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Quick About Me: Guille
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EvreffervE

• Pronounced giʃe (guichet in FR, ~ghisheh in EN?)


• Now: Researcher at Inria - Lille 

• Pharo Contributor since ~2010


• Keywords: compilers, testing, test generation


• Interests: tooling, benchmarking, 日本語, board games, batman, concurrency


If any of that interests you, come talk to me!

guillermo.polito@inria.fr

@guillep
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Debugging Assembly Code
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Debugging Assembly Code
Without looking at it
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The Pharo VM
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JIT CompilerInterpreter

Druid by example: the addition primitive
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A Couple of Months Ago
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Generated JIT-Compiler
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Generated JIT-Compiler
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Chameneos KNucleotide RegexDNA

Richards File Tests Kernel Tests

Opal Tests

Some Initial benchmarks



À la par with the interpreter
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Slightly faster?
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And much slower too!
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Where does the time go?
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Analysing Instruments Profiles
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Analyzing Samples
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Analyzing Samples
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Group Traces Using Heuristics
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High-level VM Profile

• Time spent in


• Interpreter


• JIT compilation


• JIT compiled code


• GC


• Primitives


• …
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Some Bench



Scenario 1: Cross-JIT Profiling
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Hot Paths and Our Partial JIT Implementation

• Cogit is all or nothing compiler 

• Hot path is not compiled!
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Scenario 2: Cross-Version Profiling
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Differential Profiling + Absolute Values
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Differential Profiling + Absolute Values
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Differential Profiling
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More time in Primitives
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Drill-down in MC -> Primitives
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Sample 2
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Sample N Stack Traces Primitives!
Primitive Samples



Differential MC->Primitive Profiling
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Differential MC->Primitive Profiling
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Low-hanging fruits



• 2x faster! 
than interpreter on avg


• Almost there:


• ~0.7x manual JIT


• Missing


• static type predictions


• peephole optimizations on conditionals

After Some Bit of “well-placed” Work :)
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What’s next?
• Linux integration: 

• Perf support


• Matéo Boury


• Tracking Pharo’s performance:


• Performance dashboards


• Benchmark Generation


• daily, monthly, yearly
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Takeaways

• Integrate with tools that do their job well (Instruments, Perf)


• Simple custom tools help debugging complex VM scenarios


• Tests first for good behavior


• Bench first for good performance!
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