. Shipping Charges:
Within North America orders must include $1.50 for shipping and handling. Outside
North America the charge for airmail shipping and handling is $5.00. Pay in U.S.
currency.

*The name “SORCERER™ has been trademarked by Exidy, Inc

which returns ‘true if there are no more elements to be
supplied, and:

S next

which returns the next element. Now we can build our
do: operation as shown in table 4. Then each kind of col-
lection needs to implement the message asSupplier, which
returns an appropriate supplier. Table 5 shows what a
supplier might look like for IndexedCollection (including
its creation). If an attempt is made to read past the end,
position will be incremented beyond the size of the collec-
tion, and next will provoke an error when the at: tries to

class name (existing) IndexedCollection

Collection

superclass

instance variable names “none added here”

class messages and methods

“none added here"”

instance messages and methodsj

enumeration
do: aBlock
| index limit |
index — 1.
limit — self size.
[index < = limit] whileTrue:
[aBlock value: (self at: index).
index — index + 1]

Table 3: Template showing additions to existing class
IndexedCollection.

class name (existing) Collection

superclass ‘none added here”

instance variable names “none added here”

class messages and methods

“‘none added here”

instance messages and methods

enumeration
do: aBlock
| supplier |
supplier — self asSupplier.
[supplier atEnd] whileFalse:
[aBlock value: supplier next]

Table 4: Template showing additions to existing class
Collection.

328  August 1981 © BYTE Publications Inc



access an element beyond the size. An alternative
approach, which gives a more useful error message at the
expense of duplicating a check that at: must perform
anyway, is to define next as follows:

next | |
position > = collection size
ifTrue:
[self error: ‘Attempt to read beyond last
element’].
position — position + 1.
1 collection at: position

Similar supplier classes would be needed to provide
generation capability for all of the different kinds of
Collections.

With the supplier approach to generators, we can eas-
ily build a loop that sequences through two collections in
parallel (see table 6). This would be very difficult if we
did not have suppliers, but made collections implement
do: directly. The problem is that while we could use do:
to get one of the two collections to deliver its elements to
a block of our choosing, there would be no way to get the
other collection to deliver exactly one element each time
the block is invoked.

Suppliers are so useful as a concept and as a protocol
that Smalltalk actually includes them, under the name of

ReadStream. The important point is that we could have
built them ourselves if the system implementors hadn't
gotten there first.

Although the only kind of supplier we have con-
structed is one that sequences through a collection, other
kinds of suppliers are possible: they just have to respond
appropriately to atEnd and next. For example, one could
imagine a supplier that selected elements at random from
a collection in response to next.

Exceptional Conditions

One of the difficulties in designing programs that (at
least appear to) work reliably is designing the control
structures for handling “infrequent” events. An infre-

class name (existing) IndexedCollection

superclass “none added here"”

instance variable names “none added here”

class messages and methods

“none added here”’

instance messages and methods

Datasoft is looking for new authors who are
writing professional, innovative and high

quality programs for the Atari, Apple and
Radio Shack computers. Your program can
join our lineup of successful selling programs
such as:

Micro-Painter * SIGMON * Mychess
App-L-ISP* Text Wizard * Le Stick

Datasoft is a professional software pub-
lishing organization with a full-time marketing
and program support staff. You as an author
receive royalties for your work. And you will
be supported by an established dealer
distributor network around the world.

So if you have Business, Educational, Utility
or Entertainment software, call or write us for

more information.
TM

SOFTWARE
19519 Business Center Drive
Northridge, CA 91324
(213) 701-5161

330 August 1981 © BYTE Publications Inc

enumeration
asSupplier | |
1 IndexedCollectionSupplier of: self

class name IndexedCollectionSupplier

Object

superclass

instance variable names collection position

class messages and methods

creation
of: aCollection | |
tself new of: aCollection

instance messages and methodsw

creation

of: aCollection | |
collection — aCollection.
position — O

accessing
aténd | |

I position > = collection size
next | |

position — position + 1.

I collection at: position

Table 5: Templates showing additions to existing class
IndexedCollection (5a) and the creation of a class template
for class IndexedCollectionSupplier (5b).

Circle 102 on inquiry card.



quent event is any event which is (a) qualitatively dif-
ferent from what happens most of the time and (b) not so
common that one wants to test for it in the normal flow
of control. One example of an infrequent event is an ad-

#
class name (existing) Collection

superclass “none added here”

instance variable names “none added here”

class messages and methods

“none added here”"

instance messages and methods

enumerating
with: anotherCollection do: aBlock
| mySupplier itsSupplier |
mySupplier — self asSupplier.
itsSupplier — anotherCollection asSupplier.
[mySupplier atEnd or: [itsSupplier atEnd]]
whileFalse:
[aBlock
value: mySupplier next
value: itsSupplier next]

Table 6: Template showing additions to existing class
Collection.

class name (existing) OrderedCollection

superclass

“‘none added here”

instance variable names “none added here”’

class messages and methods

“none added here”

instance messages and methods

searching
maxBefore1000
| supplier max value theLoop |
max — O.
supplier — self asSupplier.
theLoop ~—
[[supplier atEnd]
whileFalse:
[value — supplier next.
value > 1000 ifTrue: [theLoop exit].
max — max max: value]] withExit.
theLoop value. “Actually do the loop block”
tmax

Table 7: Template showing additions to existing class

OrderedCollection.

ditional exit from a loop. Suppose we would like to write
a searching loop that finds the maximum element of a col-
lection of non-negative numbers but stops searching if it
finds an element greater than 1000. Such a loop might be
implemented as shown in table 7.

We want the block [[supplier atEnd] ...] to respond to
the withExit message by giving back a blocklike object
which we can assign to the variable theLoop. The ability
to name this object allows us to exit from it midcourse.
These BlockWithExit objects (see table 8) need to
remember only two pieces of information: the original
block, to execute in response to the value message, and
where to send control if an exit message is sent.

The original statement theLoop — ... doesn’t actually

class name BlockWithEXxit

Object

superclass

instance variable names block exitBlock

class messages and methods

creation
with: aBlock | |
1 self new with: aBlock

instance messages and methods

creation
with: aBlock | |
block — aBlock

control

value | |
exitBlock — [! nil]. “Exit to my caller if the block ever
sends me the exit message”’
t block value *“Actually do the computation”

exit | |
exitBlock value “Exit from the computation to the caller
who sent the value message to me in the method just above’

class name (existing) BlockContext

**none added here”’

superclass

instance variable names ‘none added here’”

class messages and methods

“none added here”

instance messages and methods

control
withExit | |
1 BlockWithExit with: self
Table 8: Templates showing the creation of a class template
for class BlockWithExit (8a) and additions to existing class
BlockContext (8b).

332  August 1981 © BYTE Publications Inc



execute the loop: it creates a block whose code is [supplier
atend] ... . This block becomes the block variable of a
new BlockW/ithExit as a result of the withExit message
being sent. theLoop is set to the BlockWithExit just
created. When theLoop is sent the message value, the
value method in BlockW/ithExit first creates another
block, the exitBlock, which, if evaluated, will return to
the sender of value regardless of how many other activa-
tions have intervened. The value method in BlockWith-
Exit then sends value to the original block, causing it to
execute. If no exit is sent, the loop completes normally. If
an exit is sent, the exitBlock is evaluated and control
returns to the last statement of maxBefore1000, just as if
the loop had completed.

Dynamic Binding

Another common kind of infrequent event is a request
for information. For example, suppose we want to
specify a default directory for disk files throughout some
part of a program. We could pass this information as an
argument through all intervening calls, but this would
place an added burden (in time, space, and complexity)
on many parts of the program that have no interest in this
information. An alternative would be to set a global
variable before starting the computation, and reset it
afterwards; unfortunately, if the computation is inter-
rupted (say by something like the loop exit construct we
described earlier), this leaves the variable with the wrong
value. Ideally, we would like to set up a structure that

A LOGIC ANALYZER FOR $395?

YES!
:::! !Q‘C! é!!!,;!! o w L
‘ LA 1600-A
- High Speed

Interfaces to dual channel scope or Apple computer.

e 10 MHZ capture rate

Gold plated connectors and clips
Stores 16 words of 16 bits

Crystal controlled internal clock

1, 0, X compare word bit selection
Time domain display

Data domain display*

Hex display*

¢ Internal and external trigger modes

*Options with use of Apple computer

Comes complete with interconnecting cables;
logic probe clips, diskette for Apple computer,
and operating instructions.

— Send for FREE brochure —

Osborne Wilson Labs.
508 Waterberry Drive
Pleasant Hill, California 94523
(415) 932-5489

will get control if the default information is ever needed,
without getting in the way of the rest of the program.
Such an arrangement is called dynamic binding. We will
illustrate how it can be used both for data and control.

Suppose we want to write something such as the
following:

#defaultDirectory bindTo: ‘Smith” in:
[someComputation]

and then have the file system be able to ask for the cur-
rent default directory by:

#defaultDirectory binding

Since we want the binding of defaultDirectory to ‘Smith’
to last only for the duration of someComputation, it
follows that in order to find the binding of a dynamic
variable, we must examine the data structures that
Smalltalk uses to represent the state of a computation. In

class name Binding

Association “Provides key and|
value variables, and messages for
daccessing them””

superclass

instance variable names “none defined here’”

class messages and methods

creation
of: aSymbol to: aValue In: aBlock | |
! self new of: aSymbol to: aValue in: aBlock

instance messages and methods

initialization

of: aSymbol to: aValue In: aBlock | |
key — aSymbol.
value — aValue.
! aBlock value *Actually does the computation’’

class name (existing) Symbol

superclass ““none added here”’

instance variable names ‘none added here”

class messages and methods

‘‘none added here"”

instance messages and methods

binding
bindTo: value In: aBlock | |
 Binding of: self to: value in: aBlock

Table 9: Templates showing creation of a class template for
class Binding (9a) and additions to existing class Symbol (9b).

334  August 1981 © BYTE Publications Inc Circle 288 on inquiry card.



class name (existing) Symbol

““none added here’”

superclass

instance variable names ““none added here”

class messages and methods

“’none added here”’

instance messages and methods

binding

binding | context |
context — thisContext. “Start here. thisContext is a
machine register”
[context = nil] whileFalse:

[((context receiver isMemberOf: Binding)
and: [context selector = #of:to:in: “Isita
binding...”
and: [context receiver key = self]])
variable?”’

ifTrue: ‘“yes, return its value’’
[t context receiver value]
ifFalse: “No, go on to the next context in the
chain”
[context — context sender]].
self error: (‘No binding for’ concatenate: self )

*...of this

Table 10: Template showing additions to existing class
Symbol.

particular, even though many messages may be sent in
someComputation before the file system needs to find the
binding of defaultDirectory, there must be some way to
search the stack of methods that have been started but
not completed, looking for whatever represents the bind-
ing of defaultDirectory. In Smalltalk, each element of this
stack is a MethodContext object, and the variable in a
MethodContext that refers to its caller is called its sender.
So searching this stack just means checking the current
context’s sender, its sender, and so on, until we find a
binding of the variable. We know we have found a bind-
ing when we recognize a MethodContext in which the
receiver of the message is a Binding (see tables 9a and 9b),
and which was created in response to a particular
message. During this computation (! aBlock value in
table 9a), a MethodContext will exist in which the
receiver is the Binding and the message is of:to:in:. This is
how we recognize a binding in the stack of Method-
Contexts. The searching process is shown in table 10.
Note that by combining dynamic binding with the
ability to name exit points (eg: by doing #theExit bindTo:
to create a BlockWithExit), we can arrange for
dynamically bound exceptional events to stop a com-
putation in midstream. More complicated arrangements
that allow the parts of the computation being stopped to
clean up after themselves are also easy to construct.

Coroutines
Generator loops are an example of producer/consumer

TALK’S == ruexPensiVe

ECHO SPEECH SYNTHESIZERS

Don't limit your computer! Let it speak its mind with an ECHO
SPEECH SYNTHESIZER. There are now three new additions to the
ECHO family: the ECHO-80 (TRS-80 MODEL ), the ECHO-GP (general
purpose serial/parallel), and the ECHO-100 (S-100). These join the
already popular ECHO ][ (Apple).

All ECHO SYNTHESIZERS use a combination of Texas Instrument’s
LPC synthesis and phoneme coding to produce an unlimited
vocabulary while using a minimal amount of memory. New male
and female phonemes and TEXTALKER™ software (converts English
text to speech) make them easier to use than ever before.

Speech appications are virtually unlimited, including education,
games, and aiding the handicapped. The flexibility and low price
of the ECHO SYNTHESIZERS make them the logical choice for
adding speech to your system. For further information see your
dealer or contact Street Electronics Corporation.

[SEC]

336  August 1981 © BYTE Publications Inc

STREET ELECTRONICS
CORPORATION

ECHO-80

3152 E. La Palma Ave., Suite C
Anaheim, CA 92806 (714) 632-9950

Circle 361 on inquiry card.



structures: the supplier produces elements, and the pro-
gram that invoked the loop construct consumes them. As
we saw earlier, one way to do this is to assign respon-
sibility as follows:

Producer
implements: do: aBlock
delivers values by: aBlock value: theNextElement
Consumer

receives values using: [:elementName)|

dosomethingToTheElement]

Under this arrangement, the producer can use any desired
control structure internally, just by sending the message:

aBlock value: theNextElement

to the block whenever a new element has been generated;
the consumer, however, is confined to executing the same
block for each element. The other arrangement reverses
the situation:

Producer
implements: atend, next
delivers values by: returning a value from next
Consumer

receives values using: producer next

o RS205

AP101
AP102
AP103
AP104
AP105
RS201
RS202
RS204
RS205
P401
P402
P403
CC90

Apple Il with Single Disk Drive

Apple Il with Double Disk Drives

Apple 11, 9 inch Monitor & Double Drives ...
Apple #7, two additional Drives & Silentype
12 inch monitor plus accessories

TRS-80 Model |, Expansion Unit & Drives....,
TRS-80 Monitor or TV set

TRS-80 Model llI

Radio Shack Color Computer

Paper Tiger 440/445/460

Centronics 730/737 - Line Printer I/IV

Epson MX70 or MX80

Matching Attaché Case

compurer case company

5650 INDIAN MOUND CT. COLUMBUS, OHIO 43213 (614) 868-9464

338  August 1981 © BYTE Publications Inc Circle 68 on inquiry card.

Under this arrangement, the producer has to use instance
variables, rather than control variables, to remember
what state it is in, but the consumer can call for new
elements using any control pattern it wants.

