
IWST ’24, July 2024, Lille, France

MethodProxies: A Safe and Fast
Message-Passing Control Library

Sebastian JORDAN MONTAÑO (1), Juan Pablo SANDOVAL ALCOCER (2), Guillermo
POLITO (1), Stéphane DUCASSE (1), Pablo TESONE (1,3)

1. Inria, Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL

EvreffervE

sebastian.jordan@inria.fr

2. Department of Computer Science, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
3. Pharo Consortium

Objects communicate through messages

aReceiver method: args

1. The message #method:
is sent to aReceiver

Pharo’s VM

2. Executes #method:
into the object
aReceiver

2

Message-
passing

Message-passing control

aReceiver method: args

1. The message #method:
is sent to aReceiver

Pharo’s VM

3. Executes #method:
into the object
aReceiver

The message is captured

#beforeAction

#afterAction

2. A user-defined
action is executed
before the method’s
execution

4. An action is
executed after the
execution

3

Safe Message-Passing Control

• Meta-safe recursion

• Thread safety

• Safe handling of exceptions and non-local returns

• Uninstrumentation

4

Meta-safe recursion

The library should provide a meta-safe recursion prevention to manage
recursions originating from within the instrumented code.

5

Thread safety

It manage meta-executions in a thread-specific manner. It should ensure that
meta-executions are marked uniquely for each thread.

6

Handling of exceptions and non-local returns

It must ensure that the afterMethod executes under all circumstances,
whether an exception or a non-local return occurs.

7

Uninstrumentation

It must uninstrument all the methods that were instrumented, restoring them
to their original state.

8

Current Message-Passing Control Techniques

• Source code modification

• run:with:in method hook

9

Source Code Modification

10

Source Code Modification

11

Source Code Modification

12

Meta checking +
before action

Source Code Modification

13

Original code

Source Code Modification

14

Meta checking
+ After action

run:with:in

15

• During the lookup, if the VM does not find an instance of a CompiledMethod,
it sends the message #run:with:in to the located method object.

• The run:with:in: technique replaces a compiled method instance with a
ProxyObject understanding a run:with:in: message

run:with:in

16

Meta checking +
before action

run:with:in

17

Original code

run:with:in

18

Meta checking
+ After action

MethodProxies

19

MethodProxies

20

Trap Method

21

Trap Method

22

Trap Method

23

Trap Method

24

Experimental Setup

• RQ1 - Instrumentation and uninstrumentation overhead

• RQ2 - Execution overhead

25

• We define as a benchmark the execution of a project’s test suites.

Projects under analysis

Project’s name Description # methods # tests

Compression It provides compression and
decompressing utilities. 387 29

File System
Manager Pharo’s file system manager. 1426 450

Microdown A markup language based on
Markdown. 1041 472

AST Pharo’s abstract syntax tree (AST)
representation. 1591 641

26

Analysis Tools Under Study

• Method call graph

• Method coverage

• No-action instrumentation

27

Techniques Under Analysis

• MethodProxies

• #run:with:in

• Source code modification

28

Benchmark Metrics

• Overhead time

• Instrumentation overhead

• Uninstrumentation overhead

Overhead = I / NI

Instrumentation Overhead = insTime / lowInsTime

Uninstrumentation Overhead = uninsTime / lowUninsTime

29

RQ1 Instrumentation Overhead

30

Best time for
all cases

RQ1 Instrumentation Overhead

31

Worst time for
all cases

RQ1 Instrumentation Overhead

32

Close to
#run:with:in

RQ1 Uninstrumentation Overhead

33

RQ1 Conclusion

• Instrumentation

• MethodProxies incurs an instrumentation overhead ranging from 1.16 to
2.38 × compared to the fastest time of run:with:in:

• It is significantly faster than the source code modification technique.

• Uninstrumentation

• There are no big differences among all the techniques

34

RQ2 Execution Overhead

35

Fastest in all
cases

RQ2 Execution Overhead

36

RQ2 Conclusion

• Among all benchmarks and analysis tools, MethodProxies has the lowest
execution overhead

37

More in the paper!

• More implementation details

• Detailed research questions

• Discussion and threats to
validity

38

MethodProxies: a Safe and Fast Library

• MethodProxies is safe and fast

• MethodProxies has the lowest execution overhead

• It allows to instrument any method on the system

• We use it on several tools and applications to make the instrumentation

github.com/pharo-contributions/MethodProxies

sebastian.jordan@inria.fr
Sebastian JORDAN MONTAÑO

