
Domenico Cipriani - 2024

Phausto:
The sound within Pharo

Domenico Cipriani - 2024

What is Phausto?
• Phausto is a multi-platform library and API that enables the programming

Digital Signal Processors (DSPs) and sound generation in Pharo

• The audio is generated through FFI calls to a dynamic engine that computes
audio signal by leveraging the power on an embedded FAUST compiler and
feeds the buffer of a PortAudio callback

• Phausto has been developed with three main goals:

1. To enrich Pharo applications with sound;

2. To allow sound artists and musician to program synthesisers and effects and compose

music with Pharo;

3. To teach DSP programming to beginners and offer a fast prototyping platform for

musician and audio developers

Domenico Cipriani - 2024

Why Faust?
• FAUST is a a functional programming language for sound synthesis and audio

processing created at the GRAME-CNCM Research Department in Lyon.

• FAUST is considered the state of the art in the research and development of the
implementation of time-domain algorithms the can be represented as block
diagrams, such as virtual analog synthesisers, filters, waveguide physical models
and reverbs

• FAUST standard libraries offers a ready to use extensive collection of sound
generators, physical models, DSP helper functions and effects, all resulting from
cutting edge audio research supported by a large community

Domenico Cipriani - 2024

The unit generators
• Unit Generators (UGens) are basic building blocks for signal processing

algorithms first developed by Max Matthews and John E.Muller for the Music III
program n 1960.

• Phausto organizes and implement the functions and the semantics of FAUST
standard library into Unit Generators subclasses deeply inspired by the ChucK
programming language.

• Unit Generators include oscillators, filters, physical models, envelopes and
effects such as delays, reverbs and flangers.

Domenico Cipriani - 2024

INSTALL PHAUSTO

Metacello new

 baseline: 'Phausto';

 repository: 'github://lucretiomsp/phausto:main';

 load

• First, download the packed faustLibraries for your platform, open the package,
and copy of the librariesBundle folder into documents/Pharo/images/
yourPhaustimage

Domenico Cipriani - 2024

MODULAR Dsp programming

• Phausto offers an approach to develop and design synthesisers and effect that is inspired by
modular synthesiser patching.

• Digital signal processing (DSP) is the use of digital processing, to perform a wide variety of signal
processing operations focused on analyzing, modifying and synthesizing signals, such
as sound, images, potential fields, seismic signals.

Oscillator Envelope Filter Reverb

Output

• dsp := SineOsc new => ADSREnv new => ResonLp new => SatRev new.

• In Phausto, we connect Unit Generator setting their
members value or using the ChucK operator => .

https://en.wikipedia.org/wiki/Digital_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Scalar_potential
https://en.wikipedia.org/wiki/Seismic_tomography

Domenico Cipriani - 2024

Hello phausto
"create a Sine wave Oscillator"

sine := SineOsc new.

"creates a stereo DSP from the Oscillator"

dsp := sine stereo asDsp.

"initialize the DSP"

dsp init.

"start the sound"

dsp start.

"stop the sound"

dsp stop.

"destroy the dsp when you no longer need it"

dsp destroy.

Domenico Cipriani - 2024

Get FUNKY
“Create two pulse generators, the first has its period changed by a LowFrequency Oscillator”

pulse1 := Pulsen new period: (LFOTriPos new freq: 0.2; offset: 0.05; amount: 4) .

pulse2 := Pulsen new period: 0.35.

“Create a djembe, triggered by pulse1”

djembe := Djembe new trigger: pulse1.

marimbaFreq := LFORandomPos new offset: 20; amount: 600; freq: (1 /0.35).

“Create a marimba, triggered by pulse2 and with the frequency modulated by an LFO with a random shape”

marimba := Marimba new trigger: pulse2; freq: marimbaFreq .

“Sum the marimba and the djembe and creates a dsp”

dsp := (djembe + marimba) stereo asDsp.

dsp init.

dsp start.

dsp stop.

Domenico Cipriani - 2024

Take Control
"create a Pulse wave Oscillator with a frequency of 232 hz"

pulse := PulseOsc new freq: 232.

"creates a stereo DSP from the Oscillator"

dsp := pulse stereo asDsp.

"initialize the DSP"

dsp init.

"start the sound"

dsp start.

"create and open a slider to control the DutyCycle of the PulseOscillator"

f := dsp openSliderFor: 'PulseOscDuty'.

"stop the sound"

dsp stop.

"destroy the dsp when you no longer need it"

dsp destroy.

Domenico Cipriani - 2024

Take Control (with toplo)
“Create a djembe triggered by a Pulse train”

djembe := Djembe new trigger: Pulsen new.