The control structure coroutines allows both the pro-
ducer and consumer to use any control pattern. Notice
that in the first arrangement, the producer has to retain
its argument aBlock to be able to send it value: for each
element; in the second arrangement, the consumer has to
retain the producer to be able to send it next for each ele-
ment. In the coroutine arrangement, both sides retain a
common object called a port. The purpose of the port is
to remember the control state of one partner while the
other partner is running. Let us now build a port in which
the consumer invokes the producer with the messages
next and atEnd, and the producer invokes the consumer
with the messages nextPut: anElement and markEnd. A
loop in this implementation might look similar to the
following:

Consumer
| first second |
portForProducer — someCollection asProducer.
“Here is a sample loop that takes elements two at a time”
[portForProducer atEnd]
whileFalse:
[first — portForProducer next.
second — portForProducer next.
“Do something with first and second”’]

Producer Collection
asProducer | port |
port — Port new.
port producer: [CollectionProducer of:
self with: port].
“Create a new process for the producer’’
! port

CollectionProducer
of: aCollection with: portForConsumer | |
“Here is a sample loop that generates elements three at a
time*”’
[someCondition]
whileTrue:
[portForConsumer nextPut:
someComputation| .
portForConsumer nextPut:
someComputation2.
portForConsumer nextPut:
someComputation3].
portForConsumer markEnd

The code in both consumer and producer can involve
any combination of loops, messages, or other control
structures: the consumer can request a new element at
any time with portForProducer next, and the producer
can deliver an element any time it has control with port-



ForConsumer nextPut: anElement. Interleaving a con-
sumer that wants pairs of elements with a producer that
generates triplets is a very simple example of the freedom
that both partners enjoy in this arrangement.

To implement Port we need to consider how Smalltalk

class name Port

superclass ““none added here’”

instance variable names consumerSemaphore
producerSemaphore
nextElement
endMark

class messages and methods

“none defined here”

instance messages and methods

initialize

producer: aBlock | |
“Assume we are running in the consumer process, so create a
new process for the producer.”
endMark — false.
consumerSemaphore — Semaphore new.
producerSemaphore — Semaphore new.
producerSemaphore signal. “So producer will proceed
the first time"
aBlock fork

consumer

next | anElement |
consumerSemaphore wait. “Wait for producer to delivei
an element’”
endMark ifTrue: “No more elements”’

[self error: ‘Attempt to read past last element’].

anElement — nextElement.
producerSemaphore signal. “Restart producer”’
I anElement

atEnd | |
consumerSemaphore wait. “Wait for an element or end
mark"*
consumerSemaphore signal. “Doesn’t consume the ele-
ment’’

t endMark

producer
nextPut: anElement | |
producerSemaphore wait. ““Wait for consumer to have
taken last element”
nextElement — anElement.
consumerSemaphore signal “Restart consumer’’
markEnd | |
producerSemaphore wait.
endMark — true.
consumerSemaphore signal

Table 11: Class template for class Port.

340  August 1981 © BYTE Publications Inc

allows us to get hold of our current control state, since
whenever control goes from consumer to producer or
vice versa, we have to save the state of the partner that is
giving up control. For just such purposes, Smalltalk pro-
vides a primitive notion of a process, an entity which has
its own control state and can be suspended and resumed.
The usual way to create a new process is with:

aProcess — [someComputation] newProcess.
The process can then be started up by:
aProcess resume

and it will compute “in parallel” with the current com-
putation until it finishes someComputation or it (or some
other process) executes:

aProcess terminate
which stops it midflight. Alternatively:
[someComputation] fork

creates and starts an unnamed process that will proceed

until the computation finishes.
To allow processes to synchronize their control or their

use of data in an orderly way, Smalltalk provides
semaphores. A semaphore logically represents the cur-
rent availability of a finite resource: aSemaphore signal
indicates that one unit of the resource has just become
available, and aSemaphore wait indicates that the cur-
rently running process needs to take one unit of the
resource and must wait if none is available (presumably
until some other process does aSemaphore signal). A
useful special case of this is a semaphore that always
holds either 1 (meaning a resource is available) or 0
(meaning it is unavailable).

As an aside, we note that semaphores could have been
implemented in Smalltalk (ie: not as primitive entities) at
a considerable cost in performance: we only need the
ability to temporarily guarantee that no other process
could run aside from the one currently running (on this
processor in a multiprocessor system). Smalltalk pro-
vides semaphores at a primitive level because they are
such a help in building multiprocess systems that we
wanted people to feel free to use them without worrying
about their cost.

Given processes and semaphores, we are ready to
implement Port (see table 11). The producer and con-
sumer will each run in a process of their own, and we will
use semaphores to make sure only one of them is running
at a time. (The reader can easily imagine and might enjoy
thinking about a version of coroutines which allows the
producer to “get ahead” of the consumer. This requires a
queue between the two, like the SharedQueue we will
develop later.) The “resource” controlled by the
semaphores will be free access to the variables in the port,
nextElement and endMark, under the following arrange-



T T Y A e i T B B R B e e B e A B B T O P B e s o s 5~

Consumer

“In portForProducer next:”
consumerSemaphore wait.
“Semaphore started with 0, consumer waits.”

anElement — nextElement.
producerSemaphore signal.

“Semaphore had 0, now has 1
I anElement

”

Table 12: Dialog between consumer and producer objects using the Port defined in table 11.

Producer

“In port nextPut:”
producerSemaphore wait.

“Semaphore started with 1, now has 0”
nextElement — anElement.
consumerSemaphore signal.

“Semaphore started with 0, now has 1”

“nextPut: returns, producer proceeds.”
“Later, producer does another port nextPut:
producerSemaphore wait.

“Semaphore goes from 1 to 0 again”

"

ment: when consumerSemaphore has a 1, it means next-
Element has something in it (or endMark has been set)
and the consumer needs to run; when pro-
ducerSemaphore has a 1, it means nextElement is vacant
and the producer needs to run. Notice that the next and
nextPut: methods are very similar.

A partial trace through an exchange of control would
look like the dialog shown in table 12. Note that if the
producer reached the second wait before the consumer
took the first element, the producer would wait until the
consumer did the producerSemaphore signal. A full
discussion of how semaphores should be used to produce
minimum waiting, minimum process switching, and cor-
rect synchronization is beyond the scope of this article;
one important and useful special case will be presented in

the following section.

Monitors—Asynchronous Structures

Even in personal computer systems there are often
reasons to allow for the possibility of several things hap-
pening “at once” (ie: not synchronized with each other
beforehand). The best examples involve communication
with other users. For example, your machine could be
listening for incoming messages through a network con-
nection. But even on an isolated personal machine, you
would like to be able to start the system on a time-
consuming project (like printing on a hardcopy device)
and continue to do interactive work. As we saw before,
Smalltalk provides the ability to create independent
processes and set them going “in parallel,” and provides

WE’VE DONE IT AGAIN:
64K OF S-100 STATIC RAM — PLUS Z80A CPU BOARD

— FOR AN AMAZINGLY LOW $899!

That's right, $899. . .and Mullen Computer
Products makes it possible! We bought a batch of
production overrun Z80A* CPU boards, along with static
RAM boards with some minor cosmetic defects, from a
leading |EEE-696/S-100 board manufacturer. For
expanding present systems or upgrading older systems
to the current state-of-the-art, these boards are the
lowest priced around. But you don’t sacrifice one bit of
quality—here’s what we mean:

64K Static RAM—Includes bank select and
extended addressing for maximum flexibility. Fast
low power operation, many convenience features.

CPU Board—Runs at 4 MHz and takes full
advantage of all Z-80A features. Features include
maskable interrupts, extended addressing, RAM/ROM
sockets for optional RAM/ROM, and much more.

Boards may be assembled or partially assembled;
instructions included on how to complete partially
assembled boards (takes less than an evening's work),
along with all other documentation. Best of all, you'll
end up with the same reliable, low power performance
you've come to expect from the boards made by this
prominent company.

Don’t miss out on the CPU/memory deal of the
year—these are limited quantity, first-come-first-served.

32K STATIC RAM BOARDS ALSO AVAILABLE SEPARATELY FOR $399.

Same boards as described above; all that's needed to complete these fast, low power memories s to insert
some ICs Into the board's sockets and solder in a few other parts. With Instructions and all components. Don’t
miss out on this exceptional memory offer! (Limited quantity, first-come-first-served.)

MULLEN Computer Products

BOX 6214, HAYWARD, CA 94544

342  August 1981 © BYTE Publications Inc

CONDITIONS OF S/;LE
$1 50 far shi

all (415) 783-2866. |

Circle 262 on inquiry card.



P e
class name Queue

superclass Object

instance variable names array writer reader

class messages and methods
creation
new: size | |

1 self allocate init: size

instance messages and methods]

initialization
Init: size | |
array — Array new: size.
reader — 0.
writer — O
access
removeFirst | |
reader — reader + 1.
t array at: reader
addLast: anElement | |
writer — writer + 1.
array at: writer put: anElement
Table 13: Class template for an initial implementation of
class Queue.

Process A Process B

reader — reader + 1.
reader — reader + 1.

t array at: reader
1 array at: reader

Table 14: Execution of the removeFirst method using the
implementation of table 13.

semaphores for synchronizing their behavior.

From semaphores we can easily build a more useful
construct, called a monitor. The purpose of a monitor is
to allow several processes to communicate with a data
structure without getting in each other’s way; failing to
provide for this is another common source of bugs—con-
sider the simple-minded implementation of a queue given
in table 13. (The reader should ignore the obvious bugs:
there is no check for an empty queue or for exceeding the
size of the array.)

Suppose two processes both try to remove an element
at about the same time, and the removeFirst method gets
executed as shown in table 14 (the flow of time is vertical
down the page, interleaving the statements executed by
process A in the left column and process B in the right).
One element is skipped—and one is returned twice! The
solution to this problem is to consider “permission to up-
date the state of the queue” as a resource that only one
process can hold at any given time, like the baton in a
relay race. So we can construct a safe Queue by giving it
a semaphore that starts out with one unit of the resource
(see table 15).

A pattern we will encounter in the implementation of
SharedQueue will be to reserve a resource during the
execution of a piece of code:

someSemaphore wait.
someComputation.
someSemaphore signal.

““Acquire the resource”’
“’Release the resource”
The code someComputation is called a critical section.
We would like to be able to write the previous code frag-

ment as:

someSemaphore critical: [someComputation].

t self allocate init: size

class name SharedOueue class name (exxstmg) Semaphore
superclass Object superclass “none added here’’
instance variable names array writer reader

accesssemaphore instance variable names ““none added here"’
class messages and methods

class messages and methods

creation
new: size | | ““none added here”’

initialization
Init: size | |
array — Array new: size.
reader — O.
writer — 0.
accessSemaphore — Semaphore new.
accessSemaphore signal “Give it the baton”

Table 15: Class template for class SharedQueue.

instance messages and methods

critical sections
critical: aBlock | result |
self wait. **Acquire the resource”
result — aBlock value. Do the computation, save the
result”
self signal. “Release the resource”
1 result ““Return the result of the computation’

Table 16: Template showing additions to existing class

Semaphore.

344  August 1981 © BYTE Publications Inc



The system actually provides this message to Semaphore,
with a straightforward implementation which is shown in
table 16. It is then easy to appropriately modify the two
messages in SharedQueue (see table 17).

If two processes try to access the queue, the inter-
change shown in table 18 occurs (with a few steps left
out). Note that the variable anElement is a local variable,
and since the two processes have different contexts
(despite the fact that they share the same instance of
SharedQueue in this example), the variable anElement in
Process A is different from anElement in Process B.

class name SharedQueue

“none defined here'’

superclass

instance variable names "“none defined here”

class messages and methods

““none defined here”

instance messages and methods

access
removeFIrst | anElement |
1 accessSemaphore critical: “Reserve access for the dura-
tion of the block"”
[reader — reader + 1.
array at: reader]
addLast: anElement | |
accessSemaphore critical: “‘Reserve access for the dura-
tion of the block™”
[writer — writer + 1.
array at: writer put: anElement]

Table 17: Class template for class SharedQueue.

accessSemaphore wait

reader — reader + 1.
anElement — array at: reader.
accessSemaphore signal.

reacquires the semaphore”

t anElement

Process A Process B

“Semaphore now has 0 units of resource”

“Process B can proceed now, but immediately

Table 18: Execution of the removeFirst method using the implementation of table 17.

Final Comments

Many languages don’'t have the flexibility we've just
described; others, such as assembly language, have great
flexibility at the expense of readability. What is it about
the Smalltalk-80 language and system that makes all of
the foregoing both possible and fairly readable? Three
things come to mind:

o The existence of blocks, with and without arguments,
and the simple square-bracket notation for writing them.
This makes it possible to pass a piece of code to the im-
plementor of a control structure, which can then execute
the code whenever and however it is appropriate.
ALGOL and LISP have constructs which capture some,
but not all, of the power of blocks.

o The ability to manipulate the control state directly, as
in the dynamic binding example. Of course disaster can
result if you aren’t careful, but a challenge like this is
necessary to exploit the full power of your imagination.
InterLISP (a widely used LISP dialect) has facilities which
capture some of the power of Smalltalk in this area.

o The accessibility of the entire system to modification.
Several of the examples we've described involve adding
messages to fundamental classes like Object and
BlockContext. Restraint is important here too. Several
LISP systems derive tremendous power from this kind of
openness.

Of course, we pay a price for all this flexibility and
simplicity. A discussion of the time and space cost of
blocks, visible control state, and a completely accessible
system is beyond the scope of this article; we will just ob-
serve that the elementary instructions which implement
control structures (branch, call, and return) take about
the same proportion of the total execution time in a typi-
cal Smalltalk-80 implementation as they do in more con-
ventional languages that don’t use globally optimizing
compilers.®

accessSemaphore wait.
“Waits here”

reader — reader + 1.
anElement — array at: reader.
accessSemaphore signal.

I anElement

346  August 1981 © BYTE Publications Inc






Is the Smalltalk-80
System for Children?

Adele Goldberg and Joan Ross
Learning Research Group
Xerox Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto CA 94304

For many years our work on the Smalltalk project has
carried with it the purpose of creating new technologies
that can be used effectively for instruction, both to teach
programming and to support the implementation of
educational activities. While the Smalltalk-80 system is
not specifically designed for school-age children, most of
the applications that we developed as tests of the earlier
Smalltalk systems were.

This article will present a brief history of the develop-
ment of the Smalltalk-80 system that focuses on the in-
structional uses of its various predecessors. A significant
part of this history is the redesign of the language syntax.
Programming in Smalltalk involves creating a language
for communicating among objects; this language is
created within the syntactic restrictions of the
Smalltalk-80 system. Often the programmer adds an
additional level of syntax in which the language for com-
municating among objects is presented in terms of
graphic images. An example of an instructional activity,
the Dance Kit, illustrates the idea of such a language. Its
design was motivated by the rich support for generaliza-
tion and interactive graphics available in the Smalltalk-80
system.

Our original intention in writing this article was to
disabuse readers of the idea that the Smalltalk-80 system,
like LOGO, is a language for children. We concluded,
however, that the other articles in this issue and the two
books on the system (see references) will easily ac-
complish that task. It remains, then, for us to comment
on the style of use of the system that our instructional
work has taught us. Although there are a few places
where knowledge of the Smalltalk-80 system is helpful,
this article does not, in general, require such knowledge.

