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Objects communicate through messages

aReceiver method: args

1. The message #method: 
is sent to aReceiver

Pharo’s VM

2. Executes #method: 
into the object 
aReceiver
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Message-
passing



Message-passing control

aReceiver method: args

1. The message #method: 
is sent to aReceiver

Pharo’s VM

3. Executes #method: 
into the object 
aReceiver

The message is captured

#beforeAction

#afterAction

2. A user-defined 
action is executed 
before the method’s 
execution

4. An action is 
executed after the 
execution
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Safe Message-Passing Control

• Meta-safe recursion


• Thread safety


• Safe handling of exceptions and non-local returns


• Uninstrumentation
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Meta-safe recursion

The library should provide a meta-safe recursion prevention to manage 
recursions originating from within the instrumented code.
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Thread safety

It manage meta-executions in a thread-specific manner. It should ensure that 
meta-executions are marked uniquely for each thread.
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Handling of exceptions and non-local returns

It must ensure that the afterMethod executes under all circumstances, 
whether an exception or a non-local return occurs.
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Uninstrumentation

It must uninstrument all the methods that were instrumented, restoring them 
to their original state.
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Current Message-Passing Control Techniques

• Source code modification


• run:with:in method hook
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Source Code Modification
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Source Code Modification
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Source Code Modification
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Meta checking + 
before action



Source Code Modification
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Original code



Source Code Modification
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Meta checking 
+ After action



run:with:in
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• During the lookup, if the VM does not find an instance of a CompiledMethod, 
it sends the message #run:with:in to the located method object.


• The run:with:in: technique replaces a compiled method instance with a 
ProxyObject understanding a run:with:in: message



run:with:in
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Meta checking + 
before action



run:with:in
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Original code



run:with:in
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Meta checking 
+ After action



MethodProxies
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MethodProxies
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Trap Method
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Trap Method
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Trap Method
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Trap Method
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Experimental Setup

• RQ1 - Instrumentation and uninstrumentation overhead


• RQ2 - Execution overhead
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• We define as a benchmark the execution of a project’s test suites.

Projects under analysis

Project’s name Description # methods # tests

Compression It provides compression and 
decompressing utilities. 387 29

File System 
Manager Pharo’s file system manager. 1426 450

Microdown A markup language based on 
Markdown. 1041 472

AST Pharo’s abstract syntax tree (AST) 
representation. 1591 641
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Analysis Tools Under Study

• Method call graph


• Method coverage


• No-action instrumentation
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Techniques Under Analysis

• MethodProxies


• #run:with:in


• Source code modification
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Benchmark Metrics

• Overhead time 

 

• Instrumentation overhead 

 

• Uninstrumentation overhead 

Overhead = I / NI

Instrumentation Overhead = insTime / lowInsTime

Uninstrumentation Overhead = uninsTime / lowUninsTime
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RQ1 Instrumentation Overhead
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Best time for 
all cases



RQ1 Instrumentation Overhead
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Worst time for 
all cases



RQ1 Instrumentation Overhead
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Close to 
#run:with:in



RQ1 Uninstrumentation Overhead
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RQ1 Conclusion

• Instrumentation 

• MethodProxies incurs an instrumentation overhead ranging from 1.16 to 
2.38 × compared to the fastest time of run:with:in:


• It is significantly faster than the source code modification technique.


• Uninstrumentation 

• There are no big differences among all the techniques
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RQ2 Execution Overhead
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Fastest in all 
cases



RQ2 Execution Overhead
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RQ2 Conclusion

• Among all benchmarks and analysis tools, MethodProxies has the lowest 
execution overhead
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More in the paper!

• More implementation details


• Detailed research questions


• Discussion and threats to 
validity
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MethodProxies: a Safe and Fast Library

• MethodProxies is safe and fast


• MethodProxies has the lowest execution overhead 

• It allows to instrument any method on the system


• We use it on several tools and applications to make the instrumentation

github.com/pharo-contributions/MethodProxies
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