gt4python
Working with Python inside Glamorous Toolkit

Veit Heller (veit.heller@feenk.com), svenvc (in spirit)

Agenda

1. Working with Python in GT
2. Inspecting and playing
3. Three case studies

Python Examples | > @] -

x
k = 2 *x 30 Python @ localhost:7056
> 2 -

+ =
import datetime Python @ localhost:7056
datetime.datetime. fromtimestamp(x)

| print("Where is this going?") Python @ localhost:7056

<an unnamed volatile knowledgebase>
T —

Python Examples I

hnport random
from collections import Counter
counter = Counter()

for i in range(100):
counter[random.randint(0, 10)] += 1

counter
> »i

R =

x
Python @ localhost:7056

-

<an unnamed volatile knowledgebase>

Python @ localhost:7056

Python Examples Il ~ 8 -
x

FilePath := FileLocator imageDirectory pathString

> ko F B 2 o "-

| print(filePath) Python @ localhost:7056

<an unnamed volatile knowledgebase>

Python Debugger

bbApplication := PBApplication new .
pbApplication settings serverDebugMode: true.
pbApplication start.

PBApplication uniquelnstance: pbApplication

> > 5 » e

+
def i_recurse(n):
if n % 10 == 0:
pbbreak()
i_recurse(n+l)

i_recurse(l)

pbApplication := PBApplication new .
pbApplication settings serverDebugMode: true.
pbApplication start.

PBApplication uniquelnstance: pbApplication

<an unnamed volatile knowledgebase>

->

Python @ localhost:7056

i i

PythonBridge custom views for pandas DataFrame
and Series

bne of the most well know Python librariesis pandas , a data analysis and manipulation tool.
+

The following Python source code file adds a number of remote Phlow views for the main DataFrame
and Series classes.

This page explains the fast way to get started, as a user of this feature. To learn more about the
internals, consult Adding gtViews to the existing Python pandas DataFrame and Series class

The file location is defined next, inspect it to see the contents.

pandasViews := Filelocator gtResource / 'feenkcom' / 'gtd4python' / 'data' /

'python' / 'view_pandas.py'

Given the path above, we can load the code programmatically into the global PBAppLlication
instance (which should already be running with pandas installed).

When necessary:

PBApplication 1isRunning ifFalse: [PBApplication start].
PBApplication uniquelInstance installModule: 'pandas'.

PBApplication do: [:application |
application newCommandStringFactory
script: pandasViews contents;
sendAndWait]

You can test the views by loading and inspecting a DataFrame from an example CSV file.

moviesCsvPath := FilelLocator gtResource / 'feenkcom' / 'gtoolkit-demos' /
'data' / '"imdb' / '"Movies.csv'

moviesCsvPathString := moviesCsvPath resolve pathString

import pandas
pandas.read_csv(moviesCsvPathString)

2 explicit references

Glamorous Toolkit Book

Python @ localhost:7056

Inspecting Python objects with custom inspectors

blamorous Toolkit works with other runtimes. For example, we can work with Python
PythonBridge . But what might be less obvious is that we can also extend the inspector using

Python.

i i

+

To exemplify how this works, let's consider exploring a movie collection defined in this CSV:

through

csvFile := (FileLocator gtResource / 'feenkcom' [/ 'gtoolkit-demos' [/ 'data' /
"imdb' / '"Movies.csv') fullName.

We load it with pandas, and to do that we first set up the Python runtime by installing the pandas
module. (NB: You might need to install £ pipenv first.)

PBApplication
PBApplication

isRunning ifFalse: [PBApplication start

uniquelnstance installModule:

'pandas’'.

Ok, now that's done. Next, we define views as extensions to the movie collection entities:

import pandas

from gtoolkit_

class Movie:

bridge import gtView

def __init__(self, series):
self.series = series

@gtView

def gtViewDescription(self, builder):

text

builder.textEditor ()

text.title("Description")
text.priority(30)
text.setString(str(self.series))
return text

@gtView

def gtViewDetails(self, builder):

clist

clist.
clist.
clist.
clist.
clist.
clist.

= builder.columnedList()

title("Details")

priority(20)

items(lambda: list(self.series.index))
column('Key', lambda each: each)

1.