Learning to Program in Smalltalk

Initially when we ventured out into the schools to
teach programming classes, we used a version of
Smalltalk known as Smalltalk-72 (see reference 3). Our
purpose in teaching these classes was threefold. First, we
wanted to know if the language was teachable. In par-
ticular, we wanted to devise an appropriate pedagogical

348  August 1981 © BYTE Publications Inc

approach that could provide feedback on the design of
the user interface as well as a basis for language redesign.
And we wanted to begin to find out if software based on
the concepts of objects and message-passing offered
something special in the way of problem-solving tools for
children and adults alike. The outcome of these investiga-
tions reinforced the value of the semantics of Smalltalk:
that is, from the point of view of supporting computer-
based problem solving, we found that the ability to
organize information into objects that can be in-
dependently explored and linked together to create new
kinds of behavior is a powerful computational tool.

Smalltalk-72 took the approach that the syntax was
defined by the receiver of the message: the receiver read
as much of the message as the receiver’s method deter-
mined and then passed control to the next remaining
token, which was seen as the receiver of the remainder of
the message. This design came out of our assumption that
the system user should have total flexibility in making the
system be, or appear to be, anything that the user might
choose. However, this meant that the only way that a
reader could understand an expression was to execute the
methods in his head. Furthermore, if a human could not
parse an expression without executing the methods, the
system itself would not be able to parse it. Thus
Smalltalk-72 was a purely interpretive system, and its
performance suffered accordingly.

The syntax design (or lack of it) was an example of
taking the “flexibility” position to an extreme. Our
experience in teaching Smalltalk-72 convinced us that
overly flexible syntax was not only unnecessary, but a
problem. In general, communication in classroom in-
teraction breaks down when the students type expres-
sions not easily readable by other students or teachers.
By this we mean that if the participants in a classroom
cannot read each other’s code, then they cannot easily
talk about it. Our intention was that the Smalltalk system
serve as a communication mediator, but the lack of com-
munication due to the runtime parsing of expressions was
hindering this goal.

The Smalltalk-76 system took a stricter approach to



syntax, making an incremental compiler a vital part of
the system design. Expressions could be parsed by the
human reader, although full understanding of the expres-
sions required that the programmers choose identifiers
and message names wisely. In this way, the programs
could be read by other students or teachers. This ap-
proach to syntax remains in the Smalltalk-80 system.

In Smalltalk, languages are designed whenever the pro-
grammer specifies the message protocol of a class descrip-
tion. These are the languages with which objects in the
system share information among themselves as well as
with the human user. Users can profit enormously from
defining their own language, learning about their native
language in the process of constructing another. In addi-
tion, the concept of classes and instances provides a
uniform way to organize information in Smalltalk. Com-
munication and organization of information are funda-
mental aspects of problem-solving activities. In this
regard, the needs of school children match those of
system designers.

In order to teach Smalltalk programming, the
pedagogical approach we developed is to present a fully
implemented model of something that the student can use
and then modify. The idea is to help early learners grow
accustomed to computer interaction and to the notion of
sending messages in order to invoke behavior from
existing objects. The students can then create two or
more instances of an existing class and, through ex-
perimentation with the messages to which the class of ob-

jects responds, discover the similarities and differences
among the instances. In this way, the students apply
observation and hypothesis-generating skills while enjoy-
ing a highly interactive, graphical discourse with the
system. This latter characteristic depends, of course, on
the user’s ability to provide enticing visual displays of the
instances.

We can use this pedagogical approach for learners with
varying levels of skills by adjusting the complexity of the
initial model. Instruction proceeds by having the students
learn to “read” the description of the model (that is, the
code). They then modify it so that each existing instance
demonstrates a new, shared behavior (ie: the student
adds a message/method to the class description). At this
level, we are teaching students fairly standard program-
ming skills that involve sequencing of messages to ob-
jects. The concept of naming variables was previously
explored as part of the process of creating instances of
classes. It is further explored in declaring and using tem-
porary variables in support of a method. Self-reference in
the form of messages to the object denoted by self comes
naturally and is not dealt with as extraordinary. The
curriculum framework we follow involves:

euse of an already existing model

ereproduction of the model with some addition
esubstitution into the model to produce a new result
eintroduction of the model into new contexts (ie: using it
as a component of some other example)

DEC LSI-11
Components

Dependable service

at discount prices

Domestic
and Export

Mini Il CHLL |
Computer Suppliers, inc.

25 Chatham Rd., Summit, N.J. 07901
Since 1973

(201) 277-6150 Telex 13-6476

Mini Computer Suppliers, Inc.

©
IIIIIIIIIIII'I IiiIIIIIIIIII

350  August 1981 © BYTE Publications Inc Circle 246 on inquiry card.

Fully TRS-80°
Compatible

MPI B/51

DISKDRIVE

Includes: Case and Power Supply

® 40 tracks
W 102K per disk
® 5 ms track-to-track

FREE CATALOG

Hundreds of other computer
products at major savings.

Midwest
Computer
Peripherals

1467 S. Michigan Ave. Chicago, IL 60805

Complete systems
and a wide selection
of accessories at

a discount.

Circle 243 on inquiry card.



Circle 143 on inquiry card.

POCKET ASC

Here's $395 worth of convenience for anyone
working with digital systems. Carry it
anywhere in a pocket, valise or toolkit to enter
and retrieve data. run diagnostics, change
constants, test aata links, etc.

Look at its facilities:

® Transmits 128
’ ASCIl codes
@ Can display last 30
characters received
@Displays full
% 64-character ASCII
set on clear 16-
segment LEDs
@25-line RS232/c
compatible interface
@Single 5V supply

required at 400mA
typical
. @ 110 or 300 baud

transmission selectable
* @Parity codes, stop bits
settable to your standard

@®O0beys bell, cursor and
data format control codes

Phone or write us for more details now:
GR ELECTRONICS

: 1640 Fifth Street, PY
- Santa Monica, CA 90401. ‘
3 Telephone: (213) 395-4774. .

Telex: 65-2337 (BT Smedley SNM)

GET THE BUG
OUT OF YOUR

are used. Capable of
halting the cpu at any

d specific address. Stop
losing time and patience.
BUG CATCHER is the

SRR/ | efficient answer.

h B $195 complete (plus
applicable sales tax).

Locate the bug in your
program quickly with the
all-new BUG CATCHER
Reliable and easy to use,
this timesaver fits easily
in pocket or case.
Functional for any
computer where EPROMs

p
6
A

BLG CATEHER

MARTEC SYSTEMS, INC.
P.O. BOX 2069, NEWBURGH, NY 12550 (914) 265-4044

352  August 1981 © BYTE Publications Inc Circle 210 on inquiry card.

One introductory example we employed with elemen-
tary and junior high school students was a series of pro-
jects to use, modify, and extend the definition of a Box
description. A box is an object that looks like a square: it
can be drawn on the display screen or erased. It can grow
bigger or smaller, and turn right or left, and it can be
moved to different screen locations.

Suppose we create jill as an instance of a Box:

Jill = Box new.

Then jill can grow and turn:

Jill grow: 50. Jill turn: 45.

N

Y

Many boxes can be created:

jan — Box new. jan grow: 25.

N
N N
N N
/ /
/ /
/ /
Jan turn: 90.
|
N
N,
/
/

Animations and pretty designs come from sending a
sequence of grow:, turn:, and move: messages to the
various boxes.

Once the students used several instances of Box, they
modified the definition of Box in order to have all its
instances follow the display screen cursor as the cursor
was moved about by a pointing device. Generalizations
of Box led to descriptions of triangles, hexagons, and
other polygons. Simple games of “leap frog” or space war



Circle 272 on inquiry card.
® Bank Select
® Extended Address

Ultimate STATIC RAM is here!
® 8/16 bit Data

g i !'
ll Assembled and Tested.

$ 295 16KB
$ 465 32KB

Features: Model 32KUS “Uniselect: 3"

S-100 Bus - confirms with |IEEE-696(S100) specifications.
Data-8 or 16 bit wide, compatible with 8 bit or new 16 bit
machines.

Extended Address - 24 bit addressing.

Bank Select - by ports and bits, compatible with Cromemco, Alph
Micro, North Star, and many others.

Fully Static and low power - current is 0.6A typical with 32K byte.
Two separate 16K addressing, 32K bank select with window
capability in any 2K increments, any place within the addressed.
EPROM, 2716, can be mixed with RAM in any place.

Has provision to take new CMOS mem chips with battery back-up.
Will support Z80-Z8000 up to 4Mhz clock, 8086/8088 up to
8Mhz.

Other S-100 Boards Available: Z80 based CPU, I/O Memory Interface,
16K Static Ram.

Fully socketed, solder masks, gold contacts and guaranteed for one full
year. Delivery: from stock to 72 hours. Ordering: you may call for MC,
Visa or COD orders. (Add $5.00 for C.0.D.) Personal checks OK but
M.O. speeds shipping. Allow 7 to 15 days to clear personal checks
before shipping. Undamaged boards can be returned within 10 days
for full refunds.

Illinois residents add 5%% sales tax.

OEM, Dealer pricing available

S.C. Digital

P.O. Box 906
Aurora, IL 60507

Phone:
(312) 897-7749

An Atlanta bulletin board system uses a Hayes
S-100 modem around the clock. Since March 1979,
it has logged over 21,500 calls and been down

a mere 10 minutes. For performance like this,
depend on the Hayes Micromodem 100.™ Fea-
tures include automatic dialing/answering, 45 to
300 baud operation, a built-in serial interface and
direct connection to any modular phone jack.

The Micromodem 100 —and Micromodem II™
for Apple II* computers — are now available na-
tionwide. Call or write for the name of your
nearest dealer.

G]Hayes

Hayes Microcomputer Products Inc.
5835 Peachtree Corners East, Norcross, GA 30092 (404) 449-8791

{ay

354  August 1981 © BYTE Publications Inc Circle 314 on inquiry card.

were new contexts in which to place the geometric ob-
jects. Students discovered that judicious placement of
geometric shapes formed pictures, and so “painting
editors” were popular project areas for the students.

The resource-center approach we took in locating our
computer system in a school emphasized shared projects,
so that each student might bring a different skill to a pro-
ject. Because we feel design is at least as important as
implementation (programming), we encouraged students
with good ideas for projects to act as resources for those
students who preferred to write programs. Miniature
research teams seemed to form in a natural way. The
nonprogrammers on the team did their designs both
visually (by sketching drawings of desired outcomes) and
verbally. In the latter case, they designed by determining
the needed objects and then specifying the language with
which these objects would interact. The students
benefited from the Smalltalk approach to description
even before completing, or perhaps without completing,
a running program.

After our experiences in the schools, we felt that
further studies of graphical user interfaces were needed in
order to improve the visual feedback Smalltalk provides
as its programming interface. The Smalltalk-76 system
was created primarily as a basis for implementing and
studying various user-interface concepts. It gave the
users, mostly adult researchers, further ability in refining
existing classes through the use of subclassing. This
meant that the programmer could now modify a running
model without creating a change to already existing
examples of that model. Programming-by-refinement,
then, became a key idea in our ability to motivate our
users.

Contrary to the idea that a computer is exciting
because the programmer can create something from
seemingly nothing, our users were shown that a com-
puter is exciting because it can be a vast storehouse of
already existing ideas (models) that can be retrieved and
modified for the user’s personal needs. Programming
could be viewed and enjoyed as an evolutionary rather
than a revolutionary act. The frustration of long hours of
writing linear streams of code and then hoping to see
some aspect of that code execute was replaced by in-
cremental development. Emphasis was placed on learning
how to make effective use of existing system components
(objects in the Smalltalk sense). Much of the teaching we
did was to show users how to search for and read the
descriptions of the many useful components we and
others (and even new users) continued to add to the
system.

Fundamentally, the Smalltalk approach to software
has exciting potential for educational use. But why only
“potential”? As the system development work has pro-
ceeded from our initial work in the schools using
Smalltalk-72, greater emphasis has been placed on pro-
viding a powerful system that is of interest to computer
professionals as well as children. The Smalltalk-80
system, in its approach to providing a programming



interface, focuses more on software development for the
professional. But the basic design of the system remains
that of collections of objects. There is a clear layering of
these objects in terms of system versus user-interface sup-
port. Our success in bringing this system back into the
classroom depends upon our ability to create a set of
useful components (class descriptions) that the user can
manipulate, as well as modify and combine, in order to
create new components. Among the components already
developed toward this goal are text and text editors,
graphical images and “sketching” and animation editors,
as well as “browsers” for seeking out other, already
existing components from libraries of such information.
We have begun, but we still have a great deal of work
ahead of us to design and store in libraries the viewing
and controlling components of graphical user interfaces.

Kits for Instructional Activities

So far we have commented on the use of the
Smalltalk-80 system for programming. In doing so, we
have placed a great deal of importance on the existence of
a library of components. Such a library is needed for
both professionals and nonprofessionals. In order to im-
prove the system for educational use, better support is
needed to assist computer-based curriculum designers in
developing flexible instructional activities (perhaps in the
form of a special library). Several examples of instruc-
tional activities that have been implemented in

Now Available

COMPUSTAR
SUPERBRAIN © SUPERBRAIN 5MB

East Coast DEALERS & OEM’s wanted

Kramer Systems Intemational,

MAINTENANCE
Inc. is an authorized FANTAST'C & SUPPORT
established distributor for
el i DISCOUNTS Onsite maintenance in the
Intertec Data Systems Product Greater Washington area and
line. We have a proven record of AVAILABLE selected areas throughout the
east coast
Modular replacement available to
all customers with 48 hour response
in most cases.
Our maintenance personnel are
experienced knowledgeable
professionals who have trained
govemment and commercial
technicians in the repair and
maintenance of the
Superbrain

providing full support and
services to all of
our customers.

COMPUSTAR
Model 10
Model 20
Model 30
Model 40

DISC STORAGE
SYSTEMS

10M8B
2 MB
96 MB

SUPERBRAIN
SUPERBRAIN QD
SUPERBRAIN SMB

SOFTWARE
BASIC-80
BASIC Compiler
COBOL-80
FORTRAN-80
Accounts Payable
Accounts Receivable
General Ledger

Call Nrite
Ganer KRAMER SYSTEMS
Woed St INTERNATIONAL, INC.
Mail Merge
Data Star
Super Sort

Word Master
Spell Star

356  August 1981 © BYTE Publications Inc Circle 190 on inquiry card.

Smalltalk-72 or Smalltalk-76 are described in Laura
Gould and William Finzer’s “A Study of TRIP: A Com-
puter System for Animating Time-Rate-Distance Prob-
lems”, (see reference 5) and Adele Goldberg's “Educa-
tional Uses of a Dynabook” (see reference 2).

More recently, we have been trying to work out the
idea of a kit for constructing such activities. By a “kit” we
mean a set of components and a set of tools (by means of
which these components can be viewed and manipulated)
that can be used to create many different but related
things. Thus, the VisiCalc program (see reference 1) can
be viewed as a kit for making business forms; any text
editor is a kit for creating textual documents, and any
“painting” system such as the Smalltalk ToolBox is a kit
for making sketches (see “ToolBox: A Smalltalk Illustra-
tion System,” by William Bowman and Bob Flegal, on
page 369 of this issue).

For developing instructional activities, we believe that
a kit can be used as an interface to hide the unnecessary
details of the Smalltalk-80 system. A kit could provide a
(possibly graphical) interface to the system for the user
(student, teacher or curriculum developer) who prefers to
focus attention on only one or two aspects of the system.
In such a kit, we maintain the Smalltalk approach of
selecting objects that respond by receiving a message.
The experience gained using one level of the system can
be applied to learning successively lower levels. Of ut-
most importance, the code that implements the kit should
be accessible at the next level of interface so that the kit
can act as a starting point for further refinement and
instructional design.