“Connect the Djembe to a GreyHole reverb effect and create a stereo DSP”

dsp := (djembe => GreyHole new) stereo asDsp.

“Initialise the DSP”

dsp init.

“Start the sound”

dsp start.

 “Open a BlSpace with a knob for all the dsp parameters”

ICDarkKnob5 openForAllParameters: dsp.

“Stop the dsp”

dsp stop.

Domenico Cipriani - 2024

Syntax in a pit stop
“Create your modular synth connecting Unit Generators with the ChucK operator =>"

synth := SquareOsc new => AREnv new => GreyHole new.

"creates a stereo DSP from your "

dsp := synth stereo asDsp.

"initialize the DSP"

dsp init.

"start the sound"

dsp start.

“check which parameters you can modify”

dsp traceAllParams.

“change the value of a parameter in real time”

dsp setValue: 900 parameter: ‘SquareOscFreq’.

“rig the envelope”

dsp trig: ‘AREnvGate’.

“stop the sound”

dsp stop.

"destroy the dsp when you no longer need it"

dsp destroy.

Domenico Cipriani - 2024

The chuck operator =>
• We friendly adopted* the binary operator => from the ChucK programming language

to simplify the connection between Unit Generators.

* it is our playful homage to the creators of ChucK!

UnitGenerator => anotherUnitGenerator

	 ^ self chuckInto: anotherUnitGenerator

UnitGenerator chuckInto: aBox

	 aBox patchedWith: self.

	 ^ aBox

UnitGenerator new patchedWith: aBox

	 ^ Error new signal: 'You cannnot connect a' ,
aBox className asString , ' with a ' , self className asString

Envelope new patchedWith: aUnitGenerator

	 aUnitGenerator asBox * self asBox

ResonatorFilter patchedWith: anInput

	 self input: anInput

• The chuckInto: method simplifies and abstract the connections between Unit
Generators adhering to the principles of modular synthesis patching

Domenico Cipriani - 2024

The toolkit
• The Toolkit is a comprehensive collection of sound generators, effects and

utilities designed to facilitate and accelerate the creation and development of
Phausto sounds.

• Inspired by Perry Cook’s and Gary Scavone’s Standard Tool Kit (STK), it is
conceived to extend the functionalities of the FAUST libraries.

• At the moment iy includes a Mono Delay with Feedback, an Incrementer, a
Resetter, a 4 inputs selectors and a basic Sample Player

Domenico Cipriani - 2024

TurboPhausto
• TurboPhausto has been inspired by the SuperDirt engine for SuperCollider and it

is thought to be the default audio client for Coypu, the pHaro package for
programming music on-the-fly

• It will feature a collection of synthesisers, drum machines, instruments, sample
players and effect with a default API design

• ZXXZX EXAMPLE

•

Domenico Cipriani - 2024

Unmute your pharo
ThreadSafeTranscript subclass: #TurboTranscript

	 instanceVariableNames: ''

	 classVariableNames: ''

	 package: 'PhaustoESUG24'
TurboTranscript >>>open

	 | path sp myDsp |

	

	 "Create an instance of the SamplePlayer"

	 sp := SamplePlayer new.

	 "Specify a path to an audio files"

	 sp pathToFile: path , ‘bonapetit.wav'.

 path := FileLocator documents asAbsolute pathString , '/phDemoSamples/'.

	 "Give the sampler a unique name"

	 sp name: 'voice'.

	 "Compile it as a DSP, initialize it and start it"

	 myDsp := sp stereo asDsp.

	 myDsp init.	 myDsp start.

	 ^ self openLabel: ' T U R B O T R A N S C R I P T'

Domenico Cipriani - 2024

Algorithmic compositions
"PsgPlus is a TurboPhausto synth inspired by Sega Master System PSG (Programmable
Sound Generator, a clone of the SN76489 chip used in the Texas Instruments TI-99/4A and
TI-99/8 home computers.”

dsp := (PsgPlus new => DelayMonoFB new)stereo asDsp.

dsp init.

dsp start.

"sonification of Collection subclasses"

Collection subclasses do: [:c | dsp playNote: c selectors size prefix: 'PsgPlus' dur: 0.12.

	 (Delay forSeconds: 0.16) wait].

Domenico Cipriani - 2024

the future isn’t written yet
• All the functions of FAUST standard libraries should be implementedas Phausto

Unit Generators classes or as methods

• Extend the Toolkit

• Design a basic set of instruments and effect for TurboPhausto

• Implement a robust and modern UI with Toplo.

• Support for external MIDI Input (keyboards and controllers) with Pharo Sound