Python @ localhost:7056

column('Value', lambda each: str(self.series[each]))
set_accessor(lambda each: self.series[each])
return clist

class MovieCollection:
def __init__(self, dataFrame):
self.df = dataFrame

def size(self):
return len(self.df.index)

def movieAtPosition(self, index):
return Movie(self.df.loc[index])

def directors(self):
= self.df["Directors"].astype(str).unique()
values.sort()

values

Glamorous Toolkit Book

Visualizing tokenization > B

x
bpenAI publishes [tiktoken, an open-source Python library that tokenizes input strings as it is done

internally for their product. This is useful for estimating costs as well as ensuring inputs stay within
certain limits (context windows etc.). gt4openai also relies on this library internally, for instance to
estimate the cost of a fine-tuning job.

+
To evaluate the result of tokenizing with various models, you can work directly with the tiktoken
library. But you can also work with a small wrapper we created that helps us visualize the results. To
this end, first install the gtoolkit_tiktokenize module:

PBApplication 1isRunning ifFalse: [PBApplication start].
PBApplication uniquelnstance installModule: 'gtoolkit_tiktokenize'

And then just execute the Python script:

import gtoolkit_tiktokenize Python @ localhost:7056

model = "gpt-4"

string = "<|im_start|>system<|im_sep|>You are a helpful assistant<|im_end|><|
im_start|>assistant<|im_sep|>How can I help you?<|im_end|><|im_start|>user<|
im_sep|>Can you add two and two for me?<|im_end|>"
gtoolkit_tiktokenize.tokenize(string, model)

The equivalent in Pharo code is as follows:

GtLImTokenizer new

tokenizeMessages: {GtLlmSystemMessage new content: 'You are a helpful
assistant’'.

GtLlmAssistantMessage new content: 'How can I help you?'.

GtLlmUserMessage new content: 'Can you add two and two for me?'}
usingModel: 'gpt-4'

1 explicit reference

gt4llm-lepiter

Vi
Exploring the execution of a Python LampSort ~ 8
algorithm

]This tutorial shows how to analyse Python code using GT's PythonBridge. In particular, we'll look at a
simple sorting algorithm and mold our tools to explain how the algorithm works.
+

Setup
First make sure GT's PythonBridge is up and running. Let's define a small list of random numbers.

import random Python @ localhost:7056
numbers = random.sample(range(100), 10)

The indicator in the Python snippet above should show an active Python connection.
We can now copy our tutorial files into the Py thonBridgeRuntime directory next to our GT image.

files := FileLocator gtResource / 'feenkcom' / 'gtd4python' / 'data' /
'python' childrenMatching: 'lampsortx.py'.

files do: [:each | each copyTo: PBPlatform current workingDirectory / each
basename].

PBPlatform current workingDirectory

#LampSort

Now we can open a view on the Python files inside into the * PythonBridgeRuntime" directory next to
our GT image which now contains our tutorial files. Let's look at " lampsort0.py" which is our orginal
version.

GtLSPPythonModel onDirectory: PBPlatform current workingDirectory

The above tool uses [LSP](https://en.wikipedia.org/wiki/Language_Server_Protocol). For optimal
usability during editing you should install [pyright](https://github.com/microsoft/pyright).

“LampSort" is an object that wraps a data list and sorts it in place. The LampSort algorithm is a non-
recursive implementation of [QuickSort](https://en.wikipedia.org/wiki/Quicksort).

It works by partitioning the list into intervals around a pivot, where the left interval contains elements
smaller than the pivot and the right interval elements larger than the pivot. Intervals are partitioned
further until they contain one element or are empty, in which case they are sorted by default.

The algorithm starts from a set containing one interval covering the whole list. It is done when this set
is empty. Range objects are used to represent intervals.

Let's make sure our implementation works.

import lampsorto Python @ localhost:7056
result = lampsort@.LampSort(numbers.copy()).sort()

assert result == sorted(numbers)

result

#Tracing
If you look carefully at the LampSort implementation you'll notice that there are method for each
individual step, with a meaningful name and with relevant arguments (the data list of elements is

never passed as an argument, it is an instance variable).

Glamorous Toolkit Book

Thank you!
Questions?

https://gtoolkit.com