For the most part, the kits we have designed create new
programming interfaces. Most came about by looking at
instructional activities from other systems and seeing
which ones we liked. We then used the concepts of
Smalltalk classes and instances in order to help us
generalize the idea of the activity into kit form so that a
teacher or student would be able to create personal varia-
tions of the activity. The remainder of this article
presents an example of a kit that could be implemented in
the Smalltalk-80 system.

Invitation to the Dance: Prelude

Imagine that you are a choreographer, able to direct
the movements of a dancer on the stage. As the dancer
follows your instructions and you see their effect, you
may modify them, partly to more closely fulfill your
initial images, and partly because observing the actual
execution may give rise to new creative ideas.

Since you probably don’t have access to a real stage
and a real dancer, imagine that your computer’s video
screen is the stage on which you can direct the movement
of a graphical dancer by means of a simple programming
language. You can experiment with different sequences of
instructions that direct your graphical dancer to replace
parts of itself with other parts (thus raising and lowering
its arms and legs) and to move in various directions
across the screen. The system that allows you to create
such dances is called the “Dance Kit."”



Setting

The original idea for the Dance Kit came from Bill
Finzer, a mathematics teacher at San Francisco State
University. Bill was introducing a friend to a Com-
modore PET computer. Because both he and his friend
are fans of an Indonesian dancer called Pak Jana, Bill
conceived the idea of teaching his friend about program-
ming in the context of choreography. He wrote a BASIC
program called PAKJANA that allowed her to control
the movements of a highly stylized dancer on the screen.
(It has subsequently been used as a very successful in-
troduction to programming for students in a course called
“Computers without Fear.”)

The PAKJANA figure is shown in figure 1. It is con-
trolled by a sequence of commands, including a repeti-
tion construct. The commands either:

ereplace a face, an arm, or a leg

B
2

lﬁ"gg

o

Figure 1: The PAKJANA figure. Children were taught the basic
ideas of programming by teaching this figure how to “dance.”

0

Apple Dealers....

We Need
You

We've written TRAVO, a complete surveying package
that is second to none. It has all the routines needed
for surveying. It's menu driven and heavily prompted.
The manual was written in straightforward every day
surveying language by a third generation surveyor
who has been working with computers since 1965.
Surveyors are generally accustomed to dedicated calculators
or computers. Most of them are just doing their sur-
veying and engineerin? computations and are not util-
izing the capability of a general purpose computer like
the Apple to do payroll, G/L, A/P, A/R, word processing
or job costing.

That's where you come in. You sell ‘em the hardware
and the other software and we'll help you sell ‘em our
program. |If you or your customer have questions, we'll
be happy to answer them for you.

TRAV is no stranger to surveyors. We're advertising in
all national surveying publications. We have satisfied users
all over the U.S.

Our discounts are great.

Call or write for a user manual.

Surveyors Supply Co.

P.O. Drawer 808 Hwy 64 at Old Hwy 1
Apex, N.C. (919) 362-7000

358  August 1981 © BYTE Publications Inc Circle 366 on inquiry card.

emove the whole body up, down, to the right, or to the
left

ecreate a pause (wait command)

ecreate a repetition of the commands

A large set of “replacement parts” is provided: there
are nine different expressions and nine different positions
in which any arm or leg may appear. The user specifies
these replacement parts and the movements that the
dancer can make by choosing from a list of commands in
a very simple language. Thus, users can create programs
that move the dancer in a predictable sequence of dance
routines. (That users may initially find the effects of their
programs not entirely predictable only adds to the fun.)
The replacement parts for PAKJANA are shown in figure
2. (The program is available from Bill Finzer at the Center
for Mathematical Literacy, Mathematics Department,
San Francisco State University, 1600 Holloway, San
Francisco CA 94132. The project was supported by an
Academic Development Grant for the California State
College System.)

Theme

Our Dance Kit evolved from Bill's BASIC program by
considering possible extensions given the interactive
graphics support of the Smalltalk-80 system. The goal of
the Dance Kit is to provide a very flexible programming
language by giving the user (the “programmer”) the abil-
ity to draw the figure for which a dance can be
choreographed. This figure not only moves about the
screen, but also may change the position, size, shape, or
color of its parts. One of the editing capabilities provided
to the user of the kit is the ability to draw and subdivide
the figure into parts. The user can then draw a set of
images that replace each of the subdivisions. We call
these replacement parts. They appear on the display
screen as a part of the programming language the user
can employ to create dance routines. An example figure is
shown next to the label POSITIONS in figure 3. The user
can view replacement parts of a particular subdivision by
pointing on the screen to the part of the figure to be
replaced. As an example, see the sequence of display
screen views shown in figure 5 on pages 362 and 364.

The programming language also contains “steps” for
placing the figure and “bridges” that allow repetition of
some sequences of instructions. The steps, GO, TURN,

| :l**l"'l'fl--lﬁli_. Iu]
o [T Rz [ e [ez - -
2] I 7 Y Y | S R =
o e o L
] P T L TR

Figure 2: Replacement parts for the PAKJANA figure. Com-
binations of these options allow the figure to be animated.

face
Nt

I.}-

3
=




and PAUSE, are given numerical parameters that indicate
how large a step the figure should take. The user selects
steps GO and TURN in cases where relative directional
placement is desired. Alternatively, the user programs
with a step that combines a direction and movement. For
example, to take three steps in an upward (1) direction,
the step instruction is:

R

The user sets the arrow icon to specify the direction.
Bridge REPEAT is given a numerical parameter
specifying the number of times a sequence of positions
and steps should be repeated. Bridge REPEAT UNTIL is
associated with a condition for terminating the repeti-
tion. We envision a fixed set of conditions such as:

Off On
Stage Stage

A GHOST bridge indicates that an image of the dancer
should remain on the screen in the dancer’s last position
whenever the figure steps using the GO instruction. If
replacement parts include:

for the right arm, and:

for the left arm, then a simple sequence to have the
dancer wave each arm three times looks like:

REPEAT |3

e = el -

Notice that the replacement parts can overlap. For exam-
ple, the arm parts are large and overlap the head part so
that it is possible to lift the arms above the head. Simi-
larly, the leg parts allow overlap with arm parts. The
bridge “covers” the steps to be requested, with a condi-
tion specified at the right girder. The figure can slowly
dance stage right using:

REPEAT Off
UNTIL C')) 1 Stag

The user is also able to define “dance routines” that
enable certain fixed sequences to be named, stored,
retrieved for further editing, and used as a “sub-routine.”
Suppose the first sequence of commands is stored as the
Dance Routine known as WAVE. We can then use this
routine in another one to get:

REPEAT Off
UNTIL @ 1 WAVE Stage

360  August 1981 © BYTE Publications Inc

On the screen, one routine (the one being edited by the
user) is active at a time. Controls for managing routines
are:

e DELETE (delete the routine from the language)

o STORE (store the current dance act as this routine)

o NEW (start a new dance act)

e COPY (make a dance act exactly like the current one)
e EDIT (make the selected routine be the current one you
are editing)

A new dance act has the initial name CURRENT
DANCE, as shown in the figure 4.

The user creates a Dance Act by using these elements
(steps, bridges, and routines) of the programming
language “DanceTalk” as shown in figure 4. This is done
by simply pointing at the desired element and moving it

POSITIONS % 1 E]
1
1
| l | I IStage I |Slage| Iswgel
SIEES ® ! BAUSEY! Left Center Right
GHOST REPEAT REPEAT
AR I 4|__I I J—] [UNTMJ
CURRENT
ROUTINES DANCE

Figure 3: A choreographer’s programming language.

POSITIONS

i
1
Stage Stage
P
GHOST REPEAT REPEAT
UNTIL

CURRENT
DANCE

BRIDGES

ROUTINES

DELETE | STORE NEw | copy EDIT |

DANCE ACT

[ DANCE | STOP |

HELP

Figure 4: A screen view of DanceTalk. This image, which
appears on the video display of a Smalltalk system running the
Dance Kit program, gives the user a menu of options with which
to animate the "dancer.”



into the initially empty area in the lower part of the
screen. Selected elements are highlighted by comple-
menting their screen area. Notice the rectangular area
labeled HELP at the bottom of the screen. When the user
points into this area, a description of what to do next is
shown, or a comment about a selected element is given.

First Variation: The Stick Person

A user of our Dance Kit might see the sequence of
screen views shown in figures 5a through 5f. After a user
has completed a longer Dance Act with two choreo-
graphed (sub-)routines KICK and JUMP, the screen
might look like figure 5f. Now when the user indicates
DANCE in the bottom menu of commands, the top part
of the screen clears as if a curtain were rising, and the user
sees the given sequence of views—an animation (see
figure 6).

Note that a grid with a scale underlies both the space
and time dimensions. These could be specified and
experimented with by the user.

Second Variation: The Big Turtle

Our dancer may assume any size and shape we desire,
and we can subdivide the dancer into any number of rec-
tangular areas in order to create replaceable parts. The
basic figure shown in figure 7 might be used. The dotted
lines show the user’s subdivision of the figure. Replace-
ment parts for the section labeled D overlap section A,

McGraw-HIll's
Electronic
Bookshelf Is On
The Air

Ask your computer to
call 212-997-2488 for
the latest Info on our
computer and elec-
tronics books. The sys-

tem Is up dally from 6
p-m. to 8 a.m. and 24
hours on weekends.

362  August 1981 © BYTE Publications Inc

and might appear as shown in figure 8. Other replace-

ment parts are left to the imagination of the reader.
Dance Acts can be shared by different figures, except

that both replacement parts and routines will have to be

Text continued on page 365
(5a)

POSITIONS

STEPS O : | |PAUSE 1| | Staqol | Stage I Stage
eft nter Righ!
GHOST REPEAT REPEAT
BRI0GES [crosT [rerear ] [rerent ]
CURRENT
mouTnes
[Coerete | srore | new [ coev | eom |
DANCE ACT
[ DANCE | STOP |
You can choreograph a dance by selecting QuIT

a sequence of positions and steps. Bridges
provide repetition or traces of the dance act.
Select an element and then select this HELP
area to learn what to do next

(5b)

POSITIONS

|
Stage Stage
1 PAUSE 1
Left Right

STEPS
GHOST REPEAT REPEAT
STleE [ [ | | UNTIL
CURRENT
ROUTINE
SUIRES DANCE
[oetere | store | new | coev | eoir 1|
DANCE ACT
| DANCE [ STOP |
QUIT I
Notice that replacement parts for the selocted
area of the ligure are now shown. You can select
one and place it in the Dance Act

Figure 5: Here and on page 364 are six views of the Dance Kit
program during the creation of a dance. The “help” box, shown
at the bottom of each figure, is always active. The shaded area
indicates the item currently being worked on.



Figure 5 continued:

(5¢)

POSITIONS

|GHOST IIREPEAT I |REPEAT I
BRIDGES UNTIL

ROUTINES
[Coewere | store | new Jcoey | eor
DANCE ACT
[ DANCE | STOP.

You can see your Dance Act as it is now
c by g the d DANCE.
It the Dance goes on too long, select STOP.

(5e)

POSITIONS Eas mes

| QuIT I

Stage Stage Stage
: B =1 =] =]
STERS ! il b Left Center Right
GHOST REPEAT REPEAT
omoces [T e PO
ROUTINES
[Coetere | store | new | copy EDIVEREE|
DANCE ACT
REPEAT
[ DANCE | sTOP
[ouir |

Repeat 2 is the default. Select the 2 in order to
change the number.

364  August 1981 © BYTE Publications Inc

(5d)

POSITIONS RS

Stage Stage

STEPS |® 1 I I""USE‘ I | Lett | lég_l
GHOST REPEAT | [REPEAT
BRIDGES | |—I l. I |uN1|L|

ROUTINES
[Coecere | store | new [ copv | eoir 1
DANCE ACT

> N
b | foood

The selected element is a Bridge. It can cover a
number of dance elements in order to repeat
them a fixed number of times. After you select
the bridge, point to the first element to be unde
the bridge. Then move the pointer over each
successive element until the bridge is constructed.

(5f)

POSITIONS

Stage
Right

1
STEPS |® 1 | |PAU$E| I ‘s“’g’l
Left
GHOST REPEAT REPEAT
BRIDGES l I—I l I—-I |umu.|_l

ROUTINES

DELETE STORE NEW COPY EDIT

| KICK | | PAUSE 1 |
REPEAT) on
_lUNTlL -] l_—smg*

L DANCE | STOP |

DANCE ACT

G

| QuIiT I

HELP







Text continued from page 362:

changed appropriately. A Turtle Dance Act that is akin
to the Stick Person Dance Act shown in the first variation
appears in figure 9. The animation for this Dance Act
consists of the sequence of views shown in figure 10.

Third Variation: Boxes

The dancer might be a simple geometrical shape. The
dancing needn’t be subdivided, but replacement parts for
the whole figure might be available.

For example, the user might create the following
replacement parts:

Suppose the initial dance is set with the dancer moving
toward the right. A possible Dance Act is shown in
figure 11, where next HEX is defined as:

GO 1 TURN 60

The ghost is used to leave a trace of the box after each
step. Each step unit was presumably scaled by the user to
be the size of the box so that no overlapping occurs. At
the end of this act the screen would look like figure 12.

Another possible geometric design comes from the
building blocks shown in figure 13. If the dance act is
defined as shown in figure 14, then at the end of the dance
the screen will look like figure 15. When a figure of one
color is superimposed on a figure of another color, the
underlying figure disappears.

Fourth Variation: The Degenerate Turtle

The Dance Kit can be used to do conventional Turtle
geometry (see reference 6) by allowing the figure to
degenerate to a point (no replacement parts need apply)
and defining a scale such that GO | means to go to the
next point on the screen.

Dancing School

The Dance Kit is one example from a variety of kits
and ideas for kits that we have entertained and that have
entertained us. One of our major concerns is to create an
environment in which the design of interesting and imag-
inative educational materials will be fostered, and we
believe that the Smalltalk-80 system will make it easier to
create such kits.

We have given much thought to some necessary char-
acteristics of a framework for a Dance (or any other) Kit.
We suggest that certain services always be present on the
screen. For example, a help system is of supreme
importance. We have provided an indication of the help
system we would incorporate into the Dance Kit. The
TRIP system for animating algebra word problems (see
reference 5) provides such a complete HELP facility that

even fearful users need be told only how to use the point-
ing device in order to control all the functionality of the
system. Other possibilities for services include a
LIBRARY, a GUIDE to other activities that might be
appropriate, and a facility that allows users to enter sug-

o
o
3
8
m
@
3
2

Comment

begin Stage

-
®
=

move over 3

make certain
leg is down

begin KICK a KICK
leg up Element

a KICK

I
g down Element

leg u a KICK first REPEAT

P Element
a KICK
leg covm Element
a KICK
leg up Element
] a KICK
og cown Element

second

I
leg up @ KK REPEAT

Element

a KICK

leg down Element

pause PAUSE 1

T IHEERIREEELER

meve down 2

raise arm

4
Josecon REPEAT
. UNTIL

Stage

move down 4

o (3 | 35p| 590 530| 530| Bo| 530| J5o| 550|550l Sl 55 S5 556|556 777

R
Ij/

etc

Figure 6: Execution of the dance given in figure 5f.

