
How difficult is 
to get a JIT right?

Guillermo Polito - ESUG’24
guillermo.polito@inria.fr

EvreffervE

mailto:guillermo.polito@inria.fr

Quick About Me: Guille

2

EvreffervE

• Pronounced giʃe (guichet in FR, ~ghisheh in EN?)

• Now: Researcher at Inria - Lille

• Pharo Contributor since ~2010

• Keywords: compilers, testing, test generation

• Interests: tooling, benchmarking, 日本語, board games, batman, concurrency

If any of that interests you, come talk to me!

guillermo.polito@inria.fr

@guillep

mailto:guillermo.polito@inria.fr

Debugging Assembly Code

3

AARCH64X64IA32

Debugging Assembly Code
Without looking at it

4

AARCH64X64IA32

5

The Pharo VM

INTERPRETER JIT COMPILER

GARBAGE
COLLECTOR

Back

Front

FFI
Concurrency

…

INTERPRETER JIT COMPILER

GARBAGE
COLLECTOR

Back

Front

FFI
Concurrency

…

6

DRUID

Input Output
I am performed at VM

building time (AoT)

VM developers avoid to
write and maintain the
frontend of the JIT

compiler code
(language dependencies)

Context: Druid JIT compiler generation

7

DRUID

Input Output
I am performed at VM

building time (AoT)

VM developers avoid to
write and maintain the
frontend of the JIT

compiler code
(language dependencies)

Context: Druid JIT compiler generation

INTERPRETER JIT COMPILER

GARBAGE
COLLECTOR

Back

Front

FFI
Concurrency

…

JIT CompilerInterpreter

Druid by example: the addition primitive

8

A Couple of Months Ago

9

INTERPRETER

JIT COMPILER

223 bytecodes and 10 primitives

225 bytecodes and 130 primitives

46%

70%

10

INTERPRETER

JIT COMPILER

223 bytecodes and 10 primitives

225 bytecodes and 130 primitives

46%

70%

A Couple of Months Ago

Generated JIT-Compiler

11

Generated JIT-Compiler

12

…

Chameneos KNucleotide RegexDNA

Richards File Tests Kernel Tests

Opal Tests

Some Initial benchmarks

À la par with the interpreter

14

Chameneos KNucleotide RegexDNA

Richards File Tests Kernel Tests

Opal Tests

Slightly faster?

15

Chameneos KNucleotide RegexDNA

Richards File Tests Kernel Tests

Opal Tests

And much slower too!

16

Chameneos KNucleotide RegexDNA

Richards File Tests Kernel Tests

Opal Tests

Where does the time go?

17

Analysing Instruments Profiles

18

$	xctrace	export

Analyzing Samples

19

Sample 1

Sample 2

…

…

Sample N

Analyzing Samples

20

Sample 1

Sample 2

…

…

Sample N Stack Traces

Analyzing Samples

21

Sample 1

Sample 2

…

…

Sample N Stack Traces

Analyzing Samples

22

Sample 1

Sample 2

…

…

Sample N Stack Traces

Primitive from

Machine Code

Interpreter

Group Traces Using Heuristics

23

Sample 1

Sample 2

…

…

Sample N

JIT compilation

Interpreter

GC

Sample 1
Sample 7

Sample 2

Sample 18992

…

…

…

High-level VM Profile

• Time spent in

• Interpreter

• JIT compilation

• JIT compiled code

• GC

• Primitives

• …

24

Some Bench

Scenario 1: Cross-JIT Profiling

25

Hot Paths and Our Partial JIT Implementation

• Cogit is all or nothing compiler

• Hot path is not compiled!

26

Scenario 2: Cross-Version Profiling

27

Differential Profiling + Absolute Values

28

Stock Druid Interpreter Stock Druid Interpreter

Differential Profiling + Absolute Values

29

Worse Quality MC

Stock Druid Interpreter Stock Druid Interpreter

Differential Profiling

30

More time in Primitives

Stock Druid Interpreter Stock Druid Interpreter

Drill-down in MC -> Primitives

31

Sample 1

Sample 2

…

…

Sample N Stack Traces Primitives!
Primitive Samples

Differential MC->Primitive Profiling

32

Differential MC->Primitive Profiling

33

Low-hanging fruits

• 2x faster! 
than interpreter on avg

• Almost there:

• ~0.7x manual JIT

• Missing

• static type predictions

• peephole optimizations on conditionals

After Some Bit of “well-placed” Work :)

34

What’s next?
• Linux integration:

• Perf support

• Matéo Boury

• Tracking Pharo’s performance:

• Performance dashboards

• Benchmark Generation

• daily, monthly, yearly

35

Takeaways

• Integrate with tools that do their job well (Instruments, Perf)

• Simple custom tools help debugging complex VM scenarios

• Tests first for good behavior

• Bench first for good performance!

36

