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Phausto: 
The sound within Pharo
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What is Phausto?
• Phausto is a multi-platform library and API  that enables the programming 

Digital Signal Processors (DSPs) and sound generation in Pharo

• The audio is generated through FFI calls to a dynamic engine that computes 
audio signal by leveraging the power on an embedded  FAUST compiler and 
feeds the buffer of a PortAudio callback

• Phausto has been developed with three main goals:

1. To enrich Pharo applications with sound;

2. To allow sound artists and musician to program synthesisers and effects and compose 

music with Pharo;

3. To teach DSP programming to beginners and offer a fast prototyping platform for 

musician and audio developers
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Why Faust?
• FAUST is a a functional programming language for sound synthesis and audio 

processing created at the GRAME-CNCM Research Department in Lyon. 

• FAUST is considered the state of the art in the research and development of the 
implementation of time-domain algorithms the can be represented as block 
diagrams, such as virtual analog synthesisers, filters, waveguide physical models 
and reverbs

• FAUST standard libraries offers a ready to use extensive collection of sound 
generators, physical models, DSP helper functions and effects, all resulting from 
cutting edge audio research supported by a large community 
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The unit generators
• Unit Generators (UGens) are basic building blocks for signal processing 

algorithms first developed by Max Matthews and John E.Muller for the Music III 
program n 1960.

• Phausto organizes and implement the functions and the semantics of FAUST 
standard library into Unit Generators subclasses deeply inspired by the ChucK 
programming language.

• Unit Generators include oscillators, filters, physical models, envelopes and 
effects such as delays, reverbs and flangers.
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INSTALL PHAUSTO

Metacello new

    baseline: 'Phausto';

    repository: 'github://lucretiomsp/phausto:main';

    load

• First, download the packed faustLibraries for your platform, open the package, 
and copy of the librariesBundle folder into documents/Pharo/images/
yourPhaustimage
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MODULAR Dsp programming

• Phausto offers an approach to develop and design synthesisers and effect that is inspired by 
modular synthesiser patching. 

• Digital signal processing (DSP) is the use of digital processing, to perform a wide variety of signal 
processing operations  focused on analyzing, modifying and synthesizing signals, such 
as sound, images, potential fields, seismic signals.

Oscillator Envelope Filter Reverb

Output

• dsp := SineOsc new => ADSREnv new =>  ResonLp new =>  SatRev new.

• In Phausto, we connect Unit Generator setting their 
members value or  using  the ChucK operator => .

https://en.wikipedia.org/wiki/Digital_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Scalar_potential
https://en.wikipedia.org/wiki/Seismic_tomography
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Hello phausto
"create a Sine wave Oscillator"

sine := SineOsc new.

"creates a stereo DSP from the Oscillator"

dsp := sine stereo asDsp.

"initialize the DSP"

dsp init.

"start the sound"

dsp start.

"stop the sound"

dsp stop.

"destroy the dsp when you no longer need it"

dsp destroy.
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Get FUNKY
“Create two pulse generators, the first has its period changed by a LowFrequency Oscillator”

pulse1 := Pulsen new period: (LFOTriPos new freq: 0.2; offset: 0.05; amount: 4) .

pulse2 := Pulsen new period: 0.35.

“Create a djembe, triggered by pulse1”

djembe := Djembe new trigger: pulse1.

marimbaFreq := LFORandomPos new offset: 20; amount: 600; freq: (1 /0.35).

“Create a marimba, triggered by pulse2 and with the frequency modulated by an LFO with a random shape”

marimba := Marimba new trigger: pulse2; freq: marimbaFreq .

“Sum the marimba and the djembe and creates a dsp”

dsp := (djembe + marimba) stereo asDsp.


dsp init.

dsp start.

dsp stop.
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Take Control
"create a Pulse wave Oscillator with a frequency of 232 hz"

pulse := PulseOsc new freq: 232.

"creates a stereo DSP from the Oscillator"

dsp := pulse stereo asDsp.

"initialize the DSP"

dsp init.

"start the sound"

dsp start.


"create and open  a slider to control the DutyCycle of the PulseOscillator"

f := dsp openSliderFor: 'PulseOscDuty'.

"stop the sound"

dsp stop.

"destroy the dsp when you no longer need it"

dsp destroy.
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Take Control (with toplo)
“Create a djembe triggered by a Pulse train”

djembe  := Djembe new trigger: Pulsen new.