August 1981 © BYTE Publications Inc 365



View Comment Dance Element
A /———\
= : Stage
oS
T N =
o
e 4
6 |
E
s
Figure 7: A basic drawing of a big turtle that can be animated.
; \ make certain -
— head up
/‘,) N PeeBkeginB Peek-a-Bo0
= ot Element
head up
/ ‘\ 3 Peek- 0
\‘ o pasdin Element
RN = first REPEAT
Figure 8: Example alternate replacement parts for the big turtle. = 5 Element
)
P> <o~ Element
% Peek-a-
I& e
Stage Stage Stage st Eoment
SIERS O i FAUSE) Left Center Right
/ \ 3 Peek-a-Boo
'3 head in
S GHOST REPEAT REPEAT > 2 Element
UNTIL
second
/ (7 Peek-a-Boo
o, head up REPEAT
Dance
l DELETE | STORE l NEW | copy | EDIT = -’\ iy
DANCE ACT . Lot ° Element
REPEAT 2
= 2 [T S
3 [ 2 PAUSE 1
L,n_l O \4 T s
—t
REPEAT on —\
s s \ tail down
e ; Y8 = s E
Lour] ~
4
A / move down o CaRT
ot
UNTIL
/-\ move down 4 - off
Stage
etc

Figure 9: Screen view of the Dance Kit being used to animate

the big turtle.

e
PR

N

TURN 330

Figure 10: Execution of the dance given in figure 9.

Figure 11: Possible Dance Act for a set of box shapes.

GHOST

REPEAT) 4

REPEAT|

5 —
| NEXT |
HEX KN

| TURN 60 I

366  August 1981 © BYTE Publications Inc




gestions and other feedback for the instructor (ie: a
GRIPE).

We have also imagined a Dance Kit in a computerless
classroom. The idea that computer-based activities
should have concrete analogues, especially for young
children, has been well received in the experience of the
MIT LOGO group. We would use the children as the
figures in the dances and create the Dance Act instruc-
tions and routines on paper or a blackboard or.... Of
course if we want to leave ghosts, we will need to enlist
the services of more than one child.

In this mode of use of the Dance Kit we are fond of im-
agining children as the design elements of the seven possi-
ble friezes shown in figure 16; each frieze is characterized
by the group of transformations or symmetries that

Figure 13: A basic drawing of some geometric designs that can
be used by the Dance Kit.

S

S p
e (AL

REP
GHOST EREAT

=G| "’T?LIE‘
G =G |[2]

Figure 14: Possible Dance Act for the set of geometric designs.

Figure 15: A drawing made by the Dance Act of figure 14.

TEXAS COMPUTER SYSTEMS

Offers Lowest Prices on

TRS-80

COMPUTERS

Model 11 64K
$3349

An excellent computer for your business needs. Easy expandabil-
ity & compatibility. No formal operator training needed. All access-
ones available — disk expansions. printers. software. at our low
discount pnces. Our fast Dallas air freight service can assure most

Model Il 16K $849
Model 1l 32K $979
Model 11l 48K $1089

Free with purchase:

1 box of 10 double density
diskettes. A $69 value

With TCS Memory:
Model 111 32K $909
Model Il 48K $969

Model 11l 32K 2 Disk RS232 $2100
Model Il 48K 2 Disk RS232 $2230

Model I1l 32K 1 Disk
Model 11l 48K 1 Disk

r“;
L=

$1729
$1849° Semm——

Special—With TCS Memory
% Model Ill 48K 2 Disks

Uses proven MPI drives modified for fippy operation and
Percom controller Limited 90 day warranty Call for
delails

$1895

Color Computer
4K Level | $329

16K Level | $439

16K Extended Basic $489

With TCS Memory:

16K Level | $369
16K Extended Basic $449

Expansion
Interfaces

Zero K Interface $254
16K Interface $359
32K Interface $469

With TCS Memory:

16K Interface $318
32K Interface $388

Pocket Computer &

Interface $ Call toll free for the low, low sale price.

Epson MX-80
$ Call

Letter quality matrix similar to Line Printer IV &
Centronics printer but has full software control of
40. 80. 66 or 132 columns. 80 cps bidirectional
tractor feed. disposable printhead. $300 less than

nearest competitive printer. Lists $645. Our price
includes cable

* Payment: Money Order, Cashier's Check. Certified
Check. Personal checks take 3 wks. VISA. MC

add 3%

* Prices subject to change any time
 No tax out-of-state. Texans add 5%
* Delivery subject to availability

* Shipping extra. quoted by phone

TEXAS COMPUTER SYSTEMS
Box 951, Brady Texas 76825

For fast, efficient service. we can air freight from Dallas
to major a/p near you. Call for information.

Toll Free Number 800-351-1473
Texas Residents 915-597-0673

Circle 384 on inquiry card.

August 1981 © BYTE Publications Inc 367



oo Rio

LY =

i i GG
g

L Gl
e

/e
MWMWX I X

Figure 16: Frieze patterns of stick men. By combining a basic
pattern and its variations, many frieze patterns can be made.

preserve them. (A symmetry is a one-to-one transforma-
tion that preserves distance.) The basic symmetries are
translations, rotations, and reflections. We envision the
children casting their shadows to form the patterns—or
perhaps even lying on the floor. (Of course,
mathematical friezes are like lines—infinitely long—but
we can enjoy thinking about finite pieces.)

Frieze patterns might look like those in figure 16.
However, we will leave the Dance Acts for the frieze pat-
terns as an exercise for the reader.

The Dance Kit can be thought of as a forum for learn-
ing introductory programming concepts. A curriculum
developer would create a dancer and replacement parts
that are of interest to the student; the developer would
also select steps, bridges, and initial (sub-)routines that
support recommended or assigned exercises. The com-
bination of dancer replacement parts, steps, bridges, and
subroutines makes up a “programming language.” Alter-
natively, the student could do more of the creation of the
language. The Dance Kit has our approval because of this
possibility of dual and flexible use.m

References

1. Bricklin, Dan and Bob Frankston. visicalc™ Computer Software
Program, 1979.
Goldberg, Adele. *'Educational Uses of a Dynabook." Computers
in Education, Volume 3. Great Britain: Pergamon Press Ltd, 1979,
pages 247 through 266.
Goldberg, Adele and Alan Kay. Teaching Smalltalk. Technical
Report SSL 77-2, Xerox Palo Alto Research Center, 1977.
4. Goldberg, Adele, Dave Robson, and Dan Ingalls. Smalltalk-80: The
Language and Its Implementation and Smalltalk-80: The Interac-
tive Programming Environment (forthcoming).
Gould, Laura and William Finzer. "‘A Study of TRIP: A Computer
System for Animating Time-Rate-Distance Problems." Pro-
ceedings of the IFIP Third World Conference on Computers in
Education (WCCE-81). July 1981, Lausanne, Switzerland.
6. Papert, Seymour. Mindstorms: Children, Computers, and Power-

ful Ideas. New York: Basic Books, 1980.

N

w

o

CROMEMCO

s System

SYNCHRO-
SOUND

THE
COMPUTER
PEOPLE

ALPHA-
MICRO
Computer

System

A

HAZELTINE MORE SPECIALS

Integral Data Systems Livermore Accoustic

1421 Model 445 Coupler $159.95
. Printer $695.00 Centronics Micro
Video Televideo Printer 349.00
Terminal Model 950 1295.00 5° Scotch Diskette
Industrial-Micro Box

Systems 349.00 8" Scotch Diskette
Box 39.95

34.95

We have a full staff of Programmers and
Computer Consultants to design, configure and
deliver a Turnkey Computer System to meet
your specific requirements

We carry a full line of: ADDS, QUME
CROMEMCO, SCOTCH, MAXELL, VER-
BATIM, ALPHA-MICRO, ATARI, INTEGRAL
DATA, LIVERMORE COUPLERS,
HAZELTINE, TEXAS INSTRUMENTS,

Sy E/\ SYNCH RO_SOU N D ENTERPR'SES, |NC DIGITAL MICRO SYSTEMS and others.

THE COMPUTER PEOPLE 125 Mineola Ave., Roslyn Hts., N.Y. 11577 CALL, WRITE OR VISIT

“". /' Phone Orders call: 516/484/1852 * Toll Free: 800/645-

368  August 1981 © BYTE Publications Inc

OUR NEW COMPUTER

2 . SYSTEMS CENTER
3820 * TWX 510-220-0021 10-4 Daily & Saturday



ToolBox:

A Smalltalk Illustration System

Computer art is usually thought of
as linear, geometric, and repetitious.
The Smalltalk group at the Xerox
Palo Alto Research Center has been
exploring the potential image-making
capabilities of the computer-powered
display medium for almost ten years.
We have investigated the idea of
using the computer and its associated
display as an art medium for a user/
artist to create visual material. We
allow the mixture of an artist’s free-
hand sketches with structured com-
mands for manipulating graphic
forms. This approach can be con-
trasted with the more traditional
approach where the machine is pro-
grammed to “draw,” usually with
lines, some visual image on the dis-
play screen. Figure 1 is a typical
computer-generated pattern in which
symmetrically ordered lines form an
illusion of spherical volume.

William Bowman and Bob Flegal
Learning Research Group
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto CA 94304

This article reports on one of our
developments in the area of
computer-assisted image creation.
ToolBox is a drawing system
designed for general-purpose, inter-
active image creation and editing.
ToolBox was designed jointly by
artist William Bowman and computer
Y 4 N N o R e S TSI AN o TR

ToolBox is a graphics

system designed for
general-purpose,
interactive image
creation and editing.
R Y v T 1 O T S P T S S T
scientist Bob Flegal to explore graphic
specialization within the computer-
powered display medium. We were
interested in determining the areas
within the visual and graphic arts for
which the computer-powered display
medium is a particularly suitable and

Figure 1: A typical computer-generated geometric design

in which symmetrically

ordered lines form an illusion of spherical volume.

efficient graphic tool. To do so we in-
vestigated possible tools, techniques,
and image-making capabilities of this
new medium. The underlying impli-
cation (and intention) of this
approach is a new role in professional
graphics: that of the illustrator/artist
who creates images with computer
machine tools rather than with con-
ventional hand tools.

The ToolBox system receives input
from the user/artist from a graphics
tablet and keyboard and modifies the
screen image based on his/her
actions. The computer program does
not generate the image from a set of
programmed drawing instructions.
For example, to specify a straight-
edge line, the artist need only specify
the two end points of the line with the
graphics tablet and the program com-
pletes the line. This is in contrast to
methods where a “pen” is pro-
grammed with up, down, and draw
commands with coordinates as argu-
ments. This idea is illustrated in
figure 2.

System Description

ToolBox consists of a coordinated
set of graphic tools that provide a
wide range of form construction
options for use in testing machine
illustration concepts. Five fundamen-

‘tal tool functions comprise the basic

graphical form vocabulary. Each of
these tools can be modified in its use
by one or more of four sets of vari-
ables that can affect its form source,
color tone, grid spacing, and func-
tional mode. Brief descriptions of the

August 1981 © BYTE Publications Inc 369



USER/ARTIST

DISPLAY SCREEN

1

INPUT TABLET

5 (B

X [ ]
—/1

TOOLBOX PROGRAM

pAEHEO

Figure 2: Modification of the ToolBox screen image based on user/artist input. The
computer assists in drawing a line after the artist has entered end points on a graphics

tablet.

tools and the variables affecting them
follow.

Select Form allows the user/artist
to select a rectilinear-shaped picture
from the display screen as the form
source. The form selected can be
thought of as a brush which the other
five tools use as their source picture.
The artist can create a form source
using any of the tools available in the
ToolBox system, from Smalltalk
graphic commands, from the Small-
talk text editor, or from a library of
form sources.

The following are ToolBox tool
functions:

eCOPY enables continuous
individual copies of the form source
onto the display screen. This can be
thought of as painting on the display
screen using a brush (the form source)
eDRAW enables freehand line draw-
ing or sketching by connecting form
source copies with line segments

e ARC enables curve construction
(using spline functions)

eBLOCK enables solid rectangles to
be formed

o LINE enables straight-line construc-
tion between two points

Grid spaces modulate the tools to
function on specifiable horizontal and
vertical grid lines.

Color tones allow creation of form
in black, white, or one of the four in-
termediate grays (spatial-halftones).

There are three modes affecting the

370  August 1981 © BYTE Publications Inc

copying of source forms onto the dis-
play: store, or, and xor. We called
these modes “over,” “under,” and
“reverse.”

Art Examples

Figure 3 shows some of the visual
effects that are possible with a single
form source—two triangles. Since
each form source can have five tools,
five griddings, six colors, and three
modes, the number of possible pic-
torial effects is staggering.

The display screen upon which the
pictures in this article were made is

Figure 3: ToolBox variations on a single
form source—two triangles.

606 by 808 dots, and each dot is either
black or white (no gray scale). The
display is refreshed out of the com-
puter’s main memory. Thus, to turn a
display dot black or white, 1 or 0 is
written into memory.

During the programming and de-
velopment of the ToolBox system, a
series of image-making experiments
were conducted, both as active input
to the evolving design of the system
and as a preliminary test of its capa-
bilities. The main purpose of these
experiments was to explore the poten-
tial of the machine tools for enabling

DOLLARS
0

T

50—

40—

30 —

20—

10+

1972

1973

dges

. o electricity

{ water

4 garbage

1974 1975

Figure 4: A bar chart designed by William Bowman.




Circle 174 on inquiry card.

THE MOST

PUOWERFUL

SMALL

BUSINESS

COMPUTER

IN THE
WORLD

The IBC ENSIGN business computer was
designed from the ground up to run MP/M, multi-
user OASIS, MVT-FAMOS, and other multi-user
2-80 operating systems faster than any other
computer in the world.

Consider these features:

e Up to 16 users

e Up to 768K byte memory

o Up to 150M bytes/disk drive
* 17M byte tape cartridge

e 46M byte 9 track tape

® 6 MHz Z-80B CPU

But it takes more than a lot of 1/0 ports,
memory, and disk storage to make a super multi-
user computer. The ENSIGN has what it takes.

MULTIPE MICROPROCESSORS: The ENSIGN has
two separate Z-80's and 32K byte memory buffer
to handle all 1/0 between CRT's and printers at
baud rates up to 19,200 baud

A third Z-80 handles all disk and tape 1/0.
Commands from the main CPU are totally
supervised by the disk slave Z-80.

And the main CPU is the new 6 MHz Z-80B
running at full speed with 120 nsec memory

PERIPHERALS: The ENSIGN supports the tape
and winchester disk family from Kennedy Co
These drives, tape cartridges, and 9 track tape
drives are the premier of the industry. Yet prices
are low on the ENSIGN AR 2 2 Sona

SOFTWARE: If you are running MP/M, OASIS, or ﬁ‘ ; N 7
MVT-FAMOS you will run better on an ENSIGN 7
And if you're not already tied to one of these
systems you may want to try IBC-SUPERDOS.
SUPERDOS is very powerful and very very fast.