“Connect  the Djembe to a GreyHole reverb effect and create a stereo DSP”

dsp := (djembe => GreyHole  new) stereo asDsp.


“Initialise the DSP”

dsp init.

“Start the sound” 

dsp start.


 “Open a BlSpace with a knob for all the dsp parameters”

ICDarkKnob5 openForAllParameters: dsp.

“Stop the dsp”

dsp stop.
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Syntax in a pit stop
“Create your modular synth connecting Unit Generators with the ChucK operator =>"


synth := SquareOsc new => AREnv new => GreyHole new.

"creates a stereo DSP from your "


dsp := synth stereo asDsp.

"initialize the DSP"


dsp init.

"start the sound"


dsp start.

“check which parameters you can modify”


dsp traceAllParams.

“change the value of a parameter in real time”


dsp setValue: 900 parameter: ‘SquareOscFreq’.

“rig the envelope”


dsp trig: ‘AREnvGate’.

“stop the sound”


dsp stop.

"destroy the dsp when you no longer need it"


dsp destroy.
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The chuck operator =>
• We friendly adopted* the binary operator => from the ChucK programming language 

to simplify the connection between Unit Generators. 

* it is our playful homage to the creators of ChucK!

UnitGenerator => anotherUnitGenerator


	 ^ self chuckInto: anotherUnitGenerator

UnitGenerator chuckInto: aBox


	 aBox patchedWith: self.


	 ^ aBox

UnitGenerator new patchedWith: aBox


	 ^ Error new signal:  'You cannnot connect a' , 
aBox className asString , ' with a ' , self className asString

Envelope new patchedWith: aUnitGenerator


	 aUnitGenerator asBox * self asBox

ResonatorFilter patchedWith: anInput


	 self input: anInput

• The chuckInto: method simplifies and abstract the connections between Unit 
Generators adhering to the principles of modular synthesis patching



Domenico Cipriani - 2024

The toolkit
• The Toolkit is a comprehensive  collection of sound generators, effects and 

utilities designed to facilitate and accelerate the creation and development of 
Phausto sounds.

• Inspired by Perry Cook’s and Gary Scavone’s Standard Tool Kit (STK), it is 
conceived to extend the functionalities of the FAUST libraries.

• At the moment iy includes a Mono Delay with Feedback, an Incrementer, a 
Resetter, a 4 inputs selectors and a basic Sample Player
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TurboPhausto
• TurboPhausto has been inspired by the SuperDirt engine for SuperCollider and it 

is thought to be the default audio client for Coypu, the pHaro package for 
programming music on-the-fly

• It will feature a collection of synthesisers, drum machines, instruments, sample 
players and effect with a default API design

• ZXXZX EXAMPLE

•
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Unmute your pharo 
ThreadSafeTranscript subclass: #TurboTranscript


	 instanceVariableNames: ''

	 classVariableNames: ''


	 package: 'PhaustoESUG24'
TurboTranscript >>>open


	 | path sp myDsp |

	 

	 "Create an instance of the SamplePlayer"

	 sp := SamplePlayer new.

	 "Specify a path to an audio files"

	 sp pathToFile: path , ‘bonapetit.wav'.


 path := FileLocator documents asAbsolute pathString , '/phDemoSamples/'.


	 "Give the sampler a unique name"

	 sp name: 'voice'.

	 "Compile it  as a DSP, initialize it and start it"

	 myDsp := sp stereo asDsp.

	 myDsp init.	 myDsp start.

	 ^ self openLabel: ' T U R B O T R A N S C R I P T'
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Algorithmic compositions
"PsgPlus is a TurboPhausto synth inspired by Sega Master System PSG (Programmable 
Sound Generator,  a clone of the SN76489 chip used in the Texas Instruments TI-99/4A and 
TI-99/8 home computers.”


dsp := ( PsgPlus new  => DelayMonoFB new )stereo asDsp.

dsp init.

dsp start.

 

"sonification of Collection subclasses"

Collection subclasses do: [ :c | dsp playNote: c selectors size prefix: 'PsgPlus'  dur: 0.12.

	 (Delay forSeconds: 0.16) wait    ].
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the future isn’t written yet
• All the functions of FAUST standard libraries should be implementedas Phausto 

Unit Generators classes or as methods 

• Extend the Toolkit

• Design a basic set of instruments and effect for TurboPhausto

• Implement a robust and modern UI with Toplo.

• Support for external MIDI Input (keyboards and controllers) with Pharo Sound