Figures 5, 6, 7, 8: These four illustrations by Bowman were created using the ToolBox
graphics system.

a variety of graphic strategies for early experiments. They are intended
image design and execution. Some of as a demonstration of the range and

For dealership information contact

lnte_grated these strategies resembled conven- depth of graphic language effects that
Business tional graphic techniques; however, can be achieved with the ToolBox

Computers most of them turned out to be unique system.
22010 S. Wilmington Avenue, Suite 306 to the machine medium. Figure 4 is a simple bar chart. This
Carson, CA 90745 e Call (213) 518-4245 The remainder of this article con- figure made heavy use of the BLOCK
enars 100 DidGown 0 sists of pictures that grew out of these tool and several grid settings. The

372  August 1981 © BYTE Publications Inc







Figure 7

Figure 8

illustration was done in a very short
amount of time compared to the
amount of time it would take to draw
a simple bar chart using conventional
media. The ToolBox system is par-
ticularly effective for images involv-
ing horizontal and vertical elements.
(Figures 4, 5, 6, 7, and 8 were ex-

ecuted by William Bowman.)

The BLOCK, LINE, and CURVE
tools were heavily used in figure 5.
Note the texturing at the bottom of
the illustration; it was created using
the COPY tool in reverse mode with
the color variable set to black.

In figure 6, the COPY tool in

Circle 131 on inquiry card.

CHOOSE...

Choose an Apple Desk

_

A compact bi-level desk ideal for an Apple
computer system. This 42"'x 31%" desk comes
with a shelf to hold two Apple disk drives. The
top shelf for your TV or monitor and manuals
can also have an optional paper slot to accom-
odate a printer.

Choose a Micro Desk

Get your micro computer off the desk top and
into the micro shelf under our Designer Series
desks. Suitable for the North Star, Dynabyte,
Vector Graphics, and Altos computers. The
desks come in a variety of sizes and colors.

Choose a Mini Rack

Mini racks and mini micro racks have standard
venting, cable cut outs and adjustable RETMA
rails. Choose a stand alone bay or a 48", 60",
or 72" desk model in a variety of colors and
wood tones. A custom rack is available for the
Cromemco.

Choose a Printer Stand

The Universal printer stand fits the:
Centronics 700's Diablo 1600°s & 2300°s

Dec LA 34 T.1. 810 & 820
NEC Spinwriter Okidata Slimline
Lear Siegler 300’s Anadex 9500's

Delivery in days on over 200 styles and colors
in stock. Dealer inquiries invited.

ELECTRONIC SY9STEMS
FURNITURE

COMPANY

17129 S. Kingsview Avenue

Carson, California 90746
Telephone: (213)538-9601

August 1981 © BYTE Publications Inc 373



reverse mode was used to create the
effects in the bottom half of the image
and for the leaves and the bark on the
tree.

The perspective effect in figure 7
was easily obtained using the grid set-
tings in the system. The shading was
created using a “brush” containing
just a few black dots with the COPY
tool used in erase mode on a black
background.

Note the use of the COPY tool and
grid settings to construct the chain on
the socket in figure 8. The ToolBox
system proved particularly effective
for rapid construction of repeated
patterns.

The next four pictures were done
by Howard Foote, an artist and col-
lege art teacher who had never
worked on a computer system or ter-
minal. He was contracted to use the
system and push it to its graphical
limits. In the picture in figure 9, Foote
made considerable use of the COPY
tool and DRAW tool.

In the picture in figure 10, Foote
was able to represent his subject with
remarkable loyalty to physical
realities when he wanted to and at the
same time seemed able to maintain a
flexible control over compositional
features. His form vocabulary was
wide and included a rich use of line,
shape, texture, and tonal value.

In the picture in figure 11, Foote
made considerable use of the DRAW
tool to achieve a free and open effect.
Geometrical forms and exact tech-
nical mastery of fine detail were the
only major areas of pictorial interest
with which he did not choose to deal
when using the ToolBox system.

The illustration in figure 12 shows
a technique often used by Foote: a
spatial-saturation strategy using per-
sonally constructed form units with
the COPY tool in different tones and
modes.

The final illustration, figure 13,
was done by Bob Flegal. The motifs
in the border were taken from North

Figures 9, 10, 11, 12: The drawings in
these four figures were done by Howard
Foote, an artist and college art teacher
who was contracted to use the ToolBox
system and to push it to its graphical
limits.

374  August 1981 © BYTE Publications Inc

Figure 10




Figure 11

Figure 12

MAIL ORDER ONLY

Micro Computer

DISCOUNT.

QUALITY e DELIVERY e SERVICE
Your One Stop For. . .Quality and Huge Savings

% MONTHLY ¥ |
¥ SPECIAL <X

* Commodore 8032 Only $1195 *

PAPER TIGER

445 & 460 & 560 CALL FOR PRICE

EPSON
Call for Best Price ‘
& Delivery £
COMMODORE
16K - $859
32K - $1079
2022 - $695
4040 - $1079
8050 - $1495
8032 - $1195
QUME
SPRINT 9
Call For Price
. SNe—
SUPERBRAIN* '—lm-
64K - $2595 P S i S
64KQD - $3295

0

CENTRONICS
CALL FOR PRICES

MONITORS
Sanyo 9” B& W — $180
Sanyo 12" B&W — 239
Sanyo 12 Green — 279
NEC 12" Green — 249
BMC 12~ Green — 249
Zenith 13" Color — 359
Amdex 13— Color — 389

———————
* (DENOTES ITEMS SHIPPED F.0.B. NYC)

MAIL ORDER ONLY

Send Certified Check (Personal or Company Checks

require 2 weeks to clear.) We pay all shipping and

insurance charges except items marked with asterisk.

VISA, MasterCharge add 5% N.Y.S. Residents add
appropriate sales tax.

PHONE (212) 986-7690

Micro Computer Discount Company
60 E. 42nd St. Suite 411 New York, NY 10017

August 1981 © BYTE Publications Inc 375



N

o)
o

i

SRRl

g

&
I

FDCDE

%)

@
o
S
G

S
Z(

m@mrﬁ@msae:-rmza@@-m?a@@' O

-

....-gmmmmmmmmig-'i

Figure 13: A border design created by
Bob Flegal. The motifs are from North
African carpet patterns.

COCDCICHE

African carpet designs. They were
pieced together using the COPY tool
with various grid settings. The Tool-
Box system allows rapid construction
of material involving repeated design
modules.

VY

TN AR TARTAN

>

Summary

Based on the speed of execution
and the range and depth of graphic
language effects that can be created
with the ToolBox system we feel that
similar systems will become another
common graphic tool for profes-
sional-level designers and illustrators.
Extensions of the basic ideas
presented in this article are numerous
and provide a fertile ground for
research in computer-mediated
illustration and design.®

T AT AR AT AT AT

T A T P S S A Fa Y KA KT
DEHEDEHCHEDEDEDEDEIGHEDGHGHEHE

376

BUTE

TOLL-FREE
SUBSCRIPTION LINE

1-800-258-5485

The Quickest Way To

Order a Subscription

* Renew a Subscription

« Change or Correct an Address
* Give a Friend a Gift Subscription
* Inquire about a Subscription

We are waiting to help you. Call us between:

8:30-4:00 Mon.-Thurs.
8:30-12:30 Fridays
(Eastern Time)

BU'E the small systems journal

August 1981 © BYTE Publications Inc

o

BU'E Back Issues for sale

Plaase allow 4 weeks for domestic detivery

.

N
\O,
- =
e

—— A A A A

A £ — 5
A
A A AN A A

The following issues are available:

1976: July
1977: April thru December except October
1978: February thru December except November
1979: January thru December except March
1980: January, March thru August, and December
1981: February to current issue
Cover price for each issue through August 1977 is $1.75
Domestic; $2.75 Canada and Mexico; $3.75 Foreign.
September 1977 through October 1979 issues are $2.50
Domestic: $3.50 Canada and Mexico; $4.50 Foreign.
November 1979 to current is $3.00 Domestic; $4.00 Canada
and Mexico; $5.00 Foreign

Send requests with payment to:

BYTE Magazine
70 Main St, Peterborough NH 03458
Attn: Back Issues

* Payments from foreign Countries must e mace
in US funds payable at 3 US bank.

ana 8 weeks o foreign delivery




Virtual Memory

for an

Object-Oriented Language

The amount of information in a
person’s brain is truly vast; even the
amount accessed in the course of a
few hours of thought is vast. This is
in contrast to the amount of informa-
tion in the main memory of a com-
puter, which is minuscule by com-
parison. The exciting thing about
computers, though, is that we can use
them to extend and enhance our
thought. If a computer is to serve ef-
fectively as an aid to thought, it must
be able to hold enough information to
be useful. However, the memory of
the largest computer today is so small
that it severely limits what that com-
puter can do. There are so many
orders of magnitude between the
capacity of the brain and the capacity
of a computer that given the ques-
tion “How much memory will the
computer need?” the answer should
always be “As much as possible.”

Software for personal computers is
just crossing a threshold of usefulness
and flexibility. There are tasks, such
as revising a draft of a paper, which
are tremendously easier to do with a
computer than without. Once you
have edited with a computer, it seems
absurd to edit by hand. The number
of tasks for which the computer is

378  August 1981 © BYTE Publications Inc

Ted Kaehler
Learning Research Group
Xerox Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto CA 94304

essential is growing rapidly, causing a
very sharp rise in the demand for
storage in each personal computing
system. As we design more useful
aids to human thought, we will im-
mediately want to access an amount
of information closer to the amount
in someone’s head. Many extraor-
dinary ideas will become software
realities in the next few years. And
large quantities of memory will be
needed to run and store all of that
wonderful software.

Given the question
“How much memory
will the computer
need?’”’ the answer
should always be ““As

much as possible.”’
Y R SR SRR G TR e R S R SRR R

The practical limit on the size of a
computer’s memory is cost. Every
project, especially a personal com-
puter, has cost limits. The question
becomes how to get the most memory
for the least cost. Roughly speaking,
memory falls into two categories:
fast, expensive memory and slow, in-

expensive memory. Main memory
and core are common names for the
fast, semiconductor memory. The
slow memory, secondary memory, is
almost always a disk. If we bought all
slow memory, the processor would
continually wait for the disk and
would give very poor performance. If
we spent all our money on fast
memory, we would not get very
much of it, and many of the bigger
and better programs would not fit in.
The game is to buy some fast memory
and some slow memory and arrange
things so that the processor rarely has
to wait for the slow memory. This
game, and specifically the mechanism
which hides the slow memory from
the processor, is called wvirtual
memory.

If there were no way at all to
predict which byte of memory the
processor might want next, it would
be impossible to win the game of vir-
tual memory. However, pieces of
data that are used together are often
stored together, and program instruc-
tions tend to be executed and stored
in a sequence. The principle of locali-
ty of reference states that the pro-
cessor is most likely to access a
memory location very near the last






one it accessed (see reference 2 at the
end of this article). The game of vir-
tual memory is based on a trick:
when the processor starts to ask for
bytes from a block of code or data, it
should move that code or data into
the fast memory. If the processor con-
tinues to access that information, all
of the accesses will be to fast
memory. When the program moves
on to a new activity, it may again be
forced to get its information from the
slow memory. To win the game, a
virtual memory must maintain a
situation where most of the
processor’s accesses are to the fast
memory. If the strategy fails and the
processor often wants data from the
slow memory, the entire system will

run very slowly.
The act of ‘moving programs or

data between the two kinds of
memory is called swapping (see figure
1). The program that the user is run-
ning may or may not control the
swapping explicitly. Overlays are
large groups of subroutines that are

ﬁping

Secondary Storage
(mini-Winchester disk or bubble
memory or network connection)

moved to and from the disk under
control of the user program. In an
automatic virtual memory, however,
the user program is unaware that
swapping is occurring. The program-
mer does not specify how the pro-
gram should be divided up into pieces
or when swapping should occur.

In certain cases, letting the pro-
grammer control swapping directly
can result in good performance.
However, the virtual memory game is
very complex and is played very
quickly inside the computer. We
believe that the programmer should
not be burdened with deciding what
part of the data to swap and when to
do it. Asking the programmer to in-
struct the virtual memory is like ask-
ing a race car designer to write down,
for the driver, exactly how to move
the steering wheel in some future
race.

In this article, we first look at a

common type of automatic virtual

memory called paging. We then
introduce a new type of virtual

Main Memory
(Semiconductor RAMs)

Processor 50 to 100K bytes
e et

iUD oooo
[noonn
DQDQ HIEERIA

(of programs and data upon demand )

5 to 10 million bytes

Figure 1: Main memory, secondary memory, and swapping combine to form a virtual

machine that seems to have more memory.

Circle 345 on inquiry card.

UNBELIEVABLE!

S-100 State-Of-The-Art Single
Card CP/M Computer NOW
AVAILABLE!

Z80A or Z80B

64K RAM

2 Serial Ports (SI10)

4 Parallel Ports (PIO)

4 Timers (CTC)

Floppy Disk Controller
Intelligent Winchester
Interface

® Prom Programmer

Single-unit pricing, Assembled,
Tested, Burned-In

4 Mz Version
6 Mz Version

All you need to configure a
single-user CP/M system or act
as either a Master, Slave or a
Peripheral Controller in
multiple-processor configura-
tions. It incorporates the NEC
Floppy Disk Controller, which
supports. up to 4 double-sided
double-density 8" disk drives,
and the powerful Zilog family.

Our CPM version 2.2 BIOS is
interrupt driven, resulting in
extremely high throughput
(TURBO-DOS version also
available). Features are:

® High speed Buss transfer

utilizing the Z80 OTIR and

INIR instructions

All devices interrupt-driven

Type-Ahead I/0 buffers

Real-Time clock

Time-of-Day clock

Multi-level password

support

e Menu-driven utilities for
Format and Disk-Copy

e Configuration utility

Trademarks: CP/M by Digital
Research, TURBO-DOS by
Software 2000

VISA and Master Charge
accepted

Dealer inquiries invited

Sierra Data Sciences
1300 East Shaw, Suite 164

Fresno, California 93710
(209) 224-0520

August 1981 © BYTE Publications Inc




memory that takes advantage of its
knowledge of objects. We describe in
detail a specific object-oriented vir-
tual memory for the Smalltalk-76
system and explain how it plays the
virtual memory game better than a
paging system.

Paging

The most common kind of auto-
matic virtual memory is called pag-
ing. In paging, the program is cut up
arbitrarily into pieces. Each piece is
called a page and contains the same
number of bytes as every other page
—say, 512. There are many more
pages than will fit into main memory
at once, so most of them stay on the
disk. The processor knows only
about byte addresses in one large ad-
dress space called the virtual address
space. Every time the processor ac-
cesses a byte, the address of the byte
is checked. The high-order bits of the
address tell which page contains that
byte. (The low-order bits tell which
byte within the page.) If that page is
not in main memory, the user pro-

gram stops. The virtual memory pro-
gram starts up, finds an old page,
moves it to the disk, and brings the
desired page into memory in its place.
(We will use the term “memory” to
refer to the fast, main memory only.)
The act of discovering that a page is
needed from the disk and bringing it
into memory is called a page fault.
An advantage of paging is that it
works regardless of the contents of
the pages. The mechanism needed to
determine whether a given page is in
memory is simple. Many computers
have special hardware to speed up the
translation between an address in the
virtual space and a page in memory.
There are problems with paging,
however. If the program needs a par-
ticular byte, the entire page surround-
ing that byte must be brought into
memory. If no other bytes on that
page are useful at the moment, a large
amount of main memory is wasted.
Since programs are cut up arbitrarily
into pages in the first place, it is com-
mon that the rest of the page has
nothing to do with the part currently

CREATIVE

$24.95

Add $1.50 for shipping/handling

Calif. residents add Sales Tax
MasterCard and VISA orders accepted

CREATIVE
N SOFTWARE

Wondering where to find programs for your new v. c 2 ?

‘SOFTWARE is your source for VIC programs.

Our Introductory Offer . . .
THREE CHALLENGING GAMES

on cassette
e Seawolf

}Q‘x\" e Bounce Out
R\"i,r o VIC Trap

READY TO LOAD...FUNTO PLAY

Write or phone for information on our
other games, household utility and
educational programs for your VIC.

201 San Antonio Circle, #270
Mountain View, CA 94040
(415) 948-9595

380  August 1981 © BYTE Publications Inc

Circle 95 on inquiry card.

wanted. Sometimes a significant frac-
tion of memory is taken up by pages
from which the processor wants only
a few bytes (see figure 2). These pages
crowd out pages containing other
parts of the program, causing many
pages to be swapped to run the rest of
the program. The many accesses to
slow, secondary memory cause the
whole system to be slow.

Another problem with paging is
that every address of a byte or a word
must be a long address. When an
object-oriented language is built on a
paging system, a pointer to an object
is typically the address of the first
word of the object. Every pointer
must be capable of reaching any word
in the entire virtual space, and each
one must have enough bits to span
the space. Pointers comprise a large
fraction of many programs and data
structures. If they could be shorter,
more of the program could be packed
into one page in memory and the en-
tire program would take fewer pages
of memory.

Object-Oriented Virtual Memory

Smalltalk is a system composed of
objects. An object is a little package
of functionality. It contains the
values of a few variables or a small
piece of program. The important
thing about an object is that its parts
belong together. If a program wants a
part of an object, it probably wants
other parts, too. Different pieces of
information were packaged together
in that object exactly because they
will be used together. Locality of
reference is strong inside an object
and, in general, weak between ob-
jects.

An object-oriented virtual memory
swaps individual objects instead of
entire pages between disk and main
memory. Objects that are brought
into memory are packed end to end
with the objects already there.
Memory is thus entirely filled with
useful or likely-to-be-useful data. A
larger percentage of memory is ac-
tually holding useful information
than it would under a paging system.
The result is that a larger part of the
program can fit into memory at once.

There is a penalty for swapping ob-



jects, however. Objects are generally
smaller than pages, and there are a lot
of them in memory at once. The vir-
tual memory program must keep
track of which object is in which
place in the memory, and it must be
able to find out where each object
came from on the disk. Managing in-
dividual objects is more complicated
than managing pages, but the advan-
tage of packing main memory with
useful objects makes up for the time
spent managing the objects.

By object-oriented virtual memory,
we mean a system that swaps objects
which have meaning in the high-level
language and which are typically
small. Segments in the BS5500
(reference 4) and objects in HYDRA
(reference 5), while being the units of
swapping in their systems, are large.
These “objects” require tens or hun-
dreds of bytes of overhead informa-
tion each. An object-oriented virtual

memory, in our sense, gives an object

the same swapping freedom as a seg-
ment and shrinks the overhead to a
few bytes per object.

Pointers to Objects

An object consists of fields, which
hold the values of their named and in-
dexed instance variables. Each field
contains a numeric value, which can
be interpreted as itself or (usually) as
a pointer to another object. This
number, called the object pointer, is

These pages are
in core.

D Words of memory actually
used while this page is
in core.

D Words not used this time.

Pages on
the disk.

\

(The entire virtual space is cut
up arbitrarily into pages.)

Figure 2: Virtual memory by paging.

the unique identifier of the other ob-
ject. Every object has an object
pointer. Given an object pointer, the
virtual memory must be able to locate
that object, whether it is in memory
or on the disk (see figure 3).
Creating, destroying, and moving
objects in memory is the job of a
storage manager. The virtual
memory program takes the place of

the storage manager (as described in
Glenn Krasner’s article, “The
Smalltalk-80 Virtual Machine,” on
page 300 of this issue). It fetches and
stores the fields of objects, creates
new objects, and collects and
manages free space. It also keeps
track of the length of each object and
the Smalltalk class of each object.
When the interpreter is working on

Circle 111 on inquiry card.

381

August 1981 © BYTE Publications Inc



Circle 169 on inquiry card.

SPELLGUARD’

Spelling Checker
for Professionals.

SPELLGUARD eliminates
spelling and typographical
errors in documents pre-
pared with CP/M' or CDOS?
word processors.

SPELLGUARD is a
unique program that leads
the microcomputing indus-
try in its efficiency, ease of
use, and reliability.

FAST
* Proofreads 20 pages in under
one minute.*

POWERFUL

® 20,000 word dictionary, ex-
pandable with single keystroke.
* Properly handles hyphens and
apostrophes.

* Allows multiple, technical
dictionaries.

RELIABLE

® Over 500 shipped by March
1981.

® 30-day money-back limited
warranty.

e Industry leading Softguard ©
feature ensures diskette copy of
program is undamaged.

EASY TO USE

e On-line help feature.

e Misspelled words marked
In text for easy, In-context
correction.

e Examples of all functions in
120 page manual.

COSTEFFECTIVE ______
e SPELLGUARD'S unique speed
and accuracy easlly recovers the
suggested $295 price.

*Time estimates based on double density
8" diskettes and 4Mhz system.

Trademarks: 'Digital Research, *Cromemco

Contact your local dealer or write
ISA for a SPELLGUARD brochure.

The fast, accurate
proofreader.

INNOVATIVE SOFTWARE APPLICATIONS

P.O. Box 2797, Menlo Park, CA 94025
(415) 326-0805

382  August 1981 © BYTE Publications Inc

an object that is in memory, the
operations of fetching a field and
storing a field must run fast. Both the
fetch and store operations specify an
object by giving its unique object
pointer. The translation from the ob-
ject pointer to the object’s location in
memory must be fast. The virtual
memory spends most of its time doing
this translation. A fixed cor-
respondence between object pointers
and locations in memory does not
work, since almost any combination
of objects may be in memory at the
same time. The translation from ob-
ject pointer to memory location must
be highly variable.

Once in a while, the interpreter at-
tempts access to an object that is not
in memory. The virtual memory must
detect the attempt, find the object on
the disk, and bring it into memory.
This process is called an object fault.
Sometimes other objects must first be
removed from memory to make room
for the incoming object. In order to
find an object on the disk, there must

Object Pointer

be a correspondence between an ob-
ject pointer and that object’s location
on the disk. The data needed to hold
this correspondence must be com-
pactly represented, as there may be
many objects in the system.

OOZE

In 1975 and 1976, Dan Ingalls and I
designed and built a virtual memory
to support the Smalltalk-74 system,
called OOZE (Object-Oriented
Zoned Environment). It then became
the foundation for the Smalltalk-76
system (reference 3). The combina-
tion was very successful, and many
interesting projects have been built in
it. OOZE serves as an excellent il-
lustration of a usable object-oriented
virtual memory implemented entirely
in software. At the end of this article,
we discuss possible modifications of
OOZE for the Smalltalk-80 system.

For OOZE to play the game of vir-
tual memory well, we had to design it
to fit the rules. Economics (of our
existing hardware) dictated the size of

(e Bip..]
( '
\ .
-
7 \
Object A
: [ e T S
Field 0 B
S
Field 1 C
Field 2 D

|
Object D

Field 0 | 01001111010
Field 1 | 100110110010
Field 2 | 01111010110

(Object D contains
raw bits instead of
object pointers)

Field 0
Field 1

Field 3 E

Disk Address
of object C

Figure 3: Objects and object pointers (as seen by casual observers). The “magic” is the
unspecified process of translating the value of the object pointer to the actual address at

which the object is stored.



main memory, the size of the disk,
and the ratio of their speeds. The
rules also included the things that the
Smalltalk interpreter expected objects
to do. We considered these and decid-
ed that in OOZE an object pointer
would be 16 bits long, to fit into a
machine word. We wanted every
combination of 16 bits to be a legal
object pointer, giving a total of 64 K
objects. With a mean object size of 10
to 20 words, this was a good match to
the size of our disk. To guarantee
good performance during a fault on
an object, we specified that any ob-
ject can be brought into memory by
reading, at most, one place on the
disk. We did not allow one disk read
to look up the disk address and
another disk read to get the actual ob-
ject. »

The design of OOZE centers
around the handling of the two im-
portant object pointer translations.
Finding an object’s location in
memory from its object pointer must
be fast. This mapping must also be
flexible, since the exact combination
of objects in memory changes from
moment to moment. The correspon-
dence between object pointer and
memory location is a large hash table,
called the Resident Object Table
(ROT). Of the 64 K objects on the
disk, perhaps 4000 are in memory at
once. Each of these has an entry in the
ROT. To find the location of an ob-
ject, the hash routine uses the object
pointer to compute where to look in
the ROT. If it finds an entry whose
object pointer matches, that entry
also contains the memory address of
the object (see figure 4). If the hash
routine finds no match in the few en-
tries it searches, the object is not in
memory. The magic puffs of smoke in
figure 3 depict the act of hashing an
object pointer into the ROT to find its
memory address.

OOZE must maintain the ROT.
When an object is brought in from the
disk, OOZE hashes its object pointer
and looks in the ROT. When it finds
an empty entry among the few
possibilities, it claims that entry for
the new object. Conversely, when an
object is removed from memory and
put back on the disk, its entry in the

ROT (Resident Object Table)

Object Pointer fields of
the object
[ 35 sartony] in memory

Found the entry

memory address

( ~=No, did not find the
entry. The Object is
not in core.

The ROT holds 4000 of the 64K
possible Object Pointers.

Insert an Object Pointer

L Delete an Object Pointer These operations must not move the

ROT entries of too many other objects.
Change the memory oddress

of on Object

Figure 4: Hashing an object pointer in the Resident Object Table (ROT).

for this Object Pointer.

ATTENTION GOVERNMENT D P
USERS AND PURCHASERS

We represent many fine micro products and manufacturers
on the U.S. Government’s GSA Schedule, including

Apple, Cromemco, Micropolis

and Seequa Computers
Purchasing from the Schedule will save you the time
consumed by the bid process. Products shipped throughout
the United States and world-wide. Visit or write any of our
stores for more information or to receive our catalogue of
products represented.

(NN N N NN NN NN
the dependable store

257 West Street, Annapolis, MD 21401 — (301) 268-6505
13A Allegheny Avenue, Towson, MD 21204 — (301) 296-0520
9330 Georgia Avenue, Silver Spring, MD 20910 — (301) 588-3748
6671 Backlick Road, Springfield, VA 22150 — (703) 644-5500
Plaza 38, 2442 Route 38, Cherry Hill, NJ 08002 — (609) 779-0023
Callers outside metropolitan areas served by our stores

Please call (301) 268-5801 -

Career Opportunities Available * An Equal Opportunity Employer

Circle 81 on inquiry card. August 1981 © BYTE Publications Inc

383



ROT is marked empty. Sometimes an
object moves in memory, and its
memory address in its ROT entry
must be updated (as referred to in
figure 4).

Hashing object pointers into the
ROT to find memory addresses is the
highest bandwidth operation in
OOZE. If hashing were supported by
special-purpose hardware, the
hashing operation would not con-
sume much time. (Many machines
provide similar hardware support for
paging.) In our implementations of
the Smalltalk-76 system, the best we
were able to do was to write the ROT
hashing algorithm in microcode. In
spite of this, OOZE spends a large
fraction of its time hashing into the
ROT. Any hash that can be avoided
saves time. We modified the
Smalltalk interpreter to remember the
memory addresses of certain fre-
quently used objects. During the
straight-line execution of a Smalltalk
method, the interpreter holds the
memory address of the currently ex-
ecuting method, the receiver, and the

object on the top of the stack.
Smalltalk spends significantly less
time in OOZE when hashes of these
frequently used objects are cir-
cumvented.

Hashing into the ROT is optimized
in yet another way. As mentioned
before, the hash routine uses the ob-
ject pointer to compute a series of
places to search in the ROT. The
entries examined form a chain, with
different object pointers having dif-
ferent chains. These chains crisscross
throughout the ROT. An entry on
one chain is many times filled by an
object pointer from a different chain
that also uses this entry. The hash
routine is searching for an entry that
matches a certain object pointer. The
search will succeed faster if the chain
has all its own entries at the beginning
and all other chains’ entries at the
end. The algorithm for deleting an
entry from the ROT provides this op-
timization. After deleting the proper
entry, it shuffles the remaining entries
and moves them forward in their
chains. Because of this strategy, the

DIVISION OF MARK GORDON ASSOCIATES, INC.
P.O. Box 77, Charlestown, MA 02129 (617) 491-7505

° COMPUTERS OPERATING SYSTEMS
Atari 800 W 16K 799.00 NEWDOS by APPARAT INC 49.00
4K Model Il 599.00 NEWDOS+ by APPARAT INC 99.00
Model Il 64K System 3499.00 MMS FORTH DISKETTE PRIMER 79.95
16K Model I1 879.00 NEWDOS 80 lgg 08
DISK DRIVES VI0S 0
40 Track 5% inch drive 314.00 BUSINESS SOFTWARE FOR TRS-80, APPLE AND ATARI
80 Track 5' 44.00 | Free enhancements and upgrades to registered owners for the cost of media
4 Disk Drive Cable 39.00 and mailing.-30 day free telephone support. User reference on request
Lobo w/controller Callforprice | Fully Interactive Accounting Package. Genersl Ledger. Accounts Payable
Lobo w/o controller Call for price Accounts Receivable and Payroll Report Generating
PRINTERS Complete Package (requires 3 or 4 dnves) 475.00
MX Call for pric Individual Modules (requires 2 or 3 drives) 125.00
EDS"" Mx?g Galforbace | inventory Il (requires 2 or 3 drives) 99.00
Crita Microling 80 AL 66 | Mailing List Name & Address Il (requires 2 drives) 129.00
oD 69900 | Intelligent Terminal System ST-80 Ii| 159.00
Okidata Microline The Electric Pencil from Michael Shrayer 150.00
Okidata Microline 83 989.00
File Management System 49.00
NEC 5510 w-tractor 2679.00 | 5580 59.00
Diablo 630 2495.00 | |'jK Letter Perfect (Atari, Apple) 139.00
MISC HARDWARE DB Master (Apple) 169.00
Expansion int TRS-80(0k). ... 269.00 | Disk Business Software available for Model Il Call for price
Novation D-Cat Mode?5 o 16656008
16K Memory Kit (2/ )
Leedex Monitor 149.00 FINE PRINT
Leedex 100G 169.00 | TRS-80 i1s a Tandy Corporation trademark. Use of above operating systems
Leedex Color Monitor 399.00 | may require the use of Radio Shack TRS-DOS. Radio Shack equipment
Printer Cable for above 49.00 | subjectto the will and whim of Radio Shack
1SO-2 Isolator 54.00
et S ORDERING INFORMATION
gamcg,d 169.00 | We accept Visa and Mastercharge. We will ship C.O.D.. certified check, or
Videx 80 COL BOARD 289.00 | money order only. There will be a 40 percent deposit required on all C.O.0
Videx KBD Enhancer 109.00 | orders over $300.00. Massachusetts residents add 5 percent sales tax. Stock
DC Hayes Micro Modem II 319.00 to three weeks for delivery
CCS and SSM Interface ™ ¥ &
Cards Call for price )( #710 3.20 7693 @
STORAGE MEDIA For information call 617-491-7505 —
Scotch-bobd0.8% 27.00 To order, call toll-free 1-800-343-5206 =2
m:gg'g’,‘;,?:sg gos; o 1 zg 8g The Company cannot be liable for pictorial or typographic inaccuracies.
Verbatim 5%z 25.00 The above prices do not include shipping.

384  August 1981 © BYTE Publications Inc

Circle 148 on inquiry card.

average number of entries examined
to find an object in memory is only
1.8. Typically, the resident object
table is 80 percent full.

Finding an Object on the Disk

The translation from an object
pointer to the disk address of the ob-
ject is also important. Since a list of
the disk addresses of all 64 K objects
would easily fill up main memory,
OOZE must use a trick. Instead of
object pointers being assigned ran-
domly to objects, information is en-
coded in each object pointer. This is
done by dividing the set of object
pointers into pseudoclasses. The bits
in the upper part of the pointer in-
dicate to which pseudoclass that ob-
ject belongs. All objects in a pseudo-
class have the same Smalltalk class
and have the same length. The
Pseudoclass Map is a table that is in-
dexed with the pseudoclass number.
There OOZE finds the length of the
object and its class (see figure 5). A
single Smalltalk class may own as
many pseudoclasses as it needs to
cover all of its instances. Classes
whose instances may have indexable
variables, such as class String, own a
different pseudoclass for each length
or range of lengths. The pseudoclass
encoding saves space because each
object does not use a word to hold its
class or a word to hold its length. Ob-
jects in memory in OOZE are actually
two words shorter than objects in the
Smalltalk-80 system.

The disk address of an object is also
found by using its pseudoclass. All
objects in a pseudoclass are the same
length, and they are stored con-
secutively on the disk. By knowing
which object we want within the
pseudoclass, we can compute its off-
set from the beginning of the
pseudoclass. If we know the starting
disk address of the pseudoclass, we
can add the offset and find the object.
The Pseudoclass Map contains the
starting disk address of the object’s
pseudoclass (see figure 5). The low
bits of the object’s pointer tell which
object it is within the pseudoclass.
This encoding allows the disk ad-
dresses of all 64 K objects to be
stored in 512 words of memory.



(There are actually two additional
levels of translation for the disk ad-
dress. Tables for these take another
740 words).

By using the Pseudoclass Map,
OOZE can find the disk address of
any object from its object pointer. If
it is in memory, OOZE also finds the
object from its object pointer. Thus
the same object pointer serves to
identify and find an object, no matter
where the object is. Because moving
an object between disk and memory
does not change its pointer, fields that
point to the object need not change
when the object moves. A field
always contains the object pointer of
the object to which it refers,
regardless of the field’s location and
regardless of the object’s location.

Storage Management

The management of the swapping
space has several aspects. Objects are
created and destroyed by Smalltalk
upon request, and they are also
moved in and out of memory. Each of
these actions causes insertion or dele-
tion in the ROT and allocation or
deallocation in memory. Consider a

Object Pointer

SRR, S gn iy,

Pseudoclass Map

class that wants to create a new in-
stance: the new instance must receive
an object pointer whose pseudoclass
is already owned by that class. For
this reason, we treat free instances of
a class as legitimate objects. They
“belong to the class” and can be
swapped to and from the disk just like
normal instances. Each class keeps a
linked list of free instances. The class
thinks that there are an infinite
number of free instances on the disk,
waiting to be swapped in. To create a
new instance, the class merely pulls
the first object off its “free list.” If that
object is not in memory, a fault
brings it in from the disk. When a free
list on the disk runs out, OOZE con-
structs new free instances on the disk
as they are requested.

We have reduced the problem of
managing memory and the ROT to
the problem of swapping. Main
memory has some free blocks be-
tween the areas being used for ob-
jects. These free blocks are linked
together on free lists according to
their size. The ROT also contains
unused entries, which are marked as
such. During an object fault, OOZE

instance number within
a pseudoclass (0-127)

pseudoclass
number

length

class disk address

Disk Address of this Object =

Disk Address of start of this Pseudoclass +

(length of an instance =

instance number ).

Figure 5: Information encoded in an object pointer.

Circle 346 on inquiry card.

DATA
COMMUNICATIONS

Apple ® TRS-80 ¢ S-100
Alpha-Micro ¢ CP/M and
many others

Finally, you can talk with the big
boys (or another mini/micro)
by using our data communi-
cations products:

SACP
Stand-Alone
Communications Processor

This unit is a self-contained
front-end data communications
processor. The size of a
MODEM, it interfaces to your
mini/micro system through any
available RS-232 port and
manages the communications
line independently.

SACP-100
S$-100 Stand-Alone
Communications Processor

Similar to the SACP described
above, this unit can be inserted
into an open S-100 slot on your
system. It performs all of the
functions of the SACP and,
additionally, supports CPU to
CPU data transfer through the
use of a special I/O ports.

ZSI10-100
S$-100 Data
Communications Board

A four port RS-232 Serial 1/0
and Real Time Clock board that
establishes an interface to the
powerful Zilog SIO chips.
Maximum system throughputis
achieved by utilizing the
interrupt facilities of the Zilog
ZS10/2 and CTC LSI chips.

Available Protocols

2780 © 3780 ® HASP e JES1
JES2 e VMRSCS e 3275 Emulation
3271/3277 Emulation

Trademarks: CP/M by Digital Research
VISA and Master Charge accepted
Dealer inquiries invited

Sierra Data Sciences
1300 East Shaw, Suite 164

Fresno, California 93710
(209) 224-0520

August 1981 © BYTE Publications Inc 385




Circle of possible
Object Pointers

touched

When the Smalitalk
interpreter accesses an
object, it.is marked “touched"

Untouched
this round means "old"

Touched
means “young"

s /
Purged Sweep

« It sends "old" objects to the disk.
« It makes "young" objects into old.

Figure 6: The order in which objects are purged from main memory.

claims a free ROT entry and a proper-
sized block of memory for the incom-
ing object. Occasionally, OOZE can-
not find a legal ROT entry or a free
block of memory that is large
enough. The fault routine stops, and
OOZE starts purging objects from
memory by copying them to their
proper places on the disk. It then frees
the memory space and ROT entries of
the objects it throws out. When the
purge routine finishes, the fault
routine resumes its work.

The purge routine must decide
which objects to throw out of
memory. To play the game of virtual
memory perfectly, OOZE should
keep the objects which will be used
soon and throw out those which will
not. Since OOZE cannot see into the
future, it throws out the least recently
used objects. Objects that have been
active recently are kept, and inactive
ones are tossed out. The purge
routine examines objects in memory
in an order determined by their object
pointers. Consider the space of all ob-
ject pointers to be a circle. The purge
routine tours the circle, keeping ob-
jects that have been accessed since the
last time around. Objects that have
remained unaccessed since the routine
last visited them are purged to the
disk (see figure 6). Typically, it takes
several calls on the purge routine to
complete a tour of the circle of object
pointers.

386  August 1981 © BYTE Publications Inc

Purging objects in order of their
object pointers has a very important
side effect. Since all objects in a
pseudoclass are consecutive on the
disk, purge sends out the objects it is
purging in the same order that they
appear on the disk. This minimizes
the movement of the disk head and
saves time.

Objects that have not been changed
since they came in from the disk do
not have to be rewritten. They are
correct as they stand on the disk. A
single bit in each object in memory
tells if it is “dirty” (ie: if it has been
changed since it was copied to
memory). If an object about to be
purged is not dirty, we do not rewrite
it on the disk and thus save time. This
savings can be enhanced by purging
in the background. Normally the
purge routine runs in response to an
immediate demand for space in
memory. A special version of the
routine runs when Smalltalk is idle
and looks ahead in the circle of object
pointers. It writes dirty objects to the
disk and marks them as being
“clean.” A subsequent demand call on
the purge routine will run quickly
because many of the objects it wants
to throw out are already written on
the disk.

After each round of purging, the
degree of fragmentation of memory is
tested. If there are too many small
blocks and no big ones, we perform a

compaction. All objects are moved to
one end of memory and all free
blocks are merged into a single block
at the other end. Memory addresses
are updated in the ROT entries of the
objects that have moved. OOZE per-
forms this operation without using
additional storage in order to keep a
list of which objects have moved to
which place in memory.

As a storage manager, OOZE must
detect when an object is no longer
being used. Like the storage manager
mentioned in Krasner’s article, OOZE
uses reference counting. When the
reference count of an object goes to
zero, its object pointer is not in any
field of any other object. At this
point, it is impossible for that object
ever to be accessed by the interpreter.
OQZE, therefore, puts the object on
its class’s free list. Before doing so,
however, it decreases the reference
count of the object pointed to by each
field of this object. In the process,
more counts may go to zero, and
more objects may get freed. To save
space, reference counts are only four
bits wide. The few objects with fifteen
or more fields pointing at them are
noted in a separate overflow
reference count table.

Performance

An average Smalltalk-76 system
with OOZE contains 40,000 objects
and occupies one megabyte of disk
space. In main memory, the system
uses 96 K words, including 8 K
words for the ROT and 40 K words
for the objects that are currently
swapped in. (We sometimes run with
only 64 K words of memory.) On the
Alto computer (see reference 1), we
implement hashing into the ROT and
the allocation of common objects in
microcode. Performance is equivalent
to a paging system with several times
the swapping space. The OOZE vir-
tual memory has allowed the Small-
talk-76 system to grow from an ex-
periment into a system for building
large and serious applications.

OOZE was designed in 1975.
Several rules of the virtual memory
game have changed since then. Here
are some ways in which OOZE shows
its age at Xerox PARC:



eUsers can afford more disk and
more memory. They want to build
systems that contain more than 64 K
objects. OOZE cannot be easily ex-
panded beyond this limit.

e Several extensions to the Smalltalk
language encourage the user to create
lots of classes. OOZE has a limit of
245 classes, and many serious users
have encountered this limit.

Naturally, our minds have turned to
building a virtual memory for the
Smalltalk-80 system with even better
performance than OOZE. In 1980, a
group of us at Xerox PARC designed
just such a system, the Large Object-
Oriented Memory (LOOM). In-
dividual objects in LOOM carry
slightly more overhead than objects
in OOZE. (Since users can afford
more memory, this is not a problem.)
Besides allowing a much larger vir-
tual space and unlimited classes,
LOOM provides some new proper-
ties:

o LOOM accesses objects that are in
memory simply by indexing a table,
as does the resident Smalltalk-80
system. LOOM thus saves the time
that OOZE spends hashing into the
ROT whenever it wants a memory
address. During the table lookup
which finds an object’s memory ad-
dress, LOOM tests for the case when
the object is not actually in memory.
To run faster than a hash in OOZE,
the test must be very simple and fast.
¢ LOOM is designed with the idea in
mind of grouping objects on the disk.
If objects that are faulted on together
can be arranged into groups on the
disk, the system will run faster.
LOOM will be a test bed for schemes
that optimize the organization of ob-
jects on the disk.

Conclusion

The goal of the virtual memory
game is to make a mixture of fast and
slow memory perform almost as well
as if it were all fast memory. The
strategy is to guess what information
the processor will need soon and
move it to fast memory. In an object-
oriented language such as Smalltalk,
the object is an excellent unit for

locality of reference. Once an object
is accessed, it will most likely be ac-
cessed again soon. Recently used ob-
jects have a similar degree of locality
to recently used pages, and many
more objects than pages fit into a
given amount of fast memory.

OQZE is the first representative of
the new category of object-oriented
virtual memories. These systems use
a construct in the high-level language,
the object, as the unit of swapping.
Objects as small as one field in length
are swapped individually by the same
mechanism used for large strings and
arrays. To be a member of this
category, a virtual memory must also
have automatic control of swapping
and automatic creation and freeing of
objects. While OOZE is implemented
in software, we believe that future
systems will be implemented like
languages: hardware assist for a few
high-bandwidth operations, some
microcode, and support code in
machine- or high-level language. We
expect that mature object-oriented
virtual memories will identify groups
of objects that are used together and
swap them as a unit.

As the virtual memory which sup-
ports the Smalltalk-76 system, OOZE
is interesting in itself. It provides the
ability to address 2" objects with
N-bit pointers. Only currently active
objects occupy memory, and they are
packed end to end. This provides ex-
ceedingly good use of memory.
Because the class and length of an ob-
ject are encoded in the object pointer,
that information does not occupy
space with each object in memory.
Movement of the disk head is reduced
because objects are purged to the disk
in the order of their disk addresses.
OOZE is implemented in software
without any special hardware sup-
port. It runs in an amazingly
sprightly fashion and performs as
well as paging systems with several
times the swapping space.

The fact that Smalltalk uses objects
consistently and completely allows its
virtual memory to be radical in
design. Object-oriented virtual
memories get their power from a
close coupling with the high-level
languages they serve. The success of

OOZE and the changing rules of the
virtual memory game have inspired
the design of LOOM, a larger and
more efficient object-oriented virtual
memory.

References

1. Bell, C G and Alan Newell. Computer
Structures: Readings and Examples, New
York: McGraw-Hill, 2nd edition, 1980.

2. Denning, P J. “Virtual Memory,"” Com-
puting Surveys, Volume 2, Number 3,
September 1970, page 153.

3. Ingalls, Daniel H H. “‘The Smalltalk-76 Pro-
gramming System: Design and Implemen-
tation," Conference Record, Fifth Annual
ACM Symposium on Principles of Pro-
gramming Languages, 1978.

4. Shaw, Alan C. The Logical Design of
Operating Systems, Englewood Cliffs NJ:
Prentice-Hall, 1974.

5. Wulf, W A, et al. HYDRA/C.mmp, New
York: McGraw-Hill, 1981, Chapter 11.

Is two
years too
much to

ask foran
L]
€experience
that lasts
[ ] L]
a lifetime?
Americans from every background
working together with people around
the world to meet their basic human
needs—that’s what the Peace Corps is all
about.
It isn’t easy, and it’s not for everyone.
For an experience you'll never forget,

call toll free 800-424-8580. Or write
Peace Corps, Washington, D.C. 20525.

Peace Corps
The toughest job
you'll ever love.

A
@ A Public Service of This Magazine
& The Advertising Council

August 1981 © BYTE Publications Inc 387



